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Abstract 

EEG based Brain-Computer Interface (BCI) systems can establish a direct communication 

channel from the brain to an electronic device. It bypasses conventional motor output pathways 

of nerves and muscles and can provide effective control over electromechanical devices such as 

neuro- prosthesis, wheelchair or other communication devices, making it suitable for physically 

challenged people. Needless to say, the technology is very sophisticated and it is not mature yet 

in the global scenario. Besides, most such work is done in the economically advanced countries 

where technological simplicity, low cost, etc., are not of primary concern, while these are 

important for a low resource country like Bangladesh. The present work was taken up with such 

a scenario in mind, development of a BCI system, including hardware and software, with a high 

quality of performance but keeping cost and technological sophistication low. 

In the present work a complete BCI system has been developed from scratch, comprising of (i) 

hardware and software for EEG recording and interfacing to a computer, (ii) software for EEG 

trace visualization, (iii) signal analysis and processing, (iv) feature extraction algorithm and (v) 

classification method. The EEG device used is of only two channels which records from the 

sensorimotor cortex area (C3 and C4) of the human scalp that are responsible for limb 

movement. The bioelectric amplifier of the device consists of two channels and was designed to 

meet the requirement of low component count, high power efficiency, low noise and small 

physical size, suitable for a wearable system. To overcome some challenges of reliable EEG 

signal recording, several novel designs of hardware modules like AC coupled input stage, Driven 

Right Leg (DRL) circuit with improved performance, two-wired active electrode were proposed 

and implemented. These modules resulted in more stable EEG recordings with substantial 

amount of interference reduction as well as providing reinforced user safety. A skin-electrode 

contact impedance measurement system was developed which is able to measure the impedances 

of the ground and reference electrodes as well. A USB based data acquisition system was also 

developed for the BCI system using a microcontroller. The data acquisition system is useful 

during training phase and can also be used for standalone signal processing, data classification 

and control purpose.  
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To achieve effective control and communication by the BCI system several offline analyses 

through individual classifiers or a combination of them were performed with motor-imaginary 

EEG data (EEG data during imagination of movement) of several subjects. This was done to 

investigate for suitable feature extraction and classification methods for the developed BCI 

system. For simplicity and reliability, the activities of 𝜇 and 𝛽 rhythms from sensorimotor cortex 

during Event Related Desynchronization (ERD) were used for classification. As the 𝜇 and 𝛽 

rhythms are physiologically meaningful attributes of the EEG signal during ERD it makes the 

classification more efficient. The suitable methods from offline analyses were applied to a single 

trial online classification. This online classification consisted of motor-imaginary of two states as 

Left and Right hand movements. This was tried on three subjects with no previous experience of 

BCI. This experiment was conducted using the developed EEG hardware (with only two 

channels) and Software. With one subject the accuracy was only about 60% while it was more 

than 80% for the other two subjects, indicating a success of the present work. 
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Chapter 1 : Introduction 

1.1 Overview of the Research Field 

Recognition of human thought pattern electronically for identifying different objects and 

intended direction of motion or movement has a great demand, especially for the physically 

challenged people to enable independent activities such as controlling a wheelchair or a neuro-

prosthesis. Research in this area is being conducted in several laboratories in the world with 

reasonable success, but still requires a substantial amount of improvement as there are various 

challenges and constraints that require to be overcome for practical use. The system which 

facilitates such process uses the recordings of cerebral electrical activity or electrical signals of 

human brain activity over time and then classifying the recorded data associated with different 

thought or movement of body parts or even just imagination of movement of body parts, gives 

appropriate outputs to achieve some functions or controls. These systems are referred to as Brain 

Computer Interface (BCI) or Brain Machine Interface (BMI) or Mind Machine Interface or 

Direct Neural Interface (DNI) and provide a direct communication pathway between human 

brain and an external electronic device (Krucoff et al., 2016).  

 

Figure 1.1: Brain-Computer Interface (BCI) System 
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A Block diagram of a BCI system is shown in Figure 1.1. Basically such a system involves 

acquisition of brain (cerebral) electrical signals, processing of the signal to eliminate or minimize 

artefacts, noise and unwanted signals, extracting features from the processed signal that would 

reveal whether the subject wants to perform any particular task, classification to identify one of a 

few tasks that the subject wants to perform and then to generate relevant driving signals or 

command control of a device. There should also be a feedback to the subject to verify whether 

the performed task is correct or not so that the subject can take corrective actions, if needed. 

Primarily there are two types of systems which can record cerebral electrical activity namely, (i) 

Electroencephalography (EEG) and (ii) Electrocorticography (ECoG).  The EEG is non-invasive 

and recorded from the scalp surface. The signals originate from the neuronal potentials of the 

brain but are reduced and diffused by the bone, muscle and skin which lie between the recording 

electrodes and the brain. Since the brain signals are recorded across the scalp in EEG, the signals 

are of very small amplitude, typically ranging from 10 to 100µV for normal subjects (Wikipedia, 

2017, June 22) and increasing to around 300 µV for epileptic subjects (Brown, 1999). Being such 

a low amplitude signal EEG is highly prone to noise and various artefacts and is therefore one of 

the most difficult bioelectrical signals to record. Since the EEG signal is diffused by the scalp it 

has poor spatial resolution. A single EEG electrode gathers information from a brain area with 

approximately 20 mm diameter and the whole of the brain area is typically covered by many 

electrodes following a standard 10-20 electrode placement system (Brown, 1999).  On the other 

hand, ECoG system uses electrodes which are placed directly on the cortex by means of surgery; 

the electrodes are embedded in a thin plastic pad that is placed on the cortex, beneath the dura 

mater (Serruya et al., 2003). Since the electrodes are placed directly on the cortex, ECoG signals 

have contribution from smaller localized brain areas, which are not diffused as in EEG, and have 

higher amplitudes (10 to 20 mV). Being large, ECoG signals do not suffer from the noise and 

artefacts that affect EEG. Besides, being less diffused, ECoG signals have much better spatial 

resolution (Wikipedia, 2017, June 22).  

ECoG has many advantages over EEG but the only major disadvantage that pushes it back is that 

it is invasive, requiring surgery and special care which cannot be a routine technique (Brown, 

1999). ECoG signals are robust and it requires very little or no training at all for the BCI system 
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(Yanagisawa, 2011). There are numerous reports on very successful BCI system employing 

ECoG (Biosignal, 2011) (Schalk et al., 2008) (Yanagisawa, 2011) (Gulati et al., 2015), however, 

due to the invasive procedure, it is not commonly used for BCI. In spite of low signal quality, 

low reliability and extensive training requirement using EEG, it is still the most popular choice 

for BCI or BMI system, simply because it is non-invasive. Besides, it has good temporal 

resolution, portability, user safety and low device manufacturing and setup cost (Wikipedia, 

2017, June 28). 

The first BCI system using EEG was reported in 1988, which utilizes alpha rhythm (8 to 14 Hz) 

to control a mobile robot (Bozinovski et al, 1988 & Bozinovski, 1990). Since then numerous 

efforts have been made to develop effective BCI systems for various applications. For example, 

severely paralyzed people were trained to control ‘Slow Cortical Potential’ to control a computer 

cursor (Wolpaw et al., 2002) through which they could write on a computer screen, but the 

process was too slow. 

A slightly different technique uses an event related potential (ERP) known as Visual evoked 

potential (VEP) in which a subject is asked to observe some visual patterns while evoked EEG is 

recorded from the visual cortex of the brain. For a particular application of VEP in brain control, 

subjects are asked to select specific letters from a series of randomly appearing letters on a 

computer screen. This technique uses a particular pattern of the VEP known as the P300 signal 

which appears involuntarily approximately 300ms after a person recognizes an object that he or 

she desires to see. This allows BCI systems to classify user intention with high accuracy without 

prior training (Farwell et al., 1988), (Donchin et al., 2000), (Piccione et al., 2006), ( Nijboer et 

al., 2008). However, it is also slow, approximately 17 character/min was obtained with 95% 

accuracy (Wikipedia, 2017, June 28).  

For typical BCI, EEG signal from sensorimotor cortex is used to classify a subject’s movement, 

or imagination of movement of various body parts. Since imagination of movement is more 

appropriate for paralyzed patients the latter has been extensively examined and is commonly 

known as Motor-Imaginary BCI (Pfurtscheller, 2000). Motor-Imaginary BCI (MI-BCI) mainly 

focuses on changes in the human µ rhythm, which is an EEG oscillation recorded in the 8-13 Hz 

Anis
Typewritten text
Dhaka University Institutional Repository



4 

 

range from the central region of the scalp overlying the sensorimotor cortices (Pfurtscheller, 

1989). The first MI-BCI with high accuracy, using imagination of left and right hand movement 

was reported in 1998 by Christoph Guger (Guger et al., 2000). In this study, three subjects were 

used to perform a real time (online) classification. This experiment was conducted to verify the 

usefulness of a feature extraction method called ‘Common Special Pattern’ (CSP). The study 

used ‘Linear Discriminant Analysis’ (LDA) classification method for classification and resulted 

in 98%, 94% and 86% of accuracy for the three subjects respectively. Since then advanced 

machine learning techniques have been developed and used for MI BCI. Similar motor 

imaginary EEG data of left and right hand movement was online classified using the ‘Welch 

power spectrum’ as feature with three different classifiers. In this study the ‘Mahalanobis 

distance’ classifier obtained the highest accuracy of 90%, Gaussian Classifier had accuracy of 

80% and ‘Hidden Markov Model’ resulted in 65% of accuracy (Cincotti et al., 2003). Another 

online classification of three class motor imaginary EEG data was reported to use imagination of 

left hand, right hand and foot movement. This study used only ‘Band Power’ as features and 

LDA as classifiers and obtained 95% of accuracy (Scherer et al., 2004).  

1.2 Motivation  

BCI system can improve the quality of life of millions of physically challenged people around 

the world. In combination with recent immense development of electronic computational power, 

efficient electromechanical prosthesis and hand held smart communication devices; it is a 

promising technology that can facilitate functionality, mobility and communication abilities of 

people with disabilities. To benefit the common people around the world, a practical BCI system 

should be inexpensive and affordable, should consume low power to run for a long enough time 

on battery power, should be small in size and light weight, and should be repairable in the low 

resource countries. However, systems are mostly developed in industrially and economically 

advanced countries which do not satisfy the requirements mentioned above for a low resource 

country. They usually target their own population who have high levels of income and have easy 

access to technical repairing facilities. Therefore, unless such systems are developed 

indigenously in the low resource countries by the scientists and engineers of these countries, the 

benefits of BCI cannot be taken to the common people in these countries, which constitute above 

80% of the global population. This was the motivation behind taking up the present work. 
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1.3 Aims and objectives  

The primary aim is to develop an appropriate BCI system for the common people of the low 

resource countries, particularly with the aim of controlling a wheel chair or a limb prosthesis 

using brain signals. The developed system should have all the attributes mentioned above, i.e., 

low cost, light weight and portable, low power consumption, amenable to repair in a low 

resource country. The last requirement specifies that it should be as simple as possible with low 

component count, and the electronic components should be available widely, i.e., the technology 

should not depend on expensive and less easily available customized ICs and other components. 

Therefore, this work presents a formidable challenge in redesigning of almost all the electronic 

hardware of existing EEG system, since this forms the backbone of a BCI system.  

The cost of reproducing feature extraction and classification techniques, being software based, 

would be zero once these are developed to mature state, and there would be virtually no 

requirement for any maintenance and repair. However, any software which has been developed 

by the rich industrial countries are very expensive to procure because of strict intellectual 

property rights. Therefore, developing the software also forms part of the objectives of the 

present work. The technological challenge of developing such algorithm is formidable and the 

present thesis takes up this challenge as well.  

The objectives of the present work may be specifically listed as follows. 

1. The efficiency of a BCI system mostly depends on the quality of the EEG data, as the 

data classification methods are useless if corrupted EEG is analyzed. Since EEG is a very 

small signal and is easily affected by noise and artefacts, being probably the most 

difficult bioelectric signal to record, every care should be taken to eliminate or reduce 

interference noise and artefacts (Brown, 1999). Therefore, understanding sources of 

interference noise and artefact, how they affect the EEG recording amplifier circuit, 

investigating how to reduce them and then designing and developing an optimised EEG 

amplifier system is one of the objectives of this research work. Since the system is 

intended to be portable for controlling electromechanical prosthesis, making the finished 
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device with low component count to make it lightweight and portable needs also be 

integrated with the objective mentioned above.  

2. In view of the reported work mentioned earlier, Motor-Imaginary BCI was chosen for the 

present study. Therefore, developing a BCI system through an analysis of recorded EEG 

data in real time is another objective of this research work. This would involve finding an 

appropriate, better and efficient EEG data classification method. For this, sophisticated 

mathematical analysis of recorded EEG signals would have to be carried out through 

development of appropriate computer algorithm. 

3. Finally, due to limitations of accuracy of purely BCI systems, a combination with a 

separate signal, such as Electrooculogram (EOG) obtained from the eye muscles will be 

tried.   

The above objectives are summarized in Figure 1.2 

 

Further details of the objectives are given below, separating them out into sections of Hardware, 

Analysis, and a combination of BCI and EOG 

 

 

 

MI-BCI system development 

Development of 

appropriate EEG 

Hardware Device 

EEG Data Analysis 

through Feature Extraction 

and Classification 

Methods  
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BCI with EOG for 

wheelchair control  

Figure 1.2: Visualization of the main objectives of the present thesis 
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Hardware: 

The development of appropriate EEG hardware involves several areas which will be tackled in 

the present thesis through innovation and improvisation and these are visualized through a 

simplified block diagram as shown in Figure 1.3. The blocks which are to be specifically 

targeted in the hardware development part of the present work are the following: 

1. Analog Front End Instrumentation Amplifier and Filters: The heart of the EEG device is 

the bioelectric amplifier. Development of an optimized bioelectric amplifier with its 

amplification and gain stages with the desired properties and parameters as mentioned 

before forms challenge which will be solved first. 

2. Input Coupling (DC/AC): For patient safety, ac coupling through a capacitor is essential, 

but such coupling reduces the Common Mode Rejection Ratio (CMRR) significantly in 

traditional designs of front end amplifiers, compared to that for DC coupling, which gives 

the highest CMRR. The present work, through an innovative circuit design, will try to 

obtain high CMRR with AC coupling.  

3. Driven Right Leg (DRL): In order to improve CMRR, DRL is an option in many 

traditional designs, but it needs manual adjustments in each individual measurement to 

make it effective. The present work will try to design a circuit with automatic 

compensation so that no manual intervention is necessary, which will contribute to an 

improved DRL design, if successful.  

Figure 1.3: The Proposed Design Block Diagram of the EEG Hardware 
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4. Active Electrode system: A buffer amplifier mounted physically on the EEG electrodes 

on the scalp can reduce the noise pick up by long lead wires significantly; the 

configuration being termed as ‘active electrodes’. Standard designs of active electrodes 

need three wires, two for power and one for signal, which increases the bulk of the 

connecting leads, often not practical for EEG measurements. Two wire designs have been 

tried but these have still some problems which prevents their use in routine work. The 

present work will try to develop an improved two wire active electrode design which will 

remove the above weaknesses. 

5. Electrode Impedance measurement system: This is done in many devices to assess the 

connections of the electrodes before or during an EEG measurement. The present work 

will try to develop an indigenous design which should be simple and robust. 

6. USB interface to a PC: This has also standard designs of various kinds. The present work 

will develop its own to achieve a cost effective design.  

 

Analysis of EEG data: 

The second major objective of the present work involves analysis of EEG Data to extract reliable 

commands for the BCI system, to operate electromechanical systems such as prosthetics, electric 

wheelchairs etc., and also for human machine interaction and communication. This would be 

mainly focused on offline and online analysis of EEG data through feature extraction and 

classification of EEG signals, specifically for motor movement or intent of movement or 

imaginary movements. These data classification techniques will be improved selecting more 

effective features of the data and combination of more than one technique. Then the results will 

be evaluated to propose an effective wearable BCI system. 

Combination of BCI and EOG to improve accuracy: 

The third objective of the present work is to investigate the improvement in accuracy through a 

combination of BCI and EOG, the latter obtained from muscles around the eye for pre-selected 

eye movements.  
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1.4 Structure of this Thesis 

This thesis is primarily divided into three parts following the overview given in Figure 1.2. The 

first part covers the hardware development of an improved and cost effective EEG device. The 

development of the individual design aspects as outlined in the section on objectives above are 

presented as individual chapters (Chapter 2 to 7). Each chapter deals with background study, 

present challenges and their proposed solutions, design description, simulations and 

experimentation. The results and novelty i.e. innovation to solve specific problem are also 

presented in each chapter.  

The second part deals with the analysis of EEG Data through Feature Extraction techniques and 

Classification Methods, and is dealt with in chapters 8 to 10. Chapter 8 and 9 conducts offline 

analysis (analysis on recorded EEG data) for BCI purposes and Chapter 10 demonstrates online 

analysis (real time EEG data analysis) using the developed EEG device and software.  

The third part gives the results of a feasibility test of combination EOG signals to that obtained 

from BCI to achieve better results of controlling electromechanical devices and is presented in 

Chapter 11.  

Chapter 2 to 11 can be regarded as methods section of the thesis, each with individual 

subdivisions into introduction, methods, results and discussions.  

Finally, overall conclusion is presented in Chapter 12.  
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Chapter 2 : Design of Optimum Bioelectric Amplifier (Analog Front 

End) for EEG 

2.1 Background 

To record EEG signal for BCI application, a bioelectric amplifier is essential. Although, design 

information and theory for bioelectric amplifier is well established, commonly available and 

there are numerous design notes and excellent books are present (Brown, 1999 & Webster,1998), 

but every system has its own set of criterion which presents practical challenges that is not 

usually treated in the text books. These challenges need to be addressed. In this chapter, 

development of a two channel EEG amplifier is discussed, then the following chapters describes 

various proposed innovative methods which overcomes different challenges and improves the 

overall bioelectric signal recording, then eventually development of an optimum bioelectric 

amplifier for EEG and other electro-physiological signals. This bioelectric amplifier in 

conjunction with data acquisition system is used for BCI research.        

2.2 Design Considerations  

As it is mentioned before, EEG is extremely small signal of minimum amplitude of 10 µV, 

where background noise of about 2 μV p–p is expected even if the very best bioelectric amplifier 

is used (Brown, 1999). For instance, if we ignore the other source of interfering noise and 

artefact, only the thermally generated noise form the components is high enough to corrupt the 

EEG signal as the signal to noise ratio is 5:1 and is very much significant. Therefore, to reduce 

noise, the amplifier is required to have low parts count, which is also a requirement for low cost 

and small size wearable feature. It needs to have a narrow bandwidth with sharp cut-off 

frequency as noise voltage is a function of frequency and sums up to the total thermal noise by a 

factor of √𝑓, i.e, reducing bandwidth by a factor of 5 will reduce noise voltage by a factor of √5 

(Brown, 1999). The amplifier needs to have at least of 100 dB of gain to be able to record the 

lowest amplitude EEG signal of 10 µV peak to peak, after amplification the output will then 

become 1volt peak to peak. On the other hand for a nominal 100 µV peak to peak signal the 

output will be 10 V peak to peak which is nominal dynamic range of the input of the data 

acquisition system that is preliminarily used for evaluation of the system. The amplifier is 
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required to have a Common Mode Rejection ratio of 100 dB. Assuming the average interfering 

common mode voltage to be of amplitude 100 mV, and the average EEG signal to be 100 μV, 

this will reduce the common mode voltage to 1% of the output signal voltage. The clinical EEG 

has the bandwidth of 0.5 to 40 Hz (Brown, 1999), on the other hand some BCI research requires 

the upper band frequency as high as 200 Hz (Blankertz et al., 2003). Therefore, to have future 

compatibility, the desired amplifier band width is 0.5 to 200 Hz.   

Besides, for diagnosis or for BCI, multichannel EEG is usually required. Normally each would 

require a differential amplifier with two inputs while all of them can have a common neutral (or 

ground). However, this would require complex connections when one desires to have EEG from 

multiple localized points. Therefore, in any EEG system all differential amplifiers should have 

only the non-inverting inputs as the active electrodes while all the inverting inputs should be 

connected together to another common electrode. The reference or the common neutral of all the 

INAs are also connected together. This calls for additional complexity in design which needs to 

be addressed carefully.  

Another problem common with any bioelectric amplifier is the presence of a DC contact 

potential at the electrodes. Even if these are eliminated using AC capacitor coupling at the input, 

some slowly varying DC is encountered due to movement of ions in the body beneath the 

electrodes and due to slight movement of electrodes on the skin, leading to very low frequency 

noise. Again the first INA stage itself may contribute to a DC offset voltage. Therefore 

appropriate circuits are needed to eliminate such DC potentials from the output, which otherwise 

may saturate the whole amplifier system rendering it useless.  

2.3 Method 

2.3.1 Design                  

The main component of the bioelectric amplifier is the special form of difference amplifier called 

Instrumentation Amplifier (INA), it has very high input impedance (~ Giga ohm), and very high 

Common Mode Rejection Ratio (CMRR, ~ Minimum of 80 dB), followed by a few stages of 

filters – both high pass and low pass, to provide the desired pass band. Since description, theory 

of operation and documentation of instrumentation amplifier is widely available, it is not 
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discussed here, but it can be safely said that it is an essential part of bioelectric amplifier because 

of its unique attributes mentioned above. There are several ways to configure a multichannel 

bioelectric amplifier using INA’s, the most reliable way is to connect all the inverting input 

terminals as a common electrode connection and connecting the INA reference pin to the circuit 

ground or to a Driven Right Leg (DRL) circuit (Discussed in Chapter 4). This connection serves 

as reference electrode for difference potential measurement. Then, the non-inverting inputs are 

treated as individual electrode connection, therefore, individual channels. Figure 2.1 shows the 

general amplifier configuration used for two channel bioelectric amplifier. The number of 

channel can be increased by this configuration just by adding more INA`s in similar fashion. 

Although the reference point is shown in the figure as the ground terminal, in a typical EEG 

amplifier, this is known as the common neutral point since such patient connected segments are 

electrically isolated from the main circuit having another ground terminal which is connected to 

the ac power mains. 

To achieve 100 dB of gain, which equals 100,000 in linear gain, the amplifier was designed to 

have four gain stages; the first gain stage is obviously the INA, which should have a gain of 

about 75. This gain value was chosen from the fact that there are three filter stages later which 

Figure 2.1: Selected Multichannel bioelectric Amplifier configuration 
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were designed to have gains of 11 at each stage making a total gain of the filter stages as 1331. 

Therefore, to have 100,000 of total gain, the first INA stage gain has to be 75.13 

(=100,000/1331). In the present work the INA circuitry was designed to have a precise gain of 

75.2, making the total gain slightly greater than 100,000, the variation being negligible. 

The three filter stages used are of Sallen–Key configuration (Sallen, R. P., 1955) with second 

order filter topology.  

2.3.1.1 Instrumentation Amplifier segment with DC Restoration Circuit  

As mentioned before, there may be some small DC voltage or very low frequency noise voltage 

at the output of the INA stage. The typical approach would be to have a high pass filter right 

after the first INA stage. However, since the cut-off frequency has to be very low (< 0.1 Hz) this 

calls for reasonably large values of capacitor and resistor to have a large time constant. When a 

DC voltage suddenly changes at the input the output may become saturated momentarily which 

would charge up the capacitor. The capacitor may become charged and take a long time to 

discharge so that measurable signals are available again. To remove this problem, a DC 

restoration circuit as shown in Figure 2.2 was used. It uses a low pass inverting op-amp filter to 

extract and invert the very low frequency and DC components of the output of the INA stage 

which are then fed back to the reference terminal of the INA. The combined INA stage and the 

inverted low pass feedback essentially produces a high pass filter with much better performance, 

eliminating the problem of saturation mentioned above. 

Figure 2.2: DC restoration circuit with the 1st stage INA 
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The low-pass pole translates into a high-pass function as referred to the input with –3dB cut off 

frequency, 

𝑓𝑐 =
𝐴

2𝜋𝑅𝐶
       (2.1) 

Where, A refers to the differential gain from input to output of the INA and is given by 

(according to data sheet of LT1167, the INA used), 

                                                        𝐴 =  
49.4𝑘Ω

𝑅𝐺
+ 1      (2.2) 

To have gain of 75.2, 𝑅𝐺  was chosen to be 665 Ω. Since a resistor of this value is not 

commercially available it was made up of a 680 resistor in parallel to a series combination of 

two 15 kΩ resistor i.e. 30 kΩ. The midpoint of this series combination also provided a common 

signal point for Right Leg Drive Circuit described later. To achive cutoff frequency (𝑓𝑐) of 0.03 

Hz the DC restoration highpass filter, the R and C were chosen to be 5.6 MΩ and 1µF 

respectively.  

2.3.1.2 Low-pass filter using second order Sallen-Key topology  

Sallen-Key is a second order (i.e., 40 dB/decade attenuation) active filter as shown in Figure 2.3, 

particularly valued for its simple, low parts count design with excellent performance. This filter 

topology can be cascaded to obtain higher order. 

 

The transfer function for ideal low-pass Sallen-Key filter is given by,  

Figure 2.3: Single Stage of Sallen-Key low-pass filter 
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𝑉𝑜

𝑉𝐼
=

𝐴

𝑠2(𝑅1𝑅2𝐶1𝐶2)+𝑠(𝑅1𝐶1+𝑅2𝐶1+𝑅1𝐶2(1−𝐴))+1
     (2.3) 

Where, 𝑠 = 𝑗2𝜋𝑓. The cut-off frequency is given by,  

                                                         𝑓𝑐 =
1

2𝜋√𝑅1𝑅2𝐶1𝐶2
       (2.4) 

The Quality factor is expressed as,   

 𝑄 =
√𝑅1𝑅2𝐶1𝐶2

𝑅1𝐶1+𝑅2𝐶1+𝑅1𝐶2(1−𝐴)
                                        (2.5) 

It needs to be mentioned that a high Q-value indicates a large hump on the filter characteristics 

near the cut off frequency, which is undesirable. To have a desired maximally flat filter response, 

the Q-factor should be as low as possible (Kugelstadt, 2008). 

 

2.3.1.3 High-pass filter using second order Sallen-Key topology  

The high-pass Sallen-Key filter is obtained by interchanging R and C components. Figure 2.4 

shows the construction of this filter. The transfer function for ideal low-pass Sallen-Key filter is 

given by, 

                                    
𝑉𝑜

𝑉𝐼
=

𝐴(𝑠2(𝑅1𝑅2𝐶1𝐶2))

𝑠2(𝑅1𝑅2𝐶1𝐶2)+𝑠(𝑅2𝐶2+𝑅2𝐶1+𝑅1𝐶2(1−𝐴))+1
         (2.6) 

 

 Similarly, 𝑠 = 𝑗2𝜋𝑓, also the cut-off frequency is given by Eq. (2.4) 

And the Quality factor is given by,   

Figure 2.4: Single Stage of Sallen-Key high-pass filter 
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 𝑄 =
√𝑅1𝑅2𝐶1𝐶2

𝑅2𝐶2+𝑅2𝐶1+𝑅1𝐶2(1−𝐴)
                                              (2.7) 

 

We used 3 stages of Sallen-Key filter, one high-pass and two low-pass filters, which are all 

second order filters. Along with input AC coupling (which is a first order high pass filter, 

discussed in detail in a later chapter) and the DC restoration circuit (which is also a first order 

high pass filter, discussed before) and the Sallen-Key second order high-pass filter, the overall 

high-pass filtering of the bioelectric amplifier has an order of 4. Also two second order Sallen-

Key low pass filters produces 4th order filtering.  

According to the requirements stated above, these filters are designed and simulated first, then 

the circuits are built and practical analysis is conducted. 

2.3.2 Simulation and Schematics 

Each filter and Amplifier stages are simulated separately for frequency and gain response, then 

the final aggregated circuits are simulated. All the simulation, schematic design and PCB layout 

were performed using a software package called Proteus. 

2.3.2.1 Instrumentation Amplifier segment with DC Restoration Circuit 

The instrumentation amplifier used in the present work is an INA IC, LT1167, which has 

excellent CMRR, high input impedance and non-variant gain response in the desired frequency 

band. Besides, LT1167 has low input bias current due to its FET biased input stage which results 

in low noise. As there is no simulation model in the Proteus, a three operational amplifier version 

of INA was constructed and used for simulation based on TL074, a quad op-amp with JFET 

input. Figure 2.5 shows the schematics of the Instrumentation Amplifier with DC Restoration 

Circuit. 
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The resistor network of R1, R2 and R3 provides a differential input signal for the instrumentation 

amplifier applying a voltage signal at the top of R1. U1:D, C2 and R3 constructs the DC 

restoration circuit. The rest of the circuitry is part of constructed INA. 

2.3.2.2 Sallen-Key Low-pass filter  

The single stage Sallen-Key low-pass filter components values are calculated and selected from 

standard components with minor variations. The schematic used for practical use and simulation 

is shown in Figure 2.6. 

Figure 2.5: Simulation schematics of DC restoration circuit and INA 

Figure 2.6: Sallen-Key Low-pass filter 
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2.3.2.3 Sallen-Key High-pass filter  

Similar schematic design for simulation and actual circuit of a Sallen-Key high pass filter is 

shown in Figure 2.7 

 

 

2.3.2.4 Aggregated amplifiers and filters 

The final combined circuit is just adding the stages one after another and since those circuits are 

presented before, the schematics of combined circuitry is not shown here. The complete circuit 

schematic are given in Appendix-1. 

The simulation and actual circuitry were arranged as follows:  

(i) First order RC high-pass input stage for AC input coupling →  

(ii) DC restoration and INA (Gain = 75.2) →  

(iii) Second order Sallen-Key low-pass filter (Gain = 11) →  

(iv) Second order Sallen-Key high-pass filter (Gain = 11)  →  

(v) Second order Sallen-Key low-pass filter (Gain = 11).  

It is to be noted that, (i) and (ii) belongs to the first stage with INA and taken together, constructs 

one second order high-pass filter. Every input connecting the Electrode has a user protection 

Figure 2.7: Sallen-Key High-pass filter 
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circuitry. The detailed circuit diagram for a single channel bioelectric amplifier is given in 

Appendix-1. Each user and input protection circuit is connected to the INA by means of a 

switchable jumper, so it is possible to combine the inputs and as well as the Driven Right Leg 

(DRL, detail description is presented in chapter 4) circuit in different combinations for different 

amplifier configurations. For a two channel EEG recording amplifier, two single channel circuit 

boards are combined. 

For mains connected PC based data acquisition and analysis, the user and amplifier circuit is 

isolated by isolation amplifier IC (ISO124) and associated circuitry. The isolated split power 

supply is achieved by medical grade DC to DC converter (BB722BG). 

2.4 Results and Observations 

The frequency responses, for simulated and practical measurements of each stage and also of the 

combined bioelectric amplifier are presented in this section. Figure 2.8 and 2.9 show frequency 

responses of the INA stage with DC restoration circuit for both simulated and measured cases 

respectively. Figure 2.10 shows the frequency response of the measured CMRR of the 

differential amplifier stage i.e. INA stage. It is to be noted that the simulations were performed 

from 0.01Hz (10mHz) to 10kHz while the practical measurements were performed between 

0.1Hz and 10kHz. 

The frequency response of the Sallen-Key low-pass filter is shown in Figure 2.11 (Simulated) 

and in Figure 2.12 (Measured). 

The frequency responses of Sallen-Key high-pass filter is shown in Figure 2.13 (Simulated) and 

2.14 (Measured). 

The frequency response of combined bioelectric amplifier and filters is shown in Figure 2.15 

(Simulated) and 2.16 (Measured). 
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Figure  2.8: Simulated Frequency Response of the INA stage with DC restoration circuit 

Figure 2.9: Measured Frequency Response of the INA stage with DC restoration circuit 

Figure 2.10: Measured CMRR of the Differential Amplifier stage i.e. INA stage 
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Figure 2.11: Simulated Sallen-Key low-pass filter frequency response 

Figure 2.12: Measured Sallen-Key low-pass filter frequency response 
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Figure 2.14: Measured Sallen-Key high-pass filter frequency response 

Figure 2.13:Simulated Sallen-Key high-pass filter frequency response 
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The cutoff frequency of the INA stage with DC restoration circuit is at about 40mHz (0.04Hz) 

for the simulated circuit (Fig. 2.8) and at slightly less than 100mHz (0.1Hz) for the practical 

circuit (Fig. 2.9) while the high frequency gains are about 28dB and 37dB for the simulated and 

practical circuits respectively. The measured CMRR is about 115 dB throughout the frequency 

range shown (Fig. 2.10) which is expected for an INA with DC coupling, as used for these 

measurements. 

Figure 2.16: Measured Final bioelectric amplifier frequency response 

Figure 2.15: Simulated Final bioelectric amplifier frequency response 
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For the Sallen-Key low pass filter circuit, the cutoff frequencies are slightly above 1kHz for the 

simulated circuit (Fig. 2.11) and about 200Hz for the practical circuit (Fig. 2.12). The gains agree 

closely for both, which should be about 21dB for the chosen gain of 11. However, the rolling off 

is sharper for the practical circuit than the simulated one. At 10kHz, the simulated gain is about 

5dB while that for the measured one is about -40dB. 

For the Sallen-Key high pass filter circuit, the cutoff frequencies are about 0.2Hz for the 

simulated circuit (Fig. 2.13) and about 0.1Hz for the practical circuit (Fig. 2.14). The gains again, 

agree closely for both, about 21dB. The rolling off could not be compared since practical 

measurements below 0.1Hz were not taken. 

For the combined amplifier and filters, the gains match very closely, 100dB for both at mid-

band. However, the frequency cut-off differs slightly, besides because of the large intervals in 

measurement frequencies, the precise values of the cutoff frequencies cannot be determined from 

Fig. 2.16. However, the cutoff frequency of 200Hz shown for the practical low pass filter circuit 

given in Fig. 2.12 suggests that when two such modules are combined, the cutoff frequency will 

be slightly less than 200Hz. 

The reasons for the differences observed above may be due to the following factors: 

i. Tolerances of values of components 

ii. Lack of matching between components where required 

iii. The INA was simulated using three TL074 op-amps while LT1167 was used for the 

real circuit. Obviously parameters will differ for the two constructions. 

The measured frequency response data from the final bioelectric amplifier, which is aggregation 

of all stages, confirms that the overall gain is precisely 100 dB and has almost a non-varying gain 

response over the intended frequency band of 1Hz to about 200 Hz. Fig. 2.16 indicates that there 

is 40dB attenuation from slightly less than 200 Hz to 1000 Hz, which is very much desirable. 

The CMRR of the bioelectric amplifier is almost 115 dB, which is well suited for the desired 

operation of the amplifier.    
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2.5 Novelty 

The main aspect of this bioelectric amplifier is its capability of producing such a high gain (100 

dB) with only four amplification stages, with excellent frequency response and stability.  

As the first INA stage of the amplifier would be AC coupled to user electrodes by special RC 

network (to be discussed later) which are expected to degrade the effective CMRR, therefore a 

very high CMRR (115dB) with the DC coupled input configuration will provide a reasonable 

margin to achieve the desired 100dB CMRR. 

This circuit also used a large differential gain (75.2 or 37.5 dB) at the first INA stage which helps 

in getting high CMRR.  

The stability of the Sallen-Key filter amplifier depends largely on the quality or Q-factor, the 

higher the Q, the amplifier is more unstable (Kugelstadt, 2008), which means high Q can result 

in self-ringing or self-oscillation of the amplifier. Therefore extreme care has been taken at the 

design phase to ensure low Q-factor. The result from the measured data of Sallen-Key filters 

(both low and high pass) and as well as the total amplifier system, shows there is no abrupt kink 

in the cut-off region, which implies that the system has low Q and is stable. 

Fewer stages of amplifier and filters results in low part count, which makes the device low noise, 

power efficient and miniature in size, all of these are suitable for the proposed wearable BCI 

system.  
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Chapter 3 : Modified Input AC Coupling to Produce Improved 

CMRR and High Input Impedance        

3.1 Background 

AC coupling at the front end i.e. in-between body electrode and input of the instrumentation 

amplifier is very much desirable for recording of bioelectric potentials. Since, the DC skin-

electrode contact potential can reach several hundred millivolts and the difference between 

electrodes can be as high as ±300 mV (Brown, 1999), it limits the admissible gain of the first 

stage amplifier. The first differential input stage of instrumentation amplifier amplifies the 

differential signals where the common mode signal is passed with unity gain. The later 

difference amplifier stage has unity gain and only cancels out the common mode signal. 

Therefore, larger gain of the INA results in higher Common Mode Rejection Ratio (CMRR) 

(Pallás et al., 1991). Furthermore, this large skin-electrode contact potential requires large power 

supply rails to achieve operating dynamic range of the output of the amplifier for desired signal 

without being saturated. This is problematic, particularly for battery operated wearable devices.  

On the other hand, direct coupling of the input of INA can result in flow of DC current through 

body that could cause in electrolysis and result in tissue necrosis. Thus, DC coupling can 

introduce potential health hazard to the user who is connected to the amplifier system.  

There are several ways to configure AC coupling of the input of INA. The most common AC 

coupling configuration is the differential RC high pass filter (Pallas et al., 1999) and shown in 

Figure 3.1. 

Figure 3.1: Conventional AC coupling with differential RC high pass filter 
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3.2 Problem Statement 

The RC high pass AC coupling circuit shown in Figure 3.1 effectively removes any level of DC 

potential, but it severely degrades the common mode rejection ratio (CMRR) of the 

instrumentation amplifier. The reason for this is firstly the tolerance of RC components, i.e. any 

mismatch between the each high-pass filter components (R1C1 and R2C2) will result in common 

to differential mode conversion of common mode signal due to potential divider effect (Huhta et 

al., 1973). Secondly, the input impedance of the INA is no longer high and reduced by the input 

resistors R1, R2 and R3. Furthermore the impedances of the capacitors adds up to the source 

impedance. 

The CMRR of the system can be improved by lowering the cut-off frequency of the high pass 

filter by substantial amount, to a point far lower than the required low frequency cut-off. This 

allows the signals in the pass band to proceed without changes in gain or phase, i.e., these remain 

unaltered. Therefore, the voltage divider effect of the resistors R1, R2 and R3 will be reduced. 

But this requires high value of RC components to make the time constant high. Any abrupt 

change in the signal due to motion and other artefacts, which may saturate the output of the 

amplifier, will require very long time to restore.   

The input impedance and the CMRR of the system can be improved by increasing the value of 

resistor R3, but it cannot be very high as purpose of this resistor is to provide a path to input bias 

currents to system ground.  

Therefore, the challenge is to design an AC coupling input system for the front end of the 

bioelectric amplifier with high CMRR and input impedance, using capacitive isolation in the 

signal path to ensure user safety. 
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3.3 Method 

The proposed system replaces the resistor R3 of the schematic shown in Figure 3.1, by a unity 

gain buffer driven by the common mode voltage obtained from the resistor network R4 and R5 

as shown in Figure 3.2. 

 

              

Since the input impedance of the operational amplifier U1:A is very high, the current path 

through resistor R4 and R5 faces very high impedance. Also, as the output impedance of U1:A is 

driven to the common mode voltage potential it reduces any common mode current flow through 

R1 and R2. Therefore, providing high impedance for the common mode signal and thus 

increasing CMRR. 

On the other hand, the output impedance of the buffer amplifier U1:A is very low for the 

differential signal, therefore, it provides bias current return path form the instrumentation 

amplifier inputs effectively, maintaining proper differential gain of the bioelectric amplifier. 

The proposed system is simulated to analyse its DC blocking high-pass filtering response as well 

as its differential gain characteristics. The simulation is carried out using the software Proteus, 

and the simulated schematic is shown in figure 3.3. For the simulation, the differential input 

signal is obtained through the series resistor network R16, R2 and R17. 

Figure 3.2: AC coupling with proposed RC high pass filter 
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To evaluate the performance of the proposed system, practical measurement is carried out in 

three phases; firstly, the CMRR of the instrumentation amplifier is measured as function of 

frequency (from 1 to 200 Hz), without any passive components connected to its input, i.e., with 

DC coupling, which gives the highest CMRR by the INA circuit. This would act as a reference 

for the circuit variations at the input. 

Then a conventional differential RC high-pass filter is connected to the input and same 

measurement is carried out. For this measurement, two RC networks were constructed to have 

less than 1% mismatch. This matching procedure is carried out by constructing a bridge network 

and minimizing the voltage difference across R1 and R2 (Figure 3.1) by means of continually 

changing one component until the best balance of the bridge circuit is obtained.  

Finally, the proposed system is studied.  

  

Figure 3.3: Simulation schematic of proposed AC coupling system 

for the front end of the bioelectric amplifier 



30 

 

3.4 Result and Observations 

The simulated result for the proposed circuit with modified AC input coupling is shown in 

Figure 3.4. It exhibits the desired DC blocking high-pass characteristics with non-variant gain 

response in the desired frequency band. Experimental result for frequency response of 

Figure 3.4: Simulated frequency response of Proposed AC coupling system 

Figure 3.5: Measured frequency response of conventional AC coupling system 

Figure 3.6: Measured frequency response of Proposed AC coupling system 



31 

 

differential gain is shown in Figure 3.5 and 3.6. These two results are consistent and give 

evidence of unaltered differential gain of the proposed AC coupling system with the 

conventional one. It is to be noted that Figures 3.5 and 3.6 shows the gain in linear scale. The 

measured gains shown corresponds to about 38dB which is slightly greater than the simulated 

value. Again, practical use of LT1167 as the INA as against the TL074 op-amp mostly 

contributed to this mismatch, which does not say anything against the developed system. 

Since the differential voltage gain of the instrumentation amplifier for the first measurement 

(where no input RC component is used and directly coupled to the measuring signal) is 

frequency independent at range of our interested band, its graphical result is not shown. Only the 

CMRR as a function of frequency is given in the Figure 3.7 for comparison. 

The CMRR of the directly coupled (DC coupled) instrumentation amplifier (LT1167) is found to 

be 115 dB. The measured CMRR of conventional RC based AC coupled system and the 

modified AC coupled system proposed in this work are shown in Figure 3.8 and 3.9 respectively. 

The former confirms the degradation of CMRR due to passive RC component connected at the 

input of the INA. From Figure 3.9, it is evident that the CMRR of the proposed system has 

increased a substantial amount from its conventional counterpart. The CMRR of this proposed 

system is about 110.5 dB which is very close to the directly coupled INA.  

  

Figure 3.7: Measured CMRR vs. Frequency of Direct coupled INA, for reference 
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Figure 3.8: Measured CMRR vs. Frequency of Conventional AC Coupled INA 

Figure 3.9: Measured CMRR vs. Frequency of the Modified AC Coupled INA 
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3.5 Novelty 

Apart from the DC restoration circuit described in chapter 2.3.1.1, there are several proposed 

systems which provide AC coupling to the input of instrumentation amplifier with high CMRR 

and high input impedance that does not depend on the input DC potential difference (Spinelli et 

al., 2003& 2000), (Pallas et al., 1990, 1993), (Dobrev et al., 2008). But these systems do not 

ensure fully capacitive coupling with the user body and thus still has the problem of tissue 

burning hazard of the skin. Also, some of these topologies requires component placement at the 

feedback path of differential gain stage of three operational amplifier instrumentation amplifier 

system, which is not possible for integrated instrumentation amplifier circuit (IC INA).  

Since the EEG system requires very low skin electrode contact impedance, a DC current 

blocking front end is crucial for user safety, the proposed system achieves that requirement very 

efficiently. Moreover, compared to the other topologies, the system uses fewer components and 

therefore will have low noise. Besides, it will have a small footprint for the overall bioelectric 

amplifier, making it ideal for a wearable system. Up to the time of writing this thesis and to the 

author`s best knowledge, the proposed system is a genuine innovation, no other system has 

reported to have similar performance and functionality. 
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Chapter 4 : A Stable Driven Right Leg (DRL) Circuit with 

Improved Performance 

4.1 Background 

The Common Mode Rejection Ratio (CMRR) of a bioelectric amplifier can be greatly degraded 

by the use of conventional Driven Right Leg (DRL) system. The common mode signal appears 

between the reference electrode and the circuit ground due to interfering current flowing into the 

human body connected to the bioelectric amplifier. The interfering current mainly originates 

form the mains power supply (50/60 Hz power line) and flows through human body by various 

capacitive paths as shown in the Figure 4.1. The interfering current that flows through the skin-

electrode contact impedance 𝑍𝑟𝑙, then to amplifier ground to Earth ground potential (i.e. through 

𝐶𝑝𝑜𝑤 , 𝐶𝑐𝑎, 𝐶𝑐𝑏,  𝑍𝑟𝑙,   and 𝐶𝑖𝑠𝑜), induces the common mode voltage across  𝑍𝑟𝑙  as 𝑉𝑐𝑚. This 

common voltage then appears at the signal measuring electrodes in addition to the differential 

bioelectric potentials. 

 

Since, no differential amplifier is ideal and some of the common mode signal will pass through 

or transformed by the amplifier into an interfering differential signal, it is greatly desirable to 

Figure 4.1: Sources of interference at the bioelectric amplifier system 
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reduce the common mode voltage as much as possible (Winter et al., 1983). One way to do so is 

to minimise 𝐶𝑝𝑜𝑤 , 𝐶𝑐𝑎, 𝐶𝑐𝑏 and 𝐶𝑖𝑠𝑜 in Figure 4.1 to reduce 𝑖𝑐𝑚. Also  𝑍𝑟𝑙 can be minimised to 

reduce voltage across it and thus the overall  𝑉𝑐𝑚. But in practice it is not always possible and 

largely variable. Furthermore, poor electrode contact may present up to 100 k Ω of 𝑍𝑟𝑙 (Winter et 

al., 1983).  In some cases the common mode voltage can reach as high as 100 mV (Brown, 1999) 

to 200 mV peak to peak (Van Rijn et al., 1990), which is enormously large compared to the 

bioelectric signals and requires other measure to reduce it. 

The Driven Right Leg (DRL) system as shown in figure 4.2, serves that purpose effectively. The 

DRL circuit reduces the common mode voltage by a negative feedback (Winter et al., 1983). 

 

This circuit works by sensing the 𝑉𝑐𝑚, from the averaging resistors 𝑅𝑎 `s. Then, it injects a small 

amount of current of opposite phase to the subject’s body using an inverting amplifier. This 

opposing current is equal to the displacement current flowing into the body. Therefore, the body 

acts as a summing junction in a feedback loop and negative feedback drives the common mode 

voltage to a lower value by making the effective resistance of  𝑍𝑟𝑙 much lower. The reduced 

Figure 4.2: Conventional DRL Circuit 
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amount of  𝑍𝑟𝑙 is proportional to the gain of the inverting amplifier. It can be shown that the 

effective resistance of  𝑍𝑟𝑙 can be expressed as, 

  𝑅𝑒𝑓𝑓 =  𝑍𝑟𝑙 ∙ (
1

1+
2𝑅𝐹
𝑅𝑎

)     (4.1) 

It can be shown that the DRL circuit can improve CMRR of the bioelectric amplifier by, 

𝐶𝑀𝑅𝑅𝐷𝑅𝐿 = 𝐶𝑀𝑅𝑅𝑜𝑟𝑔 + 20log (1 + 𝐴𝑑(1 +
2𝑅𝐹

𝑅𝑎
))     (4.3) 

The common mode voltage  𝑉𝑐𝑚 generated from the mains power-line can be reduced by a factor 

of 300, resulting in an increase of the CMRR by about 50 dB at 50 Hz (Van Rijn et al., 1990).  

The circuit also helps to minimize abnormal high current that is hazardous to subject, by the 

protection and feedback resistor 𝑅𝑝 and 𝑅𝑓. Since any abnormal high current saturates the 

inverting amplifier and only current path to the circuit ground exists is through these two 

resistors which are of the order of several MΩ. Equivalent resistance for this case is given by, 

𝑅𝑒𝑞 = 𝑅𝑅𝐿 + 𝑅𝑓 ∥ 𝑅𝑝       (4.2)   

For example if the INA gets faulty and the supply voltage appears any of the inputs of the INA, 

then the inverting amplifier of DRL is out of its normal operation and saturates. If the supply 

voltage is 10 V and resistors are 2.2 MΩ, then the current through the body is ~10µA, which is 

well within safety limit.  

Though it seems very attractive to use DRL circuit, there are practical issues which make the 

DRL circuit very difficult to implement.  
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4.2 Problem Statement 

The first problem of DRL circuit is possible saturation; a saturated DRL amplifier is useless 

(Hann, 2010). Saturation makes the circuit non-operational and distorted noise can be induced to 

the signal output rather than 50 Hz sine wave noise. Since the effective resistance of the 

reference skin-electrode interface  𝑍𝑟𝑙 is inversely proportional of the gain of the inverting 

amplifier, a very high gain is desirable for the DRL circuit. This makes the DRL circuit prone to 

saturation of the output; mainly due to electrode offset potential, mismatched offset voltage of 

the first stage amplifiers of the instrumentation amplifier itself (Hann, 2010) and mismatch of the 

common mode voltage averaging resistors𝑠 𝑅𝑎’s. Most of the texts dealing with DRL do not 

address this problem and some of them suggest a potentiometer for fine adjustment of the 𝑅𝑎’s. 

Since manually adjusting the 𝑅𝑎’s is inconvenient and may require readjustments, a DRL circuit 

with no adjustment would be preferred and has been attempted in the present work.  

Since the DRL circuit operates in a closed loop amplifier system with -180° phase shift and 

additional phase shift of -180° is introduced by the RC network formed by different body stray 

capacitance and contact impedances, it produces the necessary conditions for oscillation (Winter, 

et al., 1983). Therefore, this phase shift of the common mode voltage can result in self-

oscillation of the DRL amplifier and it is common to have unwanted high frequency noise at the 

output of the bioelectric amplifier. So, the stability of the overall system is a major concern for 

the system that uses the DRL circuit and compensation for the phase shift should be applied.   

4.3 Method 

To solve the saturation problem, a high-pass filter is proposed after the averaging resistors 𝑅𝑎`s 

to block any DC offset voltage that might saturate the inverting amplifier of DRL circuit (Figure 

4.2). Since any abnormal voltage at the input still faces the same criteria stated before, the safety 

operation of the DRL circuit is not affected by this. A unity gain buffer is placed in between 

the 𝑅𝑎s and the high-pass filter (Figures 4.2 and 4.3) in order to avoid loading of the gain of the 

INA. This buffer amplifier is commonly used for driving the shield of circuits and other cable 

shielding.  
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To have a stable amplifier system it is common to put a capacitor across the feedback resistor 𝑅𝑓. 

This introduces a phase lag in the system which in turn reduces the self-oscillation; this has been 

reported earlier (Winter et al, 1983). In this study, we proposed to connect another capacitor 

across the protection resistor 𝑅𝑝, which shows better stability along with the capacitor across 𝑅𝑓. 

This configuration results in an active low pass filter which attenuates high frequency signals in 

a two pole manner. This low pass operation helps reducing the gain requirement for self-

oscillation at higher frequencies in more effective way. 

The improved DRL circuit that has been proposed in the present work is shown in Figure 4.3. It 

needs to be noted that the DRL circuit is mainly used to reduce 50Hz mains borne noise, and 

therefore, its frequency response need to be considered around this frequency. The DRL circuit 

itself should have a high gain at 50Hz, so that it can reduce it with negative feedback to the body 

of the patient. 

 

 

Figure 4.3: Proposed DRL Circuit 
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This DRL circuit has been designed to have a pass band gain of 100, within the frequency band 

of 10 to 1KHz. The schematic of the proposed circuit is also simulated for frequency response by 

the software Proteus. A practical measurement of noise figure in ECG signal was conducted on a 

volunteer. An experimental comparison was carried out between a very closely matched 

potentiometer adjusted DRL circuit and the proposed improved DRL circuit, which does not 

need such manual matching procedure. The bioelectric amplifier used in this study is the 

developed one described in chapter 2, with the only difference of having a low gain setting. 

4.4 Result and Observations 

Figure 4.4 shows the simulated frequency response of the propose DRL circuit, which has a high 

gain at 50Hz. However, through adjustment of component values, it can be improved further. 

 

 

The output at the Ref electrode of the DRL circuit (Figure 4.3) have been measured both for the 

conventional DRL circuit with adjustment using a multi-turn potentiometer (Figure 4.5) and for 

the proposed DRL circuit without any manual adjustment (Figure 4.6).  

These show that the 50 Hz interfering signal is fed-back to the body as a square wave. Figure 4.5 

has a DC offset in spite of attempts to minimise it through a careful matching of the resistor Ra 

during signal acquisition. On the other hand in Figure 4.6 obtained from the proposed circuit, 

there is no DC offset. 

Figure 4.4: Simulated Frequency response of Proposed DRL Circuit 
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The ECG recorded from a volunteer using the two DRL circuits are shown in Figure 4.7 and 4.8 

respectively, the former using the conventional one and the latter suing the proposed circuit. 

These have two different vertical scales which need to be considered for a comparison. Besides, 

gain of the amplifier was changed slightly between the measurements so that the ECG signals do 

not appear to have the same value. However, the main issue of concern was the signal to noise 

ratio (SNR). The measured SNR of potentiometer adjusted conventional DRL circuit was 7.6 

while that of the proposed DRL circuit was 9.2, thus giving a small improvement. However, the 

major improvement was that the proposed circuit did not require any manual adjustment, it was 

fully autonomous. 

Figure 4.5: DRL amplifier output after potentiometer adjusted 

Figure 4.6: DRL amplifier output of the proposed circuit 
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Figure 4.7: ECG trace from the amplifier using conventional DRL circuit 

Figure 4.8: ECG trace from the amplifier using proposed DRL circuit at a magnified scale 
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4.5 Novelty 

A simple solution has been proposed to overcome the major problem of DRL amplifier 

saturation. This proposed DRL is easy to implement i.e. requires no adjustment, which is the 

major achievement. The measured SNR has also improved a little. The added capacitor across 

the protection resistor at the output of the DRL circuitry has given further stability. Combining 

these two low pass filters the proposed DRL circuit has a comparatively narrow pass band 

frequency, which reduces the chance of self-oscillation and therefore, increases the stability of 

the overall bioelectric amplifier. Up to the time of writing this thesis, no other design of DRL has 

been reported to give performances as good as the proposed one developed in the present work.     
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Chapter 5 : Development of a Novel Self-Biased Low-Noise Two-

Wired Active Electrode 

5.1 Background 

One of the major interference sources in a bioelectric amplifier system is the common mode to 

differential mode conversion of noise. This interference originates mainly from the capacitive 

coupling of the cables connected to the electrode with the mains power lines carrying 50Hz 

alternating currents (Van Rijn et al., 1990). With reference to Figure 4.1 of chapter 4, the input 

impedances (𝑍𝑖𝑎 & 𝑍𝑖𝑏) of the INA is very high, therefore the currents 𝑖𝑎, 𝑖𝑏, from the capacitive 

coupling of the cable through 𝐶𝑐𝑎, 𝐶𝑐𝑏, passes through the skin-electrode contact impedances 𝑍𝑒𝑎 

& 𝑍𝑒𝑏, then through 𝑍𝑟𝑙 to system ground. A skin-electrode contact has a typical impedance of 

about 20 kΩ at 50 Hz. These impedances are rarely equal for individual electrodes and can differ 

by almost 50% (Almasi et al., 1970; Grimnes, 1983; Geddes, 1972). So, the 50Hz noise voltage 

dropped across these two impedances will not be equal and this will give rise to a differential 

voltage originating from the 50Hz mains noise. This mechanism of conversion of noise voltage 

which is supposed to be a common mode voltage to a differential input voltage is often called 

‘Potential Divider Effect’ (Huhta et al., 1973; Pacela, 1967). The magnitude of this differential 

voltage can be expressed as, 

𝑉𝑎𝑏_𝑑𝑖𝑓𝑓 = 𝑉𝑐𝑚(
𝑍𝑖𝑎

𝑍𝑖𝑎+𝑍𝑒𝑎
−

𝑍𝑖𝑏

𝑍𝑖𝑏+𝑍𝑒𝑏
)         (5.1) 

Also the parasitic capacitances of the cables are usually different, therefore the interfering 

currents 𝑖𝑎, 𝑖𝑏 are different, which contributes to the common mode to differential mode 

conversion as, 

𝑉𝑎𝑏_𝑑𝑖𝑓𝑓 =  𝑖𝑎𝑍𝑒𝑎 −  𝑖𝑏𝑍𝑒𝑏      (5.2) 

It is evident form Equation 5.2, that there will be common mode to differential mode conversion 

of the interfering signal due to different 𝑖𝑎, 𝑖𝑏 even if the skin-electrode impedances are equal.  
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It can be shown that, in a typical situation, where the mean interfering current in cable and skin-

electrode contact impedances are 10 nA and 20 kΩ respectively, having a relative difference of 

50 % can induce a high level of interference of 200 µV peak to peak, which is unacceptable.  

One way to reduce this interference is to use shielded cable to connect the electrodes (Horst et 

al., 1998). But this makes the cables bulky and not practical for EEG, as cable becomes too 

heavy to keep the electrodes attached to the surface. Also in EEG large number of electrode 

placement is required in a small region like human scalp, which makes it impractical. However, 

shielding cable introduces input capacitance to the inputs instrumentation amplifier to the 

ground, which in turn reduces the input impedance of the amplifier (Van Rijn et al., 1991a) 

which in not desired. 

Another way to reduce this potential divider effect is to reduce the skin-electrode contact 

impedance. But to reduce it to significant amount, it requires extensive preparation of the skin, 

which is time consuming and uncomfortable for the subject (Searle et al., 2000). Alternative to 

these solutions, an active electrode system can be used. It is been shown in several publication 

that the use of active electrode can reduce power line interference (Fernandez et al., 1997; Ko, 

1998; Nishimura et al., 1992, Metting et al., 1996). Since the output impedance of an active 

electrode is low, the current in the electrode wire due to interface finds a low impedance path to 

ground. Therefore, the induced common mode voltages and as well as their difference are 

reduced. In other words, this buffered active electrode system transfers the high skin-electrode 

impedances (𝑍𝑒𝑎 & 𝑍𝑒𝑏) to low impedances. But most of the active electrode system requires at 

least three wires per electrode and thus making the cable system bulky, stiff with large connector 

and additional noise for the amplifier, therefore not practical (Degen et al., 2006).  

The number of wires of an active electrode can be reduced to two; there is one commercial 

system (BioSemi, 2011) meeting the criteria. However, their design is not disclosed to public. 

Some publications described two wired buffer electrode, one of which uses custom made 

operational amplifier based integrated circuit (Padmadinata et al., 1990), but the electrode has the 

restriction of requiring the input potential to be the lowest in the circuit. There is no method 

provided in the publication showing how this requirement might be met in the case of bioelectric 
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recordings. Another publication (Degen et al, 2007) also reported a two-wire system but the 

system requires injecting a small amount of DC current by the DRL amplifier, to bias the gate of 

the active element which was a PMOS-FET. The skin-electrode contact potential can be as large 

as ±300 mV (Brown, 1999) and this is also affected by the contact impedance of the reference 

electrode, which is largely changeable. Therefore, the bias voltage of the MOSFET could be 

unstable. Thus the operating point of the MOSFET can easily switch from active state to cut-off 

state, making the signal buffering non-functional. 

The most common and reliable electrode material used for bioelectrical measurements is silver-

silver-chloride (Ag-AgCl). Ag-AgCl is used in most bioelectric measurement as this material has 

very low skin-electrode contact impedance and low contact potential, making it suitable for the 

purpose. However, with usage, Ag-AgCl degrades over time because of its ion-exchange 

reaction in the electrode-electrolyte interface (Brown, 1999). It also requires thorough cleaning 

and maintenance. Other electrode materials like Gold plated silver, Aluminium and Tin alloys, 

Carbon etc., are also used mainly for their inert properties. The metal type electrodes should not 

be used for long time as the corrosion of the material can give rise to unpleasant skin irritation. 

These materials mentioned above have moderate skin-electrode contact impedance and contact 

potential. These materials are comparatively expensive except for the Carbon; it is a suitable 

choice for electrode material as it is inert, cheap, can easily be shaped, and long lasting. The only 

drawback of Carbon is that it has relatively large skin-electrode contact impedance. The use of 

Carbon material is possible if the electrode is active, that is the high impedance of the carbon 

electrode can be overcome with all the advantaged stated above. 

 

 

 

          



46 

 

5.2 Problem Statement 

The skin-electrode impedance often varies in an unpredictable way; not only as a function of the 

electrode material, but due to physiological changes in the subject. An active electrode system is 

required to reduce interface caused by the ‘potential divider effect’ by transferring the high skin-

electrode impedance to low impedance. It also minimizes the impedance mismatch. This 

electrode system needs to be long time wearable, causing less irritation to the skin and requiring 

low maintenance. 

This active electrode system should have reduced number of wire (Two-wired) with the ability to 

overcome all of the problems described before. The present work tried to solve this problem 

developing a new circuit, described in the following section.  

5.3 Method 

Two self-biasing buffered electrodes using p-type MOSFET and an n-channel JFET is designed, 

constructed and tested. These proposed systems constitute two wired buffer amplifier with a 

constant current source biasing. The active element of the system and the biasing passive 

components (R and C `s) resides at the top of electrode material. The current source and voltage 

output are placed in the bioelectric amplifier section. A circular Carbon rod of 8 mm and height 

of 5 mm is used as electrode material, which is connected to the Gate of the MOSFET / JFET 

through a capacitor and the Gate biasing resistors. The following sections describe the design of 

these two-wired buffer circuits as well as the simulation and test procedure. 

5.3.1 Two-wired Buffer Amplifier Using P-MOSFET 

A p-channel enhanced mode MOSFET (BSS84P) is configured as voltage follower or source 

follower with proposed modification for two-wired interface and Gate biasing. Figure 5.1 shows 

the circuit schematic. Vin is the input from the electrode on which this circuit is mounted. The 

current source shown is within the main amplifier circuit from which only two wires need to 

connect to the S and D nodes shown in this circuit corresponding to the source and drain 

respectively of the MOSFET. 
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The proposed system differs from the usual P-MOSFET source follower that it omits the source 

resistor between the node S and Source of MOSFET, as this resistor does not permit for a two 

wire configuration. The proposed system uses a current source instead, which is a major 

innovation of the proposed circuit. 

In the proposed circuit (Figure 5.1) the current 𝐼𝑠𝑢𝑝, about 1mA, is divided into the two branches 

according to the resistances of parallel circuits formed by 𝑅1; 𝑅2 and Source to Drain of the 

MOSFET (KCL) i.e., 𝐼𝑠𝑢𝑝  = 𝐼𝑏𝑖𝑎𝑠 + 𝐼𝑆𝐷. The branch current 𝐼𝑏𝑖𝑎𝑠 develops the biasing voltage of 

the Gate and 𝐼𝑆𝐷 determines the operating point (𝑄𝑝𝑜𝑖𝑛𝑡) of the MOSFET. Here, the values of the 

bias resistors are high, in the Mega ohms range; therefore, Ibias will be a few µA while ISD will 

have almost all of the Isup, which will be of the order of a mA. Therefore, ISD will be almost equal 

to Isup and may be assumed constant for all practical purposes. When there is no input signal, Ibias 

is also constant, therefore, the Gate bias voltage (𝑉𝐺) is constant.  It only varies when there is an 

input signal. On the other hand 𝐼𝑆𝐷 is constant, i.e. it cannot change, so the Source to Drain 

voltage 𝑉𝑆𝐷 changes with the varying voltage 𝑉𝐺 with a unity gain. 

Figure 5.1: Self-biased Two wired buffer circuit using P-channel MOSFET 
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The MOSFET needs to operate in the Saturation or Active region. The criteria for reach the 

saturation region are,  

𝑉𝑆𝐺 > |𝑉𝑇| and 𝑉𝑆𝐷  >  𝑉𝑆𝐺 − |𝑉𝑇|     (5.3) 

The Drain current of the enhanced P-Channel MOSFET can be expressed as, 

𝐼𝑆𝐷 =  
1

2
𝜇𝑝𝐶𝑜𝑥

𝑊

𝐿
(𝑉𝑆𝐺 − |𝑉𝑇|)2      (5.4) 

Where, 𝑉𝑡 is the Gate threshold voltage, 𝜇𝑝 , 𝐶𝑜𝑥 are charge-carrier effective mobility and gate 

oxide capacitance per unit area respectively and 𝑊, 𝐿 are gate width and length. In the equation 

5.4 the term containing channel-length modulation parameter 𝜆 is ignored as it is very close to 

zero and the 𝐼𝑆𝐷 does not need to be precise for this application.  

Though current source is used, the supply voltage is finite, and therefore the output bias voltage 

is required to set approximately halfway between the 𝑉𝐶𝐶 and Ground, to obtain the maximum 

output dynamic range. The maximum output voltage is  𝑉𝐶𝐶 −   𝑉𝑆𝐷𝑠𝑎𝑡.   

As the circuit is a voltage follower, the bias voltage can be expressed as,   

         𝑉𝐺 =  𝑉𝑆𝐺 + 𝑉𝑜𝑢𝑡        (5.5) 

The 𝑄 point 𝐼𝑆𝐷 can be chosen by the half of its maximum allowed range and with the help of 

equations 5.3, 5.4 & 5.5 a suitable operating point and component selection can be obtained. 

From the small signal analysis, it can be shown that the gain of the source follower can be 

expressed as, 

𝐴 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=  

𝑔𝑚(𝑟𝑜𝑐||𝑟𝑜)

1+𝑔𝑚(𝑟𝑜𝑐||𝑟𝑜)
≈ 1      (5.6) 

As 𝑔𝑚(𝑟𝑜𝑐||𝑟𝑜) ≫ 1, 𝑟𝑜𝑐 is the output impedance of the current source, and the trans-

conductance 𝑔𝑚, is given by, 

𝑔𝑚 =  
2𝐼𝑆𝐷

𝑉𝑆𝐺−|𝑉𝑇|
       (5.7) 
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The Drain Source output impedance of the MOSFET 𝑟𝑜 is given by, 

𝑟𝑜 =  
1+𝜆𝑉𝑆𝐷

𝜆𝐼𝑆𝐷
       (5.8) 

The input impedance of the buffer circuit is just the parallel combination of R1 and R2, i.e., 

 𝑅𝑖 =  
𝑅1𝑅2

𝑅1+𝑅2
       (5.9) 

And the output impedance is, 

    𝑅𝑜 =  
1

𝑔𝑚
(𝑟𝑜𝑐||𝑟𝑜) ≈

1

𝑔𝑚
     (5.10) 

The 𝑟𝑜 is very small compared to the large trans-conductance 𝑔𝑚, and 𝑔𝑚increases with the 

Source to Drain current 𝐼𝑆𝐷(Eqn. 5.7). Therefore, the output impedance decreases with increased 

 𝐼𝑆𝐷(by Eqn. 5.7 and 5.10). To have output close to unity and with low impedance, it is desirable 

to set 𝐼𝑆𝐷 as large as possible. 

It is good to note that the operating output bias voltage is non zero, and as this voltage is almost 

same for both the active electrode circuit connected to differential inputs, it is cancelled out. If 

there is a mismatch between these potentials, the AC coupling method by the DC restoration 

circuit (as described in Chapter 2) of bioelectric amplifier should be suffice to overcome this.  

5.3.2 Two-wired Buffer Amplifier Using N-Channel JFET 

The circuit configuration and working principle of the proposed n-channel JFET voltage follower 

for two-wired active electrode is similar to that of P-Channel MOSFET described in section 

5.3.1. The necessary biasing is achieved by the Gate resistor 𝑅𝐺 and Source resistor 𝑅𝑆, as shown 

in Figure 5.2. In this design, a small source resistor is used only for the purpose of producing 

higher potential at the Source than the Gate of JFET, which is necessary for biasing and selecting 

an appropriate operating point of the active component. The output is taken from the current 

source node S rather than the conventional method of to take it from Source of JFET. Again, it is 

a major innovation of the proposed circuit. It is assumed that the 𝑉𝑜𝑢𝑡 will be less affected by this 

small resistance of 𝑅𝑆 as the output resistance of the current source is very high. Furthermore, the 
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Gate impedance of the JFET is very high. Therefore, it is also assumed that a very small and 

negligible DC biasing current would be flowing through 𝑅𝐺  compared to the Drain to Source 

current 𝐼𝐷𝑆 in a similar manner described in section 5.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

The biasing voltage is given by, 

𝑉𝐺𝑆 = 𝑉𝐺 − 𝑉𝑆 → 𝑉𝐺𝑆 = 𝑉𝐺 − 𝐼𝐷𝑆𝑅𝑠      (5.11) 

Since, current through 𝑅𝐺 is very small, only arising due to leakage of Drain to Gate current, the 

voltage across 𝑅𝐺  is considered to be zero. As the voltage across both the resistors 𝑅𝐺  and 𝑅𝑆 is 

referenced to the common node S, the gate to source voltage can be written as, 

𝑉𝐺𝑆 = −𝐼𝐷𝑆𝑅𝑠      (5.12) 

This equation provides the operating bias condition. Also, the drain to source current is given by,  

𝐼𝐷𝑆 = 𝐼𝐷𝑆𝑆(1 −
𝑉𝐺𝑆

𝑉𝐶
)2        (5.12) 

Where, 𝐼𝐷𝑆𝑆 is the Drain to Source saturation current when 𝑉𝐺𝑆 = 0, and 𝑉𝐶is the pinch-off 

voltage. The transconductance is given by, 

Figure 5.2: Self-biased Two wired buffer circuit using N-channel JFET 
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    𝑔𝑚 = −2
𝐼𝐷𝑆𝑆

𝑉𝐶
(1 −

𝑉𝐺𝑆

𝑉𝐶
)2     (5.12) 

From small signal model, it can be shown that the gain of the buffer circuit is, 

       𝐴 =
𝑔𝑚(𝑟𝑜𝑐||𝑅𝑠)

1+𝑔𝑚(𝑟𝑜𝑐||𝑅𝑆)
≈ 1      (5.13) 

Assuming that 𝑔𝑚(𝑟𝑜𝑐||𝑅𝑠) ≫ 1, where 𝑟𝑜𝑐 is the impedance of the current source, which is very 

large compared to 𝑅𝑠 and provides almost unity feedback to the lower end of the 𝑅𝐺(which 

supports the idea of taking voltage output 𝑉𝑜𝑢𝑡 at the node S), creating an increased input 

impedance as, 

𝑅𝑖 =  𝑅𝐺 + 𝑟𝑜𝑐               (5.14) 

And the output impedance can be expressed as, 

     𝑅𝑜 =
𝑟𝑜𝑐||𝑅𝑠

1+𝑔𝑚(𝑟𝑜𝑐||𝑅𝑆)
≈

1

𝑔𝑚
                (5.16) 

Which is very small, again assuming that,  𝑔𝑚(𝑟𝑜𝑐||𝑅𝑠) ≫ 1. 

Using the above equations, the JFET can be biased to an optimum operating point, where 𝑅𝑠 is 

minimized and 𝑔𝑚 is maximized, and thus constructing a unity gain voltage follower with very 

low output and very high input impedance.   

Similar to the MOSFET voltage follower circuit, this JFET based circuit also has an operating 

DC bias voltage at the output as well, and it is ineffective at the bioelectric amplifier as 

mentioned in section 5.3.1.  
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5.3.3 Constant Current Source and Sink Using MOSFET 

The proposed voltage follower buffers circuits that are described in section 5.3.1 and 5.3.2 

requires constant current sink and source for desired operation. These two constant current 

circuits are constructed using conventional dual MOSFET methods as shown in Figure 5.3. 

These constant current topologies are simple to implement and produces excellent stable DC 

constant current. 

 

 

 

 

 

 

 

 

 

Considering current sink circuit in Figure 5.3a, similar to Eqn. 5.4, assuming λ to be zero, the 

Drain to source current of Q1:A is given by, 

𝐼𝑟𝑒𝑓 =  
1

2
𝜇𝑝𝐶𝑜𝑥

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑇)2    (5.17) 

Then the Gate to Source voltage is, 

𝑉𝐺𝑆 = 𝑉𝑐𝑐 − 𝑅𝑅𝐸𝐹𝐼𝑟𝑒𝑓     (5.18) 

This Gate to Source voltage is same for Q1:B. Therefore, if the two transistors (Q1:A and Q1:B) 

have identical physical parameters i.e. 𝜇𝑝𝐶𝑜𝑥
𝑊

𝐿
 and 𝑉𝑇 are equal, then using Eqn. 5.17, the 

output current can be expressed as, 

      𝐼𝑜 ≈ 𝐼𝑟𝑒𝑓       (5.19) 

For the current source circuit using P-channel MOSFET as shown in Figure 5.3b, similar 

analysis can be done with the same result. 

Figure 5.3: Constant Current Sink (a) and Source (b) circuit using N and P-channel MOSFET 
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5.3.4 Experimental Procedure 

Each circuit, including the constant current source and sink is first designed and simulated using 

the simulation and design software Proteus. Then these circuits are practically constructed and 

tested. 

For testing purpose, at first, the constructed buffer circuits are tested as single ended input 

/output formation using just a signal generator and an oscilloscope. Then a network of three 

series resistors of 10 kΩ is connected to a signal generator as shown in Figure 5.4. The 

differential input of a single channel bioelectric amplifier (described in chapter 2) is connected 

across 𝑅2 using (i) 10 cm wire, and then (ii) 1 meter long commercially available EEG cable 

with Ag-AgCl cup electrode. The cup of the electrodes was connected using crocodile clips. 

These connections are configurable as with and without the proposed active electrode circuits by 

means of two manual switches as shown in Figure 5.4. This configuration provides the 

comparison of output from the bioelectric amplifier produced by employing and not employing 

the proposed active electrodes in practical situation. The purpose of the varying length of 

connecting cable was to study the effect of interfering current on the cable length as well. It is 

expected that the longer cable will induce more capacitance and therefore will result in more 

interfering currents as described in section 5.1. 

Figure 5.4: Experimental Setup to Evaluate the Performances of Active Electrodes 
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The signal from the signal generator was approximately 2.5 mV peak to peak and the frequency 

was 10 Hz. The 2.5 mV peak to peak input signal was the least signal output that can be 

measured directly by the oscilloscope used. The values of the resistor network were chosen to be 

of the order of normal skin-electrode contact impedance in practical situation. This creates an 

input signal to the bioelectric amplifier with much larger amplitude (833 µV) than the maximum 

input signal that can be amplified by the all four stages (linear gain of 100000 x 833 µV = 83.3 

V). So, output of the bioelectric amplifier was taken from the third stage. This third stage output 

of the bioelectric amplifier produces a linear gain of 9099 which will produce 7.58 volts peak to 

peak at the output. This gain is selected to meet the output dynamic range of the amplifier (10 V 

p-p) corresponding to the input signal that is produced by the resistor network along with the 

signal generator.  The interference of 50 Hz power line was left to the measuring environment. 

Finally, output from the amplifier is observed and signal to noise ratio is measured for with and 

without the two active voltage follower circuits, which are connected closely to the two ends 

of 𝑅2.  

5.4 Result and Observations 

The simulated and measured results of the both P-Channel MOSFET and N-Channel JFET were 

identical; therefore, results of the simulated part of the MOSFET, and experimental part of the 

JFET are presented here. 

Figure 5.5 shows the simulated input and output of the proposed MOSFET source follower (the 

one to be used in the active electrode circuit), showing the result of the buffering action and 

Figure 5.6 shows the frequency response over a range of frequencies, 0.01 Hz to 10 kHz. The 

amplitude of input and output voltage is same with 300 µV peak. The frequency response is well 

within the expected characteristics, which shows 10 dB attenuation at 0.01 Hz and a flat 0 dB 

output for 1 to 10 kHz, the cutoff frequency (-3dB) being about 0.04Hz. 
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Figure 5.7, shows the voltage input and output of N-Channel JFET source follower circuit in 

practical measurement. The applied input voltage is 400 mV with a 10 Hz signal (bottom trace), 

whereas the output voltage is 388 mV peak to peak (top trace). This indicates a decent voltage 

follower with output being 97 % of the input voltage. 

 

Figure 5.5: Simulated Input(Bottom) Output(Top) of P-Channel MOSFET Active Electrode 

Figure 5.6: Simulated Frequency Response of P-Channel MOSFET Active Electrode 
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It is interesting to observe that the output signal has less noise compared to the input signal; this 

is not the action of the high-pass RC input filter as the noise seems to be of high frequency. 

Probable cause of this high noise at the input is the high input impedance characteristics of the 

buffer, the noise being induced from the oscilloscope probe. On the other hand the output of the 

buffer has low impedance. So noised induced by the oscilloscope probe was low. 

Figure 5.8 shows the signal of amplitude ~ 2.5 mV peak to peak, that is applied to the two ends 

of the resistor network by the signal generator as described in Figure 5.4. The differential input 

Figure 5.7: Experimental Result of Input (Bottom) Output (Top) of N-Channel JFET Active Electrode 

Figure 5.8: Experimental View of the Input Signal of Resistor Network from the Experimental Setup 
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to the bioelectric amplifier is the potential that is dropped across the central resistor, R2, with the 

ground as shown, at the other end of R3. With 2.5mV across the whole resistor chain, the 

differential input would be one third of this, i.e., 833.33V since all the three resistors have the 

same value (10k ). The output of the bioelectric amplifier, with a gain of 9099, was observed and 

measured using a digital oscilloscope. The inputs to the bioelectric amplifier were obtained first 

without any buffers at the input (i.e., inputs taken right across R2 of the chain) but connected 

with 10cm long unshielded wires each. The corresponding output is shown in Figure 5.9. With 

the amplifier gain as mentioned above, and with the 833.33 µV peak to peak differential input 

voltage, the output was expected to be 7.58 volts peak to peak. However, the measured output 

was 7.03 volt, which is less than the calculated value. This is probably due to the tolerance of the 

resistors in the network and error in input voltage measurement as it is very noisy. 

 

From Figure 5.9, the measured noise figure is ~ 0.8 volts peak to peak which results in a Signal 

to Noise Ratio (SNR) of 8.75. The output obtained with the buffers connected at the inputs 

(simulating active electrodes) is shown in Figure 5.10. The output of the buffer amplifiers were 

connected to the respective inputs of the bioelectric amplifier as before, using 10 cm long wires 

each. The output is very similar to Figure 5.9 but with slightly improved noise figure of ~ 0.64 

volts, which results in an SNR of 10.8. 

Figure 5.9: Experimental Result of Output Signal of Bioelectric Amplifier with 10cm 

Connecting Wire and no Buffer Used 
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Figure 5.11 shows the case when a pair of one meter long standard EEG cables was used to 

connect the inputs of the bioelectric amplifier to the points across R2 in Figure 5.4, without the 

buffer circuits. As expected, the 50 Hz line interference is very large, approximately 6.3 volt 

peak to peak. This results in an SNR of 1.12 (which was the worst case of all the measurements, 

therefore the experiment was conducted several time). 

 

Figure 5.10: Experimental Result of Output Signal of Bioelectric Amplifier with 10cm connecting wire 

at the inputs connected to the outputs of the respective Buffer Circuits simulating active electrodes. 

Figure 5.11: Experimental Result of Output Signal of Bioelectric Amplifier with 1 m Standard 

EEG Cable and with NO Buffer Connected 
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Finally, Figure 5.12 shows the case when the one meter standard EEG cables were connected to 

the outputs of the JFET buffer circuits. The result shows that there is a substantial amount of 

noise reduction. The measured noise figure is ~ 0.72 volts peak to peak, which makes the SNR to 

be 9.76, very close to the 10 cm wire with buffer connected case. 

 

A length of cable that connects the inputs of the bioelectric amplifier to the differential outputs 

produced by the resistor chain in Figure 5.4 forms a stray capacitance with the adjacent mains 

50Hz lines. This allows a 50Hz current to flow through this capacitor and the appropriate 

segment of the resistor chain to the ground. Since the other side of the lead is connected to a high 

impedance input of the bioelectric amplifier, virtually no current flows through this side. The 

current through the resistor chain to the ground produces an interfering voltage across the 

segment of the resistor chain. In this case, the current through the lead at the non-inverting input 

goes through R2 and R3, a total of 20k, while that through the lead at the inverting input goes 

only through R3, a value of 10k. Typically, the reactance of the capacitor at 50Hz is much 

larger than 10k. Therefore, the interfering currents produced in the leads are approximately 

equal if the leads are of the same length and are close to each other and a differential voltage at 

50Hz is produced because of the voltage dropped across R2 only.  Again, a longer cable has 

Figure 5.12: Experimental Result of Output Signal of Bioelectric Amplifier with Buffer 

Circuits and 1 m long standard EEG Cable Connected at input 
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larger capacitance and induces more interfering currents.  This produced the high interfering 

noise at 50Hz for the 1m leads when there was no buffer at input, while it was much less with the 

10cm leads. 

With the buffer circuits placed close to the two inputs across R2, the outputs of these buffers are 

connected to the inputs of the bioelectric amplifier through the leads (10cm and 1m). Now the 

50Hz currents passing through the capacitances formed by these leads pass through the low 

output impedances of the buffer circuits to the ground and therefore the potential dropped across 

the resistors are very small. Therefore, the effective differential input due to 50Hz is very small, 

which gives the resulting improvement. Therefore, with the buffer circuits in place, the noise 

with the 10cm leads and the 1m leads were not much different, while without the buffer circuits, 

the difference was huge. 

When connected to the human body, the situation would be slightly different. The differential 

signal to be measured originates inside the body and the internal impedance of the body is very 

low compared to the skin-electrode contact impedances. Therefore, the high impedance of 

concern will be these contact impedances. Because of the lead wire capacitance, the current 

through the skin-contact impedances will contribute to a differential contribution of the 50Hz 

noise if the contact impedances are not equal. In practice, these contact impedances may vary 

widely, by about 10k as mentioned before, and a large noise is experienced frequently in 

practice. Use of the buffer amplifiers very close to the electrodes will reduce the effect of the 

capacitive 50Hz current as in the experimental case mentioned above.  

There will also be a large capacitance between the 50Hz line and the human body and a 50Hz 

current will flow through the skin-contact impedance of the contact impedance of the ground 

electrode. This will contribute to a large common mode voltage and due to limited CMRR of the 

bioelectric amplifier there will be some 50Hz noise at the output too. This will be the same in 

both the cases, with or without on-electrode buffer circuits, and therefore, care has to be taken to 

ensure a low skin-electrode impedance of the ground electrode through careful cleaning and the 

use of a large electrode. 
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5.5 Novelty 

The designed two-wired active electrode circuits are self-biased; therefore it has more stability. 

The proposed biasing is not affected by the skin-electrode contact potential and requires no 

average body potential biasing technique. Also it is usable in any bioelectric amplifier with or 

without Driven Right Leg (DRL) circuits. The DRL circuit is mandatory for other designs of two 

wired buffered electrode system for biasing purpose, while it is not so in the present design. The 

JFET model of the active electrode has very high input impedance as the unity gain feedback is 

provided at the gate resistor lower end, resulting in a very satisfactory performance.  

The inputs of active electrodes are AC coupled by an RC network. The capacitor at the input 

establishes electrical isolation of the subject and therefore safety as well. Also, as the input of the 

buffer electrode is AC coupled by this RC circuit, the skin-electrode contact potential is not 

transferred to the output of the buffer. This allows the bioelectric amplifiers to have large gain at 

the differential stage for the system which does not uses RC high pass at the input of 

instrumentation amplifier. Furthermore, the capacitance of the electrode circuit (situated on top 

of the electrode material) and the mains power line is very small. Therefore, interfering current 

that passes this RC network is almost nullified, so, the RC components are not required to be 

matched very closely to minimize the ‘Potential Divider Effect’. 

The development of this ‘self-biased low-noise two-wired active buffer electrode’ is an original 

research contribution. Up to the time of writing this thesis and to the author`s best knowledge, no 

other system has reported to have similar performance and functionality.  
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Chapter 6 : A Individual Skin-Electrode Contact Impedance 

Measurement System 

6.1 Background  

The interfering noise in a bioelectric signal measurement system extensively depends on the 

skin-electrode impedance. The contact impedance of common or circuit ground electrode 𝑍𝑟𝑙 

gives rise to the total common mode voltage (as shown in Figure 4.1 in chapter 4). Also, if there 

is a contact impedance mismatch between two measuring electrodes that are connected to the 

inverting and non-inverting input of an instrumentation amplifier, the mismatch converts the 

common mode voltage to differential voltage by the effect known as ‘Potential divider effect’ as 

described in chapter 5 and also illustrated in Figure 4.1. This mismatch is very common and 

difficult to avoid. The interfering currents flowing to impedance 𝑍𝑟𝑙 induces common mode 

voltage and larger value of this contact impedance means larger interference. Moreover, large 

value of contact impedance of measuring electrodes produces larger mismatch resulting 

increased conversion of common mode voltage to differential voltage and increased interference. 

The reduction of common mode voltage is essential; therefore it is desirable to reduce these skin-

electrode contact impedances as much as possible. 

The skin-electrode contact impedances can be reduced by proper cleaning and preparation of the 

skin at the electrode attachment location. It is, therefore necessary to measure and monitor the 

skin-electrode contact impedance to reduce it as much as possible and to achieve a viable 

bioelectric signal recording. For example it can be shown that, for an EEG recording system, 

considering other interference reduction measures are taken, the contact impedance of the 

electrodes needs to be less than 10 kΩ in order to have an acceptable Signal to Noise Ratio 

(SNR) in the EEG trace (Brown, 1999).  

There are many existing proposed methods to measure and monitor the skin-electrode 

impedance. One of these methods injects a small amount of current through the reference 

electrode and measures the individual contact impedances of the other electrodes (Hamilton et 

al., 2000; & Devlin et al, 1984). These measurement techniques are two electrodes impedance 

measurement system and actually always measure the reference electrode impedance in series 
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with the measuring electrode. Another method uses the DRL circuit to superimpose a known 

voltage and then measures the mismatch between two electrodes (Degen et al., 2008). This 

method also claims that it can be used simultaneously with bioelectric signal measurement. 

However, this method does not address the requirement of measuring contact impedance of 

individual electrodes and the impedance of the common or circuit ground electrode. There are 

other methods like utilizing the mains power line interfering current to measure the contact 

impedance, one of which measures the mismatch between two electrodes (Spinelli et al., 2006), 

but it effectively reduces the input impedance of the bioelectric amplifier and therefore degrades 

the CMRR. Also, in this method it is unclear how the system would work in a multi-channel 

amplifier. Another similar method measures individual contact impedances by power line 

interference current but requires an additional electrode to inject a small DC current to measure 

voltage across measuring electrode (Grimbergen et al., 1992). In this method, it would be 

convenient to use the common or circuit ground electrode as the current injecting electrode, so 

no additional electrode is required, but in that case, the impedance measurement of the common 

electrode is not possible. In fact, all the above and other similar methods do not discuss the 

matter of measuring contact impedance of the common electrode, but it is very important to 

lower the contact impedance of the common or circuit ground electrode 𝑍𝑟𝑙, as it is the major 

contributor of the common mode voltage.        

6.2 Problem Statement 

Since, the skin-electrode contact impedance is a major factor of power line interference that 

impacts the quality of bio-signal output of bioelectric amplifier, it is necessary to measure and 

monitor it. Though, the common or circuit ground electrode contact impedance 𝑍𝑟𝑙 can be 

greatly reduced by Driven Right Leg (DRL) system (chapter 4), it is desirable to reduce it at the 

source to avoid unpredictable and unstable behaviour of the DRL system. Although it is possible 

to make the impedance mismatch of the measuring electrodes ineffective using active electrode, 

it is always preferable to reduce the contact impedance, as noise generated in the skin-electrode 

interface increases with the impedance which can be unacceptable in cases like EEG recordings 

(Brown, 1999). Furthermore, as this impedance appears as the source impedance for bioelectric 

signals, reducing it makes the signal more robust. 
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The contact impedance measurement system can indicate an unattached electrode as well. This is 

necessary for a BCI system that is intended to work for long time. Also to overcome the 

problems as discussed above, it is desirable to develop a skin-electrode contact impedance 

measurement system for a multichannel bioelectric amplifier, which is capable of effectively 

measure contact impedance of each electrode individually including the common or circuit 

ground electrode. Due to required wearable feature of the overall system, the impedance 

measurement circuit needs to be constructed of low parts count for low power and small size. 

The following sections describe the development of such a skin-electrode contact impedance 

measurement system. 

6.3 Method 

The proposed system employs a three electrode contact impedance measurement method (Spach 

et al., 1966) as shown in Figure 6.1 to measure a single electrode`s contact impedance. A very 

small known sinusoidal current of constant peak amplitude is passed to the subject’s body 

through electrode A and B, and a high impedance differential amplifier is used to measure the 

potential between B and C. 

 

 

 

 

 

 

 

 

 

 

Here, the impedance to be measured is that of electrode B. Since, electrode C is connected to the 

amplifier with a high input impedance; there is no current passing through it and its contact 

impedance does not affect the measurement (potential across this contact impedance is almost 

zero). Since the bulk of the body has a very low impedance (usually a few hundred ohms) in 

comparison to the skin-electrode impedance (a few kilo ohms), the measured potential 

Figure 6.1: Three Electrode Contact Impedance Measurement Method 
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essentially represents the potential dropped across the contact impedance at electrode B due to 

the constant current passing through it. From the values of the constant current and the gain of 

the amplifier, it is easy to calculate the skin-electrode impedance at B. 

In the proposed system, the instrumentation amplifiers (INA) of the Analog Front End (AFE) is 

used as the high input impedance amplifier and the gain of the amplifiers are accounted for the 

calculation of impedance measurement. This technique results in a reduced part count where 

only an additional analog switch and a sinusoidal current source is required to construct and 

integrate the system with bio-electric amplifier. This is the core feature of the proposed contact 

impedance measurement system along with individual electrode impedance measurement 

capability. The analog switch (two quad bilateral switches, 4066) is used to configure the current 

injection and voltage measurement arrangements of the system. Specific arrangements or 

configuration of these switches allows to measure each electrode`s contact impedance 

individually. The control of these analog switches will be achieved by the digital control of the 

data acquisition system (described in the next chapter). Figure 6.2 shows the individual skin-

electrode measurement circuit where the INA`s belongs to the bioelectric amplifier circuit. 

The sinusoidal current source generates a current of constant amplitude 10 nA with a frequency 

of 33 Hz. This peak current amplitude is selected to ensure subject safety and to effectively 

measuring impedance of 1kΩ to 100 kΩ as well. Though, the interested frequency of 

measurement would be power line frequency (50 Hz), the frequency is selected to be 33 Hz as 

power line interfering current can introduce error in the measurement through super-positioning.  

This sinusoidal current frequency is well below of 50 Hz and can easily be filtered of other 

susceptible interfering noise.  

The current source is constructed in two parts, firs a RC phase-shift sinusoidal oscillator is 

designed to produce a voltage signal of 33 Hz, then a Howland current source is employed to 

convert this voltage signal to current signal. As the system uses only one frequency, the RC 

phase-shift oscillator is selected for its known stability in a single frequency operation. The 

Howland current source is selected for its known ability of keeping the output current linear over 

a wide variation of voltage, which is suitable for this sinusoidal current source. 
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The output voltages from the INA`s are digitised by a data acquisition system, then a narrow 

band-pass digital filter of 33 Hz is employed to cancel out all other signals. The impedance of 

each electrode is calculated by enabling appropriate channels of analog switch, and then the 

RMS values of the output signals is calculated. This RMS value is then divided by the known 

RMS value of the current signal which produces the contact impedance value of a particular 

electrode. These procedures are automated by computer software developed for the purpose.  

The system is first tested and calibrated using known resistor of values from 1 kΩ to 100 kΩ 

with 1% tolerance, then measurement from several subjects is taken using common ECG limb 

electrodes and EEG cup type Ag-AgCl electrodes.  

Figure 6.2: Skin-Electrode Contact Impedance Measurement System for a Multichannel 

Bioelectric amplifier. 
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6.4 Result and Observation 

The measured value of ECG limb electrode was around 20 kΩ and found to vary considerably 

form subject to subject. This variation is probably because of not applying rigorous skin 

preparation; therefore this result is well expected. The measurement of EEG cup electrode is also 

taken from limb but in this case skin was prepared with commercially available skin-prep 

material. The cup electrode measured values were 3 to 4 kΩ, these result were instantly checked 

with commercial EEG equipment (Carefusion Nicolet-3) and obtained similar result.  

6.5 Novelty 

There is always trade-off between continuous skin-electrode impedance measurement and 

individual measurement i.e. taking impedance measurement when bio-signal is not recording. 

The key trade-off factors are system complexity, bioelectric signal`s integrity, measurement 

efficiency etc. This proposed system uses the later choice to achieve less complex system with 

high efficacy. The system is light with very few components; it utilizes the instrumentation 

amplifiers in the bioelectric amplifier in different combinations of connections. The system can 

measure all the electrodes contact impedance including the common or circuit ground electrode 

individually. These are the novel part of the proposed system. The system is intended to use in 

wearable BCI system, controlled by a computer or a microcontroller, therefore, automated 

scheduled impedance measurement for a very short time can be as effective as continuous 

measurement. 
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Chapter 7 : Development of Miniature USB Based Data Acquisition 

System 

7.1 Background 

Computer based data acquisition system is an essential part of biomedical instrumentation and 

BCI systems. Most of the commercially available PC based Data Acquisition systems are of very 

high cost and requires specific commercial software, again at a very high cost, for data storage 

and analysis. Moreover, if the data is not stored in raw binary or known format, it is not possible 

for the user to use the data in other software of their own choice. 

7.2 Problem Statement 

Development of a low cost, simple and miniature USB interface based data acquisition system 

for BCI and biomedical application is necessary. As the system is intended for wearable system, 

it is required that the system should contain minimum number of parts.  

The data acquisition system should have three major roles in this present work. Firstly, the 

acquired EEG data is required to transfer to the PC through USB. Then the data will be subjected 

to analysis and classification for developing a viable BCI system algorithm. Secondly, when an 

appropriate data classification method is selected, the data classification part of the BCI system 

can be ported to the on-board computer of the data acquisition system to have a standalone BCI 

system. The third function of the system is to provide digital control I/O for selecting channels of 

analog swathes for skin-electrode contact impedance measurement circuit. These digital I/O`s are 

also will be used for controlling other electromechanical devices according to the classified data. 

7.3 Method 

The hardware system is designed around a low cost 8-bit Atmel AVR ATmega8 (Atmel, 2014) 

microcontroller with integrated analog to digital converter (ADC). The associated circuitry needs 

only an isolation amplifier, which is used to achieve electrical isolation between the mains ac and 

bioelectrical signal source (human body) when the system is connected to PC (mains connected). 

This isolation is required for user safety and to reduce noise from the mains line by increasing 

Isolation Mode Rejection Ratio (IMRR) (Van Rijn et al., 1991b). Some optocouplers are used to 
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isolate digital I/O’s for the same reason and a few passive components are used. This design 

reduced the cost and complexity very much. With reference to Figure 7.1, the analog bioelectric 

signal from the human body is first conditioned and transferred to the non-isolated PC side 

through the analogue isolation amplifier mentioned above. Then the signal is conditioned to meet 

the ADC input requirement. The signal is then converted to digital values using the on-board 10-

bit ADC of the microcontroller.  The digital data is then transferred to the PC through its USB 

port. Necessary USB interface (USBIF, 2014) was developed for this purpose, based on the same 

microcontroller. 

For powering the isolated circuitry in the isolated side, a medical grade isolated dc to dc 

converter is used; it uses the non-isolated +5 volt supply available from the USB port of the PC, 

and produces ±12 volt split power at the isolated side. Therefore no external battery or power 

supply is needed when the system is connected to PC. Figure 7.2 shows the circuit diagram of 

the Data Acquisition system. 

The microcontroller has 10 bit successive approximation ADC module, it has two selectable 

internal references 5V and 2.56 V. The 2.56 V is used for this device for stability and higher 

voltage resolution of the bioelectric signal. After digitally converting the signal most significant 

8 bits are used as the least significant two bits are more prone to noise. The 8 bits are kept also 

Figure 7.1: Block Diagram of Data Acquisition System 
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for the reason that the byte wise data storage and transfer is more efficient. The 2.56 V reference 

of the ADC produces the resolution of 10 mV per bit for 8 bit conversion. 

 

The device operates in two modes, 

(i) Continuous conversion and data transfer: The sampling frequency is 800 Hz, it is 

selected to match the USB 1.1 periodic ‘Interrupt In’ timing and data transfer rate. This 

sampling rate is suitable for low frequency signals like ECG, EEG etc.  

(ii) Batch transfer: The data can be sampled very fast, i.e. minimum of 13 µs per conversion 

(recommended minimum conversion time of the ADC module of the microcontroller) 

provides maximum of 76.9 KHz of sampling rate. The data is stored in a large SRAM 

space of 800 bytes in the microcontroller and then transferred periodically by USB 

‘Control In’ transfer.     

Figure 7.2: Circuit Diagram of Data Acquisition System 
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The Continuous conversion data is transferred by ‘Interrupt In transfer’ for graphical display and 

storage by the developed software. By specification this ‘Interrupt In transfer’ type has 

maximum of 8 bytes transfer every 10 ms. The USB host controller generates this timing and it 

is adopted as que for starting ADC conversion. So, at every 10 ms there are 8 bytes of data 

conversion takes place at equal interval of 1.25 ms (10/8 ms), resulting sample rate of 800 Hz. 

The 1.25 ms interval for analog data conversion is precisely generated using the 16 bit ‘Timer 1’ 

module of the microcontroller; this timing generates an interrupt to start ADC conversion at 

every 1.25 ms. The sampling and data transfer is done simultaneously and these are well 

synchronized. Thus form sampling to display has latency of 10 ms, which can be regarded as 

real time. The Flowchart of the Continuous mode firmware is shown in Figure 7.3. 

Figure 7.3: Continuous Conversion Flowchart 
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The Batch Transfer uses both ‘Interrupt In’ and ‘Control In’ transfer of the USB. The ‘Interrupt 

In’ transfer cannot provide data transfer rate more than 800 bytes/sec (max. 8 bytes per 10 ms) 

but has guaranteed time of 10 ms interval of each transfer. This timing is used as synchronization 

with PC software and start of conversion Que. The ‘Control In’ transfer can transfer large 

amount of data (maximum of 1.5 Mbit/sec, depending on the bus bandwidth availability) but its 

transfer timing is not guaranteed. This transfer is primarily specified for transferring device 

descriptors and other host control over USB, but it is not forbidden to use  
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Figure 7.4: Batch Mode Conversion Flowchart 
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‘Control In’ for other data transfers in the USB specification. The ADC sampling interval is 

controlled in similar manner like the Continuous mode but now this interval can be as low as 13 

µs. The software polls the device for acknowledge 800 bytes (this is the current microcontroller’s 

maximum SRAM free space after other use) of batch data conversion accomplishment, every 10 

ms through ‘Interrupt In’ transfer. If the data is available, the software initiates a ‘Control In’ 

transfer for the 800 bytes data. After transferring the batch data to PC, the ‘Interrupt In’ polling 

is used to initiate converting another batch of data.  

Since the microcontroller is low cost and have no hardware USB stack, the USB library called 

V-USB (Objective D., 2011) of the firmware was used for implementation of USB 1.1 low speed 

standard protocol. The firmware for the microcontroller was developed using free GNU C 

compiler (WinAVR, 2014) with AVR Studio IDE (Atmel, 2014). The software is a graphical 

user interface which allows viewing the bioelectrical signal in selectable different time scale and 

can store data in raw binary format. It was developed using ‘JAVA’ platform considering its 

operating system (OS) independent feature. The open source and free development environment 

(IDE) ‘Netbeans’ (Oracle, 2014) was used for development of this software.  

 

7.4 Results and Observations 

A sinusoidal wave of 80 Hz is fed from a signal generator to the data acquisition system and 

resulting display on a PC produced by the developed software is shown in Figure 7.5.  

The GUI of the software developed for this system has a main window that displays the 

graphical form of the data. It also has selectable options for the time window from 1 to 8 

seconds. The software implements an  8𝑡ℎ order IIR digital notch filter with stop band cantered 

at 50 Hz. This notch filter can be selected to turn on and off. Another display shows the 

configuration statuses, like data sampling rate, vertical and horizontal scaling etc. There is also a 

window which displays the numerical values of the digitized data. 
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It may be observed that the system reproduces the signal very nicely in PC. Further measurement 

at different frequencies showed that for Continuous conversion mode and Batch mode, aliasing 

effect was seen after 150 Hz and at 12 KHz respectively. The system showed no significant 

phase or amplitude change up to 100 Hz and 10 KHz for Continuous conversion and Batch mode 

respectively. The system is being used in ECG, EMG, NCV and FIM (Focused Impedance 

Measurement system, developed by Rabbani et al, 1999) with excellent satisfactory results.  

Most of the bioelectrical signals occur within the band width of 0 to 10 KHz; therefore this 

system satisfies the biomedical instrumentation requirements. The only limitation of the system 

is the ADC resolution, which is comparatively low, but it is acceptable for most of the 

application stated before. It is possible to use several ADC channel for data acquisition, since the 

microcontroller has 6 ADC channels and minimum conversion time of 13 µs which would be 

negligible time laps between multiple conversions. If it is required to have higher resolution of 

ADC, larger SRAM and more ADC channels, different microcontroller can be used with the 

same working procedure since the firmware is written in C language. 

Figure 7.5: GUI software of Data Acquisition System 
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7.5 Novelty 

Though, USB specifies medical device class, the HID type was chosen because most of the 

current PC operating system provides driver for this class, thus unnecessary complexity of PC 

side driver development could be avoided. In continuous conversion and transfer mode, the 

sampling and data transfer are done simultaneously and are well synchronized. From sampling to 

display the system has a latency of approximately 10 ms, which can be regarded as real time. 

This transfer mode is suitable for low frequency signals like ECG, EEG etc. The Batch transfer 

mode provides higher sample rate and it is suitable for high frequency bioelectric signals like 

EMG, NCV etc.  

The system is small with low component count and therefore cost effective, making it suitable 

for standalone BCI system. 
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Chapter 8 : Analysis of Spatial Pattern of EEG µ-Rhythm for BCI 

8.1 Background 

Primary sensory motor cortex area of human brain typically shows oscillatory behaviour in EEG 

at a frequency of approximately 8-12 Hz when they are not processing sensory information or 

not producing motor output. This oscillatory signal is called µ-rhythm. It is believed that this µ-

rhythm is generated due to interactions between the thalamus and the cortex (Gastaut, 1952) and 

reflects the synchronous firing of motor neurons in rest state i.e. no motor action or movement of 

body parts. The amplitude of µ-rhythm decreases or suppresses when a motor action is 

performed, possibly because of the normal neuronal system and the mirror neuron system "go 

out of sync" and interfere with each other (Oberman, et al., 2005). Several publications 

(Pfurtscheller et al., 2006 & 2001; Neuper et al., 2009; Hwang et al., 2009; Kübler et al., 2005) 

showed that the µ-rhythm activity corresponds to motor output by various different frequencies 

within the band of 8-12 Hz. The µ-rhythm frequencies sometimes overlap and also appear as 

harmonics in 𝛽 band (18-25 Hz). The µ-rhythm activity corresponding to motor outputs can be 

distinguished by precise location of origin from sensorimotor cortex. In other words, these 

rhythms are directly associated with the cortical area which are responsible for brain’s normal  

Figure 8.1: Somatotopic organization of the sensorimotor cortex (de Klerk, et al., 2015) with 

The international 10–20 system of EEG electrode placement. 
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motor actions. Figure 8.1 shows the sensorimotor cortex of human brain and typical locations 

(marked with typical 10-20 EEG electrode placement system) associated with motor output for 

various body parts (de Klerk, et al., 2015). 

The mapping of human brain locations associated with different function is called cortical 

homunculus. Dr. Wilder Penfield and his co-investigators Edwin Boldrey and Theodore 

Rasmussen are considered to be the originators of the sensory and motor homunculi; there work 

compellingly illustrates the data at a single glance and it became most famous conceptual maps 

in modern neuroscience (Cazala, et al., 2015). The ‘homunculus’ is also described by Jasper et 

al., (1949).  

The µ-rhythm activity can be good choice for BCI as it decreases over sensorimotor cortex with 

movement or intention of movement or even imagination of movement. This decrease in 

amplitude associated with movement is labelled as ‘Event Related Desynchronization’ (ERD) 

(Pfurtscheller, 1999) and its counterpart is ‘Event Related Synchronization’ (ERS) which 

corresponds to relaxation or pre-movement. The ERD and ERS can occur with motor 

imagination as well, i.e. it does not require actual movement and it can occur independent of 

brain’s normal output for peripheral nerves and muscle (McFarland et al., 2000). Therefore, ERD 

can be used in BCI very effectively. Furthermore, continuous feedback from the BCI system to 

the user can lead to improved control over the µ-rhythm activity produced by the user, which can 

reinforce the performance of the BCI system.  

Throughout this present work, the Motor Imaginary BCI or using imagination of movement of 

body parts for BCI is studied. This MI-BCI is chosen for its relevance to control neuro-prosthesis 

by an alternative channel other than the brains normal motor output channel. Also the MI-BCI 

provides the user a set of distinct mental task (i.e. imagination of movement of specific body 

parts) which is simple and easy to perform and can be treated as different classes for BCI. 

Furthermore, the µ-rhythm activity of ERD and ERS during motor imagination has adequate 

physiological significance, therefore these properties of µ-rhythm is expected to produce 

efficient, simple and easy implementation of Brain-Computer Interface. 
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8.2 Problem Statement 

The main task of the present work is to analyse EEG signals to detect a particular task and to 

distinguish between different subtypes of the task. The present work performs the above through 

an attempt to identify whether the subject imagines movement of a hand, and to distinguish 

whether it is the right hand or the left hand. This is the classification that the present work will 

attempt to obtain and the objectives may be summarised are as follows: 

i. To determine whether the chosen µ-rhythm gives a viable performance for the 

proposed task of MI-BCI. 

ii. To locate the minimum number of brain locations, based on standard EEG electrode 

placement geometry, that will give an optimum result for the above task using the µ-

rhythm. 

iii. To determine amplitudes and frequencies of µ-rhythm that are most likely to produce 

more accurate results in later stage of machine learning process for automated 

classification 

These locations, amplitudes, frequencies and other possible attributes should have maximum 

likelihood of belonging to a particular class of MI and should be distinguishable by a 

considerable amount between different classes. These attributes of µ-rhythm can be considered 

as features and then can be subjected to a suitable machine learner to classify the MI class.  

8.3 Method 

This section analyses the µ-rhythm activity during the mental task of imagined movement of Left 

and Right hand to find the suitable features that can be used for classification of the MI tasks. 

The µ-rhythm activity analysis is carried out using Matlab (MathWorks, 2005) based Offline 

Analysis tool of BCI2000 (Schalk et al., 2004).  Firstly, through an offline analysis of continuous 

EEG sample data set for many channels, obtained from open source data the objectives (i) and 

(ii) above were achieved and are detailed below. 
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8.3.1 Source and type of EEG Data  

Continuous EEG sample data sets were obtained from open source published data; courtesy of 

Romain Grandchamp, CERCO, Toulouse, France (Grandchamp, 2009). This data contains two 

class imaginary movements as a sequence of trials in which a subject was instructed to imagine 

moving either the Left hand or the Right hand. The data have event-markers or time stamps that 

indicate the timing and type of these instructions including the rest or relaxed conditions. These 

EEG data were recorded from 29 channels of the standard 10-20 electrode position system.  

8.3.2 EEG Signal Pre-Processing  

(i) Temporal Filter: Since the µ-rhythm band is 8-12 Hz, and also it can have harmonics in 

higher frequency bands (𝛽 band, 18-25 Hz)) an IIR filter with passband of 6-32 Hz was 

employed to remove all other frequencies. The rejected frequencies can be major cause of 

interference like 50 Hz line interference.   

(ii) Spatial filter: A Common Average Reference (CAR) filter was used to detect the location of 

origin of a desired signal more precisely. A CAR filter treats one channel as the active channel 

while the average of signals from all other channels (in some other cases, only a few 

neighbouring channels) acts as a reference. Subtraction of this reference signal from the active 

signal effectively removes the influence or interference from neighbouring channels. This 

process is performed to all other channels in a similar manner, which essentially gives a spatial 

filtering. After performing this spatial filtering, particular amplitude and other attributes can 

easily be related to the specific location of the cortex during MI task i.e. imagined Left Hand or 

Right Hand movement.  

8.3.3 Data Analysis 

After performing the temporal and spatial filtering, average signal amplitude was computed for 

each condition i.e. Left Hand and Right Hand MI task. The EEG Amplitude is averaged for each 

frequency of the pass band (6-32 Hz) over a period of time or epoch of the specific mental task. 

There are total of 128 epochs of which 64 are the left hand and other 64 are of right hand 

imagined movement (There are also 64 epochs of rest state which will be used for the later part 

of the analysis). So, the EEG data set is now divided into two sets that corresponds to the 

conditions of imagined left and right hand movement and can provide the features as: 
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(i) Average value of EEG amplitude 

(ii) That at a certain frequency 

(iii) That in a certain channel 

These features can describe for each location, how much the signal strength is, at which 

frequency and at what condition (imagined movement of left or right hand). To compute a 

number representing how much a feature's value tells about the condition under which it was 

recorded, the ‘Determination Coefficient’, or 𝑟2 was used. The 𝑟2 is the squared correlation 

coefficient for a bivariate distribution constructed from two sets of variables and have been used 

and reported in similar analysis (McFarland et al., 2000 and 1997). To compute the  𝑟2 value for 

each channel and each particular frequency, there are data of 2 columns and 128 rows. Each row 

(x) of first column is the average amplitude of a particular epoch at the specific frequency, and 

the second column is the corresponding MI class i.e. left hand right hand represented by +1 and -

1 respectively .These +1 and -1 representing the MI-class are just tags of the categorical variable 

(y). Hence, a two dimensional data set can be formed and Determination Coefficient for a 

particular channel and frequency can be obtained as, 

𝑟2 =
𝐶𝑂𝑉(𝑥,𝑦)2

𝑣𝑎𝑟(𝑥)𝑣𝑎𝑟(𝑦)
     (8.1) 

The larger a feature`s 𝑟2, the more correlation exists between a feature`s value and the condition 

under which it was recorded. 

After performing this analysis for Left/Right Hand MI class, Individual classes are assessed with 

respect to rest or relax state in same manner. 
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8.4 Results and Discussions 

The   𝑟2 values are plotted with respect to EEG channel number and frequency in a three 

dimensional spectral plot, as shown in Figure 8.2. In this plot the value of   𝑟2 increases with 

increased colour depth. 

  

From this plot (Figure 8.2), it was observed there are clusters of high values of  𝑟2(>0.6) 

occurred in the frequency range 12 to 30 Hz in the channel C3, C4 and Cz.  

Spectral plots of amplitudes for imagined movement of left hand (red plot) and that of right hand 

(blue plot) for these channels and the associated   𝑟2 values were then obtained and are presented 

in Figure 8.3. Figure 8.4 presents the same for the channels Fp2, F3 and Fz. 

From these figures (Figure 8.3 and 8.4) it is evident that the most viable channels to distinguish 

the two classes (imagined movement of left and right hand) are C3 and C4, since there 

amplitudes are greatly separable in the frequency range of 10 to 16 Hz, even though the   𝑟2 

values are low. All other plotted channel shows little or no distinguishable properties between 

the two classes. This is well expected as the channel C3 and C4 are placed on the sensorimotor 

cortex that are responsible for motor action of hand and leg as shown in Figure 8.1. 

Figure 8.2: Spectral plot of   𝑟2 values as a function of EEG channel and frequency 
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Next, a topographic plot of   𝑟2 values over the scalp were plotted at 6 different frequencies of 

interest (10, 12, 16, 22, 30 and 32 Hz ) as shown in Figure 8.5. 

 

Figure 8.3: Spectral plots of Amplitude and   𝑟2 for Channels C3, C4 and Cz 

Figure 8.4: Spectral plots of Amplitude and  𝑟2 for Channels Fp2, F3 and Fz  
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From the above figure it is evident that the most correlated channels to the motor imaginary 

classes are the C3 and C4 channels and at frequencies of 12 and16 Hz. The 16 Hz frequency is 

out of the µ-rhythm band, but this occurrence is probably an overlapped case and is expected as 

stated before. Other frequencies of interest are 10 Hz and 12 Hz, as C4 and C3 shows reasonable 

activity at 10 Hz and 12 Hz respectively. Other frequencies (22, 30, 32 Hz) show large  𝑟2values, 

but as seen from Figure 8.3, these frequencies has less distinguishable characteristics, and 

therefore, not valuable features. 

Now, the results of analysis of individual classes, i.e. Left Hand vs Rest state and Right Hand vs 

Rest state are presented below. These two analyses are carried out in the same manner but only 

topographical plots at frequency of interest (10 and 12 Hz) are presented at Figures 8.6 and 8.7.  

  

 

Figure 8.5: Topographic plot of   𝑟2  at frequencies 10, 12, 16, 22, 30 and 32Hz 
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The above figures clearly shows contralateral activity at 12 Hz at the channel C3 and CB2 

(which is very close to C4) for Left Hand and Right Hand motor imaginary movement. 

8.5 Conclusions 

This analysis was performed to evaluate the feasibility of using µ-rhythm attributes as features 

for MI-BCI. From the analyses results it can be confidently expressed that the µ-rhythm is a very 

strong parameter for BCI system that employs Motor Imaginary tasks. And also these analyses 

sorts out the feasible features as spatial locations, amplitude and frequencies that are most likely 

to produce higher accurate result in later stage of machine learning process for automated 

classification.  

In this EEG data of the particular subject, it is found that the most important spatial locations are 

C3, C4 and CB2 and the average amplitudes at 10, 12 and 16 Hz frequencies which can be used 

Figure 8.6: Left Hand vs Rest state, Topographic plot of   𝑟2at frequencies 10, 12 Hz 

Figure 8.7: Right Hand vs Rest state, Topographic plot of   𝑟2at frequencies 10, 12 Hz 
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as viable features. The contralateral activity of µ-rhythm for Left and Right hand imaginary 

movement presented at Figure 8.6 and 8.7 are very interesting which is supported by the 

physiology of human nervous system. Along with 12 Hz frequency and topographic locations, 

the result supports the µ and 𝛽-rhythm activity associated with the homunculus for human motor 

movement. 

Though this analysis is carried out with large number of electrode channels, the actual BCI 

system that is being developed in the present work would have very few channels, preferably 

two. This feature selection technique and classification of various MI states using several 

machine learning techniques are described in the following chapter.  
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Chapter 9 : Classification of Two and Three Class Motor Imaginary 

EEG Data 

9.1 Background 

The classification of EEG data for BCI requires signal processing to remove unwanted noise and 

interference. Then, Feature Extraction procedure is performed to find feasible features that have 

attributes related to the desired classes of the data. Finally, the features are used to train a 

machine learning method to identify the class of new data i.e. classification of new data that was 

not in the training set. Figure 9.1 shows the simplified block diagram of the procedure. 

 

The µ-rhythm analysis of the previous chapter is similar to the basis of a feature extraction 

method called ‘Common Spatial Patterns’ (CSP). The CSP algorithm (Fukunaga, 1990) was first 

introduced to BCI applications by Graz BCI group (GRAZ BCI, 2017) which is an optimized 

spatial filter for discrimination of different conditions of human brain activity (Ramoser et al., 

2000). This method was reported in an experiment (Guger et al., 2000) where a feedback study 

was conducted with a CSP-based BCI operating on a 27 channel EEG data. The feedback study 

contained three subjects, 6 sessions on 4 days for each of the subjects CSP is very efficient in 

calculating spatial filters for identifying ERD and ERS [what are these? Give the full once here 

in this chapter] conditions (Koles et al., 1998), and therefore is suitable to use in ERD based MI-

BCI. This algorithm is very fast and robust and flexible as it is an adaptive filter which deals 

with the problem of inter-subject variability and produces complex but physiologically 

meaningful features. The CSP algorithm was successfully used in motor imaginary BCI tasks, 

reported in several publications (Blankertz et al., 2007; 2008), and it was also extended to multi-

class BCI (Dornhege et al., 2004). Using this method, four patients with complete or partial 

EEG Data
Signal 

Processing
Feature 

Extraction

Classification 
by Machine 

Learning
Output Class

Figure 9.1: Typical EEG Data Classification Block Diagram 
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paralysis or paresis of their lower limbs were successfully trained to operate a variant of the Graz 

BCI system that uses band power features of only 2 bipolar channels placed on the position C3 

and C4 (Standard 10-20 EEG electrode placement system). For This BCI, a basket game is used 

as feedback to a user who controls the horizontal movement of a ball which is falling vertically 

at a constant speed (Krausz et al., 2003). The result of this experiment is presented as 

Information Transfer Rate (ITR) and the participants achieved ITR between 5 to 17 bits/min.  A 

similar methodology was successfully used with 4 patients suffering from Amyotrophic Lateral 

Sclerosis (ALS) (Kübler et al., 2005). This is the first study that demonstrated that the ALS 

patients are capable of voluntarily modulating the amplitude of their sensorimotor rhythms to 

control a BCI. This study resulted in accuracy between 76 to 81%. 

The features from CSP algorithm is physiologically meaningful i.e. corresponding to spatial 

patterns of origin of sensorimotor rhythms (µ and β band). It also effectively reduces the 

dimension of EEG data to very low dimension of features. Therefore, a simple, light and fast 

machine learning techniques can be used to classify the motor imaginary states using this CSP 

algorithm. The common machine learning techniques that have been extensively used in BCI 

applications for classification are Linear Discriminant Analysis (LDA), Logistic Regression 

(LR), Support Vector Machine (SVM), Neural Networks (NN) (Lotte et al., 2007) etc. Among 

these, the LDA and SVM are linear classifiers and probably the most popular classifiers used in 

BCI. The LDA (Duda et al., 2001) uses hyperplanes to separate the data representing the 

different classes. The LR (Hosmer et al., 2013) is a nonlinear classifier which works with 

categorical class by transforming them to continuous values. The SVM (Burges, 1998) also uses 

hyperplanes like LDA but the selected hyperplane is the one that maximizes the distance from 

the nearest training points. NN (Bishop, 1995) is an assembly of several artificial neurons which 

produces nonlinear decision boundaries.  

For simplicity and robustness, along with the CSP feature extraction method, the LDA, LR and 

SVM are used as classifiers in the present research work described in the next sections. 
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9.2 Problem Statement 

The proposed BCI system will have low electrode count and comparatively less computational 

power as mentioned in the beginning. Therefore, it is important to implement an efficient EEG 

data classification method which uses motor imaginary sensorimotor rhythms (µ and β band). 

The CSP algorithm finds the spatial patterns that are most discriminative between MI classes; it 

requires low computational steps and produces small number of effective features. The CSP 

algorithm can resemble obtaining features form few viable electrode positions, therefore it is 

used in the present study as the feature extraction method. The main objective of this present 

study is to evaluate several machine learning techniques to find most promising classifier that 

uses a few viable features and can be used for the particular case of proposed BCI system. Also, 

to improve the classifier accuracy, effect of combining several classifiers in parallel will also be 

assessed. 

9.3 Method 

The EEG data of three subjects for Two and Three class offline classification were obtained from 

Berlin Brain-Computer Interface’s BCI competition III (BBCI, 2004). This Data Set, named IIIa 

is provided by the Laboratory of Brain-Computer Interfaces (BCI-Lab), Graz University of 

Technology. The data for fourth subject is the same data described in section 8.3.1. The epoch 

extraction from the target marker for specific class in the data, signal processing, CSP feature 

extraction and machine learning methods were carried out using Matlab based tool 

‘BCILAB’(BCILAB, 2017).   

The motor imaginary data of three subjects corresponding to Left Hand, Right Hand and Foot 

movement were first classified as a Two-class problem (Left/Right Hand). Three classification 

methods, LDA, LR and SVM, were used for this purpose. Then the Three-class (Left/Right Hand 

and Foot movement) motor imaginary data classification was carried out using the same 

classifiers. Data from the fourth subject was first classified as Two-class (Left/Right Hand) and 

then Three-class (Left/Right Hand and Rest state) problems using the same methods as stated 

above. Finally, using the forth subject`s data, a parallel classification was evaluated using the 

three classifiers simultaneously and getting the classification output by majority voting algorithm 

for the two-class problem. 
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9.3.1 Data Description 

The data set IIIa contains cued (time stamp for each recording condition) multi-class signals. 

There were 4 classes: Left Hand, Right Hand, Foot & Tongue motor imaginary EEG data which 

were obtained from three subjects (k3b, k6b & l1b), recorded with 60 channels using the left 

mastoid for reference and the right mastoid as ground.  There are 60 epochs per class. The EEG 

was sampled at 250 Hz, and was processed using a bandpass filter between 1 and 50Hz and a 

Notch filter at 50 Hz.  

The subject sat in a relaxing chair with armrests. The task was to perform imaginary left hand, 

right hand, foot or tongue movements according to a cue. The order of cues was random. The 

experiment consists of several runs (at least 6) with 40 trials each. After trial begin (t=0), the first 

2s were quiet, at t=2s an acoustic stimulus indicated the beginning of the trial, and a cross “+” is 

displayed; then from t=3s an arrow to the left, right, up or down was displayed for 1 s; at the 

same time the subject was asked to imagine a left hand, right hand, tongue or foot movement, 

respectively, until the cross disappeared at t=7s. Each of the 4 cues was displayed 10 times 

within each run in a randomized order. The timing paradigm for data acquisition is shown in 

Figure 9.2. 

 

 

 

 

The data set of fourth subject was described before in section 8.3.1. 

9.3.2 The CSP Algorithm 

The Common Spatial Pattern (CSP) algorithm finds information (i.e., spatial filters) in two 

distributions of high-dimensional space. The EEG signal is first processed with a bandpass filter 

in the frequency domain of interest. Then the CSP algorithm maximizes variance for one class 

and that at the same time minimizes variance for the other class. High or low signal variance 

reflects a strong and a weak (attenuated) rhythmic activity, respectively. 

Figure 9.2: Timing of the Data Acquisition Paradigm 
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If a raw EEG data from a single trial constructs a matrix E of elements N × T , where N is the 

number of channels and T is the measured samples per channel, the normalized spatial 

covariance of the EEG can be obtained by,  

𝐶 =  
𝐸𝐸′

𝑇𝑟𝑎𝑐𝑒(𝐸𝐸′)
      (9.1) 

Where Trace is the sum of diagonal elements of  𝐸𝐸′. For each of the two distributions to be 

separated (For example, Left and Right Hand motor imagery), the spatial covariance 𝐶𝑑
̅̅ ̅ ∈ [𝑙, 𝑟] 

is calculated by averaging over the trials of each group. The composite spatial covariance is 

given as, 

𝐶𝑐 =  𝐶�̅� + 𝐶𝑟
̅̅ ̅       (9.2) 

𝐶𝑐 can be factored as 𝐶𝑐 =  𝑈𝑐𝜆𝑐𝑈𝑐
′ , where 𝑈𝑐 is the eigenvector matrix and 𝜆𝑐is the diagonal 

matrix of eigenvalues which is assumed to be sorted in descending order. The whitening 

transformation gives, 

𝑃 =  √𝜆𝑐
−1𝑈𝑐

′      (9.3) 

Which equalizes the variances in the space spanned by 𝑈𝑐 i.e., all eigenvalues of 𝑃𝐶𝑐𝑃′ are equal 

to one. If  𝐶�̅� & 𝐶𝑟
̅̅ ̅ are transformed as, 

𝑆𝑙 = 𝑃𝐶�̅�𝑃
′   and    𝑆𝑟 = 𝑃𝐶𝑟

̅̅ ̅𝑃′      (9.4) 

If 𝑆𝑙and 𝑆𝑟 has common eigenvectors, i.e., if, 

𝑆𝑙 = 𝐵𝜆𝑙𝐵
′   then 𝑆𝑟 = 𝐵𝜆𝑟𝐵′    and     𝜆𝑙 + 𝜆𝑟 = 𝐼   (9.5) 

Where 𝐼 is the identity matrix. Since the sum of two corresponding eigenvalues is always one, 

the eigenvector with largest eigenvalue for 𝑆�̅� has the smallest eigenvalue for 𝑆�̅� and vice versa. 

The projection of whitened EEG onto the first and last eigenvectors in 𝐵 (i.e., the eigenvectors 

corresponding to the largest 𝜆𝑙 and 𝜆𝑟 ) will give feature vectors that are optimal for 
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discriminating two populations of EEG. With the projection matrix 𝑊 = (𝐵′𝑃)′ the mapping of 

a trial E is given as, 

𝑍 = 𝑊𝐸      (9.6) 

The columns of 𝑊−1 are the common spatial patterns and can be regarded as time-invariant EEG 

source distribution vectors. 

9.3.3 Linear Discriminant Analysis (LDA) 

The Linear Discriminant Analysis separates the data of different classes by a hyperplane. For a 

two class classification, the class of the feature vector of the data sample is determined by which 

side of the hyperplane is the vector resides. The classification of more than two classes is 

accomplished by more than two hyperplanes.  

LDA assumes the data is normally distributed and in case of the simpler version of ‘Fisher`s 

LDA’ the data is assumed to have equal covariance matrix for both class. The separating 

hyperplane is obtained by seeking the projection that maximizes the distance between the mean 

and minimizing the variance of two classes. For a multiclass BCI, the ‘one versus the rest’ 

(OVR) strategy is used which involves in separating each class from all the others. Figure 9.3 

shows graphical view of LDA with simulated data sets with identical covariance matrices.  

Figure 9.3: LDA with Simulated Data sets with Gaussian distribution and Identical 

Covariance Matrices Between two Classes 
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For a set of observation that constitute a feature vector set �⃗� and for each sample of observation 

corresponds to a known class 𝑦, then �⃗� and 𝑦 creates a training set that can be applied to classify 

unknown observations similar or same distribution of samples where �⃗� is taken form. 

LDA solves the problem by assuming that the conditional probability density functions 

𝑝(�⃗�|𝑦 = 0) and 𝑝(�⃗�|𝑦 = 1) are both normally distributed with means and covariance parameters 

(𝜇0⃗⃗⃗⃗⃗|∑0) and (𝜇1⃗⃗⃗⃗⃗|∑1) respectively. Now, Bayes optimal solution is to predict that a sample 

belongs to second class if the log of the likelihood ratio is bellow some threshold  𝑇 , that is, 

(�⃗� − 𝜇0⃗⃗⃗⃗⃗)𝑇∑0
−1(�⃗� − 𝜇0⃗⃗⃗⃗⃗) + 𝑙𝑛|∑0| − (�⃗� − 𝜇1⃗⃗⃗⃗⃗)𝑇∑1

−1(�⃗� − 𝜇1⃗⃗⃗⃗⃗) + 𝑙𝑛|∑1| > 𝑇   (9.7) 

Equation 9.7 is called Quadric Discriminant Analysis (QDA). To simplify more, the LDA, 

makes further assumptions that the class covariances are identical i.e., ∑0 = ∑1 = ∑ 

(Homoscedasticity Assumption), and also covariances have full rank. So, the decision criterion 

in Equation 9.7 becomes, 

�⃗⃗⃗� ∙ �⃗� > 𝑐      (9.8) 

Where  𝑐  is some threshold constant given by, 

1

2
(𝑇 − 𝜇0

𝑇∑0
−1𝜇0 +  𝜇1

𝑇∑1
−1𝜇1)    (9.9) 

And,  

�⃗⃗⃗� = ∑−1(𝜇0 − 𝜇1)     (9.10) 

So, the criterion of an input �⃗� being in a class 𝑦 is purely a function of this linear combination of 

the known observations. 

9.3.4 Logistic Regression (LR) 

Logistic regression is a natural extension of the ideas behind linear regression and linear 

discriminant analysis. LR is basically classifies categorical binary dependent variable, i.e. it can 

take only two values, "0" and "1" represent outcomes such as pass/fail, win/lose etc. For 
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multiclass problem ‘one versus the rest’ (OVR) strategy (as mentioned in LDA section) can be 

applied.  

The core of the LR method is ‘Logistic Function’, also called the ‘Sigmoid Function’ is an S-

shaped curve that can take any real-valued number 𝑡, (𝑡 ∈ 𝑅) and map it into a value between 0 

and 1, but not exactly at those limits. This function is given as, 

𝜎(𝑡) =
1

1+𝑒−𝑡      (9.11) 

Where a graph of the logistic function is shown in Figure 9.4. 

 

If 𝑡 is a linear function of a single explanatory variable, it can be expressed as, 

𝑡 =  𝛽0 + 𝛽1𝑥      (9.12) 

Where 𝛽0 is the bias or intercept term and 𝛽1is the coefficient for the single input value 𝑥. 

Therefore each value of the input data from any feature set �⃗� , has an associated 𝛽 coefficient (a 

constant real value) that must be learned by the training data. So, the logistic function can now 

be written as: 

𝐹(𝑥) =
1

1+𝑒−(𝛽0+𝛽1𝑥)     (9.13) 

The 𝐹(𝑥) is interpreted as probability of the dependent variable equals a case, given some linear 

combination of the predictors. For a output class 𝑦 (𝑦 ∈ (0,1)), the LR can be understood by 

finding coefficients that best fit: 

Figure 9.4: The standard logistic function where σ(t)∈(0,1) for all t 
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𝑦 = {
1   𝛽0 + 𝛽1𝑥 + 𝜀 > 0
0    𝑒𝑙𝑠𝑒                       

             (9.14) 

The coefficients (𝛽𝑖) of the logistic regression algorithm must be estimated from training data set 

and this is usually accomplished by using Maximum-Likelihood Estimation (Scholz, 1985) 

method. This maximum-likelihood estimation process is different form the linear regression and 

uses an iterative process to find the coefficients that result in the highest probability of the class 

that is known in the training set. In other words, a search procedure seeks values for the 

coefficients that minimize the error in the probabilities predicted by the model to those in the 

data, i.e., it is a minimization algorithm which is used to optimize the best values for the 

coefficients for training data. This process begins with a tentative solution, revises it slightly to 

see if it can be improved. This repetition of the revision continues until no more improvement 

can be made, at which point the process is said to have converged. 

In some cases the maximum-likelihood estimation method may not converge. Non-convergence 

of a model indicates that the coefficients are not meaningful. 

9.3.5 Support Vector Machine (SVM) 

The Support Vector Machine uses a discriminant hyperplane which is selected on the basis of 

maximizing margins from the nearest training points. The maximizing of margin results in 

increased generalization capabilities of the classifier (Burges, 1998; Bennett et al., 2000). It also 

uses a regularization parameter 𝐶 that permits accommodation of outliers and allows errors on 

Figure 9.5: SVM finds the optimal hyperplane 
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the training set. The SVM is also insensitive to overtraining (Jain et al., 2000). SVM that 

performs classification using linear decision boundaries is known as linear SVM. Figure 9.5 

shows the support vectors that are used to find an optimal hyperplane that has maximum margin. 

It is possible to produce non-linear boundaries using the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗), which maps 

the data to another space where the data can be separated by linear boundaries, generally of 

much higher dimensionality. The kernel generally used in BCI research is the Gaussian or Radial 

Basis Function (RBF) kernel: 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒
(

−‖𝑥𝑖−𝑥𝑗‖
2

2𝜎2 )
    (9.15) 

The SVM that uses the kernel function and has non-linear boundaries is known as Gaussian 

SVM or RBF SVM. The use of kernel function to separate the input data in higher dimension 

features space is shown in figure 9.6. 

 

For a training set 𝑥𝑖  of 𝑁 samples, each associated with a class 𝑦 ∈ (+1, −1) the standard SVM 

solution is derived from the following optimizing problem: 

min
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 + 𝑐 ∑ 𝜉𝑖

𝑁

𝑖=1

 

Figure 9.6: Gaussian or RBF SVM finds Optimal Hyperplane for Nonlinearly Separable 

Data by Kernel Mapping 



96 

 

This is subject to,  

 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖   

&,  𝜉𝑖 ≥ 0     

Where 𝑤 is the normal vector and 𝑏 is the bias of the separation hyperplane. When 𝜙(𝑥) = 𝑥 

SVM is a linear classifier, otherwise, if 𝜙(𝑥)  maps 𝑥 to a higher dimensional space, the SVM is 

termed nonlinear. 

When the training data cannot be separated without error, the slack variable 𝜉𝑖 ≥ 0 and 

regularization parameter 𝐶 is introduced. Therefore a training sample is allowed to be a small 

distance 𝜉𝑖 on the wrong side of the hyperplane without violating the stated constraint. With the 

advantages of simpler constraints, the optimization problem becomes, 

min
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼   

This is subject to,  

0 ≤ 𝛼𝑖 ≤ 𝐶 ,  𝑖 = 1,2, … … . 𝑁 

&,   𝑦𝑇𝛼 = 0 

Where 𝑒 is the vector of all ones, 𝑄is an 𝑁 × 𝑁 positive semidefinite matrix, given by, 

𝑄𝑖,𝑗 = 𝑦𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗)     (9.16) 

 And  𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜙𝑖
𝑇𝜙𝑗  is the kernel function. The decision function is then, 

𝐹(𝑥) = 𝑠𝑔𝑛(𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏)    (9.17) 

Since the performance of the SVM classifier depends on the regularization parameter 𝐶, choice 

of an appropriate value of 𝐶 is an essential part of the SVM classification method. 
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9.3.6 Majority Voting Algorithm 

The Majority Voting (Jain et al., 2000) classification technique involves several classifiers. Each 

of the classifier`s input is presented with same feature vector corresponding to a particular class. 

Then the output classes are finally chosen on majority basis. Because of its simplicity and 

efficiency majority voting is the most popular way of combining classifiers in BCI research 

(Lotte et al., 2007). 

9.3.7 Cross-validation  

To evaluate the performances of classifiers used in this study, a 10-fold cross-validation with one 

leave out method is used (Rodriguez, et al., 2010). There were 30 epochs for each class (total of 

60 epochs for two class and 90 epochs for three class classification) of motor imaginary for each 

subject in the data set. The epochs are randomly partitioned into 10 equal size subsamples. Of the 

10 subsamples, a single subsample is retained as the validation data for testing the model, and the 

remaining 9 subsamples are used as training data. The cross-validation process is then repeated 

10 times (the folds), with each of the 10 subsamples used exactly once as the validation data. The 

10 results from the folds are then averaged to produce a single estimation. The advantage of this 

method is that all observations are used for both training and validation, and each observation is 

used for validation exactly once. 
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9.4 Results and Observations 

The results of Two (Left/Right Hand) and Three (Left/Right Hand/Foot) class motor imaginary 

offline classification of subject with ID: ‘k3b’ is given in Table 9.1, 9.2 and 9.3: 

Table 9.1: Classification accuracy for LDA of subject ‘k3b’ 

Classifier MI Class Subject ID: ‘k3b’ (%) 

 

Liner 

Discriminant 

Analysis 

(LDA) 

Two Class Left Hand 

and Right Hand 
True positive 95.5 

True negative 98.3 

False positive 1.7 

False negative 4.5 

Error rate 3.3 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 96.3 

Error rate 3.7 

 

Table 9.2: Classification accuracy for LR of subject ‘k3b’ 

Classifier MI Class Subject ID: ‘k3b’ (%) 

 

Logistic 

Regression 

(LR) 

Two Class Left Hand 

and Right Hand 
True positive 98.0 

True negative 96.3 

False positive 3.7 

False negative 2.0 

Error rate 3.3 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 93.2 

Error rate 6.8 

 

Table 9.3: Classification accuracy for SVM of subject ‘k3b’ 

Classifier MI Class Subject ID: ‘k3b’ (%) 

 

Support 

Vector 

Machine 

(SVM) 

Two Class Left Hand 

and Right Hand 
True positive 97.5 

True negative 90.3 

False positive 9.7 

False negative 2.5 

Error rate 6.7 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 92.5 

Error rate 7.5 

 

All the classifier performed very well with over all accuracy more than 90%. However the LDA 

and LR outperformed SVM. 
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The results of Two (Left/Right Hand) and Three (Left/Right Hand/Foot) class motor imaginary 

offline classification of subject with ID: ‘k6b’ is given in table 9.4, 9.5 and 9.6: 

Table 9.4: Classification accuracy for LDA of subject ‘k6b’ 

Classifier MI Class Subject ID: ‘k6b’ (%) 

 

Liner 

Discriminant 

Analysis 

(LDA) 

Two Class Left Hand 

and Right Hand 
True positive 69.0 

True negative 24.2 

False positive 75.8 

False negative 31.0 

Error rate 55.0 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 45.6 

Error rate 54.4 

 

Table 9.5: Classification accuracy for LR of subject ‘k6b’ 

Classifier MI Class Subject ID: ‘k6b’ (%) 

 

Logistic 

Regression 

(LR) 

Two Class Left Hand 

and Right Hand 
True positive 65.7 

True negative 24.2 

False positive 75.8 

False negative 34.3 

Error rate 56.7 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 47.8 

Error rate 52.2 

 

Table 9.6: Classification accuracy for SVM of subject ‘k6b’ 

Classifier MI Class Subject ID: ‘k6b’ (%) 

 

Support 

Vector 

Machine 

(SVM) 

Two Class Left Hand 

and Right Hand 
True positive 55.3 

True negative 31.7 

False positive 68.3 

False negative 44.7 

Error rate 61.7 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 37.8 

Error rate 62.2 

 

None of the classifier produced a good results, the error rate is rather larger than the accuracy of 

the classifiers. This may resulted because of large artefacts in the data or the subject showed 

minimal variation in ERD or ERS.  
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The results of Two (Left/Right Hand) and Three (Left/Right Hand/Foot) class motor imaginary 

offline classification of subject with ID: ‘l1b’ is given in Table 9.7, 9.8 and 9.9: 

Table 9.7: Classification accuracy for LDA of subject ‘l1b’ 

Classifier MI Class Subject ID: ‘l1b’ (%) 

 

Liner 

Discriminant 

Analysis 

(LDA) 

Two Class Left Hand 

and Right Hand 
True positive 91.7 

True negative 92.5 

False positive 7.5 

False negative 8.3 

Error rate 8.3 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 84.4 

Error rate 15.6 

 

Table 9.8: Classification accuracy for LR of subject ‘l1b’ 

Classifier MI Class Subject ID: ‘l1b’ (%) 

 

Logistic 

Regression 

(LR) 

Two Class Left Hand 

and Right Hand 
True positive 88.3 

True negative 89.2 

False positive 10.8 

False negative 11.7 

Error rate 11.7 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 81.1 

Error rate 18.9 

 

Table 9.9: Classification accuracy for SVM of subject ‘l1b’ 

Classifier MI Class Subject ID: ‘l1b’ (%) 

 

Support 

Vector 

Machine 

(SVM) 

Two Class Left Hand 

and Right Hand 
True positive 88.3 

True negative 85.8 

False positive 14.2 

False negative 11.7 

Error rate 13.3 

Three Class: Left Hand, 

Right Hand and Foot 
Accuracy 78.9 

Error rate 21.1 

 

All of the classifier performed well and LDA has the highest accuracy. 
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The results of Two (Left/Right Hand) and Three (Left/Right Hand/Rest) class motor imaginary 

offline classification of subject with ID: ‘DanSR02’ is given in Table 9.10, 9.11 and 9.12, also 

the results of majority voting algorithm is presented in section (iv). 

Table 9.10: Classification accuracy for LDA of subject ‘DanSR02’ 

Classifier MI Class Subject ID: ‘DanSR02’ (%) 

 

Liner 

Discriminant 

Analysis 

(LDA) 

Two Class Left Hand 

and Right Hand 
True positive 78.0 

True negative 86.0 

False positive 14.0 

False negative 22.0 

Error rate 18.8 

Three Class: Left Hand, 

Right Hand and Rest 
Accuracy 78.7 

Error rate 21.3 

 

Table 9.11: Classification accuracy for LR of subject ‘DanSR02’ 

Classifier MI Class Subject ID: ‘DanSR02’ (%) 

 

Logistic 

Regression 

(LR) 

Two Class Left Hand 

and Right Hand 
True positive 84.1 

True negative 84.3 

False positive 15.7 

False negative 15.9 

Error rate 16.5 

Three Class: Left Hand, 

Right Hand and Rest 
Accuracy 82.6 

Error rate 17.4 

 

Table 9.12: Classification accuracy for SVM of subject ‘DanSR02’ 

Classifier MI Class Subject ID: ‘DanSR02’ (%) 

 

Support 

Vector 

Machine 

(SVM) 

Two Class Left Hand 

and Right Hand 
True positive 79.7 

True negative 82.9 

False positive 17.1 

False negative 20.3 

Error rate 19.7 

Three Class: Left Hand, 

Right Hand and Rest 
Accuracy 79.3 

Error rate 20.7 
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The average error for Two class problem for subject ‘DanSR02’from all three classifier is = 

18.33 %. The majority voting algorithm resulted in an error of = 9.4%, which is a clear 

significant reduction in misclassification. 

All the classifier performed fairly well and LR has the highest accuracy rate. 

9.5 Conclusions 

For all cases of classification (except for subject ‘k6b’) the Linear Discriminant classifier (LDA) 

performed excellent classification. The Logistic Regression (LR) performance is very close to 

LDA. The Support Vector Machine performed fairly well, but this method is complex and takes 

a substantial amount of time to train and also suffers from low speed of execution.  

The LDA classification technique has very low computational requirement, simple to use and 

generally provides efficient classification. Therefore LDA is suitable for a BCI system which has 

few feature vector and low computational power. Therefore, this classification method can be 

used with the developed BCI system. 

The majority voting algorithm produced excellent result; this technique can be applied to 

problems that have low accuracy for classifiers, provided that the BCI system has no 

computational constraints. 
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Chapter 10 : Evaluation of the Developed BCI system through An 

ERD Based Single Trial Online Motor Imaginary Classification 

Using Only Two Electrodes 

10.1 Background 

The previous chapters describe how 𝜇 and 𝛽 rhythm from the sensorimotor cortex can be utilized 

to accomplish a functional Brain-Computer Interface. The Event Related Desynchronization 

(ERD) is suppression of 𝜇 and 𝛽 rhythm during motor movement or imagination of movement 

(Koles et al., 1998). It has been showed in several publications that the ERD can be employed to 

distinguish between motor imaginary tasks of limb movement for BCI purpose as described in 

section 9.1. An adaptive spatial filter can be achieved by applying the so called ‘Common Spatial 

Pattern’ (CSP) algorithm (Guger et al., 2000), which finds the maximum variation in EEG 

sensorimotor rhythm attributes at spatial positions of the scalp that correlates the ERD for 

different classes of motor imaginary tasks. Then, with the features from CSP, a machine learning 

method can be applied to classify the motor imaginary task for BCI.  

The online classification i.e. asynchronous real time EEG data classification for BCI is 

somewhat different from offline or synchronous classification. It is difficult to identify the 

beginning of each mental task in asynchronous part (Lotte et al, 2007). There are several reports 

of online experiment of BCI using ERD and employing different approaches for feature 

extraction and classification. Obermaier et al. (2001) used Hidden Markov Model classifier for 

online classification of ERD based single trail EEG data during motor imagination of Left or 

Right hand movement. This experiment used four recording electrodes positioned near posterior 

and interior of C3 and C4 location. This study resulted in average accuracy of 81.4%. In another 

report actual movement of left and right index finger was real time classified using logistic 

regression classifiers. For features, power-frequency spectrum obtained by FFT from the 

electrodes placed at C3 and C4 and a few neighboring position were used (Lehtonen et al., 

2008). This study reports to have accuracy of 80%.   
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As was mentioned before, a BCI system for neuro-prosthesis and communication needs to be 

simple, with low complexity, wearable and easily manageable. Therefore, for a EEG based BCI 

system with low number of electrode attached to the user`s scalp is desired. Guger et al. (2001) 

showed that it is possible to use Adaptive Auto Regressive (AAR) parameters resulting from two 

bipolar electrodes at the sensorimotor cortex (C3 and C4, in standard 10-20 EEG electrode 

placement) to classify motor imaginary tasks. Classification accuracy between 70% and 95% 

was obtained in this study. Also It has been reported that 4 patients with complete or partial 

paralysis or paresis of their lower limbs were trained to operate a CSP based BCI that uses band 

power features of only 2 bipolar channels (Krausz et al., 2003); this study resulted at information 

transfer rate between 5 to 17 bits/min. A similar methodology (using only two recording 

electrode) was successfully used with 4 patients suffering from Amyotrophic Lateral Sclerosis 

(ALS) (Kübler et al., 2005). This study resulted in accuracy between 76% and 81%. 

Thus, along with the physiological evidence of ‘homunculus’ model (Jasper et al., 1949), it can 

be assumed that only two bipolar electrode that are positioned at the sensorimotor cortex which 

are responsible for hand movement (C3 and C4) may be sufficient for an effective BCI system. 

Moreover, since the sensorimotor rhythms (𝜇 and 𝛽 band) that constitutes ERD are natural, 

single trial training should suffice to find the subject specific features that can be used for online 

classification of the motor imaginary task. Also, the system should be operative with the users 

who did not have any previous experience of using any kind of BCI system.  

The frequencies corresponding to 𝜇 and 𝛽 rhythm varies person to person, but always in distinct 

bands, i.e. 8 to 12 Hz for 𝜇 and 18 to 25 Hz for 𝛽. So, the assumption can be extended to the fact 

that, if the band power of these two rhythms from the two electrodes (C3 and C4) is used as 

features, it should be possible to distinguish ERD’s that represent the particular motor imaginary 

task. 
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10.2 Problem Statement 

The objective of this present study is to use ERD corresponding to sensorimotor rhythms for 

online classification of EEG data of motor imaginary tasks. The system should use only two 

recording electrode place at the motor cortex. The study will implement and evaluate an online 

BCI system, developed as a part of the present work, which uses a single trial to extract ERD 

attributes as features and employs classifiers of light computational requirement. Using these 

methodologies a BCI experiment will be carried out on inexperienced subjects.  

This study will assess the overall developed BCI system of this present research work. The EEG 

hardware and the software for BCI that had been developed will be employed in this online 

classification of motor imaginary task. 

10.3 Method 

Three subjects were asked to perform a two-class motor imaginary task, Left Hand and Right 

Hand imagined movement, and the data were classified online. The EEG data was first band pass 

filtered from 8 to 30 Hz. Since there is only two electrodes, no spatial filtering was carried out, 

only the frequencies and amplitudes of the ERD that are most discriminant for the particular 

subject and for the associated class were investigated and used as features. A simple Linear 

Discriminant Analysis was used as a classifier which gave the class probabilities as the outputs.  

A graphical user interface was designed to input various circuit parameters and to show relevant 

outcomes, described in a little more detail in the ‘software’ section below. 

10.3.1 Hardware 

The two channel EEG device that has been developed in the present work and described before 

from Chapters 2 to 8 was used to record the EEG data. For data acquisition, a device from 

National Instruments (‘cDAQ9171’, National Instruments, 2017) was used instead of the 

developed miniature USB based data acquisition system. This was done to avoid complexity at 

the research phase where hardware and software may require quick changes. The EEG signal 

was sampled at 1024 Hz. To ensure user safety and noise reduction, the analog front end was 

electrically isolated by means of isolation amplifier (ISO126) for signal and a medical grade DC 

to DC converter for power. The data acquisition device is on the non-isolated PC side and it also 
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uses USB interface to connect with the PC. It needs to be mentioned that the ground point 

referred to in Chapters 2 to 8 for the patient connected parts of the EEG are not the same as the 

ground of the mains connected part. Therefore, in a combined system, the ground of the isolated 

part is usually referred to as the ‘Neutral’ or the ‘Common’ point. 

10.3.2 Software 

The Data acquisition, Graphical User Interface (GUI) and Computational algorithms of the BCI 

system was developed using LabVIEW professional development system (LabVIEW, 2017) and 

Matlab (MathWroks, 2005). The GUI contains two EEG trace-viewing window for 3 seconds 

(the time scale is changeable), four numerical inputs to configure upper and lower cut-off 

frequencies of two IIR digital bandpass filter of the 16th order for the two channels, two real time 

FFT window which performs on every 0.5 seconds of data and two vertical indication bars which 

represents the probability of the class of Left and Right Hand imagined movement. The vertical 

indications serves as a measure of classification accuracy and as well as feedback to the user.  

10.3.3 Subjects 

Three research students from the Department of Biomedical Physics and Technology 

volunteered for this study. All of the subjects are in the age group of 25 to 35 years, male and 

Right handed. The subjects did not have any previous experience regarding BCI and EEG 

recordings. The subjects were informed about the study, explained of their task and an oral 

consent was taken from each of them. 

10.3.4 Practical Measurement 

The subject was seated in an armchair and two EEG electrodes were attached on the scalp at 

positions C3 and C4 respectively. The Ground and Reference Electrodes were attached at right 

and left mastoids respectively. The subject was asked to relax for several minutes. Then a soft 

voiced que was presented to the subject to imagine either a Left Hand or a Right Hand 

movement. The data was then divided into 3 second epochs for training purpose. The training 

data was then used for subsequent online classification through the same voiced cue.  

The data was analyzed and the resulting probabilities of the output class were presented on the 

vertical indication bar for every 1.5 second epochs. For every cued class, 10 results were 
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recorded for every session and 5 sessions were performed. The accuracy of the classification of 

these 10 trials (for each session) were calculated and results from 5 sessions were averaged. 

10.4 Result and Observations 

The screenshot of the GUI of the BCI system is shown in Figure 10.1, in which the subject was 

asked to close his eyes. Considerable appearance of Alpha band frequency is visible, which 

validates the EEG data quality of the developed system. The presence of Alpha oscillation at C3 

and C4 is probably due to the fact that these positions are close to the occipital lobe of the brain 

which is responsible for visual processing.  

 

The Screenshots of the GUI during Left hand and Right Hand motor imaginary task and Rest 

state for subject 1 is shown in Figure 10.2, 10.3 and 10.4 respectively. 

 

Figure 10.1: Alpha Rhythm at Both Channels During Eyes Closed of Subject 1 
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Figure 10.2: Output during Left Hand Imaginary Movement of Subject 1 

Figure 10.3: Output during Right Hand Imaginary Movement of Subject 1 
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For the online classification, the first and third subject performed well with reasonably good 

accuracy. The second subject could not show any realistic output associated with the task. The 

accuracy of the classification is presented in Table 10.1. 

Table 10.1: Online classification accuracy of three subjects 

Subject Left Hand % Right Hand % Average Accuracy % 

1 70 100 85 

2 50 60 55 

3 70 90 80 

 

 

 

 

Figure 10.4: Output during Rest of Subject 1 
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10.5 Conclusion 

The EEG recording of the developed system is excellent and stable, which is verified by the 

appearance and disappearance of Alpha waves of EEG for the three subjects with the eyes closed 

and open respectively. The movement artifacts are observed to be very small probably due to the 

fact that the electrode positions are far from the usual moving muscles. The EEG system has 

integral electrode impedance measurement system; it displays four numerical values for the 

impedance of two active EEG electrodes and that of the ground and reference electrodes. 

However, the graphical view of these results is not presented here.  

The online classification method of motor imaginary EEG data presented in this study are 

extremely simplified, where only two recording channel and very few features are used with 

inexperienced subjects. However, the study performed reasonable positive output on single trial 

training. In this study two of the subjects had average accuracies of more than 80% which is 

similar to that obtained by other studies, even with a larger number of electrodes, as described in 

section 10.1. The second subject who was unable to produce any reasonable result reported that 

he was unable to imagine his hand movement. Similar failures with particular subjects have also 

been reported by other workers. This could be due to individual psychological attributes and 

needs further investigation. 

The success of the simple software developed in the present work requiring a minimum of 

electrodes and computational power shows that this is a promising method that can be practically 

used for the developed BCI system.   
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Chapter 11 : Feasibility of Employing EOG in Combination with 

EEG Based BCI for Control of a wheelchair 

11.1 Background 

Electrooculography (EOG) is the recording trace of electrical potential that is produced across 

the cornea and retina due to eyeball movement. The potential arises due to the action potentials 

from the muscles that are contracted during eyeball movement (Brown et al., 2006; Birndorf et 

al., 1973). The EOG signal typically has an amplitude of 1 to 2 mV and has a single peak wave 

shape with an average time span of 300 to 400 ms. The signal is usually recorded from electrodes 

placed on the face surrounding the eyes, mainly at the forehead, temple and just below the eyes. 

Figure 11.1 shows the electrode placement and corresponding output measurement system for 

left-right (horizontal) and up-down (vertical) movement of the eyeball. 

 

The EOG signals from these different electrodes have very distinct wave shapes for left, right, up 

and down movement of the eyeball. These wave shapes are easily distinguishable and used for 

Human-Machine Interface (HMI). In several publications, the EOG has been reported for 

onscreen keyboard controls and for robot control (Usakli et al., 2010a and 2010b; Kumar et al., 

2002; Kim et al., 2007).  Barea et al. (2002) reported an EOG based electric wheelchair control. 

Since unintentional eye movement can result in unwanted control of machine, these HMI 

systems relying on only EOG are not fully reliable. 

 

Figure 11.1: EOG Recording System 
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11.2 Problem Statement & Objectives 

As mentioned above, reliability of only EOG based systems have a serious drawback, due to 

unintentional eye movements. On the other hand, the EEG based BCI system is never 100% 

accurate, therefore control of wheelchair by only BCI can result in unwanted movement. 

Therefore, both systems, used individually, are not fully reliable and may even result in 

disastrous consequences. On the other hand, a combination of these two different maneuvers of a 

person may give a better reliability since it is less probable that two such maneuvers will occur 

simultaneously. Therefore, it would be interesting to investigate whether combining these two 

methods improves the outcome of the desired control.   

The objective of this study is to produce improved and reliable wheelchair control combining 

classification results (Class probabilities) of EEG motor imaginary BCI and detectable classes of 

eyeball movement though EOG. This should not be sensitive to movement of the eyes or in the 

motor imaginary EEG that are not related to the desire to control the movement of a wheelchair. 

Here only predicted classes of Left Hand/Right Hand imagined movement and horizontal 

Left/Right eyeball movement is studied with different weightage to each. If a particular 

combination of these states improves the overall output than the individual EEG based BCI, 

other combination of states or classes can be applied to control a wheelchair.  

11.3 Method 

The motor imaginary EEG data is taken form a published source (Grandchamp, 2009) described 

in section 8.3.1 but from a different subject. The EOG data is taken from a previous research 

work performed at the Department of Biomedical Physics, University of Dhaka, (Atique et al., 

2016). 

For the EOG, outputs for only the left-right control (horizontal) were used. The Left and Right 

side (horizontal) movement of eyeball produces opposite EOG signal outputs, shown in figure 

11.2 and 11.3 respectively. This is expected from the placement of the two electrodes on the two 

sides of the face as shown in Figure 11.1. 
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Since the EOG signals from these to eyeball movement produces signal of opposite polarities, 

these are identified with almost 100% accuracy simply using a discriminant type classification. 

Therefore, the classes representing intentions for Left and Right movement by EOG usually have 

no misclassification rate. 

The EEG data is classified using the CSP algorithm for feature extraction and Linear 

Discriminant Analysis classifier in the same manner described in section 9.3.  

Different combination of the two classification modalities may result in different magnitudes of 

improvement. Therefore, the combinations were made with several different weightages. The 

predicted class probabilities were added percentage wise to have a combined class probability. 

Different combinations of weighted probabilities were used and the results were compared to 

improve the insight.       

Figure 11.3: EOG Signal for Right Sided eyeball Movement 

Figure 11.2: EOG Signal for Left Sided eyeball Movement 
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11.4 Results and Observations 

Results of different weighted probability combinations are given in Table 11.1.  

Table 11.1: Results of combination of EEG and EOG probabilities 

Weight of the 

BCI 

Probability % 

Weight of the 

EOG 

Probability % 

Number of wrong 

prediction among 128 

samples 

Misclassification 

Rate (Error) % 

Accuracy 

% 

100 0 13 10.2 89.8 

70 30 7 5.5 94.5 

60 40 4 3.1 96.9 

50 50 0 0 100.0 

 

11.5 Conclusion 

It is well known that detectability of EOG alone is almost 100% accurate. The reason of not 

using it alone is its reliability in control applications, due to movement of the eyes for other 

purposes. Again, BCI can also lead to inadvertent signals if the user imagines of moving the 

hands with other intentions. However, probability of having both these maneuvers together for 

other purposes than the desired control would be very small. Therefore, a combination of EOG 

and BCI, even though the latter is less accurate, may lead to a greater reliability in terms of 

avoidance of undesired control signals. 

From the above table it appears that a combination of BCI and EOG in the weightage ratios of 

60:40 or 50:50 appears to be the best for a reliable and accurate control. 
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Chapter 12 : Conclusion 

The objective of this research work is to develop a functional BCI system indigenously, meeting 

the criteria of having low component count, of being light weight, power efficient, user safe, 

small sized, wearable and comfortable. The BCI system is intended to be of low cost which will 

be used for controlling prosthesis, communication module and wheelchair to provide day to day 

functionality of physically challenged people of the low resource countries (LRC) of the world. 

Such systems are under development in many other laboratories of the world and the technology 

has not matured yet. Besides, most of these developments are taking place in the economically 

advanced countries (EAC) and when the systems will be ready for commercialization, they will 

be prohibitively expensive for the users-in-need in the LRCs. There are two reasons for this, 

Firstly, the developers in the EACs usually go for very complex systems providing a host of 

facilities, many of which may not be needed by an average user. Secondly, the wages of research 

personnel differ widely in these two regions of the world which contributes greatly to a high cost 

if developed in an EAC. Therefore, there is a great need for such equipment and systems to be 

developed within the LRCs keeping their own situations in consideration.  

Therefore, the present work tackles the problem from scratch, from the basic design of an 

appropriate EEG circuitry to the development of an appropriate BCI technique, all considering 

the above mentioned requirements. 

A BCI system usually consists of EEG recording hardware and data analysis or classification 

software. Both of these have been developed during this work and evaluated. The bioelectric 

amplifier of the EEG hardware is optimized in terms of number of amplifying stages and 

bandpass filtering and the choice of a low cost but high quality instrumentation amplifier. 

Careful design of the Sallen-Key second order filters at the amplifier gain stages resulted in very 

stable active filters with high attenuation (total of 4th order) at the stopbands, minimum phase 

distortions and having quick settling time. Beside the very high gain (100 dB) of the developed 

bioelectric amplifier, the performance is excellent with stable output with no ringing or self-

oscillation. The output shows very low noise and very high overall Common Mode Rejection 

Ratio (CMRR ~115 DB). These features make it very much appropriate for EEG recording. The 
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bioelectric amplifier has been constructed for two channels only, based on the need for 

simplicity, and the outcome of the requirement study carried out in this work for a cost effective 

BCI system. It is possible to extend the channels to higher numbers, if necessary, by just simply 

adding more components of single channel section following the architecture of the design. 

A novel AC coupling method has been developed and implemented, which allows higher gain at 

the first stage instrumentation amplifier (INA) without compromising the input impedance and 

CMRR. The AC coupling at the input stage also enforces user safety by capacitive isolation. This 

innovation may find use in all bioelectric amplifiers. 

To reduce interference and noise and as well as user protection a novel improved Driven Right 

Leg (DRL) circuit has been designed and constructed. This DRL circuit is free from DC 

saturation and therefore very high gain can be applied which in turn substantially reduces the 

effective skin-electrode contact impedance at the reference electrode or ground. Thus it 

minimizes the common mode voltage. 

A novel MOSFET and JFET based self-biased low-noise two wired active electrode system has 

been developed. This active electrode effectively removes the problem of skin-electrode 

mismatch and the mains borne 50Hz interference produced by long input leads.  It essentially 

reduces the common mode to differential mode conversion due to ‘Potential  

divider effect’. This active electrode is also AC coupled to the subject. Due to the special 

architecture developed, the RC components do not required to be exactly matched. 

A skin-electrode contact impedance measurement circuit has been developed. Unlike similar 

other measuring systems; this one is able to calculate the ground and reference electrode contact 

impedances too, which is essential for noise free EEG recording.  

A USB based simple data acquisition system has been developed for the BCI system which is 

suitable for data acquisition during training phase and can also be used as standalone signal 

processing, data classification and control unit for the wearable BCI system.  

To determine a suitable EEG signal analysis and data classification method that can be used with 

minimum number of electrode or channels (in this case only two), spatial pattern of µ-rhythm 
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was analyzed from motor imaginary EEG data obtained from published sources. This analysis 

shows that the µ and 𝛽 rhythm bands highly correlate to the motor imaginary hand movement. 

Then a similar method called CSP was used to extract features from EEG data of several subjects 

preforming motor imaginary task, and then various machine learning techniques were used to 

find most efficient classifier. The simpler classifier called Linear Discriminant Analysis (LDA) 

was found to be the most efficient. This implies the important fact that low computational 

methods like LDA can be effectively used in standalone BCI system. It was also found that 

combination of several classifies producing output by majority voting results in higher accuracy. 

Finally, an online classification of motor imaginary movement of left and right hand is carried 

out using the methods of offline classification and using only two recording electrodes placed at 

C3 and C4 position. Three volunteers participated in the study and two of them achieved more 

than 80% accuracy in single trail based study. One of them did not achieve any practical output, 

and informed that he is having difficulties imagining hand movement.  

Finally, a combination of BCI with Electro OculoGram (EOG) with different weightage showed 

that a ratio of 50:50 gave the best accuracy, 100%, together with reliability against unrelated 

movements of the eye or imagining movements. 

 

These observations suggest that it is sufficient to use only two electrodes at the sensorimotor 

cortex along with the developed EEG hardware to construct a functional BCI system. 

  

Thus the present thesis has shown that it is possible to develop a high quality EEG circuitry for 

BCI using low cost ICs and other components, suitable for a LRC. Although such devices for 

BCI are in existence, the technology is still not fully developed. In this direction, several 

innovations have been made in the EEG circuit hardware which will help the LRCs as well as the 

EACs. Together with the hardware innovations, the present work also showed that only two EEG 

electrodes at appropriate points of the scalp is enough to give a very satisfactory output for BCI 

for which simple software has been developed that will be helpful in low resource countries of 

the world. 
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Appendix 1 

Circuit Diagram for a single channel of the EEG Hardware: 
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Appendix 2 

LabVIEW Module Diagram of BCI System: 
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