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Abstract

Considerable research efforts have been devoted to the study of MHD free-force convection

and mass transfer flow through temperature stratified high porosity medium from a vertical

plate with power-law variation wall temperature in the presence of Hall and ion-slip currents

under various flow conditions. A magnetic field is applied perpendicular to the plates.

Various configurations have been considered for the plates.  The whole system is rotated

with a constant angular velocity Ω. The Hall and ion-slip currents effect has also been put

into consideration. The effects of changing various parameters on the velocity, temperature

and concentration distributions have been discussed. However,   finding exact solutions of

nonlinear problems is very difficult. In particular, obtaining an exact analytic solution of a

given nonlinear problem is often more complicated as compared to that of a numerical

solution, despite the availability of high performance supercomputers and software which

provide efficient ways to perform high quality symbolic computations. In our analysis, the

primary focus has been shown on the study of the   physical and mathematical structure of

fluid models. Method of explicit and implicit finite difference method, Nachtsheim-Swigert

iteration technique are used as main tools for numerical approach while the perturbation

technique is used for the analytical approach. The studies of the flow feature mentioned

above are made in different sections taking different aspects of the flow that are of practical

importance. The non-dimensional coupled partial differential equations of the momentum,

energy and concentration equations are derived by considering suitable usual transformation

and similarity variables. Also stability analysis has been derived for conversed solutions.

In section 4.1 of chapter 4, the similarity solutions have been obtained for one dimensional

unsteady MHD free convection and mass transfer flow through a vertical oscillatory porous

plate in a rotating porous medium with Hall, ion-slip currents and heat source. Two cases are

considered, (a) analytical solution with perturbation technique, (b) numerical solution by

implicit finite difference method.

In section 4.2 of chapter 4 and section 5.1, 5.2 of chapter 5, similarity solutions have been

obtained by finite difference method (implicit and explicit). The numerical solutions for the

velocity profiles, temperature distributions as well as concentration distributions are obtained

using implicit finite difference method for the effects of the various important parameters

entering into the problem in case of the one dimensional problem. Also the shear stress,

Nusselt number as well as Sherwood number have been computed by implicit finite

difference method in case of one dimensional flow. Further the above mentioned flow

problem has been considered for two dimensional case, unsteady MHD free convective flow.

The local and average shear stresses as well as Nusselt number and Sherwood number have

been computed by explicit finite difference technique in case of two dimensional flows. In

both cases the stability conditions and convergence criteria of the explicit finite difference

scheme have been analyzed for finding the restriction of the values of various parameters to

get more accuracy.

In chapter 6, similarity equations of the corresponding momentum and energy equations are

derived by introducing a time dependent length scale which in fact plays the role of a
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similarity parameter. The suction velocity is taken to be inversely proportional to this

parameter.

In Chapter 7, the flow structures of stratification fluid models are investigated in detail and

some new exact solutions have been obtained. The ambient temperature has been assumed to

be an increasing function with the distance along the plate. The heat transfer changes

significantly with the stratification and magnetic parameters.

In Chapter 8, power-law variation wall temperature along vertical plate, in the presence of

Hall and ion-slip currents are discussed. The plate surface has a power-law variation wall

temperature and is permeable to allow for possible fluid with wall suction or blowing,

velocity varied according to a power-law.

The Nachtsheim-Swigert iteration technique has been used Chapter6, Chapter 7 and
Chapter 8.

The effects on the velocities, temperature, concentration, local and average shear stresses,

Nusselt and Sherwood numbers of the various important parameters entering into the

problems separately are discussed for each problem with the help of graphs and tables.

Finally, in Chapter 9, a general discussion on the overall results of the problems considered

in the dissertation is sorted out.
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Nomenclature

a Wall temperature power index

B magnetic vector field

0B uniform magnetic field of strength

C fluid concentration

C dimensionless concentration

c Forcheimmer (inertial) coefficient

pc specific heat at constant pressure

sc concentration susceptibility

wC concentration at the plate

C species concentration at infinity

)(xC the concentration of the ambient fluid

0,  xC ambient concentration at the leading edge of the plate

mD mass diffusivity

fD Dufour number

D Diffusion coefficient

D Electric displacement

cE Eckert number

E Electric field

f  dimensionless primary velocity

wf suction parameter(large)

g  dimensionless secondary velocity

xF body force along x-axis

F body force

0g acceleration due to gravity

mG modified Grashof Number

rG Grashof Number

H magnetic field strength

h convective heat transfer coefficient

i complex number

J current density

zyx JJJ ,, components of the current density J

k permeability of the porous medium

Tk thermal diffusion ratio

fk thermal conductivity
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k mass transfer coefficient

L characteristic length

M magnetic Parameter

n zero or integer

n frequency

uN Nusselt number

uAuL NN , local and average Nusselt numbers

rP Prandtl number

P pressure of fluid

Q heat source quantity

Q Fluid velocity in complex form

q vector velocity

pq velocity of the charge

R rotation parameter

1S stratification rate of the gradient of ambient temperature profiles

2S stratification rate of the gradient of ambient concentration profiles

hAhL SS , local and average Sherwood numbers

0S Soret number

cS Schmidt number

TS thermal  Stratification parameter

*
TS mass  Stratification parameter

hS Sherwood number

nt, time

T temperature of the fluid in the boundary layer

T dimensionless temperature

mT mean fluid temperature

wT temperature at the wall

T temperature of the fluid at infinity

)(xT the temperature of the ambient fluid

0,  tT ambient temperature at any arbitrary reference point in the medium

0,  xT ambient temperature at the leading edge of the plate

wvu ,, components  of the velocity field q

WVU ,, components  of the dimensionless velocity field

0U free stream velocity

0v suction velocity at the wall

wv uniform blowing/suction at the plate
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YX , dimensionless coordinates

zyx ,, cartesian coordinates

Greek Symbols

 heat source parameter

 coefficient of volumetric thermal expansion of the fluid
* volumetric coefficient of expansion with concentration

e Hall parameter

i ion-slip parameter

 permeability parameter

 dimensionless Forcheimmer (inertial) parameter
 viscosity of the fluid

e magnetic permeability of the medium

 kinematic viscosity

 dimensionless concentration

 viscous dissipation

 stream function

 suction parameter
 similarity variable

 dimensionless temperature

 time dependent length scale

 ,e electrical conductivity of the fluid

 angular velocity about the y -axis

e charge density

 fluid density

 oscillation frequency in non-dimension form

 dimensionless time

U shear stress in x -axis

W shear stress in z -axis

zx  , x and z components of shear stress

LWLU  , x and z components of local shear stress

AWAU  , x and z components of average shear stress

e electron cyclotron frequency

e collision time of electrons

i ion cyclotron frequency

i collision time of ions
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 thermal conductivity

 porosity porous medium

  small number which is less than unity

  electrical permeability of the medium

Subscripts
w conditions at the wall

 conditions at infinity

)0,(  x at some reference point in the medium and at the outer edge of the boundary

layer

Superscript
/ differentiation with respect 
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Introduction

Fluid dynamics is an area of study that deals with the flow of fluids. The fluids in

consideration include gases, liquids and ionized gases also called plasma.  Electromagnetism

studies the interaction between the electric and magnetic fields.  Magnetohydrodynamics

(MHD)  combines  the  two areas  of  study  of  flow  of  liquids  called  hydrodynamics  and

the study  of  electromagnetism. Efficient, accurate and stable numerical methods for solving

fluid flow problems, heat and mass transfer processes, chemical reactions and turbulent

phenomena are of great importance in many industrial applications. It is nowadays generally

recognized that computer based computation of complex problems may provide a cost-

effective, quick and sufficiently reliable method in many cases. Sometimes, the

computational methods may also be an alternative or a complement to experimental

investigations.

The aim of this dissertation is to make some calculations, both analytical and numerical, on

MHD heat and mass transfer flows to the investigators dealing with the problems in

geophysics and astrophysics. The analyses so produced in fact arouse out of the natural

tendency to investigate a subject that may be said to relate to some academic types of

problems of solving the equations of the fluid mechanics with a new body force and some

other source of dissipation in the energy equation. The results of these investigations may not

have direct practical applications but are relevant to the problems mentioned above. It is

however, to be mentioned that the thermal instability investigations of natural convection

MHD flows have direct application to problems in geophysics and astrophysics. The largest

on MHD and heat transfer flows was aroused in the field of aerodynamic heating. Rossow

(1957) presented the first research paper on this subject for incompressible constant property

flat plate boundary layer flow. His results indicated that the skin frictions and the heat

transfer were reduced substantially when a transverse magnetic field was applied to the fluid.

In our analyses the combined buoyancy effects arising from the simultaneous diffusion of

thermal energy and chemical species are considered on the MHD flow of electrically

conducting fluid under the action of a transversely applied magnetic field. Other applications

of MHD heat transfer include MHD generators, plasma propulsion in astronautics, nuclear

reactor thermal dynamics and ionized-geothermal energy systems.

Further in studying the different aspects of astrophysical and geophysical problems the

Coriolis force is necessary to include to the momentum equations. Considering its

significance as compared to viscous and inertia forces, it is generally admitted that the

Coriolis force due to the Earth’s rotation has a strong effect on the hydromagnetic flow in the

Earth’s liquid core.
In most cases the Hall and ion-slip terms were ignored in applying Ohm’s law, as they have
no marked effect for small and moderate values of the magnetic field.  However, the current

trend for the application of MHD is  towards  a  strong  magnetic  field,  so  that  the

influence  of  the  electromagnetic force is noticeable (Cramer and Pai, 1973).  Under these

conditions, the Hall current and ion slip current are important and they have a marked effect

on the magnitude and direction of the current density and consequently on the magnetic force
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term. Tani (1962) studied the Hall effect on the steady motion of electrically conducting and

viscous fluids in channels.

Stratification   is a  formation/deposition  of  layers  which  occur  due  to  temperature
variations,    concentration     differences,   or   the presence  of  different fluids. Effect of

stratification is an important aspect in heat and mass transfer analyses. In practical situations

where the heat and mass transfer mechanisms run simultaneously, it is interesting and

important to analyze the influence of double stratification (stratification of medium with
respect to thermal and concentration fields) on the convective transport in nanofluid. The
analysis of natural and mixed convection in a doubly stratified medium is a fundamentally
interesting and important problem, because of its broad range of engineering applications.

These applications include heat rejection into the environment such as lakes, rivers, and seas,

thermal energy storage systems such as solar ponds and heat transfer from thermal sources

such as the condensers of power plants. Also thermal stratification is very important for solar

engineering because higher energy efficiency can be achieved with better stratification and

already has been shown by researchers that the thermal stratification in energy storage may

significantly increase system performance.

The effects of diffusion-thermo and thermal-diffusion of heat and mass transfer have been

examined by Chapman and Cowling (1952) and Hirshfelder et al. (1954) from the kinetic

theory of gases. The   heat and mass transfer simultaneously affecting each other that will

cause the cross-diffusion effect. The heat transfer caused by concentration gradient is called

the diffusion-thermo or Dufour effect. On the other hand, mass transfer caused by

temperature gradients is called Soret or thermal-diffusion effect. Thus Soret effect is referred

to species differentiation developing in an initial homogenous mixture submitted to a thermal

gradient and the Dufour effect   referred to the heat flux produced by a concentration

gradient. The Soret   effect, for instance has been utilized for isotope separation and in

mixture between gases with very light molecular weight  eHH ,2 and of medium molecular

weight  air,2N . Thus due to importance of Soret and Dufour effects   for the fluids with

very light molecular weight as well as medium molecular weight.

In chapter 1, available informations regarding MHD heat and mass transfer flows along with

various effects is summarized and discussed from both analytical and numerical point of

view.

In chapter 2, the basic governing equations related to the problems considered thereafter are

shown in standard vector form.

In chapter 3, the calculation approach for different problems is discussed.

In section 4.1 of chapter 4, a specific one dimension unsteady problem of the MHD free

convection and mass transfer flow through a vertical oscillatory porous plate in a rotating

porous medium with Hall, ion-slip currents and heat source are considered and are solved

analytically as well as numerically. The two dimension unsteady problem has been

considered in section 4.2 of chapter 4.

In section 5.1 of chapter 5, a specific one dimension unsteady problem of the effect of Hall

and ion-slip currents on MHD heat and mass transfer flow past a vertical plate with high
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porosity medium in a rotating system is considered. The two dimension unsteady problem

has been considered in section 5.2 of chapter 5.

In chapter 6, the effects of ion-slip current on MHD free convection flow in a temperature

stratified porous medium in a rotating system are considered.

In chapter 7, the effects of stratification on MHD free convection flow past a vertical plate

in a porous medium with Hall and ion-slip currents in a rotating system are considered.

In chapter 8, effect of Hall and ion-slip currents on MHD boundary layer flow past a vertical

plate in porous medium with power-law variation wall temperature in a rotating system is

considered.

As problems mentioned above have been solved by employing an analytical method, explicit

and implicit finite difference method, Nachtsheim-Swigert shooting iteration technique

together with sixth order Runge-Kutta integration scheme.

Finally, a general discussion all the problems is produced in chapter 9 with conclusive

remarks.
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Chapter 1

Available Information on MHD Heat and Mass transfer
flow

1.1 Magnetohydrodynamics(MHD)

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with the

flow of electrically conducting fluids in electric and magnetic fields. The largest

advancement towards understanding of such phenomena comes from the field of

astrophysics. It has long been suspected that most of the matter in the universe is in the

plasma or highly ionized gaseous state, and much of the basic knowledge in the area of

electromagnetic fluid dynamics has been evolved from these studies.

As a branch of plasma physics, the field of magnetohydrodynamics (MHD) consists of the

study of a continuous electrically conducting fluid under the influence of electromagnetic

fields. MHD included only the study of strictly incompressible fluid, but today the

terminology is applied to studies of partially ionized gases as well. The essential

requirements for problems to be analyzed under the laws of MHD are that the continuum

approach be applicable.

Many natural phenomena and engineering problems are susceptible to MHD analysis. It is

useful in astrophysics. Geophysics encounters MHD phenomena in the interactions of

conducting fluids and magnetic fields that are present in and around heavenly bodies.

Engineers employ MHD principles in the design of heat of exchangers, pumps and flow

meters, in space vehicle propulsion, control and re-entry, in creating novel power generating

system and in developing confinement schemes for controlled fusion.

The most important application of MHD is in the generation of electrical power with the flow

of an electrically conducting fluid through a transverse magnetic field. Recently, experiments

with ionized gases have been performed with the hope of producing power on a large scale in

stationary plants with large magnetic fields. Cryogenic and superconducting magnets are

required to produce these very large magnetic fields. Generation of MHD power on a smaller

scale is of interest for space applications. The increasing number of technical applications

using MHD effects has made it desirable to extend many of the available hydrodynamic

solutions to include the effects of magnetic fields for those cases when the fluid is electrically

conducting.

In most cases the Hall and ion-slip terms were ignored in applying Ohm’s law as they have
no effect for small and moderate values of the magnetic field. However, the current trend for

the application of magnetohydrodynamics is towards a strong magnetic field, so that the

influence of electromagnetic force is noticeable.

It is generally known that, to convert the heat energy into electricity, several intermediate
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transformations are necessary. Each of these steps means a loss of energy. This naturally

limits the overall efficiency, reliability and compactness of the conversion process. Methods

for direct conversion to energy are now increasingly receiving attention. Of these, the fuel

cell converts the chemical energy of fuel directly into electrical energy; fusion energy utilizes

the energy released when two hydrogen nuclei fuse into a heavier one and thermoelectrical

power generating uses a thermocouple. Magnetohydrodynamic power generation is another

important new process that is receiving worldwide attention.

Faraday (1832) carried out experiments with the flow of mercury in glass tubes placed

between poles of a magnet and discovered that a voltage was induced across the tube due to

the motion of the mercury across the magnetic fields, perpendicular to the direction of flow

and to the magnetic field. He observed that the current generated by this induced voltage

interacted with the magnetic filed to show down the motion of the fluid and this current

produced its own magnetic field that obeyed Ampere’s right hand rule and thus, in turn
distorted the magnetic field.

The phenomena of MHD electrical power generation was first recognized when Michael

Faraday(1832) experimented with the generation of electricity by moving an electrical

conductor through a stationary magnetic field. In January 1832 he set up a rudimentary

open-circuit MHD generator or flow meter on waterlo Bridge in London. On 13th August

1940 B. Karlovitz, a Hungarian engineer prposed a gaseous MHD system, he had from 1938

conducted experiments on the products of combustion of natural gas as a working fluid using

the annular Hall-type MHD generator. Faraday also suggested that electrical power could be

generated in a load circuit by the interaction of a flowing conducting fluid and a magnetic

field.

The first astronomical application of the MHD theory occurred in 1899 when Bigalow

suggested that the sun was gigantic magnetic system. Hartmann and Lazarus (1937) studied

the influence of a transverse uniform magnetic field on the flow of a conducting fluid

between two infinite parallel, stationary and insulated plates. Alfven (1942) discovered MHD

waves in the sun. The waves are produced by disturbances which propagate simultaneously

in the conducting fluid and the magnetic field. The American engineer Richard (1959)

operated the first truly successful MHD generator producing about 10 kw of electric power.

Further research by Rosa established the practicality of MHD for fossil-fuelled systems in

1990. MHD devices have been in use the early of the 20th century. More recently, MHD

devices have been used for stirring, levitating and otherwise controlling flows of liquid

metals for metallurgical processing and other application by Kolesnichenko (1990). Gas-phse

MHD is probably best known in MHD power generation. Sporn and Kantrouitz (1959), Steg

and Sutton (1960), major efforts have been carried out around the worked to develop this

technology in order to improve electric conversion efficiency, increase reliability by

eliminating moving parts and reduce emission from coal and gas plants. Closed-cycle liquid

metal MHD system using both single-phase and two-phase flows also has been explored.

Also MHD principle is utilized in stabilizing a flow against the transition from laminar to

turbulent flow. The word magnetohydrodynmics (MHD) is derived from magnetic field,
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liquid and movement. The field of MHD was initiated by Alfven (1942) for which he

received the Nobel Prize in Physic in 1970. Disturbance in either the magnetic field or the

fluid can propagate in both to produce MHD waves as well as upstream and downstream

wave phenomena.

The fundamental concept behind MHD is that magnetic field can induce currents in moving

conducting fluid, which in turn creates forces on the fluid and also changes the magnetic field

itself.

1.2 Electromagnetic Equations and MHD Approximations

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic

equations modified to take account of the interaction between the motion of the fluid and

electromagnetic field. Formulation of the electromagnetic theory in mathematical form is

known as Maxwell’s equations. Maxwell’s basic equations show the relation of basic field
quantities and their production. The basic laws of electromagnetic theory are all contained in

special theory of relativity. But here we will always assume that all velocities are small in

comparison with the speed of light. Before writing down the MHD equations, first of all

know the ordinary electromagnetic equations and hydromagnetic equations(Cramer and Pai,

1973).

First, the electromagnetic equations are as follows;

Charge continuity

eD . (1.2.1)

Current continuity

t
e






J. (1.2.2)

Magnetic field continuity

0. B (1.2.3)

Ampere’s Law

t
D

JH


 (1.2.4)

Fraaday’s Law

t
B

E


 (1.2.5)

Constitutive equations for D and B

ED   (1.2.6)

HB e (1.2.7)

Lorentz force on a charge

 BqEF pp  q (1.2.8)

Total current density flow

  qBqEJ e  (1.2.9)
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The equations (1.2.1)-(1.2.5) are the Maxwell’s equations where D is the electric

displacement,

e is the charge density, E is the electric field, B is the magnetic field, H is the magnetic

field strength, J is the current density,
t
D

is displacement current density,   is the

electrical permeability of the medium, e is the magnetic permeability of the medium, qe is

the convection current due to charges moving with the fluid, pq is the velocity of the charge,

q is the velocity field,   is the electrical conductivity.

The electromagnetic equations as shown above are not usually applied in their present form

and required interpretation and several assumptions to provide the set to be used in MHD.

The charge density e in Maxwell’s equations must then be interpreted as an excess charge

density which is generally not large. In most problems the displacement current, the excess

charge density and the current due to convection of the excess charge are small. The

electromagnetic equations to be used are as follows;

0. D (1.2.10)

0. J (1.2.11)

0. B (1.2.12)

JH  (1.2.13)

t



B
E (1.2.14)

ED   (1.2.15)

HB e (1.2.16)

 BqEJ  (1.2.17)

Suitably represent the equations of fluid dynamics to take account of the electromagnetic

phenomena;

(i) the MHD equation of continuity for viscous incompressible electrically conducting fluid

remains the same as that of usual continuity equation

0 q (1.2.18)

(ii) the MHD momentum equation for a viscous incompressible and electrically conducting

fluid is

BJq-F
q



 2 p

t
 (1.2.19)

where F is the body force term per unit volume corresponding to the usual viscous fluid

dynamics equations and the new term BJ  is the force on the fluid per unit volume

produced by the interaction of the current and magnetic field (called a BJ  force or

Loyrentz force);

(iii) the MHD energy equation for a viscous incompressible electrically conducting fluid is







2J2Tk
Dt

DT
C p (1.2.20)
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In relation to the energy equation of the thermal boundary layer the term  is the viscous

dissipation term and the new term
 

2J
is the Joule heating term and due to the resistance of

the fluid to the flow of current;

(iv) the MHD equation of concentration for viscous incompressible electrically conducting

fluid remains the same as CD
Dt

DC
M

2 (1.2.21)

1.3 The important Dimensionless Parameters of Fluid Dynamics

and Magnetohydrodynamics

Magnetic Parameter  M

It is a dimensionless number which is used in magnetofluid dynamics and it is defined by the

product of electron conductivity e , the square of the magnetic field strength and a

characteristic length L divided by product of the mass density and the fluid velocity. i.e.

Magnetic parameter
0

2
0

U

LB
M e



 which gives a measure of the relative importance of drag

forces resulting from magnetic function and viscous forces in Hartmann flow and determines

the velocity profile for such flow. This is the ratio of the magnetic force to the inertia force.

Heat Source parameter  

The heat source parameter is defined as,
2
0Uc

Q

p


  . Here Q is the heating capacity of the

medium,  is the kinematic viscosity, 0U is the uniform velocity,  is the density, pc is the

specific heat at constant pressure.

Prandtl Number  rP

Prandtl number is one of the characteristical numbers in fluid dynamics and heat transfer. It

is the ratio between momentum diffusivity (kinematic viscosity) and thermal diffusivity. The

Prandtl number is named after the German physicist Ludwig Prandtl.

It is defined as follows;







 p

p

r

c

c

P 
ydiffusivitThermal

 viscosityKinematic

where  is the kinetic viscosity,  is the thermal conductivity, pc is specific heat at constant

pressure,  is the density of the fluid.



Dhaka University Institutional Repository

6

The Prandtl number is a grouping of the properties of the fluid. It can be related to the

thickness of the thermal and velocity boundary layers. In particular sense, when 0.1rP , the

velocity boundary layer and thermal boundary layer coincide. If the rP values be small, then

heat diffuses very quickly compared to the velocity (momentum) i.e. the thickness of the

thermal boundary layer is such bigger than the velocity boundary layer for liquid metals.

Conversely, rP values be larger, then the momentum boundary layer is thicker than the

thermal momentum boundary layer. It is used in heat transfer, free and forced convection

calculations. For most gases over a wide range of temperature and pressure, Prandtl number

is approximately constant. Therefore, it can be used to determine the thermal conductivity of

gases at high temperatures, where it is difficult to measure experimentally due to the

formation of convection currents. It depends on the fluid properties. It is evident that rP

various from fluid to fluid. Typical values for Prandtl number are, for air at 200C

71.0rP (Approx.), at 200C  for water 0.7rP (Approx.),for electrolyte solution such as salt

water, 0.1rP , for sea water (at 00C and 200C) 4.13rP and 2.7rP for mercury

05.0rP , but for high viscous fluid it may be very large, viz, for glycerin 7250rP .

Eckert number  cE

The Eckert number, first named in the early 1950s after Ernst R. G. Eckert. It is useful in

determining the relative importance in a heat transfer situation of the kinetic energy of a

flow. It is the ratio of the kinematic energy to the enthalpy(or the dynamic temperature to the

temperature) driving force for heat transfer. It is defined as follows;

 


TTc

U
E

wp
c

2
0

Enthalpy

energykinematic

where 0U is a characteristic velocity of the flow, pc is the specific heat at constant pressure

and  TTw is the driving force for heat transfer e.g. difference between wall temperature

and free stream temperature. For small Eckert number ( 0.1cE ) the terms in the energy

equation describing the effects of pressure changes, viscous dissipation and body forces on

the energy balance can be neglected and the equation reduces to a balance between

conduction and convection.

The Eckert number phenomenon was investigated theoretically by Geropp in 1969 and

describes a reversal in heat transfer from a moving wall at an Eckert number 1cE . In this

report the Eckert number phenomenon is confirmed experimentally for the first time.

Moreover, maximum heat transfer occurs at an Eckert number 3.0cE , which is of great

importance for the cooling of hot surface in a gas-flow.

Grashof number  rG

The Grashof number is a dimensionless number in fluid dynamics and heat transfer. It arises

frequently in the study of situations involving natural convection. It is used in analyzing the
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velocity distribution in free convection systems. The Grashof number is used in the

correlation of heat and mass transfer due to thermally induced natural convection at a solid

surface immersed in a fluid. The significance of the Grashof number is that it represents the

ratio between the buoyancy forces due to spatial variation in fluid density (caused by

temperature differences) to the resulting force due to the viscosity of the fluid. It is named

after the German engineer Franz Grashof,

 
3
0

0

U

TTg
G w

r

 

where 1rG ,the viscous force is negligible compared to the buoyancy force and inertia

force. When buoyant forces overcome the viscous forces, the flow starts a transition to the

turbulent regime. In natural convection the Grashof number plays the same role that the

Reynolds number plays in forced convection.

Modified Grashof Number  mG

The modified number Grashof number is defined by

 
3
0

*
0

U

CCg
G w

m

 


where, 0g is the local acceleration due to gravity, * is the volumetric coefficient of

concentration expansion and  CCw be the concentration difference. It is used in case of

natural convection mass transfer problems.

Suction Parameter  

The suction parameter is defined as,
0

0

U

v
 .

This is a ratio of the suction velocity to the wall and the free stream velocity.

Permeability Parameter  

The permeability parameter is defined as
2
0

2

kU


 

where k is the permeability of the porous medium,  is the kinematic viscosity, 0U is the

uniform velocity.

Rotational Parameter  R

The rotational parameter is defined as

2
0U

R




where  is the angular velocity,  is the kinematic viscosity, 0U is the free stream velocity
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Forcheimmer (Inertial) Parameter  

The inertial parameter is defined as,
0U

c


where c is the Forcheimmer (inertial) coefficient,  is the kinematic viscosity, 0U is the

uniform velocity.

Hall Parameter  e

The Hall parameter is defined as, eee  

where e is the electron cyclotron frequency, e is the electron mean free time.

Ion-slip Parameter  i

The ion-slip parameter is defined as, iii  

where i is the ion cyclotron frequency, i is the ion mean free time.

Schmidt Number ( cS )

Schmidt number is the ratio of the viscous diffusivity to the mass diffusivity. It physically

relates the relative thickness of the hydrodynamic layer and concentration boundary layer.

It is defined as follows:

mm
c DD

S




ratediffusionmass)Molecular(

ratediffusionViscous

where  is the kinematic viscosity , mD is the mass diffusivity,  is the dynamic viscosity

of the fluid. The Schmidt number is important in problems involving both momentum and

convection mass transfer. This provides a measure of the relative effectiveness of the

momentum and mass transport by diffusion in the velocity and concentration boundary layers

respectively. For convection mass transfer in laminar flows, it determines the relative

velocity and concentration boundary layer thickness.

Soret Number  0S

The Soret number is defined as,
 
 







CCT

TTkD
S

wm

wTm

0

where  is the kinematic viscosity, wT and T are the temperature of the fluid at the wall and

far away from the plate respectively as well as wC and C are the concentration of the

species at the wall and far away from the plate , mD is the coefficient of mass diffusivity, Tk

is the thermal diffusion ratio, mT is the mean fluid temperature respectively.
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Dufour Number  fD

The Dufour number is defined as,
 
 ,







TT

CC

cc

kD
D

w

w

ps

Tm
f 

where, mD is the coefficient of mass diffusivity,  is the kinematic viscosity, wT and T are

the temperature of the fluid at the wall and far away from the plate respectively as well as

wC and C are the concentration of the species at the wall and far away from the plate, sc is

the concentration susceptibility, Tk is thermal diffusion ratio, pc is the specific heat at

constant pressure respectively.

Thermal Stratification Parameter  TS

The thermal stratification parameter is defined as,    )(
2

0,

xT
dx

d

TT

x
S

xw
T 




where x is the characteristic length, wT is the temperature at the wall, 0,  xT is the ambient

temperature at the leading edge of the plate,  )(xT
dx

d
 is constant.

Mass Stratification Parameter  *
TS

whether mass stratification parameter is defined as;    )(
2

0,

* xC
dx

d

CC

x
S

xw
T 




where x is the characteristic length, wC is the concentration of the species at the wall, 0,  xC

is the ambient concentration at the leading edge of the plate,  )(xC
dx

d
 is constant.

Nusselt Number  uN

The Nusselt number is used to measure the enhancement of heat transfer when convection

takes place and is defined as follows

f

u k

hL
N 

tcoefficientransferheatconduction

tcoefficientransferheatconvective
is perpendicular to the flow direction.

where L characteristic length which is simply volume of the body divided by surface area

of the body (useful for more complex shape), fk thermal conductivity of the fluid,

h convective heat transfer coefficient. A Nusselt number close to one, namely convection

and conduction of similar magnitude, is characteristic of “slug flow” or laminar flow. A
larger Nusselt number corresponds to more active convection, with turbulent flow typically

in the 100-1000 range.
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Sherwood number  hS

The Sherwood number is a dimensionless number used in masstransfer operation. It

represents the ratio of length scale to the diffusive boundary layer thickness and is named in

honor of Thomas Kilgore Sherwood and is defined as follows:

D

Lk
Sh 

tcoefficien transfermassDiffusive

tcoefficien transfermassConvective

It is the mass transfer equivalent of the Nusselt number where, k is the overall mass transfer

coefficient, L is the characteristic length, D is the component diffusion coefficient.

1.4 Suction and Injection

Suction or injection on the boundary layer control played significant role in the field of

aerodynamics and space sciences. The effect of suction on hydromagnetic boundary layer is

of great interest in astrophysics. It is often necessary to prevent separation of the boundary

layer to reduce the drag and attain high lift values. Many authors have made mathematical

studies on these problems, especially in the case of steady flow.

On the other hand, one of the important problems facing the engineers engaged in high speed

flow is the cooling of the surface to avoid the structural failures as a result of frictional

heating and other factors. In these respect the possibility of using injection at the surface is a

measure to cool the body in the high temperature fluid. Injection of secondary fluid through

porous walls is of practical importance in flim cooling of turbine blades combustion

chambers. In such applications injection usually occurs normal to the surface and the injected

fluid may be similar to or different from the primary fluid. In some recent applications,

however, it has been recognized that the cooling efficiency can be enhanced by vectored

injection at an angle other than 900 to the surface. Inger and Swearn (1975) have

theoretically proved this feature for a linear boundary layer. In addition, most previous

calculations have been limited to injection rates ranging from small to moderate. Shojaefard

et al. (2005) used suction/injection to control fluid flow on the surface of subsonic aircraft..

Many interests have been built in the study of flow of heat and mass transfer with suction or

injection because of its extensive engineering applications. In the area of steady flow of

viscous incompressible fluid over infinite porous plates subject to suction or injection,

various aspects of the problem have been investigated by many authors. Griith and Meredith

(1936) invstigated the possible improvement in Aircrat performance due to use of boundary

layer suction. Das (2009) studied the effect of suction and injection on MHD three

dimensional couette flow and heat transfer through a porous medium.

Prasanna et al. (2012) studied MHD boundary layer flow of heat and mass transfer over a

moving vertical plate in a porous medium with suction and    viscous dissipation. Mutua et

al. (2013) was studied magnetohydrodynamic free convection flow of a heat generating fluid

past a semi-infinite vertical porous plate with variable suction. Numerical investigation of

buoyancy effects on hydromagnetic unsteady flow through a porous channel considering

suction and injection is to be found in the study by Makinde and Chinyoka (2013).
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The unsteady MHD free-convection flow governed by the impact of suction or injection is

one of the distinguished present-day themes. For instance the process of suction or blowing

has also its importance in many engineering activities such as in the design of thrust bearing

and radial diffusers and thermal oil recovery. Suction is applied to chemical processes to

remove reactants and injection is used to add reactants, cool the surface, prevent corrosion or

scaling and reduce the drag (Labropulu et al. (1996)). Ahmed and Khatun (2013) carried out

a theoretical analysis on Magneto-hydrodynamic oscillatory flow in a planer porous channel
with suction and injection.  They reported that suction/injection shifts the region of maximum

velocity away from the centerline and leads to non-symmetry in the velocity and temperature.

1.5 MHD Boundary Layer Phenomena

Boundary layer phenomena occur when the influence of a physical quantity is restricted to

small regions near confining boundaries. This phenomena occurs when the non-dimensional

diffusion parameters the Reynolds number and the Peclet number or the magnetic Reynolds

number are large. The fundamental concept of boundary layer was suggested by Prandtl

(1904), it defines the boundary layers as a layer of fluid developing in flows with relatively

low viscosity as compare with inertial force. The boundary layer is characterized by an

abrupt change in the transverse direction of velocity (a hydrodynamic boundary layer),

temperature (a thermal boundary layer) or concentration of individual chemical components

(a diffusion boundary layer). The viscosity, thermal conductivity and diffusivity of the fluid

are the principal influences on the formation of the flow in a boundary layer.

Prandtl fathered classical fluid dynamic boundary theory by observing, from experimental

flows that for large Reynolds number, the viscosity and thermal conductivity appreciably

influenced the flow only near a wall. When distant measurements in the flow direction are

compared with a characteristic dimension in that direction, transverse measurements

compared with the boundary layer thickness and velocities compared with the free stream

velocity, the Navier-Stoks and energy equation can be considerably simplified by neglecting

small quantities. The number of component equations is reduced to those in the flow

direction and pressure changes across the boundary layer are negligible. The pressure is then

only a function of the flow direction and can be determined from the inviscied flow solution.

Also the number of viscous term is reduced to the dominant term and the heat conduction in

the flow direction is negligible.

MHD boundary layer flows are separated into two types by considering the limiting cases of

a very large or a negligible small magnetic Reynolds number. When the magnetic field is

oriented in an arbitrary direction relative to a confining surface and the magnetic Reynolds

number is very small, the flow direction component of the magnetic interaction and the

corresponding Joule heating is only a function of the transverse magnetic field component

and local velocity in the flow direction. Changes in the transverse magnetic field component

and pressure across the boundary layer are negligible. The thickness of the magnetic

boundary layer is very large and the induced magnetic field is negligible. However, when the

magnetic Reynolds number is very large, the magnetic boundary layer thickness is small and
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is of nearly the same size as the viscous and thermal boundary layers and then the MHD

boundary layer equations must be solved simultaneously. In this case, the magnetic field

moves with the flow and is called frozen mass. When a fluid is electrically conducting and a

uniform steady magnetic field acts perpendicular to the channel walls, the structure of the

flow changes drastically. The profile becomes flat in the so-called core as a result of the

electromagnetic breaking effect, this breaking is due to the intraction of the induced electric

current with applied magnetic field.

Moreover, two boundary layers develop in the vicinity of the walls. This layer has been

theoretically predicted and experimentally characterized by Julius (1937) that present one of

the most important characteristic features of MHD flows. This layer is one of the few flows

that are amenable to rigorous analytic treatment. MHD boundary layer is a parading of MHD

flow and develops when a liquid metal flows under the influence of a steady magnetic field.

The book of Schilchting (1968) is an excellent collection of the boundary layer analysis.

1.5.1 MHD and Heat Transfer

With the advent of hypersonic flight, the field of MHD, as define above, which has

attracted the interest of aero dynamists and associated largely with liquid metal pumping. It

is possible to alter the flow and the heat transfer around high velocity vehicles provided

that the air is sufficiently ionized. Further more, the invention of high temperature facilities

such as the shock tube plasma jet have provided laboratory sources of following ionized

gas, which provide an incentive for the study of plasma accelerators and generators. As a

result of this, many of the classical problems of fluid mechanics have been reinvestigated.

Some of these analyses awake out of the natural tendency of scientists to search a new

subject. In this case it was the academic problem of solving the equations of fluid

mechanics with a new body force and another source of dissipation in the energy equation.

Some time there were no practical applications for these results. As for example, natural

convection MHD flows have been of interest to the engineering community only since the

investigations, directly applicable to the problems in geophysics and astrophysics. But it

was in the field of aerodynamic heating that the largest interest was awaked.

Rossow (1957) presented the first paper on this subject. His result for incompressible

constant property flat plate boundary layer flow indicated that the skin friction and heat

transfer were reduced substantially when a transverse magnetic field was applied to the

fluid. This encouraged a multitude analysis for every imaginable type of aerodynamic flow,

and most of the research centered on the stagnation point, where in hypersonic flight, the

highest degree of ionization could be expected. The results of these studies were sometimes

contradictory concerning the amount by which the heat transfer would be reduced (some of

this was due to misinterpretations and invalid comparison). Eventually, however, it was

concluded that the field strength, necessary to provide sufficient shielding against heat

fluxes during atmospheric flight, where not competitive (in terms of weight) with other

method of cooling (Sutton and Gloersen (1961)). Comprehensive reviews of convective
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heat transfer in porous medium can be found in the books by Neild and Bejan (2013),

Patankar and Spalding (1970), Rohsenow (1998) and Gosman et al.(1969).

1.5.2 Convection

In the studies related to heat transfer, considerable effort has been directed towards the

convective mode, in which the relative motion of the fluid provides an additional mechanism

for the transfer of energy and material, the latter a more important consideration in cases

where mass transfer, due to concentration difference, occurs. Convection is the collective

movement of ensembles of molecules within fluid (e.g. liquids, gases), since, although the

fluid motion modifies the transport process, the eventual transfer of energy from one fluid

element to another in its neighborhood is through conduction. Also, at the surface, the

process is predominantly that of conduction because the relative fluid motion is brought to

zero at the surface. A study of the convective heat transfer therefore involves the mechanisms

of conduction and sometimes, those of radiative processes as well, coupled with those of

fluid flow. Convection plays a major role in transporting energy from the centre of the Sun to

the surface and movements of the hot magma beneath the surface of the earth. In context of

heat and mass transfer, the term “convection” is used to refer to the sum of advective and

diffusive transfer. Note that in common use the term convection may refer loosely to heat

transfer by convection, as opposed to mass transfer by convection, or the convection process

in general.

Natural convection/Free convection

Natural convection is a mechanism or type of heat transport, in which the fluid motion is not

generated by any external source (like a pump, fan, suction device, etc) but only by density

differences in the fluid occurring due to temperature gradients. In natural convection, fluid

surrounding a heat source receives heat, becomes less dens and rises. The presence of a

proper acceleration such as the rising from resistance to gravity, or an equivalent force

(arising from acceleration, centrifugal force or Coriolis effect), is essential for natural

convection. Natural convection has attracted a great deal of attention from researchers

because of its presence both in nature and engineering applications. Convection is also seen

in the rising plum of hot air from fire, oceanic currents and sea-wind formation (where

upward convection is also modified by Coriolis forces). Natural or free convection has

attracted a great deal of attention from researchers because of its presence of both in nature

and engineering application. In engineering applications, convection is commonly visualized

in the formation of microstructures during the cooling of molten metals and fluid flows

around shrouded heat-dissipation fins and solar ponds. A very common industrial application

of natural convection is free air cooling without the aid of fans, this can happen on small

scales (computer chips) to large scale process equipment. Free convection flows are studied

because of their wide applications and hence it has attracted the attention of numerous

investigators.

Osborne Reynolds was first to make use of the mathematical similarity between the moment-
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um equation and energy equation in convection in 1874. The effects of magnetic filed on

natural convection heat transfer studied by Sparrow and Cess (1961). The transient free

convection flow past a semi-infinite vertical plate by integral method was first studied by

Siegel (1958). Many researchers studied MHD free convection boundary layer flow on heat

and mass transfer, some of them, Jaluria, Y. (1980), Bejan (1994), Alam  and Sattar (2000).

Hady et al. (2006), Reddy et al. (2012), Asek and Benu (2013), Paraven and Rudraman

(2014), Sharma et al. (2014), Ahmmed et al. (2015), Reddy (2016).

1.5.3 Heat and Mass Transfer Flow

Heat and mass transfer are kinetic processes that may occur and be studied separately or

jointly. Studying them apart is simpler but both processes are modeled by similar

mathematical equations in the case of diffusion and convection (there is no mass transfer

similarity to heat radiation) and it is thus more efficient to consider them jointly.

Mass transfer is the net movement of mass from one location, usually meaning stream, phase,

fraction or component, to another. Mass transfer occurs in many processes, such as

absorption, evaporation, adsorption, drying, precipitation, membrane filtration, and

distillation.  It is that involve diffusive and convective transport of chemical species within

physical system. In industrial processes, mass transfer operations include separation of

chemical components in distillation columns, absorber such as scrubbers, absorbers such as

activated carbon beds and liquid-liquid extraction. Mass transfer is often coupled to

additional transport process for instant in industrial cooling towers. In astrophysics mass

transfer is the process by which matter gravitationally bound to a body, usually a star, fills its

Roche lobe and becomes gravitationally bound to a second body, usually compact object.

Mass transfer finds extensive application in chemical engineering problems. Mass transfer is

used by different scientific disciplines for different processes and mechanisms. It is used in

reaction engineering, separation engineering, heat transfer engineering and many other sub-

disciplines of chemical engineering. Some common examples of mass transfer processes are

the evaporation of water from a pond to the atmosphere, the purification of blood in the

kidneys and liver, and the distillation of alcohol.

Heat transfer is a discipline of thermal engineering that concerns the generation, use

convection and exchange of thermal energy and heat between physical systems. Transfer

of heat is normally from a high temperature object to a lower temperature object. Heat

transfer changes the internal energy of both systems involved according to the First Law of

Thermodynamics. Additionally, subsidiary laws relating to fluid flow and rate equations

for different moods of heat transfer are also required for a complete solution. It has

applications in diverse fields of engineering, such as mechanical engineering,

metallurgical engineering, electrical engineering, chemical engineering, nuclear

engineering, aerospace engineering and space technology, cryogenic engineering, civil

engineering. In industries and nature many transport process exist in which heat and

mass transfer take place simultaneously as a result of combined buoyancy effect of

thermal diffusion and diffusion of chemical species. The phenomenon of heat and mass
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transfer is observed in buoyancy induced motions in the atmosphere, in bodies of water,

quasi-solid bodies, such as earth and so on. In the past decades an intensive research

effort had been devoted to problems on heat and mass transfer in view of their

application to astrophysics, geophysics and engineering. In addition, the phenomenon of

heat and mass transfer is also encountered in chemical process industries. The combined

effect of heat and mass transfer can result in significant temperature changes and

increased energy transfer rates at a wet surface. The majority of heat transfers used in

the plastic molding industry is manufactured by the screen printing process. Screen

printed heat transfers were introduced in the early 1960’s. These additional effects have
also been considered in several investigators, for example, the work of Groots and

Mozur (1962), Eckert and Drake (1972), Hurly and Jakeman (1971), Caldwel (1974).

The natural convection boundary layer flow generated in a fluid adjacent to a heated,

vertical semi-infinite plate is one of the fundamental flows in heat and mass transfer.

Most studies have examined the fully developed flow with relatively few investigations

of the transient response to impulsive heating. Georgantopoulos et al.(1979) have

studied the effects of mass transfer on free convection problem in the Stokes problem for

an infinite vertical limiting surface. Georgantopolous and Nanousis (1980) have

consider the effects the mass transfer on free convection flow of an electrically

conducting viscous fluid (e.g. of a stellar atmosphere) past an impulsively started

infinite vertical limiting surface (e.g. of star) in the presence of transverse magnetic

field.

Recently, the heat and mass transfer problem associated with the boundary layer

saturated fluid under different physical conditions has been studied by several authors,

some of them are Das and Jana (2010), Farhad Ali et al. (2013), Alizadeh et al. (2015),

Emad et al. (2011), Mangathai, et al. (2015).

1.5.4 Effect of Rotation
The study  of  flow in rotating porous media is motivated by its practical applications in

geophysics and engineering. Hydromagnetic convection flow in  a  rotating  medium  is  of
considerable  importance  due  to  its application  in  various  areas  of  geophysics,

astrophysics  and fluid  engineering  viz.  maintenance  and  secular  variations  in Earth’s
magnetic field  due  to  motion  of  Earth’s  liquid  core, internal  rotation  rate  of  the  Sun,
structure  of  the  magnetic stars, solar and planetary dynamo problems, turbo machines,

rotating MHD generators, rotating drum separators for liquid metal  MHD  applications,

chemical process industry, ion propulsion, MHD bearings and rotating machinery etc.  It may

be noted that Coriolis and magnetic forces are comparable in magnitude and Coriolis force

induces secondary flow in the flow-field.
In numerous hydromagnetic flows, rotation may also take place and the centrifugal forces

can exert a significant effect on flow dynamics and heat transfer processes. Magnetic field

and Hall current effect on MHD free convection flow past a vertical rotating flat plate was

analyzed by Kirimi Jacob et al. (2012). Yantovskiy and Tolmach (1963) investigated
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centrifugal force effects on     rotating hydromagnetic generator configurations. Michiyoshi

and Numano (1967) investigated the performance characteristics of the vortex MHD

power generator using a partially ionized gas as a working fluid, showing that

compressibility of the working fluid causes a much sharper decline of the   radial velocity in

the radial direction than in the case of an incompressible fluid at subsonic speeds. Further

interesting studies of transient rotating   hydromagnetic flow were reported by Katsurai

(1972) and Oliver (1974).

The steady and unsteady Eckman layers of an incompressible fluid have been investigated as

basic boundary layers in a rotating fluid appearing in oceanic, atmospheric, cosmic fluid

dynamics and solar Physics or geophysical problems. It is well known that, in a rotating fluid

near a flat plate, an Eckman layer exists where the viscous and Coriolis forces are of the

same order of magnitude. Rotating flows are of considerable interest to engineers and

metrologists. An extensive survey of this type of flows and their various applications have

been given by Thamizhsudar and Pandurangan (2015), Veera Krishna et al. (2013),

Hannington Situma  et al. (2015), Khaled (2015).

1.5.5 Hall and Ion-Slip Currents

The Hall effect has deep roots in the history of electricity and magnetism. In 1879 U.S.

Physicist Edwin H. Hall (Hall, 1879) made the momentous discovery that, when a current-

caring conductor is placed in a magnetic filed, the electromagnetic force “presses” its
electrons against one side of the conductor. One year later, He reported that his “pressing
electricity” effect was ten times larger in ferromagnetic iron (Hall, 1881) than in non-

magnetic conductors. Both discoveries were remarkable, given how little was known at the

time about how charge moves through conductors. For this role, the Hall effect was

frequently called the queen of solid-state transport experiments. If the magnetic field is

perpendicular to electric field, there will be an electromagnetic force which is perpendicular

to both magnetic and electric field. Such a force will cause the charged particles to move in

the direction perpendicular to both magnetic and electric field. Then a new component of

electric current density in the direction perpendicular to both magnetic and electric field

which is known as Hall current. The Hall effect can be used to measure certain properties of

current carries as well as to detect the presence of a current on a magnetic field.

The electric field or Hall field is a result of the force that the magnetic field exerts on the

moving positive or negative particles that constitute the electric current as well as ion-slip

current. This current always has a tendency to move from positive to negative. The electric

current density J represents the relative motion of charged particles in a fluid. The equation

of the electric current density may be derived from the diffusion velocities of the charge

particles Hughes and Young (1966), Pai (1962), Shercliff (1965)). If the Hall and ion-slip

terms are retained in generalized Ohm’s law, then the current density is given by ( Sutton and

Sherman,1965)

    BBJBJBqEJ 
2
00 BB

iieeee 
 (1.5.5.1)
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where q is the velocity vector, E is the intensity vector of the electric field, J is the electric

current density, B is the magnetic induction vector, e and i are the electron and ion

cyclotron frequencies, e and i are the collision times of electrons and ions. In the

generalized Ohm’s law (1.5.5.1), the second term on the right side gives rise to the Hall

effect and the last term introduces ion-slip. Hall coefficient defines the ratio of the induced

electric field to the product of the current density and the applied magnetic field. Under these

conditions, the Hall and ion-slip are important and they have market effect on the magnitude

and direction of the current density and consequently on the magnetic force term. Several

investigators have studied the effects of magnetic fields on the convection heat and mass
transfer by ignoring the Hall and Ion-slip terms in Ohms law were ignored. However, in the

presence of strong magnetic field, the influence of Hall current and ion-slip are important.

The heat transfer aspect of MHD channel flow, on taking into account Hall current, was

studied by Cowling (1957). The combined effects of the Hall and ion-slip currents on heat

transfer have been studied by Mital and Bhat (1980). An analysis of the MHD couette flow,

taking into account the Hall and ion-slip effects, has been carried out by Soundalgeker et al.

(1979) for fully developed flow. The effects Hall and ion-slip currents on free convective

heat generating flow in a rotating fluid have studied by Ram (1995).   The transient Hartmann

flow with heat transfer considering the ion-slip has been investigated by Attia (2005, 2006 ).

Attia (2009) has studied the ion-slip effect on unsteady coquette flow with heat transfer under

exponential decaying pressure gradient. The combined effects of Hall and ion-slip currents

on unsteady MHD coquette flows in rotating system have been investigated by Basant K Jha

and Apere (2010). Mark et. al. (2014) investigated Hall current effects on a flow in a variable

magnetic field past an infinite vertical, porous flat plate. Dileep and Priyanka (2012) studied

heat transfer effects on rotating MHD couette flow in a channel partially filled by a porous

medium  with Hall current. Singh et al. (2016) studied the effects of Hall current and ion-

slip on unsteady hydromagnetic generalized couette flow in a rotating Darcian channel.

MHD free convection heat and mass transfer flow through a porous medium bounded by a

vertical surface in presence of Hall current were analyzed by Tavva et al. (2012).

1.5.6 Soret (Thermal-diffusion) and Dufour (Diffusion-thermo)

numbers

Soret and Dufour effects are interesting physical phenomenon in fluid mechanics, when heat

and mass transfer occur simultaneously, the relations between the fluxes and the driving

potentials are of a more intricate nature. It has been found that energy flux can be generated

not only by temperature gradients but also by concentration gradients. The heat transfer

caused by a concentration gradient is termed as diffusion thermo (Dufour) effect. On the

other hand, mass transfer created by temperature gradients is called as thermal-diffusion

(Soret) effect. Generally, in heat transfer process, the Soret and Dufour effects are neglected

because they are smaller order of magnitude than   the effects described by Fouriers and

Ficks laws. The thermal-diffusion(Soret) effect, for instance, has been utilized for isotope
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separation, and in mixture between gasses with very light molecular weight  eHH ,2 and of

medium molecular weight  air,2N , the diffusion-thermo (Dufour) effect was found to be of

a considerable magnitude such that it cannot be ignored. In view of the  importance of these

above mentioned effects, Dursukanya and Worek (1992)   studied diffusion-thermo and

thermal-diffusion effects in transient and steady  natural convection from a vertical surface.

Panneerselvi and Kowsalya (2015) analyzed ion-Slip and Dufour effect on unsteady free

convection flow past an infinite vertical plate with oscillatory suction velocity and variable

permeability. Venkata et al. (2014) investigated Dufour and Soret effects on unsteady MHD

free convection flow past a semi-infinite moving vertical plate in a porous medium with

viscous dissipation. Kafoussias (1992) studied the MHD free convection and mass transfer

flow past an infinite vertical plate moving on its own plane taken into account the thermal

diffusion effect. Nanousis (1992) extended the work of Kafoussias (1992) to the case of

rotating fluid taken into account the Soret effect. Emmanuel et al. (2008) studied numerically

the effect of thermal-diffusion and diffusion thermo on combined heat and mass transfer of a

steady MHD convective and slip flow due to a rotating disk with viscous dissipation and

Ohmic heating. Ahmed (2009) considered free convective heat and mass transfer of an

incompressible, electrically conducting fluid over a stretching sheet in the presence of

suction and injection with thermal-diffusion and diffusion-thermo effects Many researchers

studied MHD free convection flow with Soret and Dufour effect, some them, Srinivasa et al.

(2014), Govardhan et al. (2012), Bishwa  and Animesh (2016).

1.5.7 Porosity Medium
Porosity is the ratio of pore volume to its total volume. Porosity or void fraction is a measure

of the void (i.e. empty) spaces in a material, and is a fraction of the volume of voids over the

total volume. The term porosity is used in multiple fields including pharmaceutics, ceramics,

metallurgy, materials, manufacturing, earth sciences, soil mechanics and engineering.

Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and

composition. Porosity is related properties of any rock or loose sediment. Most oil and gas

has been produced from sandstones. These rocks usually have high porosity.  Porosity is

absolutely necessary to make a productive oil or gas well. The petroleum geologist must stay

focused on the porosity of the prospective reservoir. Porosity consists of the tiny spaces in

the rock that holds the oil or gas. Mathematically, porosity is the open space in a rock divided

by the total rock volume (solid + space or holes). The holes in sandstone are called porosity

(from the word “porous”). The skeletal portion of the material is often called the “matrix” or
“frame”. The pores are typically filled with a fluid (liquid or gas). The  skeletal material is
usually a solid, but structures like foams are  often  also  usefully  analyzed  using  concept

of  porous  media. Properties for any porous media of interest may also be specied. The

following properties are required:

1. Porosity

2. Viscous resistance
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3. Inertial resistance

A porous medium is most often characterized by its porosity. Other properties of the medium

(e.g., permeability, tensile strength, electrical conductivity) can sometimes be derived from

the respective properties of its contituents (solid matrix and fluid) and the media porosity and

pores structure, but such a derivation is usually complex. Even the concept of porosity is only

straight forward for a poroelastic medium.

Many natural substances such as rocks and soil (e.g. aquifers, petroleum reservoirs), zeolites,

biological tissues (e.g. bones, wood, cork) and made materials such as cements and ceramics

can be considered as porous media. Many of their important properties can only be

rationalized by considering them to be porous media. The concept of porous media is used in

many areas of applied science and engineering, filtration, mechanics (acoustics,

geomechanics, soil mechanics, rock mechanics), engineering (petroleum engineering, bio-

remediation, construction engineering), geosciences (hydrogeology, petroleum geology,

geophysics), biology and biophysics, material science etc. Fluid flow through media is a

subject of most common interest and has emerged a separate field of study. The study of

more general behavior of porous media involving deformation of the solid frame is called

poromechanics.

The literature is rich with references dealing with MHD free convection flows in presence of

porous medium for instance Pop and Watanabe (1994). Before 1996 , the effects of the

presence of a transverse magnetic field on the natural convection of an electrically

conducting fluid boundary layer flow in a high porosity and thermally stratified medium have

not been considered. Hydromagnetic natural convection from an isothermal inclined surface

adjacent to a thermally stratified porous medium was studied by Chamkha (1997). Many

researchers studied MHD free convection boundary layer flow heat and mass transfer high-

porosity medium, some of them are Al-Humoud and Chamkha (2006), Takhar et al. ( 2003).

Anwar (2005).

1.5.8 Stratification
Stratification is a characteristic of all porous media surrounded by differentially heated and

salted side walls and enclosed regions of porous structures. The dynamics of flows in a

thermally stratified fluid are also important and arise in many contexts, ranging from

industrial settings to the oceanic and atmospheric environments. Influence of stratification is

an important aspect in heat and mass transfer analysis. Stratification is a formation/deposition
of layers which occur due to temperature variations, concentration differences, or the

presence of different fluids. In practical  situations  where the  heat   and  mass    transfer
mechanisms run parallel, it is interesting to analyze the effect of double stratification
(stratification of medium with respect to thermal and concentration fields)  on  the
convective  transport  in  micro polar fluid. The analysis of free convection in a doubly

stratified medium is a   fundamentally interesting and important problem because of its broad

range of engineering applications. These applications include   heat rejection into the

environment such as lakes, rivers, seas, thermal energy storage   systems   such as solar
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ponds and heat transfer from thermal sources such as the condensers of power plants.

Although the effect of stratification of the medium on the heat removal process in a fluid is

important, very little work has been reported in literature. The effect of stratification is an

important aspect in heat and mass transfer and has been studied by several researches. In

real-world situations where heat and mass transfer run simultaneously, it is significant to

investigate the effect of double stratification on the convective transport. A stratified fluid

consisting of fluid parcels of various densities will tend under gravity to arrange itself so that

the higher densities are found below lower densities. The vertical layering introduces an

obvious gradient of properties in the vertical direction, which affects the velocity. Stratified

fluids are universal in nature, present in almost any heterogeneous fluid body such that

heterogeneous mixture in industries, salinity stratification in estuaries, density stratification

of the atmosphere. Thermal stratification is the scientific term that describes the layering of

bodies of water based on their temperature. As water heats and cools, it expands and

contracts, changing in density. Thermal stratification is a natural occurrence, in any static

body of water and occurs when the surface layer of water, warmed by the sun, becomes less

dense than the water lower it. Analysis of thermal stratification is very important for solar

engineering because higher energy efficiency can be achieved with better stratification and

already shown by researchers that the thermal stratification in energy storage may

significantly increase system performance. Several studies have been found to analyze the

influence of the combined heat and mass transfer process by natural convection   in a thermal

and /or mass stratified porous medium, owing to its wide applications, such as   development

of advanced technologies for nuclear waste management, hot dike complexes in volcanic

regions for heating of ground water, separation process in chemical engineering, etc.   Here

stratified porous medium means that the ambient concentration of dissolved constituent

and/or ambient temperature is not uniform and varies as a linear function of vertical

distance from the origin. Chen and Eichorn (1976) have been analyzed that natural

convective flow over a heated vertical surface in a thermal stratified medium using the local

non similarity method for the solution of the governing equations. When the heat and mass

transfer is present simultaneously then it is important to analyze the effect of double

stratifications on the convective flows, such flows involve in the rivers, lakes and seas,

thermal energy storage systems and solar ponds etc.

Although the effect of stratification of the medium on the heat removal process in a fluid is
important, very little work has been reported in the literature. The science of magneto

hydrodynamics (MHD) was concerned with geophysical and astrophysical problems for a

number of years. In recent years, the possible use of MHD is to   affect a flow stream of an

electrically conducting fluid for the purpose of thermal protection, braking, propulsion and

control. More recent and relevant studies are also due to Akira Nakayama and Hitoshi

Koyama (1987), Narayana and Murthy (2006), Srinivas and Kishan (2014).
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Chapter 2

The Basic Equations

The equations governing the MHD convective flow of electrically conducting fluid in a

rotating vertical porous plate with porous medium in the presence of Hall and ion-slip

currents are;

2.1 Equation of Continuity

The mass conservation equation also called the continuity equation is derived from the law of

conservation of mass.  Considering a section of the fluid flow region, the mass entering the

section equals the mass leaving this section such that there is no mass being created or

destroyed. For an unsteady fluid flow, the vector form of the continuity equation is derived in

many fluid mechanics text books such as (Curie, 1974).
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where 3,2,1i along  the yx, and z directions respectively. Since we are considering a

fluid flow that is incompressible, the density of the fluid is assumed to be constant and in this

case the continuity equation takes the form
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2.2 Momentum Equation

The conservation  of  momentum  states  that  within  some  problem  domain,  the

momentum remains constant.  Momentum is neither created nor destroyed but only changed

through  the  action  of  forces  as  described  by  Newton’s  laws  of  motion. Newton’s
second law of motion states that the rate of change of momentum of a body is equal to the net

sum of resultant forces acting on the body. Considering   a   rotating   frame   of   reference

with a uniform angular velocity , the equation of momentum becomes:
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where the MHD body force and Coriolis terms are included in the Navier-Stokes   equations

to model the momentum equation.

Note that the pressure gradient and body force term are given by 0g
x

P



 and 0gFx 

. Combining the pressure and the body force term then introduce the volumetric coefficient

of   thermal expansion and the concentration expansion co-efficient, then,
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If the Hall and ion-slip terms are retained in generalized Ohm’s law, then the current density
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is given by (Sherma and Sutton, 1965)
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where eee   Hall parameter and iii   ion-slip parameter.

In light of discussion in section 1.2, the basic electromagnetic equations of Maxwell’s &
Ohm’s law (with Hall and ion-slip currents) are:

0. D (2.1.3)

0. J (2.2.4)

0. B (2.2.5)

JH  (2.1.6)
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ED   (2.2.8)

HB e (2.2.9)
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2.3 Energy equation

The equation is based on conservation of energy which states that   energy is neither

created    nor   destroyed    but   can   be transformed from one form to another. It is derived

from the first law of thermodynamics.
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where 3,2,1, ki . The electrical dissipation which is the heat energy produced by the work

done by electrical current.  This  dissipative  heat  due  to  electric  currents  is


2J
,which  is

the  Joule heating.

2.4 Concentration Equation
The  concentration  equation  is  also  called  the  diffusion  equation  and  is  based  on the

principle  of  mass  conservation  for  each  component  or  constituent  in  a  fluid mixture.

In the absence of chemical reactions, the rate at which the mass of some species  enters  a

control  volume  minus  the  rate  at  which  the  species  mass  leaves the  control  volume  is

equal  to  the  rate  at  which  the  species  mass  is  stored  in the control volume. In this

case, the concentration equation given as
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The problems which will be dealt henceforth will fall into the categories that will be

specified by the above mentioned equations and hence they (above equations) would serve as

the basic governing equations.
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Chapter 3

The Calculation Techniques

Many physical phenomena in applied science and engineering when formulated into

mathematical models fall into a category of system known as non-linear coupled partial

differential equations. Most of these problems can be formulated as second order partial

differential equations. A system of non-linear coupled partial differential equations with the

boundary conditions is very difficult to solve analytically. No analytical solution is available,

the numerical method can be used. Nowadays there are several methods that enable us to

solve numerically the governing equations of heat transfer problems. These include: the finite

difference method, finite element method, finite volume method, boundary element method,

the sixth order Rung-Kutta method along with Nachtsheim-Swigert shooting iteration

technique etc. The numerical approce of partial differential equations is a broad subject.

Partial differential equations play one of the most important role of computer analyzes or

simulations of continuous physical systems, such as heat conduction, mechanics, fluids,

electromagnetic etc.

Hence two numerical procedures have been adopted to obtain solutions. A standard initial

value solver namely the sixth order Rung-Kutta method along with Nachtsheim-Swigert

Shooting iteration technique have been used as a first numerical technique. After that, the

governing equations are transformed by usual transformation into a non-dimensional system

of non-linear coupled partial differential equations with initial and boundary conditions.

Hence the solution of our problem be based on advanced numerical methods. The explicit as

well as implicit finite differential method has been used for solving the obtained non-linear

coupled partial differential equations, initially one problem of this thesis has been solved

analytically based on the work of Ganapathy (1994).

3.1 Nachtsheim-Swigert Shooting Iteration Technique

To solve boundary layer equations by using Shooting method technique, there are three

asymptotic boundary conditions )0(),0( gf  and )0(  .

Within the context of initial value method and Nachtsheim-Swigert iteration technique the

outer boundary conditions can be functionally represented as;

    1max )0(),0(),0(   gfff (3.1.1)

    2max )0(),0(),0(   gfgg (3.1.2)

    3max )0(),0(),0(   gf (3.1.3)

with asymptotic convergences criteria are given by

    4max )0(),0(),0(   gfff (3.1.4)

    5max )0(),0(),0(   gfgg (3.1.5)
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    6max )0(),0(),0(   gf (3.1.6)

Now choosing,
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Expanding first order Taylor series expansion after using the above equations (3.1.1)-(3.1.6)

yields;
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The subscript ‘c’ indicates the value of the function at max determine from the trial

integration. Solution of these equations in a least squares sense requires determining the

minimum value of the error as;
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Now differentiating E with respect to 21, gg and 3g yields
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Applying equations (3.1.8) -(3.1.13) in equations (3.1.15)-(3.1.17), then obtained equation as

follows,
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From equations (3.1.18) to (3.1.20), the following equations obtained as follows;
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3333232131 bgagaga  (3.1.23)
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In matrix form, equations (3.1.21)- (3.1.23) can be written as follows;
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Now solve the system of linear equations (3.1.33) by Cramers rule and obtained as follows;
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where,

333231

232221

131211

det

aaa

aaa

aaa

A  (3.1.35)

33323

23222

13121

1det

aab

aab

aab

A  (3.1.36)
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13111

2det
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A  (3.1.37)

33231

22221

11211

3det

baa

baa

baa

A  (3.1.38)

Then the (unspecified) missing values 21, gg and 3g are as follows;

111 ggg  (3.1.39)

222 ggg  (3.1.40)

333 ggg  (3.1.41)

Thus adopting the Nachtsheim-Swigert iteration technique numerical described, a computer
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program will be setup for the solution of the basic coupled non-linear ordinary differential

equations of present problem where the integration technique will be adopted as the six order

Rung-Kutta method of integration. Based on the integrations done with the above numerical

technique, the obtained results will be presented in the appropriate section.

3.2 Finite Difference Technique
The finite difference method is the popular method and also the easiest one to apply to

problems with simple geometries. The computational domain is covered by a grid. Taylor

series expansion or polynomial fitting are used to approximate the derivatives of the

variables with respect to coordinates. Algebraic equations are achieved at each grid point and

the resulting set of equations can be solved simultaneously at each node.

In order to solve the governing partial differential equations by finite difference method, a

two-dimensional region as shown in Fig.3.2.1 is considered.  It is covered by a rectangular

grid formed by two sets of lines

drawn parallel to the coordinate

axes with grid spacing x and

y in x and y directions

respectively.

The numerical values of the

dependent variables are

obtained at the points of

intersection of the parallel lines,

called mesh points, lattice points

or nodal points. These values

are obtained by discrediting the

governing partial differential

equations over the region of

intersect to derive approxi-

mately equivalent algebraic

equations. The discretization

consists of replacing each

derivative of the partial differential equation at a mesh point by a finite difference

approximation in terms of the values of the dependent variable at the mesh point and at the

immediate neighboring mesh points and boundary points. In doing so, a set of algebraic

equation arise.

Let the temperature T at a representative point be a function of two special coordinates ,x y

and time t . We adopt the following notation. The subscripts i and j represent x and y

coordinates and superscript n represent time. Let the mesh spacing in x and y directions

are denoted by x and y also the time step by t . Thus ( , , )T x y t can be represented by

,( , , ) n
i jT i x j y n t T    . With this notation let us assume that the function T and its

derivatives are continuous. Then from Taylor’s series expansions, the finite difference

n
jiT ,

x

y

1j

j

1j
1ii1i

2i

ttimeat

1
,
n
jiT

tt timeat

t

O

X

Y

Fig.3.2.1 Space-Time index notation
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approximations to derivatives can be obtained. For example, the Taylor’s series expansion of

1,i jT  about the grid point ( , )i j gives

     2 3 42 3 4

1, , 2 3 4

,

higher order terms
2! 3! 4!i j i j

i j

x x xT T T T
T T x

x x x x

      
       

     
(3.2.1)

or,  1, ,

,

i j i j

i j

T TT
O x

x x
        

is the forward difference approximation to the derivative

T

x




with a truncation error of order x .

Similarly,

     2 3 42 3 4

1, , 2 3 4

,

higher order terms
2! 3! 4!i j i j

i j

x x xT T T T
T T x

x x x x

      
       

     
(3.2.2)

or,  , 1,

,

i j i j

i j

T TT
O x

x x
       

is the backward difference approximation to the derivative

T

x




with a truncation error of order x .

Both approximations are first order accurate.

Subtracting equation (3.2.2) from (3.2.1), we obtain

 21, 1,

, 2
i j i j

i j

T TT
O x

x x
           

.

This is a central difference approximation to the derivative
T

x




with a truncation error of

order  2x , which is second order accurate.

The central difference approximation to a second order partial derivative
2

2

T

x




can be

similarly obtained by adding the equations (3.2.1) and (3.2.2).

Thus
 

 
2

21, , 1,

22

,

2i j i j i j

i j

T T TT
O x

x x

            

Similar expressions can be written for y derivative

 2, 1 , 1

,
2

i j i j

i j

T TT
O y

y y
           

 
 

2
2, 1 , , 1

22

,

2i j i j i j

i j

T T TT
O y

y y

            

which are also second order accurate.

The expressions for mixed derivatives can be obtained by differentiating with respect to each

variable in turn. Thus for example,
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1, 1 1, 1 1, 1 1, 1

2
1, 1,

,,

2 2

2 2

i j i j i j i j

i j i j

i ji j

T T T T T T
y y y yT T

x y x y x x

       

 
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2

1, 1 1, 1 1, 1 1, 1

,
4
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i j

T T T TT

x y x y
          

      

Proceeding in a similar manner, the central difference approximation to the third derivative is

found to be
3

2, 1, 1, 2,

3 3

,

2 2

2
i j i j i j i j

i j

T T T TT

x x
      

   

Similar approximations can be obtained even to higher order derivatives.
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Chapter 4

4.1 Unsteady MHD free convection and mass transfer flow
along a vertical oscillatory porous plate in a rotating
system with Hall, ion-slip currents and heat source

The MHD mass transfer flow under the action of strong magnetic field plays a decisive role

in astrophysical and geophysical problems. Hall and ion-slip currents are likely to be

important in flows of laboratory plasma. In the study of magneto hydrodynamic fluid flow in

a rotating system has been motivated by several important problems, such as maintenance

and secular variations of earth’s magnetic field, the internal rotation rate of sun, the structure
of rotating stars, the planetary and solar dynamo problem, centrifugal machines etc.

Convection in porous medium has applications in geothermal energy recovery, oil extraction,

thermal energy storage and flow through filtering devices. The study of effects of magnetic

field on free convection flow is important in liquid-metals, electrolytes and ionized gases.

The thermal physics of hydro magnetic problems with mass transfer is of interest in power

engineering and metallurgy. The study of MHD viscous flows with Hall currents has

important engineering applications in problems of MHD generators and of Hall accelerators.

In recent years the theoretical study of MHD channel flows has been a subject of great

interest due to its widespread applications in designing cooling systems with liquid metals,

petroleum industry, and purification of crude oil, polymer technology, and centrifugal

separation of matter from fluid, MHD generators, pumps, accelerators and flow meters. The

first exact solution of Navier-Stokes equation with flow of viscous incompressible fluid past

a horizontal plate was oscillating in its own plane was investigated by Stokes (1851).

Turbatu et al. (1998) investigated the flow of an incompressible viscous fluid past an infinite

plate oscillating with increasing or decreasing velocity amplitude of oscillation. Combined

effects of Hall and ion-slip currents on free convective heat generating flow past a semi-

infinite vertical flat plate have been investigated by Abo-Eldahab et al. (2000). Ramana et al.

(2011) analyzed an unsteady MHD free convective mass transfer flow past an infinite

vertical porous plate with variable suction and Soret effect. Das et al.(2011) analyzed the

eeffect of heat source on MHD free convection flow past an oscillating porous plate in the

slip regime. Maji et al. (2009) investigated the Hall effects on hydromagnetic flow on an

oscillating porous plate. Jha and Apere (2012) investigated time-dependent MHD couette

flow of rotating fluid with Hall and ion-slip currents. The study of heat generation or

absorption effects in moving fluids is important in view of several physical problems, such as

fluids undergoing exothermic or endothermic chemical reactions. Chaudhary and Arpita

(2007) studied combined heat and mass transfer effects on MHD free convection flow past an

oscillating plate embedded in porous medium. Joaquin et al. (2011) studied the combined

heat and mass transfer by natural convection from a semi-infinite plate submitted to a
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magnetic field with Hall currents. Okedoye (2013) investigated heat and Hall effect of an

oscillating plate in a porous medium. Ahmed et al. (2010) has studied the unsteady MHD free

convective flow past a vertical porous plate immersed in a porous medium with Hall current,

thermal diffusion and heat source. Muthucumaraswamy and Vijayalakshmi (2008) studied

the effects of heat and mass transfer on flow past an oscillating vertical plate with variable

temperature. Rajput and Gaurav (2016) investigated Soret effect on unsteady MHD flow

through porous medium past an oscillating inclined plate with variable wall temperature and

mass diffusion. Das et al. (2008) studied unsteady viscous incompressible flow due to an

oscillating plate in a rotating fluid. Revankar (2000) studied free convection effect on flow

past an impulsively started   or oscillating infinite vertical plate.

Hence our aim is to investigate the unsteady MHD free convection and mass transfer flow

along a vertical oscillatory porous plate in a rotating system with Hall, ion-slip currents and

heat source. Also the effects of different flow parameters encountered in the equations are

studied. The problem is governed by system of coupled nonlinear partial differential

equations. The problem is solved by analytically in Case I and numerically in Case II. The

effects of various parameters on the velocity, temperature, concentration, shear stresses (in x

and z -axes), Nusselt number and Sherwood number are discussed and presented graphically.

4.1.1 Governing Equations

Consider the unsteady flow of an electrically conducting incompressible viscous fluid past an

infinite vertical porous plate 0y  . When the plate velocity ( )U t oscillates in time t with a

frequency n and is given as  tnUtU cos1)( 0  . The flow is assumed to be in the

x direction and which is taken along the plate in the upward direction and y  axis is

normal to it. Initially the fluids as well as the plate are at rest

but for time 0t  , the whole system is allowed to rotate with a

constant angular velocity  about the y  axis.  Initially, it is

considered that the plate as well as the fluid is at the same

temperature. Also it is assumed that the temperature of the

plate and spices concentration are raised to wT ( T ) and

wC ( C ) respectively, which are there after maintained

constant, where wT , wC are temperature and spices

concentration at the wall and T , C are the temperature and

the concentration of the spices outside the boundary layer respectively, the physical

configuration of the problem is shown in Fig.4.1A. A uniform magnetic field B is acting

transverse to the plate. Using the relation 0 B for the magnetic field ( , , )x y zB B BB ,

0yB B has been considered everywhere in the fluid ( 0B is a constant).  However, for such a

fluid, the hall and ion-slip currents will significantly affected the flow in presence of large

magnetic fields. The induced magnetic field is neglected since the magnetic Reynolds

Fig.4.1A Physical configuration
and coordinate system

0B

O Y

X



u
v

T

w

wT

wC C
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number of a partially-ionized fluid is very small. If ( , , )x y zJ J JJ is the current density,

from the relation 0 J , yJ  constant has been obtained. Since the plate is electrically

non-conducting, 0yJ  at the plate and hence zero everywhere. Since the plate is infinite in

extent, all physical quantities, except pressure, are functions of y and t only. The governing

equations for the problems are as follows;

Continuity equation; 0


y

v
(4.1.1)

Momentum equation;
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Energy equation;
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4.1.4)

Concentration equation;
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(4.1.5)

where the variables and related quantities are defined in the Nomenclature.

The initial and boundary conditions for the model are;

0for,,0,0   tCCTTwu (4.1.6)
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(4.1.7)

4.1.2 Mathematical Formulation

Now  a convenient solution of equation (1) is

0v v  (constant) (4.1.8)

where the constant velocity 0v acting normal to the plate which is positive or negative for

suction or blowing. Using equation (4.1.8), the equations (4.1.2)-(4.1.5) become

Momentum equation;
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Energy equation;
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Concentration equation;
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The initial and boundary conditions for the model are;

0for,,0,0   tCCTTwu (4.1.13)
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Equations (4.1.9)-(4.1.12) reduce to non-dimensional form, introducing the following non-

dimensional quantities;

















CC

CC
C

TT

TT
T

U

ntU

U

w
W

U

u
U

yU
Y

ww

,,,,,,
2
0

2
0

00

0 






(4.1.15)

The non-dimensional system of coupled equations have been obtained by using the above

mentioned non-dimensional quantities in equations (4.1.9)-(4.1.12),

Momentum equation;
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Energy equation;
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Concentration equation;
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The corresponding boundary conditions are as follows;

0for0,0,0,0  CTWU (4.1.20)
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4.1.3 Solution Technique

4.1.3.1 Case I: Analytical Solution

The equations (4.1.16)-(4.1.17) have been further simplified by putting the fluid velocity in

complex form;  iWUYQ ),(  . Then the system of coupled ordinary differential

equations become;
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The corresponding boundary conditions (4.1.20) and (4.1.21) are now transformed in the

following form;

0for0,0,0  CTQ (4.1.25)
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In order to solve the equation (4.1.22)-(4.1.24) with the boundary condition (4.1.26) in the

neighborhood of the plate, the unsteady flow is superimposed on the mean steady flow.  In

fact owing to the appearance of i in the ensuing differential equations, the solution must be a

linear combination of e and e where  the frequency of oscillation, following equations

is have been considered by Ganapathy (1994);
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 )()(
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
 (4.1.29)

where 1121000 , iWUQQWUQ 

The equations (4.1.22)-( 4.1.24) become by equation (4.1.27)-( 4.1.29) are as follows;
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The appropriate boundary conditions for the equations (4.1.25)-(4.1.26) are as follows;
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Solving equation (4.1.30)-(4.1.32) by using boundary conditions (4.1.33)-(4.1.35), the

following equations have been obtained;
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Now putting the values of 0 0 0 1 1 1 2 2 2, , , , , , , ,Q Q Q      in equation (4.1.27)-(4.1.29) then the

following equations are as follows;

YAiYAiYAYAYA eeeeeBeBeBQ 1913327

22435
   



36

Fig.4.1.B Finite difference grid space
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where the values of 2 3 4 5 7 13 19 1 2 3 4 8 10 5, , , , , , , , , , , , ,A A A A A A A B B B B B B B and other constants

are defined in appendix.

4.1.3.2 Case II: Numerical Solution

The governing second order non-linear coupled partial differential equations have been

solved with the associated initial and boundary conditions. For solving a transient free

convection flow with mass transfer

past an infinite plate, the implicit

finite difference method has been

used by Callahan and Marner

(1976) which is conditional stable.

On the contrary, the same problem

has been studied by Soundalgekar

and Ganesan (1980) by an implicit

finite difference method which is

fast convergent and unconditional

stable. But Callahan and Marner

(1976), Soundalgekar and Ganesan (1980) have been found same result using different

methods on the same problem. The implicit finite difference method has been used to solve

the equations (4.1.16)-(4.1.19) with boundary conditions (4.1.20). For the purpose, a

rectangular region is considered where Y varies from 0 to 25. This value maxY is supposed

to represent  and lies well outside the momentum, energy and concentration boundary

layers. In this case, the region within the boundary layer is divided by some perpendicular

lines of Y -axis, where Y -axis is normal to the medium as shown Fig.4.1.B. Number of grid

spacing in Y -direction is )400(m , hence the constant mesh size along Y -axis become

)250(06.0  YY with a smaller time step 001.0 .

Let nnn TWU ,, and nC denoted the values of TWU ,, and C at the end of a time-step.

Then an appropriate set of finite difference equations corresponding to the equations

(4.1.16)-(4.1.19) are as follows;

 
 n

ie
n
ie

ee

n
i

n
i

n
i

n
i

n
in

im
n

ir

n
i

n
i

n
i

n
i

WU
M

URW
Y

UUU
CGTG

Y

UUUU






















 



22

2
111

1

2
2

(4.1.36)

 
 n

ie
n
ie

ee

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

WU
M

WRU
Y

WWW

Y

WWWW























 



22

2
111

1

2
2

(4.1.37)



37

 
n

i

n
i

n
i

n
i

r

n
i

n
i

n
i

n
i T

Y

TTT

PY

TTTT















 



2
111

1 21
(4.1.38)

   2
11

02
111

1 221

Y

TTT
S

Y

CCC

SY

CCCC n
i

n
i

n
i

n
i

n
i

n
i

c

n
i

n
i

n
i

n
i
















 






(4.1.39)

The initial and boundary conditions are obtained as

1,1,0,0 0000  iiii CTWU (4.1.40)
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Here the subscripts i designate the grid points with Y coordinates and the superscript n

represents a value of time,   n where ,....3,2,1,0n The primary velocity U ,

secondary velocityW , temperature T and concentration C distributions at all interior nodal

points may be computed by successive applications of the above finite difference equations.

The obtained values are discussed graphically.

4.1.4 Stability and Convergence Analysis

The analysis will remain incomplete unless discussion the stability and convergence of the

finite different scheme. For the constant mesh sizes, the stability criteria of the scheme may

be established as follows. The general terms of the Fourier expansion for CTWU ,,, at a

time arbitrarily called 0  are i Ye   apart from a constant, where 1i   . At a time later,

these terms become
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Substituting (4.1.42) into equations (4.1.36) - (4.1.39), over any one time step and denoting

the values after the time step by   ,, and  gives after simplifications

)()()()()(  GFED  (4.1.43)

)()()(  IH  (4.1.44)

)()(  J (4.1.45)

)()()(  LK  (4.1.46)
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The equations (4.2.50) to (4.2.53) are written in matrix form;
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i.e. T   where i.e.  is the column vector with element  ,, and  . For stability, the

modulus of each eigenvalue of the amplication matrix T must not exceed unity. Let
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The coefficients a and b are all real and non-negative. We can demonstrate that the

maximum modulus of D , I , J and L occur when Y m   , where m is an integer and

hence D , I , J and L are real. For sufficiently large, the value of , ,J L D and I are

greater when m is an odd integer, in which case
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To satisfy the condition 1J  , 1L  , 1D  and 1I  the most negative allowable value is
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4.1.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood

number. The following equations represent the shear stress at the plate. The shear stress in x

and z components are as follows;
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From the temperature field, the effect of various parameters on the local heat transfer

coefficients has been studied. The following relation represents the heat transfer rate that is

well known Nusselt number. Nusselt number
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And from the concentration field, the effect of various parameters on the mass transfer

coefficients has been analyzed. The following relation represents the mass transfer rate that is

well known Sherwood. Sherwood number
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The numerical values of the shear stress, Nusselt number and Sherwood number are

evaluated by Five-point approximation formula for the derivatives. The obtained values are

discussed graphically.

4.1.6 Results and Discussion

4.1.6.1 Justification of Grid Space
The code is conversed with three different grid space 450,400,350m where m is the grid

number. It is seen that there is a little change for the above mentioned grid points which are

shown in Fig.4.1C. For saving power and time, the computation for results of velocity,

temperature and concentration have been carried out for 400m .

4.1.6.2 Steady-State Solution
The numerical solutions of the non-linear differential equation (4.1.9)-(4.1.12) under the

boundary conditions (4.1.13)-(4.1.14) have been performed by applying implicit finite

difference method. In order to verify the effects of time step size  , the programming code

is run our model with different step sizes such as 10, 40,80,90,100,110,120  . To get
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Steady-State solutions, the computations have been carried out up to 120  . It is observed

that, the result of computations for , ,U W T and C , however shows little changes after 80  .

Thus the solutions of all variables for 90  are essentially steady-state. Grid space and

steady state solution are shown for rotational parameter R in Fig.4.1C and Fig. 4.1D for

primary velocity.
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Fig.4.1C Primary velocity for different grid space of

rotational parameter R

Fig.4.1D Primary velocity for different time step

rotational parameter R

Unsteady MHD free convection and mass transfer flow along a vertical oscillatory porous

plate in a rotating system with Hall, ion-slip currents and heat source have been investigated

using analytically as well as numerically. To study the physical situation of this problem, the

primary velocity, secondary velocity, temperature and concentration distribution within the

boundary layer have been computed and also find the Shear stress, Nusselt number and

Sherwood number at the plate. The velocity in x -direction is called primary velocity and that

of in z -direction is called secondary velocity. For the purpose of discussing the effects of

various parameters on the flow behaviors in the boundary layer. Numerical calculations have

been carried out for different values of Hall parameter( e ), ion-slip parameter( i ), magnetic

parameter( M ), rotation parameter( R ), Prandtl number( rP ), suction parameter(  ), Schmidt

number ( cS ), Grashof number( rG ), modified Grashof number( mG ), Soret number ( 0S ),

permeability parameter( ) and heat source parameter( ). It is observed that these

parameters affect the velocity, temperature and concentration fields. The values for the

parameters are chosen arbitrarily.  Some standard values for the Prandtl number ( rP ) and

Schmidt number ( cS ) are considered because of the physical importance. These are

71.0rP corresponds to air, 1.00rP  corresponds to electrolyte solution such as salt water

and 0.7rP corresponds to water C020 and Schmidt number cS the values 0.1,78.0,60.0

are considered, which represent specific condition of flow ( 60.0 for water vapor, 78.0 for

ammonia, 0.1 for  carbondioxid). The importance of cooling problem in nuclear engineering

in connection with the cooling of reactors, the values of rG and mG are taken to be positive.

Y

40 80

10

2.0R

110

120

90

100U

6.0

5.0,71.0

0.1,5.0

0.2,3.0

0.5,5.0

0.1,2.0

0








c

r

me

r

i

S

P

S

G

GM








2.0R

350m

400m

450m

Y

U

6.0

5.0,71.0

0.1,5.0

0.2,3.0

0.5,5.0

0.1,2.0

0








c

r

me

r

i

S

P

S

G

GM










41

For the purpose of computation, 001.0,2/   t have been chosen arbitrarily. For

brevity negligible effects on velocity, temperature and concentration distributions are not

shown.

Discussion of Analytic solution (figures of 1st column)
and
Numerical Solution (figures of 2nd and 3rd columns)

To observe the physical situations of the problem, the primary velocity, secondary velocity,

temperature and concentration distribution have been displayed in Figs.4.1.1-4.1.29 and

Fig.4.1.30(a)-4.1.58(a) in case of analytical(case I) and numerical(case II) solutions. Also in

numerical solution, the physical importance of the problem with the above mentioned

parameters, the shear stresses (in x and z-axes), Nusselt number and Sherwood number have

been displayed in Figs. 4.1.30(b)-4.1.58(b).

Figs. 4.1.1, Fig. 4.1.3, Figs. 4.1.30(a) and Fig. 4.1.32(a) depict the variation in the primary

velocity profiles for different values of Hall parameter ( e ) and ion-slip parameter ( i ) in

case of analytic and numerical solutions of the problem. These figures indicate that, the

primary velocity increase with the increase of Hall and ion-slip parameters. This is because

the effective conductivity decreases with increasing e and i which reduces the magnetic

damping force on primary velocity. Due to analytical and numerical solutions of the problem

theses figures are qualitatively identical but quantitatively different. Similar trend arises in

secondary velocity profiles with the increase of e which can be found in Fig.4.1.2 and

Fig.4.1.31 (a) in case of analytic and numerical solutions respectively. These two figures are

qualitatively identical but quantitatively different. But the secondary velocity profiles have

decreasing effect with the increase of i which are shown in Fig.4.1.4 and Fig.4.1.33 (a).

Also these two figures are qualitatively identical but quantitatively different. In numerical

solution, the shear stresses in x -axis increases with the increase of e and i which are

shown in Fig. 4.1.30(b) and Fig. 4.1.32(b). The shear stress in z -axis increases with the

increase of e while the opposite behavior is shown for increasing i which are shown in

Fig. 4.1.31(b) and Fig. 4.1.33(b) for numerical solution. The Hall effect accelerated the fluid

flow along secondary direction, as a result rate of flow along z -axis increases, so the shear

stress along z - axis is increased.

From Fig.4.1.5 and Fig. 4.1.34(a) it is seen that the primary velocity decrease with the

increase of permeability parameter ( ) in case of analytic and numerical solutions. It is

expected physically also because the resistance posed by the porous medium to the

decelerated flow due to the rotation reduces with increasing  which leads to decrease in the

primary velocity. From these two figures, it is indicated that the qualitative behavior are
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same but quantitatively different. The variations of secondary velocity for various values of

 in case of analytic and numerical solutions are plotted in Fig. 4.1.6 and Fig. 4.1.35(a)

respectively. From these figures it is observed that secondary velocity increases with the

increase of  . From these two figures it is seen that the qualitatively identical but

quantitatively different. In numerical solution, the shear stress in x -axis decreases whereas in

z - axis has reverse effect with the increase of  which are found in Fig. 4.1.34(b) and Fig.

4.1.35(b).

It is observed that there is rise in the primary velocity with the increase of modified Grashof

number ( mG ) in Fig. 4.1.7 and Fig. 4.1.36(a) in case of analytic and numerical solutions

respectively. This expected, increase in the values of mG has the tendency to increase the

mass buoyancy effect, which gives rise to an increase in the induced flow. These two figures

are qualitatively identical but quantitatively different. From Fig. 4.1.8 and Fig. 4.1.37(a) it is

found that the modified Grashof number has reverse effect on secondary velocity field in

case of analytic and numerical solutions. From these two figures it is seen that the qualitative

nature of the flow is identically same but quantitatively different. In numerical solution the

shear stress in x - axis increases with the increase of mG which is shown in Fig. 4.1.36(b).

The modified Grashof number has the tendency to increase mass buoyancy force, as a result

the rate of the flow of the fluid increases. Thus shear stress in x - axis increases in numerical

solution. Whereas the shear stress in z - axis decreases with the increase of mG which is

shown in Fig.4.1.37(b).

Fig.4.1.9, Fig.4.1.10, Fig 4.1.38(a) and Fig 4.1.39(a) show the variation of primary and

secondary velocity profiles for various values of Grashof number ( rG ) in case of analytic

and numerical solutions respectively. Fig.4.1.9 and Fig 4.1.38(a) reveal the primary velocity

variation with ( rG ) correspond to cooling of the plate. It is observed that greater cooling of

the plate i.e. increase in rG results an increase in primary velocity in case of analytic and

numerical solutions respectively. It is expected, that the increase in the values of thermal

Grashof number has the tendency to enhancement of thermal buoyancy force. This gives rise

to an increase in the induced flow. These two figures are qualitatively same but

quantitatively different. Opposite behavior are found in case of secondary profiles for

increasing values of rG which are shown in Fig.4.1.10 and Fig. 4.1.39(a) in both cases. Due

to analytic and numerical solutions Fig.4.1.10 and Fig. 4.1.39(a) are qualitatively identical

but quantitatively different. In numerical solution, the shear stress in x - axis increases

whereas shear stress in z - axis decreases with the increase of rG which are shown in Fig.

4.1.38(b) and Fig. 4.1.39(b).

Fig.4.1.11- Fig.4.1.14 and Fig.4.1.40 (a)- Fig.4.1.43 (a) illustrate the influence of suction

parameter (  ) on the velocity (primary and secondary), temperature and concentration

distribution in case of analytic and numerical solutions respectively. It is seen that the

primary velocity decreases with the increase of suction parameter for both analytic and

numerical solutions which are shown in Fig.4.1.11 and Fig.4.1.40 (a). Since the effect of
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suction is to suck away the fluid near the wall, the momentum boundary layer is reduced due
to suction.  These two figures are qualitatively same but quantitatively different.  But

opposite behavior is found on secondary velocity which are shown in Fig. 4.1.12 and

Fig.4.1.41 (a) in case of analytic and numerical solutions. These two figures are qualitatively

identical but quantitatively different. In Fig. 4.1.13, Fig. 4.1.14, Fig.4.1.42 (a) and Fig.

4.1.43(a), it is found that increasing  decreases temperature and concentration distributions

in case of analytic and numerical solutions. Sucking decelerated fluid particles through the

porous wall reduces the growth of thermal and concentration boundary layers. These four

figures are qualitatively identical but quantitatively different. In numerical solution, the shear

stress in x - axis decreases whereas shear stress in z - axis increases with the increases of 
which are found in Fig. 1.4.40(b) and Fig. 4.1.41(b). In Fig. 4.1.42(b) and Fig.4.1.43 (b), the

Nusselt and Sherwood numbers increase with the increase of  for numerical solution.

From Fig. 4.1.15 and Fig.4.1.44 (a), it is found that the primary velocity decreases with an

increase of magnetic parameter ( M ) in case of analytic and numerical solutions respectively.

The presence of magnetic field in an electrically conducting fluid introduces a force called

Lorentz force. This force has tendency to slow down the motion of the fluid. These two

figures are qualitatively same but quantitatively different. Whereas reverse effects are found

in case of secondary profiles for increasing values of M which are shown in Fig.4.1.16 and

Fig. 4.1.45(a) in both cases. The result indicates that the resulting Lorentzian body force will

not act as a drag force. Due to analytical and numerical solutions Fig.4.1.16 and Fig.

4.1.45(a) are qualitatively identical but quantitatively different. In numerical solution the

shear stress in x - axis decreases whereas shear stress in z - axis increases with the increases

of M , which are found in Fig. 4.1.44(b) and Fig. 4.1.45(b).

In Fig. 4.1.17 and Fig.4.1.46 (a) illustrate that the primary velocity profiles decrease with the

increase of Prandtl number rP in case of analytic and numerical solutions. This is because in

the free convection the plate velocity is higher than the adjacent fluid velocity and the

momentum boundary layer thickness decreases. These two figures are qualitatively identical

but quantitatively different. The secondary velocity has reverse effects which is shown in

Fig.4.1.18 and Fig.4.1.47 (a) in case of analytic and numerical solutions. These two figures

are qualitatively same but quantitatively different. From Fig.4.1.19 and Fig. 4.1.48 (a), it is

found that the temperature profiles decrease with an increase of rP in case of analytic and

numerical solutions. Because if rP increases, the thermal diffusivity decreases and these

phenomena lead to the decreasing of energy ability that reduces the thermal boundary layer.

These two figures are qualitatively identical but quantitatively different. The shear stress in

x - axis decreases while shear stress in z - axis has opposite behavior which is shown in Fig.

4.1.46(b) and Fig.4.1.47 (b) in case of numerical solution. The Nusselt number does not show

approximately any change with an increase of rP which is shown in Fig. 4.1.48(b) for

numerical solution.

It is clear that Fig.4.1.20, Fig.4.1.21, Fig.4.1.49 (a) and & Fig.4.1.50 (a) display the effects of

rotational parameter ( R ) on the velocity (primary and secondary) in case of analytic and

numerical solutions. The primary and secondary velocities decrease with the increase of R .
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This implies that rotational retards fluid flow in the primary and secondary flow directions.

These four figures are qualitatively same but quantitatively different in case of analytic and

numerical solutions. The shear stress in x - axis and z - axis decrease with the increase of R

which are shown in Fig. 4.1.49(b) and Fig.4.1.50 (b) for numerical solution.

It is clearly shown in Figs.4.1.22 and Fig.4.1.51 (a) the effects of Schmidt number ( cS ) on

primary velocity profiles for both analytic and numerical solutions. The primary velocity and

concentration distributions decrease with the increase of cS . This is due to a decrease in the

molecular diffusivity, which results in a decrease in the velocity and concentration boundary

layer thickness. These four figures are qualitatively identical but quantitatively different in

case of analytic and numerical solutions. But opposite behaviors are shown on secondary

velocity in Fig. 4.1.23 and Fig.4.1.52 (a) in case of analytic and numerical solutions. These

two figures are qualitatively same but quantitatively different. The shear stress in x - axis

decreases whereas shear stress in z - axis increases with the increase of cS which are shown

in Fig.4.1.51 (b) and Fig.4.1.52 (b) for numerical solution.

Figs.4.1.24, Fig. 4.1.26, Fig. 4.1.53(a) and Fig.4.1.55 (a) depict the velocity and

concentration profiles for different values of the Soret number ( 0S ) in case of analytic and

numerical solutions. The primary velocity and concentration distributions increase with the

increase of 0S . The Soret number defines the effect of the temperature gradients inducing

significant mass diffusion effects. It is noticed that an increase in 0S results in an increase in

the velocity and concentration within the boundary layer. These four figures are qualitatively

identical but quantitatively different for analytical and numerical solutions. Whereas

decreasing effects on secondary velocity which are shown in Fig.4.1.25 and Fig.4.1.54 (a) in

case of analytic and numerical solutions. These two figures are qualitatively identical but

quantitatively different. The shear stress in x - axis increases whereas shear stress in z - axis

has reverse effect with the increase of 0S which are shown in Fig.4.1.53 (b) and Fig.4.1.54

(b) in case of numerical solution. Also the Sherwood number has decreasing effect with

increasing 0S which is seen in Fig.4.1.55 (b) in case of numerical solution.

The effects of increasing the value of the heat source parameter ( ) is to decrease the

primary velocity and temperature distribution which are shown in Fig. 4.1.27, Fig.4.1.29,

Fig.4.1.56 (a) and Fig.4.1.58 (a) for both analytic and numerical solutions respectively. This

is expected due to the fact that when heat is absorbed, the buoyancy force decreases the

velocity and temperature distribution. These four figures are qualitatively identical but

quantitatively different. But secondary velocity has reverse effects with increasing  which

are shown in Fig.4.1.28 and Fig.4.1.57 (a) in case of analytic and numerical solutions. These

two figures are qualitatively identical but quantitatively different. The shear stress in x -axis,

decrease while shear stress in z -axis, Nusselt number increases with the increase of 
which are shown Fig.4.1.56 (b) and Fig.4.1.57 (b), Fig.4.1.58 (b) for numerical solution.
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From these figures it is observed that for the effect of corresponding parameter in case of

analytic and numerical solutions the qualitative characters of the flows are identically same

but quantitatively behavior are different.
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Fig.4.1.7 Primary velocity profile for
different values of modified Grashof
number mG
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Fig.4.1.8 Secondary velocity profile for
different values of  modified Grashof
number mG
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Fig.4.1.9 Primary velocity profile for
different values of Grashof number rG
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Fig. 4.1.36(a) Primary velocity  profile
for different values of modified Grashof
number mG

Fig.4.1.36(b) Shear stress  in x - axis for
different values of modified Grashof
number mG
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Fig.4.1.37(a) Secondary velocity profile
for different values of  modified Grashof
number mG

Fig. 4.1.37(b) Shear stress in z - axis for
different values of  modified Grashof
number mG
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Fig. 4.1.38(a) Primary velocity profile
for different values of Grashof
number rG

Fig.4.1.38(b) Shear stress  in x - axis for
different values of Grashof number rG
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Fig.4.1.10 Secondary  velocity profile
for different values of Grashof  number
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Fig.4.1.11 Primary velocity profile for
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Fig.4.1.12 Secondary velocity profile
for different values suction parameter

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Fig.4.1.39(a) Secondary velocity profile
for different values of Grashof
number rG

Fig4.1.39(b) Shear stress in z - axis for
different values of Grashof number rG
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Fig. 4.1.40(a) Primary velocity  profile
for different values of suction parameter


Fig 4.1.40(b) Shear stress in x - axis for
different values of suction parameter 
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Fig.4.1.41(a) Secondary velocity  profile
for different values of  suction parameter


Fig 4.1.41(b) Shear stress in z - axis for
different values of suction parameter 
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Fig.4.1.13 Temperature profile for
different values suction parameter 
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Fig.4.1.14 Concentration profile for
different values suction parameter 
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Fig.4.1.15 Primary velocity profile for
different values of  magnetic parameter
M
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Fig. 4.1.42(a) Temperature  profile  for
different values  of suction parameter 

Fig 4.1.42(b)  Nusselt number for
different  values of suction parameter 
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Fig. 4.1.43(a) Concentration  profile  for
different values  of suction  parameter 

Fig 4.1.43(b) Sherwood number for
different values of suction parameter 
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Fig4.1.44(a) Primary velocity profile for
different values of magnetic
parameter M

Fig. 4.1.44(b) Shear stress  in x - axis for
different values of magnetic parameter
M
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Fig.4.1.16 Secondary  velocity profile
for different values of magnetic
parameter M
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Fig.4.1.17 Primary velocity profile for
different values of Prandtl number rP
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Fig.4.1.18 Secondary velocity profile
for different values of rP
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Fig.4.1.45(a) Secondary velocity profile
for different values of magnetic
parameter M

Fig. 4.1.45(b) Shear stress in z - axis for
different values of magnetic
parameter M
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Fig. 4.1.46 (a) Primary velocity profile
for different  values of Prandtl number

rP

Fig. 4.1.46(b) Shear stress  in x - axis for
different values of Prandtl number rP
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Fig.4.1.47(a) Secondary velocity profile
for different values of Prandtl number rP

Fig. 4.1.47(b) Shear stress in z - axis for
different  values of rP
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Fig.4.1.19 Temperature profile for
different values of  Prandtl number rP
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Fig.4.1.21 Secondary velocity profile
for different values of  rotation
parameter R
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Fig. 4.1.48(a) Temperature  profile for
different values of Prandtl number rP

Fig. 4.1.48(b)  Nusselt number for
different values of Prandtl number rP
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Fig. 4.1.49(a) Primary velocity profile
for different values of rotation parameter
R

Fig. 4.1.49(b) Shear stress  in x- axis for
different values of rotation parameter R
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Fig.4.1.50(a) Secondary velocity profile
for different values of rotation parameter
R

Fig. 4.1.50(b) Shear stress  in z - axis for
different values of rotation parameter R
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Fig.4.1.22 Primary velocity profile for
different values of Schmidt parameter
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different values of Schmidt parameter
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Fig. 4.1.51(a)  Primary velocity profile
for different  values of Schmidt number
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Fig. 4.1.51(b) Shear stress  in x - axis for
different values of Schmidt number cS
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Fig. 4.1.52(a) Secondary velocity profile
for different values of Schmidt  number
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Fig. 4.1.52(b) Shear stress  in z - axis for
different values of Schmidt number cS
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Fig.4.1.24 Primary velocity profile for
different values of Soret parameter 0S
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Fig. 4.1.53(a) Primary velocity profile for
different  values of Soret number 0S

Fig. 4.1.53(b) Shear stress  in x - axis for
different values of Soret  number 0S
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Fig.4.1.25 Secondary velocity profile
for different values Soret number 0S
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Fig.4.1.54(a) Secondary velocity profile
for different values of Soret  number 0S

Fig. 4..54(b) Shear stress  in z - axis for
different values of Soret  number 0S
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Fig.4.1.26 Concentration profile for
different values of Soret parameter 0S
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Fig.4.1.27 Primary velocity profile for
different values heat source parameter
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Fig. 4.1.55(a) Concentration  profile  for
different values of Soret number 0S

Fig. 4.1.55(b) Sherwood number  for
different values of  Soret number 0S
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Fig. 4.1.56(a) Primary velocity profile for
different values of  heat source parameter


Fig. 4.1.56(b) Shear stress in x - axis for
different values of heat source parameter

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Fig.4.1.28 Secondary velocity profile
for different values heat source
parameter 
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Fig. 4.1.57(a) Secondary velocity profile
for different values of  heat  source
parameter 

Fig. 4.1.57(b) Shear stress in z - axis for
different values of  heat  source
parameter 
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Fig.4.1.29 Temperature profile for
different values heat source parameter
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Fig. 4.1.58(a) Temperature  profile for
different values of  heat source parameter


Fig. 4.1.58(b) Nusselt number for
different values of heat source parameter

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4.2 MHD free convection and mass transfer flow through
a vertical oscillatory porous plate with Hall, ion-slip
currents and heat source in a rotating system

The study of a magnetohydrodynamics (MHD) free convection flow, with Hall and ion-slip

currents, has important engineering applications in power generators, MHD accelerators,

refrigeration coils, transmission lines, electric transformers and heating elements. The

phenomenon of rotation is always encountered and is very often observed in cosmic and

geophysical sciences. In present years, a considerable attention has been given to the study of

hydrodynamic and hydromagnetic boundary layer flows in a viscous incompressible fluid in

a rotating system. There are several engineering situations where in combined heat and mass

transfer arise, such as dehumidifiers, humidifiers, desert coolers, chemical reactors; the

interest in the new problems generates from their importance in liquid metals, electrolytes

and ionized gases. On account of their varied importance, the flows have been studied by

several authors are Seth et al. (2011), they investigated the effect of rotation on unsteady

hydromagnetic natural convection flow past an impulsively moving vertical plate with

ramped temperature in a porous medium with thermal diffusion and heat absorption. Murali

(2015) investigated unsteady MHD free convection viscous dissipative flow past an infinite

vertical plate with constant suction and heat source/sink. Effect of viscous dissipation on

flow over a stretching porous sheet  subjected   to  power  law  heat  flux   in  presence  of

heat source was investigated by Khaled (2016). Alam et al (2014). Unsteady MHD free

convective heat transfer flow along a vertical porous flat plate with internal heat generation.

Effects of Hall current and heat transfer on the flow in a porous medium with slip condition

have been described by Hayat and Abbas (2007). Ghara et al. (2012) have discussed Hall

effects on oscillating flow due to electrically rotating porous disk and a fluid at infinity.

Smita et al. (2015) investigated the effects of Hall current on transient convective MHD flow

through  porous medium past an infinite vertical oscillating plate with temperature gradient

dependent heat source. The numerical solutions of heat and mass transfer effects of an

unsteady MHD free convective flow past an infinite vertical plate with constant suction and

heat source or sink were studied by Ambethkar (2009). Nazibuddin and Sujit (2012) studied

MHD couette flow with heat transfer in presence of constant heat source. Bhavana et al.

(2013) investigated the Soret effect on free      convective unsteady MHD flow over a vertical

plate with heat source. Anjali and Wilfred (2011) studied thermo diffusion effects on

unsteady hydromagnetic free convection flow with heat and mass transfer past a moving

vertical plate with time dependent suction and heat source in a slip flow regime. Seth et al.

(2012) investigated the effects of Hall current and rotation on unsteady MHD     couette flow

in the presence of an inclined magnetic field. Hall current effect on magnetohydrodynamic

free convection flow past a semi infinite vertical plate with mass transfer was studied by

Emad and Elsayed (2001). Ram(1991) studied MHD convective flow in a rotating fluid

with Hall and ion-slip currents. Hall and ion-slip effects on MHD free convective heat

generating flow past a semi-infinite vertical flat plate were studied by Emad and Mohaned
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(2000).

In this study the MHD free convection and mass transfer flow through a vertical oscillatory

porous plate with hall, ion-slip currents and heat source in a rotating system have been

considered.  The problem is governed by system of coupled nonlinear partial differential

equations whose exact solutions are difficult to obtain. The problem is solved by finite

difference method. The effects of the various parameters entering into the problem are

discussed and are illustrated graphically. The numerical values of local and average shear

stress, local and average Nusselt number, local and average Sherwood number at the plate

are discussed for various values of physical parameters and  presented graphically.

4.2.1 Governing Equations

Consider a unsteady, laminar, incompressible, free convection boundary layer flow of an

electrically conducting fluid along a semi-infinite vertical porous plate with the origin at the

leading age. When the plate velocity )(tU oscillates in time t with a frequency n and is given

as  tnUtU cos1)( 0  . In this problem the temperature and

concentration of the fluid at initially  CT , everywhere and

the temperature and concentration at the plate ww CT , in the

presence of a strong magnetic field normal to the plate. A

rectangular Cartesian coordinates ),,( zyx taking x and y as

the coordinates parallel and normal to the plate. Let the z -axis

be coincident with the leading age of the plate. An external

strong magnetic field B is applied in the y -direction. The

induced magnetic field is neglected, since the magnetic

Reynolds number is assumed to be very small. Due to Hall

current, there is a force in z-direction which induces a cross flow in that direction and hence

flow becomes three dimensional. The physical configuration and coordinate system is shown

in Fig.4.2A. The governing equations within the boundary layer and Boussnesq’s
approximations may be written as follows;

Continuity equation; 0
u v

x y

 
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(4.2.1)

Momentum equation;
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Fig.4.2A Physical configuration
and coordinate system
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Energy equation;
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Concentration equation;
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where all physical quantities are defined in the Nomenclature.

The initial and boundary conditions are as follows;

0, 0, 0, 0, ,t u v w T T C C       everywhere (4.2.6)

0, 0, 0, 0, , at 0t u v w T T C C x       
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4.2.2 Mathematical Formulation

The problem is simplified by writing the equations in the non-dimensional form. Now

introduce the following non-dimensional quantities are as follows;
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Then introducing the dimensionless quantities (4.2.8) in equations (4.2.1)-(4.2.5)

respectively, the following dimensionless equations have been obtained as;
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The corresponding boundary conditions are as follows;

0, 0, 0, 0, 0, 0U V W T C       (4.2.14)
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4.2.3 Solution Technique

The governing second order nonlinear coupled dimensionless partial differential equations

have been solved with the associated initial and boundary conditions. For simplicity the

explicit finite difference method has been used to solve the equations (4.2.9)-(4.2.13) with

initial and boundary conditions (4.2.14)-(4.2.15). To obtain the finite difference equations the

region of the flow is divided into a grid or mesh of lines parallel to X and Y axes where X -

axis is taken along the plate and Y -

axis is normal to the plate. Here the

plate of height )100(max X is

considered i.e. X varies form 0 to

100 and assumed )25(max Y as

corresponding to Y i.e. Y varies

from 0 to 25 . There are 150m and

150n grid spacing in the X and

Y directions respectively as shown in

Fig.4.2B. It is assumed that X and

Y are constant mesh sizes along
X and Y directions respectively and

taken as follows, 1000(67.0  XX , 250(17.0  YY with the smaller time step

0.001  .

Let TWU  ,, and C  denote the values of TWU ,, and C at the end of time-step respectively.

Using the explicit finite difference approximation in to partial differential equations (4.2.9)-

(4.2.13) then obtained an appropriate set of finite difference equations are as follows;
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The initial and boundary conditions are obtained as follows;
0 0 0 0 0
, , , , ,0, 0, 0, 0, 0i j i j i j i j i jU V W T C     (4.2.21)

0, 0, 0, 0, 0,0, 0, 0, 0, 0n n n n n
j j j j jU V W T C    

,0 ,0 ,0 ,0 ,01, 0, 0, 1, 1n n n n n
i i i i iU V W T C     (4.2.22)

, , , , ,0, 0, 0, 0, 0n n n n n
i L i L i L i L i LU V W T C     where L

Here the subscripts i and j denote the grid points with X and Y -coordinates respectively

and superscript n represents a value of time,   n where ,....3,2,1,0n . From these

conditions, the value of UCT ,, and W are known at 0 . During any one time step, the

coefficients jiU , and jiV , appearing in equations (4.2.17)-(4.2.20) are treated constants. Then

at the end of any time step  , the new temperature T  , the new concentration C  , the new

primary velocity U  , the new secondary velocity W  and V at all grid points may be obtained

by successive applications of equations (4.2.17)-(4.2.20) respectively. This process is

repeated in time and provided the time is sufficiently small, TWU ,, and C should eventually

converge to values which approximate the steady-state solutions of equations (4.2.9)-

(4.2.13). The converged solutions are shown graphically in Fig. 4.2.3(a-c)- Fig. 4.2.38(a-c).

4.2.4 Stability and Convergence Analysis

The analysis will remain incomplete unless the discussion of the stability and convergence of

the finite difference method. For the constant mesh sizes, the stability criteria of the scheme

can be established as follows. The general terms of the Fourier expansion for TWU ,, and

C  at a time arbitrarily called 0  are ,i X i Ye e  apart from a constant, where 1i   . At

time  latter, these terms will become
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Substituting (4.2.23) into equations (4.2.17) to (4.2.20), regarding the coefficients U and

V as constants, over any one time step and denoting the values after the time step by

  ,, and  gives after simplifications

 DCBA  11 (4.2.24)

 FE  (4.2.25)

G   (4.2.26)

H I     (4.2.27)
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These equations (4.2.24)-(4.2.27) can be written in the following matrix form;
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i.e. T   where  is the column vector with element  ,, and  . For stability, the

modulus of each eigenvalue of the amplification matrix T must not exceed unity. Assume

that U is everywhere no-negative and V is everywhere non-positive, let
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The coefficients ba, and c are all real and nonnegative. So that the maximum modulus of

GEA ,, and H occur when X m   and Y n   , where m and n are integer and

hence GEA ,, and H are real. For  sufficiently large, the value GEA ,, and H are

greater when both m and n are odd integer, in which case;
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To satisfy 1,1,1  GEA and 1H the most negative allowable values are

1,1,1  GEA and 1H .

Hence the stability conditions are as follows;
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4.2.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood

number. The following equations represent the local and average shear stress at the plate.

Local shear stress in x and z -axes are as follows;
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The average shear in x and z components are as follows;
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From the temperature field, the effects of various parameters on the local and average heat

transfer coefficients have been studied. The following relations represent the local and

average heat transfer rate that is well known as Nusselt number. Local and average Nusselt

number are
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And from the concentration field, the effects of various parameters on the local and average

mass transfer coefficients have been studied. The following relations represent the local and

average mass transfer rate that is well known Sherwood number. Local and average

Sherwood number are
0













y

mhL y

C
DS , 














100

0
0

dx
y

C
DS

y
mhA which are

proportional to
0












Y
Y

C
and 











100

0
0

dX
Y

C

Y

.

The numerical values of the local shear stress, local Nusselt number and local Sherwood

number are evaluated by five point approximate formula for the derivatives and then the

average shear stress, Nusselt and Sherwood number are calculated by the use of the

Simpson’s
3

1
integration formula. The obtained values are shown graphically.

4.2.6. Results and Discussion

4.2.6.1 Justification of Grid Space
To verify the effects of space grid for m and n , the code is run with three different space grid

such as 100 nm , 150 nm , 200 nm . It is seen that there is a little change of

results between them which are shown in Fig.4.2.1. According to this situation the result of

velocity, temperature and concentration has been carried out for 150 nm .

4.2.6.2 Steady-State Solution
The numerical solutions of the non-linear differential equation (4.2.10)-(4.2.13) under the

boundary conditions (4.2.14)-(4.2.15) have been performed by applying explicit finite

difference method. In order to verify the effects of time step size  , the programming code

is run our model with three different step as 100,80,70,60,50,05 . To get steady –state

solutions, the computations have been carried out up to 80 . It is observed that, the result

of computations for TWU ,, and C  , however show little changes after 50  . Hence the

velocity, temperature and concentration profiles are drawn for 80 . Grid space and steady

state solution are shown in Fig.4.2.1 and Fig. 2.2.2 only for primary velocity for heat source

parameter.
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Fig.4.2.1 Primary velocity profiles for different grid

space values of heat sorce parameter 
4.2.2 Primary velocity profiles for different time

step of heat source  parameter 

The system of coupled nonlinear partial differential equations (4.2.10)- (4.2.13) governed by

the boundary condition of equation (4.2.15) is solved numerically by explicit finite difference

method. Numerical simulations were carried out for various values of parameters in order to

discuss the influence on the fluid flow profiles. The velocity components in x and z -axes

are commonly known as the primary and   secondary velocities. The numerical calculation

has been carried out for dimensionless   primary velocity(U ), secondary velocity(W ),

temperature(T ), concentration( C ), local shear stress in x -direction( LU ), average shear

stress in x -axis ( AU ), local shear stress in z -axis ( LW ), average shear stress in z -axis

( AW ), local Nusselt number( uLN ), average Nusselt number( uAN ), local Sherwood

number( hLS ) and average Sherwood number( hAS ) for   various   values   of   the parameters

such as Hall parameter ( e ), ion-slip parameter( i ), magnetic parameter( M ), rotational

parameter   ( R ), Prandtl number( rP ), Schmidt number ( cS ), Grashof number( rG ), modified

Grashof number( mG ), Soret number( 0S ), permeability parameter(  )and heat source( ).

The values of the parameters are chosen arbitrarily in most cases. Throughout the

calculations the values rG and mG are taken to be very large( 0.10rG and 0.4mG ). Some

standard values for  the Prandtl number ( rP ) and Schmidt number ( cS ) are also considered

because of the physical importance. Physically 71.0rP corresponds to air at C020 ,

0.7rP corresponds to water at C020 , 6.2rP .corresponds to water at C067 and and

6.0cS .corresponds to water vapor, 0.1,78.0  cc SS corresponds to methanol respectively

at C025 and 1 atmosphere. For the purpose of computation, 001.0,2/   t has been

chosen arbitrarily.

Form Figs.4.2.3 (a-c), it is seen that the primary velocity (U ), the local and average shear

stress in x -axis ( AULU  , ,) decrease with the increase of  . To increase the value of the heat

source parameter  is to decrease the boundary layer which is expected when heat is
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absorbed by the buoyancy force.  But opposite behavior has been seen for secondary

velocity  W , local and average shear stress in z - axis ( LW , AW ) in Figs.4.2.4 (a-c).

It is seen that from Fig.4.2.5 (a), the temperature  T distribution decreases with an increase

of  . Because when heat is absorbed, the buoyancy force decreases the temperature profiles

whereas local and average  Nusselt number
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opposite behavior which have been illustrate in Figs.4.2.5(b,c). The Concentration  C

distribution has an increasing effect is shown in Fig.4.2.6 (a) while the local and average

Sherwood number
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hLS have opposite behavior which are

shown in Figs. 4.2.6(b,c).

It is observed that in Figs.4.2.7 (a-c), the primary velocity  U , local and average shear

stresses in x -axis ( LU , AU ) and increase with the increases of Hall parameter e . The

inclusion of Hall parameter decreases the resistive force imposed by the magnetic field due to

its effect in reducing the effective conductivity.

Fig.4.2.8(a) depict that e increases, firstly the secondary velocity  W decreases up to

6.0Y but after that  W show increasing trend as Y increases further, thus there is a cross

flow near 6.0Y .  Since secondary velocity is a result of Hall effect. The Local and average

shear stresses in z -axis ( LW , AW ) have been decreased with an increase of e which are

depicted in Figs.4.2.8 (b,c). The Hall parameter has a minor decreasing effect on the

temperature  T profiles while local and average Nusselt number ( uLN , uAN ) increase which

has been shown Figs.4.2.9 (a-c). It is observed from Figs.4.2.10 (a-c) that the Hall parameter

has decreasing effect on concentration  C whereas opposite behavior have been seen for

local and average Sherwood number ( hLS , hAS ).

The effect of ion-slip parameter i on primary velocity  U has negligible effect in Fig.

4.2.11(a) whereas on local and average shear stresses in x -axis ( LU , AU ) have increasing

effect are shown in Figs.4.2.11 (b,c). As i increases the effective conductivity, which in

turn decreases the damping force on the velocity component in the direction of the flow and
hence the  U , LU and( AU ) increase in the flow direction. It is seen from Figs.4.2.12 (a-c),

increasing i , increase secondary velocity  W , local, average shear stress in z -axis

( LW , AW ). The effect of i on the temperature profiles  T has negligible effect and

increasing effect on local and average Nusselt number ( uLN , uAN ) has been shown in Figs.

4.2.13(a-c). When i increase then thermal boundary layer thickness decreases. The effect of

the i on the concentration profiles has negligible effect and increasing effect on local and

average Sherwood number ( hLS , hAS )  which have been depicted in Figs. 4.2.14(a-c).

In Fig.4.2.15(a), it is seen that permeability parameter  increases, firstly the primary

velocity  U decrease up to 9.0Y but after that  U show increasing trend as Y increases
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further, thus there is a cross flow is obtained near 9.0Y . This indicates that the permeability

of porous medium exerts retarding force on the primary flow. Local and average shear stress

in x - axis ( LU , ( AU ) are decreased which is seen in Figs.4.2.15 (b,c). It is seen from

Figs.4.2.16 (a-c), the secondary velocity  W , local, average shear stress in z - axis ( LW , AW )

are increased with an increase of  . From Figs. 4.2.17(a-c) and Figs. 4.2.18(a-c) it is

observed that the temperature  T and concentration  C profiles increase whereas local and

average Nusselt number ( uLN , uAN ), local and average Sherwood number ( hLS , hAS )

decrease with increasing  . This is due to the fact that increasing the value of permeability

parameter has tendency to increase the thermal boundary layer and concentration species.

In Figs. 4.2.19(a-c), primary velocity  U , local and average shear stress in x - axis ( LU ,

AU ) profiles are plotted respectively for different values of magnetic parameter ( M ). The

primary velocity  U profiles decreases firstly, then start to increase with the increase of

( M ). So there is a cross flow near 0.11Y . Similar behaviors are found for ( LU , AU ). This

is due to the fact, the transverse magnetic field normal to the flow direction has a tendency to
create the drag known as the Lorentz force which tends to resist the flow.  Similar behaviors
are found in secondary velocity  W , local and average shear stress in z -axis ( LW , AW )

which are shown in Figs. 4.2.20(a-c). Figs. 4.2.21(a-c) and Figs. 4.2.22(a-c) are illustrated

that the temperature  T and concentration  C profiles increase whereas local and average

Nusselt numbers ( uLN , uAN ) , local and average Sherwood numbers ( hLS , hAS )  decrease

with increasing M . The   effects of a transverse magnetic field   to an electrically
conducting fluid   give   rise to   a resistive-type   force called   the Lorentz    force.   This

force   has the   tendency    to increase its temperature and concentration distributions.

It is seen that in Fig. 4.2.23(a) the primary velocity  U profiles decrease firstly, then start to

increase with the increase of rotational parameter ( R ). So there is a cross flow near 0.11Y .

But local and average shear stress in x - axis ( LU , AU ) decrease with the increase of R

which are shown in Figs.4.2.23 (b-c). In fact rotation parameter defines the relative

magnitude of the Coriolis force and the viscous force, thus rotation retards primary flow in

the boundary layer. The secondary velocity  W , local and average shear stress in z - axis

( LW , AW ) have decreasing effect with the increase of effect of R are shown in Figs.4.2.24

(a-c). Figs. 4.2.25(a-c) and Figs. 4.2.26(a-c) are illustrated that the temperature  T and

concentration  C profiles increases whereas local and average Nusselt numbers ( uLN , uAN ),

local and average Sherwood numbers ( hLS , hAS )  are decreased.

From Figs.4.2.27 (a-c) it is found that the primary velocity  U , local and average shear stress

in x -axis ( LU , AU ) profiles increase with an increase in Soret number 0S . That is the

momentum boundary layer increases as Soret number increases. But opposite behaviors are

found on secondary velocity  W , local and average shear stress in z -axis ( LW , AW ) which

are shown in Figs.4.2.28 (a-c). It has been observed that there are small decreasing effects on

the temperature  T profiles in Fig.4.2.29 (a) of increasing values of 0S . But local and
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average Nusselt numbers ( uLN , uAN ) are increased with an increase in 0S in Figs.4.2.29 (b,c).

Fig.4.2.30 (a) illustrates the effect of 0S on concentration  C profiles increases with an

increase of 0S . The concentration boundary layer increases rapidly and the concentration

boundary layer increases with increase of 0S that signifies that 0S can control concentration

boundary layer. Figs.4.2.30 (b,c) have been ploted   that the local and average Sherwood

numbers ( hLS , hAS ) have decreasing effect with an increase of 0S . For buoyancy assisting

and buoyancy opposing flows, an increase in the Soret parameter tends to thicken

concentration boundary layer, thus ( hLS , hAS ) are decreasing at the wall.
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Fig. 4.2.6(a) Concentration  profiles for
different values of 

Fig. 4.2.6(b) Local Sherwood number for
different values of 

Fig. 4.2.6(c) Average Sherwood number
for different values of 
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Fig. 4.2.7(a)  Primary velocity profiles for
different values of e

Fig. 4.2.7(b)  Local shear stress in x -axis
for different values  of e

Fig.4.2.7(c) Average shear stress in x -
axis for different values of e
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Fig. 4.2.8(a)  Secondary velocity profiles

for different values of e

Fig. 4.2.8(b) Local shear stress in z -axis

for different values of e

Fig. 4.2.8(c) Average shear stress in z –
axis for different values of e
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Fig.4.2.9(a)  Temperature  profiles for
different values of e

Fig. 4.2.9(b) Local Nusselt number for
different values of e

Fig. 4.2.9(c)  Average  Nusselt number for
different values of e
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Fig. 4.2.10(b) Local Sherwood number

for different values of e
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Fig. 4.2.11(a)  Primary velocity profiles for

different values of i
Fig.4.2.11(b) Local shear stress in x -axis

for different values of i

Fig. 4.2.11(c)   Average shear stress in

x -axis for different values of i
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Fig. 4.2.12(a)  Secondary velocity profiles
for different values of i

Fig. 4.2.12(b) Local shear stress in z -
axis for different values of i

Fig. 4.2.12(c) Average shear stress in
z -axis for different values of i
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Fig.4.2.13(a)  Temperature  profiles for
different values of i

Fig. 4.2.13(b)  Local  Nusselt number for
different values of i

Fig. 4.2.13(c) Average Nusselt number for
different values of i
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Fig. 4.2.14(a)  Concentration profiles  for
different values of i

Fig. 4.2.14(b)  Local Sherwood number
for different values of i

Fig. 4.2.14(c) Average Sherwood number
for different values of i
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Fig.4.2.15(a) Primary velocity profiles for
different values of 

Fig. 4.2.15(b) Local shear stress in x -axis
for different values of 

Fig. 4.2.15(c) Average shear stress  in
x -axis for different values of 
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Fig. 4.2.16(a) Secondary velocity profiles
for different values of 

Fig. 4.2.16(b)  Local shear stress in z -
axis for different values of 

Fig. 4.2.16(c) Average shears stress in
z -axis values of 
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Fig.4.2.17(a)  Temperature  profiles for
different values of 

Fig.4.2.17(b) Local Nusselt number for
different values of 

Fig.4.2.17(c) Average Nusselt number for
different values of 
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Fig. 4.2.18(a)  Concentration  profiles  for
different values of 

Fig. 4.2.18(b) Local Sherwood number
for different values of 

Fig. 4.2.18(c)  Average Sherwood
number for different values of 
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Fig. 4.2.19(a)  Primary velocity profiles for
different values of M

Fig. 4.2.19(b)  Local shear stress  in x -
axis for different values of M

Fig. 4.2.19(c) Average shears stress in x -
axis for different values M
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Fig. 4.2.20(a) Secondary velocity profiles
for different values of M

Fig. 4.2.20(b) Local shear stress in z -
axis for different values of M

Fig. 4.2.20(c) Average shears stress in
z -axis for different values of M
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Fig.4.2.21(a)  Temperature profiles for
different values of M

Fig. 4.2.21(b)  Local Nusselt number for
different values of M

Fig. 4.2.21(c)  Average Nusselt number
for different values of M
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Fig. 4.2.22(a)  Concentration  profiles  for
different values of M

Fig. 4.2.22(b)  Local Sherwood for
different values of M

Fig. 4.2.22(c)  Average Sherwood for
different values of M
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Fig. 4.2.23(a)  Primary velocity profiles for
different values of R

Fig. 4.2.23(b) Local shear stress in x -
axis for different values of R

Fig. 4.2.23(c) Average shear stress in
x -axis for different values of R
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Fig. 4.2.24(a) Secondary velocity profiles
for different values of R

Fig. 4.2.24(b) Local shear stress  in z -
axis for different values of R

Fig. 4.2.24(c) Average shears stress in
z -axis for different values of R
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Fig.4.2.25(a)  Temperature  profiles for
different values of R

Fig. 4.2.25(b)  Local Nusselt number  for
different values of R

Fig. 4.2.25(c) Average Nusselt number
for different values of R
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Fig. 4.2.26(a)  Concentration  profiles for
different values of R

Fig. 4.2.26(b)  Local Sherwood number
for different values of R

Fig. 4.2.26(c)  Average Sherwood number
for different values of R
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Fig. 4.2.27(a)  Primary velocity profiles for
different values of 0S

Fig. 4.2.27(b)  Local shear stress  in x -
axis for different values of 0S

Fig. 4.2.27(c)  Average shear stress in
x -axis for different values of 0S
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Fig. 4.2.28(a)  Secondary velocity profiles
for different values of 0S

Fig. 4.2.28(b) Local shear stress  in z -
axis for different values of 0S

Fig. 4.2.28(c)  Average shear stress
in z -axis for different values of 0S
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Fig.4.2.29(a)  Temperature  profile for
different values of 0S

Fig. 4.2.29(b)  Local Nusselt  number  for
different values of 0S

Fig. 4.2.29(c)  Average Nusselt number
for different values of 0S
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Fig. 4.2.30(a)  Concentration  profiles  for
different values of 0S

Fig. 4.2.30(b)  Local Sherwood number
for different values of 0S

Fig. 4.2.30(c) Average Sherwood number
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Chapter 5

5.1 Effect of Hall and ion-slip currents on MHD heat and
mass transfer flow past a vertical plate with high porosity
medium in a rotating system

The convection flow on a vertical surface embedded in porous media occurs in many

important engineering problems such as in the design of pebble-bed nuclear reactors,

catalytic reactors and compact heat exchangers, in geothermal energy convection, in

petroleum reservoirs, in use of fibrous materials in the thermal insulation of buildings, in the

heat transfer from a storage of agricultural products. It was shown by Gebhart (1962) that the

viscous dissipation effect plays an important role in natural convection in viscous devices

that are subjected to large deceleration or which operate at high rotative speeds and also in

strong gravitational field processes on large scales (on large planets) and geological process.

Hall and ion-slip currents are important and they have a marked effect on the magnitude and

direction of the current density and consequently on the magnetic force term. The problem of

MHD free convection flow with Hall and ion-slip currents has many important engineering

applications, e.g. in power generators, Hall accelerators and flows in channels and ducts.

Jasem et al. (2006) analyzed double diffusive convection of a rotating fluid over a surface

embedded in a thermally stratified high porosity medium. Ajay and Rama (2009) studied the

free convection heat and mass transfer with Hall current, Joule heating and thermal diffusion.

Hemant and Chaudhary (2010) have studied MHD free convection and mass transfer flow

over an infinite vertical plate with viscous dissipation. Bhuvannvijaya and Mallikarjuna

(2014) investigated the effect of variable thermal conductivity on convective heat and mass

transfer over a vertical plate in a rotating system with variable porosity regime. Rachna

(2013) studied the heat and mass transfer along an accelerated vertical porous plate in the

influence of various dissipation, heat source and variable suction. Foisal and Alam (2016)

studied unsteady free convection fluid flow over an inclined plate in the presence of a

magnetic field with thermally stratified high porosity medium. Mahender and Srikanth

(2015) analyzed unsteady MHD free convection and mass transfer flow past a porous

plate in presence of viscous dissipation. Ferdows et al. (2010) studied Dufour, Soret and

viscous dissipation effects on heat and mass transfer in porous media with high porosities.

The   effects   of   variable   properties   and   Hall current on steady MHD laminar

convective fluid due to a porous rotating disk was studied by Maleque  and Sattar

(2005). Das et al. (2013) studied Hall effect on MHD free convection boundary layer

flow past a vertical flat plate. Khaled (2014) discussed the effects of viscous dissipation

and joule heating on MHD flow of a fluid with variable properties past a stretching

vertical plate. Hydromagnetic rotating flow in a porous medium with slip condition and

Hall current was investigated by Farhad et al. (2012). Viscous dissipation, Soret and

Dufour effect on free convection heat and mass transfer from vertical surface in a porous
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medium was studied by Srinivas et al. (2015). Ali et al. (2005) investigated natural

convection flow in a rotating fluid over a vertical plate embedded in a thermally stratified

high porosity medium. Chen et al. (1987) investigated transient natural convection on a

vertical flat plate embedded in a high porosity medium.

Hence our aim is to investigate the effect of Hall and ion-slip currents on MHD heat and

mass transfer flow past a vertical plate with high porous medium in a rotating system have

been considered. Also the effects of different flow parameters encountered in the equations

are investigated. The problem is governed by system of coupled nonlinear partial differential

equations whose exact solution is difficult to obtain. Hence the problem is solved by finite

difference method and is presented graphically.

5.1.1 Governing Equations

Consider the unsteady MHD free convection flow of an electrically conducting

incompressible viscous fluid past an infinite vertical porous plate 0y  has been considered.

The flow is assumed to be in the x axis which is taken along

the plate in the upward direction. Let  the  fluid  and  the  plate

be  in a  rotation with  uniform     angular   velocity  about

the y  axis normal     to  the  plate.  A strong magnetic

field B is imposed along y  axis and    the   plate    is

taken   electrically non-conducting. Since the plate is infinite

in extent, all physical quantities are functions of y and t only.

Using the relation 0 B for the magnetic

field ( , , )x y zB B BB , then obtain 0yB B everywhere in the

fluid ( 0B is a constant).  The   induced      magnetic      field

is  neglected, since  the  magnetic Reynolds       number  of  a  partially-ionised  fluid  is  very

small. If ( , , )x y zJ J JJ is the current density, from the relation 0 J. gives yJ  constant.

Since the plate is electrically non-conducting, 0yJ  at the plate and hence zero

everywhere. The physical configuration of the problem is shown in Fig.5.1A.  However, for

such a fluid, the hall and ion-slip currents will significantly affected the flow in presence of

large magnetic fields. The equations which govern the flow under the above consideration

and Boussinesq’s approximation are as follows:

Continuity equation; 0


y

v
(5.1.1)

Momentum equation;
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Fig.5.1A Physical configuration
and coordinate system
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Energy equation;
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Concentration equation;
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where the variables and related quantities are defined in the Nomenclature.

The initial and boundary conditions for the model are as follows;

0, ( , ) 0, ( , ) 0, ( , ) , ( , )t u y t w y t T y t T C y t C      everywhere (5.1.6)

00, ( , ) , ( , ) 0, ( , ) , ( , ) 0

( , ) 0, ( , ) 0, ( , ) , ( , )
w wt u y t U w y t T y t T C y t C at y

u y t w y t T y t T C y t C at y 

     
    

(5.1.7)

5.1.2 Mathematical Formulation

Now a convenient solution of equation (1) is

0v v  (constant) (5.1.8)

where the constant 0v represents the normal velocity at the plate which is positive or negative

for suction or blowing.

Using equation (5.1.8), the equations (5.1.2)-(5.1.5) become

Momentum Equation:
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Energy equation:  22
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Concentration equation:
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The initial and boundary conditions for the model are as follows;

0, ( , ) 0, ( , ) 0, ( , ) , ( , )t u y t w y t T y t T C y t C      everywhere (5.1.13)

00, ( , ) , ( , ) 0, ( , ) , ( , ) 0

( , ) 0, ( , ) 0, ( , ) , ( , )
w wt u y t U w y t T y t T C y t C at y

u y t w y t T y t T C y t C at y 

     
    

(5.1.14)

For the purpose of solving the system of equation numerically, the transformation of

governing equations into non-dimensional variables is introduced as follows;
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Thus introducing the relation (5.1.15) in equations (5.1.9)-(5.1.12), the following

dimensionless differential equations have been obtained as follows;
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The corresponding initial and boundary conditions are as follows;

0,0,0,0,0  CTWU everywhere (5.1.20)

0, ( , ) 1, ( , ) 0, ( , ) 1, ( , ) 1 0

( , ) 0, ( , ) 0, ( , ) 0, ( , ) 0

U Y W Y T Y C Y at Y

U Y W Y T Y C Y at Y

    

   

     

     
(5.1.21)

5.1.3 Solution Technique

The governing second order non-linear coupled partial differential equations have been

solved with the associated initial and boundary conditions. For solving a transient free

convection flow with mass transfer past an infinite plate, the implicit finite difference

method has been used by Callahan and Marner (1976) which is conditional stable. On the

contrary, the same problem has been studied by Soundalgekar and Ganesan (1980) by an

implicit finite difference method which is fast convergent and unconditional stable. But

Callahan and Marner (1976), Soundalgekar and Ganesan (1980) have been found same

result using different methods on the same problem.

From the concept of the above discussion, for simplicity the implicit finite difference

method has been used to solve the equations (5.1.16)-(5.1.19) with boundary conditions

(5.1.20)-(5.1.21). To solve the non-dimensional system of equations by implicit finite
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difference technique, a set of finite difference equations is required.  In this case, the region

within the boundary layer is

divided by some perpendicular

lines of Y -axis, where Y -axis

is normal to the medium is

shown Fig.5.1.B. It is assumed

that the maximum length of

boundary layer is )50(max Y as

corresponds to Y i.e. Y

varies from 0 to 50 and number

of grid spacing in Y -direction

is )400(m , hence the constant

mesh size along Y -axis becomes )500(13.0  YY with a smaller time

step 001.0 .

Let nnn TWU ,, and nC denoted the values of TWU ,, and C at the end of a time-step

respectively. Using the implicit finite difference approximation into the partial differential

equations (5.1.16)-(5.1.19), the following set of difference equations are as follows;
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The initial and boundary conditions with the finite difference scheme are as follows;

1,1,0,0 0000  iiii CTWU (5.1.26)

0 0 0 01, 0, 1, 1

0, 0, 0, 0 where

n n n n
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(5.1.27)

Here the subscripts i designate the grid points with Y -coordinates and superscript n

represents a value of time,   n where ,....3,2,1,0n .The primary velocity )(U , secondary

velocity (W ), temperature (T )and concentration ( C ) distributions at all interior nodal points

Fig.5.1B Finite difference grid space

Y
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may be computed by successive applications of the above finite difference equations. The

obtained values are discussed graphically which are shown in Figs. 5.1.3(a) to 5.1.44(a)

respectively for various parameters.

5.1.4 Stability and Convergence Analysis

The analysis will remain incomplete unless discussion the stability and convergence of the

finite different scheme. For the constant mesh sizes, the stability criteria of the scheme may

be established as follows. The general terms of the Fourier expansion for CTWU ,,, at a

time are all arbitrarily called 0  are i Ye   apart from a constant, where 1i   . At a

time later, these terms become
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(5.1.28)

Substituting (5.1.28) into equations (5.1.22)-(5.1.25), over any one time step and denoting

the values after the time step by   ,, and  gives after simplifications

A B C D         (5.1.29)

E F     (5.1.30)

G H I       (5.1.31)

J K     (5.1.32)
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The equations (5.1.29) -(5.1.32)  can be written in the following matrix form;
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i.e.  T where  is the column vector with element  ,, and  . For stability, the

modulus of each eigenvalue of the amplification matrix T must be unity.
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The coefficients a and b are all real and nonnegative. Then demonstrate that the

maximum modulus of , ,A E G and K occur when Y m   , where m is an integers and

hence , ,A E G and K are real. For  sufficiently large, the value of , ,A E G and K

are  greatest when m is odd integer, in which case
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To satisfy 1, 1, 1A E G   and 1K  the most negative allowable values are
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5.1.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood

number. The shear stress is generally known as the Skin friction, the following equations

represent the shear stress at the plate. Shear stresses in x and z axes are as follows;
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From the temperature field, the effects of various parameters on the heat transfer coefficients

have been studied. The following relations represent the heat transfer rate that is well known

Nusselt number. Nusselt number is
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Also from the concentration field, the effects of various parameters on the mass transfer

coefficients have been studied. The following relation represents the mass transfer rate that is

well known as Sherwood number. The Sherwood number is
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.

The numerical values of the shear stress, Nusselt number and Sherwood number are

calculated by five point approximate formula for the derivatives. Values of uWU N,,  and

hS are shown graphically in Figs. 5.1.3(b) to 5.1.44(b) respectively for various parameters.

5.1.6 Results and Discussion

5.1.6.1 Justification of Grid Space

The code is conversed with three different grid space, such as 400,300,250m where m is

the grid number. It is seen that there is a little change for the above mentioned grid points

which are shown in Fig.5.1.1. For same power and time, the results of velocity, temperature

and concentration distributions have been carried out for 300m .

5.1.6.2 Steady- State Solution
The numerical solutions of the non-linear differential equation (5.1.9)-(5.1.12) under the

boundary conditions (5.1.14) have been performed by applying implicit finite difference

method. In order to verify the effects of time step size  , the programming code is run our

model with eight different step sizes as 120,110,100,90,80,70,60,20 . To get steady–state

solutions, the computations have been carried out up to 120 . It is observed that, the result
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of computations for TWU ,, and C , however show little changes after 100 . Thus the

solutions of all variables for 100 are essentially steady-state. Grid space and steady state

solution are shown in Fig. 5.1.1 and Fig. 5.1.2 only for primary velocity for rotation

parameter.
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Fig.5.1.1 Primary velocity for different grid

space of rotational parameter R

Fig.5.1.2 Primary velocity for different time

step of rotation parameter R

The numerical solution was obtained for distributions of the dimensionless primary velocity

(U ), secondary velocity (W ), temperature (T ), concentration ( C ) as well as the shear stress

in x -axis ( U ), shear stress in z -axis ( W ), Nusselt number ( uN ) and Sherwood number

( hS ). To study the behavior of these profiles are drawn for various values of the parameters
that describe the flow, e.g. Hall parameter ( e ), ion-slip parameter ( i ), magnetic parameter

( M ), suction parameter (  ), permeability parameter (  ), prosity(  ), inertial parameter ( ),

rotational parameter ( R ) , Pramdtl number ( rP ), Schmidt number( cS ), Soret numbrt ( 0S ),

Grashof number( rG )and modified Grashof number ( mG ). The   values   of   the   Prandtl

number are chosen 71.0rP (Prandtl number for air at C020 ), to 0.1rP (Prandtl number for

salt water at C020 ), 63.1rP (corresponds glycerin at C050 ), which represent the specific

condition of the flow. The values of the Schmidt number   are   chosen   to   represent   the

presence   of   species by 6.0cS correspond to water vapor. In the calculation rG and

mG are taken both positive. Throughout the calculations the values of rG and mG are taken to

be large ( 0.5rG and 0.2mG ). The values for the parameters are chosen arbitrarily in

most cases.

It is observed that in Fig.5.1.3 (a,b) and Fig.5.1. 7(a,b), primary velocity (U ) and shear stress

in x -axis ( U ) are increased with an increase of Hall parameter e and ion-slip

parameter i . The effective conductivity decreases with the increase of e and i which

reduces the magnetic damping force on primary velocity.  Similar trend arises in secondary

velocity W and shear stress in z -axis ( W ) with increasing e which is found in Fig. 5.1.4

(a,b). It is found that i has decreasing effect on W and W which is shown in Fig. 5.1.8

(a,b).
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It is noted from Fig.5.1.5(a) and Fig. 5.1.9(a) that the temperature (T ) distribution decreases

when e and i are increased and also thermal boundary layer thickness decreases whereas

Nusselt number
























0Y

u Y

T
N has opposite behavior which  is shown in Fig.5.1.5(b) and

Fig. 5.1.9(b). This is due to decrease in the thermal boundary layer thickness. Fig. 5.1. 6(a)

and Fig. 5.1.10(a) illustrated that concentration increase near the plate and decrease far away

from the plate with the increase of e and i . So there is a cross flow in the boundary layer.

While Sherwood number


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





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
0Y

h Y

C
S decreases which is shown in Fig. 5.1.6(b) and Fig.

5.1.10(b).

In Figs. 5.1.11(a,b), 5.1.12(a,b) and 5.1.13(a),  it has been illustrated that  primary velocity

(U ), shear stress in x-axis ( U ), secondary velocity W , shear stress in z -axis ( W ) and

temperature distribution decrease with an increase of inertial parameter ( ). The inertial

parameter increases the resistance to the flow increases, causing the fluid flow in the   porous

medium to slow down. This results in reducing the net velocity and therefore, all its

components as well as the wall friction. The temperature distribution decreases whereas

Nusselt number increases with the increase of which are found in Fig.5.1.13 (a,b). The

concentration profiles has increasing effects near the plate while Sherwood number( hS )

decreases with an increase of  which are found in Fig. 5.1.14(a,b).

By analyzing the Fig. 5.1.15(a,b) it is clearly seen that the primary velocity (U ), shear stress

in x-axis ( U ) profiles increase with increasing values of Eckert number ( cE ).This is due to

the heat energy stored in the liquid because of the frictional heating. But secondary velocity

W , shear stress in z -axis ( W ) profiles have reverse effect which are found in Fig. 5.1.16

(a,b). It   is   observed   that   increasing   values   of cE is   to   increase   the   temperature

distribution in flow region in Fig. 5.1.17(a). The viscous dissipation will lead to a heat

generation inside the fluid. This is due to the fact that heat energy is stored in the fluid due to
the frictional heating. Thus the effect of increasing cE , is to enhance the temperature

distribution inside the boundary layer.  Nusselt number ( uN ) has reverse effect which is

shown in Fig. 5.1.17(b). From Fig. 5.1.18(a) it has been seen that the concentration profiles

firstly decreases in the interval 100  Y and secondly increases 10Y with an increase

( cE ). So there is obtained a cross flow inside the boundary layer. But Sherwood number ( hS )

profiles increases with an increase of cE which is found in Fig. 5.1.18(b).

Fig. 5.1.19(a,b) illustrate that the primary velocity (U ), shear stress in x -axis ( U ) increase

with increasing values of porosity ( ).    Increasing     porosity    clearly    serves to

enhance the   flow    velocity i.e. accelerates the flow. Whereas secondary velocity W ,

shear stress in z -axis ( W ) profiles have reverse effect which are found in Fig. 5.1.20 (a,b).

It is found that temperature profile increases with increasing whereas Nusselt number

decreases which are shown in Fig. 5.1.21(a,b).  Also concentration profiles have minor
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decreasing effects with an increase of  which is found in Fig. 5.1.22(a). But Sherwood

number ( hS ) has increasing effect which is shown in Fig. 5.1.22(b).

From Fig. 5.1.23(a,b),  it has been seen that the primary velocity U and shear stress in x -

axis ( U ) decreases with an increase in magnetic parameter M . This is due to the fact that,

the transverse magnetic field normal to the flow direction, has a tendency to create the drag
known as the Lorentz force which tends to resist the flow . The secondary velocity W and

the shear stress ( W ) increase with increase in M which has been illustrated in Fig. 5.1.24

(a,b). The result indicates that the resulting Lorentzian body force will not act as a drag force

as in conventional MHD flows, but as an aiding body force. This will serve to accelerate the

secondary fluid velocity. Temperature distributions increases with an increase in M in Fig.

5.1.25(a) whereas Nusselt number ( uN ) has reverse effect which is shown in Fig. 5.1.25(b).

As the magnetic parameter increases, all of the fluid thermal characteristics increase. It is

also seen that the concentration profiles decrease firstly, and then start to increase with the

increase of M . So there is a cross flow near 0.11Y (approximately) which is found in Fig.

5.1.26(a). The effects of a transverse magnetic field to an electrically conducting fluid
gives   rise to a resistive-type force called the Lorentz force.   This force has the

tendency to increase its concentration distributions. But Sherwood number ( hS ) has

increasing effect with increasing M which is shown in Fig. 5.1.26(b).

In Fig. 5.1.27 (a,b) illustrate that the primary velocity (U ) and shear stress in x -axis ( U )

profiles decrease with the increase of Prandtl number( rP ). This is because in the free

convection the plate velocity is higher than the adjacent fluid velocity and the momentum

boundary layer thickness decreases. In Fig. 5.1.28 (a,b), the secondary velocity W and the

shear stress W are increased with an increase of rP . In Fig.5.1.29 (a), the temperature

profiles T decrease with an increase of rP . If rP increases, the thermal diffusivity decreases

and these phenomena lead to the decreasing of energy ability that reduces the thermal

boundary layer. The Nusselt number ( uN ) has opposite behavior is shown in Fig.5.1.29 (b).

The increase of Prandtl number means slow rate of thermal-diffusion. In Fig. 5.1.30(a) the

concentration profiles increases firstly, then start to decrease with an increase rP . So there is a

cross flow near 0.10Y . Whereas Sherwood number decreases with the increase of rP

which is shown in Fig.5.1.30 (b)

Fig. 5.1.31 (a,b) are displaying the effect of rotational parameter R on primary velocity U

and shear stress in x -axis ( U ) are decreased with  increase of R . In fact rotation parameter

defines the relative magnitude of the Coriolis force and the viscous force, thus rotation

retards primary flow and induces reverse flow in the boundary layer. Similar behaviors are

found on secondary velocity W and shear stress in z -axis ( W ) which are shown in

Fig.5.1.32 (a,b).

Fig.5.1.33 (a,b) shows that the primary velocity (U ) and shear stress in x -axis ( U ) decrease

with an increase of permeability parameter(  ). This is due to the fact that increasing the

value of  has tendency to resist the flow causing to reduce the thickness of the boundary

layer whereas secondary velocity W and shear stress in z -axis ( W ) increase in magnitude
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with increase of  which is shown in Fig.5.1.34(a,b). The behavior of temperature

distributions is clearly observed from Fig.5.1.35 (a), which shows that the temperature

distributions decrease with increasing  while Nusselt number has reverse effect which is

found in Fig. 5.1.35(b). It is seen from Fig.5.1.36 (a) that the concentration distribution

increases firstly, then start to decrease with an increase of  . So there is a cross flow near

0.11Y (approximately). This is due to the fact that increases in the concentration boundary

layer thickness. But Sherwood number has opposite behavior which is shown in Fig.5.1.36

(b).

Fig.5.1.37 (a,b) are displaying that the primary velocity (U ) and shear stress in x -axis ( U )

decrease with the increase of suction parameter (  ), expressing the fact that suction

stabilized the boundary layer growth.  But opposite behavior are found on secondary velocity

W and shear stress in z -axis ( W ) with an increase of  which are shown in Fig. 5.1.38(a,b).

In Figs. 5.1.39(a), 5.1.40(a), it is seen that increasing  decrease temperature and

concentration distributions, which indicates that the thermal and concentration boundary

layer thickness reduces while Nusselt and Sherwood numbers ( uN and hS ) increase which

are shown in Figs. 5.1.39(b), 5.1.40(b).

From Fig. 5.1.41(a,b) it is found that the primary velocity(U ) and shear stress in x -axis( U )

increase with an increase in Soret number 0S . This  is  because  either  a  decrease  in

concentration  difference  or  an increase in temperature difference leads to an increase in the

value of 0S . Hence, increasing the 0S increases the velocity of the fluid.  But opposite
behavior are found on secondary velocity (W )and shear stress in z -axis ( W ) which are

shown in Fig.5.1.42 (a,b). It has been observed that there is increasing effects on the

temperature (T ) distribution in Fig.5.1.43 (a) of increasing values of 0S . But Nusselt

number ( uN ) has decreased with an increase of 0S in Fig. 5.1.43(b). Fig.5.1.44 (a) illustrates

that the concentration ( C ) distribution increases with an increase of 0S . The concentration

boundary layer increases rapidly with increase of 0S that signifies that 0S can control

concentration boundary layer. It has been seen that the Sherwood number has opposite

behavior which is found in Fig.5.1.44 (b). This due to the fact that an increase in 0S tends to

thicken concentration boundary layer, thus decreasing the mass transfer rate at the wall.
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Fig. 5.1.3(a) Primary velocity profiles for different
values of Hall parameter e

Fig. 5.1. 3(b)  Shear stress in x -axis for different
values of Hall parameter e
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Fig. 5.1.4(a) Secondary velocity profiles for different
values of  Hall parameter e

Fig. 5.1.4(b)  Shear stress in z -axis for different
values of Hall parameter e
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Fig. 5.1.5(a) Temperature velocity profiles for
different  values of Hall parameter e

Fig. 5.1.5(b)  Nusselt number profiles for different
values of Hall parameter e
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Fig. 5.1.6(a)   Concentration profiles for different
values of Hall parameter e

Fig. 5.1.6(b)  Sherwood number profiles for different
values of Hall parameter e
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Fig. 5.1.7(a)  Primary velocity profiles for different
values of ion-slip parameter i

Fig. 5.1.7(b)  Shear stress in x -axis for different
values of ion-slip parameter i
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Fig. 5.1.8(a) Secondary velocity profiles for different
values of   ion-slip parameter i

Fig. 5.1.8(b)  Shear stress in z -axis for different
values of ion-slip parameter i
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Fig. 5.1.9(a) Temperature profiles for different values
of ion-slip parameter i

Fig. 5.1.9(b)  Nusselt number profiles for different
values of ion-slip parameter i
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Fig. 5.1.10(a) Concentration profiles for different
values of ion-slip parameter i

Fig. 5.1.10(b)  Sherwood number profiles for different
values of ion-slip parameter i
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Fig. 5.1. 11(a)  Primary velocity profiles for different
values of inertial parameter 

Fig. 5.1.11(b)  Shear stress in x -axis for different
values of inertial parameter 
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Fig. 5.1. 12(a) Secondary velocity profiles for
different values of inertial parameter 

Fig. 5.1.12(b) Shear stress in z - axis for different
values of inertial parameter 
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Fig. 5.1.13(a) Temperature profiles for different
values of  inertial parameter 

Fig. 5.1.13(b)  Nusselt number profiles for different
values of inertial parameter 
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Fig. 5.1.14(a) Concentration profiles for different
values of inertial parameter 

Fig. 5.1.14(b)  Sherwood number profiles for different
values of inertial parameter 
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Fig. 5.1.15(a)  Primary velocity profiles for different

values of Eckert number cE
Fig. 5.1.15(b)  Shear stress in x - axis for different

values of Eckert number cE
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Fig. 5.1.16(a) Secondary velocity profiles for different

values of   Eckert number cE
Fig. 5.1.16(b) Shear stress in z - axis for different

values of Eckert number cE
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Fig. 5.1.17(a) Temperature profiles for different

values of Eckert number cE
Fig. 5.1.17(b)  Nusselt number profiles for different

values of Eckert number cE
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Fig. 5.1.18(a)  Concentration profiles for different

values of Eckert number cE
Fig. 5.1.18(b) Sherwood number profiles for different

values of Eckert number cE
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Fig. 5.1.19(a) Primary velocity profiles for different
values  of porosity parameter 

Fig. 5.1.19(b) Shear stress in x - axis for different
values of porosity parameter 
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Fig. 5.1.20(a) Secondary velocity profiles for different
values of  porosity parameter 

Fig. 5.1.20(b) Shear stress in z - axis for different
values of porosity parameter 
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Fig. 5.1. 21(a) Temperature profiles for different
values of porosity parameter 

Fig. 5.1.21(b)  Nusselt number profiles for different
values of porosity parameter 
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Fig. 5.1.22(a) Concentration profiles for different
values of porosity parameter 

Fig. 5.1.22(b) Sherwood number profiles for different
values of porosity parameter 
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Fig. 5.1. 23(a) Primary velocity profiles for different
values of magnetic parameter M

Fig. 5.1.23(b)  Shear stress in x - axis for different
values of magnetic parameter M
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Fig. 5.1. 24(a)  Secondary velocity profiles for
different  values of magnetic parameter M

Fig. 5.1. 24(b)  Shear stress in z - axis for different
values of magnetic parameter M
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Fig. 5.1. 25(a)  Temperature profiles for different
values of  magnetic parameter M

Fig. 5.1.25(b)  Nusselt number profiles for different
values of magnetic parameter M
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Fig. 5.1.26(a) Concentration profiles for different
values of magnetic parameter M

Fig. 5.1.26(b)  Sherwood number profiles for different
values of magnetic parameter M
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Fig. 5.1.27(a)  Primary velocity profiles for different
values of Prandtl number rP

Fig. 5.1.27(b)  Shear stress in x - axis for  different
values of Prandtl number rP

0 10 20 30

-0.2

-0.1

0

20 40 60 80 100

-0.3

-0.25

-0.2

-0.15

Fig. 5.1.28(a) Secondary velocity profiles for different
values of Prandtl number rP

Fig. 5.1.28(b) Shear stress in z - axis for different
values of Prandtl number rP
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Fig. 5.1. 29(a)  Temperature profiles for different
values of Prandtl number rP

Fig. 5.1.29(a)  Nusselt number profiles for different
values of Prandtl number rP
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Fig. 5.1.30(a)  Concentration profiles for different
values of Prandtl number rP

Fig. 5.1. 30(b)  Sherwood number profiles for
different  values of Prandtl number rP
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Fig. 5.1. 31(a)  Primary velocity profiles for different
values of rotation parameter R

Fig. 5.1. 31(b)  Shear stress in x - axis for different
values of rotation parameter R
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Fig. 5.1.32(a) Secondary velocity profiles for different
values of rotation parameter R

Fig. 5.1.32(b) Shear stress in z - axis for different
values of rotation parameter R
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Fig. 5.1.33(a) Primary velocity profiles for different
values of permeability parameter 

Fig. 5.1.33(b) Shear stress in x - axis for different
values of permeability parameter
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Fig. 5.1.34(a) Secondary velocity profiles for different
values of permeability parameter 

Fig. 5.1.34(b) Shear stress in z - axis for different
values of permeability parameter
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Fig. 5.1.35(a) Temperature profiles for different
values of permeability parameter

Fig. 5.1.35(b)  Nusselt number profiles for different
values of permeability parameter
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Fig. 5.1. 36(a) Concentration profiles for different
values of permeability parameter

Fig. 5.1. 36(b) Sherwood number profiles for different
values of permeability parameter
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Fig. 5.1.37(a) Primary velocity profiles for different
values of suction parameter 

Fig. 5.1.37(b) Shear stress in x - axis for different
values of suction parameter 

0 10 20 30

-0.2

-0.1

0

20 40 60 80 100

-0.3

-0.25

-0.2

Fig. 5.1.38(a) Secondary velocity profiles for different
values of suction parameter 

Fig. 5.1.38(b) Shear stress in z - axis for different
values of suction parameter 

U

Y

U

hS

Y

C

5.2,25.2,0.2

01.0,6.0
71.0,5.0,3.0

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P

MR
S



 

01.0,6.0
71.0,5.0,3.0

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P

MR
S



 

5.2,25.2,0.2

01.0,6.0
71.0,5.0,0.2

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P

MR
S



 

01.0,6.0
71.0,5.0,0.2

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P
MR

S



 

W

Y

W

01.0,6.0
71.0,5.0,0.2

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P
MR

S



 

01.0,6.0
71.0,5.0,0.2

5.0,20.0,2.0
0.1,1.0,2.0 0







cc

r

i

e

ES
P
MR

S



 

4.0,35.0,3.0

4.0,35.0,3.0

4.0,35.0,3.0

4.0,35.0,3.0



106

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

20 40 60 80 1000.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 5.1.39(a) Temperature profiles for different
values of suction parameter 

Fig. 5.1.39(b) Nusselt number profiles  for different
values of suction parameter 
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Fig. 5.1. 40(a) Concentration profiles for different
values of suction parameter 

Fig. 5.1.40(b) Sherwood number profiles  for different
values of suction parameter 
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Fig. 5.1.41(a) Primary velocity profiles for different
values of Soret number 0S

Fig. 5.1.41(b) Shear stress in x - axis for different
values of Soret number 0S
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Fig. 5.1.42(a) Secondary velocity profiles for different
values of Soret number 0S

Fig. 5.1.42(b) Shear stress in z - axis for different
values of Soret number 0S
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Fig. 5.1.43(a) Temperature velocity profiles for
different values of Soret number 0S

Fig. 5.1.43(b) Nusselt number profiles for different
values of Soret number 0S
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Fig. 5.1. 44(a) Concentration profiles for different
values of Soret number 0S

Fig. 5.1.44(b) Sherwood number profiles for different
values of Soret number 0S
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5.2 MHD free convection flow and mass transfer over a
vertical plate with high porosity medium in presence of
Hall and ion-slip currents in a rotating system

The natural convection flow on a vertical surface embedded in porous media occurs in many

important engineering problems such as in the design of pebble-bed nuclear reactors,

catalytic reactors and compact heat exchangers. Hall and ion-slip currents are important and

they have a marked effect on the magnitude and direction of the current density and

consequently on the magnetic force term. The rotating hydrodynamic flows of

incompressible fluids in the presence of porous boundaries occur in MHD power generators,

including magnetically such study is also useful in metallurgy. Study of the interaction of

Coriolis force with electromagnetic force in porous media is important in some geophysical

and astrophysical problems, since many astronomical bodies posses magnetic field and fluid

interiors.

Soret and Dufour effects are interesting physical phenomenon in fluid mechanics, when heat

and mass transfer occur simultaneously, the relations between the fluxes and the driving

potentials are of a more intricate nature. The Soret effect has been utilized for isotope

separation and in mixture between gases of very light molecular weight and of medium

molecular weight. Viscous magnetohydrodynamic (MHD) flows arise in many applications
in energy systems, chemical technology, astrophysics and flow control processes in the
mechanical engineering industry. Ferdows et al. (2011) investigated the effects of Hall and

ion-slip currents on free convective heat transfer flow past a vertical plate considering slip

conditions. Steady motions of electrically conducting viscous fluids through a porous

medium in presence of magnetic field, which are of interest in many scientific and

engineering domains, have attracted considerable attention of many investigators like

Krishna et al. (2002), Geindreau and Auriault (2002), Chauhan and Jain (2005) and Dulal

(2008). Sherman and Sutton (1962) have considered the effect of Hall current on the

efficiency of a MHD generator. Anjali and Ganga (2009) studied the effects of viscous and

Joules dissipation on mhd flow, heat and mass transfer past a stretching porous surface

embedded in a porous medium. Singh and Rakesh(2009) analyzed Soret and Hall current

effects on heat and mass transfer in MHD flow of a viscous fluid through porous medium

with variable   suction. Joaquin et al. (2009) studied the numerical solutions for unsteady

rotating high porosity medium channel couette flow hydrodynamics. Koushik et al. (2012)

investigated MHD free convection and mass transfer flow from a vertical plate in the

presence of Hall and ion-slip current. Anwaret al. (2012) investigated hydromagnetic viscous

flow in a rotating annular high-porosity medium with nonliner Forchheimer drag effects.

Vidyasagar et al. (2013) considered the effects of heat and mass transfer over a moving

vertical porous plate. Rajput and Mohammad (2016) investigated rotation effect on unsteady

MHD flow past an impulsively started vertical plate with variable temperature in porous

medium. Rao et al. (2014) studied Soret and Dufour effects on MHD Boundary layer flow
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over a Moving Vertical porous plate with suction. Vijaya and Mallikarjuna (2014) discussed

the effect of variable thermal conductivity on convective heat and mass transfer over a

vertical plate in a rotating system with variable porosity regime. Das et al.(2015) studied Hall

effects on unsteady hydromagnetic flow past an accelerated porous plate in a rotating system.

Diffusion-thermo effects on hydromagnetic free convection heat and mass transfer flow

through high porous medium bounded by a vertical surface was studied by Kiran et al.

(2015). Abdullah and Mahmud (2015) analyzed free convection fluid flow in the presence of

a magnetic field with thermally stratified high porosity medium.

Hence our aim is to investigate the viscous dissipation, Joule heating and thermal diffusion

effects on unsteady MHD free convective heat and mass transfer flow through a vertical

infinite porous plate with porous medium under the action of transverse magnetic field taking

into account Hall and ion-slip currents. The effects of various emerging parameters on the

velocity, temperature and concentration field are discussed graphically in details.

5.2.1 Governing Equations

The two dimensional unsteady flow of an electrically conducting incompressible viscous

fluid past an semi-infinite vertical porous plate has been considered. The flow is assumed to

be in the x axis which is taken along the plate in the

upward direction and y  axis is normal to it. Initially the

fluids as well as the plate are at rest but for time 0t  the

whole system is allowed to rotate with a constant angular

velocity  about the y  axis. Both the plate and the fluid

are maintained initially at the same temperature. Also it is

assumed that the temperature of the plate and spices

concentration are raised to )(  TTw and )(  CCw

respectively, which are there after maintained constant,

where wT , wC are temperature and spices concentration at the

wall and T , C are the temperature and the concentration of the spices outside the

boundary layer respectively. The physical configuration of the problem is shown in Fig.5.2.1.

A strong magnetic field is applied in the y -direction. The uniform magnetic field strength

0B can be taken as  0,,0 0BB .  However, for such a fluid, the Hall and ion-slip currents

will significantly affected the flow in presence of large magnetic fields. The induced

magnetic field is neglected, since the magnetic Reynolds number of a partially-ionized fluid

is very small. The equation of conservation of electric charge 0 J gives yJ constant

because the direction of propagation is considered only along y -axis and J does not have

any variation along the y -axis. Since the plate is electrically non-conducting, the constant is

zero i.e. 0yJ at the plate and everywhere. The equations which govern the flow under the

above consideration and Boussinesq’s approximation are as follows:

Fig.5.2.1 Physical configuration
and coordinate system
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The continuity equation; 0
u v

x y

 
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Momentum equations;
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Energy equation;
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Concentration equation;
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where the variables and related quantities are defined in the Nomenclature.

The initial and boundary conditions for the problems are;

0, 0, 0, 0, ,t u v w T T C C       everywhere (5.2.6)

0, 0, 0, 0, , , 0t u v w T T C C at x       

0 , 0, 0, , at 0w wu U v w T T C C y      (5.2.7)

  yCCTTwvu as,,0,0,0

5.2.2 Mathematical Formulation

The problem is simplified by writing the equations in the non-dimensional form. Now

introduce the following non-dimensional quantities
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Then introducing the dimensionless quantities (5.2.8) in equations (5.2.1)-(5.2.5)

respectively, the following dimensionless equations are as follows;
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The corresponding boundary conditions are as follows;

0, 0, 0, 0, 0, 0U V W T C       everywhere (5.2.14)

0, 0, 0, 0, 0, 0 at 0U V W T C X       

1, 0, 0, 1, 1 0U V W T C at Y      (5.2.15)
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5.2.3 Solution Technique

The governing second order non-

linear coupled dimensionless

partial differential equations have

been solved numerically with the

associated boundary conditions.

The explicit finite difference

method has been used to solve the

coupled equations (5.2.9)-(5.2.13)

with boundary conditions

(5.2.14)- (5.2.15).To obtain the

difference equations the region of

the flow is divided into a grid or

mesh of lines parallel to X and Y axes, where X –axis is taken along the plate and Y -axis is

taken normal to the plate. Here the plate height )0.80(maxX is considered i.e. X varies form 0

to 80 and assumed )0.60(maxY as corresponding Y i.e. Y varies from 0 to 60. There are

300m and 300n grid spacing in the X and Y directions respectively and taken as

follows

)800(27.0  XX and )600(2.0  YY with the smaller time step 005.0 .

Let TWVU  ,,, and C denote the values of , , ,U V W T and C at the end of a time-step.

Then an appropriate set of finite difference equations corresponding to the equations (5.2.9)-

(5.2.13) are as follows;



0j 2j 1j j 1j 2j nj 
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Fig.5.2.2 Finite difference grid space
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The initial and boundary conditions are obtained as follows;
0 0 0 0 0
, , , , ,0, 0, 0, 0, 0i j i j i j i j i jU V W T C     (5.2.21)

0, 0, 0, 0, 0,0, 0, 0, 0, 0n n n n n
j j j j jU V W T C    

,0 ,0 ,0 ,0 ,01, 0, 0, 1, 1n n n n n
i i i i iU V W T C     (5.2.22)

, , , , ,0, 0, 0, 0, 0n n n n n
i L i L i L i L i LU V W T C     where L

Here the subscripts i designate the grid points with X -coordinates and j designate the grid

points with Y -coordinates and superscript n represents a value of time,   n where

,....3,2,1,0n ..From these conditions, the value of UCT ,, and W are known at 0 .

During any one time step, the coefficients jiU , and jiV , appearing in equations (5.2.17)-

(5.2.20) are treated constants. Then at the end of any time step  , the new temperature T  ,

the new concentration C  , the new primary velocity U  , the new secondary velocity W  and

V at any grid points may be obtained by successive applications of equations (5.2.17)-

(5.2.20) respectively. This process is repeated in time and provided the time is sufficiently

small, TWVU ,,, and C should eventually converge to values which approximate the

steady-state solutions of equations (5.2.9)-(5.2.13). These converged solutions are shown

graphically in Figs. 5.2.5(a,b) - Figs. 5.2.48(a,b).
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5.2.4 Stability and Convergence Analysis
The analysis will remain incomplete unless we discuss the stability and convergence of the

finite difference scheme. For the constant mesh sizes, the stability criteria of the scheme can

be established as follows. The general terms of the Fourier expansion for , ,U W T and C at a

time arbitrarily called 0  are ,i X i Ye e  apart from a constant, where 1i   . At time 

latter, these terms will become

YiXi

YiXi

YiXi

YiXi

eeC

eeT

eeW

eeU










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


)(:
)(:
)(:
)(:

(5.2.23)

Substituting (5.2.23) into equations (5.2.17) to (5.2.20), regarding the coefficients U and

V as constants, over any one time step and denoting the values after the time step by

  ,, and  gives after simplifications

A B C D          (5.2.24)

E F     (5.2.25)

G H I       (5.2.26)

J K     (5.2.27)

where
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Equations (5.2.24)-(5.2.27) can be written as follows;

 1111 DCBA  (5.2.28)

 FE  (5.2.29)

G H I       (5.2.30)

J K     (5.2.31)

where DJDDKCGCCIBBCHAA  1111 ,,,
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Equation (5.2.28)- (5.2.31) can be expressed in the following matrix form

1 1 1 1

0 0

0

0 0

A B C D

F E

H I G

K J

 
 
 
 

     
         
    
            

i.e. T   where  is the column vector with element  ,, and  . T

For stability, to find out eigenvalues of the amplification matrixT . But this study is very

difficult since it is fourth order square matrix and all the elements of T are different. It is

evident that, the elements of a diagonal matrix represent eigen values of a square matrix. For

this purpose IHFDCB ,,,, 111 and K are assume to be very small that is tends to zero and the

amplification matrix T can be written in the diagonal form as follows;
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For stability, the modulus of each eigenvalues of the amplification matrix T must not exceed

unity. Assume that U is everywhere no-negative and V is everywhere non-positive, let
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VU
a b c

X Y Y
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Then

YcbeaecbaA YiXi     cos2211
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The coefficients ba, and c are all real and nonnegative. Now demonstrate the maximum

modulus of GEA ,,1 and J occur when X m   and Y n   , where m and n are

integer and hence GEA ,,1 and J are real. For  sufficiently large, the value of GEA ,,1

and J are greater when both m and n are odd integer, in which case
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To satisfy 1,1,11  GEA and 1J the most negative allowable values are

1,1,11  GEA and 1J . Hence the stability condition is
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5.2.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood

number. The shear stress is generally known as the Skin friction, the following equations

represent the local and average shear stress at the plate. Local shear stress in x and z axes are

as follows;
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The following equations define the x and z components of the average shear stress
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The local and average Nusselt numbers are denoted by uLN , uAN which are proportional to
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Similarly local and average Sherwood numbers are denoted by hLS , hAS are proportional to
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The values primary velocity uLLWLU N,,  and hLS are evaluated by five point approximate

formula for the derivatives and then the integral for uAAWAU N,,  and hAS are evaluated by

the use of the Simpson’s
3

1
integration formula. Values of uLLWLU N,,  and hLS and

uAAWAU N,,  and hAS are shown graphically in Figs.5.2.5(c) -5.2.48(c) respectively for

various parameters.

5.2.6. Results and Discussion

5.2.6.1 Justification of Grid Space
The code is converged with different grid space such as 400,300,250, nm . It is seen that

there is a little change for the above mentioned grid points which are shown in Fig.5.2 3. For
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save power and time, the results of velocity, temperature and concentration have been carried

out for 300, nm .

5.2.6.2 Steady-State Solution

The numerical solutions of the non-linear differential equation (5.2.10)-(5.2.13) under the

boundary conditions (5.2.14)-(5.2.15) have been performed by applying explicit finite

difference method. In order to verify the effects of time step size  , the programming code

is conversed our model with different step sizes such as 120,110,100,90,80,70,60,20 . To

get steady–state solutions, the computations have been carried out up to 120 . It is

observed that, the result of computations for TWU ,, and C , however show little changes

after 100 . Thus the solutions of all variables for 100 are essentially steady-state. Grid

space and steady-state solutions are shown in Fig. 5.2.3 and Fig. 5.2.4 only for primary

velocity for rotational parameter.
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In order to analyze the physical situation of the above model, the velocity profiles in x and

z components are commonly known as the primary and secondary velocities. The   numerical

results has been carried out for dimensionless primary velocity ( U ), secondary  velocity(W ),

temperature( T ), species   concentration ( C ), local and average shear   stresses in x -axis

( LU , AU ), local and average shear stresses in z -axis ( LW , AW ), local and average Nusselt

numbers ( uLN , uAN ), local and average Sherwood numbers ( hLS , hAS ) for various values of

the material parameters such as Hall parameter( e ), ion-slip parameter( i ), magnetic

parameter( M ), rotation parameter( R ), Prandtl number( rP ),  Schmidt number ( cS ), Soret

number( 0S ), permeability parameter(  ), Eckert number ( cE ), porosity parameter ( ),

iteration parameter ( ). The values for the parameters are chosen arbitrarily in most cases.

Some standard values for of the Prandtl number ( rP ) is considered because of the physical

importance. These are 71.0rP corresponds to air, 0.1rP corresponds to electrolyte

solution such as salt water and 63.1rP corresponds to glycerin at C050 and Schmidt

Fig.5.2.3 Primary velocity for different grid space

of rotational parameter R
Fig.5.2.4 Primary velocity for different time step
of rotation parameter R
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number ( cS ) the values 62.2,0.1,60.0 are considered, which represent specific condition of

flow ( 60.0 corresponds to water vapor, 0.1 correspond to carbonsioxid that represents the

most common effect in air, 62.2 corresponds to propyl-benzene at C020 ). The importance of

cooling problem in nuclear engineering in connection with the cooling of reactors, the values

of rG and mG are taken positive. Throughout the calculations the values of rG and mG are

taken very large ( 0.5rG and 0.2mG ).

Form Fig.5.2.5 (a-c) and Fig.5.2.9 (a-c) it has been seen that the primary velocity (U ), local

and average shear stresses in x -axis ( LU , AU ) increase with an increase of Hall and ion-slip

parameter ( e and i ). This is due to fact that the effective conductivity decreases, which

reduces the magnetic resistive force affecting on the primary flow. But secondary

velocity  W , local and average shear stresses in z -axis ( LW , AW ) have increasing effects

with an increase of e which are found in Fig.6 (a-c). Since W is a result of the Hall Effect.

Also secondary velocity  W , local and average shear stresses in z -axis ( LW , AW ) have

decreasing effects with the increase of i which is found in Fig.10 (a-c). From this figure it is

clear that ion-slip parameter i retards the flow which leads to reduction in boundary layer

thickness. It is noted from Fig.5.2.7 (a) and Fig.5.2.11 (a) that the temperature ( T ) decreases

when e and i are increased and also thermal boundary layer thickness decreases. While

local and average Nusselt numbers are increased which are found in Fig. 5.2.7(b,c) and

Fig.5.2.11(b,c). Increases in the values of e have a tendency to increase the frictional

effects and to augment the heat transfer at the wall. This is reflected in the increases in the

local and average Nusselt numbers. Fig.5.2. 8(a) illustrates the concentration distribution for

different values of Hall parameter ( e ). It is seen that concentration distribution decreases

with the increase of e . But local and average Sherwood numbers increase with the increase

of e which is seen in Fig.5.2.8 (b,c). The concentration ( C ) distribution has minor

increasing effects with an increased of i whereas local and average Sherwood numbers

( hLS , hAS ) have opposite behavior which have been shown in Fig.5.2.12 (a-c).

In Fig.5.2.13 (a), it has been illustrated that primary velocity (U ) firstly decreases near the

plate, then start to increase far away from the plate with an increase of inertia parameter ( ).

So there is cross flow at 0.11Y (approximately). The medium inertial ( ) effects

constitute resistance to flow. Thus the inertial parameter ( ) increases, the resistance to the

flow increases, causing the fluid flow in the porous medium to slow down. The local and

average shear stresses in x -axis( LU , AU ) decrease with the increase of  which is seen in

Fig.5.2.13 (b,c). The secondary velocity  W , local and average shear stresses in z -axis

( LW , AW ) have decreasing effects which is found in Fig.14 (a-c). It is found that the

temperature and concentration profiles increase whereas local and average Nusselt and

Sherwood numbers are decreased with increasing  which are found in Fig. 5.2.15(a-c) and

Fig. 5.2.16(a-c).

Analyzing the Fig.5.2.17 (a) it is clearly seen that the primary velocity ( U ) profiles firstly

increases in the interval )0.210(  Y and the minor decreasing effects 0.21Y with an
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increase ( cE ). A cross flow inside the boundary layer has been obtained. This is due to the

heat energy stored in the liquid because of the frictional heating. The local and average shear

stresses in x-axis ( LU , AU ) increases in Fig.5.2.17 (b,c). Also the secondary velocity  W

firstly decrease near the plate after then increases far away from the plate with an increase

( cE ) in Fig.5.2.18(a). So there is cross flow at 0.20Y (approximately). The local and

average shear stresses in z -axis ( LW , AW ) have decreasing effects which is found in

Fig.5.2.18 (b,c). The effect of Eckert number cE on the temperature is shown in Fig.5.2.19

(a). Eckert number is the ratio of the kinetic energy of the flow to the boundary layer

enthalpy difference. The effect of   viscous   dissipation   on   flow   field   is   to increase

the energy, yielding a greater fluid temperature and as a consequence greater buoyancy

force. The increase in the buoyancy force   due   to   an   increase   in   the   dissipation

parameter enhances   the   temperature. Local and average Nusselt numbers ( uLN , uAN ) have

reverse effect which is shown in Fig.5.2.19 (b,c). Fig.5.2.20 (a) shows that cE is increased,

the concentration profile decreases whereas local and average Sherwood numbers ( hLS , hAS )

profiles increases which is found in Fig.5.2. 20(b,c).

Figures 5.2.21(a-c), 5.2.23(a) and 5.2.24(a) depict the effect of the porosity parameter on the

primary velocity, local and average shear stresses in x-axis, temperature and concentration

profiles of the flow. It is evident from this figure that an increase in the porosity parameter

improves the primary velocity, local and average shear stresses profiles in x-axis while both

temperature and concentration profiles have reverse effect. Increases in porosity parameter

widen the porous layers of the flow which increases the velocity boundary layer thickness

and decreases the thermal as well as concentration boundary layer thicknesses.  Whereas

secondary velocity(W ), local and average shear stresses in z -axis ( LW , AW ) have decreasing

effect which are found in Fig.5.2.22 (a-c). Local and average Nusselt and Sherwood numbers

increase with increasing( )which are shown in Figure 5.2.23(b,c) and Figure 5.2.24(b,c).

From Fig.5.2.25 (a) it is seen that, firstly the primary velocity  U decreases up to 0.20Y but

after that  U increases with the increases of permeability parameter (  ). So there obtained a

cross flow. An increase in  will increase the resistance of the porous medium which will

tend to decelerate the flow and reduce the velocity. Local and average shear stresses in x -axis

( LU , AU ) are decreased which are seen in Fig.5.2.25 (b,c). It is seen from Figs.5.2.26 (a-c),

the secondary velocity  W , local, average shear stresses in z -axis ( LW , AW ) are increased

with an increase of  . From Fig.5.2.27 (a-c) and Fig.5.2.28 (a-c) it is observed that the

temperature T and concentration  C distributions increase whereas local and average Nusselt

( uLN , uAN ) and Sherwood ( hLS , hAS ) numbers decrease with increasing  . This is due to the

fact that increasing the value of permeability parameter has tendency to increase the thermal

boundary layer and concentration species.

From Fig.5.2.29 (a-c) and Fig.5.2.30 (a-c), it has been seen that the primary velocity (U ),

local and average shear stresses in x -axis ( LU , AU ) decrease whereas the secondary

velocity  W , local and average shear stresses in z -axis ( LW , AW ) increase with an increase in
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magnetic parameter ( M ). An increase in the value of the magnetic parameter ( M ) leads to

increase in the magnitude of the Lorentz force which serves to retard the primary fluid

velocity. The result of Fig.5.2.30 (a-c) indicates that the resulting Lorentzian body force will

not act as a drag force as in conventional MHD flows, but as an aiding body force. This will

serve to accelerate the secondary fluid velocity. Fig.5.2.31 (a-c) and Fig. 5.2.32(a-c) are

illustrated that the temperature  T and concentration  C distributions increase whereas local

and average Nusselt ( uLN , uAN ) and Sherwood numbers ( hLS , hAS ) decrease with increasing

( M ). The effects of a transverse magnetic field to an electrically conducting fluid gives rise
to a resistive-type force called the Lorentz force. This force has the tendency to increase its

temperature and concentration distributions.

From Fig.5.2.33 (a-c) it is seen that the primary velocity (U ), local and average shear stresses

in x -axis ( LU , AU ) decrease with an increases of Prandtl number( rP ). This is because in the

free convection the plate velocity is higher than the adjacent fluid velocity and the

momentum boundary layer thickness decreases.  But opposite behavior is found for

secondary velocity  W , local and average shear stresses in z -axis ( LW , AW ) which are shown

in Fig.5.2.34 (a-c). From Fig. 5.2.35(a-c), it is observed that the temperature  T distribution

decreases whereas local and average Nusselt numbers ( uLN , uAN ) have opposite behavior

have been illustrate with an increases of Prandtl number ( rP ). This is consistent with the

well-known fact that the thermal boundary layer thickness decreases with increasing ( rP ).

Also the temperature decreased at a faster rate for higher values of ( rP ). This shows that the

rate of cooling is faster in the case of higher Prandtl number. In Fig.5.2.36 (a) the

concentration distribution increases firstly, then starts to decrease with an increase ( rP ). So

there is a cross flow near 0.22Y (approximately). Because the concentration boundary

layer thickness increases as ( rP ) increases. But local and average Sherwood numbers

( hLS , hAS ) decrease in Fig.5.2.36 (b,c).

It is seen from Fig. 5.2.37(a), the primary velocity  U profiles decreases firstly, then start to

increase with the increase of rotational parameter ( R ). So there is a cross flow near

0.20Y (approximately). But local and average shear stresses in x -axis ( LU , AU ) decrease

which are shown in Fig.5.2.37 (b-c). In fact rotation parameter defines the relative magnitude

of the Coriolis force and the viscous force, thus rotation retards primary flow in the boundary

layer. The secondary velocity  W , local and average shear stresses in z -axis ( LW , AW ) have

decreasing effect in R are shown in Fig.5.2.38 (a-c).

From Fig.5.2.39(a-c) it is found that the primary velocity  U , local and average shear stresses

in x -axis ( LU , AU ) profiles increase with an increase in Soret number( 0S ). This  is  because

either  a  decrease  in  concentration  difference  or an increase in temperature difference

leads to an increase in the value of 0S . Hence, increasing the 0S increases the velocity of the

fluid.  But opposite behavior are found on secondary velocity  W , local and average shear

stresses in z -axis ( LW , AW ) which are shown in Fig.5.2.40 (a-c). It has been observed that

the temperature  T has minor decreasing effects whereas local and average Nusselt numbers
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( uLN , uAN ) have reverse effects with an increase of 0S which are found in Fig.5.2.41 (a-c).

The concentration  C distribution increases while local and average Sherwood numbers

( hLS , hAS ) are decreased with an increase of 0S .in Fig.5.2.42 (a-c). As the Soret parameter is

increased, the concentration boundary layer thickness increases, thus decreasing the mass

transfer rate at the wall.
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Fig.5.2.5(a) Primary velocity profiles
for different values of e

Fig.5.2.5 (b) Local Shear stress in x -
axis for different values of e

Fig.5.2.5(c) Average Shear stress in x -
axis for different values of e
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Fig.5.2.6(a) Secondary velocity profiles
for different values of e

Fig.5.2.6(b) Local Shear stress in z -axis
for different values of e

Fig.5.2.6(c) Average Shear stress in z -
axis for different values of e
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Fig.5.2.7(a) Temperature profiles for
different values of e

Fig.5.2.7(b) Local Nusselt number for
different  values of e

Fig.5.2.7(c) Average Nusselt number for
different values of e
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Fig.5.2.8(a) Concentration profiles for
different values of e

Fig.5.2.8(b) Local Sherwood number for
different values of e

Fig.5.2.8(c) Average Sherwood number for
different values of e
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Fig.5.2.9(a) Primary velocity profiles for
different  values of i

Fig.5.2.9(b) Local Shear stress in x -axis
for different values of i

Fig.5.2.9(c)  Average Shear stress in x -
axis for different values of
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Fig.5.2.10(a) Secondary velocity profiles
for different values of i

Fig.5.2.10(b) Local Shear stress in z -
axis for different values of i

Fig.5.2.10(c) Average Shear stress in z -
axis for different values of i
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Fig.5.2.11(a) Temperature profiles for
different values of i

Fig.5.2.11(b) Local Nusselt number for
different  values of i

Fig.5.2.11(c) Average Nusselt number for
different values of i
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Fig.5.2.12(a) Concentration profiles for
different values of i

Fig.5.2.12(b) Local Sherwood number for
different values of i

Fig.5.2.12(c) Average Sherwood number
for different values of i
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Fig.5.2.13(a) Primary velocity profiles for
different values of 

Fig.5.2.13(b) Local Shear stress in x -
axis for different values of 

Fig.5.2.13(c)  Average Shear stress in x -
axis for different values of 

Y

T

X 

uLN
uAN

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i

Y

U

X 

AU

3.0,2.0,1.0

3.0,2.0,1.0 3.0,2.0,1.0
LU5.0,0.1

00.2,6.0
20.0,71.0
50.0,1.0
001.0,0.10







e

c

r

i

c

M
S
P

R
ES







5.0,0.1
00.2,6.0
20.0,71.0
50.0,1.0
001.0,0.10







e

c

r

i

c

M
S
P

R
ES







5.0,0.1
00.2,6.0
20.0,71.0
50.0,1.0
001.0,0.10







e

c

r

i

c

M
S
P

R
ES







Y

C

X 

hAS
hLS1.0,0.1

00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
001.0,0.10







M
S
P

R
ES

c

r

e

c






9.0,5.0,1.0i



126

0 10 20 30 40

-0.4

-0.2

0

0 20 40 60 80

-0.4

-0.3

-0.2

-0.1

0

20 40 60 80

-25

-20

-15

-10

Fig.5.2.14(a) Secondary velocity profiles
for different values of 

Fig.5.2.14(b) Local Shear stress in z -
axis for different values of 

Fig.5.2.14(c) Average Shear stress in z -
axis for different values of 
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Fig.5.2.15(a) Temperature profiles for
different values of 

Fig.5.2.15(b) Local Nusselt number for
different  values of 

Fig.5.2.15(c) Average Nusselt number for
different values of 
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Fig.5.2.16(a) Concentration profiles for
different   values of 

Fig.5.2.16(b) Local Sherwood number for
different values of 

Fig.5.2.16(c)  Average Sherwood number
for different values of 
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Fig.5.2.17(a) Primary velocity profiles for
different values of cE

Fig.5.2.17(b) Local Shear stress in x -
axis for  different values of cE

Fig.5.2.17(c) Average Shear stress in x -
axis for different values of cE
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Fig.5.2.18(a) Secondary velocity profiles
for different values of cE

Fig.5.2.18(b) Local Shear stress in z -axis
for different values of cE

Fig.5.2.18(b) Average Shear stress in z -
axis for different values of cE
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Fig.5.2.19(a) Temperature profiles for

different values of cE

Fig.5.2.19(b) Local Nusselt number for

different values of cE

Fig.5.2.19(c) Average Nusselt number for

different values of cE
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Fig.5.2.20(a) Concentration profiles for
different values of cE

Fig.5.2.20(b) Local Sherwood number for
different values of cE

Fig.5.2.20(c) Average Sherwood number
for different values of cE
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5.2.21(a) Primary velocity profiles for
Fig. different values of 

Fig.5.21(b) Local Shear stress in x -axis
for different values of 

Fig.5.2.21(c) Average Shear stress in x -
axis for different values of 
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Fig.5.2.22(a) Secondary velocity profiles
for different values of 

Fig.5.2.22(b) Local Shear stress in z -
axis for different values of 

Fig.5.2.22(c) Average Shear stress in z -
axis for different values of 

Y

C

X

Y

U

X

Y

W

X 





LW

hLS
hAS

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
1.0,0.10







M
S
P

R
S

c

r

e

i







1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
1.0,0.10







M
S
P

R
S

c

r

e

i







005.0,003.0,001.0cE

1.0,0.1
00.2,6.0
20.0,71.0
50.0,5.0
1.0,0.10







M
S
P

R
S

c

r

e

i







005.0,003.0,001.0cE 005.0,003.0,001.0cE

LU
AU

1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






2.0,15.0,1.0

1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






AW

1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






1.0,0.1
00.2,6.0
001.0,5.0
71.0,5.0
1.0,0.10







M
S

ER
P

S

c

c

re

i






2.0,15.0,1.0

2.0,15.0,1.0

2.0,15.0,1.0

2.0,15.0,1.0

2.0,15.0,1.0



129

0 10 20 30 400

0.2

0.4

0.6

0.8

1

20 40 60 80

0.1

0.2

0.3

20 40 60 80 1008

10

12

14

16

Fig.5.2.23(a) Temperature profiles for
different values of 

Fig.5.2.23(b) Local Nusselt number for
different values of 

Fig.5.2.23(c) Average Nusselt number for
different values of 
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Fig.5.2.24(a) Concentration profiles for
different values of 

Fig.5.2.20(b) Local Sherwood number for
different values of 

Fig.5.2.24(c) Average Sherwood number
for different values of 
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Fig.5.2.25(a) Primary velocity profiles for
different values of 

Fig.5.2.25(b) Local Shear stress in x -
axis for different values of 

Fig.5.2.25(c)Average Shear stress in x -
axis for different values of 
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Fig.5.2.26(a) Secondary velocity profiles
for different values of 

Fig.5.2.26(b) Local Shear stress in z -
axis for different values of 

Fig.5.2.26(b) Average Shear stress in z -
axis for different values of 
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Fig.5.2.27(a)Temperature profiles for
different values of 

Fig.5.2.27(b) Local Nusselt number for
different values of 

Fig.5.2.27(c)Average Nusselt number for
different values of 
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Fig.5.2.28(a) Concentration profiles for
different values of 

Fig.5.2.28(b) Local Sherwood number for
different values of 

Fig.5.2.28(c) Average Sherwood number
for different values of 
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Fig.5.2.29(a) Primary velocity profiles for
different values of M

Fig.5.2.29(b) Local Shear stress in x -
axis for different values of M

Fig.5.2.29(c) Average Shear stress in x -
axis for different values of M
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Fig.5.2.30(a) Secondary velocity profiles
for different values of M

Fig.5.2.30(b) Local Shear stress in z -
axis for different values of M

Fig.5.2.30(c) Average Shear stress in z -
axis for different values of M
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Fig.5.2.31(a) Temperature profiles for
different values of M

Fig.5.2.31(b) Local Nusselt number for
different values of M

Fig.5.2.31(c) Average Nusselt number for
different values of M
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Fig.5.2.32(a) Concentration profiles for
different values of M

Fig.5.2.32(b) Local Sherwood number for
different values of M

Fig.5.2.32(c) Average Sherwood number
for different values of M
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Fig.5.2.33(a) Primary velocity profiles for
different values of rP

Fig.5.2.33(b) Local Shear stress in x -
axis for different values of rP

Fig.5.2.33(c) Average Shear stress in x -
axis for different values of rP

0 10 20 30 40

-0.4

-0.3

-0.2

-0.1

0

20 40 60 80

-0.3

-0.2

-0.1

20 40 60 80 100-21

-18

-15

-12

-9

Fig.5.2.34(a) Secondary velocity profiles
for different values of rP

Fig.5.2.34(b) Local Shear stress in z -d
for different values of rP

Fig.5.2.34(c) Average Shear stress in z -
axis for different values of rP
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Fig.5.2.35(a) Temperature profiles for
different values of rP

Fig.5.2.35(b) Local Nusselt number for
different  values of rP

Fig.5.2.35(c) Average Nusselt number for
different values of rP
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Fig.5.2.36(a) Concentration profiles for
different values of rP

Fig.5.2.36(b) Local Sherwood number for
different values of rP

Fig.5.2.36(c) Average Sherwood number
for different values of rP
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Fig.5.2.37(a) Primary velocity profiles for
different values of R

Fig.5.2.37(b) Local Shear stress in x -
axis for different values of R

Fig.5.2.37(c) Average Shear stress in x -
axis for different values of R

Y

T

X 

C

Y X 

Y

U

X 

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

hLS
hAS

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

2.0,001.0
1.0,6.0
,0.2,5.0
0.1,5.0
1.0,0.10















c

c

e

i

E
S
R

M
S



63.1,0.1,71.0rP

LU
AU

7.0,6.0,5.0R

7.0,6.0,5.0R

7.0,6.0,5.0R

uLN
uAN

1.0,0.1
2.0,6.0
001.0,0.2
71.0,5.0
1.0,0.10







M

S

E

P

S

c

c

re

i







1.0,0.1
2.0,6.0
001.0,0.2
71.0,5.0
1.0,0.10







M

S

E

P

S

c

c

re

i







1.0,0.1
2.0,6.0
001.0,0.2
71.0,5.0
1.0,0.10







M

S

E

P

S

c

c

re

i









134

0 10 20 30 40 50-0.8

-0.6

-0.4

-0.2

0

20 40 60 80

-0.4

-0.3

-0.2

-0.1

20 40 60 80 100

-30

-25

-20

-15

-10

Fig.5.2.38(a) Secondary velocity profiles
for different values of R

Fig.5.2.38(b) Local Shear stress in z -
axis for different values of R

Fig.5.2.38(c)Average Shear stress in z -
axis for different values of R
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Fig.5.2.39(a) Primary velocity profiles for
different values of 0S

Fig.5.2.39(b) Local Shear stress in x -
axis for different values of 0S

Fig.5.2.39(c) Average Shear stress in x -
axis for different values of 0S
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Fig.5.2.40(a) Secondary velocity profiles
for different values of 0S

Fig.5.2.40(b) Local Shear stress in z -
axis for different values of 0S

Fig.5.2.40(c)  Average Shear stress in z -
axis for different values of 0S
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Fig.5.2.41(a) Temperature profiles for
different values of 0S

Fig.5.2.41(b) Local Nusselt number for
different values of 0S

Fig.5.2.41(c) Average Nusselt number for
different values of 0S
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Fig.5.2.42(a) Concentration profiles for
different  values of 0S

Fig.5.2.42(b) Local Sherwood number for
different values of 0S

Fig.5.2.42(c)Average Sherwood number
for different values of 0S
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Chapter 6

Effects of ion-slip current on MHD free convection flow
with temperature stratified porous medium in a rotating
system

Stratification effects are an important aspect in heat and mass transfer analyses. Stratification

of fluid is a deposition/formation of layers and occurs   due   to temperature variations,

concentration differences of fluid. Convective heat transfer in thermal stratified ambient fluid

occurs in many industrial applications and is an important aspect in the study of heat transfer.

If stratification occurs, the fluid temperature is function of distance and convection in such

environment exists in  lakes, oceans, nuclear reactors where coolant (generally liquid metals),

thermal energy storage systems such as solar ponds and heat transfer from thermal sources

such as the condensers of power plants is present in magnetic field etc. The dynamics of flow

in a thermally stratified fluid is also important and arise in many contexts, ranging from

industrial settings to the oceanic and atmospheric environments. Thermal stratification

effects may arise when there is a continuous discharge of the thermal boundary layer into the

medium. For example, a heated vertical surface embedded in a porous bed which is of

limited extent in the direction of the plate. In such case, the thermal boundary layer

eventually heats the ceiling and at that point it falls horizontally into the medium since it

contains hotter fluid than the rest of the medium (hotter fluid is lighter than the colder fluid).

The long time effect of this discharge activity is the stratification in the medium. Gebhart et

al. (1988) has shown that stratification increases the local heat transfer coefficient and

decreases the velocity and buoyancy levels. Another considerable effect of the stratification

on the mean field is the formation of a region with the temperature deficit (i.e., a negative

dimensionless temperature) and flow reversal in the outer part of the boundary layer. This

phenomenon was first shown theoretically by Prandtl (1952) for an infinite wall and later by

Jaluria and Himasekhar (1983) for semi infinite wall. Based on boundary- layer theory, Lai

et al. (1990) has analyzed natural convection from a vertical flat plate immersed in a

thermally stratified porous medium. Angirasa  and Peterson (1997) discussed natural

convection heat transfer from an isothermal vertical surface to a fluid saturated thermally

stratified porous medium. Iranian et al. (2015) investigated an unsteady MHD natural

convective flow over vertical plate in thermally stratified media with variable viscosity and

thermal conductivity. Angirasa and Srinivasan (1989) have presented a numerical study of

the natural convection flow on a vertical surface due to the combined effect of buoyancy
forces caused by the heat and mass diffusion in a thermally stratified medium. Ihsan and

Basim (2013) studied natural convection heat transfer from a plane wall to thermally

stratified porous media. Swati et al. (2012) investigated the effects of thermal stratification on
flow and heat transfer past a porous vertical stretching surface. Singh and Sharma (1990)
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studied integral method to free convection in thermally stratified porous medium. Chamkha

(1997) investigated MHD free convection from a vertical plate embedded

in a thermally stratified porous medium with Hall effects. Natural convection boundary layer

flow of a double diffusive and rotating fluid past a vertical porous plate was investigated by

Rama et al. (2016).

Convection in porous medium has important applications in many areas including thermal

energy storage, flow through filtering devices, utilization of geothermal energy, oil

extraction, high performance insulation for buildings, paper industry etc. Hence combined

study may give some vital information which will surely be helpful in developing other

relevant areas. Permeable porous plates are used in the filtration processes and also for a

heated body to keep its temperature constant and to make the heat in solution of the surface

more effective. Viscous dissipation effects are important in geophysical flows and also in

certain industrial operations and are usually characterized by the Eckert number. Hall and

ion-slip currents are important and they have a effect on the magnitude and direction of the

current density and consequently on the magnetic force term. The problem of MHD free

convection flow with Hall and ion-slip currents has many important engineering applications,

e.g. in power generators, Hall accelerators and flows in channels and ducts. Jha and Apere

(2010) studied combined effect of Hall and ion-slip currents on unsteatdy MHD couette

flows in a rotating system. Atul et al. (2005) investigated Hydromagnetic free convection

and mass transfer flow with Joule heating, thermal diffusion, heat source and Hall current.

Nirmal et al.(2012) analyzed the effects of Hall current and ion-slip on unsteady MHD

couette flow. MHD Natural Convection Flow of  an incompressible electrically conducting

viscous fluid through porous medium from a vertical flat plate was studied by Prabhakara et

al. (2015).

The aim of the present work is to investigate the effects of thermal stratification, viscous

dissipation and Joule heating on MHD unsteady free convection flow past an infinite vertical

plate in porous medium in a rotating system with ion-slip current. The obtain nonlinear

coupled ordinary differential equations have been solved numerically using sixth order Rung-

Kutta method with shooting technique. The effects of different parameters on velocity and

temperature distribution are illustrated graphically. The numerical values of shear stress and

Nusselt number at the plate are discussed for various values of physical parameters and

presented in tabular form.

6.1 Governing Equations

Consider the natural convection boundary layer flow past an infinite vertical plate embedded

in a porous medium saturated with a stratified temperature. The plate is assumed to be

electrically non-conducting. Choose  the  coordinate  system  such  that x axis  is along  the

vertical  plate  and y axis  normal  to  the plate, while the origin of the reference system is

considered at the leading edge of the vertical plate. The plate is maintained at a uniform and

constant wall temperature wT . The ambient medium is assumed to be stratified with respect

to temperature in the form )()( 0, tSTtT t   where S is constant which is varied to alter
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the intensity of stratification in the medium, )(t is the time

dependent length schale. The value of wT is assumed to be

greater than the ambient temperature 0,  tT at any arbitrary

reference point in the medium (inside the boundary layer).

A uniform magnetic field of strength 0B is applied in the y-

direction normal to the plate surface. The fluid is assumed
to be Newtonian, electrically conducting fluid. The induced
magnetic field due to the motion of the electrically
conducting fluid is negligible. This assumption is valid for

small magnetic Reynolds number. The graphical model of the problem has been given along

with flow configuration and coordinate system which is shown in Fig .6.1. The governing

equations are as follows;
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Energy equation;
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where all physical quantities are defined in the Nomenclature.

Boundary conditions are as follows:

0at0)(0  yTTwtvvu w

  ytTTwu as)(00 (6.5)

)()( 0, tSTtT t   ,

  0)(   tT
dt

d
S is a stratification rate of the gradient of ambient temperature profiles.

6.2 Methematical Formulation

Now in   order  to  obtain  the  similarity  solutions of the problem,  a  similarity Sattar and

Alam (1994) parameter  is now introduced,  is time dependent length scale as;

)(t  (6.6)

In terms of this length scale, a convenient solution of the equation (6.1) is considered to be in

the following form:



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Fig. 6.1 Physical configuration and
coordinate system
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where 00 v is the suction parameter.

The following dimensionless variables are now introduced;
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Then introducing the relations (6.6)–(6.8) into the equations (6.2)–(6.4) and obtained the

following dimensionless ordinary coupled differential equations;
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The equations (6.9)-(6.11) are similar except for the term
dt

tdt )()( 



where time t appears

explicitly. Thus the similarity condition requires that
dt

tdt )()( 



in the equations (6.9)-(6.11)

must be a constant quantity. Hence following the works Sattar and Alam (1994), Sattar and

Hossain (1992), Hasimoto (1957) and Sattar et al. (2000) one can try a class of solutions of

the equations (6.9)-( 6.11) by assuming that

c
dt
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

)()( 

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(Constant) (6.12)

Now integrating (12) one obtains

ctt  2)(  (6.13)

where   the   constant of   integration   is   determined through the condition that 0)( t

when 0t . It thus appears from (6.1.13) that, by making a realistic choice of 2c in

(6.1.12) the length scale )(t becomes equal to tt  2)(  which exactly corresponds to

the usual scaling factor considered for various unsteady boundary layer flows. Since )(t is

a scaling factor as well as a similarity parameter, any other value of c in (6.12) would not

change the nature of the solution except that the scale would be different. Finally, introducing

(6.12) with in equations (6.9)-(6.11), obtain the following dimensionless ordinary differential

equations are as follows;
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where primes denote differentiation with respect to  .

The corresponding boundary conditions for t > 0 are obtained as:

Sgf  1,0,0  at 0

0,0,0  gf as  (6.17)

6.3 Solutions Technique

The equations (6.14)-(6.16) constitute a set of ordinary differential equations, the solutions of

which should unfold the characteristics of the problem under consideration. These equations

under the boundary conditions (6.17) are solved numerically by     using the Nachtsheim-

Swigert (1965) shooting iteration technique together with a sixth-order Runge-Kutta

integration scheme.

6.4 Shear Stress and Nusselt number

The parameters of engineering interest for the present problem are shear stress and Nusselt

number. The shear stress is generally known as the Skin friction, the following equations

represent the shear stress at the plate. Shear stress in x and z axes are as follows;
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6.5 Results and Discussion

The results of the numerical calculations are presented in the form of velocities  (primary and

secondary) and temperature distributions are shown graphically in Fig.6.2 to Fig. 6.23 for

different values of thermal Stratification parameter ( TS ), magnetic parameter( M ), Hall

parameter ( e ), ion-slip parameter( i ), Eckert number( cE ), rotational parameter ( R ),

permeability parameter ( ), suction parameter( 0v ), Prandtl number( rP ). The effects of

various parameters on shear stresses ( x and z ) and Nusselt number ( uN ) are shown in Table

1-Table 3. The discussion regarding the behavior of the parameters on the components of the

shear stress and Nusselt number are self evident from the Tables. The values of the Prandtl

number rP are taken equal to 0.71, 0.1 , 38.1 which corresponds physically to air, salt water,

ammonia. The values of Grashof number )0.10( rG is taken to be large positive value, since

these values represent cooling of the plate.

The effects of suction parameter 0v on the velocity field are shown in Fig.6.2. It is seen that

the velocity profiles decrease with the increase of suction parameter. This is fact that suction
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stabilizes the boundary layer growth. The secondary velocity has opposite behavior which is

shown in Fig.6.3. It can be noted from Fig.6.4 that by increasing the value of suction

parameter, the temperature distribution decreases in the fluid medium. As such thermal

conduction is depressed and this reduces the temperature in the boundary layer.

The variation of the primary and secondary velocities, temperature distribution for different

values of thermal stratification parameter ( TS ) is illustrated in Fig. 6.5 - Fig. 6.7. It is

observed from Fig.6.5 that the primary velocity decreases with increase in thermal stratified

parameter, which is due to the layering effect of thermal stratification as it acts like a

resistive force. The secondary velocity has opposite behavior which is shown in Fig. 6.6.

From Fig. 6.7, it is clear that   the temperature of the fluid decreases with the increase of

thermal stratification parameter ( TS ). This is because, when the thermal stratification is

taken into consideration, the effective temperature difference between the plate and the

ambient fluid will decrease, therefore the thermal boundary layer is thickened and the

temperature is reduced.

The variation of the velocity (primary and secondary) profiles with magnetic parameter ( M )

is shown in Figs. 6.8 and Fig. 6.9. It can be observed from Fig. 6.8 that   the   primary

velocity of the fluid is decreased with increase in the value of the magnetic parameter. This is

due to the fact that the introduction of a transverse magnetic field, normal to the flow

direction, has a tendency to create the drag known as the Lorentz force which tends to resist

the flow. It is found from Fig.6.9, secondary velocity has opposite effects with the increase of

magnetic parameter.

Fig.6.10 and Fig.6.11 depict the influence of Hall parameter ( e ) on the primary and

secondary velocity. It is evident from Figs.6.10 and Fig.6.11 that, primary and secondary

velocities increase throughout the boundary layer region. This implies that, Hall current tends

to accelerate primary and secondary velocities throughout the boundary layer region. This is

due to the fact that Hall current induces secondary flow in the flow field.
Fig.6.12 shows that a slight increase in the primary velocity with an increase of ion-slip

parameter ( i ). This is due to the fact that i increases, the effective conductivity decreases,

which in turn decrease the damping, force on velocity and hence primary velocity increases.

The secondary velocity decreases with the increase of ion-slip parameter which is shown in

Fig. 6.13. From this figure it is clear that ion-slip parameter i retards the flow which leads

to reduction in boundary layer thickness.

Fig. 6.14 to Fig.6.16, show the influence of the Eckert number ( cE ) on the primary velocity,

secondary velocity and temperature distributions. It is clearly seen that the effect of Eckert

number is to increase both the primary velocity and the temperature distributions in the flow
region. This is due to the fact that the heat energy is stored in liquid due to the frictional

heating. The secondary velocity has reverse effect which is shown in Fig. 6.15.

From Fig.6.17 and Fig.6.18 illustrated that primary and secondary velocities decrease with an

increase the rotation parameter ( R ). In fact rotation parameter defines the relative magnitude

of the Coriolis force and the viscous force, thus rotation retards primary and secondary

velocities throughout the boundary layer region.
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It is evident from Fig.6.19 that primary velocity decreases with an increases of permeability

parameter (  ). This is due to the fact that increasing the value of permeability parameter has

tendency to resist the flow causing to reduce the thickness of the boundary layer It is seen

from Fig.6.20 that the secondary velocity has opposite behavior with an increase of (  ).

Fig. 6.21 illustrates the velocity component for different values of the Prandtl number( rP ).

The primary velocity decreases with an increase of rP . It is possible because fluids with high

Prandtl number have high viscosity and hence move slowly. It is observed from Fig.6.22 that

the secondary velocity has reverse effect with an increase of rP . Fig. 6.23 represents the

graph of temperature distribution for different values of Prandtl number ( rP ). It is seen that

the effect of increasing Prandtl number is to decrease temperature throughout the boundary

layer which results in decrease in the thermal boundary layer thickness. The increase of

Prandtl number means slow rate of thermal-diffusion.

Finally, the effects of various parameters on the components of the shear stresses ( zx  , )

and the Nusselt number ( uN ) are shown in Table 8.1-Table 8.3. Table 8.1 shows that the

shear stress components x decreases and z increases with the increase of rP , TS , 0v and  .

From this Table, it is observed that the Nusselt number increases with the increasing values

of rP , TS , 0v and  .

From Table 8.2, it is seen that shear stress x increases with the increase of e while

decreases with the increasing values of R and M . Also the component of shear stress

z increases with the increasing values of e and M whereas decreases with the increase of

R . The Nusselt number uN increases with the increase R and M while decreases with the

increase of e .

It is observed from Table 8.3 that stress components x increases and z decreases with the

increase of i and cE . The Nusselt number uN increases with the increase i while

decreases with the increase of cE .
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Fig.6.2 Primary velocity profiles for
different values of suction parameter 0v

Fig.6.3 Secondary velocity profiles for
different values of suction parameter 0v

Fig.6.4 Temperature profiles for different
values of suction parameter 0v
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Fig.6.6 Secondary velocity profiles for
different values of stratification parameter

TS

Fig.6.7 Temperature profiles for different
values of stratification parameter TS
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Fig.6.10 Primary velocity profiles for
different values of Hall parameter e
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Fig.6.11 Secondary velocity profiles for
different values of Hall parameter e

Fig.6.12 Primary velocity profiles for
different values of ion-slip parameter i

Fig.6.13 Secondary velocity profiles for
different values of ion-slip parameter i
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Fig.6.14 Primary velocity profiles for
different values of Eckert number cE

Fig.6.15 Secondary velocity profiles for
different values of Eckert number cE

Fig.6.16 Temperature profiles for
different values of Eckert number cE
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Fig.6.19 Primary velocity profiles for
different values of permeability param. 
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Fig.6.20 Secondary velocity profiles for
different values of permeability parameter
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Fig.6.21 Primary velocity profiles for
different values of Prandtl number rP

Fig.6.22 Secondary velocity profiles for
different values of Prandtl number rP
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different values of Prandtl number rP
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Table 6.1

Numerical values of x , z and uN for ,1.0,9.0,2.0,2.0,0.10  cier EMG 
.6.0R

rG rP TS 0v 
x z uN

+ve

0.71 0.01 0.5 0.5 3.6241715528 -0.1422943632 1.0683140011
1.0 0.01 0.5 0.5 3.1433280098 -0.1059426549 1.363353855
1.38 0.01 0.5 0.5 2.7557638641 -0.0813034334 1.696834592
0.71 0.025 0.5 0.5 3.5130933222 -0.1352936363 1.084002649
0.71 0.035 0.5 0.5 3.4392349293 -0.1306401579 1.094240637
0.71 0.01 0.3 0.5 3.6893866697 -0.1509664447 0.959687995
0.71 0.01 0.7 0.5 3.5541664941 -0.1335974968 1.179276909
0.71 0.01 0.5 0.3 3.6949869259 -0.1509443392 1.061592986
0.71 0.01 0.5 0.7 3.5576089923 -0.1344422180 1.074446263

Table 6.2
Numerical values of x , z and uN for ,01.0,71.0,1.0,2.0,0.10  Trcir SPEG 

.5.0,5.00  v

rG e R M x z uN

+ve

0.2 0.6 0.9 3.6241715528 -0.1422943632 1.0683140011
0.5 0.6 0.9 3.6795556117 -0.0989259648 1.0663329579
0.8 0.6 0.9 3.7326084715 -0.0841608228 1.0642041682
0.2 0.3 0.9 3.6323547976 -0.0453463800 1.0678734897
0.2 0.9 0.9 3.6077364616 -0.2375275581 1.0691981567
0.2 0.6 0.2 3.8422364729 -0.2203550015 1.0583195026
0.2 0.6 0.5 3.7446171929 -0.1836265251 1.0627714935

Table 6.3
Numerical values of x , z and uN for ,01.0,71.0,6.0,2.0,0.10  Trer SPRG 

.5.0,9.0,5.00  Mv

rG i cE x z uN

+ve

0.2 0.1 3.6241715528 -0.1422943632 1.068314001
0.6 0.1 3.6397621835 -0.1514025690 1.068508835
0.9 0.1 3.6504223692 -0.1573372206 1.068563060
0.2 0.2 3.7247945542 -0.1489930874 0.919735419
0.2 0.3 3.8468561780 -0.1571686104 0.744060366
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Chapter 7

Effects of stratification on MHD free convection flow past
a vertical plate in a porous medium with Hall and ion-slip
currents in a rotating system

Combined heat and mass transfer in fluid-saturated porous media finds applications in a

variety of engineering processes such as heat exchanger devices, petroleum eservoirs,

chemical catalytic reactors and processes, geothermal and geophysical engineering, moisture

migration in a   fibrous insulation and nuclear waste disposal and others. Bejan   and   Khair

(1985) investigated   the   free convection boundary layer flow in a porous medium  owing

to   combined   heat   and   mass   transfer. The exhaustive volume of work devoted to this

area is documented by the most recent books by Ingham and Pop (1998), Nield and Bejan

(1999), Vafai (2000), Pop and Ingham (2001), Bejan and Kraus (2003), Ingham et al. (2004),

and Bejan et al. (2004). However, many problems which are important in applications, as

well as in theory.

Many convection processes occur in environments with stratification. Stratification of fluid

arises due to temperature variations, concentration differences, or the presence of different

fluids. In practical situations where the heat and mass transfer mechanisms run parallel, it is

interesting to analyze the effect of double stratification (stratification of medium with respect

to thermal and concentration fields) on the convective transport in power-law fluid.

Stratification of the medium may arise due to a temperature variation, which gives rise to a

density variation in the medium. This is known as thermal stratification and usually arises

due to thermal energy input into the medium from heated bodies and thermal sources.

Thermally stratified flows are  also  of  great  interest  in various buoyant flow  systems

including  geothermal  systems,  geological  transport,  power plant condensation systems,

lake thermohydraulics, and volcanic flows and also in industrial thermal treatment processes.

Thermal stratification occurs in cooling ponds, lakes, solar ponds and in the atmosphere.

Another situation of interest is the one in which stratification arises due to concentration

differences. This is relevant in many natural processes such as transport processes in the sea

where stratification exists due to salinity variation. The analysis  of  free  convection  in  a

doubly  stratified  medium (stratification of medium with respect to thermal and

concentration fields) is a fundamentally interesting and important problem because of its
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broad range of engineering applications. These applications include heat rejection into the

environment such as lakes, rivers and seas, thermal energy storage systems such as solar

ponds and heat transfer from thermal sources. Also, the analysis of thermal stratification is

important for solar engineers because higher energy efficiency can be achieved with a better

stratification. It has been shown by scientists that thermal stratification in energy store may

considerably increase system performance. Due to the immense importance of stratification,

authors have analyzed the influence of thermal stratification on the rate of heat and mass

transfer. Ganesan et al. (2014) analyzed doubly stratified effects in a free  convective  flow

over a vertical plate with heat and mass transfer. Tak and Arti (2007) studied the influence of

double stratification on MHD free convection with Soret and Dufour effects in a Darcian

porous media. Murty et al. (2004) studied the effect of double stratification on free

convection in a Darcian porous medium. Ali (1996) investigated MHD free convection from

a vertical plate embedded in a thermally stratified porous medium. Kaladhar et al. (2016)

investigated an analytical study for Soret, Hall, and Joule heating effects on natural

convection flow saturated porous medium in a vertical channel. The effects of Soret and

Dufour on an unsteady MHD free convection flow past a vertical porous plate in the presence

of suction or injection was investigated by Sarada and Shanker (2013). Lakshmi and Murthy

(2008) discussed Soret and Dufour effects on free convection heat and mass transfer from

horizontal flat plate in a Darcy porous medium.

In recent years, considerable interest has been given to the theory of rotating fluids due to its
application in cosmic and geophysical sciences. In an ionized gas where the density is low

and/or the magnetic field is very strong, the effects of Hall and ion-slip currents play a

significant role in the velocity distribution of the flow. The study of magnetohydrodynamic
flows  with  Hall  and  ion-slip  currents  has  important  engineering  applications  in  the

problem  of magnetohydrodynamic generators and of Hall accelerators as well as flight
magnetohydrodynamics. Ram and Takhar (1993) dealt with MHD free convection from an

impulsively moving infinite vertical plate in a rotating fluid with Hall and ion-slip currents.

An investigation of the effect of Hall current and rotational parameter on dissipative fluid

flow past a vertical semi-infinite plate was studied by Abuga et al. (2011). Naroua (2007)

studied a computational solution of hydromagnetic free convective flow past a vertical plate
in a rotating heat-generating fluid with Hall and ion-slip currents.

The heat and mass transfer simultaneously affecting each other that will cause cross-diffusion

effect. These effects are very significant when the temperature and concentration gradient are
very high. Thus Soret effect is referred to species differentiation developing in an initial

homogenous mixture submitted to a thermal gradient and the Dufour  effect   referred   to

the  heat   flux   produced by concentration gradient. Nazmul and Alam (2007) investigated

Dufour and Soret effects on steady MHD free convection and mass transfer fluid flow

through a porous medium in a rotating system. Soret and Dufour effects on steady MHD free
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convection flow past a semi-infinite moving vertical plate in a porous medium with viscous

dissipation were investigated by Gnaneswara and Bhaskar (2010). Dufour and Soret effects

on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a

porous medium were analyzed by Alam et al. (2006). RajaShekar (2014) analyzed the effects

of Dufour and Soret on unsteady MHD heat and mass transfer flow past a semi-infinite

moving vertical plate in a porous medium with viscous dissipation. Sreedhar et al.(2013)

studied numerical study of MHD free convection heat and mass transfer from vertical

surfaces in porous media considering Soret and Dufour effects.

The aim of the present work is to investigate the effects of stratification on MHD free

convection and mass transfer flow along a vertical plate in porous media saturated with

viscous dissipation and Joule heating effects, Soret and Dufour effects, Hall and ion-slip

currents in a rotating system. The obtained nonlinear coupled ordinary equations have been

solved numerically using Nachtsheim-Swigert shooting iteration technique together with

sixth order Rung-Kutta iteration scheme. The effects of different parameters on velocity,

temperature and concentration are presented graphically. The numerical values of shear

stress, Nusselt number and Sherwood number are discussed for various values of physical

parameters and presented in tabular form.

7.1 Governing Equations

The system deals with a steady, laminar, incompressible, two-dimensional free convective

heat and mass transfer flow along a semi-infinite vertical plate in porous media embedded in a

doubly     stratified, electrically conducting fluid. The viscous dissipation and Joule heating

terms have been retained in the energy equation. A uniform magnetic field of magnitude 0B is

applied normal to the plate. The magnetic Reynolds number is

assumed to be small so that the induced magnetic field can be

neglected in comparison with the applied magnetic field. The

x -coordinate is taken along the plate and y -coordinate is

measured normal to the plate, while the origin of the reference

system is considered at the leading edge of the vertical plate.

The plate is maintained at uniform wall temperature and

concentration wT and wC respectively. The values of wT and

wC are assumed to be greater than the ambient temperature

0,  xT and 0,  xC at any arbitrary reference point in the medium (inside the boundary layer).

At time 0t , the plate is given an impulsive motion in its own plane with a uniform velocity

0U . The ambient medium is assumed to be vertically linearly stratified with respect to both

temperature and concentration in the form xSTxT x 10,)(   and xSCxC x 20,)(  

where 1S and 2S are constants which are varied to alter intensity of stratification in the

medium and 0,  xT and 0,  xC are ambient temperature and concentration respectively.

Fig.7.1 Physical configuration
and coordinate system
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Furthermore, only positive values of  )(1 xT
dx

d
S  and  )(2 xC

dx

d
S  are considered

which imply a stable stratified ambient environment. The values of wT and wC are assumed to

be greater than the ambient temperature 0,  xT and concentration 0,  xC at any arbitrary point

in the medium (inside the boundary layer). The physical model and coordinate system which

is shown in Fig.7.1. By employing boundary layer flow assumptions and the Boussinesq

approximation, the governing equations are as follows;

The continuity equation;
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Momentum equation;
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Energy equation;
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Concentration equation;
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where all physical quantities are defined in the Nomenclature.

Boundary conditions are as follows;
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 yastxCCxTTwu

yattCCTTwxvvUu WWw
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(7.6)

where wv is the uniform blowing/suction at the plate, the subscripts w , )0,(  x and 

indicate the conditions at the wall, at some reference point in the medium and at the outer

edge of the boundary layer respectively.

7.2 Mathematical Formulation

The continuity equation (7.1) is satisfied by introducing the stream function  such that

y
u
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
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

Introducing the following non dimensional variables:
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Substituting equations (7.7) and in (7.2)-(7.5), then obtained the following equations are as

follows:
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The transformed boundary conditions are as follows;
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where
0

2
)(

U

x
xvf ww  is the suction parameter and primes denote differentiation with

respect to similarity variable  . Here 0wf denotes the suction and 0wf the injection.

7.3 Solution Technique
The set of non-linear and similar ordinary differential equations (7.8)–(7.11) with boundary

conditions (7.12) have been solved numerically by sixth order Runge–Kutta method along

with Nachtsheim–Swigert shooting  iteration  technique with prescribed parameters.
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7.4 Shear Stress, Nusselt number and Sherwood number

The equation defining shear stress in x and z -axes are as follows;
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The Sherwood number denoted by hS is proportional to
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7.5 Results and Discussion

The governing boundary layer equations (7.8)-(7.11) with boundary conditions (7.12) are

coupled non-linear partial differential equations, which possess no similarity or closed form

solution. Therefore, for numerical solution of the problem, the sixth-order Runge-Kutta

method is needed. Numerical results which illustrate the effects of all involved physical

parameters of the present problem. The values of rP is taken to be 71.0rP which

corresponds to air at 200C, 0.1rP correspond to salt water at 200C, 38.1rP corresponds

to ammonia, 6.0cS corresponds to water vapor, 78.0cS corresponds to ammonia,

0.1cS corresponds to carbondioxide. For free convection and cooling plate positive large

values of 0.10rG and 0.5mG are chosen. The values of Dufour number and Soret

number are chosen in such a way that their product is constant provided that the mean

temperature mT is kept constant. However, the values of other physical parameters on the

flow are chosen arbitrarily. The numerical results for the velocity, temperature and

concentration distributions are displayed in Figs. 7.2-7.51.

From Fig.7.2, an increase in Hall parameter ( e ) leads to an increase in the primary velocity

profiles.   When   the   Hall   parameter   is   increased   the   induced   current   along x-axis

increases   and   this translates to an increase in the primary velocity profiles. The secondary

velocity has the same effect which is shown in Fig.7.3.

Fig.7.4 demonstrates the dimensionless primary velocity for different values of inertial

parameter ( ). It is clear that the primary velocity of the fluid decreases with the increase of

 . Since  represents the initial drag, thus an increases  increases the resistance to the

flow and so decrease in the primary velocity. The secondary velocity increases with the

increase of  is seen in Fig.7.5.

Figs.7.6-7.9  display  the  non-dimensional velocity  components (primary and secondary),

temperature  and  concentration  for different values of Dufour number( fD ). It is observed

from Fig.7.6  that the primary velocity of the fluid increases with the increase of fD while

the secondary velocity has opposite behavior is seen in Fig.7.7. The dimensionless
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temperature increases for different values of Dufour number is shown in Fig.7.8.  The

Dufour  number  signifies  the  contribution  of  the  concentration  gradients  to the  thermal

energy flux in  the  flow.  It  is  found  that  an  increase  in  the  Dufour  number  causes a
rise in the temperature throughout the boundary  layer  i.e.,  the  raise  of  Dufour  number

encourages  heat  transfer. In Fig.7.9, it is seen that the concentration distribution decreases

with the increase of Dufour number. The Dufour effects reduce the concentration boundary

layer in the fluid.

In Figs.7.10-7.13, the influence of Eckert number ( cE ) on the dimensionless velocity

(primary and secondary), temperature, concentration are presented. In Fig.7.10, an increase

in Eckert number results to an increase in the primary velocity profiles. An increase in Eckert

number means an increase in kinetic energy of the fluid particles and for this reason primary

velocity increases. Whereas the secondary velocity has reverse effect is found in Fig.7.11.

From Fig. 7.12, increase in Eckert number leads to an increase in the temperature profiles.

Increasing the Eckert number causes the fluid to become warmer and therefore increase its

temperature. In Fig.7.13, concentration profiles decreases with the increase of Eckert

number.

Fig.7.14 illustrates the influence of porosity on the primary velocity. Increasing porosity

clearly serves to enhance the flow velocity i.e. accelerates the flow. The secondary velocity

decreases with increasing values of porosity parameter is shown in Fig.7.15. From Fig.7.16 it

is observed that temperature distribution decreases with increasing   porosity   parameter. A

reduction in   the   volume of   solid   particles   in the medium implies a lower contribution

via thermal conduction. This will serve to decrease temperature. In fig.7.17 a similar

response for the concentration field is observed, as with the temperature distributions.

The numerical results for the velocity (primary and secondary), temperature and

concentration distributions are displayed in Figs.7.18-7.21. The effects of suction parameter

wf on the velocity field are shown in Fig.7.18.   It  is  seen  from  this  figure  that  the

velocity  profiles decrease with the increase of suction parameter indicating the usual fact that
suction stabilizes the boundary layer growth. The secondary velocity has reverse effects with

increasing values of suction parameter is shown in Fig.7.19. The effect of suction parameter

on the temperature and concentration field is displayed in Fig.7.20 and Fig.7.21 respectively.
Both the temperature and concentration decreases with the increase of suction parameter.

Sucking decelerated fluid particles through the porous wall reduce the growth of the fluid

boundary layer as well as thermal and concentration boundary layers.

Figs.7.22-7.25 display results of velocity (primary and secondary), temperature and

concentration distributions for   various values of porous permeability parameter  .  It is

observed from Fig.7.22 that the    velocity distribution decreases with increasing the porous

permeability parameter because the presence of porous medium increases the resistance to

the flow which causes the fluid velocity to decrease. The secondary velocity increases with
increasing values of permeability parameter is shown in Fig.7.23. Fig.7.24 depicts the

variations of temperature distributions for various values of porous permeability. It is found

that increase in the value of  increases the temperature because of increase in the thermal
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boundary layer thickness due to the resistance offered to the fluid motion in the form of

Darcy drag produced by the porous medium. It is seen from Fig.7.25 that the concentration

distribution increases with increasing the value of porous permeability parameter due to

increase in the concentration boundary layer thickness.

Fig.7.26 and Fig7.27 illustrated the primary velocity decrease and the secondary velocity

increases with increasing values of magnetic parameter ( M ). An increase in the magnetic

parameter   leads to a decrease in the primary velocity and an increase in the secondary

velocity profiles. Due the Lorentz force, there is a resistive force along the x -axis and this

reduces the primary velocity but the secondary velocity profile increases since it is in the

direction of the induced force.  It is noticed from Fig.7.28 and Fig.7.29 that the temperature

and concentration increases with   increasing values of magnetic parameter. This is due to the

fact that the transverse magnetic field gives rise to a resistive force known as the Lorentz

force of an electrically conducting fluid. This force makes the fluid experience a resistance

by increasing the friction between its layers and thus increases its temperature and

concentration.

Fig.7.30 illustrates that the primary velocity ( f  ) decreases with an increase in Prandtl

number rP . Physically, this is true because the increase in the Prandtl number is due to

increase in the viscosity of the fluid which makes the fluid thick and hence causes a decrease

in the velocity of the fluid. From Fig.7.31, it is observed that the secondary velocity has

opposite behavior with increasing values of rP . It is observed from Fig.7.32 that  temperature

of  the  fluid  decreases  with  increasing the  value  of rP . The reason underlying such a

behavior is that rP signifies the relative effects of viscosity to thermal conductivity and

smaller values of rP posses high thermal conductivity and therefore heat is able to diffuse

away from the surface faster than at higher values of rP . This results in the reduction of

thermal boundary layer thickness. Fig.7.33 depicts the variation in the concentration

distributions for different values of rP . The concentration increases with increasing values of

rP .

It is seen from Fig.7.34 that there is a negligible effect of rotation parameter on the primary

velocity. Fig.7.35 displays the influence of rotation parameter on the secondary velocity. The

secondary velocity has decreasing effect with the increasing values of rotation parameter.

This is due to the reason that Coriolis force is dominant in the region near to the axis of

rotation.

Figs.7.36,7.39 are presented the primary velocity and concentration for various values of

Schmidt number ( cS ). It is seen that the primary velocity and concentration decreases with

increasing cS due to a decrease in the molecular diffusivity, which results in a decrease in the

velocity and concentration boundary layer thickness. From Figs.7.37, it is seen that the

secondary velocity increases with increasing values of cS . Also the temperature distribution

increases with increasing values of cS in Fig.7.38. As Schmidt number increases the thermal
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boundary layer thickness decreases due to a decrease in chemical species molecular

diffusivity.

Figs.7.40,7.43 depict the primary velocity and concentration profiles for different values of

the Soret number ( 0S ). The Soret number defines the effect of the temperature gradients

inducing significant mass diffusion effects. It is noticed that an increase in the Soret number

results in an increase in the velocity and concentration within the boundary layer. The

secondary velocity decreases with increasing values of Soret number is shown in Fig.7.41.

Fig.7.42 depicts the behavior of 0S on temperature distribution. It is observed that as 0S

increases, there is a decrease in the temperature of the fluid.

The effect of thermal stratification parameter ( TS ) on non-dimensional velocity (primary and

secondary), temperature, concentration is shown in Figs.7.44-7.47. It is observed from

Fig.7.44 that the primary velocity decreases with the increase of thermal stratification( TS ).

Increase in thermal stratification parameter reduces the effective convective potential

between the heated plate and the ambient fluid in the medium. This factor causes a decrease

in the buoyancy force, which decelerates the velocity of the flow. It is seen from Fig.7.45,
that there is an increasing effect of the secondary velocity profiles with increasing values of

TS . Influence of thermal stratification parameter TS on the temperature and concentration

distributions is shown in Fig.7.46 and Fig.4.47. Here the temperature and thermal boundary

layer thickness is decreased while concentration and its related boundary layer thickness is

increased when increase in thermal stratification parameter. When the thermal stratification

effect is taken into account, the effective temperature difference between the surface and the

ambient fluid is decreased while opposite behavior is observed for concentration profile.

In Figs. 7.48-7.51 the influence of mass stratification parameter *
TS on the dimensionless

velocity(primary and secondary), temperature and concentration are presented. From Fig.

7.48, it is observed that the primary velocity of the fluid decreases with the increase of mass

stratification parameter.  Increase in mass stratification parameter lessens the concentration

gradient between the ambient and the surface. This declines the buoyancy force, which

reduces the velocity of the flow. Influence of mass stratification parameter *
TS on the

temperature and concentration distributions are shown in Fig 7.50 and Fig.7.51. The

temperature profile is enhanced while the concentration profile is reduced with an increase in

mass stratification parameter.

Finally, the effects of various  parameters on the components of the shear stress zx  , , the

Nusselt number uN and Sherwood number hS are shown in Table 7.1-Table 7.4. From Table

7.1, it is observed that the components of shear stress x increases with increasing values of

e while decreases with the increasing values of R and  . Also the components z

increases with increasing values of e and  whereas it decreases with increasing value of

R .
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Table 7.2 shows the components of the shear stress x increases and z decreases with the

increase of fD , cE , 0S and  . The Table also shows the Nusselt number increase with

increase of  and 0S while decreases with the increase of fD and cE . Again from this

Table, it is observed that the Sherwood number hS increases with the increasing values of

fD , cE , and decreases with the increasing values of 0S .

From Table 7.3, it is observed that the components of the shear stress x decreases and z

increases with the increase of wf , M , rP and  . The Table also shows that the Nusselt

number increases with increase of wf and rP while decreases with the increase of M and  .

Again from this Table, it is observed that the Sherwood number hS increases with the

increasing values of wf whereas decreases with the increasing values of M , rP and  .

From Table 7.4, it is observed that the components of the shear stress x decreases and z

increases with the increase of cS , TS and *
TS . The Table also shows that the Nusselt number

increases with increase of TS while decreases with the increase of cS and *
TS . Again from

this Table, it is observed that the Sherwood number hS increases with the increasing values

of cS and *
TS whereas decreases with the increasing values of TS .
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Fig. 7.20 Temperature distribution for
different values of suction parameter wf

Fig. 7.21 Concentration distribution for
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different values of permeability parameter


0 1 2 3 4

-0.03

-0.02

-0.01

0

0 1 2 3 4
0

0.2

0.4

0.6

0 1 2 3
0

0.2

0.4

0.6
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Fig. 7.26 Primary velocity profiles for
different values of magnetic parameter M

Fig. 7.27 Secondary velocity profiles for
different values of magnetic parameter M

Fig. 7.28 Temperature distribution for
different values of magnetic parameter M
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Fig. 7.29 Concentration distribution for
different values of magnetic parameter M

Fig. 7.30 Primary velocity profiles for
different values of Prandtl number rP

Fig. 7.31 Secondary velocity profiles for
different values of Prandtl number rP
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Fig. 7.32 Temperature distribution for
different values of Prandtl number rP

Fig. 7.33Concentration distribution for
different values of Prandtl number rP

Fig. 7.34 Primary velocity profiles for
different values of rotation parameter R
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Fig. 7.35 Secondary velocity profiles for
different values of rotation parameter R

Fig. 7.36 Primary velocity profiles for
different values of Schmidt number cS

Fig. 7.37 Secondary velocity profiles for
different values of Schmidt number cS

5.0

5.0,2.0,6.0

,6.0,71.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

r

wrm

cf

ie

S

SSS

RP

fGG

ED







9.0,5.0,1.0M

5.0

5.0,2.0,6.0

,6.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

wrm

cf

ie

S

SSS

RM

fGG

ED







38.1,0.1,71.0rP

5.0

5.0,2.0,6.0

,6.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

wrm

cf

ie

S

SSS

RM

fGG

ED







  

gf 

5.0

5.0,2.0,6.0

,6.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

wrm

cf

ie

S

SSS

RM

fGG

ED







5.0

5.0,2.0,6.0

,6.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

wrm

cf

ie

S

SSS

RM

fGG

ED







 



5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

Tc

r

wrm

cf

ie

S

SSS

PM

fGG

ED







7.0,6.0,5.0R



0.1,78.0,6.0cS

5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

T

r

wrm

cf

ie

S

SSR

PM

fGG

ED









f 

5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

T

r

wrm

cf

ie

S

SSR

PM

fGG

ED







0.1,78.0,6.0cS

g

g



5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0










T

Tc

r

wrm

cf

ie

S

SSS

PM

fGG

ED






7.0,6.0,5.0R

38.1,0.1,71.0rP

38.1,0.1,71.0rP 38.1,0.1,71.0rP



165

0 1 2 3
0

0.2

0.4

0.6

0 1 2 3
0

0.2

0.4

0.6

0 1 2 3 4

0.2

0.4

0.6

0.8

1

Fig. 7.38 Temperature distribution for
different values of Schmidt number cS

Fig. 7.39 Concentration distribution for
different values of Schmidt number cS

Fig. 7.40 Primary velocity profiles for
different values of Soret  number 0S

0 1 2 3 4

-0.03

-0.02

-0.01

0

0 1 2 3
0

0.2

0.4

0.6

0 1 2 3 4
0

0.2

0.4

0.6

Fig. 7.41 Secondary velocity profiles for
different values of Soret  number 0S

Fig. 7.42 Temperature distribution for
different values of Soret  number 0S

Fig. 7.43 Concentration distribution for
different values of Soret  number 0S

0 1 2 3

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3
-0.04

-0.03

-0.02

-0.01

0

0 1 2 3
0

0.2

0.4

0.6

0.8

Fig. 7.44 Primary velocity profiles for
different values of thermal stratified
parameter TS

Fig. 7.45 Secondary velocity profiles for
different values of thermal stratified
parameter TS

Fig. 7.46 Temperature distribution for
different values of thermal stratified
parameter TS

0.1,78.0,6.0cS

5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

T

r

wrm

cf

ie

S

SSR

PM

fGG

ED







0.1,78.0,6.0cS

5.0

5.0,2.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

T

r

wrm

cf

ie

S

SSR

PM

fGG

ED










5.0

5.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

* 











T

Tc

r

wrm

cf

ie

S

SSR

PM

fGG

ED







8.0,5.0,2.00 S

5.0

5.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

* 











T

Tc

r

wrm

cf

ie

S

SSR

PM

fGG

ED







8.0,5.0,2.00 S

5.0

5.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

* 











T

Tc

r

wrm

cf

ie

S

SSR

PM

fGG

ED







8.0,5.0,2.00 S





5.0

5.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

* 











T

Tc

r

wrm

cf

ie

S

SSR

PM

fGG

ED







8.0,5.0,2.00 S



5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED







5.0,3.0,1.0TS

5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED







5.0,3.0,1.0TS



g

5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED













f 



g 



f 





5.0,3.0,1.0TS



166

0 1 2 3
0

0.2

0.4

0.6

0 1 2 3

0.2

0.4

0.6

0.8

1

0 1 2 3 4

-0.03

-0.02

-0.01

0

Fig. 7.47 Concentration distribution for
different values of thermal stratified
parameter TS

Fig. 7.48 Primary velocity profiles for
different values of mass stratified

parameter *
TS

Fig. 7.49 Secondary velocity profiles for
different values of mass stratified

parameter *
TS

0 1 2 3
0

0.2

0.4

0.6

0 1 2 30

0.2

0.4

0.6

0.8

Fig. 7.50 Temperature distribution for
different values of mass stratified

parameter *
TS

Fig. 7.51 Concentration distribution for
different values of mass stratified

parameter *
TS

5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

*

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED







5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED









g
f 



5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED







5.0,3.0,1.0* TS

5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED











5.0

2.0,6.0,6.0

,71.0,9.0,5.0

,0.1,0.10,0.5

,6.0,1.0,5.0

,5.0,2.0,3.0

0













T

c

r

wrm

cf

ie

S

SSR

PM

fGG

ED















5.0,3.0,1.0TS

5.0,3.0,1.0* TS

5.0,3.0,1.0* TS

5.0,3.0,1.0* TS



167

Table 7.1

Numerical values of x and z for 6.0,9.0,5.0,6.0,0.5,0.10  MSSGG Tcmr

.1.0,2.0,2.0,5.0,0.1,5.0,71.0,5.0 0
*  ciwTrf ESfSPD 

mr GG & R e  x z

+ve

0.5 0.3 0.5 0.8540158 -0.1176121
0.6 0.3 0.5 0.8523298 -0.1642355
0.7 0.3 0.5 0.8500862 -0.2108412
0.6 0.6 0.5 0.9043732 -0.0966837
0.6 0.9 0.5 0.9553969 -0.0742697
0.6 0.3 1.0 0.7077584 -0.1624380
0.6 0.3 1.5 0.5720807 -0.1607554

Table 7.2

Numerical values of x , z , uN and hS for ,5.0,5.0,6.0,0.5,0.10  Tcmr SSGG

5.0,0.1,9.0,2.0,3.0,6.0,5.0,71.0 *   wieTr fMRSP

mr GG & fD cE 0S 
x z uN hS

+ve

0.5 0.1 0.2 0.6 0.8523298 -0.1642355 0.8194647 0.9376818
1.0 0.1 0.2 0.6 1.1329476 -0.1764397 0.5359260 1.0094275
1.5 0.1 0.2 0.6 1.4283914 -0.1878266 0.2024831 1.0834770
0.5 0.4 0.2 0.6 1.0973506 -0.1737405 0.5660066 0.9975611
0.5 0.7 0.2 0.6 1.4126295 -0.1856003 0.2283047 1.0742673
0.5 0.1 0.5 0.6 0.8961587 -0.1680962 0.8733375 0.8115556
0.5 0.1 0.8 0.6 0.9421728 -0.1715598 0.9334194 0.6648544
0.5 0.1 0.2 0.7 1.2930466 -0.2001934 0.8392247 0.9749975
0.5 0.1 0.2 0.8 1.6603251 -0.2349740 0.8521140 1.0058803

Table 7.3

Numerical values of x , z uN and hS for ,5.0,5.0,6.0,0.5,0.10  Tcmr SSGG

2.0,1.0,6.0,5.0,2.0,3.0,6.0,5.0 0
*  SEDRS cfieT 

mr GG & wf M rP 
x z uN hS

+ve

1.0 0.9 0.71 0.5 0.8523298 -0.1642355 0.8194647 0.9376818
0.5 0.9 0.71 0.5 1.2784448 -0.1747568 0.7136184 0.8460865
0.75 0.9 0.71 0.5 1.0877677 -0.1707482 0.7657946 0.8907201
1.0 0.1 0.71 0.5 1.0724093 -0.2949641 0.8654834 0.9464273
1.0 0.5 0.71 0.5 0.9615540 -0.2264331 0.8420795 0.9420856
1.0 0.9 1.0 0.5 0.6092746 -0.1531513 1.0695553 0.8729027
1.0 0.9 1.38 0.5 0.1255028 -0.1378504 1.9933580 0.7135160
1.0 0.9 0.71 1.0 0.6868804 -0.1533763 0.8135879 0.9266327
1.0 0.9 0.71 1.5 0.5301094 -0.1439224 0.8073987 0.9163717
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Table 7.4

Numerical values of x , z uN and hS for ,5.0,71.0,1.0,0.5,0.10  rcmr PEGG

,6.0,5.0,2.0,0.1,3.0,6.0,2.0,9.0,5.0 0   fiwe DfRSM

mr GG & cS TS *
TS x z uN hS

+ve

0.60 0.5 0.5 0.8523298 -0.1642355 0.8194647 0.9376818
0.78 0.5 0.5 0.7855988 -0.1594663 0.7269293 1.1659213
1.00 0.5 0.5 0.7195395 -0.1553044 0.6207048 1.4421991
0.60 0.1 0.5 1.6270881 -0.1855449 0.7702318 1.0172652
0.60 0.3 0.5 1.2332185 -0.1748621 0.8042110 0.9763110
0.60 0.5 0.1 1.2514272 -0.1790109 0.8782022 0.9188355
0.60 0.5 0.3 1.0505220 -0.1717407 0.8476198 0.9330703
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Chapter 8

Effect of Hall and ion-slip currents on MHD boundary
layer flow past along a vertical plate in porous medium
with power-law variation wall temperature in a rotating
system

The magnetohydrodynamic (MHD) flow has attracted a great interest to many researchers

during the last several decades owing to the effect of magnetic field on the boundary layer

flow control and applications in many engineering and physical aspects such as MHD

generators, plasma studies, nuclear reactors, geothermal energy extractions, purification of

molten metals from non-metalic inclusion, geothermal energy extractions etc. A

transformation of the boundary layer equation for free convection flow past a vertical flat

plate with arbitrary and wall temperature variation, was studied by Vedhanayagam (1980).

Soundalgekar and Ramana (1980) investigated the constant surface velocity case with a

power-law temperature variation. The  effect  of  viscous  dissipation  and  Joule  heating  on

MHD  free convection flow past a semi-infinite vertical flat plate in the presence of the
combined effect of Hall and non-slip currents for the case of power-law variation of the wall

temperature is  analyzed  by Emad and Mohamed (2005). Chen (2004) considered the heat

and mass transfer in MHD flow by natural convection from a permeable, inclined surface
with variable wall temperature and concentration. Satish and Pradhan (2015) studied the

problem numerical solution of boundary layer equation with viscous dissipation effect along

a flat plate with variable temperature. Natural convection heat and mass transfer in MHD

fluid flow past a moving vertical plate with variable surface temperature and concentration in

a porous medium were investigated by Javaherdeh et al. (2015).

Hall and ion-slip currents trend for the application of magnetohydrodynamic is towards a

strong magnetic field, so that the influence of the electromagnetic force is noticeable. The

problem of MHD free convection flow with Hall and ion-slip currents has many important

engineering applications e.g. in power generators, Hall  accelerators and flows in channels
and ducts. Ahmed and Sarmah (2011) analyzed MHD transient flow past an impulsively

started  infinite horizontal porous plate in a rotating system with Hall current. Odelu and

Naresh (2013) studied numerical study of MHD flow and heat transfer through porous

medium between two parallel plates with Hall and ion slip effects.

The rotating flow of an electrical conducting fluid in the presence of magnetic field is

encountered in geophysical and comical fluid dynamics. Study of the interaction of Coriolis

force with electromagnetic force in porous media is important in some geophysical and

astrophysical problems. Dileep and Priyanka (2012) investigated the Hall effects on MHD

slip flow and heat transfer through a porous medium over an accelerated plate in a rotating
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system. Hall effects on MHD flow in a rotating system with heat transfer characteristics was

studied by Ghosh et al. (2009).

Viscous dissipation effects play an important role in natural convection in various devices

which are subjected to large variations of gravitational force or which operate at high

speeds. Brinkman (1951) appears to be the first theoretical work dealing viscous dissipation.

Anjali et al. (2012) investigated Hall effect on unsteady MHD free convection flow past an

impulsively started porous plate with viscous and Joule’s dissipation. Palanisamy and

Muthamperumal (2011) investigated viscous dissipation effect on steady free convection and

mass transfer flow past a semi-infinite flat plate. Khaled (2016) studied Joule heating and

viscous dissipation on effects on MHD flow over a stretching porous sheet subjected to

power law heat flux in presence of heat source. Hossain (1992) studied the effect of viscous

and Joule heating on the flow of an electrically conducting, viscous, incompressible fluid

past a semi-infinite plate with surface temperature varying linearly with the distance from the

leading edge in the presence of a uniform transverse magnetic field.

The aim of the present work is to study the viscous dissipation, Joule heating effect in two

dimensional MHD free convection flow past along a vertical plate in presence of Hall and

ion-slip currents, power-law variation wall temperature in a rotating system as well as

uniform magnetic field which is normal to the vertical porous plate. The nonlinear

governing partial differential equations are transformed into ordinary differential equations

using usual similarity transformations. This  system  is  solved  numerically  by  applying

Nachtsheim-Swigert  shooting  iteration  technique  together  with  Runge-Kutta sixth order

integration scheme. Representative results are presented graphically for the velocity and

temperature distributions. The numerical values of the shear stress components and the

Nusselt number have been calculated for various values of physical parameters and presented

in tabular form.

8.1 Governing Equations
Consider a steady laminar, incompressible viscous electrically conducting fluid of

temperature T past along a semi-infinite vertical porous plate in presence of power-law wall

temperature under the influence of a transversely applied magnetic field. The wall

temperature varies with the distance along the plate

according to a power-law model and they are always greater

than their uniform ambient values existing far from the

plate. Fluid suction or blowing is imposed at the plate

surface. The wall temperature is assumed to have power-law

variation form as shown in the follow

equation a
w AxTxT  )( , where A is constant, T is

ambient temperature and a is the power index of the wall

temperature. The x -axis is assumed to be taken along the

plate and the y -axis normal to the plate. The physical

configuration and coordinate system is shown in Fig.8.1. An external strong

Fig.8.1 Physical configuration
and coordinate system
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magnetic field )0,,0( 0BB where magnetic field of uniform strength 0B is imposed along the

y -direction. For an electrically conducting fluid, the Hall and ion-slip currents significantly

affected the flow in the presence of large magnetic field. The induced magnetic field is

neglected, since the magnetic Reynolds number is assumed to be very small. The effects of

Hall current give rise to a force in the z -direction, which induces a cross flow in that

direction and hence the flow becomes three dimensional. The equation of conservation of

electric charge 0.  j


gives yj constant, where  zyx jjjj ,,


. This constant is assumed

to be zero since 0yj everywhere in the flow. The governing boundary layer equations may

be written as;

Continuity equation; 0







y

v

x
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(8.1)

Momentum equations;
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Energy equation;
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where all physical quantities are defined in the Nomenclature.

Boundary conditions are as follows;
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where A is constant and a is the power index of the wall temperature.

8.2 Mathematical formulation

Introducing the similarity variables are as follows;
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Now equation (8.2)-(8.4) become
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where primes denote differentiation with respect to similarity variable  .

The corresponding boundary conditions are as follows;
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8.3 Solutions Technique

The system of non-linear ordinary differential equations (8.6)–(8.8)  together  with the

boundary conditions (8.9) are solved  numerically  using Nachtsheim-Swigert shooting

iteration  technique  (guessing  the  missing  value) along with sixth order Runge-Kutta initial

value solver.

In a shooting method, the missing (unspecified) initial condition at the initial point of the
interval is assumed, and the differential equation is then integrated numerically as an initial

value problem to the terminal point. The accuracy of the assumed missing initial condition is

then checked by comparing the calculated value of the dependent variable at the terminal

point with its given value there. If a difference exists, another value of the missing initial

condition must be assumed and the process is repeated. This process is continued until the

agreement between the calculated and the given condition at the terminal point is within the

specified degree of accuracy.

The Nachtsheim-Swigert iteration technique thus needs to be discussed elaborately.  The

boundary conditions (8.9) associated with the non-linear ordinary differential equations

(8.6)–(8.8) are the two-point asymptotic class. Two-point boundary conditions have values of

the dependent variable specified at two different values of independent variable. Specification
of an asymptotic boundary condition implies that the first derivative (and higher derivatives
of the boundary layer equations, if exist) of the dependent variable approaches zero as the

outer specified value of the independent variable is approached.
The  method  of  numerically  integrating  a  two-point  asymptotic  boundary-value problem

of the boundary-layer type, the initial-value method is similar to an  initial-value  problem.

The governing differential equations are then  integrated with these assumed surface

boundary conditions.  If the required outer boundary condition is satisfied, a solution has
been achieved. Hence, a method must be devised to estimate logically the new surface

boundary conditions for the next trial integration.  Asymptotic boundary value problems such

as those governing the boundary-layer equations are further complicated by the fact that the

outer boundary condition is specified at infinity. In the trial integration, infinity is
numerically approximated by some large value of the independent variable. There is no a
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priori general method of estimating these values. Selecting too small a maximum value for

the independent variable may not allow the solution to asymptotically converge to the

required accuracy.  Selecting large a value may result in divergence of the trial integration or

in slow convergence of surface boundary conditions. Selecting too large a value of the

independent variable is expensive in terms of computer time.

Nachtsheim-Swigert (1965) developed an iteration method to overcome these difficulties.
Extension of the Nachtsheim-Swigert iteration scheme to the system of  equations (8.6)-(8.8)

and  the  boundary  conditions (8.9) is  straightforward.   In equation (8.9) there  are  three

asymptotic  boundary  conditions  and  hence  three unknown surface conditions )0(),0( gf 

and )0(  .

Within the context of the initial-value method and Nachtsheim-Swigert iteration technique

the outer boundary conditions may be functionally represented as follows;
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where   654321 ,,,,, gfgf . The last three of these represents

asymptotic convergence criteria.

Choosing 321 ,, ggggf   and expanding in a first-order Taylor’s series after using
equation (8.10) yield
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where subscript ’C ’ indicates the value of the function at max determined from the trial

integration.

Solution of these equations in a least-square sense requires determining the minimum value

of
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with respect to  3,2,1igi .

Now differentiating E with respect to ig , then obtain then obtain the following equations
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Substituting equation (8.11) into (8.13) after some algebra, then obtain the following

equation
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Now solving the system of linear equation (8.14) using Cramer’s rule we obtain the missing
(unspecified) values of ig as
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iii ggg  (8.16)

Thus adopting the numerical technique aforementioned, the solution of the nonlinear

ordinary differential equations (8.6)–(8.8) with boundary conditions (8.9) is obtained

together with sixth-order Runge-Kutta initial value solver and determine the velocity and

temperature as a function of the coordinate  .

8.4 Shear Stress and Nusselt number

The   quantities   of   physical   interest   are   the   shear stress and the   Nusselt     number.

Shear stress due to the primary and secondary velocities are given by
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8.5 Results and Discussion
In order to get a clear insight of the physical problem, numerical results are displayed with

the help of tables and graphs. The numerical results are presented in Figs. 8.2-Fig.8.21and

Tables 8.1-8.2 to illustrate the influence of several non-dimensional parameters. The

transformed ordinary differential equations with the corresponding boundary conditions are

solved numerically using the Rung-Kutta sixth order using shooting iteration technique by

giving appropriate initial guess values of )0(),0(),0(   gf to match the values with

corresponding boundary conditions at )(),(),(  gf respectively. The numerical results

of velocity components )0(),0( gf  , temperature )0( distributions have been obtained for

value of the power-law index “ a ” taking values 1.0. The values of Grashof number rG are

taken to be positive, since these values represent respectively, cooling of the plate. For

brevity negligible effects on velocity and temperature distributions are not shown.

From Fig.8.2, it is observed that an increase in the Hall parameter ( e ) causes negligible

effect on the primary velocity profiles. Fig.8.3 shows that the Hall parameter has a strong

increasing effect on secondary flow velocity. The secondary velocity is induced by the

component of the Lorentz force in the z -axis which arises solely due to the Hall current.

This means that the magnitude of the component of the Lorentz force in the z -axis increases

as e increases the secondary velocity is increased.

The effect of the viscous dissipation parameter i.e., the Eckert number ( cE ) on the

dimensionless primary velocity component ( f  ) and temperature ( ) is shown in Figs. 8.4,

8.6 respectively. The greater viscous dissipative causes a rise in the velocity as well as the

temperature, which is evident from Figs. 8.4 and 8.6. The secondary velocity ( g ) decreases

with the increase of Eckert number which is shown in Fig. 8.5.
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Figs.8.7-8.9 illustrate the velocity (primary and secondary) and temperature distributions for

different values of suction parameter ( wf ).  From Fig.8.7 it can be seen that for cooling of

the plate ( 0rG ), the velocity profiles decrease with the increase of suction parameter( wf )

indicating the usual fact that suction stabilizes the boundary layer growth. The secondary

velocity increases with the increase of wf which is shown in Fig.8.8. Also from Fig. 8.9 it is

observed that increase in suction parameter leads to a decrease in the temperature

distributions. Suction stabilizes the thermal boundary layers growth.

Increase in rotation parameter ( R ) has minor effect on the primary velocity profiles which is

shown in Fig. 8.10. The secondary velocity decreases with the increase of rotation parameter

which is found in Fig.8.11. This is due to the fact that rotation parameter defines the relative

magnitude of the Coriolis force and viscous force, thus rotation retards the secondary flow in

the boundary layer.

Fig.8.12 display results of primary velocity for various values of permeability parameter (  ).

It is observed that the primary velocity profiles decrease with increasing  because the

presence of porous medium increases the resistance to the flow which causes the fluid
velocity decrease. Whereas the secondary velocity has opposite behavior which is shown in

Fig.8.13.

Fig.8.14 and Fig.8.15 show the dimensionless primary and secondary velocity profiles for

different values of magnetic parameter ( M ). An increase in the Magnetic parameter, the

primary velocity decreases. Due the Lorentz force, there is a resistive force along the x -axis

and this reduces the primary velocity. The secondary velocity has reverse effect with the

increase of M .

Figs. 8.16-8.18 illustrate the velocity (primary and secondary) and temperature profiles for

different values of Prandtl number ( rP ). The  numerical  results  show that  the  effect  of

increasing  values of  Prandtl  number  results  in  a  decreasing  velocity. The secondary

velocity has reverse effect which is shown in Fig. 8.17. The temperature distribution

decreases with the increases of rP which is illustrated in Fig. 8.18. It is seen that the effect of

increasing Prandtl number rP is to decrease temperature throughout the boundary layer

which results in decrease in the thermal boundary layer thickness.

Figs. 8.19 -8.21 show the effects of wall temperature power index “ a ” on the velocity

(primary and secondary) and temperature distributions within the boundary layer. Fig.8.19

shows that the primary velocity decreases as “ a ” increases. But the secondary velocity has

reverse effect which is found in Fig.8.210. From Fig. 8.21, it is seen that the temperature

distribution decreases with increases of “ a ”.

Finally, the effects of various parameters on the components of the shear stress zx  , and

the Nusselt number uN are shown in Table 8.1-Table 8.2. From Table 8.1, it is seen that the

component of shear stress x increases with increasing values of e while it decreases with

increasing values of M, and R . Also the component z increases with the increase of

Me ,, whereas decreases with the increase of R .
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From Table 8.2, it is observed that the components of the shear stress x decreases and z

increases with the increase of wf , rP and a . Further from this Table, it is seen x increases

and z decreases with the increase of cE . This Table also shows that the Nusselt number

increase with increase of wf , rP and a while decreases with the increase of cE .
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Table 8.1

Numerical values of x and z for 9.0,5.1,0.1,71.0,1.0,0.10  iwrcr faPEG 

rG e  M R x z

+ve

0.48 0.20 1.40 0.60 1.3887127 -0.0393246
0.50 0.20 1.40 0.60 1.3987249 -0.0293501
0.52 0.20 1.40 0.60 1.4088152 -0.0198665
0.50 0.40 1.40 0.60 1.2799888 -0.0279403
0.50 0.60 1.40 0.60 1.1660146 -0.0266577
0.50 0.20 1.00 0.60 1.5782452 -0.1584064
0.50 0.20 1.20 0.60 1.4878745 -0.0914259
0.50 0.20 1.40 0.58 1.3988209 -0.0146801
0.50 0.20 1.40 0.59 1.3987808 -0.0220164

Table 8.2

Numerical values of x , z and uN for 2.0,9.0,5.0,6.0,0.10,4.1   ier RGM

rG rP a
wf cE x z uN

+ve

0.71 0.50 1.50 0.1 1.6491914 -0.0309601 1.6443798
0.71 0.75 1.50 0.1 1.5404890 -0.0302626 1.7527704
0.71 1.00 1.50 0.1 1.3987249 -0.0293501 1.9001984
1.00 1.00 1.50 0.1 0.8457370 -0.0249719 2.3915810
1.38 1.00 1.50 0.1 0.3463293 -0.0215169 3.0059706
0.71 1.00 1.25 0.1 1.6247840 -0.0309125 1.7978870
0.71 1.00 1.75 0.1 1.1577353 -0.0278433 2.0068689
0.71 1.00 1.50 0.2 1.5276628 -0.0303697 1.8194304
0.71 1.00 1.50 0.3 1.6712756 -0.0315034 1.7282861
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Chapter 9

General Discussion

Considering some physical viability of the flows model studies on various aspects of the

magnetohydrodynamics (MHD) free convection and mass transfer flow has been made. In

natural processes or in engineering problems, the types of flow that arise are of similar nature

to the model studies made herein. The well recognized and widely used mathematical

approaches, analytical and numerical techniques have been adopted to analyze the construct

equations separately.

The model flows, were considered into two parts, one comparatively simple one dimensional

model flows, the second one is a relatively difficult two-dimensional model flows. In the first

case all model problems were considered to be unsteady while in the second case both the

steady. As for the unsteady one dimensional model, the solution has been obtained by

implicit finite difference method while as for the unsteady two dimensional model, the

solution has been obtained by explicit finite difference method which are considered in

chapter 4 and chapter 5. Also for the unsteady one dimensional and steady two dimensional

problems, the solution has been obtained by Nachtsheim-Swigert iteration technique which is

considered in chapter 6, chapter 7 and chapter 8.

In many industrial applications, porosity of materials is an intrinsic aspect of the engineering

process and in geophysical systems and as the porosity of soil can exert a considerable

influence on flow and temperature distributions, include suction with the problem which are

considered in chapter 5.

In chapter 6, effect of ion-slip current on MHD free convection flow in a temperature

stratified porous medium in a rotating system is considered. The unsteady one dimensional

model, similarity solutions have been obtained by introducing a similarity parameter )(t ,

the functional value of which has been obtained during the process of analyses. This

functional value was found to correspond exactly with the usual similarity length scale

considered prior to the analyses adopted in various unsteady problems. The advantage of

taking this similarity parameter )(t is that one can easily obtain the similarity equation of

governing equations as has been found in chapter 6.

Since viscous dissipation and Joule heating effects are also important in a high speed fluid

flow, one may include these effects with the problems are considered in chapter 5-8.

Influence of stratification is an important aspect in heat and mass transfer analysis. The

formation or deposition of the layers is known as the stratification. This phenomenon occurs

due to the change in temperature or concentration, or variations in both, or presence of

various fluids or different densities. It is important to control the temperature stratification

and concentration differences of hydrogen and oxygen in such environments such as they

may   directly   affect   the   growth   of   all   cultured   species. The ambient temperature is
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assumed to be an increasing function with the distance along the plate. Effects of

stratification on MHD free convection flow past a vertical plate in a porous medium with

Hall and ion-slip currents in a rotating system has been considered in chapter 7.

In chapter 8, effect of Hall and ion-slip currents on MHD boundary layer flow past a vertical

plate in porous medium with power-law variation wall temperature in a rotating system has

been considered.

The magnetohydrodynamic heat and mass transfer flow with rotation or with Hall and ion-

slip currents or with viscous and Joule dissipation or with thermal diffusion and diffusion

thermo or stratifications or with all those phenomena together in fact results in a very

complicated structure physically as well as mathematically.
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