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Study of the Bulk Properties of Liquid Transition Metals

Abstract
Due to versatile applications of transition metals it is always interesting to study the

properties of these metals and their alloys theoretically. The properties of transition

metals largely depend on the electronic configuration of the outermost shell or next-

to-outer most shell. We have studied some static and dynamic properties for liquid

transition metals by using the orbital free ab initio molecular dynamics (OF-AIMD)

simulation technique at thermodynamic states near their respective melting temper-

atures. The systems studied are the 3d (Cr, Mn, Fe, Co, Ni, Zn), 4d ( Pd, Cd) and

5d (Pt, Hg) liquid transition metals. Due to the availability of experimental data for

static structure factor we have also performed simulation at several thermodynamic

states for some systems, namely for liquid Fe (l-Fe), l-Zn, l-Hg, and l-Co.

The OF-AIMD simulation technique is related to the density functional theory

(DFT) of Hohenberg and Kohn. The exchange correlation energy is described by

the local density approximation. To describe electron-ion interaction, we have used a

model local pseudopotential proposed by Bhuiyan et al., which has proven to be the

successful to generate the structural and dynamical properties of some liquid transi-

tion metals. The calculated results are presented here for a range of static structural

magnitudes, such as static structure factor, isothermal compressibility, pair distribu-

tion function and coordination number. A comparison with the available X-ray and

neutron diffraction data shows that the OF-AIMD method can provide a reasonable

description of the static structure.

iv
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Abstract v

As for the dynamic properties, results are reported for both single and collective

dynamics. The calculated dynamic structure factors show side peaks which point

to the existence of collective density excitations, from where the adiabatic sound

velocities are calculated. Finally, we have performed calculation of some transport

coefficients and obtained results are compared with the corresponding experimental

data. Calculated results for static and dynamic properties are found to be good

in agreement with available experimental data. We also have observed through the

present work that a heavy computational demand of Kohn-Sham orbital representa-

tion of DFT used in AIMD can be partly overcomed by the OF-AIMD simulation

method.
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Chapter 1

Introduction

A system is a part in this universe on which we focus our attention for analysis. The

system is composed of any number of similar or dissimilar objects and the conditions

of those objects identify the state of the system [1]. We can explain a physical system

either by a theory or by analysing a collection of data obtained from experiment.

Theoretically we can describe a physical system through mathematical model. But

sometimes it gets extremely difficult to solve a particular problem either analytically

or numerically, and even it may become imposible to solve at all. This is due to the

lack of our proper understanding of the complexity of a system and also due to lack

of knowledge in developing the appropriate mathematical tools. On the other hand,

experiments to collect data are expensive, difficult to set up the necessary instru-

ments, and sometimes it is also risky and hazardous. Even we can not perform any

experiment for some specific situations. In these circumstances, simulation techniques

play an important role to study a physical system. One may treat simulation as a

computer experiment which acts as a bridge between theory and experiment.

1
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Computer

Simulation

Theory Experiment

Figure 1.1: Conventional representation of the interplay among theory, experiment
and computer simulation.

Simulation often leads to important advancement of a mathematical model where

there is a lack of agreement between experimental data and the proposed mathemat-

ical model. Therefore the computer simulation becomes one of the most efficient and

effective alternative tool for studying the properties of physical systems. Efficient al-

gorithms for computer simulation have been highly developed over the period of time.

Already a large number of experimental observations are verified successfully by using

simulation technique. This technique is also capable of bringing new insights and in-

terpretations of the experimental findings at the atomic level. Now-a-days simulation

is considered essential before performing the experiment in reality and hence became

a separate field of study. The huge improvement in computational power together

with more efficient algorithms provides us a vast scope to perform simulations with

high accuracy to answer the questions, like what are the structure of liquid metals.

Moreover accessing extreme physical conditions computationally is much more easier

and safer rather than obtaining in real experiments.

The achievement of the computer simulations of materials relies on the accuracy
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of model how atoms interact with each other. Furthermore, some pre-parameterized

empirical potentials have been applied with considerable success for some cases in

the past and in modern days this has become the state-of-the-art method to model

a large system. The parameters of a potential are usually obtained by data fitting

to reproduce some liquid state properties at some ambient conditions. Applications

of empirical potentials are very much limited to obtain the properties of systems for

which they are parameterized and in most cases they fail to reproduce the properties

of other systems [2]. On the contrary, there are techniques that are based on quantum

mechanical description of the atoms, which are computationally much more demand-

ing but more rigorous than empirical potentials. These methods do not require any

input from experiments and are known as the ab initio methods. At the present, the

parameters for the empirical potentials are often obtained from the ab initio methods.

The term ab initio usually refers to first-principle calculations. A calculation is

called ab initio if it starts directly from establised laws and does not make any as-

sumptions such as fitting the parameters of empirical models. An ab initio calculation

gives the absolute energy of a system of fixed nuclei and moving electrons. The ma-

jor disadvantage of the ab initio method is its dependence on heavy computational

power. The main objective of the ab initio method is to solve the Schrödinger equa-

tion. The solutions of the Schrödinger equation describe the quantum states. From

the ground state energy of a system in ab initio simulation other physical properties

can be obtained. In practice, the Schrödinger equation can not be solved analytically

for systems containing more than one electron. For this reason, different approxi-

mation methods have been introduced in the theory with high level of accuracy and
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satisfaction. All these methods have their own advantages and disadvantages. These

approximation methods are often classified into two groups: the wave function based

approach and the density functional based approach.

In this dissertation, the method based on density functional theory (DFT) within

the framework of Hohenberg and Kohn theory [3] is used to study the bulk properties

of liquid transition metals. The DFT is the most convenient technique to solve the

Schrödinger equation for the ground state energy of a system. This is because the

DFT method is capable of dealing with systems consisting of hundreds or thousands

or even more particles. Whereas for coupled cluster and other wave function based

methods, the computational cost increases severely with the system size. One faces

gridlock just for working with a few tens of paricles using the largest supercomputers

and most efficient algorithms. Definitely DFT has already occupied the position of

the most popular ab initio method recently for condensed phase simulations. The

DFT can be categorized into either orbital based or orbital free method. Explicit

density dependent total energy functional of the DFT proposed by Hohenberg and

Kohn [3] is known as the orbital free DFT (OF-DFT). On the other hand, if the kinetic

energy (KE) functional, Ts[{ψi}], depends explicitly on the orbitals and all other terms

including the exchange correlation (XC) term, Exc[ρ(r)], depend implicitly only on the

orbitals in the total energy functional, it is named as Kohn and Sham DFT (KS-DFT)

or orbital based DFT [4]. The KS-DFT method is time consuming and only been

used for systems of small size (up to ≈ 100 particles), whereas OF-DFT can handle

a system having hundreds or thousands or even more particles without considerable

time consumption. By construction the OF-DFT techniqe is less accurate than the
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KS-DFT because the former method does not take care of actual orbitals. We have

employed OF-DFT in this dissertation for a number of systems, each having 500

particles in a cell and obtained the results with the accuracy [5] comparable to that

of the KS-DFT.

Like all other electronic structure calculation methods, DFT has its own limi-

tations. In principle, the DFT is exact calculation, but in practice it requires an

appoximation to take care of the so-called electron exchange correlation interactions.

Although the contribution of the exchange correlation (XC) energy is small, only

a fraction of the total energy of a system, it can not be ignored and rather turns

out to be extremely crucial for accurate description. The success of DFT depends

on the accuracy of the approximations made for the exchange correlation functional.

Among different methods two excellent ways to calculate the XC energy are mostly

used. These are: (i) the local-density approximation (LDA) [4] and (ii) the gener-

alized gradient approximation (GGA) method [6–9]. These two approximations for

exchange correlation energy have been extremely successful in various fields but they

often seems to be fail to treat the weakly bound systems. Here we have used the

local density approximation which is the oldest approximation of DFT and was orig-

inally proposed by Kohn and Sham [4]. It is a key contribution to the work of Kohn

and Sham and works effectively while the density variations are slow. But it turns

out that the LDA works surprisingly well for the calculation of many energetic and

structural properties for a wide range of materials. The key assumption of LDA is

to grip the known result for a uniform electron gas (UEG) and apply it locally to a

non-homogeneous system.
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In the LDA, εLDAxc [ρ(r)] = εLDAx [ρ(r)] + εLDAc [ρ(r)] is the exchange correlation

energy per particle of the uniform electron gas with density ρ(r), where εLDAx [ρ(r)]

has the analytic form given by the Dirac energy functional [10] and the correlation

contribution εLDAc [ρ(r)] is determined from the Quantum Monte Carlo (QMC) sim-

ulations [11] along with some fitting procecedures [12, 13]. We also have used the

Perdew-Zunger approximation [13] for the correlation energy functional, εLDAc [ρ(r)].

The LDA fails in situations where the density changes rapidly. To overcome this

problem the idea of LDA is further improved by constructing XC functionals which

depend not only on the local density itself but also on its gradients [6–9] and this

newly developed technique is known as the generalized gradient appoximation (GGA).

The kinetic energy (KE) functional is one of the key ingredient in DFT calculations.

The KE functional for Thomas-Fermi (TF) model [14] is based on the homogeneous

electron gas. Thus, the KE functional of TF model is not very accurate for most

of the physical systems. So, more accurate and transferable kinetic energy density

functional is needed for the orbital free ab initio molecular dynamics (OF-AIMD)

simulation. In particular, a reliable KE functional, Ts[ρ] has been used in our present

work which is proposed by González et al. [15, 16]. This KE functional includes the

von Weizsäcker term plus further terms chosen in order to reproduce some exactly

known limits correctly. By incorporating this modification we have found favorable

results [5]. The external field in the energy functional of DFT contains electron-ion

interaction, Vext(r)=
∑

i v(r − Ri). We have used the local model pseudopotential

of Bhuiyan et al. [17] in the OF-DFT to describe the electron-ion interaction. This

model local pseudopotential in conjunction with the OF-AIMD simulation provides
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a good description of several static and dynamic properties of various liquid metals

near melting points and above [5, 17, 18].

The molecular dynamics (MD) simulation techniqe provides detailed information

about the positions and velocities of atoms in the liquid state. Molecular dynamics

(MD) simulation techniques along with the first principle calculation have become

a powerful tool in the study of liquid systems. During the last three decades we

have witnessed huge applications of ab initio molecular dynamics (AIMD) simulation

methods in various research purposes. Most of the first principle calculations are

based on the density functional theory (DFT) [3, 4]. Since density functional the-

ory is very simple to handle computationally, DFT has become a common tool in

first principles calculations to describe the properties of the molecular and condensed

systems. This theory allows us to calculate the ground state electronic energy of a

collection of atoms for a given nuclear position and also yields the force on the nuclei

via the Hellmann-Feynman theorem. Since the microscopic details of the orbitals are

involved in the formulation of the KS density functional theory (KS-DFT) [4], most

of the calculations are computationally very expensive, and this limits the size of the

system under consideration to be small, only about hundred particles. This also limits

the simulation time. However, our observation shows that some of these constraints

may be reduced drastically if we use the orbital free ab initio molecular dynamics

(OF-AIMD) simulation method [5, 15]. The fundamental varibale of the OF-AIMD

simulation is the total valence electronic density instead of the electronic orbitals

that is used in the the KS-AIMD formulation. The OF-AIMD method substantially

reduces the number of variables needed to describe the electronic states and hence
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allows us to study the larger systems (thousands of particles) for longer simulation

times. However, this improvement is achieved at the cost of resorting to an approx-

imate description of the electronic kinetic energy. This means that the OF-AIMD

approach is, in principle, less accurate than the KS-AIMD method. Nevertheless

despite of this caveat, the OF-AIMD method has provided good descriptions for sev-

eral static and dynamic properties of a variety of bulk liquid metals [5,15,16,19–21],

binary alloys [22, 23] and free liquid surfaces [24–26].

The main purpose of this dissertation is to perform simulations to study some

physical properties, namely the static and dynamic properties of liquid metals lying

in the 3d, 4d and 5d transition series and these metals are very difficult to handle

theoretically. The objective here is two-folds: firstly to examine systems which have

incompletely filled d-bands and bonding and antibonding states play an important

role in addition to the hybridization effects in determining physical properties, and

secondly to investigate the systems for which d-band is completely filled by electrons

but there are evidences that they exhibit sd-hybridization effect. We believe that this

study will provide us more clear understanding about different liquid metals in the

transition series. Ten metals from the transition series under study are classified into

three different groups. The first group consists of incompletely filled d-bands but lies

near the middle of the series (e.g. Cr, Mn, Fe, Co). For these elements the interplay

between bonding and antibonding states are found to be strong. In the second group

we put metals with nearly filled d-band elements such as Ni, Pt, Pd. Finally the

completely filled d-bands (viz. Zn, Cd, Hg) are placed in the third group.

The physical properties of liquid Cr, Mn, Fe, Co, Ni, Pd, Pt, Zn, Cd and Hg are
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of considerable interest to physicists, chemists, material scientists and even to geoph-

ysists. These elements lie in the 3d, 4d and 5d-transition series. The static structure

of the 3d, 4d and 5d liquid transition metals has been studied experimentally by

Waseda [27] using the X-ray diffraction experiment. For some systems understudy

(e.g. for Fe, Co, Zn and Hg), measurements are done for several different tempera-

tures. The structure determined by the neutron diffraction method is also available

for some transition metal systems [28]. The knowledge of static structure factor,

S(q), or its real space counterpart, the pair distribution function, g(r), is absolutely a

necessary prerequisite for a complete description of static, thermodynamic and even

transport properties. Most theoretical studies for liquid transition metals and their

alloys focus on the structural and thermodynamic properties at temperatures near

melting points [29–35]. In those works, the interionic interactions are accounted for

by using the pseudopotential theory [29–31, 36–40], semi-empirical embadded atom

methods [32, 33], tight binding theory [41, 42], and empirical methods [43]. Some

simulation studies are also available in literature for liquid transition metals. Most of

them are based on classical molecular dynamics (CMD) [33,44]. Only a few ab initio

MD simulation studies are available for liquid transition metals [45, 46]. Most im-

portantly, nearly all ab initio simulation studies are performed for the late transition

metals lying at the end of the 3d, 4d and 5d transition series and close to the noble met-

als [5,18,47–51]. But the AIMD simulation study for liquid metals lying in the middle

of the transition series is very scarce because the interplay between the bonding and

anti-bonding states for the elements in the middle of the series significantly change

the physical properties. Despite these difficulties, a few ab initio studies for liquid iron
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are performed [45,52,53]. Voc̆adlo et al. [45] were the first to perfom ab initio MD for

l-Fe, where they focused on the studies of the static structure and viscosity of iron in

the inner core of the earth at high pressure and temperature. Very recently, Marques

et al. [52] performed an ab initio study for l-Fe near the triple point, and showed that

the inclusion of spin polarization, i.e. magnetic effect, describes the static and some

dynamic properties well. But the magnitudes they have found from the non-magnetic

AIMD method are far-off. For example, the values of isothermal compressibility in

their study, with and without magnetic effect are: χT = 1.24 ± 0.02 and 10.3 ± 0.2

(in 10−12cm2 dyne−1 units), respectively. In the case of self-diffusion coefficent, they

found DAIMD = 0.37 ± 0.2Å2 ps−1 and DNM-AIMD = 0.82 ± 0.03Å2 ps−1. For shear

viscosity, they found that ηAIMD = 5.0 ± 0.3GPa ps and ηNM-AIMD = 1.8 ± 0.2GPa

ps. From the large discrepancy between AIMD and NM-AIMD results, it is very

clear that the magnetic effect of ions of Fe in the liquid state is significantly impor-

tant and needs to be considered. This new and interesting finding requires further

examination to see wheather other version of AIMD without consideration of spin

polarization yields the results with similar large magnitudes or not. To this end the

current OF-AIMD study for l-Fe is very interesting. On the other hand, to the best

of our knowledge, physical properties of liquid Cr, Mn, and Co have not been studied

yet using any version of ab initio simulation methods. From this point of view, this

study carries more importance.

The systems (Ni, Pd and Pt) are d-band transition metals located in the right-

most column of group VIIIA of the periodic table. Several studies have already

been carried out on bulk l-Ni, l-Pd and l-Pt by using MD simulation. Among all
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the available research works, the classical MD simulation study of Alemany et al.

[54] have performed theoretical calculations for the transport properties (viscosity

and diffusivity) of some liquid transition metals using a semiempirical many-body

potential based on the second-moment approximation to the tight-binding method

(TBM-SMA) [55,56]. Alemany et al. [57] also have calculated the transport properties

of some liquid transition metals using classical MD simulation along with the Voter

and Chen version of the embedded atom model potential [58]. The classical MD

simulation study of Kart et al. [59] have computed the transport properties of l-

Pd, l-Ni using the Sutton-Chen (SC) potential with a new potential parameter set,

namely the quantum Sutton-Chen potential (Q-SC) developed by Çağin et al. [60].

The transport properties are important for metallurgical processes as well as for

understanding the dynamics of liquids. However, experimental data for the self-

diffusivities of liquid metals are relatively scarce, mainly due to a lack of specific

radio-isotopes. Experimental diffusion data are available only for about a dozen

liquid metals [61]. However, there are variations between the different experimental

viscosity data [62]. The accurate measurment of these quantities is a difficult task due

to critical experimental conditions at high temperatures and pressures. One of the

most basic transport properties is the velocity of sound. However, only a few studies

have been found on this. Theoretical and semi-empirical equations for the velocity

of sound in liquid metals as well as purely empirical methods are well reviewed by

Iida and Guthrie [62, 63]. For these reasons, we have become interested to study

the transport properties. Bermejo et al. [64] have computed the sound velocity of

l-Ni at T = 1763 K with well-defined microscopic collective excitations by means of
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inelastic neutron scattering (INS) method. Yokoyama [65] has computed the sound

velocity for some 3d transition metals near the melting point by using hard-sphere

model immersed in the uniform background potential. Using the AIMD simulations,

Jakse et al. [66] have studied the transport properties of l-Ni at T = 1850 K. S.

Blairs [67] has examined the inter-relationship between surface tension, σ, density, ρ

and sound velocity, cs, given by the equation log cs = 0.5526 log(σ
ρ
) + 5.4364 from

the available experimental sound velocity of 41 metallic elemental systems at the

melting point. By using this inter-relationship equation he estimated sound velocity

of other 24 elements at the melting point from the experimental σ and ρ. Thakor et

al. [68] have calculated the transport properties of 3d liquid transition metals using

the scaling law proposed by Dzugutov [69], which represents the relationship between

the excess entropy and transport properties of liquid. From the consideration of

hard sphere model, Yokoyama [70] has studied transport properties for some liquid

metals near the melting point by using the scaling law. In this calculation only the

parameter, packing fraction, ξ, is calculated from excess entropy. Yokoyama et al. [71]

have studied transport properties of liquid Ni near and above melting by using the

Dzugutov [69] scaling law and the diffraction data of Waseda [27]. Moreover, they

have also used the same diffraction data for evaluting excess entropy. Korkmaz et

al. [72] have studied the transport properties for transition metal Ni near and above

melting by using the scaling laws proposed by Li et al. [73, 74], Rosenfeld [75] and

Dzugutov [69]. Protopapas et al. [61] have computed the self-diffusion coefficient by

extending the Enskog theory [76] assuming that the self-diffusion coefficient of a dense

metallic fluid is the same as that of an appropriate hard sphere fluid. Gosh et al. [77]
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have studied the transport properties of transition metals by using the scaling laws

proposed by Dzugutov [69] and Rosenfeld [75]. To the best of our knowledge no OF-

AIMD simulation has been done before us for liquid Ni, Pd and Pt and no published

results are available for any kind of ab initio simulation for l-Pd and l-Pt. Hence to

study the liquid Ni, Pd, and Pt by applying the OF-AIMD simulation method will

be an important contribution. Moreover, the OF-AIMD method describes the liquid

systems much better than the classical method and gives better insight to understand

the properties of a physical system.

Metals with incompletely filled d-bands exhibit strong d-character through the

sp-d hybridization effects. This effect is accounted for either by changing s, p, d band

occupancy number as in the case of the ab initio pseudopotential calculations or by

changing the chemical valence with an effective value [29, 34, 36–40]. A study using

the density functional based generalized pseudopotential theory [78, 79] shows that

the hybridization effect alters the integral value of the chemical valence to have an

effective non-integral value of Z. This effective value of Z lies in the range from

1.1 to 1.7 for transition metal elements. Even systems like Zn, Cd and Hg have

completely filled d-bands, but interestingly the number of these d-band electrons are

affected [43, 80, 81] via the so-called sd mixing, known as sd-hybridization. This

is the reason, why the IIB metals have been put in the transition series in some

cases. In the present work we do not consider sd-hybridization for the group IIB

metals Zn, Cd and Hg which are considered as divalent metals. The liquids Zn and

Cd have some anomalous surface properties that are characterized by the positive

temperature coefficient of surface tension. Moreover, at thermodynamic states around
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their respective triple point both l-Zn and l-Cd display the same type of “anomalous”

liquid state structure factor, S(q), namely, the main peak has an asymmetric shape

which gradually becomes more symmetric with increasing temperature. Among the

three systems Hg and Zn have the largest and smallest packing respectively whereas

that of Cd lies in between their values. On the other hand their resistivities (ρ)

follow a different order ρHg > ρZn > ρCd. The occurrence of considerable changes in

the physical properties of Hg, such as metal-non metal transitions, together with a

relatively low critical temperature and concerns about its toxicity, made it interesting

to study.

Several studies have already been carried out on bulk l-Zn, l-Cd and l-Hg by us-

ing either semiempirical or more fundamental approaches. Among the semiempirical

works, we highlight references [82,83] which are basically resorted to the hard spheres

(HS) model in order to analyze some structural and thermodynamical properties.

Thus, Umar and Young [82] used the HS model with a packing fraction calculated

within the framework of a variational theory to obtain a qualitative estimate of the

S(q) near melting. The HS model was also used by Ascarelli [83] to provide quali-

tative estimates of the isothermal compressibility and the velocity of sound of l-Zn,

l-Cd and l-Hg near their triple points. Subsequently, several elaborate studies have

been performed relying on more realistic descriptions of the interatomic interactions,

which have mostly been derived within the framework of the pseudopotential theory.

Thus, Jank and Hafner and coworkers [84, 85] have used the pseudopotential theory

in order to obtain effective interatomic potentials which were combined with either

liquid state theories [84] or with classical molecular dynamics (CMD) simulations [85]
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in order to calculate several static structural properties of l-Zn, l-Cd and l-Hg. Also

Lai et al. [86] have studied the “anomalous” S(q) of l-Zn and l-Cd near their triple

point and its variation with temperature; this was performed by using interatomic

potentials derived from non-local pseudopotentials along with several liquid state

theories. More recently, Belashchenko [87–89] has used the embedded atom model

(EAM) to obtain effective interatomic potentials which were used in conjunction with

CMD simulations to evaluate the static structure of l-Zn and l-Hg at several ther-

modynamic states. Calderin et al. [90–93] have performed KS-AIMD simulations for

l-Cd and l-Hg at thermodynamic states near their respective triple points. Both cal-

culations used 90 particles, the local density approximation (LDA) for the electronic

exchange correlation energy and ultrasoft non-local pseudopotentials [94]. Due to

the high computational demands of the KS-AIMD method only a few thousand of

configurations (5000 for l-Cd and 2200 for l-Hg) were generated. For both systems,

the calculated static structure compared well with the experiments. As for the dy-

namic structural magnitudes, comparison with experiment could only be carried out

for l-Hg (no experimental data are available for l-Cd yet) and the calculated dynamic

structure factors showed a fair agreement with experimental data. We have found, no

KS-AIMD type calculation carried out for l-Zn, so far. On the experimental side, we

mention that the static structure of l-Zn, l-Cd and l-Hg have already been measured,

at several temperatures, by both neutron scattering (NS) [95–97] and X-ray (XR)

diffraction [27, 96] methods. As for the dynamic properties only the microscopic dy-

namics of l-Hg has been studied by both inelastic neutron scattering (INS) [98–100]

and inelastic X-ray scattering (IXS) [101,102] techniques. Those measurements have
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unveiled the existence of propagating collective excitations along with an associated

mode velocity which suggests an important positive dispersion.

This dissertation is organized as follows: Chapter 1 is the introduction. Most

importantly we have tried to give an clear overview of the whole work in this chapter.

Since we mostly worked with transition metal elements, a brief introduction about

transition metals and their fundamental properties are given in Chapter 2. We also

have discussed how properties varies like crystal structure, electronic structure and

their relative position in periodic table.

Chapter 3 is devoted to explore and understand the molecular dynamics simu-

lation. Here we have presented a comprehensive description of ab initio molecular

dynamics simulation technique. Description of Car-Parrinello MD simulation along

with Verlet Leap-frog algorithm and periodic boundary conditions appear in this

Chapter as a natural consequence.

In Chapter 4 we have concentrated to discuss about the development of the neces-

sary theoretical background for first principle calculations. Starting from Schrödinger

equation we have discussed up to DFT, which is very essential for computational

purposes. All the necessary ingradients for OF-DFT are explained in this chapter

concisely. A brief description of KS-DFT, the local density approximation (LDA)

and the generalized gradient approximation (GGA) have also been presented here.

Chapter 5 describes the liquid state theories for equilibrium properties. Theoret-

ical description of all properties which are studied in this work also appear in this

Chapter.

Chapter 6 deals with elaborate discussion and analysis of the main results ob-
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tained. In this Chapter we have presented the results for static, single particle dy-

namics and collective dynamics in property-wise sequence.

Finally, a summary and concluding remarks of the whole work and future per-

spectives in research are outlined in Chapter 7.



Chapter 2

General Features of The Transition

Metals

The transition metals are found in the center of the modern periodic table (see figure

2.1). Many scientists [103–106] consider noble metals Cu, Ag, Au and divalent metals

Zn, Cd, Hg as elements of transition series even their d-bands are completely filled.

For these reasons, scientists of the present days use following prescription for the

definition of transition metals.

(i). Any element in the d-block of the period table, which includes groups IIIA

through IIB, i.e. all d-block elements are transition metals.

(ii). An element whose atom has an incomplete d sub-shell, or which can give rise

to cations with an incomplete d sub-shell is called a transition metal.

Therefore, the transition metals lie in the three well defined periods in the periodic

table. On the basis of the two definitions outlined above we may count 30 transi-
18
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tion metal elements from 3d, 4d and 5d series in total. The periods are generally

characterised as 3d, 4d and 5d series according to the filling of the 3d, 4d and 5d

bands. The transition metals belong to the first group are Sc, Y, and La, which have

the electronic configurations 1s22s22p63s23p63d14s2, 1s22s22p63s23p63d104s24p64d15s2

and 1s22s22p63s23p63d104s24p64d105s25p65d16s2, respectively. While the transition

metals of the last group are Zn, Cd and Hg whose electronic configurations are

1s22s22p63s23p63d104s2, 1s22s22p63s23p63d104s24p64d105s2 and 1s22s22p63s23p63d10

4s24p64d104f 145s25p65d106s2, respectively. The properties of transition metals largely

rely on the electronic configuration of the outer-most shell and next-to-outer most

shell.

The transition metals are interesting because they can have several oxidation

states, unlike the most other metals. This happens because the transition metals can

lose their d electrons in addition to their s electrons when forming ions. Elements

within the same group contained the same number of electrons in their outer shell. For

this reason, the elements lying in a same group shows the similar chemical behaviour.

Paramagnetism in the transition metal elements is caused due to the presence of

unpaired electrons in the d sub-orbital as a result a pronounced influence of a magnetic

field is observed.

Sometimes the IIB metals Zn, Cd and Hg are called post transition metals. But

still these divalent metals exhibit some of the characteristics of the transition elements.

The common properties of the transition metals are as follows

(i). They form coloured compounds apart from Sc and Zn. There are variations in

colour for compounds of the same valency and with different valency (oxidation)
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Table 2.1: Position of simple, less simple and transition metals in the periodic table and their electronic configurations.

71

103

70

102

69

101

68

100

67

99

66

98

65

97

64

96

63

95

62

94

61

93

60

92

59

91

58

90

[Xe]4f 
2
5d

0
6s2

Ce

[Rn]5f 
0
6d

2
7s2

Th

[Rn]5f 
2
6d

1
7s2

Pa

[Rn]5f 
3
6d

1
7s2

U

[Rn]5f 
4
6d

1
7s2

Np

[Rn]5f 
6
6d

0
7s2

Pu

[Rn]5f 
7
6d

0
7s2

Am

[Rn]5f 
7
6d

1
7s2

Cm

[Rn]5f 
8
6d

1
7s2

Bk

[Rn]5f 
10

6d
0
7s2

Cf 

[Rn]5f 
11

6d
0
7s2

Es

[Rn]5f 
12

6d
0
7s2

Fm

[Rn]5f 
13

6d
0
7s2

Md

[Rn]5f 
14

6d
0
7s2

No

[Rn]5f 
14

6d
1
7s2

Lr

[Xe]4f 
3
5d

0
6s2

Pr

[Xe]4f 
4
5d

0
6s2

Nd

[Xe]4f 
5
5d

0
6s2

Pm

[Xe]4f 
6
5d

0
6s2

Sm

[Xe]4f 
7
5d

0
6s2

Eu

[Xe]4f 
7
5d

1
6s2

Gd

[Xe]4f 
9
5d

0
6s2

Tb

[Xe]4f 
10

5d
0
6s2

Dy

[Xe]4f 
11

5d
0
6s2

Ho

[Xe]4f 
12

5d
0
6s2

Er

[Xe]4f 
13

5d
0
6s2

Tm

[Xe]4f 
14

5d
0
6s2

Yb

[Xe]4f 
14

5d
1
6s2

Lu

140.12

3,4

140.9077

3,4

232.0381

4

231.0359

5,4

144.24

3

(145)

3

238.029

6,5,4,3

237.0482

6,5,4,3

150.4

3,2

151.96

3,2

(244)

6,5,4,3

(243)

6,5,4,3

157.25

3

158.9254

3,4

(247)

3

(247)

4,3

162.50

3

164.9304

3

(251)

3

(252)

-

167.26

3

168.9342

3,2

(257)

-

(258)

-

173.04

3,2

174.967

3

(259)

-

(260)

-

Actinides

Lanthanides

[Xe]4f
14

5d
10

6s2 p6

Rn

36

54

86

2

10

18

He

1s2

[Ne]3s
2
p6

Ar

1s22s
2
p6

Ne

[Kr]4d
10

5s
2
p6

Xe

[Ar]3d
10

4s
2
p6

Kr

83.83

131.30

20.179

4.00260

39.948

(222)

35

53

85

9

17

[Ne]3s
2
p5

Cl

1s22s
2
p5

F

[Kr]4d
10

5s
2
p5

I

[Ar]3d
10

4s
2
p5

Br

[Xe]4f
14

5d
10

6s2 p5

At

79.904

1,5

126.9045

1,5,7

18.998403

-1

35.453

1,3,5,7

(210)

1,3,5,7+-

+-

+-

+-

34

52

84

8

16

[Ne]3s
2
p4

S

1s22s
2
p4

O

[Kr]4d
10

5s
2
p4

Te

[Ar]3d
10

4s
2
p4

Se

[Xe]4f
14

5d
10

6s2 p4

Po

78.96

-2,4,6

127.60

-2,4,6

(209)

4,2

15.9994

-2

32.06

2,4,6+-

33

51

83

7

15

[Ne]3s
2
p3

P

1s22s
2
p3

N

[Kr]4d
10

5s
2
p3

Sb

[Ar]3d
10

4s
2
p3

As

[Xe]4f
14

5d
10

6s2 p3

Bi

74.9216

3,5

121.75

3,5

208.9804

3,5

14.0067

3,5,4,2

30.97376

3,5,4

+-

+-

+-

+-

32

50

82

6

14

[Ne]3s
2
p2

Si

1s22s
2
p2

C

[Kr]4d
10

5s
2
p2

Sn

[Ar]3d
10

4s
2
p2

Ge

[Xe]4f
14

5d
10

6s2 p2

Pb

72.59

4

118.69

4,2

207.2

4,2

12.011

4,2

28.0855

4

+-

31

49

81

5

13

[Ne]3s
2
p1

Al

1s22s
2
p1

B

[Xe]4f
14

5d
10

6s2 p1

[Rn]5f
14

6d
10

7s2 p1

[Ar]3d
10

4s
2
p1

Ga

[Kr]4d
10

5s
2
p1

In

Tl

113

Uut

(282)

69.72

3

114.82

3

204.37

3,1

10.81

3

26.98154

3

IIIB IVB VB VIB VIIB

VIII

IIIA IVA VA VIA VIIA VIIIA IB IIB

PERIODIC TABLE OF THE ELEMENTS

30

48

80

[Ar]3d
10

4s2

[Kr]4d
10

5s2

[Xe]4f 
14

5d
10

6s2

Zn

Cd

Hg

112

[Rn]5f 
14

6d
10

7s2

Uub

(277)

65.38

2

112.41

2

200.59

2,1

29

47

79

[Ar]3d
10

4s1

[Kr]4d
10

5s1

[Xe]4f 
14

5d
10

6s1

Cu

Ag

Au

111

[Rn]5f 
14

6d
10

7s1

Rg

(272)

63.546

2,1

107.868

1

196.9665

3,1

28

46

78

[Ar]3d
8
4s2

[Kr]4d
10

5s0

[Xe]4f 
14

5d
9
6s1

Ni

Pd

Pt

110

[Rn]5f 
14

6d
9
6s1

Ds

(269)

58.70

2,3

106.4

2,4

195.09

2,4

27

45

77

[Ar]3d
7
4s2

[Kr]4d
8
5s1

[Xe]4f 
14

5d
7
6s2

Co

Rh

Ir

109

[Rn]5f 
14

6d
7
7s2

Mt

(266)

58.9332

2,3

102.9055

2,3,4

192.22

2,3,4,6

26

44

76

[Ar]3d
6
4s2

[Kr]4d
7
5s1

[Xe]4f 
14

5d
6
6s2

Fe

Ru

Os

108

[Rn]5f 
14

6d
6
7s2

Hs

(265)

55.847

2,3

101.07

2,3,4,6,8

190.2

2,3,4,6,8

25

43

75

[Ar]3d
5
4s2

[Kr]4d
5
5s2

[Xe]4f 
14

5d
5
6s2

Mn

Tc

Re

107

[Rn]5f 
14

6d
5
7s2

Bh

(262)

54.9380

7,6,4,2,3

(98)

7

186.207

7,6,4,2,-1

24

42

74

[Ar]3d
5
4s1

[Kr]4d
5
5s1

[Xe]4f 
14

5d
4
6s2

Cr

Mo

W

106

[Rn]5f 
14

6d
4
7s2

Sg

(263)

51.996

6,3,2

95.94

6,5,4,3,2

183.85

6,5,4,3,2

23

41

73

[Ar]3d
3
4s2

[Kr]4d
4
5s2

[Xe]4f 
14

5d
3
6s2

V

Nb

Ta

105

[Rn]5f 
14

6d
3
7s2

Db

(262)

50.9415

5,4,3,2

92.9064

5,3

180.9479

5

22

40

72

[Ar]3d
2
4s2

[Kr]4d
2
5s2

[Xe]4f 
14

5d
2
6s2

Ti

Zr

Hf 

47.90

4,3

91.22

4

178.49

4

104

[Rn]5f 
14

6d
2
7s2

Rf

(261)

21

39

57

89

[Ar]3d
1
4s2

[Kr]4d
1
5s2

[Xe]5d
1
6s2

[Rn]6d
1
7s2

Sc

Y

La

Ac

44.9559

3

88.9059

3

138.9055

3
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states.

(ii). They are good conductors of heat and electricity.

(iii). They can be hammered or bent into prefered shape easily.

(iv). They are less reactive than alkali metals such as sodium.

(v). They have high melting points and high densities.

High melting points and densities of transition metals suggest that the electrons

which enter the d-orbitals are being used to bind the atoms together in the crystal

lattice. But the divalent transition metals Zn, Cd and Hg are metals with low melting

points. This is due to their stable electron configuration. Hg is so poor to forming

metallic bonds that’s why it remains in liquid state at room temperature.

Transition metals are distinguished from simple metals due to their peculiar ther-

modynamic properties. The cohesive energy of the transition metals of incompletely

filled d-band is higher than that of the divalent transition metals Zn, Cd and Hg.

From the experimental evidence, it is seen that the cohesive energies, atomic vol-

umes, melting points, and bulk moduli roughly varies parabolically across the three

series [107]. The peculiar properties of the transition metals correspond to the strong

d-character in their valence states which arises from two factors [108]. These are

namely:

(i). Their orbits are fairly small, compared with the other (s,p) valence states of

comparable energy and the d-states are fairly localized; they are not strongly

purturbed by the lattice potential and can not overlap very strongly with the

atomic states of other atoms.
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(ii). Due to their parabolic increase with distance near the origin, the d-electrons

screen the nuclear charge within an atom badly.

nd(E)

nS(E)

E(ev)EF

S

d

0 1 2 3 4 5 6

Figure 2.1: Narrow d-bands and free electron like s-band contribution to the
density of level in transition metals [104].

The electronic structure of the d-band is exhibited in Figure 2.1. It is seen from the

figure that the band structure made up of five narrow bands crossing and hybridizing

with the nearly free electron’s band of pseudoplane waves [109] formed from atomic s

and p states. As the d-bands are narrower than the typical free electron conduction

bands and hold enough levels to accommodate ten electrons the density of levels

is substantially higher than that of free energy levels throughout the energy region

where the d-band lies. Since the specific heat is proportional to the density of states

at the Fermi energy, the effect of high density is seen in the electronic contribution
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to the specific heat at low temperature. It is to be mentioned that the Fermi level in

an incompletely filled d-band metals lie within the d-band.

For an incompletely filled d-band transition metals, there are more bonding states

than antibonding states occupied. The maximum effect occurs when all the bonding

states are occupied and all the antibonding states empty. This happens for the

metals in the middle of the transition series. This is the main source of the regular

variation of cohesion and related thermodynamic prperties with the filling of the d-

band, peaking to a maximum for the refractory metals in the middle of the transition

metal series [107].

The electrons in a metal move in a more or less constant potential from atomic

centre to centre, where it is then scattered in a way characteristic of the atom. The

point is that the scattering becomes strong and highly energy dependent, passing

through a resonance around the energy of the d-band. The scattering phase-shift

that stands in place of the resonance can be expressed by [109]

η2(E) ≃ tan−1
1
2
Γ

Ed − E
, (2.1)

where, Γ is the resonance width, which dominates the width of the d-band. The

atomic d-state energy is symbolized by Ed. Actually when a d-electron escape into a

plane wave of the same energy it has to pass through a barrier, which is the centrifugal

term l(l+1)
r2

, in the radial wave equation [110]. It is the classic situation of a virtual

bound state or a resonance of an incoming plane wave with the atomic d-state, which

leads to a resonance in the l = 2 phase shift. In Eqn.(2.1), Γ is related to the life

time ~

Γ
of the virtual bound state by the uncertanity principle. Therefore, the values

of Γ and Ed for various metals can be estimated from first principles calculations.
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The band width for the 3d series lies within 5 to 10 electron volts, which is slightly

larger for the 4d and 5d series. The knowledge about the nature of their short range

order is limited. For this reason, it is imposible to compute the density of states,

n(ε), accurately. But the bonding and antibonding limits are not much different from

those of close packed crystalline structures. As a consequence the thermodynamic

properties in the liquid state near melting follow similar trends in the solid phase

across the three transition metal series. Nonetheless the d-band widths of liquid

transition metals are smaller but of the same order of magnitude that found in the

crystalline solids [108].

Chromium (Cr) is an important trace element that humans require in very small

amounts. Cr is used in producing stainless steel and other alloys. Most stainless steel

contains about 18 percent chromium. Chromium in superalloys (high-performance al-

loys) permits jet engines to operate in a high-temperature, high-stress, chemically ox-

idizing environment. It is also extensively used for plating automobile trim, bumpers,

and other items to produce a hard beautiful surface and to prevent corrosion. This

metal is also widely used as a catalyst. The transition metal Cr is found as a ma-

jor element in several minerals. Chromium is used for improving blood sugar level

in human body with prediabetes, type-I and type-II diabetes, and high blood sugar

level caused due to intake of steroids. Some people may experience skin irritation,

headaches, dizziness, nausea, mood changes and impaired thinking, judgment, and

coordination etc. side effects due to taking Cr as supplements. High doses have been

linked to more serious side effects including blood disorders, liver or kidney damage,

and other problems. It has maximum number of unpaired d-electrons and therefore
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Cr is very hard. Soild Cr has face centered cubic (fcc) structure.

Another trace element important for human health is manganese (Mn). It is

necessary for the development of connective tissue, carbohydrate metabolism, calcium

absorption, blood sugar regulation, normal brain and nerve functioning. Manganese

is one of the component of antioxidant enzyme superoxide dismutase which neutralize

the free radicals which occurs naturally in the body and causes cell damage. It has bcc

structure in solid phase. Manganese has no alternate where it is needed, particularly

in metallurgical alloys [111] and very importantly also used in iron, steel, low-cost

stainless steel formulations [112].

A plentiful amount of elemental iron (Fe) found on earth’s crust. In solid phase it

has body centered cubic (bcc) structure. Iron is the fourth most abundant element in

the Earth. We are passing the age of iron. The use of iron in modern era is so versatile

due to its outstanding properties, it is almost impossible to tabulate its all uses and

importance. From a large number of different uses of iron, we will discuss here a few of

them as a representative one. Fe is needed for transporting oxygen and carbon dioxide

in the human body. Iron deficiency causes anemia in human body, i.e. one has to take

iron supplements for preventing and treating anemia. People often feel very tired due

to iron deficiency. Pure iron is quite soft and therefore it is rarely used in industry in

pure form. The iron alloys known to be steel are mostly used in industry. There are

27 grades of such steel. Steels are used for manufacturing automobile components,

machineries, tools and building structure. Corrosion resistance stainless steel are

made by alloying iron with carbon, chromium, silicon, molybdenum, nickel etc. are

used for manufacturing cutlery, cookware, hardware, surgical appliances, aerospace
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components and many more. The iron alloy with niobium is extremely strong and

therefore it is being used for constructing nuclear reactors container vessel.

The transition metal cobalt (Co) has the hexagonal closed packed (hcp) structure

in solid phase. It has several important uses in the form of alloys. Co alloys are used to

manufacture for aircraft engine parts and few other applications for corrosion or wear

resistant purposes. Cobalt salts are used to impart blue and green colors in glass and

ceramics industry. Cobalt is also widely used in batteries and in electroplating. After

nickel and chromium, cobalt is a major element causes of contact dermatitis [113].

The fcc structure metal nickel (Ni) is used as an ingredient in many industrial

and consumer products, including stainless steel and other metallic alloys, coins,

rechargeable batteries, and electroplating. Nickel is an important trace element in

ultramafic and mafic rocks. A small quantity of nickel is essential for human body,

but when the uptake level is too high it could be harmful for human body.

The major uses of divalent hcp transition metal zinc (Zn) are namely electroplat-

ing, metallic alloys, pigment in paint, agricultural fertilizers, pesticides and galvanized

roofing material and all. It is known as an essential trace element which is important

for immune system and also for the brain. Zinc is necessary for natural growth and

proper maintenance of the human body. Several studies show that Zn has a relation

with eye vision because high level of this mineral is found in macula, the part of the

retina. Zinc deficiency can alter vision, the retina shape, retardation of child growth,

infection susceptibility, diarrhea and all. Zinc might also have effects against viruses.

In addition, there is some evidence that zinc has some antiviral activity against the

herpes virus.
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The divalent transition metal cadmium (Cd) is primarily used in Ni-Cd batteries,

metallic alloys, electroplating, pigment in paint, and electronic components. The

crystal structure of Cd is hcp.

Palladium (Pd) is a very important material both for technologically and for vari-

ous scientific purposes. Palladium is a monomorphic metal, with fcc structure. Palla-

dium, like all of the platinum group noble elements, has comparatively low electrical

resistivity and high temperature coefficent of resistance. Both of these characteristics

are extremely sensitive to metal purity [114]. Palladium is an important transition

metal because of its wide usage in medicine, nano-technology, electronic, semicon-

ductor, energy and chemical technologies, plating and jewllery, automotive, surgical

instruments and space industry.

Platinum (Pt) is the least reactive metal with a fcc structure. It has remarkable

corrosion resistance, even at high temperatures, and is therefore considered a noble

metal. Platinum is used in catalytic converters, laboratory equipment, electrical

contacts and electrodes, platinum resistance thermometers, dentistry equipment, and

jewellery.

The divalent metal mercury (Hg) is used in thermometers and other scientific

apparatus, amalgam for dental restoration, Hg vapor lamps, cosmetics, and liquid

mirror telescopes. It has rhombohedral lattice structure in solid phase. Historically,

Hg has been widely used in gold mining operations. Mercury has no positive role in

the human body.

From the above discussions, it is clear that some of the transition metals under

study are very useful for us such as Fe, Mn, Zn, Pt, Co, Ni and Cr. Some other
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transition metals like Pd, Cd and Hg under study may causes serious harm on us.

So they are key elements in life and evolution. We can conclude that the transition

metals have great impact on us due to their versatile applications both in industry

and medical purposes. It, therefore draws our attention to study their properties

elaborately. A summary of the physical properties of the transition metals under

study are presented in Table 2.2.

Table 2.2: Molar mass (g mol−1), melting temperature (K), electronic configuration
and crystal structure.

Systems
Molar

mass

Melting

temperature

Electronic

configuration
Crystal structure

Cr 051.9960 2180.00 [Ar]3d54s1 bcc

Mn 054.9380 1519.00 [Ar]3d54s2 bcc

Fe 055.8450 1811.00 [Ar]3d64s2 bcc

Co 058.9332 1768.00 [Ar]3d74s2 hcp

Ni 058.7000 1782.00 [Ar]3d84s2 fcc

Pd 106.4000 1828.05 [Kr]4d105s0 fcc

Pt 195.0900 2041.40 [Xe]5d96s1 fcc

Zn 065.3800 0692.68 [Ar]3d104s2 hcp

Cd 112.4100 0594.22 [Kr]4d105s2 hcp

Hg 200.5900 0234.32 [Xe]5d106s2 rhombohedral
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Molecular Dynamics Simulation

Method

3.1 Computer Simulation

Simulation can mimic real situation like experiment of a system by using a com-

puter, so it is known as computer experiment. Computer simulation is an established

tool and an effective way to study the deeper insight behaviour of complex systems.

Besides, simulation can be performed in such situation where experiments are quite

difficult, expensive and risky. In this modern days, both Monte Carlo (MC) and

molecular dynamics (MD) methods are widely used to study the properties of mate-

rials, device fabrication and designing new functional materials. In the present case

our main focus is on MD simulations. The core of the molecular dynamics simulation

is to solve the Newtonian equations of motion for the system with a limited number

of particles. MD method allows us to study the materials in molecular scale. The key

29



Chapter 3: Molecular Dynamics Simulation Method 30

idea here is to see how the positions, velocities and orientatios of particles of the sys-

tem change with time by solving the Newton’s equations of motion of the molecules.

For classical systems

Fi(t) =Mi

d2Ri

dt2
, i = 1, 2, . . . , N, (3.1)

where Fi denotes the force on the i-th particle caused by the other N -1 particles,

Mi is the mass and Ri is the position of the i-th particle. In effect, molecular dy-

namics constitutes a motion picture that follows molecules as they moving to and

fro, twisting, turning, colliding with one another. At first, a system of N particles

is given an initial condition, that is, the coordinates and momenta of each particle.

Then at each time step the equations of motion are used to calculate the coordinates

and momenta of each particle for the next sequence. In this way, the system evolves

dynamically in time and then we can take the time average of phase variables. MD

simulation can be used to obtain time-dependent properties of the system as it follows

the time evolution. MD method allows us to study both equilibrium thermodynam-

ics and dynamical properties of a system at finite temperature. The output of any

such simulation is simply the positions and velocities of the particles of the system

in ‘equilibrium’, that is, at every time step of the simulation. By using these infor-

mation, many physically interesting properties can be evaluated. The accuracy of a

MD calculation largely depends on the method by which the forces are calculated. In

the current work we have used ab initio molecular dynamics simulations which will

be described in brief in the next coming section.
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3.1.1 Ab initio Molecular Dynamics Simulation

An ab initio molecular dynamics simulation method uses force obtained from elec-

tronic structure theory using typically at the density functional level of theory in

order to evolve the dynamics of the system in time. On the other hand, classical

molecular dynamics (CMD) uses force obtained from (semi) empirical force fields.

Ab initio is a latin term and litterally means “from the beginning”. A calculation is

said to be an ab initio or first principles if it depends on microscopic and establised

laws of nature without any additional assumptions or special models. The simulation

method that combines classical molecular dynamics of nuclei with electronic structure

theory is called ab initio molecular dynamics (AIMD). AIMD is a rapidly evolving

and growing technique that constitutes one of the most important theoretical tools

developed in the last couple of decades. In an AIMD calculation, finite-temperature

dynamical trajectories are generated by using forces obtained directly from electronic

structure calculations performed “on the fly” as the simulation proceeds. Thus, AIMD

permits the breaking and forming the chemical bond to occur and accounts for elec-

tronic polarization effects [115, 116]. AIMD has been successfully applied to a wide

variety of physically significant problems in Physics and Chemistry and, recently, it

is being also used to study the problem related to the biological systems as well.

In numerous studies, new physical phenomena have been revealed and microscopic

mechanisms elucidated that could not have been uncovered yet by using empirical

methods. Therefore, it leads to the new interpretations of experimental data and

in some cases even suggesting new experiments to perform. In its most ideal form,

an AIMD calculation assumes only that the system is composed of M nuclei and N
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electrons, that the Born-Oppenheimer approximation is valid, and the dynamics of

the nuclei can be treated classically on the ground state electronic surface [117]. We

have performed ab initio MD simulation in the present work within the scope of the

famous Car-Parrinello approach.

3.1.2 The Car-Parrinello Method

The Car-Parrinello method is often referred to as an ab initio molecular dynamics

because it does not require an interatomic potential to be supplied as an input. In-

stead, it calculates the forces and potential directly from the electronic structure as

the simulation proceeds. This method stands out as a new and more efficient method

for calculating the properties of materials. To surve this purpose the electronic equa-

tions are solved by employing appropriate boundary conditions, planewave basis sets

and also from the approach of density functional theory (DFT). The Car-Parrinello

method can also be used in the orbital free (OF) version of the density functional the-

ory [118]. The approach by Car-Parrinello [119,120] combines MD and DFT into one

unified algorithm for the electronic states, self-consistency and nuclear movement. In

this method of proceeding, nuclear and electronic dynamics are considered together

so that the ionic and electronic degrees of freedom are relaxed simultaneously. On

the whole, there are four apparent advances of the Car-Parrinello method used in the

electronic structure calculation. These are as follows [121]:

(i) Optimization methods instead of variational equations.

(ii) Equations of motion instead of matrix diagonalization.
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(iii) Fast Fourier transforms (FFT) instead of matrix operations.

(iv) A trace of occupied subspace instead of eigenvector operation.

It is to be noted that the AIMD method with an orbital free density functional

theory (OF-DFT) approach, the total energy is a functional of charge density only.

So we may also apply the Car-Parrinello technique for this energy functional [118].

The pseudo-Lagrangian for OF-DFT approach can be defined as

LCP = Te + Tn −E[ρ, {Ri}] + µ
(

∫

ρ dr−N
)

, (3.2)

where, N is the total number of the electrons, Ri denote the coordinates of the i-th

nucleus and E[ρ, {Ri}] is the total potential energy of a system [see Eqn. (4.61)].

The first term representing the fictitious kinetic energy associated with the electronic

degrees of freedom defined as

Te =
1

2
Me

∫

ψ̇2dr, (3.3)

where ψ̇ = dψ

dt
and ρ = | ψ |2, and the fictitious mass Me appears as a parameter

in the model of classical motion of charge density which is analogous to the orbital

motion of electrons. The fictitious mass of the electrons must be small enough to

keep the trajectory adiabatic, avoiding the transfer of energy from the ionic to the

electronic degrees of freedom. This also requires that the time step is smaller than

the usual values used in other MD methods. The second term in the Lagrangian is

the kinetic energy of nuclei

Tn =
1

2

∑

i

Mi| Ṙi |
2
, (3.4)
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where, Mi is the mass of the i-th nucleus and the dot denotes time derivative. The

third term in Eqn. (3.2) is the total electronic energy of the combined system of elec-

trons and ions. The above Lagrangian leads to the following Car-Parrinello equations

of motion

MiR̈i(t) = −∇Ri
Eg (3.5)

Meψ̈(r, t) = − ∂Eg
∂ψ(r, t)

+ µψ(r, t), (3.6)

for both classical ionic degrees of freedom, {Ri} and electronic degrees of freedom,

ψ(r, t) respectively, subject to the constraint

∫

| ψ |2 dr = N, (3.7)

and Eg is the ground state energy of the system. The force on the i-th ion is given

by

Fi = −∇Ri
Eg (3.8)

and so Eqn. (3.5) becomes

Fi(t) =MiR̈i(t) (3.9)

In Eqn. (3.9), the force on the i-th ion at time t, Fi(t), depends on the positions of

all of the other ions of the system at that time. After specifying the initial positions

and velocities of each of the N particles, the basic MD procedure follows, for which

it repeats for the desired number of iterations according to the following steps:

(i) The force on each particle is calculated according to Eqn. (3.8).

(ii) The positions of the particles of the system are updated gradually in time

according to Eqn. (3.9).
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To solve the integration involved in step (ii) we have used the Verlet Leap-frog algo-

rithm with time step ∆t for each atomic movement. Similarly, the motion of electronic

degrees of freedom Eqn. (3.6) is sloved numerically using the Verlet Leap-frog algo-

rithm with electronic time step ∆te. The choice of a time step ∆t is also important.

Large time step causes atoms to move too far along a given trajectory, which yields

a poor simulation of the motion. For a time step that is too small requires more

iterations, thus taking longer time to run the simulation. Therefore, the time step

should be one order of magnitude less than the time scale of the vibrational period

or the time between collisions. This gives time step on the order of femtoseconds

for simulating a liquid of rigid molecules and tenths of a femtosecond for simulating

vibrating molecules [122].

The time steps for evolving the ionic and electronic positions are not similar in

evey detail. The time step ∆te and the fake mass Me should be chosen carefully such

that the dynamics of electrons remains adiabatic. This means that the system should

remain in its electronic ground state during the motion. The small fictitious mass Me

in turn requires that the electronic equations of motion are integrated using a smaller

time step ∆te than one which uses 1-10 fs in common practice for classical molecular

dynamics [123].

3.1.3 The Verlet Leap-frog Algorithm

It is obvious that an efficient molecular dynamics program requires a good algorithm

to integrate Newton’s equations of motion. In the present work we have used the

Verlet Leap-frog algorithm [124] to integrate Newton’s equations of motion for ions
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and electrons. The Verlet Leap-frog algorithm is a modified version of the orginal

Verlet algorithm for use in molecular dynamics simulations. The Verlet algorithm

uses the positions and forces at the time t and the positions at the time t − ∆t to

predict the positions at the time t + ∆t, where ∆t is the integration time step in

molecular dynamics scheme. The Verlet algorithm is a combination of two Taylor

expansions. Using Taylor expansion for position from time t forward to t + ∆t and

backward to t−∆t up to the 3rd order, one obtains

Ri(t+∆t) = 2Ri(t)−Ri(t−∆t) +
Fi(t)

Mi

∆t2 +O(∆t4). (3.10)

The estimate of the new ionic positions contain an error that is of the order ∆t4. The

velocities are obtained from the basic definition of differentiation

vi(t) =
Ri(t+∆t)−Ri(t−∆t)

2∆t
, (3.11)

and this expression for the velocity is only accurate to order of ∆t2. The Verlet

Leap-frog algorithm is used the velocities at half time step defined as

vi(t+
∆t

2
) =

Fi(t)

Mi

∆t+ vi(t−
∆t

2
), (3.12)

to obtain more accurate velocities. Then, the velocities at time t can be also computed

from

vi(t) =
vi(t+

∆t
2
) + vi(t− ∆t

2
)

2
, (3.13)

where the ionic positions are then obtained from

Ri(t+∆t) = Ri(t) + vi(t +
∆t

2
)∆t (3.14)

Schematically, the Verlet Leap-frog algorithm can be shown as:
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(1). Given current position, Ri(t) and velocity at last half-step, vi(t− ∆t
2
).

t

F

Ri (t)

t - ∆t t + ∆t

Vi (t-     )
∆t
2V

R

(2). Compute current force, Fi(t) via the Hellman-Feynman theorem Fi = −∇Ri
Eg.

t

F

t - ∆t t + ∆t

Vi (t-     )
∆t
2V

R Ri (t)

Fi (t)

(3). Compute velocity at next half-step, vi(t + ∆t
2
) via Eqn. (3.12) using current

force, Fi(t) and velocity at last half-step, vi(t− ∆t
2
).

t

F

t - ∆t t + ∆t

Vi (t +     )∆t
2V

R Ri (t)

Fi (t)
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(4). Compute next position, Ri(t+∆t) via Eqn. (3.14) using current position, Ri(t)

and velocity at next half-step, vi(t+ ∆t
2
).

t

F

t - ∆t t + ∆t

Ri (t +     )∆t
2

Vi (t +     )∆t
2

V

R

Fi (t)

(5). Advance to next time step, repeat.

t

F

t - ∆tt - 2 ∆t t + ∆t

V

R

3.1.4 Periodic Boundary Conditions

Periodic boundary conditions (PBC) are a set of boundary conditions. The N parti-

cles (atoms, molecules or ions) may be confined by a cubical container, which prevents

them from drifting apart. But these arrangements are not good for the simulation

of bulk liquids, due to artificial surface effects. During such a simulation the large

fraction of molecules lie on the surface of the cube containing these particles. Parti-

cles on the surface will have different behaviour from particles in the bulk. Periodic
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Figure 3.1: Schematic diagram of periodic boundary conditions used in computer
experiments [125].

boundary conditions are commonly used in molecular dynamics simulations to ignor

problems of such artificial surface effects from the computation for all system sizes.

The original simulation cubic box, with the states of all the particles within it, is

replicated throughout the whole of space. The simulation box and the replicated

boxes together form an infinite lattice. The basic idea behind the PBC is that when a

particle moves in the original box, its periodic images in the neighbouring boxes move

in the same fashion. When a particle leaves the central box, one of its images will en-

ter through the opposite face with exactly the same velocity, since there are no walls

at the boundaries of the central box and no surface particles. For this reason, the

number of particles in the central box (and hence in the entire system) is conserved.

A two-dimensional version of such a periodic system is shown in Figure 3.1. For
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normal liquids, the interaction potential is relatively short range in MD simulations.

For example, such case the Lennard-Jones potential is often used in the case of CMD.

This means that the only significant contributions to the force on any given particle

come from particles in its immediate vicinity. Accordingly, MD simulations often use

the “minimum image convention” with periodic boundary conditions. The minimum

image convention states that each atom in the system interacts with the neraest atom

or image in the periodic array. An alternative is to employ a cut-off radius, which is

typically taken to be considerably smaller than L
2

(the maximum radius of a sphere

that can be packed into the cubic box) where L stands for the side of the cube. For

long range potentials, these methods are likely to introduce serious errors in the force

calculation, and therefore in the resulting trajectories of the particles. Instead, one

must include the force contributions from all particles in the main simulation box as

well as from all the particles in every periodic replica (i.e., from an infinite number of

particles). In reality, this is very challenging task to handle it in computer simulation

of particles; thus it is accomplished by the famous Ewald summation [126, 127].



Chapter 4

Theoretical Background

4.1 Electronic Structure Theory

Most physical and chemical properties of a material are determined by the electronic

structure, especially the structure of the outermost shell. Therefore study of the

electronic structure of materials is an important part of research in material science.

The basic idea behind the electronic structure theory is that we fix the ions at speci-

fied locations and generally this is done within the context of the Born-Oppenheimer

approximation. Then we deal with the Hamiltonian of electronic motions and find

all the eigenfunctions of that Hamiltonian eventually we get the eigenvalues which

are the energy of the corresponding eigenstates. As the electronic structure the-

ory is very broad and versatile so in this Chapter we will focus only on the theory,

methods and implementations of electronic structure theory related to us. Density

functional theory (DFT) is often reconized as the cornerstone for studying electronic

structure of many-body system. DFT provides us an approximate way to solve the

41
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Schrödinger equation of many-body system. The present simulation is performed us-

ing the Hohenberg-Kohn (HK) version of density functional theory [3], using the local

density approximation [13] to exchange correlation energy and, the external potential

of a system created by ions is approximated by the local model pseudopotential [17].

The kinetic energy (KE) functional is the most important ingredient of HK version of

DFT, and a reliable KE functional is used in the present work to approximate it [15].

4.1.1 Schrödinger’s Equation

The Schrödinger equation (SE) is the primitive equation associated with quantum me-

chanics for describing the electronic structure of matter in condensed matter physics.

It is also commonly known as the Schrödinger wave equation, and is a partial differ-

ential equation that describes how the wavefunction of a physical system evolves over

time. Based on the de Broglie hypothesis, in 1926, Erwin Schrödinger constructed an

equation for describing the so-called wave behavior of matter, for example, the elec-

tron. The equation was later named Schrödinger equation and the complete form of

the famous equation is known to be the time-dependent Schrödinger equation [128].

It can be written for N particles as

i~
∂

∂t
Ψ({ri}, t) = ĤΨ({ri}, t) (4.1)

where ri represents the position coordinate of i-th particle and Ĥ is the Hamiltonian

defined as

Ĥ = −~
2

2

N
∑

i=1

1

mi

∇2
i + V (r1, r2, . . . , rN , t). (4.2)
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If the Hamiltonian itself has no time-dependency the SE becomes

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN) (4.3)

with the Hamiltonian Ĥ equal to

Ĥ = −~
2

2

N
∑

i=1

∇i
2

mi

+ V (r1, r2, . . . , rN) (4.4)

and E is the total energy of the system.

4.1.2 The wave Function

The wave function is a mysterious function that lies at the heart of quantum me-

chanics. The wave function in quantum mechanics contains all information of a given

system. The time-independent wave function is considered owing to simplicity. A

question always arising with physical quantities is about its possible interpretations

as well as observations. But the wave function itself has no physical interpretation.

It is not a physically observable quantity; that is, the wavefunction is purely a math-

ematical fashion. The Born probability interpretation of the wave function provides

a physical meaning of wave function. The square of the wave function multiplied by

volume elements gives the probability [129, 130] as

P = | Ψ(r1, r2, . . . , rN) |2dr1dr2 . . . drN . (4.5)

Eqn. (4.5) describes the probability that particles 1,2,. . . ,N are located simultane-

ously in the corresponding volume element dr1dr2 . . . drN [131]. All particles must be

found somewhere in space so it follows that

∫

dr1

∫

dr2 . . .

∫

drN | Ψ(r1, r2, . . . , rN) |2 = 1, (4.6)
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which is generally known as the normalization condition for the wave function. The

Eqn. (4.6) also gives insight on the requirement that a wave function must fulfill in

order to be physically acceptable. The wave function must be continuous over the

full spatial range and square-integratable [132]. Another important property of the

wave function is that, calculation of the expectation values of operators with a wave

function provides the expectation value of the corresponding observable for that wave

function [133]. For an observable A(r1, r2, . . . , rN), one can generally be written as

A =
〈

Â
〉

=

∫

dr1

∫

dr2 . . .

∫

drNΨ
∗(r1, r2, . . . , rN)ÂΨ(r1, r2, . . . , rN). (4.7)

4.1.3 The Electron Density

In an electronic system, the number of elctrons per unit volume in a given state is

the electron density for that state. If the spin coordinates are neglected, the electron

density ρ(r) can be expressed as measurable observable

ρ(r) = N

∫

dr2 . . .

∫

drNΨ
∗(r1, r2, . . . , rN)Ψ(r1, r2, . . . , rN), (4.8)

which only depends on spatial coordinates [3,134]. The density ρ(r) can be measured

by X-ray diffraction [135]. When quantum-mechanical effects are significant, the

electron density ρ(r) gives the probability of finding any electron within the volume

element dr from the total N number of electrons. Some fundamental properties of

the electron density are as follows:

(i.) ρ(r) → 0 as r → ∞.

(ii.) Integration of the density gives the total number of electrons,
∫

ρ(r)dr=N .



Chapter 4: Theoretical Background 45

Note that the density ρ(r) is a function and has only 3 degrees of freedom. Before

presenting an approach using the electron density as variable, it has to be ensured

that it truly contains all necessary informations about the system. That means it has

to contain information about the total number of electrons, N as well as the external

potential characterized by Vext [135]. The total number of electrons can be obtained

by integration of the electron density over the spatial coordinates [135]

N =

∫

ρ(r)dr. (4.9)

The external potential is characterized uniquely by the ground state electron density.

The term uniquely means up to an additive constant as proved by the first Hohenberg

and Kohn (HK) theorem. This proof will be discussed in the forthcoming subsection

4.2.2.

4.1.4 The Hamiltonian of a Molecular System

The starting point of a quantum theory of materials is the Hamiltonian of the many

body system. The complete Hamiltonian for a system composed of N electrons and

M neclei in atomic units (i.e. me=~=e=1) is given by

Ĥne( r,R ) =

N
∑

i=1

−1

2
∇2
i −

M
∑

I=1

1

2MI

∇2
I +

N
∑

i=1

M
∑

I=1

−ZI
| ri −RI |

+

N
∑

i=1

N
∑

i<j

1

| ri − rj |

+

M
∑

I=1

M
∑

J>I

ZIZJ
| RI −RJ |

= T̂e + T̂n + V̂ne + V̂ee + V̂nn, (4.10)

where, the indices I, J run over the M nuclei, whereas i and j run over the N

electrons, MI and ZI are the mass and charge of the I-th nucleus, respectively. In
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the above equation RI is the position of the I-th nucleus and ri is the position of the

i-th electron. In Eqn. (4.10), the first two terms describe the kinetic energy operators

for the electrons and the nuclei, respectively. The latter three terms represent the

electron-nucleus, electron-electron and nuclei-nuclei interaction potential operators,

respectively.

4.1.5 The Born-Oppenheimer Approximation

The very complicated Schrödinger equation for a molecule is simplified with the help

of the Born-Oppenheimer (BO) approximation. This approximation was proposed

in 1927, in the early period of quantum mechanics, by Max Born and J. Robert

Oppenheimer [136] and is still indispensable in quantum chemistry and molecular

physics. In quantum chemistry and molecular physics, the BO approximation is

the assumption that the motion of atomic nuclei and electrons in a system can be

separated. The very essential ingredient of the BO appproximation comes from the

fact that the mass of an atomic nucleus in a system is much larger than the mass

of an electron. This means that there must be a large difference in speed between

them. Therefore it is logical to assume that the nuclei are nearly fixed with respect to

electron motion. Consequently, the nuclear kinetic energy is zero and their potential

energy is merely a constant. This is called the BO approximation. Thus, the complete

Hamiltonian Ĥne is replaced by the so-called the electronic Hamiltonian

Ĥ( r ;R ) =
N
∑

i=1

−1

2
∇2
i +

N
∑

i=1

M
∑

I=1

−ZI
| ri −RI |

+
N
∑

i=1

N
∑

i<j

1

| ri − rj |

= T̂e + V̂ne + V̂ee. (4.11)

Any problem in the electronic structure of matter is covered by Schrödinger’s
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equation including the time. In most cases, however, one is concerned with atoms

and molecules without time-dependent interactions [137]. Hence, for now only the

electronic time-independent Schrödinger equation is of our interest. The nuclear

degrees of freedom (e.g., the crystal lattice in a solid) appear only in the form of a

potential V (r) acting on the electrons, so that the wave function depends only on the

electronic coordinates [133]. The solution of the Schrödinger equation

ĤΨ = EeΨ (4.12)

with electronic Hamiltonian is the electronic wave function Ψ = Ψ(r1, r2, . . . , rN ;R)

and the electronic energy Ee, where R is the ionic coordinates. The total energy E

for some fixed configurations of the nuclei is then the sum of Ee and the constant

nuclear repulsion term

EII =
M
∑

I=1

M
∑

J>I

ZIZJ
| RI −RJ |

leading to

E = Ee + EII . (4.13)

In general, under the Born-Oppenheimer approximation the electronic structure

problem reduces difficulties to solving Eqn. (4.12) and the total energies are obtained

by solving Eqn. (4.12) and Eqn. (4.13). However, one should keep in mind that the

Born-Oppenheimer approximation is certainly not valid universally. It is established

that the Born- Oppenheimer approximation will break down when there are multiple

potential energy surfaces close to each other in energy or crossing each other [138]. The

major difficulty in solving Eqn. (4.12) is the interaction between electrons, where all

the many-body quantum effects are hidden. Many approximate methods have been
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developed to solve Schrödinger or Schrödinger-like equations by mapping the N -

electron Schrödinger equation into effective one-electron Schrödinger-like equations,

which are easier to tackle computationally. In the present work, density functional

theory (DFT) is used to approximate the ground state energy of Eqn. (4.12), where

the electron density is the key quantity.

4.1.6 Hellmann-Feynman Theorem

The calculation of the forces acting on the ions are performed in the present work via

the Hellman-Feynman theorem. The Hellmann-Feynman theorem is a powerful and

popular method to efficiently calculate forces in a variety of dynamical processes. Let

us consider a many-body system with electronic Hamiltonian Ĥ(r;R). The general

form of the force on I-th atom, FI is the negative gradient of the total electronic

energy with respect to atomic position RI . Mathematically this can be written as

FI = − ∂E

∂RI

, (4.14)

where, E = 〈Ψ | Ĥ | Ψ〉+ EII . Then, the force can be written as

FI = − ∂E

∂RI

= −
〈

Ψ | ∂Ĥ
∂RI

| Ψ
〉

−
〈 ∂Ψ

∂RI

| Ĥ | Ψ
〉

−
〈

Ψ | Ĥ | ∂Ψ
∂RI

〉

− ∂EII
∂RI

. (4.15)

The 2nd and 3rd terms of the above equation vanish due to the variational principle

and then one finds

FI = −
〈

Ψ | ∂Ĥ
∂RI

| Ψ
〉

− ∂EII
∂RI

. (4.16)

This is often called the Hellmann-Feynman theorem or the force theorem [139, 140].

Further it is possible to show that FI only depends on the electron density and the
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positions of the nuclei

FI = −
∫

drρ(r)
∂Vext(r)

∂RI

− ∂EII
∂RI

. (4.17)

4.1.7 Bloch’s Theorem

The most common example of Bloch’s theorem is describing electrons in a crystal.

The ions in a perfect crystal are arranged in a regular periodic way (at 0K). The

requirement needed for the use of Bloch’s theorem is that, the external potential felt

by the electrons will also be periodic; the period being the same as the length of the

cell, L. Plane wave basis sets have become the natural choice for the treatment of

periodic systems, like solids, because of Bloch’s theorem. Bloch’s theorem states that

the wave function of an electron within a perfectly periodic potential can be written

in the following form

ψn,k(r) = eik.run,k(r), (4.18)

where, un,k(r) is a function that possesses the periodicity as the potential of the one-

electron Hamiltonian, i.e. un,k(r + R) = un,k(r), where R is Bravais lattice vector.

For a cell in computer simulation R = L, where L is the size of cell. In Eqn. (4.18),

n is the band index and k is a wavevector confined in the first Brillouin Zone. Since

un,k(r) is a periodic function, we may expand it with plane waves in terms of a Fourier

series

un,k(r) =
∑

G

Cn,G e
iG.r, (4.19)

where, the G are reciprocal lattice vectors defined through G.R= 2πm, where m is

an integer and the Cn,G are plane wave expansion coefficients. The electron wave-
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functions may therefore be written as

ψn,k(r) =
∑

G

Cn,k+G e
i(k+G).r, (4.20)

which is a linear combination of plane waves.

4.2 Density Functional Theory

Density functional theory (DFT) is a theory of electronic structure and the name

DFT arises due to the use of functionals (i.e. function of another function) of the

electron density. The DFT scheme is based on functionals of the electron density (for

N electrons) defined as Eqn. (4.8) instead of the many-body wave function Ψ({r}).

For this reason, the electron density is the basic variable in DFT to describe the

quantum many electrons system. DFT is an alternative way to solve the Schrödinger

equation of a many-electron system to calculate the ground state electronic density

and energy. For this reason, DFT is known as the ground-state theory and it is

also called “a first principles theory”. The DFT is a variational method which is

at present the most promising and successful approach to compute the electronic

structure of matter. Its applicability ranges from atoms, molecules and solids to

nuclei and quantum and classical fluids. DFT is also popular due to its balance

between accuracy and computational cost. As the density is a function of R3, the

DFT is computationally very simple and readily be applied to much larger systems,

containing hundreds or even thosands of atoms. For these reasons DFT has become

one of the most powerful tools in first-principles calculations aimed at describing

or even predicting properties of molecular and condensed matter systems [137]. The
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most two popular versions of the density functional theories are Kohn and Sham (KS)

DFT and Hohenberg and Kohn (HK)DFT, which is also known as the orbital free

(OF) DFT. DFT expresses the ground state energy for any system as a functional of

its electron desity ρ(r) as Eg = E[ρ(r)]. The density functional theory by Hohenberg

and Kohn (HK) [3] has brought about a satisfactory progress in material science from

a theoretical point of view. They have proved that the total energy of a system

can be expressed in terms of a functional of the electron charge density. Starting

from the HK theory, Kohn and Sham [4] (KS) have derived an expression for the

total energy of a system, which is known as KS-DFT. In the KS-DFT, the kinetic

energy of the electrons is calculated by solving one-particle like Schrödinger equations

which are called KS equation. By incorporating the many particle interaction terms

into the exchange correlation energy, Exc they have represented the kinetic energy

as that of non-interacting particles. The Exc is defined as the difference between the

exact expectation value of the kinetic energy and electron-electron interaction and

the expectation value of the kinetic energy Ts and Hartree energy EH of the auxiliary

system (KS model). They also used the local density approximation for Exc, which

is based on the homogeneous electron gas. In KS theory, the exchange correlation

potential energy is locally approximated by that of homogeneous electron gas, and

they are expressed only in the functional of electron charge density. In KS-DFT, the

KE term can be approximated in terms of electron density instead of KS orbitals

which is the so-called OF-DFT method. The OF-DFT method is the main focus of

the present work. The details of the KS-DFT and OF-DFT methods will be dicussed

in the section 4.5.



Chapter 4: Theoretical Background 52

4.2.1 Thomas-Fermi Model

For the first time the Thomas-Fermi (TF) model gives an explicit expression for

energy functional and developed independently by Thomas [14] and Fermi [141]. In

TF model, the kinetic energy of the electrons is derived from the quantum statistical

theory based on the uniform free electron gas, but the electron-nucleus and electron-

electron interactions are treated classically. In TF model, the kinetic energy functional

has the form

TTF [ρ(r)] =
3

10

(

3π2
)

2

3

∫

ρ
5

3 (r)dr. (4.21)

The energy formula for an atom is finally obtained using the classical expression for

the electron-nucleus potential and the electron-electron potential in terms of electron

density alone

ETF [ρ] =
3

10

(

3π2
)

2

3

∫

ρ
5

3 (r)dr− Z

∫

ρ(r)

r
dr+

1

2

∫ ∫

ρ(r1)ρ(r2)

| r1 − r2 |
dr1dr2. (4.22)

This is the energy functional of the Thomas-Fermi theory of atoms. In order to

determine the correct density to be included in the above equation, they employed a

variational principle. They assumed that the ground state of the system is connected

to ρ(r) for which the energy ETF is minimized under the constraint

∫

ρ(r)dr = N, (4.23)

where, N is the total number of electrons in the atom. Then the ground state electron

density must satisfy the variational principle

δ
{

ETF [ρ]− µTF
(

∫

ρ(r)dr−N
)}

= 0, (4.24)
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which yields the chemical potential

µTF =
δETF [ρ]

δρ(r)
=

1

2

(

3π2
)

2

3ρ
2

3 (r)− φ(r), (4.25)

where φ(r) is the electrostatic potential at point r due to the nucleus and the entire

electron distribution

φ(r) =
Z

r
−

∫

dr2
ρ(r2)

| r− r2 |
. (4.26)

Eqn. (4.25) can be solved in conjunction with the constraint (4.23), and the resulting

electron density then inserted in Eqn. (4.22) to yield the total energy. This is the

Thomas-Fermi theory of the atom, an exquisitely simple model [137]. We note that

the TF model leads no atomic binding to form molecules or solids.

4.2.2 Hohenberg and Kohn Theorems

The starting point of any discussion of DFT is the Hohenberg-Kohn (HK) theorems.

For this reason, the foundation of the density functional theory is the HK theorems.

P. Hohenberg and W. Kohn [3] formulated and proved two well known theorems based

on the Thomas-Fermi model, which are usually known as the first HK theorem and

the second HK theorem. Let us consider the following discussions before starting

these theorems.

Let Ĥ be an electronic Hamiltonian for a system of N electrons. When a system

is in the state Ψ, which may or may not satisfy ĤΨ = EΨ. The average of many

measurements of the energy is given by

E[Ψ] =

〈

Ψ | Ĥ | Ψ
〉

〈

Ψ | Ψ
〉 , (4.27)
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where
〈

Ψ | Ĥ | Ψ
〉

=

∫

Ψ∗ĤΨdr (4.28)

and

E[Ψ] ≥ Eg. (4.29)

The variational principle states that the energy computed from a guessed Ψ is an

upper bound to the true ground state energy Eg. Full minimization of the functional

E[Ψ] with respect to all allowed N -electrons wave functions will give the true ground

state Ψg and energy E[Ψg]=Eg; that is,

Eg = min
Ψ
E[Ψ] =

〈

Ψmin | T̂ + V̂ne + V̂ee | Ψmin

〉

. (4.30)

Thus, a system of N electrons and given nuclear potential Vext, the variational prin-

ciple defines a procedure to determine the ground state wave function Ψg and hence

the ground state energy and other properties of interest. In other words, the ground

state energy is a functional of the number of electrons N and the nuclear potential

Vext

Eg = Eg[N, Vext]. (4.31)

It is well established that the external potential in principle determines all the

properties of the system [137]. The first Hohenberg-Kohn theorem demonstrates that

the ground state density ρ(r) uniquely determines the external potential, up to an

arbitrary constant. The energy of the system can be denoted as

E =
〈

Ψ | Ĥ | Ψ
〉

=
〈

Ψ | T̂ + V̂ne + V̂ee | Ψ
〉

=

∫

Vext(r)ρ(r)dr+
〈

Ψ | T̂ + V̂ee | Ψ
〉

, (4.32)
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which is used for the proof of Hohenberg and Kohn first theorem. The proof is done

in a simple and extremely elegant manner using the principle of reductio-ad-absurdum

and this is derived for a non-degenerate system [142].

Suppose there exists two potentials Vext(r) and V ′
ext(r) differing by more than a

constant, yielding the same charge density, ρ(r). The associated Hamiltonians, Ĥ1

and Ĥ ′
2 , will therefore have different ground wavefunctions, Ψ1 and Ψ′

2, that each

yield the same charge density, ρ(r). Let us consider Eg and E ′
g are the two ground

state energies for Ĥ1 and Ĥ ′
2 respectively. Taking Ψ′

2 as a trial function for Ĥ1 then

the Rayleigh-Ritz minimal principle states that

Eg <
〈

Ψ′
2 | Ĥ1 | Ψ′

2

〉

=
〈

Ψ′
2 | Ĥ ′

2 | Ψ′
2

〉

+
〈

Ψ′
2 | Ĥ1 − Ĥ ′

2 | Ψ′
2

〉

= E ′
g +

∫

[Vext(r)− V ′
ext(r)]ρ(r)dr. (4.33)

Similarly, we have

E ′
g <

〈

Ψ1 | Ĥ ′
2 | Ψ1

〉

=
〈

Ψ1 | Ĥ1 | Ψ1

〉

+
〈

Ψ1 | Ĥ ′
2 − Ĥ1 | Ψ1

〉

= Eg −
∫

[Vext(r)− V ′
ext(r)]ρ(r)dr. (4.34)

By summing up of Eqn. (4.33) and Eqn. (4.34) the inequality

Eg + E ′
g < Eg + E ′

g (4.35)

is obtained, which represents an obvious contradiction, and so there can not be two

different Vext(r) that give the same ρ(r) for their ground states. Thus, ρ(r) determines

the total number of electrons N in the atom and the external potential Vext(r) and

hence all properties related to the ground state. Therefore, the total energy can be
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written as a functional of the electron density

E[ρ] = T [ρ] + Ene[ρ] + Eee[ρ]

=

∫

Vext(r)ρ(r)dr+ FHK [ρ], (4.36)

where

FHK [ρ] = T [ρ] + Eee[ρ]. (4.37)

This functional FHK [ρ] does not depend upon the potential Vext and is the holy grail

of density functional theory and contains the functional for the kinetic energy, T [ρ]

and that for the electron-electron interaction, Eee[ρ]. To obtain the explicit form of

the functional FHK is the major challange in DFT.

The second HK theorem introduces that the energy functional is variational. It

states that for a trial density ρ̃(r) that satisfies the conditions, ρ̃(r) ≥ 0 and
∫

ρ̃(r)dr =

N for all r, the inequality Eg ≤ E[ρ̃] holds, where E[ρ̃] = T [ρ̃] + Ene[ρ̃] + Eee[ρ̃].

Following the first Hohenberg-Kohn theorem, suppose that the ground state wave

function is Ψg and it is related to electron density ρ(r). Thus the ground state

density ρ(r) uniquely determines the external potential Vext(r). Let us consider the

trial density ρ̃ that determines its own wave function Ψ̃ with a arbitrary variation

from Ψg, then we can obtain,

〈

Ψ̃ | Ĥ | Ψ̃
〉

=

∫

ρ̃Vextdr+ T [ρ̃] + Eee[ρ̃]

= E[ρ̃] ≥ Eg[ρ]. (4.38)

So the energy will reach the minimum only when the electron density is equal to

the ground state electron density. The above two theorems lead to the fundamental
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statement of density functional theory

δ
{

E[ρ]− µ
(

∫

ρ(r)dr−N
)}

= 0. (4.39)

The ground state energy and density correspond to the minimum of some functional

E[ρ] subject to the constraint
∫

ρ(r)dr = N , provide the correct number of electrons.

The Lagrange multiplier of this constraint is the electronic chemical potential µ. Let

µ(r)= δE[ρ]
δρ(r)

= Vext(r) +
δFHK [ρ]
δρ(r)

. Then Eqn. (4.39) gives the Euler-Lagrange equation

µ(r)− µ = 0. (4.40)

Due to the HK theorems, the ground state properties can be evaluated using only

the density as the variational variable and a universal functional FHK [ρ]. The func-

tional FHK [ρ] exists, but its explicit form completely remain in the dark. However,

some approximations to FHK [ρ] are known to us and can be used in equation:

Eg[N, Vext] = min
ρ, ρ→N

E[ρ, Vext] = Eg[ρ, Vext], (4.41)

for approximate solution, where ρ → N means
∫

ρdr = N . The functional E[ρ, Vext]

contains the classical Coulomb interaction due to the electron density, which can be

separated out as

E[ρ, Vext] =

∫

Vext(r)ρ(r)dr+
1

2

∫ ∫

ρ(r1)ρ(r2)

| r1 − r2 |
dr1dr2 +G[ρ]. (4.42)

Here G[ρ] includes the kinetic energy and difference between the exact electron-

electron energy Eee and the electrostatic interaction energy due to the electron density

ρ(r). Hence G[ρ] contains the electron correlations and this effects arising from the

exchange term.
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4.2.3 The Kohn-Sham Equations

The Kohn-Sham (KS) equations map the relationship between the ground state den-

sity of a system and its ground state wave function. The famous Kohn-Sham equations

are at the heart of modern density functional theory. The kinetic energy functional of

the Thomas-Fermi model that leads to a good description of molecular systems is far

from reality. To overcome this problem, Kohn and Sham [4] introduced a fictitious

system of non-interacting electrons (referred to as the KS system) in 1965, which gen-

erates the same density as the given system of interacting electrons. For this system

the kinetic energy is calculated exactly and the total energy functional of the system

can be written in the following decomposed form:

E[ρ] = Ts[ρ] + Eext[ρ] + EH [ρ] + Exc[ρ], (4.43)

with the external potential energy term Eext[ρ] =
∫

Vext(r)ρ(r)dr and the Hartree

term EH = 1
2

∫ ∫

ρ(r1)ρ(r2)
|r1−r2| dr1dr2. While the first term, Ts[ρ(r)] of Eqn. (4.43) is the

kinetic energy functional of a system of non-interacting electrons with density ρ(r)

and the last term represents the exchange correlation energy functional defined as the

remainder:

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Eee[ρ]−EH [ρ]). (4.44)

The Hartree term EH describes the electrostatic energy of the electronic system within

the mean-field appproximation and it is the classical electrostatic energy of a charge

density ρ(r). The exchange correlation energy is mainly the difference between the

true electrostatic energy Eee and the mean field term EH but also contains a contri-

bution from the kinetic energy, T [ρ]− Ts[ρ].
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The Kohn-Sham equations can represent all of the above terms exactly in terms

of the electronic density, except for the exchange correlation energy. Kohn and Sham

proposed that the electronic density can be expressed as

ρ(r) =
N
∑

i

| ψi |2, (4.45)

which is the sum of the density of a set of N non-interacting single-particle wave

functions (orbitals), ψi.

The kinetic energy functional in Kohn-Sham theory is

Ts[ρ] =

N
∑

i

−1

2

∫

ψ∗
i (r)∇2ψi(r)dr, (4.46)

which depends explicitly on the orbitals. All remaining terms, including the exchange

correlation term Exc[ρ], depend only implicitly on the orbitals, because the density

is calculated from the single particle wave functions. The minimization of E[ρ(r)]

with respect to ρ(r) subject to the constraint that the number of electrons must be

constant, which yields N Hartree-type one-electron equations

[

− 1

2
∇2 + VKS(r)

]

ψi = εiψi, (4.47)

where ψi are Kohn-Sham orbitals, εi are Kohn-Sham orbital energies and VKS is the

one-body effective fictitious external potential, and is defined as

VKS(r) = Vext(r) +

∫

ρ(r1)

| r− r1 |
dr1 + Vxc[ρ(r)], (4.48)

which depends on ρ(r). In Eqn. (4.48) Vxc = δExc

δρ
is the exchange correlation poten-

tial.

Eqns. (4.45), (4.47) and (4.48) are known as the famous Kohn-Sham equations

where only unknown term is Exc. It is widely known that the KS equation gives the
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exact total energy of a system. The KS Eqn. (4.47) requires to be solved iteratively

until the self-consistent orbitals are determined due to the density dependence on

the one-electron KS effective potential, VKS(r). Finally, the total energy can be

determined from the Kohn-Sham eigenenergies and the ground state density ρ(r) as

E =

N
∑

i=1

εi −
∫

d3r
[1

2
VH(r) + Vxc(r)

]

ρ(r) + Exc[ρ(r)].

If each term in the KS energy functional was known, we would be able to obtain

the exact ground state density and total energy. Unfortunately, we do not know

the exact form of the exchange correlation energy functional, Exc and even it is

impossible to find an exact expression for Exc except for a free electron gas. This

term includes the non-classical aspects (electron exchange and electron correlation)

of the electron-electron interaction, along with the component of the kinetic energy

of the real system different from the non-interacting electrons system. At this point,

finding the approximate form for the exchange correlation energy functional with a

sufficient accuracy is the biggest challange of the modern DFT. Kohn and Sham [4,137]

proposed a form for the exchange correlation (XC) energy functional which was exact

for the uniform electron gas (UEG) system, known as the local density approximation

(LDA). In the next section we will focus on various approximations for XC functionals.

4.3 Exchange Correlation Energy Functionals

The ground state energy contribution that needs practical approximations within

KS-DFT approach is the exchange correlation functional. The exchange correla-

tion functional is also used in the OF-DFT method similar to that of the KS-DFT
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method. The success of a DFT calculation scheme critically depends on the quality

of the exchange correlation. The exchange arises from antisymmetry due to the Pauli

exclusion principle. On the other hand the correlation accounts for the remaining

complicated many-body effects that need many determinants to be fully described.

The problem of finding exact form of Exc is the greatest challange in the DFT because

Exc is not known that we have already mentioned before. It will be very difficult to

express Exc in a closed mathematical form. Finding of such mathematical form would

be considered as a great success in the density functional theory. Since the form of

exchange correlation energy in terms of the density is, in general, unknown and there-

fore it is necessary to use an approximation for Exc. There are two most common

approximations for Exc widely used by the scientists. These are namely local density

approximation (LDA) and generalized gradient appproximation (GGA).

4.3.1 Local Density Approximation

The Local density approximation (LDA) is the first approximation for the exchange

correlation (XC) functional Exc[ρ]. LDA states that the density can be treated locally

as an uniform electron gas and the exchange and correlation energy at each point in

the system is the same as that of an uniform electron gas (UEG) of the same density.

This approximation was originally introduced by Kohn and Sham [4] and strictly, the

LDA is valid only if the density ρ(r) varies extremely slow with r. In local density

approximation (LDA) to the DFT one assumes that Exc[ρ] is given by

ELDA
xc [ρ(r)] =

∫

ρ(r)εLDAxc [ρ(r)]dr, (4.49)
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where, εLDAxc is the exchange correlation energy per particle in an uniform electron

gas, which is a function of the density ρ(r) only. The εLDAxc (ρ) can be decomposed

into an exchange part and a correlation part, such as εLDAxc [ρ] = εLDAx [ρ] + εLDAc [ρ].

The exchange part is simple and given by the Dirac energy functional [10]

εLDAx [ρ(r)] = −3

4

(

3

π

)
1

3

ρ(r)
1

3 , (4.50)

while the correlation energy εc(ρ) is more complicated. The accurate values for εc(ρ)

have been determined by the Quantum Monte Carlo (QMC) calculations of Ceperley

and Alder [11]. The common LDA functionals for εLDAc [ρ(r)] are the Perdew-Zunger

(PZ) [13], Perdew-Wang (PW) [143] and Vosko-Wilk-Nusair (VWN) [12] functionals.

Mostly used approximation for the correlation is the Perdew-Zunger approximation

[13]. It has the form

εLDAc [ρ] =



















0.0311 lnrs − 0.0480 + 0.0020 rs lnrs − 0.0116rs for rs < 1

− 0.1423
1+1.0529

√
rs+0.3334rs

for rs ≥ 1.

(4.51)

This is used in the present simulation. The functional derivative of ELDA
xc [ρ] gives the

exchange correlation potential within LDA,

V LDA
xc =

δELDA
xc [ρ]

δρ(r)
= εxc[ρ(r)] + ρ(r)

∂εxc[ρ]

∂ρ
.

4.3.2 Generalized Gradient Appproximation

The exchange correlation energy not only depends on the local density but also on

the gradient of the density, allowing to take into account the variations of the electron

density in very inhomogeneous systems. The LDA is appropriate for smooth ρ(r),
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i.e. for solids close to the homogeneous electron gas. But LDA is not accurate for

inhomogeneous systems such as molecules, clusters or layers. An improvement to this

approximation can be achieved by considering the gradient of the electron density,

which is known to be the so-called generalized gradient approximation (GGA).

The generic formulation of the GGA approximation to Exc[ρ] is

EGGA
xc [ρ] =

∫

ρ(r)εGGAxc

[

ρ(r), | ∇ρ(r) |
]

dr (4.52)

and the general procedure for constructing GGA functional is to express the correla-

tion energy as

EGGA
xc [ρ(r)] =

∫

ρ εLDAxc [ρ(r)]dr+

∫

Fxc[ρ(r), | ∇ρ(r) |]dr, (4.53)

where, Fxc[ρ(r), | ∇ρ(r) |] is known to be the exchange correlation enhancement fac-

tor. Unlike the LDA, there is no unique form for the GGA, and indeed many suitable

variations are possible [8, 9, 144, 145], each corresponding to a different enhancement

factor. The GGA succeeds in reducing the effects of LDA overbinding [146], and is

significantly more successful when applied to molecules. The Perdew-Burke-Ernzerhof

(PBE) functional [8] is the most popular GGA.

4.4 Pseudopotentials

In this section we will introduce the concept of pseudopotentials. It is well established

that the most interesting physical properties of solids are largely determined by the

valence electrons rather than the tightly bound core electrons. This is the reason why

the pseudopotential approximation come into play in the theory. This approximation
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uses the fact to remove the core electrons including the nucleus and replace them

with a weaker pseudopotential which acts on a set of pseudo wavefunctions rather

than the true valence wavefunctions. In fact, the pseudopotential can be optimised

so that, in practice, it is even weaker than the frozen core potential [147].

The core electrons and the nuclei are treated as unit which interacts with the

valence electrons through the external potential Vext, which usually is the pseudopo-

tential. The solid is made up of lighter electrons and heavier nuclei. In many problems

of molecular and atomic physics, the electrons of the system can be divided into the

category of valence electrons and core electrons per atom. The core electrons are

tightly bound near the nuclei which known as core region. The fundamental concept

involved in a pseudopotential calculation is that the ion core can be neglected. The

use of pseudopotentials rely on the fact that the core electrons are tightly bound to

their host nuclei while only the valence electrons are involved in the chemical bonding.

In the pseudopotential approximation, the core electrons density is assumed to be of

the same form as for isolated atoms. Core electrons screen the nuclear potentials

seen by the valence electrons. At the same time, core electrons are much lower in

energy than valence electrons. Thus due to the requirement of orthogonal wave func-

tions, valence electrons wave functions have a strong oscillatory part in the internal

regions. This requires many more basis functions to accurately describe the valence

electrons wave functions. Pseudopotentials are fictitious potentials that act in the

internal regions of the atom, reproducing the screening effect of the core electrons

within core region which is determined by cutoff radius. Both the potentials and

wave functions outside of the core region are fitted to reproduce the real ones. The
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quality of a pseudopotential is measured by its transferability, i.e., the capacity of

reproducing accurate results for all-electron calculations. A pseudopotential is not

unique, therefore several popular models are also exist in the literature.

These pseudopotentials should have the following four fundamental properties

[148]:

(i). Real and pseudo valence eigenvalues agree for a chosen prototype atomic con-

figureation.

(ii). Real and pseudo atomic wave functions agree beyond a chosen core radius Rc.

(iii). The integrals from 0 to r of the real and pseudo charge densities agree for r ≥ Rc

for each valence state (norm conservation).

(iv). The logarithmic derivatives of the real and pseudo wave function and their first

energy derivatives agree for r ≥ Rc.

The pseudopotential potential may be either local or non-local. Both the non-

local and local form of pseudopotential give accurate prediction for the properties

of materials [149]. Particularly, the non-local pseudopotentials are energy eigenvalue

dependent. So the exact form of pseudopotential is quite complicated and its formula-

tion is therefore often difficult. The two most popular non-local pseudopotential are

norm conserving pseudopotentials and ultrasoft pseudopotential. Norm-conserving

pseudopotentials require that the all-electron and pseudo wave function agree be-

yond a chosen radius Rc. Also the integrated density inside Rc for the all-electron

wave function and pseudo wave function are the same (“norm conservation”). There

are many types of norm-conserving pseudopotentials from different authors such as
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Figure 4.1: Schematic diagram of pseudopotential method [155], VAE, ΨAE are the all
electron potential and wave function, respectively.

Troullier and Martins [150], Kerker [151], Hamann, Schlüter and Chiang [152], Van-

derbilt [153], Goedecker-Teter-Hutter [154]. The local model pseudopotential depends

on the ion positions only. Hence they are generally used to investigate the properties

of the matter for the simplicity in the computations. Up till present we have observed

that for the construction of the local potential one must consider:

(i). The bare-ion local potential by which the electrons interacts with the ions.

(ii). Hartree screening to take account of Coulomb interactions with the other con-

duction electrons.

(iii). Effect of exchange and correlation.

The KS-AIMD method usually employs non-local pseudopotentials obtained by

fitting to some properties of the free atom [150,156–158]. However, in the OF-AIMD
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method the valence electron density is the basic variable. The lack of orbitals requires

that the pseudopotential must be independent of angular momentum, but a function

of radius only. Most modern pseudopotentials such as norm-conserving or ultra-soft

pseudopotential contain several angular momentum contributions. They are described

nonlocally and can not be used in the OF method. Hence, local pseudopotentials

(LPS) are needed for the OF-AIMD simulation method. Therefore, we have here

used a local ionic pseudopotential proposed by Bhuiyan et al. [17]. The concept of

pseudopotential is shown schematically in Figure 4.1 [155]. It is clear from the Figure

4.1 that the pseudopotential is much weaker than the all-electron potential and the

pseudo wave function has no radial node inside the core region. We also see that

outside the core region, the pseudopotential and wave function becomes the same

with the corresponding all-electron ones.

The present local ionic pseudopotential in combination with the OF-AIMD method

has provided a good description of several static and dynamic properties of liquid Sn,

Cu, Ag, Au, Cd, Hg and Zn at thermodynamic states near their respective melting

points [5, 17, 18] and above. The pseudopotential used in our purpose has the form

vps(r) =



















A +B exp(−r/a) for r < Rc

−Z
r

for r > Rc,

(4.54)

where, A and B are constants, Rc is the core radius and a is the softness parameter.

Moreover, the parameter B has been fixed by the condition that the logarithmic

derivative of the potential inside and outside the core exactly matches at the core

radius. The other parameters Rc, A and a have been fixed by imposing that the OF-
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AIMD simulation reproduces the experimental static structure factor. The values of

the parameters Rc, A and a used in our calculations are listed in the Table 6.1. The

form factor of vps(r) in reciprocal space is

vps(q) =
1

V

[

cos qRc

{

− 4πARc

q2
− 4π

q2
− 4πBa2Rce

−Rc
a

(1 + a2q2)
− 8πBa3Rce

−Rc
a

(1 + a2q2)2
}

+

sin qRc

{4πA

q3
− 4πBaRce

−Rc
a

q(1 + a2q2)
+

4πBa4qe−
Rc
a

(1 + a2q2)2
− 4πBa2e−

Rc
a

q(1 + a2q2)2
}

+

4π

q2
+

8πBa3

(1 + a2q2)2
]

where, the constant B is given by B = Aae
Rc
a

Rc−a and V is the volume of a system.

4.5 Orbital Free Density Functional Theory (OF-DFT)

The total energy function of OF-DFT is construct by taking approximations in the

KE functional and the external potential energy functional of KS-DFT. Therefore,

the main difference between KS-DFT and OF-DFT is the kinetic energy (KE) and

external potential energy functional appproximations. In KS-DFT theory, the KE

depends on the KS fictitious orbitals for noninteracting system while the external

potential energy is described by the nonlocal pseudopotentials. On the other hand

the KE in OF-DFT depends on the electron density and external potential energy is

described by the local pseudopotentials.

In KS-DFT, the numerical value of Ts[ρ] could be determined exactly although it

is not directly from the density itself. It is done by introducing a set of N one electron

wave functions (KS orbitals) to solve the N coupled KS equations that describe the

fictitious noninteracting system. By using these results along with the relatively
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simple appproximations for the small contribution term Exc, the resulting KS-DFT

has proven successful in many applicaions. Multiple approximations to the exchange

correlation term exist [12,13,143] which provide acceptable accuracy in simulation to

study specific properties for specific class of materials. Different approximations are

used in different applications. In KS-DFT, it is necessary to compute at least as many

orbitals as there are electrons (or pairs thereof). Futher, the KS equation must be

solved iteratively because of VKS depends on ρ. The solution involves large basis set

expansions of the orbitals. The use of the KS orbitals usually generates a relatively

expensive O(N3) scaling of computational cost with the number of electrons. This

cubic scaling is the bottleneck for the application of DFT for very large systems.

Despite of all limiations we need for a routine ab initio calculation on large systems.

The basic algorithm of KS-DFT to find the ground state energy and the density of a

system of N electron moving in a specific external potential Vext(r) is then as follows:

(i). Guess an initial density, ρ(r).

(ii). Computation of the potential using

VKS(r) = Vext(r) +

∫

ρ(r1)

| r− r1 |
dr1 + Vxc[ρ(r)].

(iii). Find the N lowest-energy solutions of Schrödinger equations

[

− 1

2
∇2 + VKS(r)

]

ψi = εiψi.

(iv). Construct a new density from the wave functions for all occupied states,

ρ(r) =

N
∑

i

| ψi |2.
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(v). If the density does not converge, go to step (ii).

(vi). Compute the ground state energy from

E =

N
∑

i=1

εi −
∫

d3r
[1

2
VH(r) + Vxc(r)

]

ρ(r) + Exc[ρ(r)].

The bottleneck of KS-DFT could be removed if there were a proper treatment of

the KE using the electron density only. The spirit of the DFT by Hohenberg and

Kohn is to express the ground state energy in terms of the charge density without

using wave functions, such DFT is called orbital free DFT. The scaling of OF-DFT

is linear. This spirit comes from an earlier density functional theory proposed by

Thomas [14] and Fermi (TF) [141], which expresses an exact energy for the system of

Orbital-free approach Kohn-Sham approach

Find approximation for the
universal functional, FHK [ρ]

Compute the ground state
density ρ(r) by minimising
E[ρ] = FHK [ρ] + Eext[ρ]

Compute the ground
state energy Eg[ρ]

Find an effective po-
tential Veff (r) =VKS(r)
such that ρ

KS
(r) = ρ(r),

ground state density

Find the molecular or-
bitals ψi by solving

[

− 1
2
∇2 + VKS(r)

]

ψi = εiψi

Build the ground state
density ρ(r) from the

molecular orbitals

Compute the ground
state energy Eg[ρ]

Figure 4.2: Orbital-free approache vs. Kohn-Sham DFT approache.
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the non-interacting homogeneous electron gas. This functional is called TF energy

functional. In the KS theory, a long computational time is required depending on the

number of orbitals. However, if we can evaluate the kinetic energy without solving the

KS equations, we can obtain the total energy in a short computational time. Among

all the first-principles methods calculation based on DFT [3, 4], the linear scaling

OF-DFT is the most capable scheme for handling large systems (> 1000 particles)

within reasonable computational times [159–168]. Unlike traditional orbital-based

first-principles techniques, such as Hartree-Fock [169–171] and KS-DFT [4] , the OF-

DFT method avoids solving self-consistently for one-electron orbitals and instead only

utilizes the electron density, a function of three coordinates, as its main variational

parameter [172]. Consequently, the costs associated with manipulating orbitals (e.g.,

orthonormalization ) are completely eliminated. For periodic systems, the advantage

of using OF-DFT is even more remarkable, since no k-point sampling is necessary,

leading to many orders of magnitude savings for metallic systems, in particular [159].

Although the earliest OF-DFT, namely, the TF model [14, 141] appeared much

earlier before as widely used today KS-DFT and OF-DFT have not become the main-

stream quantum mechanics method for practical applications. The major obstacle of

applying OF-DFT lies in the lack of transferability of kinetic energy density func-

tionals (KEDF). If this stumbling block could be removed, one could fully exploit

the power of the original Hohenberg-Kohn theorems [3]. There are several KEDF ap-

proximations exist in literature [14, 141, 173–176]. The TF kinetic energy functional

TTF [ρ(r)] = 3
10

(

3π2
)

2

3

∫

ρ
5

3 (r)dr is valid for slowly varying densities but not suffi-

cient for application in rapidly varying densities. So, von Weizsäcker [173] proposed



Chapter 4: Theoretical Background 72

a correction term for the TF energy functional which is TW [ρ(r)] = 1
8

∫ |∇ρ(r)|2
ρ(r)

dr.

It is called von Weizsäcker kinetic energy functional and it is exact for one-electron

and two-electron singlet states [173]. A linear combination of these two simplest ap-

proximations, TF and von Weizsäcker KE functionals, is called Thomas-Fermi-von

Weizsäcker KE functional. It has seen to appear in many OF-DFT applications [177].

Jones and Young [178, 179] have shown that the TF energy functional gives a cor-

rect second-order kinetic energy for the slowly varying density limit and the von

Weizsäcker energy functional gives the correct one for the rapidly varying density

limit. The OF-DFT and KS-DFT calculation steps are shown in Figure 4.2.

4.5.1 Kinetic Energy Functional Approximmation

The kinetic energy functional Ts[ρ] is a critical ingredient of the total energy functional

of a system. It is generally considered that the von Weizsäcker term TW [ρ(r)] is

essential for a good description of the kinetic energy [173]. It applies in the case of

rapidly varying densities, and it is exact for one, or two-electron systems. Further

terms are usually added to the functional in order to reproduce some exactly known

limits correctly [15]. In the uniform density limit, the exact kinetic energy is given

by the Thomas-Fermi functional

TTF [ρ] =
3

10

∫

ρ(r)kF (r)
2dr, (4.55)

where kF (r) =
(

3π2ρ
)

1

3 is the local Fermi wave vector. In the limit of almost uniform

density, the linear response theory (LRT) is correct, with a response function corre-

sponding to a noninteracting uniform electron gas, which is given by the Lindhard

function χL(q, ρ0) [104, 180].
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There has been an increasing interest in the development of accurate kinetic energy

functional due to the tremendous advantages of the OF-AIMD simulation. Depend-

ing on Perrot’s [176] work as the basis, Madden and co-workers [181, 182] improved

functionals which recovers the Thomas-Fermi and linear-response limits correctly, and

it is also comprised the quadratic response. Later, Wang et al. [183, 184] examined

these functionals and suggested a linear combination of them as a satisfactory form

for Ts. They also derived another expression which includes density-dependent ker-

nels. Unfortunately, an undesirable feature of these functionals is that they are not

positive definite, so that a minimization of the energy functional can lead to an un-

physical negative kinetic energy. Chacón et al. [185] developed a different type of

kinetic energy functional, which employs an “averaged density” which recovers LRT

and the uniform density limits. Their functional was investigated and generalized by

García-González et al. [186–188]. These functionals have the merit of being positive

definite, but they are somewhat complicated to apply and require N order more fast

Fourier transforms (FFT) than simpler functionals. This diminishes the advantage of

the orbital free approach over the full Kohn-Sham method [15].

4.5.2 Simplified Average Density Form for Ts[ρ]

The KE functional is the key portion for OF-DFT approach. So a reliable density

functional for the kinetic energy (KE) is needed for a successful OF-DFT calculation.

For Ts[ρ], we have used an explicit, albeit approximate functional of the valence

electron density. Several expressions were proposed for Ts[ρ] and in the vicinity of

the present work we have used an averaged density model [15,19,186–188] which has
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the following form

Ts[ρ] = TW [ρ] + Tβ [ρ], with (4.56)

TW [ρ(r)] =
1

8

∫ | ∇ρ(r) |2
ρ(r)

dr (4.57)

Tβ[ρ] =
3

10

∫

drρ(r)
5

3
−2βk̃(r)

2
,where (4.58)

k̃(r) = (2k0F )
3
∫

dsk(s)wβ(2k
0
F | r− s |), (4.59)

k(r) = (3π2)
1

3ρ(r)β. (4.60)

Here k0F being the Fermi wave vector corresponding to a mean electron density ρ0 =

Ne

V
. In Eqn. (4.59), the weight function, wβ(x), is chosen so that both the linear

response theory and Thomas-Fermi limits are correctly recovered. It is worth noticed

that k̃(r) appears as a convolution which can be performed rapidly by the usual FFT

techniques. This functional is one of the generalization with β = 1
3
, used by Gómez

et al. [189] earlier to study the expanded liquid Cs. Further details are appeared in

reference [15].

The main characteristics of the KE functional are as follows:

(i). β is a real positive number whose maximum value is ≈ 0.6 which leads to a

mathematically well behaved weight function.

(ii). The functional is positive definite and recovers LRT and the uniform density

limits.

(iii). When k0F → 0, the mean electron density vanishes (e.g., for a finite system),

the von Weizsäcker term is recovered if β = 4/9, whereas for other values of β,

the limit is TW + C2TTF .
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(iv). For values of β > 0.5, it is expected that the driving force for the dynamic

minimization of the energy, µ(r)ψ(r) [see Eqn. (4.73)], remains finite even for

very small electronic densities ρ(r).

The last two properties mentioned above are important for the case of expanded

liquid metals because of the appearance of large inhomogeneities in the atomic dis-

tribution, and therefore in the electron density, with regions where it becomes very

small. Indeed, this situation has already been observed in the ab initio simulations

of expanded liquid Na [190]. In systems for which the appearance of isolated atoms

or clusters is likely, the von Weizsäcker term would be appropriate, and a functional

with a value of β as close as possible to 4/9 would be recommended. For the present

simulations we have used β = 0.51 which gives C = 0.046 [15] in the limit ρ0 → 0 and

guarantees at least for the preferred thermodynamic states, µ(r)ψ(r) remains finite

and not too large everywhere so that the energy minimization can be achieved.

4.5.3 Energy Minimization Technique in OF-DFT

In this section we have described the main features of the energy functional and its

calculational scheme. Liquid metals which can be dropped in the group of simple

liquids are generally modelled as disordered systems in the long range but ordered

in short range. Let us consider that N ions each of valence Z are kept in a volume

V , and interacting with Ne = NZ valence electrons through a potential v(r). The

total potential energy of the system can be written, within the Born-Oppenheimer

approximation, as the sum of the direct ion-ion coulombic interaction energy plus the

ground state energy of the electronic system under the external potential created by
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the ions, Vext(r, {Rl}) =
∑N

i=1 v(|r−Ri|),

E[ρ, {Rl}] =
∑

i<j

Z2

|Ri −Rj |
+ Eg[ρ(r), Vext(r, {Rl})] , (4.61)

where ρ(r) is the ground state valence electronic density and Rl (l = 1, 2, . . .N) are

the ionic positions. Now according to the DFT, the ground state valence electronic

density, ρ(r), minimizes the energy functional E[ρ] as defined in Eqn. (4.43).

For a given set of ionic positions {Rl}, that is, for a given external potential Vext,

the ground state is obtained from the variational principle,

δF
δρ(r)

≡ δ

δρ(r)
(E[ρ, {Rl}]− µ

∫

ρ(r)dr) = 0, (4.62)

where, µ is the chemical potential of electrons chosen in such a way that it gives

the desired number of electrons Ne. If we define the position dependent chemical

potential, µ(r), by

µ(r) =
δE

δρ(r)

=
δTs
δρ(r)

+
1

2

∫ ∫

ρ(r2)

| r− r2 |
dr2 + Vext(r) + Vxc(r), (4.63)

with Vxc =
δExc

δρ(r)
, the ground state density and energy are found self-consistently by

solving the equation

δF
δρ(r)

≡ µ(r)− µ = 0 (4.64)

together with the normalization constraint

G[ρ(r)] =

∫

v

ρ(r)dr = Ne. (4.65)

We have found it is convenient to work in terms of a single effective orbital ψ(r)

instead of ρ(r), such that

ρ(r) = | ψ(r) |2, (4.66)
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and to vary ψ(r) rather than ρ(r) [181, 182, 191–197]. This has the advantage of

maintaining ρ(r) ≥ 0 if ψ is real. The effective orbital, ψ(r) can be expanded into

Fourier series in plane waves compatible with the simple cubic periodic boundary

conditions of the simulation as

ψ(r) =
∑

G

cGe
−iG.r (4.67)

cG =
1

V

∫

v

drψ(r)eiG.r (4.68)

G =
2π

L
(n1, n2, n3), (4.69)

where L stands for the side of the cube, V is the volume of the cell and G is a

reciprocal lattice vector of the superlattice. This expansion is truncated at wave

vectors corresponding to a given cutoff energy, Ecut. A real ψ(r) implies that c−G =

c∗G, with a real c0. As a result only the half-set {c−G}’s need be treated as variables.

Now the energy minimization with respect to {c−G}’s instead of the electron density,

leading to the following equations

∂F
∂c0

= 2

∫

v

drµ(r)ψ(r)− 2µV c0 = 0, (4.70)

∂F
∂cG

= 4

∫

v

drµ(r)ψ(r)eiG.r − 4µV cG = 0, (4.71)

for the ground state density. A simple quenching method is employed to perform the

minimization of the energy functional at each time step of the simulation. A fictitious

kinetic energy for electrons

Te =
1

2
Me

∑

G

| ċG |2 (4.72)

is introduced following Car and Parrinello [119], where Me is the fictitious mass of

electrons and the dot denotes the derivative with respect to the fictitious time te. This
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kinetic energy, rewritten in terms of the set cG, together with the “potential energy”

F , leads to the following equation of motion for the electron density (∀ cG ∈ {cG})

as [15]

Mec̈G = −2

∫

v

drµ(r)ψ(r)e−iG.r + 2µV cG. (4.73)

These equations are solved numerically by using the Verlet Leap-frog algorithm [124]

with an electronic time step, ∆te. The velocities are quenched at every time step

until the minimum is reached within preset tolerances on Te and the gradient of

the potential energy, F . The chemical potential µ is not known in advance of the

minimization, but replacing µ in Eqn. (4.73) by its stationary value

∫

drµ(r)n(r)
∫

drn(r)
, (4.74)

at each time step, gives a good convergence to the ground state with the “displaced”

density n(r) = ρ(r)− ρ0 [15].

The interatomic forces are obtained from the electronic ground state via the

Hellman-Feynman theorem

Fi = −∇Ri
Eg[ρ(r), {Rl}], (i = 1, . . . , N), (4.75)

and the Newton’s equations of motion for the ions

d2Ri

dt2
=

Fi

Mi

(4.76)

are solved numerically by using the Verlet Leap-frog algorithm [124] with an appro-

priate time step, ∆t.



Chapter 5

Liquid State Theories

This chapter deals with the static and dynamic properties related theories of the liquid

systems. We have also discussed the technique how these properties are being calcu-

lated. Within the scope of the present work the description of the following topics

namely, the pair distribution function, static structure factor, self-intermediate scat-

tering function, intermediate scattering function, self-diffusion coefficient, dynamic

structure factor and shear viscosity are given. The transport coefficient such as the

sound velocity is calculated from the slope of the dispersion curve which is obtained

from the position of the side peaks of the dynamic structure factor.

5.1 Static Properties

Theories for the static properties such as the static structure factor, isothermal com-

pressibility, pair distribution function and coordination number are briefly described

in this section. Static properties depend only on a single time point. The static

79
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structure factor of matter can be directly measured by X-ray or neutron diffraction

experiment and it is related to the pair distribution function (PDF). The PDF is a

very important ingredient in the theory of liquids and is used to identify the lattice

structure of the crystalline solids. Different static distribution functions are often used

to have the detailed information regarding the structure of atomic systems. Among

them the PDF is the most important one and this can not be measured directly from

the experiment. Therefore, we may calculate PDF either from the molecular dynam-

ics (MD) simulation or from the numerical Fourier transformation (FT) of the static

structure factor. The PDF obtained from the MD simulation is more reliable than

that obtained from the numerical Fourier transformation due to the mathematical

complexity of FT. In the present work, the static structure factor and pair distribu-

tion function are calculated directly from the phase-space trajectory generated in MD

simulation. We may also calculate the isothermal compressibility and coordination

number from the static structure factor and pair distribution function, respectively.

5.1.1 Pair Distribution Function

In simulation we may compute the PDF, g(r), in two different ways, firstly it can

be calculated directly from the trajectory in MD simulation and secondly g(r) can

be obtained from the Fourier transformation of the static structure factor, S(q).

This S(q) is directly found from the MD trajectory. The complete description of

the structure of a liquid usually refers to particle densities and therefore the closely

related, equilibrium particle distribution function. [125]. The physical meaning of

g(r) is the probability of finding a particle at the same instant at a distance r from
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a reference particle sitting at the origin. The PDF is a dimensionless quantity. A

typical form of the the PDF, g(r), is shown in Figure 5.1. This figure shows that the
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Figure 5.1: Schematic diagram of pair distribution function, g(r) in liquid state.

first peak of g(r) occurs at rp having a value of g(rp). This means that the probability

of finding two particles at the separation r ≈ rp is likely to be g(rp) times. The PDF

then falls for r > rp and passes through a minimum point at around r ≈ rmin. This

means that the probability of finding two particles at this separation is less.

Consider a liquid system of N particles enclosed in volume V at temperature

T . Let ρ be the average number density defined as ρ = N
V

and where the particle

coordinates are ri having i = 1, 2, . . . , N . Now we may define the particle density of
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a system microscopically as [125]

ρ(r) =
N
∑

i=1

δ(r− ri). (5.1)

Then, the average density at point r (single particle density) is given by the ensemble

average

ρ(1)(r) = 〈ρ(r)〉 =
〈

N
∑

i=1

δ(r− ri)
〉

=

∫

. . .
∫

dr1dr2 . . . drN
∑N

i=1 δ(r− ri)e
−βUN

ZN
, (5.2)

where, β = 1
kBT

and UN(r1, r2, . . . , rN) is the potential energy due to the interaction

between particles and

ZN =

∫

. . .

∫

e−βUNdr1dr2 . . . drN , (5.3)

is the configureational partition function. The mean number density comes from the

average over all space: 1
V

∫

ρ(1)(r)dr = ρ. In the same way we can define the pair

density function as

ρ(2)(r1, r2) =
〈

N
∑

i=1

N
∑

j 6=i
δ(r1 − ri)δ(r2 − rj)

〉

. (5.4)

If we define r = r1 − r2 and we assume that ρ(2) depends on only r, then

ρ(2)(r) =
〈

N
∑

i=1

N
∑

j 6=i
δ(r+ r2 − ri)δ(r2 − rj)

〉

.

Two body distribution function must be a function of ri − rj. It should not depend

on r2, separately. Thus

ρ(2)(r) =
1

V

〈

∫

dr2

N
∑

i=1

N
∑

j 6=i
δ(r+ r2 − ri)δ(r2 − rj)

〉

=
1

V

〈

N
∑

i=1

N
∑

j 6=i
δ(r+ rj − ri)

〉

. (5.5)
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Since the pair distribution function g(r) gives a probability of finding a pair of atoms

at distance r apart, relative to the probability expected for a completely random

distribution at the same density we may define as

g(r) =
ρ(2)(r)

ρ2

=
V

N2

〈

N
∑

i=1

N
∑

j 6=i
δ(r− rij)

〉

. (5.6)

Using MD simulation, g(r) can not be measured at a point r. It can be evaluated

taking average value over a shell of width ∆r. Then, Eqn. (5.6) can be written as

g(r) =
1

V (r,∆r)ρN
〈
∑

i

ni(r,∆r)〉, (5.7)

G(r)=4 r2g(r)

4 r2
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Figure 5.2: Typical curve of the radial distribution function (RDF) and parabolic
function (4πr2ρ). These are shown in arbitrary unit.
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where, ni(r,∆r) is the number of particles in the spherical shell between r and r+∆r

of volume V (r,∆r) = 4
3
π[(r +∆r)3 − r3]. The PDF plays a key role to understand

the underlying physics of liquids. The radial distribution function (RDF) G(r) =

4πr2ρg(r) [27] is another form of distribution function that is related to g(r). The

quantity 4πr2ρg(r)∆r gives the average number of particles in the spherical shell of

thickness ∆r. Therefore, the RDF is also an important distribution function to study

the liquid systems because, thermodynamic properties can be studied from the radial

distribution function [125]. A typical form of the RDF is shown in Figure 5.2.

The peaks of the PDF indicate the structural features of liquid systems. The

fact that g(r) = 0 for r → 0 indicates the probability of finding another atom at

this separation is negligible due to the strong repulsive force. Whereas the presence

of several oscillations after this region implies that the molecules are preferentially

located in particular regions that correspond to the various ‘coordination’ shells in the

liquid [198]. The magnitude of the peaks decays exponentially with distance as g(r)

approaches 1. This departure of g(r) from unity shows the existence of short-range

order around the reference atom. It is being also noticed in Figure 5.1 and Figure 5.2

that when r → ∞, then g(r) → 1 and the RDF approaches to the parabolic function,

4πr2ρ, where ρ is the number density.

5.1.2 Static Structure Factor

Static structure factor can also be calculated using two different ways as we have men-

tioned it for g(r) in previous section. First of all, we may calculate static structure

factor S(q) directly from the trajectory generated in MD simulation in momentum
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space. Alternatively, we may get S(q) from the Fourier transformation of g(r) gener-

ated from MD simulation. The static structure factor (SSF) describes how a material

scatters incident radiation. The structure factor is particularly a very useful tool

for interpreting the interference patterns obtained from X-ray diffraction or neutron

diffraction experiments.
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Figure 5.3: Schematic diagram of static structure factor, S(q) in the liquid range.

The autocorrelation function of the Fourier components of the particle density is

called the static structure factor [125]. Mathematically, this autocorrelation function

is defined as

S(q) =
1

N
〈ρqρ−q〉, (5.8)
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where, ρq is a Fourier component of the particle density defined as

ρq =
N
∑

i=1

e−iq.ri, (5.9)

and this quantity can be obtained easily and quickly from a given configureation.

The atomic form factor Eqn. (5.9) is the building block of the construction of the

static structure factor. The structure factor contains all the information regarding

the position of the particles. It can be also expressed in terms of g(r) as

S(q) =
1

N

N
∑

i=1

N
∑

j=1

〈

e−iq.rieiq.rj
〉

= 1 +
1

N

N
∑

i=1

N
∑

j 6=i

〈

∫ ∫

e−iq.(r1−r2)δ(r1 − ri)δ(r2 − rj)dr1dr2
〉

= 1 +
1

N

N(N − 1)

V 2

∫ ∫

e−iq.(r1−r2)g(r1 − r2)dr1dr2

= 1 + ρ

∫

e−iq.rg(r)dr. (5.10)

Due to the asymptotic behavior of g(r), one finds that

S(q) = 1 + ρ

∫

e−iq.r[g(r)− 1]dr. (5.11)

For isotropic systems, g(r) ≡ g(r), and S(q) ≡ S(q). Thus one obtains

S(q) = 1 + ρ

∫

e−iq.r[g(r)− 1]dr. (5.12)

The schematic diagram of the S(q) is given in Figure 5.3.

The quantity S(q) is callled the static structure factor because it describes the

average distribution of molecular separations in the fluid. It is the quantity of cen-

tral interest in the equilibrium theory of fluids. Broadly speaking, the behavior of

S(q) generally resembles that of g(r), although of course the physical meaning to be
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attributed to the various features is completely different in the wave vector domain.

Thus, the first peak of S(q) reflects the existence of a dominant nearly regular ar-

rangement of the particles in real space. The asymptotic value of S(q) at large q

is also unity and indicates the vanishing of pair correlations at short wavelengths.

Eventually, at large wave vectors, S(q) probes the ‘hard core’ region where g(r) is

vanishingly small. In the opposite extreme, S(q → 0) reflects in an average sense the

features of g(r), including its asymptotic approach to unity at very large separations.

As a consequence, S(0) can be expected to be associated with some macroscopic

property of the system [123]. The main peak of S(q) is called the first diffraction

maximum. Since S(q) is a measure of the spatial correlation effects in the liquid, the

position of the first maximum in liquid qp, gives the distance 2π
qp

over which the cor-

relation effects are strongest. There is no obvious direct connection between rp and

2π
qp

, where rp is the position where g(r) has its first maximum. We therefore expect

2π
qp

to be somewhat less than d (hard sphere diameter), while rp should be somewhat

greater than d [199].

In the present OF-AIMD simulation, the static static structure factor is calculated

directly from MD trajectory via

S(q) =
1

N

〈

∑

i,j

e−iq.(ri−rj)
〉

, (5.13)

where, N is the total number of atoms in the spherical cell while ri and rj are the

coordinates of particles of index i and j respectively. The q vectors should be included

that are related to the reciprocal lattice vectors of the simulation for simple cubic cell,

i.e. q = 2π
L
(n1, n2, n3), where L is the size of the simulation cell. This means we will

obtain a histogram representation of S(q) which has better resolution as q become
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larger. The minimum q accessible in a simulation is qmin = 2π
L

.

The another important thermodynamic quantity is the isothermal compressibility

which is the measure of the relative change in volume of a system as the pressure

changes while the temperature remains constant. The isothermal compressibility is

related to the static structure factor. In the limit q → 0, the structure factor yields

the important compressibility equation [199]

lim
q→0

S(q) = 1 + ρ

∫

[g(r)− 1]d3r

=

〈

N2
〉

−
〈

N
〉2

〈

N
〉 = ρkBTκT , (5.14)

where,
〈

N2
〉

−
〈

N
〉2

is the mean square fluctuation in particle number and κT is the

isothermal compressibility. Thus, it is noticed from Eqn. (5.14), the q → 0 limit

of S(q) is sensitive to temperature and density. In the present work, the isothermal

compressibility is calculated from the relation

κT =
S(0)

ρkBT
. (5.15)

Here ρ, kB, and T denote average ionic number density, Boltzmann’s constant and

temperature, respectively. The value of S(0) is calculated by fitting the simulated q

at lower q values with

S(q) = a0 + a2q
2, (5.16)

where a0 and a2 are fitting constant. In the same way the isothermal compressibility

could also be found from the experimental S(q). From the inverse Fourier transfor-

mation of the static structure, S(q) after subtracting the “self-correlation” [125] we

may get PDF as follows

ρ[g(r)− 1] =
1

(2π)3

∫

dq eiq.r[S(q)− 1]. (5.17)
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Simple liquids are isotropic by nature. Thus, one finds

ρ[g(r)− 1] =
1

(2π)3

∫

dq eiq.r[S(q)− 1]. (5.18)

5.1.3 Coordination Number

The coordination number, Nc is an important quantity in liquid systems which gives a

convenient picture of total number of nearest-neighbor atoms in the liquid structure.

The strong spatial correlations exist in the liquid state is clearly indicated by the

sharp structure in g(r), where the first peak is representing the coordination shell

of the nearest neighbors, the second peak is representing the next nearest neighbors,

and so on [199]. The properties of a liquid essentially depend on the first coordination

number. It is frequently used as a parameter in the structural study of non-crystalline

materials. Therefore, the concept of the coordination number, particularly refers to

the first coordination number. Due to the inherent atomic vibration, this concept

is somewhat ambiguous in liquids as it is compared with the crystals. The quantity

ρg(r) gives the average density of particles at a distance, r, while the reference particle

is sitting at the origin. There are few popular schemes [27] to estimate the first

coordination number. Among them a common method is the integration of the RDF,

G(r) from r = r0 to the first minimum of g(r) or the first minimum of G(r), with the

two choices yielding slightly different Nc values. In the present work, the coordination

number is calculated according to the formula [27, 200, 201]

Nc =

∫ rmin

r0

4πr2ρg(r)dr, (5.19)

where, r0 is the left-hand edge of the first peak of G(r) starting from r0 = 0 and rmin

is equal to the first minimum of the RDF. Similarly, one can also get the experimental
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coordination number from the RDF, G(r) corresponding to the experimental g(r).
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Figure 5.4: Schematic diagram of RDF for calculating the first coordination number
in the liquid range.

5.2 Dynamic Properties

Dynamic properties depend on correlation between two different time points of parti-

cles. Dynamic properties can be classified into two different categories namely, single

particle and collective dynamics. In the present work, the self-diffusion coefficient

and self-intermediate scattering function are studied as single particle dynamics. On

the other hand, the intermediate scattering function, dynamic structure factor and
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shear viscosity falls into the category of the collective dynamics.

5.2.1 Self-diffusion Coefficient

Diffusion is the process of atomic mass transport which mostly occurs due to the

existence of concentration gradient in the system. In such process the kinetic energy

is acquired from the interactions with the neighboring atoms. A concentration gradi-

ent exists until the diffused substance is evenly distributed. While the self-diffusion

coefficent describes the motion of molecules in same material in the absence of any

gradient that could cause mass transfer in the system [202]. Estimation and predic-

tion of diffusivities of substances is of great importance in industrial processes. It

finds its application in rating of existing units, designing and developing new units

and equipments and also in research [203]. There are two common methods to calcu-

late the self-diffusion coefficient. The first one is from the positions of particles and

the second one is from velocities of particles. Theoretically, both methods yield the

same result. Obtaining the self-diffusivity from the velocities of particles involves the

integration of the velocity autocorrelation function, which is known to be Green-Kubo

relation [1]. On the other hand, calculation of self-diffusion coefficient from the Ein-

stein relation [1] uses the positions of particles. The velocity autocorrelation function

(VACF) is one of the prime example of a time dependent correlation function. It

is important to study the underlying nature of the dynamical process operating in

the molecular system. The VACF is the measurement how quickly a grain velocity

becomes decorrelated with its initial velocity. The normalized VACF is defined as

Z(t) =
〈v (0).v (t)〉

〈v2〉 , (5.20)
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where, 〈.....〉 stands for the ensemble average and Z(t) gives the projection of the

particle velocity at time t with the velocity along its initial direction. The schematic

diagram of the normalized VACF is shown in Figure 5.5.
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Figure 5.5: Schematic diagram of the normalized velocity autocorrelation function of
liquid metal near the melting point.

The VACF is a very slowly decaying function which is not a simple exponential.

The negative value of Z(t) indicates a high probability of large angle deflections (near

180 ◦) in particle collisions, which occurs due to cage effects. The cage effect describes

how the properties of molecules are affected by the surrounding. In the first region,

which occurs (t → 0), the VACF shows slow decay as particles move in free flight.

This means the particle velocity remains essentially the same as its initial value.

The region t → 0 is called ballistic regime. In the second region, which occurs at

short to moderate time, the VACF decays rapidly due to the onset of collisions with

surrounding particles. The third region, represents for time t→ ∞, the VACF decays
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to zero, indicating the absence of any residual correlation. The plot of VACF in this

region is almost horizontal, implies very weak forces are acting in the liquid system.

5.2.2 Einstein Relation of Self-diffusion

The self-diffusion coefficient of liquid systems can be calculated by using time-dependent

correlation functions known as the Einstein relation (ER) [123]. This relation is re-

lated to the mean square displacement (MSD). MSD is a measure of the average

distance travels by a particle defined as

〈δR2(t)〉 = 〈| Ri(t + t0)−Ri(t0) |2〉. (5.21)
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Figure 5.6: Schematic diagram of the MSD function of liquid metals near its melting
point.

The MSD also contains information on the diffusion of particles. MSD may be inde-
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pendent on the t0 in the thermal equilibrium condition. A typical form of the MSD

function is illustrated in Figure 5.6. In liquid system, quadratic behavior holds only

for a very short time interval (t→ 0), which is of the order of the mean collision time.

Beyond this time scale the motion of the particle is described as a random walk for

which the MSD only increases linearly with time.

Consider a set of N particles with time dependent position coordinates Ri(t),

where i = 1, 2, . . . , N and t is the time. The van Hove distribution function G(R, t)

[204], comes after the name of van Hove characterises the dynamical structure mea-

sured in inelastic neutron scattering experiments. G(R, t) is the real-space dynamical

correlation function for characterising the spatial and temporal disributions of par-

ticle pairs in a fluid. Time correlation functions can be generalized into correlation

functions in space and time. Let us consider the microscopic number density

ρ(R, t) =
N
∑

i=1

δ(R−Ri(t)) (5.22)

with the average defined as

〈ρ(R, t)〉 = lim
T→∞

1

T

∫ T

0

dt
1

V

∫

v

dr ρ(R, t),

which gives

〈ρ(R, t)〉 = N

V
= ρ

Let us construct the density-density correlation

G(R′′,R′; t′′, t0) =
1

ρ
〈ρ(R′′, t′′)ρ(R′, t0)〉, (5.23)

which is a generalisation of the equilibrium density-density correlation function define

as [125]

H(R,R′) =
1

N

〈[

ρ(R′)− 〈ρ(R′)〉
][

ρ(R′ +R)− 〈ρ(R′ +R)〉
]〉

. (5.24)
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For homogenous system at equilibrium Eqn. (5.23) only depends on the space and

time differences, R ≡ R′′ −R′ and t ≡ t′′ − t0. Then

G(R, t) =
1

N

〈

N
∑

i=1

N
∑

j=1

δ
(

R+Rj(t0)−Ri(t + t0)
)〉

, (5.25)

where, δ(. . .) is the three-dimensional Dirac delta function. Eqn. (5.25) is known as

the van Hove correlation function (vHCF). We can physically interpret the van Hove

function as the proportional to the probability to find a particle i at the position R′′

at time t′′, while the reference particle j was located at the position R′ at time t0.

The vHCF, G(R, t) can be naturally separated into two terms. Conventionally

which is referred as “self ” and “distinct” part, by discriminating between the cases

i = j and i 6= j, respectively. Thus one finds

G(R, t) =
1

N
〈
N
∑

i=1

δ(R+Ri(t0)−Ri(t+ t0)〉+
1

N
〈
N
∑

i 6=j
δ(R+Rj(t0)−Ri(t+ t0))〉

= Gs(R, t) +Gd(R, t). (5.26)

The self part, Gs(R, t), describes the average motion of the particle that was initially

at the origin and the distinct part, Gd(R, t), describes the behavior of the remaining

N -1 particles. Furthermore, liquids are isotropic by nature and hence G(R, t) will only

depend on the scalar quantity | R |=R. In the hydrodynamic limit of long distances

and times, the self part of the distribution function Gs(R, t) obeys the equation [205]

∂Gs(R, t)

∂t
= D∇2Gs(R, t), (5.27)

where, D is the self-diffusion coefficient. The solution of Eqn. (5.27) with the Dirac

delta initial condition Gs(R, t0) = δ(R) is of the Gaussian form [205]

Gs(R, t) = (4πDt)−
3

2 e−
R2

4Dt . (5.28)
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Therefore, the mean square displacement of a tagged particle over time t is given by

〈δR2(t)〉 = 〈| R(t+ t0)−R(t0) |2

=

∫

R2Gs(R, t)dR

= 6Dt. (5.29)

Taking the limit of t → ∞ such that the ratio 〈δR2(t)〉
t

becomes constant, then the

self-diffusion coefficient becomes

D = lim
t→∞

〈δR2(t)〉
6t

, (5.30)

which is the famous Einstein relation for self-diffusion.

5.2.3 Green-Kubo Relation of Self-diffusion

The Green-Kubo (G-K) relation is the another technique to calculate the self-diffusion

coefficient from the time-dependent correlation functions [125]. If v(t) is the velocity

of the particle at any arbitary time t, then one gets

δR (t) =

∫ t

0

v (t′)dt′ (5.31)

By squaring and averaging Eqn. (5.31) over time origins gives

〈δR2〉 =

∫ t

0

dt′′
∫ t

0

dt′〈v (t′).v (t′′)〉

= 2

∫ t

0

dt′′
∫ t′′

0

dt′〈v (t′).v (t′′)〉. (5.32)

The factor 2 in Eqn. (5.32) appears due to the symmetric property of the integrand

in time t′ and t′′. The velocity autocorrelation function 〈v (t′).v (t′′)〉 depends on the
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time difference. By introducing τ = t′′ − t′ one can write Eqn. (5.32) as [1]

〈δR2〉 = 2

∫ t

0

dt′′
∫ t′′

0

dτ
〈

v (τ).v (0)〉

= 2

∫ t

0

dτ〈v (τ).v (0)〉
∫ t

τ

dt′′

= 2

∫ t

0

dτ〈v (τ).v (0)〉(t− τ)

or,
〈δR2〉
2t

=

∫ t

0

dτ〈v (0).v (τ)〉(1− τ

t
) (5.33)

Taking the long-time limit, we find

lim
t→∞

〈δR2〉
2t

=

∫ ∞

0

dτ〈v (0).v (τ)〉 (5.34)

Using Eqn. (5.30) we may arrive at

D =
1

3

∫ ∞

0

dt〈v (0).v (t)〉 (5.35)

Using Eqn. (5.20) one finds

D =
kBT

m

∫ ∞

0

Z(t)dt. (5.36)

In Eqn. (5.36), the factor kBT
m

comes from the average kinetic energy of the particle

[205] as follows

1

2
m〈| v |2〉 = 3

2
kBT. (5.37)

The Einstein relation and the Green-Kubo formula are equivalent theory. They are

very important theories for liquid state. The Einstein relation and Green-Kubo for-

mula are often known as MSD and VACF methods, respectively. A number of theories

have been proposed to describe the transport phenomena namely the mass, momen-

tum or energy transfer in simple dense fluids. None of these theories are capable to
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predict exact result. Alongside with the theoretical values of self-diffusion coefficients

we have a little experimental data available in the litterature at different thermody-

namic states. Therfore, MD simulation has become an useful method for studying

self-diffusion coefficients of real fluids composed of relatively simple molecules [203].

In the present case we have calculated self-diffusion coefficients of liquid systems from

Z(t) and 〈δR2(t)〉 through the Green-Kubo and Einstein relations, respectively. It

is worth noticing that Z(t) and 〈δR2(t)〉 are obtained from OF-AIMD simulation

method in the present work.

5.2.4 Self-intermediate Scattering Function

The self-intermediate scattering function (SISF), Fs(q, t) is one of the simplest time-

dependent quantity. The Fs(q, t) gives the probability that a tagged particle at time

t has moved a specified distance from its initial position. Thus, the SISF provides the

most complete information about the single particle motion. This corresponds the

single particle dynamics are not same length scales, ranging from the hydrodynamic

limit to the free particle limit. Area under Fs(q, t) can be used to define a relaxation

time τ . The dynamical variable for i-th particle reads as

ρs,i(R, t) = δ(R−Ri(t)), (5.38)

which is usually referred to as the i-th single-particle (or self-) density at the point R

and time t. The interpretation of ρs,i(R, t) as a ‘density’ comes from the integration

of Eqn. (5.38) over the full range of R. We write the normalization condition as

∫

ρs,i(R, t) dR = 1, (5.39)
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which simply means that the tagged particle certainly be counted somewhere in the

volume V at any time [123]. As is clear from its definition, ρs,i(R, t) is expected to

change very rapidly as a function of R and t. The gross measure of this variable is

provided by its statistical average yields [123]

〈ρs,i(R, t)〉 = 〈ρs,i(R, t0)〉 =
1

V
, (5.40)

which is consistent with the previous interpretation of ρs,i(R, t) as a number density.

The space Fourier transformation of the i-th self-density is

ρs,i(q, t) =

∫

dRe−iq.Rρs,i(R, t) = e−iq.Ri(t). (5.41)

We have computed Fs(q, t) from the positions of the particles. The time correlation

associated with ρs,i(R, t) is usually referred to as the self-intermediate scattering

function and is defined as [15, 123, 125]

Fs(q, t) = 〈ρs,i(q, t+ t0)ρ
∗
s,i(q, t0)

=
1

N

〈

N
∑

i=1

e−iq.Ri(t+t0)eiq.Ri(t0)
〉

, (5.42)

where, 〈...〉 is the average over time origins and wavevectors with the same modulus,

N is the total number of particles and Ri(t) is the position of the i-th particle at time

t. Eqn. (5.42) has been used in OF-AIMD simulation for calculating self-intermediate

scattering functions. The present work is concerned with isotropic systems only, for

which the self-intermediate scattering function depends on the magnitude q of q.

Alternatively, Fs(q, t) can be calculated by taking the Fourier transformation of the

self part of vHCF, Gs(R, t) defined as

Fs(q, t) =

∫

dR exp
[

−iq.R
]

Gs(R, t). (5.43)
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Figure 5.7: Schematic diagram of the self-intermediate scattering in the liquid range.

This method, however, has the disadvantage to involve Fourier transformation arte-

facts due to the finite size of our simulation box. The general behavior of Fs(q, t) is

shown schematically in Figure 5.7.

Fs(q, 0) = 1 due to the facts that the tagged molecule is localized to the origin

at time t=0. As time evolves and the molecule begins to move away from its initial

position, Fs(q, t) decreases in a smooth manner. The decay rate seems to be increased

with q, indicating that the short-wavelength fluctuations die out much more rapidly

[199]. There is an interesting relation between the self-intermediate function and

the self-diffusion coefficient which is known as the Gaussian approximation for self-

intermediate scattering function. The self part of the van Hove function Gs(R, t) can

be written as a Gaussian function of R in the form [125,206]

Gs(R, t) =
1√

4πD t
exp

[

− R2

4Dt

]

=
1

(2π)3

∫

dqe−Dq
2teiq.R, (5.44)
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where, D is the self-diffusion coefficient. By using Eqn. (5.44), one can read from

Eqn. (5.43)

Fs(q, t) = exp
[

−Dq2t
]

= exp
[−q2〈δR2(t)〉

6

]

, (5.45)

which is a well-known Gaussian approximation for Fs(q, t). The Fs(q, t) obtained

from the Gaussian approximation agrees well with that directly calculated from the

molecular dynamics simulations for both small and large wavevectors. This approx-

imation agrees quite well with simulated Fs(q, t) for q → 0. This means that the

self-intermediate scattering function is controlled by the self-diffusion coefficient. In

the liquid range, the discrepancies between them are found to be rather small, and

mainly occur in the intermediate range of wave vectors and times, as expected [123].

Even, on the basis of these direct comparisons the overall results predicted by the

Gaussian ansatz are quite acceptable. As expected, the main shortcomings are found

to occur at the intermediate wavevectors, where the deviations may even rises up to

about 20% [123].

5.2.5 Intermediate Scattering Function and Dynamic Struc-

ture Factor

The density of particles at a point R at time t is defined as Eqn. (5.22) and in the

collective case with Fourier components defined as

ρq(t) =

N
∑

i=1

e−iq.Ri(t). (5.46)
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The intermediate scattering function (ISF), F (q, t), is a density autocorrelation func-

tion. This provides the information about the collective dynamics of density fluctu-

ations over both the length and time scales. As the system under consideration is

isotropic, F (q, t) depends only on the magnitude of q and not on its direction. Thus,

F (q, t) is a function only of the wavenumber q =| q | and t.

6
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Figure 5.8: Schematic diagram of the intermediate scattering function of liquid metal
near the melting point.

In the present OF-AIMD simulation, we have directly computed the ISF, F (q, t),

from the atomic trajectories. It is defined as [15, 123, 125]

F (q, t) =
1

N
〈ρq(t+ t0)ρ−q(t0)〉

=
1

N

〈(

N
∑

i=1

e−iq.Ri(t+t0)
)(

N
∑

j=1

eiq.Rj(t0)
)〉

, (5.47)
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where, N is the total number of particles and Rj(t) is the position of the j-th particle

at time t. Instead of direct computation, F (q, t) can be calculated by taking the

Fourier transformation (FT) of the vHCF generated in MD simulation, i.e.

F (q, t) =

∫

dR exp[−iq.R]G(R, t). (5.48)

Accuracy of F (q, t) obtained from FT is less than that obtained from direct calculation

of F (q, t). This is because of the mathematical complexity of FT. The quantity F (q, t)

is directly accessible in light and neutron scattering experiments [125]. A typical

behavior of F (q, t) for liquid metal is shown in Figure 5.8.

Fluctuations of F (q, t) implies dynamical heterogeneities. F (q, t) exhibits an os-

cillatory behavior and the amplitude of the oscillations being stronger for the smaller

q values for liquid metals near melting [123]. As q increases and the length scale 2π
q

becomes more and more microscopic, the liquid is not able to support any collective

excitation, and F (q, t) should decay monotonically [123]. The slow decay of F (q, t)

at q ≈ qp known as “de Gennes narrowing”, which is induced by the strong spatial

correlations appearing at those q values around qp [123]. In the limit q → 0, F (q, t)

decays more slowly than the self-intermediate scattering function, Fs(q, t). For large

q, the intermediate scattering function, F (q, t) → Fs(q, t) [199].

The dynamic structure factor (DSF) is a mathematical function that contains

information about inter-particle correlations and their time evolution. The DSF is

related to the intermediate scattering function F (q, t). It is defined by the Fourier

transform of the F (q, t) into the frequency domain with an appropriate window to
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smooth out truncation effects as

S(q, ω) =
1

2π

∫ ∞

−∞
F (q, t) exp[−iωt]dt. (5.49)

This technique has been used to evaluate the dynamic structure factor in the present

OF-AIMD simulation. The DSF describes thermal fluctuations in a material which

has experimental relevance because it is directly related to the scattered intensity in

the inelastic neutron scattering (INS) or the inelastic X-ray scattering (IXS). Notice

that, since F (q, t) is a real function which is even in t, the dynamic structure factor

will be even in ω. The DSF exhibits well defined side peaks for lower values of q and

exist up to q ≈ qp , where qp is the main peak position of S(q). The well defined side
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Figure 5.9: Schematic diagram of the normalized DSF of liquid metal near the melting
point.
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peaks indicating the existence of collective density excitation and after almost q > qp,

the side peak of S(q, ω) appears to be a shoulder instead of peak and then decreases

monotonically for large q values. Eventually, at the largest value of q where S(q) ≈ 1,

S(q, ω) approaches the ‘self’ spectrum Ss(q, ω) [123]. From the position of the side

peaks of S(q, ω), a dispersion relation can be obtained and the slope of the dispersion

curve at q → 0 yields the adiabatic sound velocity. The ISF and therefore the DSF,

is more challenging to compute than ststic properties like g(r) and S(q). Because

the static properties are defined as an ensemble average of a dynamical variable at

certain time, whereas the ISF involves the ensemble average at two different times.

The general behavior of the normalized DSF is illustrated in Figure 5.9.

5.2.6 Viscosity

Viscosity gives the measurement of resistance to flow [207]. Two adjacent layers slip

past each other, each exerts a frictional resistive force on the other, and this internal

friction gives rise to viscosity. Besides nonequilibrium molecular dynamics, in which

the shear viscosity, η, is determined from the response of the system to a shearing

force. Whereas the equilibrium methods are appealing in the context of AIMD since

they have crucial advantage of keeping the possibility to calculate all the other physical

properties in the same simulation. A usual way of extracting η in the framework of

equilibrium simulations is from the Green-Kubo formalism, i.e., the time integration

of the stress autocorrelation function obtained from the off-diagonal component of the

stress tensor [66]. An alternative method based on the transverse time correlation

function Jt(q, t) is incorporated in the present work. It has the advantage of yielding
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a generalized q-dependent viscosity from which the hydrodynamic regime can be

detected and finite size effect can be evaluated [66]. The general behavior of Jt(q, t)

is shown schematically in Figure 5.10.

The vectorial variable

j(q, t) =
N
∑

j=1

vj(t)e
iq.Rj(t) (5.50)

is known as the current density associated with the overall motion of the particles.

The current density may be split as

j(q, t) = jl(q, t) + jt(q, t), (5.51)

where, jl(q, t) and jt(q, t) are the longitudinal component parallel to q and transverse

component perpendicular to q, respectively.
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Figure 5.10: Schematic diagram of the transverse time correlation function, Jt(q, t)
near melting point.
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Let us assume that waves propagating in the z-direction. Longitudinal current

exists when the direction of motion of the particles (the velocity) is parallel with

the direction of propagation of the waves. On the other hand, transverse current

exists when the direction of motion of the particles is perpendicular to the direction

of propagation of the waves [123]. The longitudinal, Jl(q, t), and transverse, Jt(q, t),

current correlation functions are defined as

Jt(q, t) =
1

2N
〈jt∗(q, 0).jt(q, t)〉 (5.52)

and

Jl(q, t) =
1

N
〈jl∗(q, 0).jl(q, t)〉. (5.53)

The transverse current time correlation function, Jt(q, t) is an interesting dynamical

magnitude. It is not associated with any measurable quantity and can only be de-

termined by means of computer simulations. It gives information about the shear

modes.

The shear viscosity coefficent, η, can be expressed in tetms of a simple Green-Kubo

integral

η =
1

kBTV

∫ ∞

0

dt 〈σzx(0)σzx(t)〉

=

∫ ∞

0

dt η(t). (5.54)

The quantity η(t) = η(q → 0, t) = 1
kBTV

〈σzx(0)σzx(t)〉, often referred to as the

transverse (or shear) stress autocorrelation function [123] with

σzx =
N
∑

i=1

[

mvi,zvi,x −
1

2

N
∑

i,j 6=i

(zijxij
rij

)

φ′(rij)
]

, (5.55)
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where, the notation vi,z means the z component of velocity of particle i at time t,

and xij =| xi − xj |. The hydrodynamic method for computing the shear viscosity is

based on the transverse part of the linearised Naviér-Stokes equation. This equation

can be written as [199]

∂

∂t
Jt(q, t) = −q

2η

ρm
Jt(q, t), (5.56)

with the time dependent transverse current correlation function defined as

Jt(q, t) =
1

N
〈jx∗(q, 0).jx(q, t)〉 (5.57)

and wave number q. The short-time features of the transverse current correlation

function Jt(q, t) is given by [123]

Jt(q, 0) =
kBT

m
=

1

βm
(5.58)

From Eqn. (5.56), one obtains an exponential decay for the transverse current corre-

lation function

Jt(q, t) = Jt(q, 0) exp
[

− η

mρ
q2 | t |

]

=
1

βm
exp

[

− η

mρ
q2 | t |

]

. (5.59)

The solution of

∂

∂t
Jt(q → 0, t) = −ηq

2

ρm
Jt(q → 0, t), (5.60)

which arises when the transverse current correlation function reach a Markovian sit-

uation [123] with the hydrodynamic result defined as Eqn. (5.59), gives the ordinary

shear viscosity η. Thus we get

Jt(q → 0, t) =
1

βm
exp

(

− q2
η | t |
ρm

)

(5.61)
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where, η is the shear viscosity coefficient defined as Eqn. (5.54). Therefore, the shape

of Jt(q, t) evolves from a Gaussian, in both q and t, for the free-particle q → ∞ limit

towards a Gaussian in q and exponential in t for the hydrodynamic limit (q → 0). For

the intermediate values of q, Jt(q, t) exhibits complicated behavior, because it may

oscillate signaling the propagation of shear waves. From the results for Jt(q, t) we can

readily obtain the shear viscosity coefficent, η [123]. However, the memory function

representation of Jt(q, t) is

J̃t(q, z) =
1

βm

[

z +
q2

ρm
η̃(q, z)

]

−1

, (5.62)

where, the tilde denotes the Laplace transform, introduces a generalized shear viscos-

ity coefficent η̃(q, z). The area under the normalized Jt(q, t), gives βmJ̃t(q, z = 0),

from which values for

η̃(q, z = 0) =
ρm

q2βmJ̃t(q, z = 0)
(5.63)

can be obtained, and then the shear viscosity coefficent η is derived from the limit

q → 0. This is performed by extrapolating the property that the inversion is the

symmetry in the system which allows to approximate [208]

η̃(q) = η(1− αq2). (5.64)

The transverse current spectrum, Jt(q, ω) is the time Fourier transform of Jt(q, t)

and is defined as

Jt(q, ω) =
1

2π

∫ ∞

−∞
Jt(q, t) exp[−iωt]. (5.65)

The Jt(q, ω) show peaks within some q-range, which are connected with propagating

shear waves.
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5.2.7 Stokes-Einstein Relation

The self-diffusion constants, D, the shear viscosity, η, and the effective diameter of

the particle, d, i.e. the position of the first peak of the PDF are related through the

Stokes-Einstein relation (SE) [123, 125, 199]

d =
kBT

CπηD
, (5.66)

where, kB is the Boltzmann constant and C is a constant depending on the boundary

condition of the flow. This relation was originally introduced to describe the diffusive

motion of a large brownian particle in a continuous fluid with shear viscosity, η. Due

to the stick boundary condition, the fluid velocity at the surface matches with that

of the particle velocity and C = 3 in this case. On the other hand, the normal

component of the fluid velocity is set equal to the normal component of the particle

velocity with non tangential force acting on the sphere owing to the slip boundary

condition. In this case one finds C = 2. The SE relation was purely derived from

macroscopic considerations. It is surprisingly found to work well in simple liquids

on the atomic scale. The more reasonable values of the effective diameter d can be

found if the slip boundary condition is imposed.



Chapter 6

Results and Discussion

The OF-AIMD simulations have been performed for liquid Cr (l-Cr), l-Mn, l-Fe, l-Co,

l-Ni, l-Pd, l-Pt, l-Zn, l-Cd and l-Hg at thermodynamic states near their respective

triple points; more specific information is given in Table 6.1. We have performed

simulation at two thermodynamic states for the systems Fe, Co, Zn, Hg and at one

thermodynamic state for Cr, Mn, Ni, Pd, Pt and Cd depending on the availability

of the experimental structure. In the simulations, we have considered 500 particles

inside a periodic cubical cell with a size determined by the corresponding ionic number

density of the systems at a given thermodynamic state. For given ionic positions at

time t, the electronic energy functional is minimized with respect to ρ(r), represented

by a single effective orbital, ψ(r) defined as ρ(r) = |ψ(r)|2. The orbital is expanded

by plane wave basis set which is finally truncated at the cutoff energy. These cutoff

energies Ecut for the systems under study are given in Table 6.2. Figures 6.1-6.3 show

the non-Coulombic electron-ion interaction in q space for liquid (Cr, Mn, Fe, Co),

(Ni, Pd, Pt) and (Zn, Cd and Hg), respectively. These figures show that in the long

111
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Table 6.1: Input parameters used in the present calculations: temperature T , ionic
number density ρ, amplitude in the core A, softness parameter a, core radius Rc and
ionic valence Z.

Systems T(K) ρ(Å−3) Rc(a.u.) A(a.u.) a(a.u.) Z

Cr 2173 0.0726 1.37 0.050 0.65 1.50

Mn 1533 0.0655 1.40 0.005 0.75 1.50

Fe 1833 0.0756 1.25 0.005 0.85 1.69

1923 0.0742 „ „ „ 1.69

Co 1823 0.0786 1.39 0.005 0.85 1.50

1923 0.0774 „ „ „ 1.50

Ni 1773 0.0792 1.20 0.005 0.65 1.50

Pd 1853 0.0594 1.45 0.005 0.30 1.60

Pt 2053 0.0577 1.45 0.050 0.70 1.60

Zn 0723 0.0636 1.05 0.004 0.85 2.00

0833 0.0620 „ „ „ 2.00

Cd 0623 0.0428 1.26 0.005 0.85 2.00

Hg 0293 0.0407 1.26 -0.06 0.90 2.00

0353 0.0402 „ „ „ 2.00

wavelength limit (q → 0), the value of vps(q) is the largest for l-Pt, the smallest for

l-Zn and all others lie in between. The values of the parameters Rc (core radius),

A (amplitude in the core) and a (softness parameter) that are used to calculate the

non-Coulombic electron-ion interaction are given in the Table 6.1. The depths of the

vps(q) are shown in Figure 6.4. The Figure 6.5 shows that the similarity of the phase

of the oscillations allows us to group the elements as ( Cr, Mn and Co), (Pd and Pt)

and (Fe, Cd and Hg). Whereas l-Zn and l-Ni oscillate completely in different phase.

The oscillatory behavior occurs at q > 3.5 (a.u−1).

The electronic energy minimization with respect to the Fourier coefficents of ex-
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pansion is performed every ionic time step using quenching method which gives the

ground state electron density and ground state energy. The ionic forces are essential

ingredients to perform the molecular dynamics simulations. These forces are dreived

from the ground state electronic energy by using the Hellman-Feynman theorem. The

Table 6.2: Cutoff energy of the systems under study at their respective
melting points.

Systems T(K) Ecut(Ryd.) Systems T(K) Ecut(Ryd.)

Cr 2173 14 Pd 1853 11

Mn 1533 11 Pt 2053 20

Fe 1833 20 Zn 0723 22

1923 20 0833 22

Co 1823 14 Cd 0623 22

1923 14 Hg 0293 22

Ni 1773 14 0353 22

ionic motion characterized by the position and velocity are updated at each time step

by solving the Newton’s equations of motion. To solve the Newton’s equations of

motion numerically we have used the Verlet Leap-frog algorithm with a finite time

step. Finite time step for systems l-Cr, l-Mn, l-Co , l-Ni, l-Pd, l-Pt, l-Zn, l-Cd, l-Hg

is taken 7.6 × 10−3 ps and for the system l-Fe is taken 5 × 10−3 ps. In the case of

l-Fe we have chosen time step 5× 10−3 ps rather than 7.6× 10−3 ps to have a better

description for liquid structure. After equilibration, the calculation of properties was

performed by averaging over 10000 configurations for systems (Cr, Mn, Co, Fe, Zn,

Cd, Hg) and 5000 configurations for systems (Ni, Pd, Pt). This leads to a simulation
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time of 76 ps for l-Cr, l-Mn, l-Co, l-Zn, l-Hg, l-Cd, 50 ps for l-Fe and 38 ps for l-Ni,

l-Pd, l-Pt.
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Figure 6.1: Non-Coulombic part of the ionic pseudopotentials used for liquid Cr, Mn,
Fe, and Co. The inset shows a magnified display of the oscillations.
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Figure 6.2: Non-Coulombic part of the ionic pseudopotentials used for liquid Ni, Pd
and Pt. The inset shows a magnified display of the oscillations.
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Figure 6.3: Non-Coulombic part of the ionic pseudopotentials used for liquid Zn, Cd
and Hg. The inset shows a magnified display of the oscillations.
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Figure 6.4: Depth of the non-Coulombic part of the ionic pseudopotentials for the
systems under study.
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Figure 6.5: Phase of the oscillations for the non-Coulombic part of the ionic pseu-
dopotentials of the systems under study.

6.1 Static Properties

6.1.1 Liquid Cr

The static structure factor S(q) and it’s real space counterpart the pair distribution

function g(r) are related through the Fourier transformation (FT) within the theory

of statistical mechanics. But the OF-AIMD simulation allows us a direct computation

of both S(q) and g(r) (without using any FT). This feature thus deserves in their
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own right of presentation for both S(q) and g(r) with equal importance. Figure 6.6

shows S(q) along with the XRD data [27] for l-Cr at T = 2173 K. The principal

peak is somewhat overestimated but the position of the main peak (qp ≈ 2.90Å−1)

agrees well with experimental peak position (qp ≈ 3.0Å−1) [27]. Beyond the principal

peak, other peak values, position of the peaks and phase of oscillations also agree

well within the uncertanity of the experimental data. This is worth noting that,

the neutron diffraction data sometimes yields larger peak of S(q) than that of the

XR diffraction ones [18]; moreover, the principal peak values are found to vary among

different set of XRD data (see Figure 6.10 for l-Fe). Unfortunately, neutron diffraction

data or other set of XRD data are not available for l-Cr. In the long wavelength limit

of the static structure factor, S(q → 0), is connected to the thermodynamics via

the Eqn. (5.15). As the size of the simulation box determines the lowest value of

q = 2π
L

, we do not have S(q) at q → 0 from simulation. We have, therefore, fitted

the OF-AIMD low q (q < 0.7Å−1) values of S(q) by the Eqn. (5.16) to have S(0)

and from the value of S(0) we have estimated κT using the Eqn. (5.15). From this

calculation we have obtained κT = 0.79 ± 0.01 (in 10−12cm2 dyne−1 units) for l-Cr.

To the best of our knowledge, no experimental data for κT is available for l-Cr. Here

we note that, a value derived from the experimental S(q) at q → 0 is found to be

0.82± 0.10 (in 10−12 cm2 dyne−1 units) which is slightly overestimated in magnitude

from our estimated result. On the other hand, κT of solid Cr at room temperature is

0.60 (in 10−12cm2 dyne−1 units). The isothermal compressibility in the liquid state is

32% larger than that of its solid phase, which qualifies that we are on the right track.

The pair distribution function, g(r), provides information about the short range
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order in the liquid state. Figure 6.7 shows g(r) for l-Cr at T = 2173 K, where the

X-ray (XR) diffraction data of Waseda [27] are also dipicted for comparison. In this
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Figure 6.6: Static structure factor, S(q) for l-Cr at T = 2173 K. The solid line stands
for OF-AIMD results, the closed circles for XR diffraction data [27].

case the amplitude of the principal peak occurs at rp = 2.53Åof the simulated g(r)

is somewhat underestimated than that of experimental g(r), occuring at rp = 2.50Å.

But the overall agreement with the position of subsequent peaks and phase of oscilla-

tions lies within the few percent of the experimental data as we have seen in the case

of S(q). The coordination number is obtained from Eqn. (5.19), where the upper

limit of integration is the first minimum (rmin = 3.45Å ) of RDF, G(r), is found

to be Nc = 12.08. The coordination number calculated from the experimental pair

distribution function was found to be Nc = 11.68. In this case the agreement is found
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to be fairly good.
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Figure 6.7: Pair distribution function, g(r) for l-Cr at T = 2173 K. The solid line
stands for OF-AIMD results and the closed circles represent XR diffraction data [27].

6.1.2 Liquid Mn

Figure 6.8 shows the static structure factor, S(q), for l-Mn at T = 1533 K, where the

principal peak is located at qp ≈ 2.76Å−1. But the principal peak position of XRD

data [27] is at qp ≈ 2.85Å−1, which is slightly greater than the calculation. It is seen

that the principal peak is somewhat overestimated, but the overall agreement with

the corresponding XR diffraction data [27] is good. In this case the quality of the

agreement is better than that of l-Cr. The isothermal compressiblity is calculated in

the same manner as it is done for l-Cr. The computed value for κT is found to be 1.27±

0.03 (in 10−12cm2 dyne−1 units) which is somewhat smaller than the experimental one
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κT = 1.73 (in 10−12cm2 dyne−1 units) [27]. The isothermal compressiblity of Mn in

the solid phase is 0.83 (in 10−12cm2 dyne−1 units).
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Figure 6.8: Static structure factor, S(q) for l-Mn at T = 1533 K. The solid line stands
for OF-AIMD results, the closed circles are the XRD data [27].

Figure 6.9 displays pair correlation function, g(r) for l-Mn at T = 1533 K along

with the corresponding XR diffraction data [27]. In this case the agreement with the

experimental data is excellent. Here it is to be noted that the peak position of g(r)

occurs at rp = 2.61Å and coincided with XRD data [27]. The coordination number

Nc = 12 is calculated via Eqn. (5.19), where the upper limit of the integration is

taken from the first minimum, rmin = 3.57Å of G(r) as before. The experimental

g(r) [27] provides Nc = 11.69. The OF-AIMD value of Nc agrees within 2.6% of the

experimental one.
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Figure 6.9: Pair distribution function, g(r) for l-Mn at T = 1533 K. The solid line
stands for OF-AIMD results and the closed circles stand for XRD data [27].

6.1.3 Liquid Fe

For liquid Fe, we have performed simulation at two different temperatures because

of the availability of experimental XR diffraction data. Note that we have kept

parameters unchanged of the pseudopotential for both thermodynamic states. This

gave us a chance to examine the temperature dependence for which parameters remain

effective in describing structure of l-Fe. Figure 6.10 shows the OF-AIMD structure

factor, S(q), for l-Fe at temperatures T = 1833 and 1923 K. To compare our results

we have presented the XRD data obtained from two different sources. One performed

by Inui et al. [209] and other one by Waseda [27]. We also presented the neutron

diffraction data of Schenk et al. [210]. It is seen that the positions of the principal
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and other peaks, height of the peaks and the phase of oscillations are in excellent

agreement with those of Inui et al. [209]. Very recently, Marques et al. [52] performed

AIMD simulation study for l-Fe at T = 1873 K, which is shown in Figure 6.11 and

we have compared this result with the present OF-AIMD calculation. Qualitatively
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Figure 6.10: Static structure factor, S(q) for liquid Fe at T = 1833 and 1923 K. The
solid lines stand for OF-AIMD results, the closed circles are the XRD data [27] and
open circles are the XRD data of M. Inui et al. [209] at T = 1843 K and open triangles
are the neutron diffraction data from Schenk et al. [210] at T = 1873 K.

our OF-AIMD structure agrees well with those of AIMD [52]. The principal peak of

S(q) calculated by Marques et al. occurs at qp ≈ 2.99Å−1 and its height is S(qp) ≈ 2.8.

The principal peak position of OF-AIMD S(q) is found at qp ≈ 3.00Å−1 having

S(qp) ≈ 2.85. On the other hand, the experimental peak position occurs at qp ≈

2.97Å−1 [27]. The isothermal compressiblity calculated from the long wavelength
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limit of S(q) yields a value κT = 0.91 ± 0.03 and 0.94 ± 0.02 (in 10−12cm2 dyne−1

units) at T = 1833 and 1923 K temperatures, respectively. But the values derived

from the experimental S(q) are found to be 0.92 and 1.15 (in 10−12cm2 dyne−1 units),

respectively. The compressibility of Fe in solid phase at room temperature is 0.59 (in

10−12cm2 dyne−1 units).
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Figure 6.11: Static structure factor, S(q) for l-Fe at T = 1833 K. The solid line stands
for OF-AIMD results, the closed circles for AIMD results of Marques et al. [52].

Figure 6.12 shows the OF-AIMD g(r) for l-Fe at T = 1833 and 1923 K along with

the XR diffraction data [27]. It is seen from the figure that the principal peak of g(r)

is slightly underestimated for T = 1833 K and produced exactly as XRD data [27]

for T = 1923 K. The peak positions of OF-AIMD g(r) for both temperatures occur

at rp = 2.50Å whereas the experimental peak positions are seen to be occured at
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rp = 2.60Å. Figure shows a fairly good agreement for both positions and phase of

oscillations when compared with XRD data [27]. The coordination numbers calcu-

lated at T = 1833 and 1923 K (from Eqn. (5.19)) by integrating up to the first

minimum rmin = 3.38Å of G(r), the values are found to be Nc = 11.91 and 11.84,

respectively. Values obtained from the experimental g(r) are Nc = 11.41 and 11.28

at T = 1833 and 1923 K, respectively. An ab-initio MD study by Marques et al. [52]

yields Nc = 12.5 at T = 1873 K.
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Figure 6.12: Pair distribution function, g(r) for l-Fe at T = 1833 and 1923 K. The
solid lines stand for OF-AIMD results and the closed circles stand for XRD data [27].

6.1.4 Liquid Co

The OF-AIMD static structure factors, S(q), for l-Co are plotted in Figure 6.13. We

have also plotted the corresponding XRD data of Waseda [27] in the same figure.
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Figure shows that both the peak positions and corresponding oscillations are in good

agreement with XRD data of Waseda [27], although the height of the main peak is

somewhat overestimated. This overestimation at the level of the principal peak is

also noticed in other systems as discussed before. The position of the principal peak

is at qp ≈ 2.97Å−1, which is very close to experimental value qp ≈ 2.97Å−1 [27]. The

isothermal compressibility, κT derived from the long wavelength limit of S(q) is found

to be 0.69 ± 0.01 and 0.71 ± 0.01 (in 10−12cm2 dyne−1 units) at T = 1823 and 1923

K, respectively. These results are comparable with κT = 0.89 and 1.05 (in 10−12cm2

dyne−1 units), which are obtained from experimental S(q). The compressibility of

solid Co at room temperature is 0.55 (in 10−12cm2 dyne−1 units).
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Figure 6.13: Static structure factor, S(q) for l-Co at T = 1823 and 1923 K. The solid
lines stand for OF-AIMD results, the closed circles are the XRD data [27].
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The pair correlation function, g(r) for l-Co are shown in Figure 6.14. It is seen

that agreement at the level of main peak is very good for both temperatures. We

have found the main peak positions at rp ≈ 2.46Å for both temperatures, here the

experimental peak positions [27] agree in excellent way. The second peak amplitudes

are also in good agreement with experiment but in the case of peak position the

agreement is just fair. The coordination numbers calculated from the OF-AIMD g(r),

according to the Eqn. (5.19), having the integration upper limit up to rmin = 3.35Å

of G(r) are found to be Nc = 12.43 and 12.23 at T = 1823 and 1923 K, respectively.

The corresponding coordination numbers estimated from the eperimental g(r) are

11.75 and 11.27, respectively.
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Figure 6.14: Pair distribution function, g(r) for l-Co at T = 1823 and 1923 K. The
solid lines stand for OF-AIMD results and the closed circles stand for XRD data [27].
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6.1.5 Liquid Ni

The computed S(q) for l-Ni at T = 1773 K is illustrated in Figure 6.15 along with

the XRD data of Waseda [27]. Although the height of the principal peak is slightly

overestimated and the amplitude of the second peak is slightly underestimated, the

overall agreement is good. The position for the main peak, qp, is slightly smaller than

experiment, that is qp ≈ 3.03Å−1 whereas the XRD data gives qp ≈ 3.10Å−1 [27].

We observed from the Figure 6.15, the height of the main peak is somewhat over

estimated in AIMD calculation done by González et al. [211] than that of experiment
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Figure 6.15: Static structure factor, S(q) for l-Ni at T = 1773 K. The solid line stands
for OF-AIMD results, the full circles are the XR diffraction data [27], while the open
circle represents the AIMD results obtained by González et al. [211].

and OF-AIMD calculations. We also observed that the AIMD main peak appears

at the location qp ≈ 3.09Å−1. The long wavelength limit of the S(q) is linked to
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the thermodynamics through the isothermal compressibility κT , and the relation is

defined by Eqn. (5.15). Therefore, we have fitted the obtained OF-AIMD S(q) for

small q values by the expression Eqn. (5.16) for the estimation of κT which gives a

value 0.81± 0.02 (in 10−12 cm2 dyne−1 units). To best of our knowledge, there is no

available experimental data for κT at this tmperature. But an estimation obtained

from experimental S(q) [27] is 1.02 ± 0.03 (in 10−12 cm2 dyne−1 units), which is

somewhat greater than the OF-AIMD value.
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Figure 6.16: Pair distribution function, g(r) for l-Ni at T = 1773 K. The solid line
stands for OF-AIMD results and the full circles stand for XR diffraction data [27].

The pair distribution function, g(r) provides information about the short range

order in the liquid and Figure 6.16 shows the calculated g(r) for l-Ni at T = 1773 K

along with the XR diffraction data of Waseda [27]. For comparison, we obtain a good
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agreement with the experiment for positions and phase of oscillations of the main and

subsequent peaks although the height of the main peak is somewhat underestimated.

The position of the principal peak for the system l-Ni is found to be at rp ≈ 2.43Å

while the experimental g(r) yields rp ≈ 2.43Å. We note here that an AIMD simulation

gives rp ≈ 2.44Å [211]. This result is very close to our OF-AIMD calculation. The

average number of nearest neighbors, also known as the coordination number Nc,

has been obtained from the Eqn. (5.19) by integrating up to the first minimum

position rmin of G(r). Our calculated g(r) yields rmin = 3.35Å at T = 1773 K and

the calculated coordination number is Nc = 11.85. For comparison, we note that

the XRD-based g(r) data yields rmin = 3.35Å and Nc = 11.70. So, the OF-AIMD

coordination number agrees within 1.3% of the experimental value.

6.1.6 Liquid Pd

The simulated S(q) for l-Pd at T = 1853 K is illustrated in Figure 6.17 together

with the XR diffraction data [27]. Figure shows a reasonably good agreement with

experiment, although the height of the main peak of our simulated S(q) is somewhat

overestimated while the amplitude of the second peak is slightly underestimated. The

main peak is located at qp ≈ 2.77Å−1 whereas from the XRD data [27] it is observed

at qp ≈ 2.76Å−1. Interestingly, our OF-AIMD results are better in agreement with

experiment than that of AIMD peak position (qp = 2.79Å−1) and height simulated

by González et al. [212]. From the long wavelength limit of simulated S(q) we have

computed the isothermal compressiblity κT = 1.23 ± 0.03 (in units of 10−12 cm2

dyne−1) for l-Pd at T = 1853 K. This is little bit larger than the experimental
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1.02 ± 0.07 (in 10−12 cm2 dyne−1 units) value [27]. González et al. have reported,

κT = 4.70± 0.20 (in 10−12 cm2 dyne−1 units) from their KS-AIMD study [212].
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Figure 6.17: Static structure factor, S(q) for liquid Pd at T = 1853 K. The solid lines
stand for OF-AIMD results, the full circles are the XR diffraction data [27], while the
open circles represent the AIMD results obtained by González et al. [212].

The pair distribution function, g(r) for l-Pd at T = 1853 K is plotted in Fig-

ure 6.18 along with the XR diffraction data [27]. Figure shows a good agreement

with experiment, although the height of the main peak seems to be underestimated.

We note here that the main peak of g(r) occurs at rp ≈ 2.70Å and rp ≈ 2.60Å for sim-

ulated and experimental g(r) [27], respectively. While González et al. have reported

from their KS-AIMD study [212] that the main peak of g(r) occurs at rp ≈ 2.69Å.

By integrating the RDF, G(r) from 0 to rmin = 3.69Å we have obtained the total

number of nearest neighbors, Nc ≈ 11.65, which is closer to the experimental value,
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Nc ≈ 10.90 calculated from the experimental g(r) data of Waseda [27]. An AIMD

simulation study gives Nc ≈ 12.8 [212] having rmin = 3.77Å of g(r).
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Figure 6.18: Pair distribution function, g(r) for liquid Pd at T = 1853 K. The solid
line stands for OF-AIMD results and the full circles stand for XR diffraction data [27].

6.1.7 Liquid Pt

The OF-AIMD static structure factor, S(q) of l-Pt at T = 2053 K together with the

XRD data of Waseda [27] is shown in Figure 6.19. A fair agreement is found for

both the positions and phase of the oscillations although a small deviation in height

of the main peak is observed, which is approximately 4.5% higher than that of the

height of experimental main peak [27]. Figure 6.19 reveals that l-Pt has symmetric

main peak located at qp ≈ 2.73Å−1 whereas the XRD main peak position of S(q)

is located at qp ≈ 2.76Å−1 [27]. If we compare the present OF-AIMD results with
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the AIMD calculations performed by González et al. [212], clearly it appears that the

height and position of the main peak and subsequent oscillations in the case of OF-

AIMD results are slightly fitted better with the experiment. Here AIMD main peak

is found at qp ≈ 2.72Å−1 [212]. We have estimated the isothermal compressiblity

κT = 1.25± 0.05 (in units of 10−12 cm2 dyne−1) via Eqn. (5.15) for l-Pt at T = 2053

K, which is reasonably closer to the experimental value κT = 1.44 ± 0.32 (in 10−12

cm2 dyne−1 units) [27]. On the other hand, an AIMD calculation done by González

et al. yield a value κT = 1.80± 0.15 (in the same units) [212].
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Figure 6.19: Static structure factor, S(q) for liquid Pt at T = 2053 K . The solid
line stands for OF-AIMD results, the full circles are the XR diffraction data [27], the
open circles are the AIMD results performed by González et al. [212].

The associated g(r) is plotted in Figure 6.20 along with the XR diffraction data
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taken from Waseda [27]. It is worth noting that the main peak positions of g(r) for

OF-AIMD and experiment [27] are found at rp ≈ 2.72Å and rp ≈ 2.70Å respectively.

The main peak position of g(r) for l-Pt is found at rp ≈ 2.69Å from the KS-AIMD

simulations [212]. Here we have found a fair agreement with experiment although the

height of the main peak is somewhat underestimated. Our calculated coordination

number is Nc ≈ 12.34 while the first minima located at rmin = 3.74Å of G(r), which

is close to the experimental coordination number 11.75 computed from the g(r) data

of Waseda [27]. González et al. have calculated Nc ≈ 12.80 [212](which is very close

to our calculation) from an AIMD calculation while they found the first minimum of

g(r) at rmin = 3.77 Å.
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Figure 6.20: Pair distribution function, g(r) for liquid Pt at T = 2053 K. The solid
line stands for OF-AIMD results and the full circles stand for XR diffraction data [27].
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6.1.8 Liquid Zn

The calculated S(q) for l-Zn at T = 723 and 833 K are depicted in Figure 6.21

along with the XRD data of Waseda [27] and the NS data of North et al. [95]. A

peculiar feature of the experimental S(q) of l-Zn (and l-Cd) is the asymmetric shape

of the main peak, with the low angle side being less steep than the high angle side

whereas the subsequent oscillations show a symmetric shape. Although our results

for S(q) show an overall good agreement for the positions and amplitudes of the

oscillations. However some differences are visible in the region of the main peak of

S(q), namely, the asymmetric shape of the experimental S(q). The calculated main

peak’s position, qp, is slightly smaller than experiment as the calculations give qp ≈

2.83Å−1 for both temperatures whereas the XRD data [27] give qp ≈ 2.92Å−1 and the

NS data [95] at T = 723 K is qp ≈ 2.87Å−1. So, the OF-AIMD value is closer to that

of neutron scattering data. For comparison, we note that the calculations of Lai et

al. [86] were able to reproduce some asymmetric of the main peak although there was

some underestimation of its height; moreover, it was suggested that this asymmetry

was related to the medium and long range attractive parts of the interatomic pair

potentials. The long wavelength limit of the S(q) is linked to the thermodynamics

through the isothermal compressibility κT , namely by the Eqn. (5.15). Therefore,

we have fitted the obtained OF-AIMD S(q) for small q values to an expression Eqn.

(5.16) and we have estimated κT = 2.2±0.1 and 2.4±0.1 (in 10−12 cm2 dyne−1 units

) for T = 723 and 833 K, respectively. To our knowledge, there are no experimental

data found available for κT at those temperatures, but an estimate derived from

experimental values of other thermodynamic magnitudes, suggests [213] κT ≈ 2.42



Chapter 6: Results and Discussion 135

and 2.60 (in 10−12 cm2 dyne−1) respectively.
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Figure 6.21: Static structure factor, S(q) for l-Zn at T = 723 K and 833 K. The solid
lines stand for OF-AIMD results, the open circles are the XR diffraction data [27]
and the full triangles are the NS data at T = 723 K [95].

The pair distribution function, g(r) provides information about the short range

order in the liquid and Figure 6.22 shows the calculated g(r) for l-Zn at T=723

and 833 K along with those derived from the XR diffraction data of Waseda [27].

The principal peak positions of theoretical and experimental [27] g(r) are found at

rp ≈ 2.61Å and rp ≈ 2.70Å, respectively. For comparison, we note that the EAM

model of Belashchenko [87] for l-Zn produced a similar g(r) for T=723 K but for

higher temperatures it is underestimated the height of the main peak as well as the

amplitude of the subsequent oscillations. The coordination number, Nc has been
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obtained by the Eqn. (5.19) usig the radial distribution function (RDF), 4πr2ρg(r),

up to the position of its first minimum, rmin. Our calculated g(r) gave rmin = 3.55Å

for T=723 and 833 K and the associated coordination numbers are Nc = 12.1 and

11.8 respectively. For comparison, we mention that the XRD-based g(r) [27] gave

rmin = 3.50Å with associated Nc = 11.3 and 11.1 respectively.
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Figure 6.22: Pair distribution function, g(r) for l-Zn at T = 723 K and 833 K. The
solid lines stand for OF-AIMD results and the open circles stand for XR diffraction
data [27].

6.1.9 Liquid Cd

The calculated S(q) for l-Cd at T = 623 K is depicted in Figure 6.23 along with the

XR diffraction data [27]. The calculated main peak position is at qp ≈ 2.52Å−1, which
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agrees reasonably well with the experimental main peak position qp ≈ 2.60Å−1 [27].

We observed an overall qualitative good agreement with experiment, although our

calculated S(q) does not account for the slightly asymmetric shape of the experimental

main peak. Nevertheless, the position and height of the subsequent oscillations are
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Figure 6.23: Static structure factor, S(q) for liquid Cd at T = 623 K. The solid lines
stand for OF-AIMD results, the open circles are the XR diffraction data [27].

well reproduced. Again, we note that the calculations of Lai et al. [86] as well as

those of Calderin et al. [90] did reproduce the asymmetric shape of the main peak.

However, the KS-AIMD approach of Calderin et al. does not resort to an interatomic

pair potential picture of the interactions in the liquid which precludes a check on

the suggestion about the role played by the medium and long range attractive parts
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of the interatomic pair potential. By following the procedure outlined above, we

have estimated the isothermal compressiblity for l-Cd at T = 623 K, and we have

obtained κT = 4.50 ± 0.4 (in units of 10−12 cm2 dyne−1); this is somewhat greater

than the experimental [205] data of 3.20 (in the same units). Again, we note that the

KS-AIMD calculations of Calderin et al. [90] gave a more accurate estimate, namely,

κT = 3.30± 0.4.
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Figure 6.24: Pair distribution function, g(r) for liquid Cd at T = 623 K. The solid line
stands for OF-AIMD results and the open circles stand for XR diffraction data [27].

The pair distribution function g(r) for l-Cd at T = 623 K is depicted in Figure 6.24

along with the XR diffraction data [27]. There is a qualitative good agreement with

experiment, although the height of the main peak which is somewhat underestimated.
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While the main peak positions of g(r) both for OF-AIMD and experiment [27] are

located at rp ≈ 2.97Å and rp ≈ 3.0Å, respectively. As for the coordination number,

we have obtained a value Nc = 12.0 which is somewhat greater than the value Nc =

11.0 derived from the experimental g(r) [27].

6.1.10 Liquid Hg

Figure 6.25 shows the OF-AIMD results for the S(q) of l-Hg at T = 293 and 353 K

along with the XR diffraction data of Waseda [27] and Tamura et al. [214].
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Figure 6.25: Static structure factor, S(q) for liquid Hg at T = 293 K and 353 K.
The solid lines stand for OF-AIMD results, the open circles are the XR diffraction
data [27] and the full triangles are the XRD data of Tamura et al. [214].

The calculated main peak position is located at qp ≈ 2.38Å−1 for T = 293K and 353K
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which closely agrees with the corresponding experimental data qp ≈ 2.30Å−1 [27].

There is an overall good agreement with experiment for both the positions and phase

of the oscillations although the amplitudes are somewhat underestimated.

The associated g(r) are plotted in Figure 6.26 along with those derived from the

XR diffraction data of Waseda [27]. We obtain a fair agreement with experiment, al-

though the height of the main peak occured at rp ≈ 3.03Å is slightly underestimated.

For both states, the experimental main peak position is located at rp ≈ 3.10Å [27].

At room temperature, our calculated coordination number is Nc ≈ 12.0 which is close

to the number 11.6 derived from the experimental g(r) [27].
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Figure 6.26: Pair distribution function, g(r) for liquid Hg at T = 293 K and 353
K. The solid lines stand for OF-AIMD results and the open circles stand for XR
diffraction data [27].
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6.2 Dynamic Properties: Single Particle Dynamics

In this section we will focus to analyze some magnitudes related to the single particle

dynamics obtained from the OF-AIMD simulation. First of all, we have presented

the results for the velocity autocorrelation function (VACF), Z(t), of a tagged ion in

the fluid, which is defined in Eqn. (5.20). To study the atomic transport properties

of liquid system, the self-diffusion coefficient, D is an interesting magnitude, which

can be obtained from either the time integral of Z(t) as appear in Eqn. (5.36) or

the slope of the mean square displacement as described by the Eqn. (5.30). We have

used both of these routes to evaluate, D which practically leads to the same value.

Another important magnitude is the self-intermediate scattering function, Fs(q, t)

which is defined in Eqn. (5.42). The time Fourier transform (FT) of Fs(q, t) is

the self-dynamic structure factor, Ss(q, ω) which has experimental relevance due to

its connection with the incoherent part of INS cross-section. It is interesting to note

that, Fs(q, t) may be expressed within the Gaussian approximation by the Eqn. (5.45).

Now, this is of interest to compare the nature of the results of Eqn. (5.42) and Eqn.

(5.45).

6.2.1 Liquid Cr

The velocity autocorrelation function, Z(t), is depicted in Figure 6.27 for l-Cr. The

function Z(t) shows an oscillatory behavior with time t. The negative values of

Z(t) indicate backscattering of ions due to cage effects produced by surrounding

neighbours [123]. The self-diffusion coefficient has been calculated from both Z(t)

and 〈δR2(t)〉. Both routes provide the same result D= 0.71 ± 0.01 Å2 ps−1. To the
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best of our knowledge, no experimental data for D is available for l-Cr. Therefore a

comparison with other theoretical results may worthful. A theoretical calculation [68]

employing the scaling law defined by Dzugutov [69] yields a value of D=0.712 Å2 ps−1

for l-Cr, which is very close to our result. This agreement gives at least a feeling that

our simulated value is reliable.
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Figure 6.27: Normalized velocity autocorrelation functions for l-Cr at T = 2173 K,
l-Mn at T = 1533 K, l-Fe at T = 1833 and 1923 K and l-Co at T = 1823 K and
T = 1923 K.

Figure 6.28 shows the self-intermediate scattering function, Fs(q, t) at several q

values for l-Cr. Here the solid line represents the OF-AIMD Fs(q, t) as defined in

Eqn. (5.42) and, the filled circles represent the Gaussian approximation of Fs(q, t) as

given by Eqn. (5.45). It displays the typical monotonic non-linear decrease with time

which becomes faster with increasing q/qp values. In fact, this trend is similar to that

of the simple liquid metals near their respective triple points [15,19,123,215]. On the

other hand, it is also noticed from the same figure that, Eqn. (5.42) and Eqn. (5.45)
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completely merge with each other for low q values but deviates somewhat at small t

for large q. This clearly reveals the shortcomings of the Gaussian approximation.
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Figure 6.28: Self-intermediate scattering function, Fs(q, t) for l-Cr at T = 2173 K
for several q/qp values along with the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Filled circles: Gaussian approximation.

6.2.2 Liquid Mn

Figure 6.27 shows Z(t) for l-Mn at T = 1533 K. It is seen that the cage effect causes

the Z(t) to be negative, reflecting the backscattering of ions as mentioned before.

The first minimum appears at t ≈ 0.10 ps and the subsequent oscillations are very

weak as in the case of l-Cr. The self-diffusion coefficients are calculated using the two

routes as mentioned before, and obtained the same result. The OF-AIMD value of



Chapter 6: Results and Discussion 144

D is found to be 0.53 ± 0.01 Å2 ps−1 for l-Mn at T = 1533 K. We are not aware of

any experimental data for l-Mn to compare with our results. But results from other

calculations give values D = 0.52 Å2 ps−1 [68] and D = 0.42 Å2 ps−1 [77]. Our result

is almost same to that of Thakor et al. [68] and pretty close to Gosh et al. [77].
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Figure 6.29: Self-intermediate scattering functions, Fs(q, t) at several q/qp values for
l-Mn at T = 1533 K along with the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.

The OF-AIMD self-intermediate scattering function, Fs(q, t) for l-Mn for different

q values at T = 1533 K are displayed in Figure 6.29. The observed monotonic

behaviour of Fs(q, t) as a function of t is similar to that of l-Cr. But in this case the

matching between the Gaussian approximation and our calculation is much better
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even for high q values at small t.

6.2.3 Liquid Fe

Figure 6.27 shows the velocity autocorrelation function, Z(t) for l-Fe at T = 1833

and 1923 K. It is noticed that, the typical cage effect is also present there as in the

case of l-Cr and l-Mn. It is also noticed that the value of the first minimum of Z(t)

is affected by the temperature, that is, the depth becomes shallower as temperature

increases. Physically, it means that the backscattering effect becomes less significant

with increasing temperature due to the decrease of ionic number density. In the case

of l-Fe, the first minimum of the Z(t) occurs at time t ≈ 0.08 ps. However, the self-

diffusion coefficients calculated from Eqn. (5.30) and Eqn. (5.36) are almost same.

The magnitude of D is found to be 0.49±0.02Å2 ps−1 and 0.54±0.01Å2 ps−1 at T =

1833 and 1923 K, respectively. These results show the temperature dependent trends

correctly, that is, when temperature increases the density decreases and consequently

diffusivity increases. Yet we are not aware of any experimental data of D for l-

Fe, so it would be of worth to compare the OF-AIMD value with other calculated

results. Protopapas et al. [61] calculated the self-diffusion coefficient by extending the

Enskog theory [76] within the assumption that the self-diffusion coefficient of a dense

metallic fluid is the same as that of an appropriate hard sphere fluid. Thus, they

found D = 0.416Å2 ps−1 and 0.585Å2 ps−1 at T = 1808 and 1973 K, respectively.

Yokoyama et al. [71] calculated DHS for l-Fe by using the scaling law along with

an excess entropy obtained for the hardsphere liquid. The values obtained by them

were DHS = 0.42Å2 ps−1 and 0.73Å2 ps−1 at T = 1833 and 1923 K, respectively.
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Another study by Korkmaz et al. [72] using the same procedure but taking the values

of excess entropy calculated from the integral equation theory yields D = 0.45Å2 ps−1

and D = 0.55Å2 ps−1 at T = 1833 and 1923 K, respectively. Very recently, Marques

et al. [52] found a value D = 0.37± 0.02Å2 ps−1 at T = 1873 K for l-Fe.
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Figure 6.30: Self-intermediate scattering functions, Fs(q, t), at several q/qp values of
l-Fe for T= 1833 K along with the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.

The self-intermediate scattering function, Fs(q, t) for l-Fe is shown in Figure 6.30

for several values of q. Monotonic decrease for low q values and rapid decrement for

large q values in a way similar to Cr and Mn is also noticed for l-Fe. The OF-AIMD

result and the Gaussian approximation match well for both small and large q values.
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But for some intermediate values (viz. q/qp=0.46 and 0.68) agreement at small t is

somewhat deviated than the case of l-Cr and l-Mn.

6.2.4 Liquid Co

The velocity autocorrelation function Z(t) for l-Co at T = 1823 and 1923 K are shown

in Figure 6.27. Figure shows a typical backscattering effect and oscillations in a way

similar to those liquid systems discussed earlier. Here the first minimum of Z(t) is

located at t ≈ 0.085 ps. The temperature effect on Z(t) causes the reduction in the

depth of the principal minimum. This is because, the density decreases with increase

of temperature and as a result the cage effect becomes less relevant. The self-diffusion

coefficients calculated from the OF-AIMD configurations are found to be D=0.41 ±

0.02Å2 ps−1 and 0.48±0.02Å2 ps−1 at T = 1823 and 1923 K, respectively. To the best

of our knowledge, no experimental data of D is available for l-Co. It is therefore worth

to compare with other theoretical results. For example, the value of D calculated by

Yokoyama [70] is 0.41Å2 ps−1 at T = 1823 K and Yokoyama et al. [71] computed

values, D=0.35Å2 ps−1 and 0.46Å2 ps−1 at T = 1823 and 1923 K, respectively. An

AIMD study [216] gives values of D = 0.37Å2 ps−1 and 0.44Å2 ps−1 for T = 1823

and 1923 K, respectively. Our values agree very well with these calculated results

and the agreement is within 10% of the value calculated from AIMD [216].

The self-intermediate scattering function, Fs(q, t), for l-Co is plotted for several

values of q in Figure 6.31 for T = 1823 K. Figure shows the typical monotonic decay

as the function of t. This feature is similar to that of the systems discussed previously.

That is, the rate of decay is high for large value of q. On the other hand, the agreement
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with the Gaussian approximation is just fair in this case for q/qp values higher than

0.11 of l-Co.
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Figure 6.31: Self-intermediate scattering functions, Fs(q, t), at several q/qp values of
l-Co for T = 1823 K along with the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.

6.2.5 Liquid Ni

The calculated Z(t) for l-Ni is shown in Figure 6.32. It shows the typical backscat-

tering behavior with a first minimum at t ≈ 0.10 ps and the amplitude of subsequent

oscillations are weak. We recall here that the negative values of Z(t) represent a

backscattering effect induced by the cage effect. The self-diffusion coefficient has

been calculated by the time integral of Z(t) and also from the slope of the mean
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square displacement. Interestingly, both routes lead to similar results. Thus, we have
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Figure 6.32: Normalized velocity autocorrelation functions of liquid Ni at T = 1773
K, Pd at T = 1853 K and Pt at T = 2053 K.

obtained the same D=0.68± 0.01Å2 ps−1 from either case. The CMD study of Kart

et al. [59] gave Dcal = 0.548Å2 ps−1 and Dcal = 0.545Å2 ps−1 from Z(t) and the slope

of the mean square displacement for l-Ni at T = 1773 K, respectively. To best of our

knowledge, no experimental data exist for comparison of this system. The value of

Dpre predicted by Protopapas et al. is 0.461Å2 ps−1 [61]. Some authors [59] refered

this predicted value as experimental one. This value of Dpre is almost 32% less than

that of our calculated result. The CMD study of Alemany et al. [54] reported a

result of D=0.252± 0.004Å2 ps−1 at T = 1775 K. A recent AIMD study by Jakse et

al. [66] reports a value D=0.44± 0.03Å2 ps−1 at T = 1850 K. Our result seems to be

qualitatively agrees with this result.

Figure 6.33 shows the OF-AIMD results of Fs(q, t) for l-Ni for several q/qp values

at T = 1773 K. It displays the behavior of typical monotonic, non-linear decrease with

time which becomes faster with increasing values q/qp. In fact this trend is similar
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to that of the liquid metals near their respective triple points [15, 16, 19–21,123, 215,

217, 218]. By using Eqn. (5.45), we have verified that the Gaussian approximation

provides a good description of OF-AIMD Fs(q, t). This is shown in Figure 6.33 where

we have plotted the OF-AIMD Fs(q, t) for several q/qp values as well as the results

predicted by the Gaussian approximation.
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Figure 6.33: Self-intermediate scattering function, Fs(q, t) of liquid Ni at T = 1773 K
for several q/qp values along wth the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.

6.2.6 Liquid Pd

The calculated Z(t) for l-Pd at T = 1853 K is plotted in Figure 6.32, where we

have observed the typical cage effect with a first minimum at t ≈ 0.13 ps and the
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subsequent oscillations seem to be very weak. According to the technique mentioned
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Figure 6.34: Self-intermediate scattering functions, Fs(q, t), at several q/qp values, for
l-Pd at T = 1853 K along wth the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.

earlier, the self-diffusion coefficient has been evaluated and we obtained D=0.40 ±

0.01Å2 ps−1 for l-Pd at T = 1853 K. The CMD study by Kart et al. [59] yield values

for self-diffusion coefficient from Z(t) and the slope of the mean square dispacement

areDcal = 0.498±0.005Å2 ps−1 and ,Dcal = 0.494±0.007Å2 ps−1 for l-Pd at T = 1853

K, respectively. For comparison, we note here that the CMD study of Alemany et

al. [54] using the TB-SMA method computed D=0.403 ± 0.003Å2 ps−1. In another

CMD study using embedded atom model, Alemany et al. [57] have also calculated
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D = 0.38 ± 0.004Å2 ps−1. To the best of our knowledge, no experimental data is

found in scientific literature for l-Pd at T = 1853 K. Our result is very close to the

values found by Alemany et al. [54,57]. The KS-AIMD calculation done by González

et al. yielded DKS−AIMD = 0.27± 0.02Å2 ps−1 [212].

Figure 6.34 shows OF-AIMD Fs(q, t) at several q/qp values for l-Pd at T = 1853 K.

We notice that the features are very similar to those liquid systems already explained

before. By using Eqn. (5.45), we have verified that the Gaussian approximation also

provides a good description of OF-AIMD Fs(q, t). This is shown in Figure 6.34 where

we have plotted the OF-AIMD Fs(q, t) for several q/qp values as well as the results

predicted by the Gaussian approximation.

6.2.7 Liquid Pt

The calculated Z(t) of l-Pt at T = 2053 K is presented in Figure 6.32. The Z(t)

shows the typical back scattering behaviour with a first minimum located at t ≈ 0.18

ps, which is greater than that for Ni and Pd. This is because, the atomic mass of Pt

is larger than that for Ni and Pd, therefore the longer times are necessary to reverse

the initial particle’s velocity and thus, the minimum’s position moves towards longer

times. The calculation of the self-diffusion coefficient gives D=0.33 ± 0.01Å2 ps−1

for l-Pt at T = 2053 K. While the CMD study of Alemany et al. computed values

D=0.281 ± 0.003 [57] and 0.284 ± 0.003Å2 ps−1 [54]. Therefore, it seems that our

OF-AIMD result agrees well with the results obtained by Alemany et al. [54,57]. We

do not find any experimental data in the available literature to compare our result

for l-Pt at T = 2053 K. Due to the lack of experimental data, we have compared
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our result wtih the KS-AIMD study performed by González et al. where they have

reported a value D=0.27± 0.02Å2 ps−1 [212].

Figure 6.35 shows the OF-AIMD Fs(q, t) for several q/qp values of l-Pt at T = 2053

K. The typical monotonic decay also present in this case. From the figure we may

conclude that the small deviation of Gaussian approximation for Fs(q, t) from the

OF-AIMD Fs(q, t) increases with increasing value of q/qp at smaller value of t for

l-Pt. Even though we may say that the Gaussian approximation provides a good

description of OF-AIMD Fs(q, t), which is plotted in Figure 6.35 for several q/qp

values.
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Figure 6.35: Self-intermediate scattering functions, Fs(q, t), at several q/qp values, for
l-Pt at T = 2053 K along wth the Gaussian approximation for Fs(q, t). Full lines:
present OF-AIMD results. Full circles: Gaussian approximation.
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6.2.8 Liquid Zn

The calculated Z(t) of l-Zn are depicted in Figure 6.36. They show the typical

backscattering behaviour with a first minimum at t ≈ 0.15 ps and the subsequent

oscillations have a weak amplitude. We recall that the negative values of Z(t) rep-

resent a backscattering effect induced by the cage effect; moreover, with increasing

temperature (and decreasing density) it becomes less relevant i.e. the first minimum

in Z(t) is shallower and the subsequent oscillations are rather weak. The self-diffusion
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Figure 6.36: Normalized velocity autocorrelation functions of liquid Zn at T = 723 K
(full line) and T = 833 K (dashed line), Cd at T = 623 K and Hg at T = 293K (full
line) and T = 353 K (dashed line).

coefficient has been calculated by both the time integral of Z(t) and from the slope of

the mean square displacement, with both routes leading to similar results. From these

two methods we have obtained D = 0.26±0.03 and 0.37±0.04Å2 ps−1 at T = 723 and

833 K, respectively. For comparison, we note that when the experimental value [219]

for l-Zn at melting (T = 693 K), Dexp = 0.203Å2 ps−1, is extrapolated to T = 723

and 833 K we obtain D = 0.24± 0.03 and 0.40± 0.02Å2 ps−1.

We have also calculated the Fs(q, t) of l-Zn for several q values at T = 723 K. It
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displays the typical monotonic, non-linear decrease with time which becomes faster

with increasing q values; in fact this trend is similar to that of the simple liquid metals

near their respective triple points [15, 16, 19–21,123, 215, 217, 218].
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Figure 6.37: Self-intermediate scattering functions, Fs(q, t), at several q/qp values, for
l-Cd at T = 623 K. Full lines: present OF-AIMD results. Dotted lines: KS-AIMD
results of Calderin et al. [90].

6.2.9 Liquid Cd

The calculated Z(t) for l-Cd at T = 623 K is plotted in Figure 6.36 where we observe

the typical cage effect with a first minimum at t ≈ 0.25 ps and the subsequent

oscillations are very weak. As previously mentioned, the self-diffusion coefficient has

been evaluated and we have obtained a value D = 0.21±0.02 Å2 ps−1 for l-Cd at T =
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623 K. To compare with experiment, we have extrapolated the two available data for

l-Cd near melting (T = 594 K), namely Dexp = 0.178Å2 ps−1 and 0.220Å2 ps−1 [220–

222]; its extrapolation to the higher temperature T = 623 K leads to the estimates

D = 0.215Å2 ps−1 and 0.252Å2 ps−1, which are close to our result. For comparison,

we note that the KS-AIMD study of Calderin et al. [90] produced a result D =

0.22± 0.02Å2 ps−1 for l-Cd at T = 625 K.

Figure 6.37 shows Fs(q, t) , for several q/qp values of l-Cd at T = 623 K. It shows

the typical monotonic decay but in order to check its accuracy we have also plotted

KS-AIMD results of Calderin et al. [90]. It is observed that both methods give similar

Fs(q, t) for q/qp smaller than ≈ 0.65; indeed there is a practical coincidence for q/qp

smaller than ≈ 0.20. This is understandable because in the hydrodynamic limit (q →

0), the shape of the Fs(q, t) is practically controlled by the value of the self-diffusion

coefficient and, as shown previously, both the OF-AIMD and KS-AIMD give very

similar results for D. However, with increasing q/qp values, clear discrepancies are

visible.

6.2.10 Liquid Hg

The calculated Z(t) of l-Hg at T = 293 and 353 K are depicted in Figure 6.36.

The Z(t) shows the typical back scattering behaviour with a first minimum which

is located at t ≈ 0.5 ps, which is greater than that for Zn and Cd. This is so,

because with increasing atomic mass, longer times are necessary to reverse the initial

particle’s velocity and therefore, the minimum’s position moves towards longer times.

The calculation of the self-diffusion coefficient gave D = 0.165 ± 0.010 and 0.230 ±
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0.010Å2 ps−1 for l-Hg at T= 293 and 353 K respectively. These results compare well

with the available experimental data, namely Dexp = 0.144 and 0.159Å2 ps−1 for l-Hg

at T= 283 and 298 K respectively [223, 224]. More recently, the room temperature

INS measurements by Bove et al. [98, 99] have yielded a value Dexp = 0.157Å2 ps−1.

For comparison, we note that the KS-AIMD study of Calderin et al. [91–93] produced

a result of D = 0.13± 0.01Å2 ps−1 for l-Hg at T = 298 K.

6.3 Dynamic Properties: Collective Dynamics

The intermediate scattering function, F (q, t), provides information about the collec-

tive dynamics of density fluctuations. F (q, t) is defined in Eqn. (5.47). The time FT

of F (q, t) gives the dynamic structure factor S(q, ω), which has a direct relation with

the scattered intensity in INS or IXS experiments. Another important dynamic mag-

nitude is the microscopic current density, j(q, t) due to the overall motion of particles,

defined in Eqn. (5.50). This is usually split into a longitudinal component jl(q, t)

parallel to q and a transverse component jt(q, t) perpendicular to q. The transverse

and longitudinal current correlation functions are defined in Eqns. (5.52) and (5.53),

respectively. The transverse current correlation function Jt(q, t) gives information

about shear modes and in the hydrodynamic limit (q → 0), can be approximatted by

Eqn. (5.61), where, η is the shear viscosity. For intermediate q values, Jt(q, t) shows

a complicated behaviour, because it may oscillate signaling the propagation of shear

waves. It is possible to derive the shear viscosity coefficient, η from the calculated,

Jt(q, t) [123, 208, 225]. The memory function representation of Jt(q, t) is defined in

Eqn. (5.62), where the tilde denotes the Laplace transformation and η̃(q, z) is the
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generalized shear viscosity coefficient. The area under the normalized Jt(q, t) gives

βmJ̃t(q, z = 0), from which η̃(q, z = 0) ≡ η̃(q) can be obtained from Eqn. (5.63) and

when extrapolated to q → 0 produces a usual shear viscosity coefficient, η. This is

performed by extrapolating the property that inversion is a symmetry in the system

and, therefore, η̃(q) should be an even function of q which allows to approximate Eqn.

(5.64)(when q → 0) [208].

6.3.1 Liquid Cr

Figure 6.38 shows the normalized intermediate scattering function, F (q, t) for several

values of q scaled by qp of S(q). Figure shows oscillatory behaviour upto q/qp ≈ 0.73.
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Figure 6.38: Normalized intermediate scattering functions, F (q, t) at several q/qp
values, for l-Cr at T = 2173 K.
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It is clear that the amplitude of oscillations diminishing for increasing q values. We

stress that this behaviour is very similar to that one found for the simple and noble

liquid metals [15, 18, 19, 123, 215]. We have performed the time Fourier transform

of F (q, t) with an appropriate window to smooth out the truncation effect to obtain

associated dynamic structure factor, S(q, ω)which is dipicted in Figure 6.39 for several

q values.
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Figure 6.39: Dynamic structure factors S(q, ω) of l-Cr at T = 2173 K for several q/qp
values.

It is noticed that upto q/qp ≈ 0.73, the calculated S(q, ω) exhibit the well defined

side peaks indicating the existence of collective density excitation. For q > 0.73qp, a

shoulder is observed instead of peak and after then it decreases monotonically with
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increasing q. From Figure 6.39 it is also seen that the sharpness of peak decreases

with increasing q, becomes blunt at a stage and finally disappears. This is because, at

small q, wavelength is large relative to interatomic distance, consequently collective

excitation occurs. At large q, wavelength becomes small, so collective excitation can

not occur. From the positions of the side peaks, ωm(q) for different q one can evaluate

a dispersion relation. This dispersion curve is shown in Figure 6.40.
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Figure 6.40: Dispersion relation for l-Cr at T = 2173 K. Open squares: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 4586 ms−1.

The slope of the dispersion curve evaluated at q → 0 provides an estimation of
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adiabatic sound velocity cs. The value of cs for l-Cr is found to be cs ≈ 4586 ± 25

ms−1, which is in good agreement with experimental value 4520 ms−1 [63] at T = 2173

K. A hard sphere model studied by Yokoyama [65] gives a value cs = 4313 ms−1 at

T = 2173 K.
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Figure 6.41: Transverse current correlation function, Jt(q, t) for liquid Cr at T = 2173
K for several q/qp values.

Figure 6.41 shows the normalized transverse current correlation functions Jt(q, t)

for several values of q for l-Cr at T = 2173 K. It is noticed that Jt(q, t) decreases

slowly for small values of q and this decrement becomes faster with increasing q.

We therefrom obtained the shear viscosity η = 2.96± 0.16GPaps, which agrees well

with the value of 2.96GPaps obtained by Thakor et al. [68] following the prescription
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of scaling law proposed by Dzugutov [69]. Another theoretical study by Khaleque

et al. [226] yield a value of 2.11GPaps. To the best of our knowledge, there is no

experimental result for shear viscosity of l-Cr. Figure 6.42 illustrates the time Fourier
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Figure 6.42: Transverse current correlation function spectra, Jt(q, ω) for liquid Cr at
T = 2173 K at several q/qp values.

transform, Jt(q, ω), of the transverse current correlation function. It is seen that no

clear side peak exists for the smallest q value allowed by the size of the simulation

box. For some intermediate q-range, we see an inelastic peak at non-zero frequency of

Jt(q, ω) spectrum, representing the propagation of shear wave. This peak seems to be

appeared from q ≈ 0.16qp and persists up to q ≈ qp. The associated peak frequency

increases with q, takes a maximum value at around q ≈ qp, after that it decreases
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with increasing q.

6.3.2 Liquid Mn

The OF-AIMD results for the intermediate scattering function F (q, t), for l-Mn at

T = 1533 K are plotted in Figure 6.43 for several values of q. The salient features are
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Figure 6.43: Normalized intermediate scattering functions, F (q, t) at several q/qp
values, for l-Mn at T = 1533 K.

similar to those found for l-Cr with an oscillatory behaviour ended at q/qp ≈ 0.77.

The corresponding dynamic structure factors, S(q, ω), are plotted in Figure 6.44. Side

peaks are seen for a range of small q values, but the sharpness of the peak decreases

with increasing q values as in the case of l-Cr. From the positions of the side peaks,
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ωm(q) we have plotted the dispersion relation ωm(q) vs. q in Figure 6.45 for l-Mn.
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Figure 6.44: Dynamic structure factors S(q, ω) for l-Mn at T = 1533 K for several
q/qp values.

The slope of the dispersion curve in the hydrodynamic limit (q→ 0) yields the

adiabatic sound velocity cs. The estimated value of cs for l-Mn is found to be cs ≈

3790 ± 90 ms−1, which agrees within 2% of the experimental result 3710 ms−1 [63]

at T = 1533 K. A calculation using the hardsphere theory of liquid yields a value of

3524 ms−1 [65].

Figure 6.46 shows the OF-AIMD transverse current correlation functions, Jt(q, t)

for l-Mn at T = 1533 K, for several values of q. The behaviour of Jt(q, t) for different

q is similar to that of l-Cr. The shear viscosity evaluated from this profile is found to
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be η = 2.74± 0.20GPaps. We are not aware of any experimental data for η of l-Mn.
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Figure 6.45: Dispersion relation for l-Mn at T = 1533 K. Open squares: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 3790 ms−1.

So, it is worth to compare with other theoretical values. A study [68] using the scaling

law of Dzugutov [69] along with the excess entropy calculated from hardsphere pair

correlation function gives η = 2.73GPaps at T = 1533 K, which is pretty close to

our result. Another computed value for η is 1.63GPaps [226]. The time Fourier

transform of Jt(q, t) is shown in Figure 6.47 for several q values. Here, the salient

features are similar to that of l-Cr.
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Figure 6.46: Transverse current correlation function, Jt(q, t), for l-Mn at T = 1533 K
for several q/qp values.
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Figure 6.47: Transverse current correlation function spectra, Jt(q, ω) for l-Mn at
T = 1533 K for several q/qp values.
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6.3.3 Liquid Fe

Figure 6.48 shows the OF-AIMD results for the intermediate scattering function,

F (q, t), of l-Fe for several values of q at T = 1833 K. The main characteristic features

are similar to those of l-Cr and l-Mn with an oscillatory nature upto q ≈ 0.73qp. The

dynamic structure factor S(q, ω) corresponding to F (q, t) is plotted in Figure. 6.49.

Similar to l-Cr and l-Mn, side peaks are noticed for an approximate range of small q

values starting from 0.11qp to 0.73qp. From the positions of the side peaks, ωm(q), a

dispersion curve is plotted in Figure 6.50 for the density fluctuations at T = 1833 K.
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Figure 6.48: Normalized intermediate scattering functions, F (q, t) for l-Fe at T = 1833
K for several q/qp values.

The slope of the dispersion curve at q → 0 provides an estimate of the adiabatic
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sound velocity, cs. For the present case of l-Fe, the value of cs is approximately

4223±26 ms−1 at T = 1833 K. Similarly, we have obtained cs at T = 1923 K, this

value is 4162±12 ms−1. Whereas the experimental value of cs at T = 1833 K is

4370 ms−1 [62]. So, the agreement of the OF-AIMD result is within the 3.4% of the

experimental one. A recent AIMD simulation study reports a value cs = 3950 ± 150

ms−1 [52] at T = 1873 K.
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Figure 6.49: Dynamic structure factors S(q, ω) of l-Fe at T = 1833 K for several q/qp
values.

The normalized Jt(q, t) for l-Fe at T = 1833 K is plotted in Figure 6.51 for some

values of q. The shear viscosity calculated from the OF-AIMD Jt(q, t) is found to

be η = 5.50 ± 0.18GPaps and 3.78 ± 0.42GPaps for temperatures T = 1833 and

1923 K, respectively. The corresponding experimental values measured by Egry [227]
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are η = 4.9GPaps and 4.3GPaps, respectively. The experimental values reported

by Sato et al. [228] are η = 5.65GPaps and 4.88GPaps, respectively. Morita and

Iida [229] reported shear viscosities for l-Fe as 6.64 and 5.76GPaps at T = 1833 and

1923 K, respectively. The hardsphere model caculation by Yokoyama [70] gives a

value η = 4.11GPaps at T = 1833 K. Values calculated [72] from the scaling law and
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Figure 6.50: Dispersion relation for l-Fe at T = 1833 K. Open squares: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 4223 ms−1.

defined by Li et al. [73,74] are 3.95GPaps and 3.37GPaps at T = 1833 and 1923 K, re-

spectively. Marques et al. [52] in their AIMD study found a value η = 5.0±0.3GPaps

at T = 1873 K. The time Fourier transform of transverse current correlation function

Jt(q, ω) is plotted in Figure 6.52. It is noticed that the main features of Jt(q, t) and

Jt(q, ω) for l-Fe are similar to those of l-Cr and l-Mn.
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Figure 6.51: Transverse current correlation function, Jt(q, t), for l-Fe at T = 1833 K
for several q/qp values.
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Figure 6.52: Transverse current correlation function spectra, Jt(q, ω), for l-Fe at T =
1833 K for several q/qp values.



Chapter 6: Results and Discussion 171

6.3.4 Liquid Co

Figure 6.53 shows the OF-AIMD F (q, t) for l-Co for several q values at temperature
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Figure 6.53: Normalized intermediate scattering functions, F (q, t), for l-Co for several
q/qp values at T = 1823 K.

T = 1823 K. It is seen that the salient feature of the curves are similar as those

of previous systems (l-Cr, l-Mn, l-Fe) with an oscillation up to q ≈ 0.75qp. The

corresponding dynamic structure factors, S(q, ω) are presented in Figure 6.54. It

is clear from the figure that the side peaks are seen for q ≤ 0.75qp. The higher q

value corresponds to smaller length scale in real space, which can not produce the
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collective excitation of density as discussed before. A plot of the positions of the side

peaks, ωm(q) for different q values gives the dispersion curve. This dispersion curve

is presented in Figure 6.55.
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Figure 6.54: Dynamic structure factors S(q, ω) of l-Co at T = 1823 K for several q/qp
values.

The slope of the dispersion curve at q → 0 gives the adiabatic sound velocity

cs = 4547 ± 14 ms−1 and 4500 ± 17 ms−1 at temperatures T = 1823 and 1923 K,

respectively. The corresponding experimental value is 4090 ms−1 [62] at T = 1765 K.

S. Blairs’s acumulated experimental data shows a value of 4031 ms−1 [67] at melting

temperature T = 1765 K. The agreement of our calculation is within 13% of this

experimental value [67] approving our result is fairly good.
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Figure 6.55: Dispersion relation for l-Co at T = 1823 K. Open squares: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 4547 ms−1.

The normalized transverse current correlation functions, Jt(q, t) for l-Co at T =

1823 K are shown in Figure 6.56, for some values of q. The nature of the Jt(q, t) curves

are similar to those of other systems under study. Figure shows a monotonic decrease

of Jt(q, t) at low q values and oscillating nature for relatively large q values. However,

the shear viscosity calculated from the OF-AIMD Jt(q, t) for l-Co are found to be η =

4.15 ± 0.26 GPaps and 3.91 ± 0.11 GPaps for T = 1823 and 1923 K, respectively.

The corresponding experimental values measured by Egry [227] are 3.9GPaps and

3.4GPaps at temperature T = 1823 and 1923 K, respectively. Kaptay reported in

ref. [230] that the experimental value of viscosity for l-Co lies in the range of 4.1−5.3

GPaps at melting (T = 1765 K) which encompasses our result. The corresponding
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spectrum of Jt(q, ω) is shown in Figure 6.57.
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Figure 6.56: Transverse current correlation function, Jt(q, t), for liquid Co at T = 1823
K for several q/qp values.
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Figure 6.57: Transverse current correlation function spectra, Jt(q, ω), for liquid Co
at T = 1823 K for several q/qp values.
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6.3.5 Liquid Ni

The calculated F (q, t)/F (q, t = 0) for l-Ni at T = 1773 K is illustrated in Figure 6.58

at several q/qp values. The F (q, t) shows an oscillatory behaviour for low q/qp values
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Figure 6.58: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Ni at T = 1773 K.

which is gradually decreased with increasing q/qp values until it is disappeared for

q/qp > 0.66. We stress that this trend is similar to those have already been observed in

other liquid metals near melting, by either computer simulation [15,16,19–21,231,232]

or theoretical models [123]. The associated S(q, ω) has been computed by direct

numerical time FT with an appropriate window to smooth out the truncation effect.



Chapter 6: Results and Discussion 176

The obtained S(q, ω) are demonstrated in Figure 6.59. We obtain clear side peaks,

which point to the existence of collective density excitations, up to q/qp ≈ 0.66; after

that the side peaks become shoulders and for q/qp ≥ 0.66, S(q, ω) shows a monotonic

decreasing behaviour. From the positions of the side peaks, ωm(q), a dispersion curve

for the density fluctuations can be obtained. This curve is shown in Figure 6.60.
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Figure 6.59: Dynamic structure factors S(q, ω) of l-Ni at T = 1773 K for several q/qp
values.

The slope of this dispersion curve at q → 0 provides an estimate of the adiabatic

sound velocity, cs. Thus, we have obtained cs ≈ 3649 ± 10 ms−1, other authors

calculated a value of 4122 ms−1 [65]. We also note that the INS study of Bermejo

et al. [64] measured a value of cs = 4280 ms−1 at T = 1763 K and the experimental
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value is 4045 ms−1 [62] at melting. An ab initio simulation study using Vienna ab

initio simulation package (VASP) by Jakse et al. [66] report a value cs =4350 ms−1 at

temperature T = 1850 K. So our result for l-Ni agrees within 10% of the experimental

data [62].
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Figure 6.60: Dispersion curve for l-Ni for T = 1773 K. Open circles: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 3649 ms−1.

We have calculated the normalized transverse current correlation function Jt(q, t)

for l-Ni presented in Figure 6.61 and therefrom we have evaluated the shear viscosity

for l-Ni at T = 1773 K. We have obtained, η = 2.64± 0.28 GPaps, which is clearly
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Figure 6.61: Transverse current correlation function, Jt(q, t), for liquid Ni at T = 1773
K for several q/qp values.
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Figure 6.62: Transverse current correlation function spectra, Jt(q, ω), for liquid Ni at
T = 1773 K at several q/qp values.
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smaller than experimental value of 4.8 GPaps [227] at T = 1773 K. The agreement

with experiment is within a factor of 2. But our obtained value is very close to the

calculated value η = 2.50 GPaps at T = 1773 K of Kart et al. [59]. Also Alemany et

al. [54] reported a result of η=5.76± 0.80GPaps at T = 1775 K. An ab initio study

by Jakse et al. [66] reports a value η = 3.9± 0.20GPaps. It is noticed that for small

q’s, the corresponding Jt(q, t) decreases slowly with time for small t but it becomes

faster with increasing q values. The corresponding spectrum of Jt(q, ω) is shown in

Figure 6.62 and no clear side peak for the smallest q value reached by the simulation.

The peak frequency increases with q, takes a maximum value at q ≈ qp, and then

decreases with increasing q as Jt(q, ω) evolves towards a Gaussian shape.

6.3.6 Liquid Pd

Figure 6.63 shows the result of OF-AIMD F (q, t)/F (q, t = 0) for some q/qp values of

l-Pd at T = 1853 K. The main characteristics features are similar to those found for

previously described systems. In the case of l-Pd, the oscillatory behavior lasting up

to q ≈ 0.73qp. The corresponding S(q, ω) are plotted in the Figure 6.64, where we

observe clear side-peaks for a small range of q/qp values. Particularly, it is seen up to

q ≈ 0.73qp in the present case. From the positions of the side peaks, ωm(q), we have

obtained a dispersion curve for the density fluctuations which is given in Figure 6.65.

The slope of this dispersion curve in the limit q → 0 yields an estimate of the

adiabatic sound velocity, cs. From our calculation, we have obtained cs ≈ 2906

± 25 ms−1. Whereas a calculation by Blairs [67] gives value 2657ms−1 at melting.

No experimental data for l-Pd is found in available literature. The AIMD study of
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González et al. [212] have reported a value cs = 3450±150 ms−1 which is almost 15%

larger than that of our OF-AIMD result.
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Figure 6.63: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Pd at T = 1853 K.
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Figure 6.64: Dynamic structure factors S(q, ω) of l-Pd at T = 1853 K for several q/qp
values.
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Figure 6.65: Dispersion curve for l-Pd at T = 1853 K. Open circles: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity, cs = 2906 ms−1.

The calculated normalized transverse current correlation functions, Jt(q, t) of l-Pd

at T = 1853 K are illustrated in Figure 6.66 for several q/qp values and therefrom we

have calculated the shear viscosity for l-Pd at T = 1853 K. Our OF-AIMD calculation

yields η = 4.07 ± 0.50 GPaps, which is very close to the CMD simulated value of

4.01 ± 0.48 GPaps by Alemany et al. [57] at T = 1853 K. The other computed

values using the TBM-SMA and classical molecular dynamics simulation methods

are 3.68 ± 0.48 GPaps [54] and 2.91 ± 0.86 GPaps [59], respectively. These values

are relatively smaller than that of our OF-AIMD result. The experimental value for
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Figure 6.66: Transverse current correlation function, Jt(q, t), for liquid Pd at T = 1853
K at several q/qp values.
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Figure 6.67: Transverse current correlation function spectra, Jt(q, ω), for liquid Pd
at T = 1853 K for several q/qp values.
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l-Pd is ηexp = 4.22±0.15 GPa ps [233], which is very close to our OF-AIMD result. Our

OF-AIMD result also agrees well with the KS-AIMD result, ηKS−AIMD = 4.57± 0.15

GPaps [212]. The corresponding spectrum of Jt(q, ω) are shown in Figure 6.67. We

note that the main features for Jt(q, t) and Jt(q, ω) are similar to all those systems

studied previously.
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Figure 6.68: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Pt at T = 2053 K.

6.3.7 Liquid Pt

The calculated F (q, t)/F (q, t = 0) are depicted in Figure 6.68 for l-Pt at T = 2053

K. The expected behaviour of F (q, t)/F (q, t = 0) for different q values are seen as we

have observed for other systems of our concern studied previously. The oscillations
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are showing up to q ≈ 0.73qp. The corresponding dynamic structure factors are

demonstrated in Figure 6.69. From this figure it is observed that the calculated OF-

AIMD S(q, ω) show clear side peaks up to q ≈ 0.73qp. One can obtain the dispersion
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Figure 6.69: Dynamic structure factors S(q, ω) of l-Pt at T = 2053 K for several q/qp
values.

curve from the positions of the side peaks of S(q, ω). The dispersion curve is shown

in Figure 6.70.

The slope of the dispersion curve at q → 0 limit, gives the adiabatic sound velocity

cs = 2184±24 ms−1 for l-Pt at T = 2053 K, whereas the experimental adiabatic sound

velocity is cs = 3053 ms−1 [234] at the melting temperature. We may note here that

the KS-AIMD study produces higher value for the velocity of sound, cs = 3000± 150

ms−1 [212] for l-Pt as compared to our result. On the other hand the Gitis-Mikhailov

model and modified Einstein-Lindemann model give cs = 2193 ms−1 and cs = 2713
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ms−1 [234], respectively, at the melting point.
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Figure 6.70: Dispersion curve for l-Pt at T = 2053 K. Open circles: peak positions
ωm(q) from the OF-AIMD S(q, ω). Full line: linear dispersion with the adiabatic
sound velocity cs = 2184 ms−1.

The normalized transverse current correlation function Jt(q, t) for l-Pt at T = 2053

K is illustrated in Figure 6.71 for several q/qp values. The calculation of the shear

viscosity for l-Pt at T = 2053 K yields η = 4.6 ± 0.49 GPaps, whereas the calculations

of the EAM and TBM-SMA methods gave η = 5.92 ± 0.48 GPaps [57] and η = 6.09

± 0.96 GPaps [54], respectively. For l-Pt, the experimental values are ηexp = 4.82 and

6.74 GPa ps [233]. The first one is very close to our calculated value but the latter

is more closer to the results obtained from CMD simulation [54]. On the other hand,

the KS-AIMD study of González et al. gave ηKS−AIMD = 4.90± 0.25 GPaps [212],
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Figure 6.71: Transverse current correlation function, Jt(q, t), for liquid Pt at T = 2053
K for several q/qp values.
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Figure 6.72: Transverse current correlation function spectra, Jt(q, ω), for liquid Pt at
T = 2053 K at several q/qp values.



Chapter 6: Results and Discussion 187

which is again close to our calculated OF-AIMD result. The corresponding spectrums

of Jt(q, ω) are plotted in Figure 6.72.

6.3.8 Liquid Zn

The calculated F (q, t) for l-Zn at T = 723 K is depicted in Figure 6.73 for several
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Figure 6.73: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Zn at T = 723 K. Full lines: present OF-AIMD results.

q/qp values. The F (q, t) shows an oscillatory behaviour up to q/qp ≈ 0.70, with

the amplitude of the oscillations fading away with increasing q/qp values. We stress

that this trend is similar to what has already been observed in other liquid metals

near melting, by either computer simulation [15, 16, 19–21, 231, 232] or theoretical
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models [123]. The associated S(q, ω) has been computed by direct numerical time

FT (with an appropriate window to smooth out the truncation effect) and some results

are depicted in Figure 6.74. We obtain clear side peaks, which point to the existence of

collective density excitations, up to q/qp ≈ 0.6; then the side peaks become shoulders

and for q/qp ≥ 0.6 the S(q, ω) shows a monotonic decreasing behaviour. From the

positions of the side peaks, ωm(q), a dispersion relation for the density fluctuations

can be obtained and its slope at q → 0 provides an estimate of the adiabatic sound

velocity, cs. Thus, we have estimated cs ≈ 2740 ± 100 ms−1 which agrees within 4% of

the experimental value of 2850 ms−1 [62,67] for l-Zn at melting. A similar calculation

for the state at T = 833 K gave an estimate cs ≈ 2650 ± 100 ms−1 whereas its

experimental value is ≈ 2800 ms−1 [62, 67].
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Figure 6.74: Dynamic structure factors S(q, ω) of l-Zn at T = 723 K for several
q-values. Full lines: present OF-AIMD results.
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We have calculated the normalized transverse current correlation function Jt(q, t)

for l-Zn at T = 723 K and 833 K, and therefrom we have evaluated the shear viscosity

for l-Zn at T = 723 K and 833 K; we have obtained η = 2.10± 0.20 and 1.49± 0.20

GPaps, which are clearly smaller than the respective extrapolated experimental values

of ≈ 3.50± 0.10 , and ≈ 2.70± 0.10 GPaps [220–222].

6.3.9 Liquid Cd

Figure 6.75 shows, for some q/qp values, the present OF-AIMD results for the F (q, t)

of l-Cd at T = 623 K. The main characteristics are similar to those found for liquid

systems (Cr, Mn, Co, Fe, Ni, Pd, Pt, Zn) with an oscillatory behaviour lasting up

to q/qp ≈ 0.70. For comparison, we have also plotted the corresponding KS-AIMD

results, FKS−AIMD(q, t), obtained by Calderin et al. [90], and several important dif-

ferences are noticeable: (i) the oscillations of the FKS−AIMD(q, t) have a shorter pe-

riod and smaller amplitude, (ii) the oscillatory behavior of the FKS−AIMD(q, t) is

less marked and for q/qp ≥ 0.5, the oscillations have practically disappeared, (iii)

the FKS−AIMD(q, t) shows a weak diffusive behaviour which is not delivered by the

present calculations, (iv) for q/qp ≥ 1, the calculated F (q, t) practically coincide with

the corresponding FKS−AIMD(q, t). These differences are also reflected in the corre-

sponding dynamic structure factors, S(q, ω) which are depicted, for some q/qp values,

in Figure 6.76. Our calculated S(q, ω) show clear side peaks up to q/qp ≈ 0.6 and

similar features are also observed in the corresponding SKS−AIMD(q, ω) although their

side peaks disappear at smaller q/qp values. More interestingly, for any q/qp value

the positions of the side peaks in our calculated S(q, ω) are always located at smaller
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Figure 6.75: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Cd at T = 623 K. Full lines: present OF-AIMD results. Dotted lines:
KS-AIMD results of Calderin et al. [90].

ω values. Again, from the positions of the side peaks we have calculated the disper-

sion relation of the density fluctuations and, in the q → 0 limit, we have obtained

a value cs = 1950 ± 100 ms−1 for the adiabatic sound velocity of l-Cd at T = 623

K. For comparison, we note that the corresponding experimental value for l-Cd at

melting is cs = 2256 ms−1 [62, 67] and that the KS-AIMD calculation [90] gave a

value cs = 2350 ± 150 ms−1 which is much closer to experiment. This result, which

is related to the positions of the side peaks in the corresponding S(q, ω), suggests

that SKS−AIMD(q, ω) are more reliable than those obtained by the present OF-AIMD
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method for l-Cd. Furthermore, given that the S(q, ω) are derived from the corre-

sponding F (q, t), a similar assertion can be made concerning the FKS−AIMD(q, t).
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Figure 6.76: Dynamic structure factors S(q, ω) of l-Cd at T = 623 K for several
q/qp values. Full lines: present OF-AIMD results. Dotted lines: KS-AIMD results of
Calderin et al. [90].

The calculated normalized transverse current correlation functions, Jt(q, t), for l-

Cd at T = 623 K are depicted in Figure 6.77 for several q/qp values and we have also

included the corresponding KS-AIMD results of Calderin et al. [90]. Notice that our

calculated Jt(q, t) shows a slower decay and its oscillations have a greater amplitude

and longer period than those of the KS-AIMD calculations. The associated spectrum,

Jt(q, ω), is also plotted in Figure 6.77 where we observe, for some q/qp range, the

appearance of an inelastic peak. This peak, which is related to the existence of shear

waves in the liquid, appears for q/qp ≈ 0.1 and lasts up to q/qp ≈ 1.5. The frequency of
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the peak, ωt(q), increases with q, has a maximum at around q/qp ≈ 0.8 and therefrom

it decreases with increasing q/qp values. Comparison with the KS-AIMD results of

Calderin et al. [90] reveals that the corresponding ωt(q) has an analogous shape, with

a maximum located at similar q/qp value. The shear viscosity has been evaluated and

we have obtained a value η = 2.00± 0.20 GPaps for l-Cd at T = 623 K, whereas the

corresponding experimental data [220–222] is 2.50 ± 0.05 GPaps. Again, we notice

that the KS-AIMD calculation [90] gave a more accurate result, i.e. ηKS−AIMD=2.30

± 0.15GPaps.
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Figure 6.77: Transverse current correlation function, Jt(q, t), and its spectra, Jt(q, ω),
for liquid Cd at T = 623 K and q/qp = 0.20, 0.34, 0.44, 0.64, 0.78 and 0.97. Full
curves: Present calculations. Dashed curves: KS-AIMD results of Calderin et al. [90].

6.3.10 Liquid Hg

The calculated F (q, t) are depicted in Figure 6.78 for l-Hg at T = 293 K. Its behavior

is very similar to what has been obtained for other liquid systems (Cr, Mn, Co, Fe,
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Ni, Pd, Pt, Zn, Cd), with the oscillations showing up to q/qp ≈ 0.70. Figure 6.78

also provides a comparison with the KS-AIMD results of Calderin et al. [91–93]. It is

observed that the main differences with the present OF-AIMD results are basically
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Figure 6.78: Normalized intermediate scattering functions, F (q, t), at several q/qp
values, for l-Hg at T = 293 K. Full lines: present OF-AIMD results. Dotted lines:
KS-AIMD results of Calderin et al. [91–93].

the same as those we have already mentioned for l-Cd. These differences are also

transferred to the corresponding dynamic structure factors which are depicted in

Figure 6.79 where it is observed that the OF-AIMD calculated S(q, ω) shows clear

side peaks up to q/qp ≈ 0.6. Comparison with the corresponding SKS−AIMD(q, ω)

shows similar qualitative features although their side peaks are always located at

smaller ω values and they disappear at smaller q/qp values. From the positions of the

side peaks and by taking the q → 0 limit, we have obtained a value cs = 950±100 ms−1
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for the adiabatic sound velocity of l-Hg at T = 293 K. For comparison, we note that

the corresponding experimental value for l-Hg at melting is cs = 1455 ms−1 [62, 67]

and the KS-AIMD calculation [91–93] gave a value cs = 1550± 150 ms−1.
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Figure 6.79: Dynamic structure factors S(q, ω) of l-Hg at T = 293 K for several q/qp
values. Full lines: present OF-AIMD results. Dotted lines: AIMD results of Calderin
et al. [91–93].

The normalized transverse current correlation function Jt(q, t) for l-Hg at T = 293

K is depicted in Figure 6.80 for several q/qp values and we have also plotted the

KS-AIMD results of Calderin et al. [91–93]. Comparison reveals similar features as

those already encountered for l-Cd. The calculation of the shear viscosity for l-Hg at

T = 293 K gave η = 1.20 ± 0.15 GPaps. On the other hand, extrapolation to T = 298

K of the experimental value for l-Hg at melting [220–222] gives η ≈ 1.53 GPaps which
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is greater than our estimate. Again, we notice that the AIMD calculation [91–93] gave

a result closer to experiment, i.e. ηKS−AIMD = 1.40 ± 0.15 GPaps.
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Figure 6.80: Transverse current correlation function, Jt(q, t), and its spectra, Jt(q, ω),
for liquid Hg at T = 293 K and q/qp = 0.29, 0.35, 0.50, 0.84, 1.15 and 1.65. Full curves:
OF-AIMD calculations. Dashed curves: AIMD results of Calderin et al. [91–93].

6.3.11 Comparative Analysis and Findings

The theory of brownian motion provides an exact relation between the diffusion co-

efficient, D, of a brownian particle of diameter, d, and the shear viscosity, η, of the

surrounding liquid, namely

ηD = kBT/(2πd). (6.1)

This is the so-called Stokes-Einstein (SE) relation, which despite being approximate

at the microscopic level, has often been applied successfully to analyze the diffusion of

atoms/ions in liquids. If d is identified with the main peak position of the g(r), then
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predictions of η using measured values of D lead usually to a reasonable agreement

with experiment (to within 40% for a wide range of liquid metals). Indeed, simulation

studies on the hard-sphere liquid [235] demonstrate that the accuracy of the SE

relation remains very good even at high pressure. Using our calculated results for η,

D and d, we have proceeded to analyze the accuracy of the SE relation by evaluating

both left and right sides of the SE relation of the form mentioned above. The results

are shown in Table 6.3. It is noticed that the OF-AIMD method gives estimation

that follow rather well for both sides of the SE relation. The difference between both

members of the Eqn. (6.1) is less than 10% for l-Co, l-Pt, l-Cd, l-Hg and 12% for

l-Cr, l-Mn, l-Ni and l-Zn. However for l-Fe and l-Pd the difference is 50% and 23%,

respectively. We have also included a similar comparison by using the experimental

data for η, D and d where we have obtained for l-Cd and l-Hg , the difference is less

Table 6.3: Check on the validity of the Stokes-Einstein relation. The values
are given in units of 10−12N.

Systems T(K)
OF-AIMD Experiment

ηD kBT
2πd

ηD kBT
2πd

Cr 2173 21.02 18.86 .... 19.09

Mn 1533 14.52 12.90 .... 12.95

Fe 1833 26.95 16.10 20.38 15.48

Co 1823 17.02 16.28 .... 16.01

Ni 1773 17.95 16.03 22.95 15.58

Pd 1853 19.20 15.19 ..... 15.65

Pt 2053 15.18 16.58 ..... 16.70

Zn 0723 06.10 05.50 08.40 06.00

Cd 0623 04.30 04.60 05.40 04.60

Hg 0293 02.00 02.10 02.50 02.10
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than 20%, however for l-Fe, l-Ni and l-Zn it becomes within ≈ 27%, 38% and 33%,

respectively. For the liquid systems Cr, Mn, Co, Pd and Pt, no experimental data

for D and η are available in the literature. From Table 6.3 it is noticed that the

OF-AIMD part of kBT
2πd

agrees well with the experimental part of kBT
2πd

for all systems

under study. Which clearly indicates that the OF-AIMD main peak positions of g(r)

for all systems under study are almost same to that of the experimental main peak

positios of g(r) [27] for the corresponding systems.

The dynamical heterogeneity is related to the break down of the Stokes-Einstein’s

relation as described for supercooled liquid [236, 237]. One of the indicators of this

Table 6.4: Comparision of Stokes-Einstein relation for different values of
C.

Systems T (K)
OF-AIMD η = kBT

CπDd
(GPaps) OF-AIMD

D(Å2 ps−1) C=2 C=3 η (GPa ps)

Cr 2173 0.71 2.64 1.77 2.96

Mn 1533 0.53 2.43 1.62 2.74

Fe 1833 0.49 3.28 2.19 5.50

1923 0.54 3.12 2.09 3.78

Co 1823 0.41 3.96 2.65 4.15

1923 0.48 3.57 2.38 3.91

Ni 1773 0.68 2.36 1.57 2.64

Pd 1853 0.40 3.76 2.51 4.07

Pt 2053 0.33 5.02 3.35 4.60

Zn 0723 0.26 2.34 1.56 2.10

0833 0.37 1.89 1.26 1.49

Cd 0623 0.21 2.19 1.46 2.00

Hg 0293 0.165 1.28 0.85 1.20
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feature is non-exponential decay of the correlation function, g(r). From our results

for g(r), it apparently seems that the decay of the correlation function is not exactly

exponential. So, a deviation from the Stokes-Einstein relation (η = kBT
CπD d

) might be

observed, where C is a constant depending on the boundary condition of the flow.

But it requires further investigation in detail. It is, however, interesting and simple

to investigate from the point of Stoke-Einstein theory, which of the boundary condi-

tion from the choice of slip or stick is appropriate for our liquid systems. Table 6.4

illustrates values of shear viscosities with C = 2 and 3, and d = rp (rp is the position
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Figure 6.81: Calculated sound velocity, cs vs. atomic number. The suffix in the
symbol of element represents the atomic number for the corresponding element.
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of the main peak of g(r)). Please note here that C = 2 and 3 correspond to the slip and

stick boundary conditions [238], respectively. We note that some authors [236, 237]

used C = 4 and 6 for slip and stick conditions, respectively for supercooled liquids.

Our OF-AIMD results suggest that the slip boundary condition within the purview

of Stoke-Einstein theory is more appropriate for l-Cr, l-Mn, l-Fe, l-Co, l-Ni, l-Pd,

l-Pt, l-Zn, l-Cd and l-Hg systems. This also implies that the molecules of the liquid

systems understudy are having the Brownian motion of different kind than those of

supercooled liquid or glass. The shear viscosity is often determined empirically from

the self-diffusion coefficient, D, using the Stokes-Einstein relation (η = kBT
2πD d

). The

values of η = kBT
2πD d

are presented in the Table 6.4 that obtained using the main peak

positions, rp = d of simulated g(r) and the OF-AIMD self-diffusion coefficients, D.

These empirical values are reasonably good in agreement with the OF-AIMD results,

η.

The Figure 6.81 represents the sound velocity versus atomic number for the liquid

metals studied in the present work. From the above figure 6.81 we see that, for the

liquid systems Zn, Cd and Hg of the group IIB elements in the periodic table, the

sound velocity increases with decreasing atomic number. The similar behaviour is

also observed for the liquid systems Ni, Pd and Pt in the right-most column of the

group VIIIA elements of the periodic table. The sound velocity of the liquid systems

Cr, Mn, Fe and Co show a rough parabolic variation.



Chapter 7

Conclusions

The static and dynamic properties of liquid Cr, Mn, Fe, Co, Ni, Pd, Pt, Zn, Cd

and Hg are studied in this dissertation from the OF-AIMD simulation method at

temperatures near their respective melting points and also at elevated temperature

in few cases. Here the exchange correlation effect is described by the local density

approximation and the external potential is described by a local model pseudopoten-

tial. The simulation results are reliable as long as the approximations involved in the

calculations are valid. The static structure for all systems under study agrees within

few percent of the experimental data. A closer look at the figures for static structure

factors, S(q), reveals that the values of the principal peak of S(q) are somewhat over-

estimated when compared with the XRD data of Waseda [27] for the systems Cr, Mn,

Fe and Co. But when OF-AIMD S(q) for l-Fe is compared with XRD data of Inui et

al. [209] an excellent agreement for the value of principal peak is found. From this

point of view one can make a conjecture that the observed larger main peak values

for l-Cr, l-Mn and l-Co would also lie within experimental uncertainty of different
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measurements (if performed). From an exact quantitative comparison with experi-

ment [27] we observed in the case of l-Ni, l-Pd, l-Pt and l-Cd, the heights of the main

peak of S(q) obtained from the OF-AIMD results are overestimated by a negligibly

small amount. On the other hand the height of the principal peak of S(q) for l-Zn at

both temperatures are reproduced almost completely as the experiment [27]. But the

height of the main peak of S(q) for l-Hg is the same as the experiment at T=293 K,

while the height of the main peak at higher temperature, T=353 K, differs only by a

few percent of the experiment [27]. However, we also acknowledge that the OF-AIMD

method can not account for some other finer details such as the low-q shape of the

S(q) in l-Zn and the asymmetric shape of the main peak in the S(q) for l-Zn and

l-Cd. It is interesting to note that S(q) at low q (i.e. in the long wavelength limit)

is related to the thermodynamics. In the present OF-AIMD study we found a good

reproduction of S(q) at low q. This claim is justified by the comparison of isothermal

compressibility derived from OF-AIMD and that obtained from experiment [27]. On

the other hand, the main peak positions and heights of g(r) for all systems under

study agree fairly well with the experiment [27] and the observed deviation for few

systems lie within a very few percent. This is even justified by the comparison be-

tween the coordination numbers derived from OF-AIMD and the XRD data for g(r).

The dynamical heterogeneity is related to the break down of the Stokes-Einstein’s

relation as described for supercooled liquid [236, 237]. One of the indicators of this

feature is non-exponential decay of the correlation function, g(r). From our results

for g(r), apparently it seems that the decay of the correlation function is not exactly

exponential. So, a deviation from the Stokes-Einstein relation (η = kBT
CπD d

) might be
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observed. But it requires further investigation in detail. It is, however, interesting

and simple to investigate, from the point of view of Stokes-Einstein theory which

boundary condition, slip or stick, is appropriate for our liquid systems. This feature

will be discussed later in this chapter.

As for the single particle dynamical properties, we begin with the velocity auto-

correlation function, Z(t), which exhibits the backscattering effect for a small time.

The self-diffusion coefficients evaluated from the Z(t) and 〈δR2(t)〉 are almost same

for all systems. The agreement of the calculated results lie within a very few percent

of the available experimental data except for l-Ni. For the case of l-Ni, we notice a

deviation about 32% of our result from the predicted value of Protopapas et al. [61]

whereas the calculation of other authors show a variation 16% [59] and 84% [54] from

the same predicted value. But a recent AIMD calculation by Jakse et al. [66] have

been able to reproduced self-diffusion coefficient, D, within 4% of predicted value [61]

for l-Ni. The systems for which experimental data are not available we have compared

our results with other available theoretical values, and we have found that our results

are in good agreement with those values. The self-intermediate scattering function,

Fs(q, t), obtained from the OF-AIMD and that of from the Gaussian approximation

produce almost same results for all systems investigated here, such as liquid Cr, Mn,

Fe, Co, Ni, Pd and Pt. Moreover, comparison with the more accurate KS-AIMD

Fs(q, t) results for l-Cd [90], show that the OF-AIMD results have a faster time de-

cay. We note here that the structural relaxation time τ may be obtained from the

relation Fs(q, τ) =
1
e
, for any wave vector q. This knowledge of τ is sometimes use-

ful to investigate the degree of break down of the Stokes-Einstein relation for liquid
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systems, because Fs(q, t) is controlled by the self-diffusion coefficients.

The obtained intermediate scattering functions, F (q, t), show for small q, the typ-

ical oscillatory behavior for all studied systems which becomes less marked with in-

creasing q-values. However, closer comparison with the KS-AIMD results of Calderin

for both l-Cd and l-Hg [90–93] shows that the oscillatory behavior of the calculated

F (q, t) by OF-AIMD has overestimated amplitudes (and periods). Moreover, the os-

cillations last for longer times. These limitations are also reflected in the OF-AIMD

calculated dynamic structure factors, S(q, ω), which display side-peaks located at

smaller frequencies than their KS-AIMD counterparts. A similar comparison has

also been reported for the transverse current correlation functions. Results due to

collective dynamics such as dynamic structure factor, S(q, ω), adiabatic sound veloc-

ity, shear viscosity exhibit the correct physical trends and agree well with available

experimental data. For example, the position of side peak of S(q, ω) for different

q values provide a dispersion relation; the slope of this curve at q → 0 yields the

adiabatic sound velocity. The agreement for sound velocity is found to be good for

all systems except for l-Hg, for which it is just fair. We also noticed a deviation in

magnitude of sound velocity for l-Pt. The shear viscosity, η, calculted from the OF-

AIMD agree reasonably well with available experimental data as well as with some

model calculated values. But for the case of l-Ni, the OF-AIMD viscosity is about

55% of experimental magnitude. Table 6.4 illustrates values of shear viscosities with

C = 2 and 3, and d = rp (rp is the position of the main peak of g(r) ), where C = 2

and 3 correspond to the slip and stick boundary conditions [238], respectively. We

note that some authors [236, 237] used C = 4, 6 for slip and stick conditions for
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supercooled liquids. Our OF-AIMD results suggest that the slip boundary condition

within the purview of Stokes-Einstein theory is more appropriate for all systems un-

der study. This also implies that the molecules of the liquid systems understudy have

different kind of Brownian motion than those of supercooled liquid or glass. Finally,

we note that no consideration of spin polarization as mentioned in reference [52] yields

physical properties that are largely deviated from the experimental data, but in the

OF-AIMD simulation method study we have found results close to the experimental

values.

Finally, although the OF-AIMD method can provide a reasonable qualitative de-

scription for a range of static and dynamic magnitudes as well as some transport

coefficients in l-Cr, l-Mn, l-Fe, l-Co, l-Ni, l-Pd, l-Pt, l-Zn, l-Cd and l-Hg, the compari-

son with the more accurate KS-AIMD results allows to pinpoint those features which

must be improved. The different decay rates and the oscillating periods of the OF-

AIMD correlation functions reflect the difference between the OF and the KS forces.

Therefore we suggest that some improvement could be obtained if the pseudopoten-

tials were fixed by requiring, within the restricted possibilities of the method, a better

reproduction of the KS forces instead of the static structure. We have already started

exploring this approach in simpler metals and results look quite promising. In par-

ticular for several liquid alkaline earth metals we have been successful in decreasing

the overall discrepancy between the OF and KS forces by one half by just modifying

an initial pseudopotential in two regions of q space, namely near q = 0 and around

q = 2k0F . It is still necessary to check if such simple modifications are enough for more

complicated systems such as those studied here and the method looks promising. The
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other obvious point that could in principle be improved is the description of the non-

interacting electronic kinetic energy, ideally included additionally that coming from

the d-electrons. This is however much more challenging task to perform theoretically,

and we do not expect improvements in this aspect in the short term.

Liquid transition metals have got a tremendous interest in metallurgy and industry

due to their interesting properties and versatile applications. So there is a huge scope

of research in unvisited area of the field. We therefore have the opportunity to keep

continue our research to study the surface properties of the elemental systems for

which the calculation of the bulk properties have already been done. We are also

interested in the bulk and surface properties of liquid transition metals binary alloys.

The transition elements form many useful alloys with one another easily, because the

atomic sizes of transition metals are very similar to each other and this attributes

to their nature of alloy formation. As the atomic sizes are very similar, one metal

can replace the other metal from its lattice site and form a solid solution. This solid

solution is known as alloy. The transition metals also form alloys with other metallic

elements. Properties of those alloys are also very interesting for research.

One may not be able to study the electronic transport properties from the OF-

AIMD method. So the electronic structure has not been studied here for any of

the system under study. It is, therefore, obvious that one needs to go for AIMD

calculation to study electronic transport properties.
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