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Abstract

Considerable research efforts have been devoted to the study of MHD free-force convection
and mass transfer flow through temperature stratified high porosity medium from a vertica
plate with power-law variation wall temperature in the presence of Hall and ion-dlip currents
under various flow conditions. A magnetic field is applied perpendicular to the plates.
Various configurations have been considered for the plates. The whole system is rotated
with a constant angular velocity Q. The Hall and ion-dlip currents effect has aso been put
into consideration. The effects of changing various parameters on the velocity, temperature
and concentration distributions have been discussed. However, finding exact solutions of
nonlinear problems is very difficult. In particular, obtaining an exact analytic solution of a
given nonlinear problem is often more complicated as compared to that of a numerical
solution, despite the availability of high performance supercomputers and software which
provide efficient ways to perform high quality symbolic computations. In our analysis, the
primary focus has been shown on the study of the physical and mathematical structure of
fluid models. Method of explicit and implicit finite difference method, Nachtsheim-Swigert
iteration technique are used as main tools for numerical approach while the perturbation
technique is used for the analytical approach. The studies of the flow feature mentioned
above are made in different sections taking different aspects of the flow that are of practical
importance. The non-dimensional coupled partial differentia equations of the momentum,
energy and concentration equations are derived by considering suitable usual transformation
and similarity variables. Also stability analysis has been derived for conversed solutions.

In section 4.1 of chapter 4, the similarity solutions have been obtained for one dimensional
unsteady MHD free convection and mass transfer flow through a vertical oscillatory porous
plate in arotating porous medium with Hall, ion-slip currents and heat source. Two cases are
considered, (@) analytical solution with perturbation technique, (b) numerical solution by
implicit finite difference method.

In section 4.2 of chapter 4 and section 5.1, 5.2 of chapter 5, similarity solutions have been
obtained by finite difference method (implicit and explicit). The numerica solutions for the
velocity profiles, temperature distributions as well as concentration distributions are obtained
using implicit finite difference method for the effects of the various important parameters
entering into the problem in case of the one dimensional problem. Also the shear stress,
Nusselt number as well as Sherwood number have been computed by implicit finite
difference method in case of one dimensiona flow. Further the above mentioned flow
problem has been considered for two dimensional case, unsteady MHD free convective flow.
The local and average shear stresses as well as Nusselt number and Sherwood number have
been computed by explicit finite difference technique in case of two dimensiona flows. In
both cases the stability conditions and convergence criteria of the explicit finite difference
scheme have been analyzed for finding the restriction of the values of various parameters to
get more accuracy.

In chapter 6, similarity equations of the corresponding momentum and energy equations are
derived by introducing a time dependent length scale which in fact plays the role of a
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similarity parameter. The suction velocity is taken to be inversely proportiona to this
parameter.

In Chapter 7, the flow structures of stratification fluid models are investigated in detail and
some new exact solutions have been obtained. The ambient temperature has been assumed to
be an increasing function with the distance along the plate. The heat transfer changes
significantly with the stratification and magnetic parameters.

In Chapter 8, power-law variation wall temperature along vertical plate, in the presence of
Hall and ion-dlip currents are discussed. The plate surface has a power-law variation wall
temperature and is permeable to allow for possible fluid with wall suction or blowing,
velocity varied according to a power-law.

The Nachtsheim-Swigert iteration technique has been used Chapter6, Chapter 7 and
Chapter 8.

The effects on the velocities, temperature, concentration, local and average shear stresses,
Nusselt and Sherwood numbers of the various important parameters entering into the
problems separately are discussed for each problem with the help of graphs and tables.
Finally, in Chapter 9, a general discussion on the overall results of the problems considered
in the dissertation is sorted out.

vi



Dhaka University Institutional Repository

Acknowledgement

| would like to express my deepest gratitude and appreciation to my supervisor Dr. Md. Abdus Samad,
Professor and Chairman, Department of Applied Mathematics, University of Dhaka, Bangladesh for
his willingness to accept me as a PhD student. Also | would like to thank Dr. Md. Abdus Samad for
his guidance and all the useful discussions and brainstorming sessions, especially during the difficult
conceptual development stage. His deep insights hel ped me at various steps of my research.

Specia thanks to my co-supervisor Dr. Md. Mahmud Alam, Professor, Mathematics Discipline,
Khulna University, Khulna, Bangladesh. He is considered me as a researcher in the Third World
Academy Science (TWAYS) research project in the first place. He taught me how to ask questions and
express my ideas. He taught me how to write research papers, made me a better programmer, had
confidence. His constructive criticisms, stimulating discussion and discipline and quality in research
have been instrumental in the completion of my thesis.

Besides my supervisors, | am thankful to al teachers of this Department who helped me in one way or
the other to carry out my work successfully. Especialy Dr. Mohammad Ferdwos, Mr. Md. Rakib
Hosen and Mr. Kgjal Chandra Saha, for their help, support, encouragement and unique to endure
the stressful and mostly lonely PhD journey.

| wish to express my sincerest gratitude to colleagues, Associate Professor Md. Nazrul Islam,
Mohammad Shah Alam and Assistant Professor Mohammad Ali, Md Golam Hafez, Department of
Mathematics, Chittagong University of Engineering & Technology, Chittagong, Bangladesh for
sharing their research experience and for their helpful suggestions throughout my research.

| wishto further extend my thanks to all teachers and staffs of Applied Mathematics Department,
University of Dhaka, Bangladesh for their help.

Finally, words cannot express the feelings | have for my parents for their constant unconditional
support-both emotionally and financially.

Vii



Nomenclature

L 000 mw o

(@]

]

@]

=

O

8

O o
8
S

—«U BO 8
t

(e}

m m O O

— —
s ~

o %3 -~

3

-

ST O O

x1Yyi1vz

_‘XWL-L'_'

=

Wall temperature power index
magnetic vector field
uniform magnetic field of strength

fluid concentration
dimensionless concentration

Forcheimmer (inertial) coefficient
specific heat at constant pressure

concentration susceptibility
concentration at the plate
species concentration at infinity

the concentration of the ambient fluid

Dhaka University Institutional Repository

ambient concentration at the leading edge of the plate

mass diffusivity
Dufour number

Diffusion coefficient

Electric displacement

Eckert number

Electric field

dimensionless primary velocity
Suction parameter(large)
dimensionless secondary velocity
body force along x-axis

body force
acceleration due to gravity

modified Grashof Number
Grashof Number

magnetic field strength

convective heat transfer coefficient
complex number

current density

components of the current density J

permeability of the porous medium
thermal diffusion ratio

thermal conductivity
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mass transfer coefficient
characteristic length
magnetic Parameter
Zero or integer
frequency

Nusselt number

o Nua local and average Nusselt numbers

Prandtl number

pressure of fluid
heat source quantity

Fluid velocity in complex form

2 0 0O VU =z zZz S oz X

vector velocity
dp velocity of the charge

R rotation parameter
S stratification rate of the gradient of ambient temperature profiles

S, stratification rate of the gradient of ambient concentration profiles
S, Sa local and average Sherwood numbers

S, Soret number

S. Schmidt number

S thermal Stratification parameter

S mass Stratification parameter

S, Sherwood number

t,n time
temperature of the fluid in the boundary layer
dimensionless temperature
mean fluid temperature

T
T

Tm

T, temperature at the wall
T, temperature of the fluid at infinity
T, (X) the temperature of the ambient fluid
T,

<0 ambient temperature at any arbitrary reference point in the medium

ambient temperature at the leading edge of the plate

u,v,w components of the velocity field g

u,v,w components of the dimensionless velocity field
U, free stream velocity

v, suction velocity at the wall

V, uniform blowing/suction at the plate
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X, Y dimensionless coordinates

XY,z cartesian coordinates

Greek Symbols

a heat source parameter

b coefficient of volumetric thermal expansion of the fluid
b” volumetric coefficient of expansion with concentration
b, Hall parameter

b, ion-slip parameter

g permeability parameter

r dimensionless Forcheimmer (inertial) parameter
m viscosity of the fluid

m, magnetic permeability of the medium

u kinematic viscosity

f dimensionless concentration

f viscous dissipation

y stream function

I suction parameter

h similarity variable

q dimensionless temperature

S time dependent length scale

SeS' electrical conductivity of the fluid

Q angular velocity about the y-axis

Mo charge density

r fluid density

w oscillation frequency in non-dimension form
t dimensionless time

ty shear stressin x -axis

tw shear stressin z -axis

tot, xand zcomponents of shear stress

toutw xand zcomponents of loca shear stress

t ot aw xand z components of average shear stress
W, electron cyclotron frequency

t, collision time of electrons

W, ion cyclotron frequency

t. collision time of ions
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K thermal conductivity

e porosity porous medium

e’ small number which isless than unity

e’ electrical permeability of the medium

Subscripts

w conditions at the wall

© conditions at infinity

(0,x=0) at some reference point in the medium and at the outer edge of the boundary
layer

Super script

! differentiation with respect h

Xi
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| ntroduction

Fluid dynamics is an area of study that deals with the flow of fluids. The fluids in
consideration include gases, liquids and ionized gases also called plasma. Electromagnetism
studies the interaction between the electric and magnetic fields. Magnetohydrodynamics
(MHD) combines the two areas of study of flow of liquids caled hydrodynamics and
the study of electromagnetism. Efficient, accurate and stable numerical methods for solving
fluid flow problems, heat and mass transfer processes, chemical reactions and turbulent
phenomena are of great importance in many industrial applications. It is nowadays generally
recognized that computer based computation of complex problems may provide a cost-
effective, quick and sufficiently reliable method in many cases. Sometimes, the
computational methods may also be an aternative or a complement to experimental
investigations.

The aim of this dissertation is to make some calculations, both analytical and numerical, on
MHD heat and mass transfer flows to the investigators dealing with the problems in
geophysics and astrophysics. The analyses so produced in fact arouse out of the natural
tendency to investigate a subject that may be said to relate to some academic types of
problems of solving the equations of the fluid mechanics with a new body force and some
other source of dissipation in the energy equation. The results of these investigations may not
have direct practical applications but are relevant to the problems mentioned above. It is
however, to be mentioned that the thermal instability investigations of natural convection
MHD flows have direct application to problems in geophysics and astrophysics. The largest
on MHD and heat transfer flows was aroused in the field of aerodynamic heating. Rossow
(1957) presented the first research paper on this subject for incompressible constant property
flat plate boundary layer flow. His results indicated that the skin frictions and the heat
transfer were reduced substantially when atransverse magnetic field was applied to the fluid.
In our analyses the combined buoyancy effects arising from the simultaneous diffusion of
therma energy and chemical species are considered on the MHD flow of eectricaly
conducting fluid under the action of atransversely applied magnetic field. Other applications
of MHD heat transfer include MHD generators, plasma propulsion in astronautics, nuclear
reactor thermal dynamics and ionized-geothermal energy systems.

Further in studying the different aspects of astrophysical and geophysical problems the
Coriolis force is necessary to include to the momentum equations. Considering its
significance as compared to viscous and inertia forces, it is generaly admitted that the
Coriolis force due to the Earth’s rotation has a strong effect on the hydromagnetic flow in the
Earth’s liquid core.

In most cases the Hall and ion-slip terms were ignored in applying Ohm’s law, as they have
no marked effect for small and moderate values of the magnetic field. However, the current
trend for the application of MHD is towards a strong magnetic field, so that the
influence of the electromagnetic force is noticeable (Cramer and Pai, 1973). Under these
conditions, the Hall current and ion dlip current are important and they have a marked effect
on the magnitude and direction of the current density and consequently on the magnetic force

xiii
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term. Tani (1962) studied the Hall effect on the steady motion of electrically conducting and
viscous fluids in channels,

Stratification is a formation/deposition of layers which occur due to temperature
variations, concentration  differences, or the presence of different fluids. Effect of
stratification is an important aspect in heat and mass transfer analyses. In practical situations
where the heat and mass transfer mechanisms run simultaneously, it is interesting and
important to analyze the influence of double stratification (stratification of medium with
respect to thermal and concentration fields) on the convective transport in nanofluid. The
analysis of natural and mixed convection in a doubly stratified medium is a fundamentally
interesting and important problem, because of its broad range of engineering applications.
These applications include heat rejection into the environment such as lakes, rivers, and sess,
thermal energy storage systems such as solar ponds and heat transfer from thermal sources
such as the condensers of power plants. Also thermal stratification is very important for solar
engineering because higher energy efficiency can be achieved with better stratification and
aready has been shown by researchers that the thermal stratification in energy storage may
significantly increase system performance.

The effects of diffusion-thermo and thermal-diffusion of heat and mass transfer have been
examined by Chapman and Cowling (1952) and Hirshfelder et al. (1954) from the kinetic
theory of gases. The heat and mass transfer simultaneously affecting each other that will
cause the cross-diffusion effect. The heat transfer caused by concentration gradient is called
the diffusion-thermo or Dufour effect. On the other hand, mass transfer caused by
temperature gradients is called Soret or thermal-diffusion effect. Thus Soret effect is referred
to species differentiation developing in an initial homogenous mixture submitted to a thermal
gradient and the Dufour effect referred to the heat flux produced by a concentration
gradient. The Soret  effect, for instance has been utilized for isotope separation and in
mixture between gases with very light molecular weight (H,,H ) and of medium molecular

weight (N,,air). Thus due to importance of Soret and Dufour effects for the fluids with

very light molecular weight as well as medium molecular weight.

In chapter 1, available informations regarding MHD heat and mass transfer flows along with
various effects is summarized and discussed from both analytical and numerical point of
view.

In chapter 2, the basic governing equations related to the problems considered thereafter are
shown in standard vector form.

In chapter 3, the calculation approach for different problemsis discussed.

In section 4.1 of chapter 4, a specific one dimension unsteady problem of the MHD free
convection and mass transfer flow through a vertical oscillatory porous plate in a rotating
porous medium with Hall, ion-dlip currents and heat source are considered and are solved
anaytically as well as numericaly. The two dimension unsteady problem has been
considered in section 4.2 of chapter 4.

In section 5.1 of chapter 5, a specific one dimension unsteady problem of the effect of Hall
and ion-slip currents on MHD heat and mass transfer flow past a vertical plate with high

Xiv
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porosity medium in a rotating system is considered. The two dimension unsteady problem
has been considered in section 5.2 of chapter 5.

In chapter 6, the effects of ion-dlip current on MHD free convection flow in a temperature
stratified porous medium in arotating system are considered.

In chapter 7, the effects of stratification on MHD free convection flow past a vertica plate

in a porous medium with Hall and ion-dlip currentsin arotating system are considered.

In chapter 8, effect of Hall and ion-dlip currents on MHD boundary layer flow past a vertical
plate in porous medium with power-law variation wall temperature in a rotating system is
considered.

As problems mentioned above have been solved by employing an analytica method, explicit
and implicit finite difference method, Nachtsheim-Swigert shooting iteration technique
together with sixth order Runge-K utta integration scheme.

Finally, a genera discussion al the problems is produced in chapter 9 with conclusive
remarks.

XV
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Chapter 1

Available Information on MHD Heat and Mass transfer
flow

1.1 Magnetohydrodynamics(M HD)

Magnetohydrodynamics (MHD) is the branch of continuum mechanics which deals with the
flow of electrically conducting fluids in electric and magnetic fields. The largest
advancement towards understanding of such phenomena comes from the field of
astrophysics. It has long been suspected that most of the matter in the universe is in the
plasma or highly ionized gaseous state, and much of the basic knowledge in the area of
electromagnetic fluid dynamics has been evolved from these studies.

As a branch of plasma physics, the field of magnetohydrodynamics (MHD) consists of the
study of a continuous electrically conducting fluid under the influence of electromagnetic
fields. MHD included only the study of strictly incompressible fluid, but today the
terminology is applied to studies of partialy ionized gases as well. The essentia
requirements for problems to be analyzed under the laws of MHD are that the continuum
approach be applicable.

Many natural phenomena and engineering problems are susceptible to MHD analysis. It is
useful in astrophysics. Geophysics encounters MHD phenomena in the interactions of
conducting fluids and magnetic fields that are present in and around heavenly bodies.
Engineers employ MHD principles in the design of heat of exchangers, pumps and flow
meters, in space vehicle propulsion, control and re-entry, in creating novel power generating
system and in developing confinement schemes for controlled fusion.

The most important application of MHD isin the generation of electrical power with the flow
of an electrically conducting fluid through a transverse magnetic field. Recently, experiments
with ionized gases have been performed with the hope of producing power on alarge scalein
stationary plants with large magnetic fields. Cryogenic and superconducting magnets are
required to produce these very large magnetic fields. Generation of MHD power on a smaller
scale is of interest for space applications. The increasing number of technical applications
using MHD effects has made it desirable to extend many of the available hydrodynamic
solutions to include the effects of magnetic fields for those cases when the fluid is electrically
conducting.

In most cases the Hall and ion-dlip terms were ignored in applying Ohm’s law as they have
no effect for small and moderate values of the magnetic field. However, the current trend for
the application of magnetohydrodynamics is towards a strong magnetic field, so that the
influence of electromagnetic force is noticeable.

Itisgenerally known that, to convert the heat energy into electricity, several intermediate

1
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transformations are necessary. Each of these steps means aloss of energy. This naturally
limits the overall efficiency, reliability and compactness of the conversion process. Methods
for direct conversion to energy are now increasingly receiving attention. Of these, the fuel
cell converts the chemical energy of fuel directly into electrical energy; fusion energy utilizes
the energy released when two hydrogen nuclel fuse into a heavier one and thermoel ectrical
power generating uses a thermocouple. Magnetohydrodynamic power generation is another
important new process that is receiving worldwide attention.

Faraday (1832) carried out experiments with the flow of mercury in glass tubes placed
between poles of a magnet and discovered that a voltage was induced across the tube due to
the motion of the mercury across the magnetic fields, perpendicular to the direction of flow
and to the magnetic field. He observed that the current generated by this induced voltage
interacted with the magnetic filed to show down the motion of the fluid and this current
produced its own magnetic field that obeyed Ampere’s right hand rule and thus, in turn
distorted the magnetic field.

The phenomena of MHD electrical power generation was first recognized when Michael
Faraday(1832) experimented with the generation of electricity by moving an eectrica
conductor through a stationary magnetic field. In January 1832 he set up a rudimentary
open-circuit MHD generator or flow meter on waterlo Bridge in London. On 13" August
1940 B. Karlovitz, a Hungarian engineer prposed a gaseous MHD system, he had from 1938
conducted experiments on the products of combustion of natural gas as aworking fluid using
the annular Hall-type MHD generator. Faraday also suggested that electrical power could be
generated in aload circuit by the interaction of a flowing conducting fluid and a magnetic
field.

The first astronomical application of the MHD theory occurred in 1899 when Bigalow
suggested that the sun was gigantic magnetic system. Hartmann and Lazarus (1937) studied
the influence of a transverse uniform magnetic field on the flow of a conducting fluid
between two infinite parallel, stationary and insulated plates. Alfven (1942) discovered MHD
waves in the sun. The waves are produced by disturbances which propagate simultaneously
in the conducting fluid and the magnetic field. The American engineer Richard (1959)
operated the first truly successful MHD generator producing about 10 kw of electric power.
Further research by Rosa established the practicality of MHD for fossil-fuelled systems in
1990. MHD devices have been in use the early of the 20" century. More recently, MHD
devices have been used for stirring, levitating and otherwise controlling flows of liquid
metals for metallurgical processing and other application by Kolesnichenko (1990). Gas-phse
MHD is probably best known in MHD power generation. Sporn and Kantrouitz (1959), Seg
and Sutton (1960), major efforts have been carried out around the worked to develop this
technology in order to improve electric conversion efficiency, increase reliability by
eliminating moving parts and reduce emission from coal and gas plants. Closed-cycle liquid
metal MHD system using both single-phase and two-phase flows aso has been explored.
Also MHD principle is utilized in stabilizing a flow against the transition from laminar to
turbulent flow. The word magnetohydrodynmics (MHD) is derived from magnetic field,

2
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liquid and movement. The field of MHD was initiated by Alfven (1942) for which he
received the Nobel Prize in Physic in 1970. Disturbance in either the magnetic field or the
fluid can propagate in both to produce MHD waves as well as upstream and downstream
wave phenomena.

The fundamental concept behind MHD is that magnetic field can induce currents in moving
conducting fluid, which in turn creates forces on the fluid and also changes the magnetic field
itself.

1.2 Electromagnetic Equationsand MHD Approximations

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic
equations modified to take account of the interaction between the motion of the fluid and
electromagnetic field. Formulation of the electromagnetic theory in mathematical form is
known as Maxwell’s equations. Maxwell’s basic equations show the relation of basic field
guantities and their production. The basic laws of electromagnetic theory are all contained in
special theory of relativity. But here we will always assume that all velocities are small in
comparison with the speed of light. Before writing down the MHD equations, first of all
know the ordinary electromagnetic equations and hydromagnetic equations(Cramer and Pai,
1973).

First, the electromagnetic equations are as follows;

Charge continuity

ND=r, (1.2.1)

Current continuity

= (12.2)

ot

Magnetic field continuity

N.B=0 (1.2.3)

Ampere’s Law

RNaH=3+2 (1.2.4)
ot

Fraaday’s Law

RNaE=-8 (1.2.5)

ot

Constitutive equationsfor Dand B

D=e"E (1.2.6)

B=mH (1.2.7)

Lorentz force on a charge

F,=q(E+q, AB) (1.2.8)

Total current density flow

J=s'(E+qAB)+r g (1.2.9)
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The equations (1.2.1)-(1.2.5) are the Maxwell’s equations where Dis the electric
displacement,
r . isthecharge density, E istheelectric field, B isthe magnetic field, H isthe magnetic

field strength, J is the current density, aa_ltj is displacement current density, e” is the

electrical permeability of the medium, m, isthe magnetic permeability of the medium, r .qis
the convection current due to charges moving with the fluid, q, isthe velocity of the charge,

gistheveocity field, s "isthe electrical conductivity.

The electromagnetic equations as shown above are not usually applied in their present form
and required interpretation and several assumptions to provide the set to be used in MHD.
The charge density r .in Maxwell’s equations must then be interpreted as an excess charge
density which is generally not large. In most problems the displacement current, the excess

charge density and the current due to convection of the excess charge are small. The
electromagnetic equations to be used are as follows;

N.D=0 (1.2.10)
N.J=0 (1.2.11)
N.B=0 (1.2.12)
NAH=J (1.2.13)
Nag=-B (1.2.14)
ot
D=e"E (1.2.15)
B=mH (1.2.16)
J=s'(E+qAB) (1.2.17)

Suitably represent the equations of fluid dynamics to take account of the electromagnetic
phenomena;

(i) the MHD equation of continuity for viscous incompressible electrically conducting fluid
remains the same as that of usual continuity equation

NAg=0 (1.2.18)
(it) the MHD momentum equation for a viscous incompressible and electrically conducting
fluidis

rz—?:rF-Np’+n‘V2q+JAB (1.2.19)
where Fis the body force term per unit volume corresponding to the usua viscous fluid
dynamics equations and the new term JAB s the force on the fluid per unit volume
produced by the interaction of the current and magnetic field (caled a JAB force or
Loyrentz force);

(iii) the MHD energy equation for a viscous incompressible electrically conducting fluid is

2
re, 2T vt e (1.2.20)
P Dt s’
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In relation to the energy equation of the thermal boundary layer theterm f  isthe viscous

2

S N . .
dissipation term and the new term — isthe Joule heating term and due to the resistance of
S

the fluid to the flow of current;
(iv) the MHD equation of concentration for viscous incompressible electrically conducting

fluid remains the same as % =D, V*C (1.2.22)

1.3 Theimportant Dimensionless Parameters of Fluid Dynamics
and M agnetohydrodynamics

M agnetic Par ameter (M)

It is a dimensionless number which is used in magnetofluid dynamics and it is defined by the
product of electron conductivity s ., the square of the magnetic field strength and a

characteristic length L divided by product of the mass density and the fluid velocity. i.e.

s B’L

Magnetic parameter M = % which gives a measure of the relative importance of drag
r'Yo

forces resulting from magnetic function and viscous forces in Hartmann flow and determines
the velocity profile for such flow. Thisistheratio of the magnetic forceto the inertiaforce.

Heat Source parameter (a)

Qu
>

rcUo

The heat source parameter is defined as, a = Here Q isthe heating capacity of the

medium, u isthe kinematic viscosity, U, isthe uniform velocity, r isthedensity, ¢, isthe

specific heat at constant pressure.

Prandtl Number (P.)

Prandtl number is one of the characteristical numbers in fluid dynamics and heat transfer. It
is the ratio between momentum diffusivity (kinematic viscosity) and thermal diffusivity. The
Prandtl number is named after the German physicist Ludwig Prandtl.
It is defined as follows;
_ Kinematicviscosity u  Iuc,
" Thermd diffusivity k Kk

re,

where u isthe kinetic viscosity, k isthe thermal conductivity, c, is specific heat at constant

pressure, r isthe density of the fluid.
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The Prandtl number is a grouping of the properties of the fluid. It can be related to the
thickness of the thermal and velocity boundary layers. In particular sense, when P, =1.0, the
velocity boundary layer and thermal boundary layer coincide. If the P, values be small, then
heat diffuses very quickly compared to the velocity (momentum) i.e. the thickness of the
therma boundary layer is such bigger than the velocity boundary layer for liquid metals.
Conversely, P. values be larger, then the momentum boundary layer is thicker than the
thermal momentum boundary layer. It is used in heat transfer, free and forced convection
calculations. For most gases over a wide range of temperature and pressure, Prandtl number
is approximately constant. Therefore, it can be used to determine the thermal conductivity of
gases at high temperatures, where it is difficult to measure experimentaly due to the
formation of convection currents. It depends on the fluid properties. It is evident that P,
various from fluid to fluid. Typical values for Prandtl number are, for air at 20°C
P =0.71(Approx.), at 20°C for water P =7.0(Approx.),for electrolyte solution such as salt

water, P =1.0, for sea water (at 0°C and 20°C) P =134 and P =7.2 for mercury
P. =0.05, but for high viscous fluid it may be very large, viz, for glycerin P, = 7250.

Eckert number (E,)

The Eckert number, first named in the early 1950s after Ernst R. G. Eckert. It is useful in
determining the relative importance in a heat transfer situation of the kinetic energy of a
flow. It isthe ratio of the kinematic energy to the enthalpy(or the dynamic temperature to the
temperature) driving force for heat transfer. It is defined as follows;

_ kinematicenergy ~ U¢

~ Enthapy ¢, (T,-T.)

C

where U, is a characteristic velocity of the flow, c, is the specific heat at constant pressure
and (TW —Tw) is the driving force for heat transfer e.g. difference between wall temperature

and free stream temperature. For small Eckert number ( E, <<1.0) the terms in the energy

eguation describing the effects of pressure changes, viscous dissipation and body forces on
the energy balance can be neglected and the equation reduces to a balance between
conduction and convection.

The Eckert number phenomenon was investigated theoretically by Geropp in 1969 and
describes a reversa in heat transfer from a moving wall at an Eckert number E_ = 1. In this

report the Eckert number phenomenon is confirmed experimentally for the first time.
Moreover, maximum heat transfer occurs at an Eckert number E; =~ 0.3, which is of great

importance for the cooling of hot surface in a gas-flow.

Grashof number (G,)

The Grashof number is a dimensionless number in fluid dynamics and heat transfer. It arises

frequently in the study of situations involving natural convection. It is used in anayzing the
6
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velocity distribution in free convection systems. The Grashof number is used in the
correlation of heat and mass transfer due to thermally induced natura convection at a solid
surface immersed in a fluid. The significance of the Grashof number is that it represents the
ratio between the buoyancy forces due to spatial variation in fluid density (caused by
temperature differences) to the resulting force due to the viscosity of the fluid. It is named
after the German engineer Franz Grashof,

Gr — gOb(TWS_Too)J
U0
where G, >>1,the viscous force is negligible compared to the buoyancy force and inertia

force. When buoyant forces overcome the viscous forces, the flow starts a transition to the
turbulent regime. In natural convection the Grashof number plays the same role that the
Reynolds number playsin forced convection.

Modified Grashof Number (G,)

The modified number Grashof number is defined by
b ' (CW B Coo )J
Us

G, =2

where, g,is the local acceleration due to gravity, b™ is the volumetric coefficient of

concentration expansion and (CW - Cw) be the concentration difference. It is used in case of

natural convection mass transfer problems.

Suction Parameter (1 )
The suction parameter isdefined as, | =—.

Thisisaratio of the suction velocity to the wall and the free stream velocity.

Permeability Parameter (g)

2

The permeability parameter isdefined as g = kliJ 5
0

where k is the permeability of the porous medium, u is the kinematic viscosity, U, is the

uniform velocity.

Rotational Parameter (R)

The rotational parameter is defined as

where Q istheangular velocity, u isthe kinematic viscosity, U, isthe free stream velocity

7
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Forcheimmer (Inertial) Parameter (I')
Theinertial parameter isdefinedas, T = LCJ—U
0

where c is the Forcheimmer (inertial) coefficient, u is the kinematic viscosity, U, is the

uniform velocity.

Hall Parameter (b, )

The Hall parameter isdefined as, b, =wt

where w, is the electron cyclotron frequency, t , is the electron mean free time.

lon-dlip Parameter (b, )
Theion-dlip parameter is defined as, b, =wt,

where w; istheion cyclotron frequency, t ; istheion mean freetime.

Schmidt Number (S,)

Schmidt number is the ratio of the viscous diffusivity to the mass diffusivity. It physically
relates the relative thickness of the hydrodynamic layer and concentration boundary layer.
It isdefined asfollows:

Viscousdiffusion rate u m

- Molecular(mass) diffusion rate D rD

m m

C

where u is the kinematic viscosity , D,, is the mass diffusivity, m is the dynamic viscosity

of the fluid. The Schmidt number is important in problems involving both momentum and
convection mass transfer. This provides a measure of the relative effectiveness of the
momentum and mass transport by diffusion in the velocity and concentration boundary layers
respectively. For convection mass transfer in laminar flows, it determines the relative
velocity and concentration boundary layer thickness.

Soret Number (S,)

Dka (Tw _Too)
uT,(C,-C,)

where u isthe kinematic viscosity, T,, and T _ are the temperature of the fluid at the wall and

The Soret number isdefined as, S, =

far away from the plate respectively as well as C, and C_ are the concentration of the
species at the wall and far away from the plate, D, is the coefficient of mass diffusivity, k;

isthe thermal diffusion ratio, T,, isthe mean fluid temperature respectively.
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Dufour Number (D, )

The Dufour number isdefined as, D, = D,kr (C,—C.)
c.c U (TW —Tw')

where, D, is the coefficient of mass diffusivity, u is the kinematic viscosity, T,, and T are

the temperature of the fluid at the wall and far away from the plate respectively as well as
C, and C_ arethe concentration of the species at the wall and far away from the plate, c.is

the concentration susceptibility, k; is therma diffusion ratio, c,is the specific heat at
constant pressure respectively.

Thermal Stratification Parameter (S;)

The thermal stratification parameter isdefined as, S; = - ZTX %{Tw(x)}
w oo, x=0

where x is the characteristic length, T, is the temperature at the wall, T, _, is the ambient

temperature a the leading edge of the plate, di {T_(x)} is constant.
X

Mass Stratification Parameter (S; )

2X

d
A

whether mass stratification parameter isdefined as; S, = o
0

00, X=

where X isthe characteristic length, C,, isthe concentration of the species at thewall, C, ,_,

is the ambient concentration at the leading edge of the plate, di {Cw (x)} is constant.
X

Nusselt Number (N,,)

The Nusselt number is used to measure the enhancement of heat transfer when convection

takes place and is defined as follows
_convectiveheat transfer coefficient  hL

u= - —— = — Isperpendicular to the flow direction.
conductionheat transfer coefficient  k,

where L =characteristic length which is ssmply volume of the body divided by surface area

of the body (useful for more complex shape), Kk;thermal conductivity of the fluid,

h=convective heat transfer coefficient. A Nusselt number close to one, namely convection
and conduction of similar magnitude, is characteristic of “slug flow” or laminar flow. A
larger Nusselt number corresponds to more active convection, with turbulent flow typically
in the 100-1000 range.
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Sherwood number (S,)

The Sherwood number is a dimensionless number used in masstransfer operation. It
represents the ratio of length scale to the diffusive boundary layer thickness and is named in
honor of Thomas Kilgore Sherwood and is defined as follows:

_ Convective masstransfer coefficient kL
== Diffusive masstransfer coefficiet D

It is the mass transfer equivalent of the Nusselt number where, k is the overall mass transfer
coefficient, L isthe characteristic length, D isthe component diffusion coefficient.

1.4 Suction and Injection

Suction or injection on the boundary layer control played significant role in the field of
aerodynamics and space sciences. The effect of suction on hydromagnetic boundary layer is
of great interest in astrophysics. It is often necessary to prevent separation of the boundary
layer to reduce the drag and attain high lift values. Many authors have made mathematical
studies on these problems, especially in the case of steady flow.

On the other hand, one of the important problems facing the engineers engaged in high speed
flow is the cooling of the surface to avoid the structural failures as a result of frictional
heating and other factors. In these respect the possibility of using injection at the surfaceis a
measure to cool the body in the high temperature fluid. Injection of secondary fluid through
porous walls is of practical importance in flim cooling of turbine blades combustion
chambers. In such applications injection usually occurs normal to the surface and the injected
fluid may be similar to or different from the primary fluid. In some recent applications,
however, it has been recognized that the cooling efficiency can be enhanced by vectored
injection a an angle other than 90° to the surface. Inger and Swearn (1975) have
theoretically proved this feature for a linear boundary layer. In addition, most previous
calculations have been limited to injection rates ranging from small to moderate. Shojaefard
et al. (2005) used suction/injection to control fluid flow on the surface of subsonic aircraft..
Many interests have been built in the study of flow of heat and mass transfer with suction or
injection because of its extensive engineering applications. In the area of steady flow of
viscous incompressible fluid over infinite porous plates subject to suction or injection,
various aspects of the problem have been investigated by many authors. Griith and Meredith
(1936) invstigated the possible improvement in Aircrat performance due to use of boundary
layer suction. Das (2009) studied the effect of suction and injection on MHD three
dimensional couette flow and heat transfer through a porous medium.

Prasanna et al. (2012) studied MHD boundary layer flow of heat and mass transfer over a
moving vertical plate in a porous medium with suction and  viscous dissipation. Mutua et
al. (2013) was studied magnetohydrodynamic free convection flow of a heat generating fluid
past a semi-infinite vertical porous plate with variable suction. Numerical investigation of
buoyancy effects on hydromagnetic unsteady flow through a porous channel considering

suction and injection is to be found in the study by Makinde and Chinyoka (2013).
10



Dhaka University Institutional Repository

The unsteady MHD free-convection flow governed by the impact of suction or injection is
one of the distinguished present-day themes. For instance the process of suction or blowing
has also its importance in many engineering activities such as in the design of thrust bearing
and radial diffusers and thermal oil recovery. Suction is applied to chemical processes to
remove reactants and injection is used to add reactants, cool the surface, prevent corrosion or
scaling and reduce the drag (Labropulu et al. (1996)). Ahmed and Khatun (2013) carried out
atheoretical analysis on Magneto-hydrodynamic oscillatory flow in a planer porous channel
with suction and injection. They reported that suction/injection shifts the region of maximum
velocity away from the centerline and leads to non-symmetry in the velocity and temperature.

1.5 MHD Boundary Layer Phenomena

Boundary layer phenomena occur when the influence of a physical quantity is restricted to
small regions near confining boundaries. This phenomena occurs when the non-dimensional
diffusion parameters the Reynolds number and the Peclet number or the magnetic Reynolds
number are large. The fundamental concept of boundary layer was suggested by Prandtl
(1904), it defines the boundary layers as a layer of fluid developing in flows with relatively
low viscosity as compare with inertial force. The boundary layer is characterized by an
abrupt change in the transverse direction of velocity (a hydrodynamic boundary layer),
temperature (a thermal boundary layer) or concentration of individual chemical components
(adiffusion boundary layer). The viscosity, thermal conductivity and diffusivity of the fluid
are the principal influences on the formation of the flow in a boundary layer.
Prandtl fathered classical fluid dynamic boundary theory by observing, from experimental
flows that for large Reynolds number, the viscosity and thermal conductivity appreciably
influenced the flow only near a wall. When distant measurements in the flow direction are
compared with a characteristic dimension in that direction, transverse measurements
compared with the boundary layer thickness and velocities compared with the free stream
velocity, the Navier-Stoks and energy equation can be considerably simplified by neglecting
small quantities. The number of component equations is reduced to those in the flow
direction and pressure changes across the boundary layer are negligible. The pressure is then
only afunction of the flow direction and can be determined from the inviscied flow solution.
Also the number of viscous term is reduced to the dominant term and the heat conduction in
the flow direction is negligible.
MHD boundary layer flows are separated into two types by considering the limiting cases of
a very large or a negligible small magnetic Reynolds number. When the magnetic field is
oriented in an arbitrary direction relative to a confining surface and the magnetic Reynolds
number is very small, the flow direction component of the magnetic interaction and the
corresponding Joule heating is only a function of the transverse magnetic field component
and local velocity in the flow direction. Changes in the transverse magnetic field component
and pressure across the boundary layer are negligible. The thickness of the magnetic
boundary layer is very large and the induced magnetic field is negligible. However, when the
magnetic Reynolds number is very large, the magnetic boundary layer thickness is small and
11
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is of nearly the same size as the viscous and thermal boundary layers and then the MHD
boundary layer equations must be solved simultaneoudly. In this case, the magnetic field
moves with the flow and is called frozen mass. When afluid is electrically conducting and a
uniform steady magnetic field acts perpendicular to the channel walls, the structure of the
flow changes drastically. The profile becomes flat in the so-called core as a result of the
electromagnetic breaking effect, this breaking is due to the intraction of the induced electric
current with applied magnetic field.

Moreover, two boundary layers develop in the vicinity of the walls. This layer has been
theoretically predicted and experimentally characterized by Julius (1937) that present one of
the most important characteristic features of MHD flows. This layer is one of the few flows
that are amenable to rigorous analytic treatment. MHD boundary layer is a parading of MHD
flow and develops when a liquid metal flows under the influence of a steady magnetic field.
The book of Schilchting (1968) is an excellent collection of the boundary layer analysis.

1.5.1 MHD and Heat Transfer

With the advent of hypersonic flight, the field of MHD, as define above, which has
attracted the interest of aero dynamists and associated largely with liquid metal pumping. It
is possible to alter the flow and the heat transfer around high velocity vehicles provided
that the air is sufficiently ionized. Further more, the invention of high temperature facilities
such as the shock tube plasma jet have provided laboratory sources of following ionized
gas, which provide an incentive for the study of plasma accelerators and generators. As a
result of this, many of the classical problems of fluid mechanics have been reinvestigated.
Some of these analyses awake out of the natural tendency of scientists to search a new
subject. In this case it was the academic problem of solving the equations of fluid
mechanics with a new body force and another source of dissipation in the energy equation.
Some time there were no practical applications for these results. As for example, natural
convection MHD flows have been of interest to the engineering community only since the
investigations, directly applicable to the problems in geophysics and astrophysics. But it
was in the field of aerodynamic heating that the largest interest was awaked.

Rossow (1957) presented the first paper on this subject. His result for incompressible
constant property flat plate boundary layer flow indicated that the skin friction and heat
transfer were reduced substantially when a transverse magnetic field was applied to the
fluid. This encouraged a multitude analysis for every imaginable type of aerodynamic flow,
and most of the research centered on the stagnation point, where in hypersonic flight, the
highest degree of ionization could be expected. The results of these studies were sometimes
contradictory concerning the amount by which the heat transfer would be reduced (some of
this was due to misinterpretations and invalid comparison). Eventually, however, it was
concluded that the field strength, necessary to provide sufficient shielding against heat
fluxes during atmospheric flight, where not competitive (in terms of weight) with other
method of cooling (Sutton and Gloersen (1961)). Comprehensive reviews of convective

12
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heat transfer in porous medium can be found in the books by Neild and Bejan (2013),
Patankar and Spalding (1970), Rohsenow (1998) and Gosman et al.(1969).

1.5.2 Convection

In the studies related to heat transfer, considerable effort has been directed towards the
convective mode, in which the relative motion of the fluid provides an additional mechanism
for the transfer of energy and material, the latter a more important consideration in cases
where mass transfer, due to concentration difference, occurs. Convection is the collective
movement of ensembles of molecules within fluid (e.g. liquids, gases), since, athough the
fluid motion modifies the transport process, the eventua transfer of energy from one fluid
element to another in its neighborhood is through conduction. Also, at the surface, the
process is predominantly that of conduction because the relative fluid motion is brought to
zero at the surface. A study of the convective heat transfer therefore involves the mechanisms
of conduction and sometimes, those of radiative processes as well, coupled with those of
fluid flow. Convection plays a major role in transporting energy from the centre of the Sun to
the surface and movements of the hot magma beneath the surface of the earth. In context of
heat and mass transfer, the term “convection” is used to refer to the sum of advective and
diffusive transfer. Note that in common use the term convection may refer loosely to heat
transfer by convection, as opposed to mass transfer by convection, or the convection process
in general.

Natural convection/Free convection

Natural convection is a mechanism or type of heat transport, in which the fluid motion is not
generated by any external source (like a pump, fan, suction device, etc) but only by density
differences in the fluid occurring due to temperature gradients. In natural convection, fluid
surrounding a heat source receives heat, becomes less dens and rises. The presence of a
proper acceleration such as the rising from resistance to gravity, or an equivalent force
(arising from acceleration, centrifugal force or Coriolis effect), is essential for natura
convection. Natural convection has attracted a great deal of attention from researchers
because of its presence both in nature and engineering applications. Convection is also seen
in the rising plum of hot air from fire, oceanic currents and sea-wind formation (where
upward convection is aso modified by Coriolis forces). Natural or free convection has
attracted a great deal of attention from researchers because of its presence of both in nature
and engineering application. In engineering applications, convection is commonly visualized
in the formation of microstructures during the cooling of molten metals and fluid flows
around shrouded heat-dissipation fins and solar ponds. A very common industrial application
of natural convection is free air cooling without the aid of fans, this can happen on small
scales (computer chips) to large scale process equipment. Free convection flows are studied
because of their wide applications and hence it has attracted the attention of numerous
investigators.

Osborne Reynolds was first to make use of the mathematical similarity between the moment-
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um equation and energy equation in convection in 1874. The effects of magnetic filed on
natural convection heat transfer studied by Sparrow and Cess (1961). The transient free
convection flow past a semi-infinite vertical plate by integral method was first studied by
Segel (1958). Many researchers studied MHD free convection boundary layer flow on heat
and mass transfer, some of them, Jaluria, Y. (1980), Bgjan (1994), Alam and Sattar (2000).
Hady et al. (2006), Reddy et al. (2012), Asek and Benu (2013), Paraven and Rudraman
(2014), Sharma et al. (2014), Ahmmed et al. (2015), Reddy (2016).

1.5.3 Heat and Mass Transfer Flow

Heat and mass transfer are kinetic processes that may occur and be studied separately or
jointly. Studying them apart is simpler but both processes are modeled by similar
mathematical equations in the case of diffusion and convection (there is no mass transfer
similarity to heat radiation) and it is thus more efficient to consider them jointly.

Mass transfer is the net movement of mass from one location, usually meaning stream, phase,
fraction or component, to another. Mass transfer occurs in many processes, such as
absorption, evaporation, adsorption, drying, precipitation, membrane filtration, and
distillation. It is that involve diffusive and convective transport of chemical species within
physical system. In industrial processes, mass transfer operations include separation of
chemical components in distillation columns, absorber such as scrubbers, absorbers such as
activated carbon beds and liquid-liquid extraction. Mass transfer is often coupled to
additional transport process for instant in industrial cooling towers. In astrophysics mass
transfer is the process by which matter gravitationally bound to a body, usualy a star, fillsits
Roche lobe and becomes gravitationally bound to a second body, usually compact object.
Mass transfer finds extensive application in chemica engineering problems. Mass transfer is
used by different scientific disciplines for different processes and mechanisms. It is used in
reaction engineering, separation engineering, heat transfer engineering and many other sub-
disciplines of chemical engineering. Some common examples of mass transfer processes are
the evaporation of water from a pond to the atmosphere, the purification of blood in the
kidneys and liver, and the distillation of alcohol.

Heat transfer is a discipline of thermal engineering that concerns the generation, use
convection and exchange of thermal energy and heat between physical systems. Transfer
of heat is normally from a high temperature object to a lower temperature object. Heat
transfer changes the internal energy of both systems involved according to the First Law of
Thermodynamics. Additionally, subsidiary laws relating to fluid flow and rate equations
for different moods of heat transfer are also required for a complete solution. It has
applications in diverse fields of engineering, such as mechanical engineering,
metallurgical engineering, electrical engineering, chemical engineering, nuclear
engineering, aerospace engineering and space technology, cryogenic engineering, civil
engineering. In industries and nature many transport process exist in which heat and
mass transfer take place simultaneously as a result of combined buoyancy effect of
thermal diffusion and diffusion of chemical species. The phenomenon of heat and mass
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transfer is observed in buoyancy induced motions in the atmosphere, in bodies of water,
guasi-solid bodies, such as earth and so on. In the past decades an intensive research
effort had been devoted to problems on heat and mass transfer in view of their
application to astrophysics, geophysics and engineering. In addition, the phenomenon of
heat and mass transfer is also encountered in chemical process industries. The combined
effect of heat and mass transfer can result in significant temperature changes and
increased energy transfer rates at a wet surface. The mgjority of heat transfers used in
the plastic molding industry is manufactured by the screen printing process. Screen
printed heat transfers were introduced in the early 1960’s. These additional effects have
also been considered in several investigators, for example, the work of Groots and
Mozur (1962), Eckert and Drake (1972), Hurly and Jakeman (1971), Caldwel (1974).
The natural convection boundary layer flow generated in a fluid adjacent to a heated,
vertical semi-infinite plate is one of the fundamental flows in heat and mass transfer.
Most studies have examined the fully developed flow with relatively few investigations
of the transient response to impulsive heating. Georgantopoulos et al.(1979) have
studied the effects of mass transfer on free convection problem in the Stokes problem for
an infinite vertical limiting surface. Georgantopolous and Nanousis (1980) have
consider the effects the mass transfer on free convection flow of an electrically
conducting viscous fluid (e.g. of a stellar atmosphere) past an impulsively started
infinite vertical limiting surface (e.g. of star) in the presence of transverse magnetic
field.

Recently, the heat and mass transfer problem associated with the boundary layer
saturated fluid under different physical conditions has been studied by several authors,
some of them are Das and Jana (2010), Farhad Ali et al. (2013), Alizadeh et al. (2015),
Emad et al. (2011), Mangathai, et al. (2015).

1.5.4 Effect of Rotation

The study of flow in rotating porous media is motivated by its practical applications in
geophysics and engineering. Hydromagnetic convection flow in a rotating medium is of
considerable importance due to its application in various areas of geophysics,
astrophysics and fluid engineering viz. maintenance and secular variations in Earth’s
magnetic field due to motion of Earth’s liquid core, internal rotation rate of the Sun,
structure of the magnetic stars, solar and planetary dynamo problems, turbo machines,
rotating MHD generators, rotating drum separators for liquid metal MHD applications,
chemical processindustry, ion propulsion, MHD bearings and rotating machinery etc. It may
be noted that Coriolis and magnetic forces are comparable in magnitude and Coriolis force
induces secondary flow in the flow-field.

In numerous hydromagnetic flows, rotation may aso take place and the centrifugal forces
can exert a significant effect on flow dynamics and heat transfer processes. Magnetic field
and Hall current effect on MHD free convection flow past a vertical rotating flat plate was
anayzed by Kirimi Jacob et al. (2012). Yantovskiy and Tolmach (1963) investigated
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centrifugal force effectson  rotating hydromagnetic generator configurations. Michiyoshi
and Numano (1967) investigated the performance characteristics of the vortex MHD
power generator using a partialy ionized gas as a working fluid, showing that
compressibility of the working fluid causes a much sharper decline of the radial velocity in
the radial direction than in the case of an incompressible fluid at subsonic speeds. Further
interesting studies of transient rotating hydromagnetic flow were reported by Katsurai
(1972) and Oliver (1974).

The steady and unsteady Eckman layers of an incompressible fluid have been investigated as
basic boundary layers in a rotating fluid appearing in oceanic, atmospheric, cosmic fluid
dynamics and solar Physics or geophysical problems. It is well known that, in arotating fluid
near a flat plate, an Eckman layer exists where the viscous and Coriolis forces are of the
same order of magnitude. Rotating flows are of considerable interest to engineers and
metrologists. An extensive survey of this type of flows and their various applications have
been given by Thamizhsudar and Pandurangan (2015), Veera Krishna et al. (2013),
Hannington Stuma et al. (2015), Khaled (2015).

1.5.5 Hall and lon-Slip Currents

The Hall effect has deep roots in the history of electricity and magnetism. In 1879 U.S.
Physicist Edwin H. Hall (Hall, 1879) made the momentous discovery that, when a current-
caring conductor is placed in a magnetic filed, the electromagnetic force “presses” its
electrons against one side of the conductor. One year later, He reported that his “pressing
electricity” effect was ten times larger in ferromagnetic iron (Hall, 1881) than in non-
magnetic conductors. Both discoveries were remarkable, given how little was known at the
time about how charge moves through conductors. For this role, the Hall effect was
frequently called the queen of solid-state transport experiments. If the magnetic field is
perpendicular to electric field, there will be an electromagnetic force which is perpendicular
to both magnetic and electric field. Such a force will cause the charged particles to movein
the direction perpendicular to both magnetic and €electric field. Then a new component of
electric current density in the direction perpendicular to both magnetic and electric field
which is known as Hall current. The Hall effect can be used to measure certain properties of
current carries as well as to detect the presence of a current on amagnetic field.

The electric field or Hall field is a result of the force that the magnetic field exerts on the
moving positive or negative particles that constitute the electric current as well as ion-dip
current. This current always has a tendency to move from positive to negative. The electric
current density J represents the relative motion of charged particles in a fluid. The equation
of the electric current density may be derived from the diffusion velocities of the charge
particles Hughes and Young (1966), Pai (1962), Shercliff (1965)). If the Hall and ion-dlip
terms are retained in generalized Ohm’s law, then the current density is given by ( Sutton and
Sherman,1965)

J:s(E+qAB)—W§teJAB+%[(JAB)AB] (15.5.1)

2
0 0
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where qisthe velocity vector, E istheintensity vector of the electric field, J isthe electric
current density, Bis the magnetic induction vector, w,and w;,are the electron and ion

cyclotron frequencies, t, and t, are the collision times of electrons and ions. In the

generalized Ohm’s law (1.5.5.1), the second term on the right side gives rise to the Hall
effect and the last term introduces ion-dlip. Hall coefficient defines the ratio of the induced
electric field to the product of the current density and the applied magnetic field. Under these
conditions, the Hall and ion-dlip are important and they have market effect on the magnitude
and direction of the current density and consequently on the magnetic force term. Severa
investigators have studied the effects of magnetic fields on the convection heat and mass
transfer by ignoring the Hall and lon-dlip termsin Ohms law were ignored. However, in the
presence of strong magnetic field, the influence of Hall current and ion-slip are important.
The heat transfer aspect of MHD channel flow, on taking into account Hall current, was
studied by Cowling (1957). The combined effects of the Hall and ion-dlip currents on heat
transfer have been studied by Mital and Bhat (1980). An analysis of the MHD couette flow,
taking into account the Hall and ion-dlip effects, has been carried out by Soundalgeker et al.
(2979) for fully developed flow. The effects Hall and ion-dlip currents on free convective
heat generating flow in arotating fluid have studied by Ram (1995). The transient Hartmann
flow with heat transfer considering the ion-dlip has been investigated by Attia (2005, 2006 ).
Attia (2009) has studied the ion-dlip effect on unsteady coquette flow with heat transfer under
exponential decaying pressure gradient. The combined effects of Hall and ion-dlip currents
on unsteady MHD coquette flows in rotating system have been investigated by Basant K Jha
and Apere (2010). Mark et. al. (2014) investigated Hall current effects on aflow in avariable
magnetic field past an infinite vertical, porous flat plate. Dilegp and Priyanka (2012) studied
heat transfer effects on rotating MHD couette flow in a channel partially filled by a porous
medium with Hall current. Singh et al. (2016) studied the effects of Hall current and ion-
dip on unsteady hydromagnetic generalized couette flow in a rotating Darcian channel.
MHD free convection heat and mass transfer flow through a porous medium bounded by a
vertical surfacein presence of Hall current were analyzed by Tawa et al. (2012).

1.5.6 Soret (Thermal-diffusion) and Dufour (Diffusion-thermo)
numbers

Soret and Dufour effects are interesting physical phenomenon in fluid mechanics, when heat
and mass transfer occur simultaneously, the relations between the fluxes and the driving
potentials are of a more intricate nature. It has been found that energy flux can be generated
not only by temperature gradients but also by concentration gradients. The heat transfer
caused by a concentration gradient is termed as diffusion thermo (Dufour) effect. On the
other hand, mass transfer created by temperature gradients is called as thermal-diffusion
(Soret) effect. Generaly, in heat transfer process, the Soret and Dufour effects are neglected
because they are smaller order of magnitude than the effects described by Fouriers and
Ficks laws. The thermal-diffusion(Soret) effect, for instance, has been utilized for isotope
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separation, and in mixture between gasses with very light molecular weight (H 0 He) and of

medium molecular weight (N,,air), the diffusion-thermo (Dufour) effect was found to be of

a considerable magnitude such that it cannot be ignored. In view of the importance of these
above mentioned effects, Dursukanya and Worek (1992) studied diffusion-thermo and
thermal-diffusion effects in transient and steady natural convection from a vertical surface.
Panneerselvi and Kowsalya (2015) analyzed ion-Slip and Dufour effect on unsteady free
convection flow past an infinite vertical plate with oscillatory suction velocity and variable
permeability. Venkata et al. (2014) investigated Dufour and Soret effects on unsteady MHD
free convection flow past a semi-infinite moving vertical plate in a porous medium with
viscous dissipation. Kafoussias (1992) studied the MHD free convection and mass transfer
flow past an infinite vertical plate moving on its own plane taken into account the thermal
diffusion effect. Nanousis (1992) extended the work of Kafoussias (1992) to the case of
rotating fluid taken into account the Soret effect. Emmanuel et al. (2008) studied numerically
the effect of thermal-diffusion and diffusion thermo on combined heat and mass transfer of a
steady MHD convective and dlip flow due to a rotating disk with viscous dissipation and
Ohmic heating. Ahmed (2009) considered free convective heat and mass transfer of an
incompressible, eectrically conducting fluid over a stretching sheet in the presence of
suction and injection with thermal-diffusion and diffusion-thermo effects Many researchers
studied MHD free convection flow with Soret and Dufour effect, some them, Srinivasa et al.
(2014), Govardhan et al. (2012), Bishwa and Animesh (2016).

1.5.7 Porosity Medium

Porosity is the ratio of pore volume to its total volume. Porosity or void fraction is a measure
of the void (i.e. empty) spaces in a material, and is afraction of the volume of voids over the
total volume. The term porosity is used in multiple fields including pharmaceutics, ceramics,
metallurgy, materials, manufacturing, earth sciences, soil mechanics and engineering.
Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and
composition. Porosity is related properties of any rock or loose sediment. Most oil and gas
has been produced from sandstones. These rocks usualy have high porosity. Porosity is
absolutely necessary to make a productive oil or gas well. The petroleum geologist must stay
focused on the porosity of the prospective reservoir. Porosity consists of the tiny spaces in
the rock that holds the oil or gas. Mathematically, porosity is the open space in arock divided
by the total rock volume (solid + space or holes). The holes in sandstone are called porosity
(from the word “porous”). The skeletal portion of the material is often called the “matrix” or
“frame”. The pores are typically filled with a fluid (liquid or gas). The skeletal material is
usually a solid, but structures like foams are often also usefully analyzed using concept
of porous media. Properties for any porous media of interest may also be specied. The
following properties are required:

1. Porosity

2. Viscous resistance
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3. Inertia resistance
A porous medium is most often characterized by its porosity. Other properties of the medium
(e.g., permeability, tensile strength, electrical conductivity) can sometimes be derived from
the respective properties of its contituents (solid matrix and fluid) and the media porosity and
pores structure, but such a derivation is usually complex. Even the concept of porosity is only
straight forward for a poroelastic medium.
Many natural substances such as rocks and soil (e.g. aquifers, petroleum reservoirs), zeolites,
biological tissues (e.g. bones, wood, cork) and made materials such as cements and ceramics
can be considered as porous media. Many of their important properties can only be
rationalized by considering them to be porous media. The concept of porous mediaisused in
many areas of applied science and engineering, filtration, mechanics (acoustics,
geomechanics, soil mechanics, rock mechanics), engineering (petroleum engineering, bio-
remediation, construction engineering), geosciences (hydrogeology, petroleum geology,
geophysics), biology and biophysics, material science etc. Fluid flow through media is a
subject of most common interest and has emerged a separate field of study. The study of
more genera behavior of porous media involving deformation of the solid frame is called
poromechanics.
The literature is rich with references dealing with MHD free convection flows in presence of
porous medium for instance Pop and Watanabe (1994). Before 1996 , the effects of the
presence of a transverse magnetic field on the natural convection of an electricaly
conducting fluid boundary layer flow in a high porosity and thermally stratified medium have
not been considered. Hydromagnetic natural convection from an isothermal inclined surface
adjacent to a thermally stratified porous medium was studied by Chamkha (1997). Many
researchers studied MHD free convection boundary layer flow heat and mass transfer high-
porosity medium, some of them are Al-Humoud and Chamkha (2006), Takhar et al. ( 2003).
Anwar (2005).

1.5.8 Stratification

Stratification is a characteristic of al porous media surrounded by differentially heated and
salted side walls and enclosed regions of porous structures. The dynamics of flowsin a
thermally stratified fluid are aso important and arise in many contexts, ranging from
industrial settings to the oceanic and atmospheric environments. Influence of stratification is
an important aspect in heat and mass transfer analysis. Stratification is a formation/deposition
of layers which occur due to temperature variations, concentration differences, or the
presence of different fluids. In practical situations where the heat and mass transfer
mechanisms run paralel, it is interesting to analyze the effect of double stratification
(stratification of medium with respect to therma and concentration fields) on the
convective transport in micro polar fluid. The anaysis of free convection in a doubly
stratified mediumisa fundamentally interesting and important problem because of its broad
range of engineering applications. These applications include  heat reection into the
environment such as lakes, rivers, seas, thermal energy storage systems such as solar
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ponds and heat transfer from therma sources such as the condensers of power plants.
Although the effect of stratification of the medium on the heat removal processin afluid is
important, very little work has been reported in literature. The effect of stratification is an
important aspect in heat and mass transfer and has been studied by several researches. In
real-world situations where heat and mass transfer run simultaneoudly, it is significant to
investigate the effect of double stratification on the convective transport. A stratified fluid
consisting of fluid parcels of various densities will tend under gravity to arrange itself so that
the higher densities are found below lower densities. The vertical layering introduces an
obvious gradient of properties in the vertical direction, which affects the velocity. Stratified
fluids are universa in nature, present in amost any heterogeneous fluid body such that
heterogeneous mixture in industries, salinity stratification in estuaries, density stratification
of the atmosphere. Thermal stratification is the scientific term that describes the layering of
bodies of water based on their temperature. As water heats and cools, it expands and
contracts, changing in density. Thermal stratification is a natural occurrence, in any static
body of water and occurs when the surface layer of water, warmed by the sun, becomes less
dense than the water lower it. Analysis of thermal stratification is very important for solar
engineering because higher energy efficiency can be achieved with better stratification and
aready shown by researchers that the thermal stratification in energy storage may
significantly increase system performance. Severa studies have been found to analyze the
influence of the combined heat and mass transfer process by natural convection in athermal
and /or mass stratified porous medium, owing to its wide applications, such as devel opment
of advanced technologies for nuclear waste management, hot dike complexes in volcanic
regions for heating of ground water, separation process in chemical engineering, etc. Here
stratified porous medium means that the ambient concentration of dissolved constituent
and/or ambient temperature is not uniform and varies as a linear function of vertica
distance from the origin. Chen and Eichorn (1976) have been anayzed that natural
convective flow over a heated vertical surface in athermal stratified medium using the local
non similarity method for the solution of the governing equations. When the heat and mass
transfer is present simultaneously then it is important to analyze the effect of double
stratifications on the convective flows, such flows involve in the rivers, lakes and seas,
thermal energy storage systems and solar ponds etc.

Although the effect of stratification of the medium on the heat removal process in a fluid is
important, very little work has been reported in the literature. The science of magneto
hydrodynamics (MHD) was concerned with geophysical and astrophysical problems for a
number of years. In recent years, the possible use of MHD isto affect a flow stream of an
electrically conducting fluid for the purpose of thermal protection, braking, propulsion and
control. More recent and relevant studies are also due to Akira Nakayama and Hitoshi
Koyama (1987), Narayana and Murthy (2006), Srinivas and Kishan (2014).
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Chapter 2

The Basic Equations

The equations governing the MHD convective flow of electrically conducting fluid in a
rotating vertical porous plate with porous medium in the presence of Hall and ion-dip
currents are;

2.1 Equation of Continuity

The mass conservation equation also called the continuity equation is derived from the law of
conservation of mass. Considering a section of the fluid flow region, the mass entering the
section equals the mass leaving this section such that there is no mass being created or
destroyed. For an unsteady fluid flow, the vector form of the continuity equation is derived in
many fluid mechanics text books such as (Curie, 1974).

a—r+i(r u)=0 (2.1.2)
ot 0X

where i =1,2,3 adong the x,y and z directions respectively. Since we are considering a

fluid flow that isincompressible, the density of the fluid is assumed to be constant and in this
case the continuity equation takes the form

Mg 2.1.2)
OXi

2.2 Momentum Equation

The conservation of momentum states that within some problem domain, the
momentum remains constant. Momentum is neither created nor destroyed but only changed

through the action of forces as described by Newton’s laws of motion. Newton’s
second law of motion states that the rate of change of momentum of abody is equal to the net
sum of resultant forces acting on the body. Considering a rotating frame of reference

with auniform  angular velocity Q2, the equation of momentum becomes:

A | NG+ 2WAq=F-ERp+uvig-Lq+L1IAB (2.2.1)
ot r k= r

where the MHD body force and Coriolis terms are included in the Navier-Stokes equations
to model the momentum equation.

Note that the pressure gradient and body force term are given by Z—P =—r_,0, and F, =-g,
X

. Combining the pressure and the body force term then introduce the volumetric coefficient
of thermal expansion and the concentration expansion co-efficient, then,

10P .
F _r_&: gOb(T_Too)+ gOb (C_Coo)

X

If the Hall and ion-slip terms are retained in generalized Ohm’s law, then the current density
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is given by (Sherma and Sutton, 1965)

J=s(E+qaB)- ey g Wi, B)AB] (2.2.2)
BO BO

where b, =w}  Hall parameter and b, =wt , ion-slip parameter.

In light of discussion in section 1.2, the basic electromagnetic equations of Maxwell’s &

Ohm’s law (with Hall and ion-dlip currents) are:

N.D=0 (2.1.3)
NJ=0 (2.2.4)
NB=0 (2.2.5)
NAH=J (2.1.6)
RNaE=-28 (2.2.7)
ot
D=e"E (2.2.8)
B=mH (2.2.9)
J=s(E+qAB)- éeJ AB+ ﬂ%¥h«JAMAB] (2.2.10)
0 0

2.3 Energy equation

The equation is based on conservation of energy which states that energy  is neither
created nor destroyed but can be transformed from one form to another. It is derived
from thefirst law of thermodynamics.

2 2 —
CLEN (@.N)T = K —— VT + u [ aq P Q(T, -T) (2.3.1)
ot rc, o LOX¢ 8x rcys rc,

where i,k =1,2,3. The electrical dissipation which is the heat energy produced by the work

2

done by electrical current. This dissipative heat due to electric currents is ‘;—,which is

the Joule heating.

2.4 Concentration Equation

The concentration equation is aso caled the diffusion equation and is based on the
principle of mass conservation for each component or constituent in a fluid mixture.
In the absence of chemical reactions, the rate at which the mass of some species enters a
control volume minus the rate at which the species mass leavesthe control volume is
equal to the rate a which the species mass is stored in the control volume. In this
case, the concentration equation given as

aa_c+(q R)C = D,, V°C + D, V2T (2.4.1)
The problems which will be dealt henceforth will fall into the categories that will be
specified by the above mentioned equations and hence they (above equations) would serve as

the basic governing equations.
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Chapter 3

The Calculation Techniques

Many physical phenomena in applied science and engineering when formulated into
mathematica models fall into a category of system known as non-linear coupled partial
differential equations. Most of these problems can be formulated as second order partia
differential equations. A system of non-linear coupled partial differential equations with the
boundary conditions is very difficult to solve analytically. No analytical solution is available,
the numerical method can be used. Nowadays there are several methods that enable us to
solve numerically the governing equations of heat transfer problems. These include: the finite
difference method, finite element method, finite volume method, boundary element method,
the sixth order Rung-Kutta method along with Nachtsheim-Swigert shooting iteration
technique etc. The numerical approce of partial differential equations is a broad subject.
Partial differential equations play one of the most important role of computer analyzes or
simulations of continuous physical systems, such as heat conduction, mechanics, fluids,
electromagnetic etc.

Hence two numerical procedures have been adopted to obtain solutions. A standard initial
value solver namely the sixth order Rung-Kutta method along with Nachtsheim-Swigert
Shooting iteration technique have been used as a first numerical technique. After that, the
governing equations are transformed by usual transformation into a non-dimensional system
of non-linear coupled partial differentia equations with initial and boundary conditions.
Hence the solution of our problem be based on advanced numerical methods. The explicit as
well as implicit finite differential method has been used for solving the obtained non-linear
coupled partial differential equations, initially one problem of this thesis has been solved
analytically based on the work of Ganapathy (1994).

3.1 Nachtsheim-Swigert Shooting Iteration Technique

To solve boundary layer equations by using Shooting method technique, there are three
asymptotic boundary conditions f "(0),g’(0) andqg'(0) .

Within the context of initial value method and Nachtsheim-Swigert iteration technique the
outer boundary conditions can be functionally represented as;

Flhme )= T'(£7(0),9'(0,9'(0) = d, (3.1.1)
9 e )= 9(f"(0),9'(0),0'(0)) =d, (3.1.2)
dlh ) =a(f"(0),9'0).9'(0))=d, (3.1.3)
with asymptotic convergences criteria are given by

f'lh )= '(£7(0),9'(0.0'(0))=d, (3.1.4)
9’0 e )= 9'(£7(0),9'(0),0'(0)) = d (3.L5)
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q'(h e )=0'("(0),9'(0),0'(0) = d¢ (3.1.6)
Now choosing,

f"(0) =g,

9'(0) =9, (3.1.7)
q'(0) =g,

Expanding first order Taylor series expansion after using the above equations (3.1.1)-(3.1.6)
yields;

£ )= 200 max)+%Agl +%;Agz +%Ags ~d, (318)
gh,.)=9., . )+ S—iAgl +§ngAg2 +%’3Ag3 =d, (3.1.9)
q(hmx):qc(hmax)+(;9—31Agl+§?qzAgz+§?qug3 =d, (3.1.10)
frh, . )=flh, . )+ %:Agl +%:Agz +%:Ag3 =d, (3.1.12)
g'bh,.)=9.h max)+%Agl +%Agz +%9;Agg =d, (3.1.12)
q'th,.)=a.b mx)+2%l'Agl + 23; Ag, +%Ag3 =d, (3.1.13)

The subscript ‘c’ indicates the value of the function at h  determine from the trial

integration. Solution of these equations in a least squares sense requires determining the
minimum value of the error as;

E=d’+d,” +d,* +d,” +d,° +d;’ (3.1.14)

Now differentiating E with respect to g,,9, and g, yields

d, od, +d, od, +d, od, +d, od, +d, ods +d, s _g (3115
o9, 09, 09, 09 09, 09,

o, 0 g 2 g s g e g 0y 4 g (31.16)
a9, 09, 09, 099, 09, 00,

d, od, +d, od, +d, od, +d, od, +d, ods +d, ods _ g (3.1.17)

d9; "0d9; 093 0g; 0Q; Qs
Applying equations (3.1.8) -(3.1.13) in equations (3.1.15)-(3.1.17), then obtained equation as
follows,

o) (ag) (oq) (ot (og') (og')
&) &) ) 5] &) (3] po
09, 09, 09, 09, 09, 09,
of' of ' og g o9 oq of"of” og' oy o aq}Ag2
_692 agl agZ 891 ag2 agl agZ agl agZ agl 8gZ agl
of' of' o9 o9 oq oq of"ot” og'og o aq}A3
1095 09, 093 09, 09309, 00y 09, 09 09; 09, 09,

+
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={fc’ L Y }
09, ~ 09, 09, 09, 09 <0G

{af of’ L ogog oq oq of"of” og' oy og’og }Agl
o9, 09, 09,09, 09,09, 09,09, 9,09, 0, g,

o'\ (og) (oq) (of") (ogY (oq'\
&) ) ) &) A&
a9, 09, 09, 09, a9, a9,
+[af of' .09 o9  oq oq  of"ot" og' o9’ o9’ o }Agg)

0900, 09509, 00; 0, 005 09, 0G5 09, 0 0G,
:_{f,af 09 09 0" o aq}

Cc +gC +qC C +gC +qC
09, 09, 09, 09, 09, 09,
{af o’ L og o9 oq oq of"of” og'og g’ og }Agl
09, 09; 09, 09, 09, 09, 09, 09, 09, 09, 09, 0Y;
| of ot o9 o9  oq og  of of” og' o9’ a9’ oq }Agz
_892 893 892 893 agz 893 agZ ag3 agZ 893 agZ ag3

'Y (og) (aq) (o) (o9 (oq')
&) ) ) %) &) &) po
20,) "(o0,) "\g,) "\a,) "l7a,) "(og,
of’ og of” ,09" 09

. oq .,
= fc +gc +qc + fc +gc +qc :|
09, 09, 09, 09, 09, 09,

From equations (3.1.18) to (3.1.20), the following equations obtained as follows;

allAgl + alZAgZ + a13Ags = b1
ayAQ; +a,AQ, +a,A0; = bz

aSlAgl + aazAgz + a33Ags = b3
where

of' oq ) (af"\ (eg') (oq')

o (5] () () (5] () (3
0 09, 09, 09, 09,

2 a 2 6f” 2 a , 2 a , 2

oo () (2 () ) () ()
09, 09, 09, 09, 09,

oq ) (of"\ (ag') (oq')

[ () () () (&) Y
095 09, 093 093 09,

+6q oq +af of

09, 09, 09, 09,

aq aq +6f"’6f"
09; 09, 093 9g,

A =

ag g9
0d, 09,

N o9’ og
ag, 09,

N -
a12 21 agzagl

of’ of'
+
093 09,

, 09’ g ]
g, 09,

, 04’ o J
095 09,

og a9 ,
093 09,

L 09' o9

Q3 = Ay :[ 893 o9,
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(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)
(3.1.22)
(3.1.23)

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)



a23=a32=(af of +ag ag+aq 8q+6f of +ag ag +aq an (3.1.29)

agS agz agS 892 agS 892 agS 892 agS agz agS 892

bﬁ{ fe i +0. o +d, A, fc"af +9. o +d; a } (3.1.30)

09, 0, 09, 09, 0G 0G,

b, =— f. A +0. aq +0, 9 + fc”af +0. q +0q, a } (3.1.31)
| %9, 09, 09, 09, 09, OQ,

b, =— f. A +0. q +0, 9 + fc”6f +0. e +0q, a9 } (3.1.32)
| 09; 093 d9;  d9; 093 " 0Gs

In matrix form, equations (3.1.21)- (3.1.23) can be written as follows;
ay ap a3 |(Ag, b
Ay @y 8yl|AQ, |=|b, (3.1.33)
a; 85 agp Ag, b,

Now solve the system of linear equations (3.1.33) by Cramers rule and obtained as follows;

_ detA
 detA

Ag,

det A,
AQ. — 3.1.34
9 = Gt A ( )

_ detA
 detA

where,

ay a, ag
detA=la,, a, ay (3.1.35)

Ay 8y Adg

b, a, a;
det A =b, a, a, (3.1.36)

by a;, ag

a, b a,
detA, =la, b, a, (3.1.37)

a; by ag

a, a, b
detA, =|a,, a, b, (3.1.38)

a31 a32 b3
Then the (unspecified) missing values g,,9, and g, are asfollows;

0, =0, +Ag, (3.1.39)
g, =9, +Dg, (3.12.40)
0; =0, +AQ, (3.1.41)
Thus adopting the Nachtsheim-Swigert iteration technique numerical described, a computer

AgQ,

26



program will be setup for the solution of the basic coupled non-linear ordinary differential
eguations of present problem where the integration technique will be adopted as the six order
Rung-Kutta method of integration. Based on the integrations done with the above numerical
technique, the obtained results will be presented in the appropriate section.

3.2 Finite Difference Technique

The finite difference method is the popular method and also the easiest one to apply to
problems with simple geometries. The computational domain is covered by a grid. Taylor
series expansion or polynomial fitting are used to approximate the derivatives of the
variables with respect to coordinates. Algebraic equations are achieved at each grid point and
the resulting set of equations can be solved simultaneously at each node.

In order to solve the governing partial differential equations by finite difference method, a
two-dimensional region as shown in Fig.3.2.1 is considered. It is covered by a rectangular
grid formed by two sets of lines
drawn parallel to the coordinate
axes with grid spacing Ax and
Ay in x and vy directions

A
y
y

respectively.

The numerical vaues of the
dependent variables are
obtained a the points of
intersection of the paralel lines,

called mesh points, lattice points

or nodal points. These vaues

are obtained by discrediting the
governing partial differential ;
equations over the region of //O
intersect to derive approxi- '
mately equivalent algebraic
equations. The discretization
consists of replacing each
derivative of the partial differential equation at a mesh point by a finite difference
approximation in terms of the values of the dependent variable at the mesh point and at the
immediate neighboring mesh points and boundary points. In doing so, a set of algebraic
equation arise.

Let the temperature T at a representative point be a function of two specia coordinates x, y

atimet + At

atimet

Fig.3.2.1 Space-Time index notation

and timet. We adopt the following notation. The subscripts i and j represent x and y
coordinates and superscript nrepresent time. Let the mesh spacing in X and y directions
are denoted by Ax and Ay aso the time step by At. Thus T(x,y,t) can be represented by

T(iAX, jAy,nAt) =T, . With this notation let us assume that the function T and its

derivatives are continuous. Then from Taylor’s series expansions, the finite difference
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approximations to derivatives can be obtained. For example, the Taylor’s series expansion of
T,,; about thegrid point (i, j) gives

o (A 9T (&) T (&%) '

T =T, +{Ax—+ o+ higher order terms] (3.21)
‘ oX
ij

i+1, ]

OX 21 ox? 3 ox° 4!

T.. -T.
or, (Z—T] :%qt O(Ax) is the forward difference approximation to the derivative
X )| X

a—T with atruncation error of order AX.

OX
Similarly,
AX)® 82 AX)’ Ax)* o

T,.,=T,- Axa—T—( ) 8T2+( ) 6&2—( ) 614_+higherorderterms (3.2.2)

OX 2 0ox 3l ox 4! ox N

i
8T Ti,j _Ti—l,j . . . . . .
or, ) A—+O(Ax) is the backward difference approximation to the derivative
X )i X

aa—T with atruncation error of order AX.
X

Both approximations are first order accurate.
Subtracting equation (3.2.2) from (3.2.1), we obtain

(aT jm Z@{o(m)z]

& 2AX

This is a central difference approximation to the derivative Z—T with a truncation error of
X

order(Ax)2 , which is second order accurate.

2
The central difference approximation to a second order partial derivative Z—T can be

X2
similarly obtained by adding the equations (3.2.1) and (3.2.2).
2 T, =21 +T_, .
0 12- _ i+ |,]2+ i-1,j +|:O(AX)2:|
X" ), | (Ax)

Similar expressions can be written for y derivative

(] e foty]

2 T..-2T . +T .
[a_-lz—J _ i,j+1 |,]2 |,J—1+|:O(Ay)2:|
¥ )i (ay)
which are also second order accurate.
The expressions for mixed derivatives can be obtained by differentiating with respect to each
variable in turn. Thus for example,

Thus (
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(aTJ _(a-rj Ti+1,j+1_Ti+l,j—1 _ Ti—l,j+1_Ti—1,j—1
(asz G [8Tj Y )y Ny, 2Ay 2Ay
i, i,

oxoy | ox\ oy 2AX 2AX
. 82-'— _ Ti+l,j+1_-I—i+1,j—l_Ti—1,j+1_Ti—1,j—1
oy ) AAXAY

Proceeding in a similar manner, the central difference approximation to the third derivative is
found to be

ﬂ _ Ti+2,j - 2Ti+1,j + 2Ti—1,j _-ri_zyj

o ). 20X

Similar approximations can be obtained even to higher order derivatives.
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Chapter 4

4.1 Unsteady MHD free convection and mass transfer flow
along a vertical oscillatory porous plate in a rotating
system with Hall, ion-dlip currents and heat source

The MHD mass transfer flow under the action of strong magnetic field plays a decisive role
in astrophysical and geophysical problems. Hall and ion-slip currents are likely to be
important in flows of laboratory plasma. In the study of magneto hydrodynamic fluid flow in
a rotating system has been motivated by several important problems, such as maintenance
and secular variations of earth’s magnetic field, the internal rotation rate of sun, the structure
of rotating stars, the planetary and solar dynamo problem, centrifugal machines etc.

Convection in porous medium has applications in geothermal energy recovery, oil extraction,
thermal energy storage and flow through filtering devices. The study of effects of magnetic
field on free convection flow is important in liquid-metals, electrolytes and ionized gases.
The thermal physics of hydro magnetic problems with mass transfer is of interest in power
engineering and metalurgy. The study of MHD viscous flows with Hall currents has
important engineering applications in problems of MHD generators and of Hall accelerators.
In recent years the theoretical study of MHD channel flows has been a subject of great
interest due to its widespread applications in designing cooling systems with liquid metals,
petroleum industry, and purification of crude oil, polymer technology, and centrifugal
separation of matter from fluid, MHD generators, pumps, accelerators and flow meters. The
first exact solution of Navier-Stokes equation with flow of viscous incompressible fluid past
a horizontal plate was oscillating in its own plane was investigated by Stokes (1851).
Turbatu et al. (1998) investigated the flow of an incompressible viscous fluid past an infinite
plate oscillating with increasing or decreasing velocity amplitude of oscillation. Combined
effects of Hall and ion-dlip currents on free convective heat generating flow past a semi-
infinite vertical flat plate have been investigated by Abo-Eldahab et al. (2000). Ramana et al.
(2011) anadyzed an unsteady MHD free convective mass transfer flow past an infinite
vertical porous plate with variable suction and Soret effect. Das et al.(2011) analyzed the
eeffect of heat source on MHD free convection flow past an oscillating porous plate in the
dip regime. Maji et al. (2009) investigated the Hall effects on hydromagnetic flow on an
oscillating porous plate. Jha and Apere (2012) investigated time-dependent MHD couette
flow of rotating fluid with Hall and ion-dlip currents. The study of heat generation or
absorption effects in moving fluids is important in view of several physical problems, such as
fluids undergoing exothermic or endothermic chemical reactions. Chaudhary and Arpita
(2007) studied combined heat and mass transfer effects on MHD free convection flow past an
oscillating plate embedded in porous medium. Joaquin et al. (2011) studied the combined
heat and mass transfer by natural convection from a semi-infinite plate submitted to a
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magnetic field with Hall currents. Okedoye (2013) investigated heat and Hall effect of an
oscillating plate in a porous medium. Ahmed et al. (2010) has studied the unsteady MHD free
convective flow past a vertical porous plate immersed in a porous medium with Hall current,
thermal diffusion and heat source. Muthucumaraswamy and Vijayalakshmi (2008) studied
the effects of heat and mass transfer on flow past an oscillating vertica plate with variable
temperature. Rajput and Gaurav (2016) investigated Soret effect on unsteady MHD flow
through porous medium past an oscillating inclined plate with variable wall temperature and
mass diffusion. Das et al. (2008) studied unsteady viscous incompressible flow due to an
oscillating plate in a rotating fluid. Revankar (2000) studied free convection effect on flow
past an impulsively started or oscillating infinite vertical plate.

Hence our aim is to investigate the unsteady MHD free convection and mass transfer flow
along a vertical oscillatory porous plate in a rotating system with Hall, ion-dlip currents and
heat source. Also the effects of different flow parameters encountered in the equations are
studied. The problem is governed by system of coupled nonlinear partial differential
eguations. The problem is solved by analytically in Case | and numerically in Case Il. The
effects of various parameters on the velocity, temperature, concentration, shear stresses (in x
and z -axes), Nusselt number and Sherwood number are discussed and presented graphically.

4.1.1 Governing Equations

Consider the unsteady flow of an electrically conducting incompressible viscous fluid past an
infinite vertical porous platey = 0. When the plate velocity U (t) oscillates in time t with a
frequency N and is given as U (t) =U,(1+cosnt). The flow is assumed to be in the
X—direction and which is taken along the plate in the upward direction and y-axis is

normal to it. Initialy the fluids as well as the plate are at rest
but for time t >0, the whole system is allowed to rotate with a
constant angular velocity Q about the y—axis. Initidly, itis

X

considered that the plate as well as the fluid is at the same
temperature. Also it is assumed that the temperature of the

plate and spices concentration are raised to T,(>T,) and

C,(>C,) respectively, which are there after maintained
Fig.4.1A Physical configuration

constant, where T, ,,C are temperature and spices g coordinate system

concentration at the wall and T, C_ are the temperature and
the concentration of the spices outside the boundary layer respectively, the physica
configuration of the problem is shown in Fig.4.1A. A uniform magnetic field B is acting
transverse to the plate. Using the relation V-B =0 for the magnetic field B = (B,, B,,B,),
B, = B, has been considered everywhere in the fluid ( B,is a constant). However, for such a
fluid, the hall and ion-dlip currents will significantly affected the flow in presence of large
magnetic fields. The induced magnetic field is neglected since the magnetic Reynolds
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number of a partially-ionized fluid is very small. If J=(J,,J,,J,) is the current density,
from the relation N-J =0, Jy =constant has been obtained. Since the plate is electrically
non-conducting, Jy = Oat the plate and hence zero everywhere. Since the plate is infinite in
extent, al physical quantities, except pressure, are functions of y and t only. The governing
equations for the problems are as follows,

Continuity equation; % =0 (4.1.1)

Momentum equation;

2
au+v%:u$+ g,b(T-T, )+ gob*(C—Cw)+2QW—uEu

a v 4.12)
__SB (@.u+b.w)

2 2
6_vv+va_vv:u6_\;v_29u_gw+ SZeBO ~(bu—a,w) (4.1.3)
ot oy oy k r iae +Db; )
Energy equation;

2 'e) —

ANV k_oT +Q(T°° T) 4.1.4)

+V—=
ot oy rc, oy’ re,
Concentration equation;

2 2
€y _p, 9C, Puke OT (4.15)
oa oy oy T, oy
where the variables and related quantities are defined in the Nomenclature.
Theinitial and boundary conditions for the model are;

u=0,w=0,T=T_,C=C_ for t<0 (4.1.6)
U=U,|1+ & (€7 +&™)| w=0,T=T,,C=C, & y=0, t>0

I ’ ’ w w ’ (4.1.7)
u=0,w=0,T=T,,C=C, a y—o o
4.1.2 Mathematical Formulation
Now aconvenient solution of equation (1) is
Vv = -V, (constant) (4.1.8)

where the constant velocity v, acting normal to the plate which is positive or negative for

suction or blowing. Using equation (4.1.8), the equations (4.1.2)-(4.1.5) become
Momentum equation;

2
a—u—voa—u:u%+ g,b(T-T,)+g,b’ (C-C, )+ ZQW—UEU

s B
- a;+°b2 (@.u+b,w) (4.1.9)

e e
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w) (4.1.10)

Energy equation;
or _, 0T _ k 2T Q(T,-T)

o oy rc, oy? re,
Concentration equation;
2 D k 2
%% _p 2°C Duk: T @112)
ot oy oy T, oy
Theinitial and boundary conditions for the model are;
u=0,w=0,T=T,_,C=C_ for t<0 (4.1.13)

(4.1.11)

_ e_l itn —itn _ — _— =
u_U{1+2(e +e )}W—O,T—TW,C—CW a y=0 t>0 (4.1.14)

u=0,w=0,T=T,,C=C, a y—o o
Equations (4.1.9)-(4.1.12) reduce to non-dimensional form, introducing the following non-
dimensional quantities;

2
Y:M,U:i,wzﬂ,t :tUO —

W ﬁ_,f: T-T, c- Cc-C,
u U, U, u uz T,-T, C,-C,
The non-dimensional system of coupled equations have been obtained by using the above
mentioned non-dimensional quantities in equations (4.1.9)-(4.1.12),
Momentum equation;

u_ U _ov

(4.1.15)

M(@U +bW)

= +G,T+G,C+2RW-gU - 4.1.16
o oy Ty FET G T (4.1.16)
oW | W oW M(bU -a W)
-1 = —-2RU - + = = 4.1.17
a v T W b (4117
Energy equation;
_ _ —
ﬂ—| a_1c¢ T2 —aT (4.1.18)
ot oY P oY
Concentration equation;
oC ,oC 10T _0T
-1 =— + 4.1.19
ot oY S oY? S°8Y2 ( )
The corresponding boundary conditions are as follows;
U=0,W=0T=0C=0 fort <0 (4.1.20)
_ e_’ iwt —iwt _ T _ 1~ _ _
U_1+2(e +e™)Ww=0T=1C=1 a Y=0t>0 121)

U=0W=0T=0C=0 as Yoo
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2 rc.u o)
Wha’el =V_O , =Q_l: , M — S eBozu ’ Pr — p , SC =L , al = Qu
U, U, ru, k D,, rcpug

G{: gob(TW—Tm)J]’Gm [: gob*(CW—Cw)JJ’ s{: Dka(TW—Tw)]’ g[= kuUsz

ud us

4.1.3 Solution Technique

4.1.3.1 Casel: Analytical Solution

The equations (4.1.16)-(4.1.17) have been further simplified by putting the fluid velocity in
complex form; Q(Y,t)= (U + iW). Then the system of coupled ordinary differential
equations become;

Q_, Q_aQ

ot oY oY?

o 2_
o ot _L10T a7 (4.1.23)

+G,T+G,C-xQ (4.1.22)
o oY Poy?
oC ,oC 10°C _o7T
-l e vz Tz
ot oY S oY oY

(4.1.24)

. _ Mf@,-b,)
h =U+I1W), x = 2R+ ——2——°%°
where Q= (U +iW), x =g + 2iR+ a7 b?

The corresponding boundary conditions (4.1.20) and (4.1.21) are now transformed in the
following form;

Q=0,T=0,C=0 fort<0 (4.1.25)

t >0, Q=1+%(eth +e™) T=1,C=1 a Y=0
Q=0,T=0C=0 as Yo
In order to solve the equation (4.1.22)-(4.1.24) with the boundary condition (4.1.26) in the

neighborhood of the plate, the unsteady flow is superimposed on the mean steady flow. In
fact owing to the appearance of iin the ensuing differential equations, the solution must be a

(4.1.26)

linear combination of €" and €™ where w the frequency of oscillation, following equations
is have been considered by Ganapathy (1994);

QY = Qo)+ S [ Q) +e ™ Q1) (4.1.27)
TY,L)=T,(Y)+ %[e‘“’t T,(Y) +e ™ T, (Y)] (4.1.28)
C(Y,t)=C,(Y)+ %'[e”“ C,(Y) +e™ C,y(Y)] (4.1.29)

where Q, =U, +W,, Q +Q, =U, +iW,
The equations (4.1.22)-( 4.1.24) become by equation (4.1.27)-( 4.1.29) are asfollows,
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2
(2\?20 +1 a@%’ -xQ,+G,T,+G,C,=0
% 3; | 5@3 +G.T,+G,C,—(x +iw)Q, =0 (4.1.30)
a6YQ22 a&% +G T, +G,C, - (x -iw)Q, =0
2T
0 T2 | P ﬂ— PT =0
oY oY
62T aT ) —
+IP——-(@aP +iwP )T, =0 4131
8Y2 aY ( r r)-rl ( )
07T, oT, . _
+IP—=—-(aP —-iwP JT, =0
8Y2 r 8Y ( r)TZ
o%C, 0T,
+1 S—=
62C1 8C1 . — 0°T,
+ —iwSC,+S.S 1-0 4.1.32
8Y2 c oY c1 SO c 2 ( )
2/~ ~ 20
0 sz s, oC, 8 T -0
oY oY

The appropriate boundary conditions for the equations (4.1.25)-(4.1.26) are as follows;
Qozl-lT()zj_,c_:():l aY=0

I B 4.1.33
Q,=0T,=0C,=0 asY—w ( )
Q=1T,=0,C,=0 aY=0 (4.1.33)
Q=0T,=0C,=0 asY-w .
Q,=1T,=0,C,=0 aY=0 (4.1.35)

Q,=0,T,=0,C,=0 aY->wo
Solving equation (4.1.30)-(4.1.32) by using boundary conditions (4.1.33)-(4.1.35), the
following equations have been obtained,;

Q=Be -Be™ -Be™

Now putting the values of Q,,q,.f,,Q,,0,.f,,Q,,0,.f, in equation (4.1.27)-(4.1.29) then the
following equations are as follows;

Q=B M —Be ' - BeA5Y+2e'Wte A13Y+2e*""’t oY
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T=egh
C=Ae" +Ae
where the values of A, A, A, A A, As Ay B,B,,B;,B,,B;, B,,B.and other constants

are defined in appendix.

4.1.3.2 Casell: Numerical Solution

The governing second order non-linear coupled partial differential equations have been
solved with the associated initial and boundary conditions. For solving a transient free
convection flow with mass transfer N\
past an infinite plate, the implicit

finite difference method has been t

used by Callahan and Marner i1 il i1
(1976) which is conditional stable. ORNY—¢ ® —8—9—9 >y
On the contrary, the same problem
has been studied by Soundalgekar
and Ganesan (1980) by an implicit
finite difference method which is =0 i=1 i=2 i=3 =m
fast convergent and unconditional
stable. But Calahan and Marner
(1976), Soundalgekar and Ganesan (1980) have been found same result using different
methods on the same problem. The implicit finite difference method has been used to solve
the equations (4.1.16)-(4.1.19) with boundary conditions (4.1.20). For the purpose, a
rectangular region is considered where Y varies from O to 25. Thisvalue Y, is supposed

<—A\Y>

Fig.4.1.B Finite difference grid space

to represent o and lies well outside the momentum, energy and concentration boundary
layers. In this case, the region within the boundary layer is divided by some perpendicular
lines of Y -axis, where Y -axisis normal to the medium as shown Fig.4.1.B. Number of grid
spacing in Y -direction is m(= 400), hence the constant mesh size along Y -axis become
AY =0.06(0<Y < 25) with asmaller time step At =0.001.

Let U",W", T" and C" denoted the values of U, W, T and C at the end of a time-step.
Then an appropriate set of finite difference equations corresponding to the equations
(4.1.16)-(4.1.19) are asfollows,

um-u" UL -U; Ul -0 +U,

| i =GT"+G C"+ +2RW" —gU"
L A A N T T
M
- @ U"+bW"
aj+bez( o)
Vvin+l _Vvin O VV|21 _\/\/in _V\/if:l—Z\Ni” +Vvi21 _2RU" —g\Nn
At AY  (av) -
¢ (4.1.37)
+ bU"-a W"
aez+bez( S )
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_n+1__'n _.n __ln _'n _ _'n _ _

Ti Tl - T|+l Tl :iTH-l 2T| 2+T|—1 _a-l—in (4138)
At AY P (AY)

__n+1___n __n ___n __n _2__n __n -rn_z-IT_n -rn

C| CI _| C|+1 CI — i C|+l CI 2+ Cl—l + SO i+1 i 2+ i-1 (4139)
At AY S (AY) (AY)

Theinitial and boundary conditions are obtained as

Ul=0W°=0,T°=1,C’=1 (4.1.40)

Ul=1,W,/=0,T,"=1,C =1

0 0 _o _o (4.1.42)
U'=LW"=0,T"=,C"=1 whereL > o

Here the subscripts i designate the grid points with Y coordinates and the superscript n
represents a value of time, t =NAt where N =0,123,...The primary velocity U,
secondary velocityW , temperature T and concentration C distributions at all interior nodal

points may be computed by successive applications of the above finite difference equations.
The obtained values are discussed graphically.

4.1.4 Stability and Convergence Analysis

The analysis will remain incomplete unless discussion the stability and convergence of the
finite different scheme. For the constant mesh sizes, the stability criteria of the scheme may

be established as follows. The genera terms of the Fourier expansion for U,W, T, C at a

time arbitrarily called t =0 are €27 apart from a constant, wherei =+/-1. At atimet later,
these terms become
U:y (t)e?"

W: x(t)e?"

T: q(t)e”
C:f(t)e®
Substituting (4.1.42) into equations (4.1.36) - (4.1.39), over any one time step and denoting
the values after thetime step by y ',x’,q"and f ' gives after simplifications

(4.1.42)

y ®)=Dy (t)+Ex({)+Fq(t)+Gf ) (4.1.43)
XG)=Hy (t)+Ix() (4.1.44)
q®)=Jq() (4.1.45)
fqt)=Kq(t)+Lf(t) (4.1.46)
where
At [ aay 2At Ma At
D=1-gAt +I E(é —1)+(AY)2 [oosaAY—l]—m
| =1+1 %(eia“ —l)+(i$t)2 (cosaAY —1)—gAt _%

1 2t

(a7 (cosaAY —1)—aAt

J=1+I i—:((e‘a“ ~1)+

-0
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L=1+1 £(eiaAY —1)+i2Lt2(cosaAY—1) , E:{ZR— Zﬂbez}m
AY S (AY) a; +b;
F=GAt G=GAt H :%—2% K:S)Atz(cosaAY—l)
as+bg (AY)

The equations (4.2.50) to (4.2.53) are written in matrix form;

y') (D EFE G\y

"l IlH 100

X X (4.1.47)
q’ 0 0J 0]lqg

f) lo o K L

i.e. h'=Th wherei.e. h isthecolumn vector with elementy ,x,q and f . For stability, the

modulus of each eigenvalue of the amplication matrix T must not exceed unity. Let
At 2At

CAYT(AY)
Then D=1-1a—-b-gAt +1 ae®"" + bcosaAY
| =1—-1 a—b—gAt +1 a€®* +bcosaAY
J=1-1 a—g—aAt +1 ae™" +£cosaAY

jaAY

L=1-1I a—£+l ae +S£cosaAY

C C
The coefficients a and b are al rea and non-negative. We can demonstrate that the
maximum modulus of D,l Jand L occur when aAY =mp , where m is an integer and

hence D,l Jand L are rea. For sufficiently large, the value of |J|,|L|,|D|and |I| are

greater when m isan odd integer, in which case

D=(1-la-b)+(-l a—b-gAt)
| =(1-1 a—b)+ (-l a—b—gAt)

J=(1—Ia—£}+[—la—£—amj
R P
L= 1—Ia—£ + —Ia—£

S S

To satisfy the condition|J|<1,|L| <1, |D|<1 and |I|<1 the most negative allowable valueis

J=-1,L=-1,D=-1,1=-1
Hence the stability conditions are

I a+b+%gAt <1

I a+b+%gAt <1
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[ a+£+1aAt <1
P 2

r

Ia+£§1

C

4.1.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood
number. The following equations represent the shear stress at the plate. The shear stressin x
and z components are as follows;

ty :n{@] andt,, :n{a—WJ which are proportion to [Qj and [%j :
ay y=0 8y y=0 aY Y=0 aY Y=0

From the temperature field, the effect of various parameters on the local heat transfer
coefficients has been studied. The following relation represents the heat transfer rate that is

well known Nusselt number. Nusselt number N, = —k(a—Tj which is proportional to
y=0

aT.
o )y

And from the concentration field, the effect of various parameters on the mass transfer
coefficients has been analyzed. The following relation represents the mass transfer rate that is

well known Sherwood. Sherwood number S, = —Dm(gJ which is proportional to
y=0

)
oY ),

The numerical values of the shear stress, Nussdt number and Sherwood number are
evauated by Five-point approximation formula for the derivatives. The obtained values are
discussed graphically.

4.1.6 Results and Discussion

4.1.6.1 Justification of Grid Space

The code is conversed with three different grid space m= 350,400,450 where m is the grid

number. It is seen that there is alittle change for the above mentioned grid points which are

shown in Fig.4.1C. For saving power and time, the computation for results of velocity,

temperature and concentration have been carried out form=400.

4.1.6.2 Steady-State Solution

The numerical solutions of the non-linear differential equation (4.1.9)-(4.1.12) under the

boundary conditions (4.1.13)-(4.1.14) have been performed by applying implicit finite

difference method. In order to verify the effects of time step sizeAt , the programming code

is run our model with different step sizes such ast =10,40,80,90,100,110,120. To get
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Steady-State solutions, the computations have been carried out up tot =120. It is observed

that, the result of computations for U,W, T andC , however shows little changes aftert =80.

Thus the solutions of all variables for t =90 are essentiadly steady-state. Grid space and
steady state solution are shown for rotational parameter R in Fig.4.1C and Fig. 4.1D for
primary velocity.

t =120

R=02 R=0.2
U 2t \ m=450 b =02, g=10 A b =02, g=10
M =05, G, =50 t =110 M =05,G, =50

be =0.3,G,, = 2.0
S =051 =10 I
1

b, =03G,, =20
S, =051 =1.0
P =07La =05

m= 400
P =07La =05

05

I TR
00 1

30 O 10 20 30 40

0 20 ‘ ‘ ‘

_ Y —_— Yy
Fig.4.1C Primary velocity for different grid space of Fig.4.1D Primary velocity for different time step
rotational parameter R rotational parameter R

Unsteady MHD free convection and mass transfer flow along a vertical oscillatory porous
plate in arotating system with Hall, ion-slip currents and heat source have been investigated
using anaytically as well as numerically. To study the physical situation of this problem, the
primary velocity, secondary velocity, temperature and concentration distribution within the
boundary layer have been computed and aso find the Shear stress, Nusselt number and
Sherwood number at the plate. The velocity in x-direction is called primary velocity and that
of in z-direction is called secondary velocity. For the purpose of discussing the effects of
various parameters on the flow behaviors in the boundary layer. Numerical calculations have

been carried out for different values of Hall parameter(b,), ion-slip parameter(b, ), magnetic
parameter(M ), rotation parameter( R), Prandtl number( P ), suction parameter(l ), Schmidt
number (S,), Grashof number(G,), modified Grashof number(G, ), Soret number (S)),
permeability parameter(g) and heat source parameter(a ). It is observed that these
parameters affect the velocity, temperature and concentration fields. The values for the
parameters are chosen arbitrarily. Some standard values for the Prandtl number (P ) and
Schmidt number (S.) are considered because of the physical importance. These are
P =0.71 corresponds to air, P =1.00corresponds to electrolyte solution such as salt water
and P. =7.0 corresponds to water 20°C and Schmidt number S, the values 0.60, 0.78,1.0

are considered, which represent specific condition of flow (0.60for water vapor, 0.78 for
ammonia, 1.0for carbondioxid). The importance of cooling problem in nuclear engineering
in connection with the cooling of reactors, the values of G and G, are taken to be positive.
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For the purpose of computation, wt=p /2, e'=0.001 have been chosen arbitrarily. For

brevity negligible effects on velocity, temperature and concentration distributions are not
shown.

Discussion of Analytic solution (figures of 1% column)
and
Numerical Solution (figures of 2" and 3" columns)

To observe the physical situations of the problem, the primary velocity, secondary velocity,
temperature and concentration distribution have been displayed in Figs.4.1.1-4.1.29 and
Fig.4.1.30(a)-4.1.58(a) in case of analytical(case ) and numerical(case I1) solutions. Also in
numerical solution, the physical importance of the problem with the above mentioned
parameters, the shear stresses (in x and z-axes), Nusselt number and Sherwood number have
been displayed in Figs. 4.1.30(b)-4.1.58(b).

Figs. 4.1.1, Fig. 4.1.3, Figs. 4.1.30(a) and Fig. 4.1.32(a) depict the variation in the primary
velocity profiles for different values of Hall parameter (b,.) and ion-slip parameter (b;) in
case of analytic and numerical solutions of the problem. These figures indicate that, the
primary velocity increase with the increase of Hall and ion-dlip parameters. This is because
the effective conductivity decreases with increasing b, and b; which reduces the magnetic
damping force on primary velocity. Due to analytical and numerical solutions of the problem
theses figures are qualitatively identical but quantitatively different. Similar trend arises in
secondary velocity profiles with the increase of b, which can be found in Fig.4.1.2 and
Fig.4.1.31 (a) in case of anaytic and numerical solutions respectively. These two figures are
qualitatively identical but quantitatively different. But the secondary velocity profiles have
decreasing effect with the increase of b; which are shown in Fig.4.1.4 and Fig.4.1.33 (a).

Also these two figures are qualitatively identical but quantitatively different. In numerical
solution, the shear stresses in x-axis increases with the increase of b.and b; which are
shown in Fig. 4.1.30(b) and Fig. 4.1.32(b). The shear stress in z-axis increases with the
increase of b, while the opposite behavior is shown for increasing b; which are shown in
Fig. 4.1.31(b) and Fig. 4.1.33(b) for numerical solution. The Hall effect accelerated the fluid
flow along secondary direction, as a result rate of flow aong z-axis increases, so the shear
stressalong z- axisisincreased.

From Fig.4.1.5 and Fig. 4.1.34(a) it is seen that the primary velocity decrease with the
increase of permeability parameter (g) in case of analytic and numerical solutions. It is

expected physically aso because the resistance posed by the porous medium to the
decelerated flow due to the rotation reduces with increasing g which leads to decrease in the

primary velocity. From these two figures, it is indicated that the qualitative behavior are
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same but quantitatively different. The variations of secondary velocity for various values of
g in case of anaytic and numerical solutions are plotted in Fig. 4.1.6 and Fig. 4.1.35(a)
respectively. From these figures it is observed that secondary velocity increases with the
increase of g. From these two figures it is seen that the qualitatively identical but
guantitatively different. In numerical solution, the shear stressin x-axis decreases whereasin
z- axis has reverse effect with the increase of g which are found in Fig. 4.1.34(b) and Fig.
4.1.35(b).

It is observed that there isrise in the primary velocity with the increase of modified Grashof
number (G,,) in Fig. 4.1.7 and Fig. 4.1.36(a) in case of analytic and numerical solutions
respectively. This expected, increase in the values of G, has the tendency to increase the
mass buoyancy effect, which givesrise to an increase in the induced flow. These two figures
are qualitatively identical but quantitatively different. From Fig. 4.1.8 and Fig. 4.1.37(a) it is
found that the modified Grashof number has reverse effect on secondary velocity field in
case of analytic and numerical solutions. From these two figures it is seen that the qualitative
nature of the flow is identically same but quantitatively different. In numerical solution the
shear stress in x- axis increases with the increase of G,, which is shown in Fig. 4.1.36(b).
The modified Grashof number has the tendency to increase mass buoyancy force, as a result
the rate of the flow of the fluid increases. Thus shear stressin Xx- axis increases in numerical
solution. Whereas the shear stress in z- axis decreases with the increase of G, which is
shown in Fig.4.1.37(b).

Fig.4.1.9, Fig.4.1.10, Fig 4.1.38(a) and Fig 4.1.39(a) show the variation of primary and
secondary velocity profiles for various values of Grashof number (G, ) in case of analytic
and numerical solutions respectively. Fig.4.1.9 and Fig 4.1.38(a) revea the primary velocity
variation with (G, ) correspond to cooling of the plate. It is observed that greater cooling of
the plate i.e. increase in G, results an increase in primary velocity in case of analytic and
numerical solutions respectively. It is expected, that the increase in the values of thermal
Grashof number has the tendency to enhancement of thermal buoyancy force. This givesrise
to an increase in the induced flow. These two figures are qualitatively same but
guantitatively different. Opposite behavior are found in case of secondary profiles for
increasing values of G, which are shown in Fig.4.1.10 and Fig. 4.1.39(a) in both cases. Due
to analytic and numerical solutions Fig.4.1.10 and Fig. 4.1.39(a) are qualitatively identical
but quantitatively different. In numerical solution, the shear stress in Xx- axis increases
whereas shear stress in z- axis decreases with the increase of G, which are shown in Fig.
4.1.38(b) and Fig. 4.1.39(b).

Fig.4.1.11- Fig.4.1.14 and Fig.4.1.40 (a)- Fig.4.1.43 (a) illustrate the influence of suction
parameter (1 ) on the velocity (primary and secondary), temperature and concentration
distribution in case of analytic and numerical solutions respectively. It is seen that the
primary velocity decreases with the increase of suction parameter for both analytic and
numerical solutions which are shown in Fig.4.1.11 and Fig.4.1.40 (a). Since the effect of
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suction isto suck away the fluid near the wall, the momentum boundary layer is reduced due
to suction. These two figures are qualitatively same but quantitatively different. But
opposite behavior is found on secondary velocity which are shown in Fig. 4.1.12 and
Fig.4.1.41 (a) in case of analytic and numerical solutions. These two figures are qualitatively
identical but quantitatively different. In Fig. 4.1.13, Fig. 4.1.14, Fig.4.1.42 (a) and Fig.
4.1.43(a), it is found that increasing | decreases temperature and concentration distributions
in case of analytic and numerical solutions. Sucking decelerated fluid particles through the
porous wall reduces the growth of thermal and concentration boundary layers. These four
figures are qualitatively identical but quantitatively different. In numerical solution, the shear
stressin x- axis decreases whereas shear stressin z- axis increases with the increases of |
which are found in Fig. 1.4.40(b) and Fig. 4.1.41(b). In Fig. 4.1.42(b) and Fig.4.1.43 (b), the
Nusselt and Sherwood numbers increase with the increase of | for numerical solution.

From Fig. 4.1.15 and Fig.4.1.44 (a), it is found that the primary velocity decreases with an
increase of magnetic parameter (M ) in case of analytic and numerical solutions respectively.
The presence of magnetic field in an electrically conducting fluid introduces a force called
Lorentz force. This force has tendency to slow down the motion of the fluid. These two
figures are qualitatively same but quantitatively different. Whereas reverse effects are found
in case of secondary profiles for increasing values of M which are shown in Fig.4.1.16 and
Fig. 4.1.45(a) in both cases. The result indicates that the resulting Lorentzian body force will
not act as a drag force. Due to anaytical and numerical solutions Fig.4.1.16 and Fig.
4.1.45(a) are qualitatively identical but quantitatively different. In numerical solution the
shear stressin Xx- axis decreases whereas shear stressin z- axis increases with the increases
of M , which arefound in Fig. 4.1.44(b) and Fig. 4.1.45(b).

InFig. 4.1.17 and Fig.4.1.46 (a) illustrate that the primary velocity profiles decrease with the
increase of Prandtl number P, in case of analytic and numerical solutions. This is because in
the free convection the plate velocity is higher than the adjacent fluid velocity and the
momentum boundary layer thickness decreases. These two figures are qualitatively identical
but quantitatively different. The secondary velocity has reverse effects which is shown in
Fig.4.1.18 and Fig.4.1.47 (a) in case of analytic and numerical solutions. These two figures
are qualitatively same but quantitatively different. From Fig.4.1.19 and Fig. 4.1.48 (a), it is
found that the temperature profiles decrease with an increase of P in case of analytic and
numerical solutions. Because if P increases, the thermal diffusivity decreases and these
phenomena lead to the decreasing of energy ability that reduces the thermal boundary layer.
These two figures are qualitatively identical but quantitatively different. The shear stress in
X - axis decreases while shear stressin z- axis has opposite behavior which is shown in Fig.
4.1.46(b) and Fig.4.1.47 (b) in case of numerical solution. The Nusselt number does not show
approximately any change with an increase of P. which is shown in Fig. 4.1.48(b) for
numerical solution.

It isclear that Fig.4.1.20, Fig.4.1.21, Fig.4.1.49 (a) and & Fig.4.1.50 (@) display the effects of
rotational parameter (R) on the velocity (primary and secondary) in case of anaytic and

numerical solutions. The primary and secondary velocities decrease with the increase of R.
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This implies that rotational retards fluid flow in the primary and secondary flow directions.
These four figures are qualitatively same but quantitatively different in case of analytic and
numerical solutions. The shear stressin x- axisand z- axis decrease with the increase of R
which are shown in Fig. 4.1.49(b) and Fig.4.1.50 (b) for numerical solution.

It is clearly shown in Figs.4.1.22 and Fig.4.1.51 (@) the effects of Schmidt number (S,) on

primary velocity profiles for both analytic and numerical solutions. The primary velocity and
concentration distributions decrease with the increase of S, . Thisis due to a decrease in the
molecular diffusivity, which results in a decrease in the velocity and concentration boundary
layer thickness. These four figures are qualitatively identical but quantitatively different in
case of analytic and numerical solutions. But opposite behaviors are shown on secondary
velocity in Fig. 4.1.23 and Fig.4.1.52 (a) in case of analytic and numerical solutions. These
two figures are qualitatively same but quantitatively different. The shear stress in x- axis
decreases whereas shear stressin z- axis increases with the increase of S, which are shown

in Fig.4.1.51 (b) and Fig.4.1.52 (b) for numerical solution.
Figs4.1.24, Fig. 4.1.26, Fig. 4.153(a) and Fig.4.1.55 (a) depict the velocity and
concentration profiles for different values of the Soret number (S,) in case of analytic and

numerical solutions. The primary velocity and concentration distributions increase with the
increase of §;. The Soret number defines the effect of the temperature gradients inducing

significant mass diffusion effects. It is noticed that an increase in S resultsin an increase in

the velocity and concentration within the boundary layer. These four figures are qualitatively
identical but quantitatively different for anaytical and numerical solutions. Whereas
decreasing effects on secondary velocity which are shown in Fig.4.1.25 and Fig.4.1.54 (a) in
case of analytic and numerical solutions. These two figures are qualitatively identical but
quantitatively different. The shear stressin X- axis increases whereas shear stressin z- axis
has reverse effect with the increase of S, which are shown in Fig.4.1.53 (b) and Fig.4.1.54

(b) in case of numerical solution. Also the Sherwood number has decreasing effect with
increasing S, which isseenin Fig.4.1.55 (b) in case of numerical solution.

The effects of increasing the value of the heat source parameter (a ) is to decrease the
primary velocity and temperature distribution which are shown in Fig. 4.1.27, Fig.4.1.29,
Fig.4.1.56 (a) and Fig.4.1.58 (a) for both anaytic and numerical solutions respectively. This
is expected due to the fact that when heat is absorbed, the buoyancy force decreases the
velocity and temperature distribution. These four figures are qualitatively identical but
guantitatively different. But secondary velocity has reverse effects with increasing a which
are shown in Fig.4.1.28 and Fig.4.1.57 (@) in case of analytic and numerical solutions. These
two figures are qualitatively identical but quantitatively different. The shear stressin x-axis,
decrease while shear stress in z-axis, Nusselt number increases with the increase of a

which are shown Fig.4.1.56 (b) and Fig.4.1.57 (b), Fig.4.1.58 (b) for numerical solution.
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From these figures it is observed that for the effect of corresponding parameter in case of
analytic and numerical solutions the qualitative characters of the flows are identically same
but quantitatively behavior are different.
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different values of Hall parameter b,
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Fig.4.1.3 Primary velocity profile for
different values of ion-slip parameter
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Fig. 4.1.30(a) Primary velocity profile
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Fig. 4.1.31(a) Secondary velocity profile
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Fig. 4.1.32(a) Primary velocity profile
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Fig. 4.1.30(b) Shear stressin x -axisfor
different values of Hall parameter b,
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Fig. 4.1.31(b) Shear stressin z - axisfor
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Fig.4.1.4 Secondary velocity profile for
different values of ion- dip parameter
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Fig.4.1.5 Primary velocity profile for
different values of permeability
parameter g
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Fig.4.1.33(a) Secondary velocity profile

for different values of ion-dlip parameter
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Fig.4.1.33(b) Shear stressin z - axisfor
different values of ion-slip parameter b;
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Fig.4.1.34(b) Shear stress in x - axisfor
different values of permeability
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Fig.4.1.7 Primary velocity profile for
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Fig.4.1.8 Secondary velocity profile for
different values of modified Grashof
number G,
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Case |l (Numerical solution)
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Fig. 4.1.36(a) Primary velocity profile
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Fig.4.1.37(a) Secondary velocity profile
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Fig. 4.1.38(a) Primary velocity profile
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Cesel (AnaMic solution)
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Fig.4.1.10 Secondary velocity profile
for different values of Grashof number
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Fig.4.1.12 Secondary velocity profile
for different values suction parameter
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Case |l (Numerical solution)
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Fig.4.1.39(a) Secondary velocity profile
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Fig. 4.1.40(a) Primary velocity profile
for different values of suction parameter
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Case | (Analytic solution)
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Fig.4.1.13 Temperature profile for
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Fig.4.1.14 Concentration profile for
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Case | (Analytic solution)
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Fig.4.1.16 Secondary velocity profile
for different values of magnetic
parameter M
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Fig.4.1.45(a) Secondary velocity profile
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Case | (Analytic solution)
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Fig.4.1.22 Primary velocity profile for
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4.1.7 Appendix

AZ=|Pr+ (IR)2+4Ra , A =1S,, &:ﬁ, Asz(l—Aa); A,:I+— V|2+4X

’

2 IS.—A 2
. @,-b,) | +4/1%+4B, | +./12+4B,
X =0+ 2R+ £ £ ) =, = ’ :Gr+ Gm'
g aez+bez AI.S 2 A19 2 Bl A4
B, B,
B,=AG ,B=———+*——,B,=——<—,B=1+B,+B,,
2 As m 3 Azz—lAz—X 4 A§—|A3—X 5 BS 4

By =x+Iw, By =x—-1w

References

Abo-Eldahab, E.M. and Aziz, M. A. (2000), Hall and ion-dlip effects on MHD free convective
heat generating flow past a semi-infinite vertical plate flat plate, ‘Physica Scripta’, vol.61,
p344-348.

Ahmed, N., Kalita, H. and Barua, D. P. (2010), Unsteady MHD free convective flow past a
vertical porous plate immersed in aporous medium with Hall current, thermal diffusion

and heat source, ‘International Journal of Engineering, Science and Technology’, vol.2,
No. 6, p59-74.

Callahan, G. D. and Marner, W. J. (1976), Transient free convection flow with mass transfer
on an isothermal vertical flat plate, ‘International Journa of Heat and Mass Transfer’,
vol.19(2), p165-174.

Chaudhary, R. C and Arpita Jain (2007), Combined heat and mass transfer, effects, on MHD
free convection flow past an oscillating plate embedded in porous medium, ‘Romanian
Journal of Physics’, vol.52, Nos. 5-7, p505-524.

Das, S, Jana, M., Guria, M. and Jana, R. N. (2008), Unsteady viscous incompressible flow
due to an oscillating plate in arotating fluid, ‘Journa of Physical Sciences’, vol.12, p51-
64.

Das, S S, Mishra, L. K. and Mishra, P. K. (2011), Effect of heat sourceon MHD free
convection flow past an oscillating porous plate in the slip regime, ‘International Journal
of Energy and environment’, vol.2(5), p945-951.

Ganapathy, R. (1994), A note on oscillatory couette flow in a rotating system, ‘ASME
Journal of Applied Mechanics’, vol.61, p208-209.

Jha, B. K. and Apere, C. A. (2012), Time-dependent MHD couette flow of rotating fluid
with Hall and ion-dip currents, ‘Applied Mathematics and Mechanics’. -Engl. Ed.,
vol.33(4), p399-410.

Joaquin Zueco, Luis Ma Lopez-Ochoa, Pablo Eguia and Joaquin Collazo (2011), Combined

56



heat and mass transfer by natural convection from a semi-infinite plate submitted to a
magnetic field with hall currents, ’Engineering Applications of Computational Fluid
Mechanics’, vol.5, No. 2, p188-200.

Maji, SL., Kanch, AK., Guria, M., Jana, R.N. (2009), Hall effects on hydromagnetic flow on
an oscillating porous plate, ‘Applied Mathematics and Mechanics’, —Engl. Ed. 30(4),
p503-512.

Muthucumaraswamy, R. and Vijayalakshmi, A. (2008), Effects of heat and mass transfer on
flow past an oscillating vertical plate with variable temperature, ‘International Journal of
Applied Mathematics and Mechanics’, vol.4(1), p59-65.

Okedoye, A. M. (2013), Heat and Hall effect of an oscillating plate in a porous medium,
‘Advancesin Agriculture, Sciences and Engineering Research’, vol.3(7), p972-983.

Ramana Reddy, G. V., Ramana Murthy, Ch. V. and Bhaskar Reddy, N.(2011), Unsteady
MHD free convective mass transfer flow past an infinite vertical porous plate with
variable suction and Soret effect, ‘International Journal of Applied Mathematics and
Mechanics’, vol.7(21), p70-84.

Rajput, U. S. and Gaurav Kumar (2016), Soret effect on unsteady MHD flow through porous
medium past an oscillating inclined plate with variable wall temperature and mass
diffusion, ‘International Research Journal of Engineering and Technology’, vol.3(5),
p2353-2358.

Revankar, S. T.(2000), Free convection effect on flow past an impulsively started or
oscillating infinite vertical plate, ‘“Mechanics Research Communications’, vol.27, p241-
246.

Sondalgekar, V. M. and Ganesan, P. (1980), Transient free convection flow past a semi-
infinite vertical plate with masstransfer, ‘Regional Journa of Energy, Heat and Mass
Transfer’, vol.2, p83-91.

Sokes, G. (1851), On the effect of the interna friction of fluid on the motion of pendulum,
“Transactions Cambridge Philosophical Society’, vol.9, p8.

Turbatu, S, Buhler K. and Zierep, J. (1998), New solutions of the Il Stokes problem for an
oscillating flat plate, * Acta Mechanica’, vol.129, p25-30.

57



4.2 MHD free convection and masstransfer flow through
avertical oscillatory porous plate with Hall, ion-dip
currentsand heat sourcein arotating system

The study of a magnetohydrodynamics (MHD) free convection flow, with Hall and ion-dlip
currents, has important engineering applications in power generators, MHD accelerators,
refrigeration coils, transmission lines, electric transformers and heating elements. The
phenomenon of rotation is always encountered and is very often observed in cosmic and
geophysical sciences. In present years, a considerable attention has been given to the study of
hydrodynamic and hydromagnetic boundary layer flows in a viscous incompressible fluid in
arotating system. There are several engineering situations where in combined heat and mass
transfer arise, such as dehumidifiers, humidifiers, desert coolers, chemica reactors; the
interest in the new problems generates from their importance in liquid metals, electrolytes
and ionized gases. On account of their varied importance, the flows have been studied by
several authors are Seth et al. (2011), they investigated the effect of rotation on unsteady
hydromagnetic natural convection flow past an impulsively moving vertical plate with
ramped temperature in a porous medium with thermal diffusion and heat absorption. Murali
(2015) investigated unsteady MHD free convection viscous dissipative flow past an infinite
vertical plate with constant suction and heat source/sink. Effect of viscous dissipation on
flow over astretching porous sheet subjected to power law heat flux in presence of
heat source was investigated by Khaled (2016). Alam et al (2014). Unsteady MHD free
convective heat transfer flow along a vertical porous flat plate with internal heat generation.
Effects of Hall current and heat transfer on the flow in a porous medium with slip condition
have been described by Hayat and Abbas (2007). Ghara et al. (2012) have discussed Hall
effects on oscillating flow due to eectrically rotating porous disk and a fluid at infinity.
Smita et al. (2015) investigated the effects of Hall current on transient convective MHD flow
through porous medium past an infinite vertical oscillating plate with temperature gradient
dependent heat source. The numerical solutions of heat and mass transfer effects of an
unsteady MHD free convective flow past an infinite vertical plate with constant suction and
heat source or sink were studied by Ambethkar (2009). Nazibuddin and Sujit (2012) studied
MHD couette flow with heat transfer in presence of constant heat source. Bhavana et al.
(2013) investigated the Soret effect on free  convective unsteady MHD flow over avertica
plate with heat source. Anjali and Wilfred (2011) studied thermo diffusion effects on
unsteady hydromagnetic free convection flow with heat and mass transfer past a moving
vertical plate with time dependent suction and heat source in adlip flow regime.  Seth et al.
(2012) investigated the effects of Hall current and rotation on unsteady MHD  couette flow
in the presence of an inclined magnetic field. Hall current effect on magnetohydrodynamic
free convection flow past a semi infinite vertical plate with mass transfer was studied by
Emad and Elsayed (2001). Ram(1991) studied MHD convective flow in a rotating fluid
with Hall and ion-dip currents. Hall and ion-dlip effects on MHD free convective heat
generating flow past asemi-infinite vertica flat plate were studied by Emad and Mohaned
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(2000).

In this study the MHD free convection and mass transfer flow through a vertical oscillatory
porous plate with hall, ion-slip currents and heat source in a rotating system have been
considered. The problem is governed by system of coupled nonlinear partial differential
equations whose exact solutions are difficult to obtain. The problem is solved by finite
difference method. The effects of the various parameters entering into the problem are
discussed and are illustrated graphically. The numerical values of local and average shear
stress, local and average Nusselt number, local and average Sherwood number at the plate
are discussed for various values of physical parameters and presented graphically.

4.2.1 Governing Equations

Consider a unsteady, laminar, incompressible, free convection boundary layer flow of an
electrically conducting fluid along a semi-infinite vertical porous plate with the origin at the
leading age. When the plate velocity U (t) oscillates in time t with afrequency n andis given

as U(t)=Uq(1+ cosnt). In this problem the temperature and
concentration of the fluid at initialy T,,C, everywhere and
the temperature and concentration at the plate T,,,C,, in the
presence of a strong magnetic field normal to the plate. A
rectangular Cartesian coordinates (x,Y,z)taking x and y as
the coordinates parallel and normal to the plate. Let the z-axis
be coincident with the leading age of the plate. An external
strong magnetic field B is applied in the y-direction. The

Fig.4.2A Physical configuration
induced magnetic field is neglected, since the magnetic  and coordinate system

Reynolds number is assumed to be very small. Due to Hall

current, there is aforce in z-direction which induces a cross flow in that direction and hence
flow becomes three dimensional. The physical configuration and coordinate system is shown
in Fig.4.2A. The governing equations within the boundary layer and Boussnesq’s
approximations may be written as follows;

Continuity equation; a + ol =0 (4.2.1)
ox oy

Momentum equation;

2
a—u+u@+va—u:ua—l,;+ gob(T-T,)+ gob*(C—Cw)+2§2w—gu
ot ox oy oy K
) 4.2.2)
__ S (@.u+b.w)
rlaz+b2) " °
2 2
W M WO N 20u-Lw+ SzeBO ~(bu—a,w) (4.2.3)
ot ox oy oy k r iae + b )
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Energy equation;

2
Ay k °T Q. -T) (4.2.4)
ot oX ay rcp ay rcg
Concentration equation;
2 2
oC 6C+ ac_D 6C+DkaaT (4.25)

ot T Ty T o

where all physical quantities are defined in the Nomenclature.

Theinitial and boundary conditions are as follows;

t<0, u=0,v=0,w=0T=T,C=C, everywhere (4.2.6)
t>0, u=0,v=0,w=0,T=T_,,C=C_ a x=0

_ ith —itn _ _ _ — —
u=u {1+ 2(e +e )},V—O,W—O,T_TW,C—CW a y=0 @27
u=0,v=0,w=0,T=T_,,C=C_ as y—>wo

4.2.2 Mathematical Formulation

The problem is simplified by writing the equations in the non-dimensional form. Now
introduce the following non-dimensional quantities are as follows;

2 _
x="oy Woy Uy VW, WY, M
u u U, U, U, u Us (4.2.8)
F_T-T. g_c-C.
T.-T.'” C,-C,

Then introducing the dimensionless quantities (4.2.8) in equations (4.2.1)-(4.2.5)
respectively, the following dimensionless equations have been obtained as,

WL 29
oX oY
U U U U = = M (a +bW)
— U= +V—="—"+GT+G,C+2RW—-gU ———
ot ox oy ayr o g (aZ+b?) (4.2.10)
bU-aW

aW+U aV\/+V6W:82V\2/—2RU—gW+ (b, ) (4.2.11)
a X Ay oY (aZ+b?)

_ -
o Uﬂ vﬂziﬁz— T (4.2.12)
o oX oY P oY

_ - -
C.uE, v§=i602+som2 (4.2.13)
ot aX oY S oY oY

The corresponding boundary conditions are as follows;
t <0, U=0V=0W=0,T=0, C=0 (4.2.14)
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!

U:1+%(eiw‘ +e™)W=0T=1,C=1 a Y=0t>0

(4.2.15)
U=0,W=0T=0C=0 as Yo owm
_ * _ g rcu
Where, Gr — gOb(TW3 Too)“‘l ' Gm — gOb (C:W3 Coo)J ' M — S eBOZu ' Pr — p ,
U, U, rug S

_u _ Dk (T, -T,) _Qu ~ Qu _u?
S{‘ ij’ S"(‘ uTm<cW—cw>J’ R{ usj’ ( rcpus) 9(‘ kus)

4.2.3 Solution Technique

The governing second order nonlinear coupled dimensionless partial differential equations
have been solved with the associated initial and boundary conditions. For simplicity the
explicit finite difference method has been used to solve the equations (4.2.9)-(4.2.13) with
initial and boundary conditions (4.2.14)-(4.2.15). To obtain the finite difference equations the
region of the flow is divided into a grid or mesh of lines parallel to x and Yy axes where X -
axis is taken aong the plate and v -

axis is normal to the plate. Here the . X8
plate of height X, (=100)iS |.=m
considered i.e. x varies form 0Oto I_+2 i+1,j.;1 i+lJ i+1j+1
100and  assumed Yoo (<25 as i,j-1' y fi,j+1
correspondingto Y® ¥ i.e. Yvaries to AX I ' . 2 1
from 0t025. There are m=150and i-1 — .

, . -1j-1 i-LjirLj+1
n=150grid spacing in the x and . E—
v directions respectively as shown in =0 AY | R
Fig.4.2B. Itisassumed that ax and =0 j-2  j-1 i j+1 J'+2j=n'rY
AY are constant mesh sizes along Fig.4.2.B Finite difference grid space
x and v directions respectively and
taken as follows, AX =067(0< X <100, AY=017(0<Y<25 with the smaller time step
At =0.001.

Let u’,w,T'and Cddenote the values of u,w,T and C at the end of time-step respectively.

Using the explicit finite difference approximation in to partial differential equations (4.2.9)-
(4.2.13) then obtained an appropriate set of finite difference equations are as follows,
U/, -Uiy; +v,j_1—v

! HESN) (4.2.16)
AX AY
U’ —-uU. . U . -U. .. U..-U. U —-2U +U. .
i,]j i,] +Uij i,j i-1,j +\/ij i,j+1 i,j - i,j+1 |,12 I,J—l_i_Gr-l-ifj _I_GmCirj
At ’ AX ' AY (AY) ) ,
(4.2.17)
+2RW,, —gU, | —%(aeui,j +bW ;)



VVi" -W,, W, -Wy Wi W, W —2W+W
) /) +Uij )l ) +Vij ) Jo_ 3 ,12 3 —ZRUi j _gvvij
At ’ AX ' AY (AY) ) ,
(4.2.18)
M
*arepz (Pl mad,)
T -T T . -T T .. —T. T .., —2T +T. _
i i, +Uij i, i-1,j +\/ij i,j+1 ij :i i,j+1 I,12 i,j-1 _aTij (4219)
At AX booAY P (AY) '
CI',j _Cl,j ‘U Cl,j _Ci—l,j LV C_:i,j+l_c_;|,j :iéi,j+l_2(':’|,j +C|,j—1
At “AX “AY S, (AY)
B ) (4.2.20)
+S)Ti,j+l_2Ti,j2+Ti,j—l
(AY)
Theinitial and boundary conditions are obtained as follows;
U =0V’ =0W’=0 T%=0, C° =0 (4.2.21)
Ug, =0Vy; =0,W;, =0, T, =0, Cj, =0
U'=LV}=0W,=0T;=1C=1 (4.2.22)

U’ =0,V =0,W\ =0T} =0,C" =0 where L >

Here the subscripts i and | denote the grid points with X and Y -coordinates respectively
and superscript n represents a value of time, t = NAt where 0 =0,1,2,3,..... From these
conditions, the value of T,C,u and ware known at t =0. During any one time step, the
coefficients u; ;and v, ; appearing in equations (4.2.17)-(4.2.20) are treated constants. Then
at the end of any time step At , the new temperature T', the new concentrationc’, the new
primary velocity u’, the new secondary velocity w' and v at all grid points may be obtained
by successive applications of equations (4.2.17)-(4.2.20) respectively. This process is
repeated in time and provided the time is sufficiently small, u,w,7 and ¢ should eventualy

converge to values which approximate the steady-state solutions of equations (4.2.9)-
(4.2.13). The converged solutions are shown graphicaly in Fig. 4.2.3(a-c)- Fig. 4.2.38(a-C).

4.2.4 Stability and Conver gence Analysis

The analysis will remain incomplete unless the discussion of the stability and convergence of
the finite difference method. For the constant mesh sizes, the stability criteria of the scheme
can be established as follows. The general terms of the Fourier expansion for u,w,T and

C'at atime arbitrarily caled t =0 are €**,€"Y apart from a constant, where i =+/-1. At
timet latter, these termswill become
U y (t )eiaXeibY
W :x(t)e**e®Y
-Fq(t )eiaXeibY
C :f (t)e™*e™

(4.2.23)

62



Substituting (4.2.23) into equations (4.2.17) to (4.2.20), regarding the coefficients U and
V as constants, over any one time step and denoting the values after the time step by
y ''x',q"and f ' gives after ssimplifications

y ¢= Ay +Bg+C/f +Dx (4.2.24)
x¢= Ex + Fy (4.2.25)
q'=Cq (4.2.26)
f'=Hf +1q (4.2.27)
where

At - N 2At Ma At
A=1-U-—(1-e™)-v (™" —1)+ cosbAY —1)-gAt — — ¢

AX( ) AY( ) (AY)Z( )-on a’+b’?

At | At [ 2At Ma At
E=1-U-—(l-e™)-v—(e"™ -1)+ CosbAY —1)-gAt ———2

AX( ) AY( ) (AY)Z( ) a’+b?
G=1-2L e ) Ay (e g)p 1 2A (cospay —1)-aat

AX AY P (AY)
H=1-2Ly (2- e*‘aAX)—A—tv(eibAY —1)+3 AL (cosbAY -1)
AX AY S (AY)
B, = BG+Cl
C,=CH
D = 2RAt — MzbeAtz
a;+bg

L 2S)At (cosbAY -1)

(AY)*

These equations (4.2.24)-(4.2.27) can be written in the following matrix form;

y'| |[A DB CJy

X' F EO O |x (4.2.28)
q’ 0 0G 0 |qg

f’ OO0 I H ||f
i.e. h'=Th where h is the column vector with element y x,q and f . For stability, the

modulus of each eigenvalue of the amplification matrix T must not exceed unity. Assume
that u is everywhere no-negative and v is everywhere non-positive, let

U At V|t At
a= , b= , C= 5

AX AY (AY)
Hence

A=1-a-b-2c+ae ™ +be™ +2ccosbAY —gAt

Ma At

E=1-a-b-2c+ae ™™ +be™" +2ccosbAY —gAt —— o2
a‘e + e

G=1-a- b—Pi20+ ae " 4 e + %ZCcosbAY —aAt

r r
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H=1-a-b- i20 +ae " 4 e + SLZCcosbAY

(o C

The coefficients a,band ¢ are al real and nonnegative. So that the maximum modulus of
AE,G and H occur when a AX =np andb AY =np , where m and n are integer and
hence A,E,G and H arereal. For At sufficiently large, thevalue |A, |E|, |G| and |H| are
greater when both mand n are odd integer, in which case;
A=1-a-b-2c+(-a-b-2c)-gat

Ma At

az+b?

E=1-a-b-2c+(-a-b-2c)-gAt —

G :1—a—b—i20+ —a—b—2c:i —aAt
P P

r r

H :1—a—b—i20+ —a—b—Zci
S S

(o} C

To satisfy |A <1, |E| <1 |G| <1 and |H|<1 the most negative allowable values are
A=-1 E=-1G=-1and H =-1.

Hence the stability conditions are as follows;

a+b+ 20+%At <1

1 1 Ma At
a+b+2c+=gAt += £ <
2P T2z pe

a+b+£+1aAt <1

r

a+b+§§1
S

(4

4.25 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood
number. The following equations represent the local and average shear stress at the plate.
Local shear stressin x and z-axes are as follows;

ty = n{@j andt ,, = n{a\—N) which are proportion to (Qj and (%j :
ay y=0 8y y=0 aY Y=0 aY Y=0

The average shear in xand z components are as follows;

100( Au 100( AW . .
t au =ij (5Jyodx and t szmjo (Elodx which are proportional to

100 100
L5 exaa [75Y) ax.
0 \9Y Jy_o 0 LY Jvoo
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From the temperature field, the effects of various parameters on the local and average heat
transfer coefficients have been studied. The following relations represent the local and
average heat transfer rate that is well known as Nusselt number. Local and average Nusselt
number are

oT 100( AT : : oT
N, =-kl—| , Np,=k — | dx which are proportional to (—] and
L (ay]y_o UA .[O (ijzo oY

Y=0

J.100 i X
0 \dY )y

And from the concentration field, the effects of various parameters on the local and average
mass transfer coefficients have been studied. The following relations represent the local and
average mass transfer rate that is well known Sherwood number. Local and average

Sherwood number are S, = —D,{%} St =—Dn|
y=0

A1)
o aY )y, '

The numerical values of the local shear stress, local Nusselt number and local Sherwood
number are evaluated by five point approximate formula for the derivatives and then the
average shear stress, Nusselt and Sherwood number are caculated by the use of the

100

[ﬁJ dx which are
o {oy)

. oC
roportional to | —
prop (an

Y=0

Simpson’s % integration formula. The obtained values are shown graphically.

4.2.6. Results and Discussion

4.2.6.1 Justification of Grid Space

To verify the effects of space grid for mand n, the code is run with three different space grid
such as m=n=100,m=n=150, m=n=200. It is seen that there is a little change of
results between them which are shown in Fig.4.2.1. According to this situation the result of
velocity, temperature and concentration has been carried out for m=n=150.

4.2.6.2 Steady-State Solution

The numerica solutions of the non-linear differential equation (4.2.10)-(4.2.13) under the
boundary conditions (4.2.14)-(4.2.15) have been performed by applying explicit finite
difference method. In order to verify the effects of time step size At , the programming code
is run our model with three different step as t =0550,60,70,80,100. To get steady —state
solutions, the computations have been carried out up to t =80. It is observed that, the result
of computations for u,w,TandC’, however show little changes aftert =50. Hence the
velocity, temperature and concentration profiles are drawn fort =80. Grid space and steady
state solution are shown in Fig.4.2.1 and Fig. 2.2.2 only for primary velocity for heat source
parameter.
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Fig.4.2.1 Primary velocity profiles for different grid 4.2.2 Primary velocity profiles for different time
space values of heat sorce parameter a step of heat source parameter a

The system of coupled nonlinear partial differential equations (4.2.10)- (4.2.13) governed by
the boundary condition of equation (4.2.15) is solved numerically by explicit finite difference
method. Numerical simulations were carried out for various values of parameters in order to
discuss the influence on the fluid flow profiles. The velocity components in X and z-axes
are commonly known as the primary and secondary velocities. The numerical calculation
has been carried out for dimensionless primary velocity(U ), secondary velocity(W ),
temperature(T ), concentration(C ), local shear stress inx-direction(t ), average shear
stress inx-axis (t 5y ), local shear stress inz-axis (t,y), average shear stress inz-axis
(t aw), loca Nusselt number(N, ), average Nusselt number(N,), local Sherwood
number( s, ) and average Sherwood number(S ) for various vaues of the parameters
such as Hall parameter (b,), ion-slip parameter(b;), magnetic parameter(m ), rotational
parameter (R), Prandtl number( P, ), Schmidt number (S,), Grashof number(G, ), modified
Grashof number(G,,), Soret number(S,), permeability parameter(g)and heat source(a ).

The values of the parameters are chosen arbitrarily in most cases. Throughout the
calculations the values G, and G, are taken to be very large( G, =10.0and G, = 4.0). Some

standard values for the Prandtl number (P, ) and Schmidt number (S;) are also considered
because of the physica importance. Physically P =0.71 corresponds to air at20°c
P =7.0 corresponds to water at 20°C,P, = 2.6.corresponds to water at 67°C and and
S, = 0.6 .corresponds to water vapor, S, =0.78, S, =1.0 corresponds to methanol respectively
a 25°Cand 1 atmosphere. For the purpose of computation, wt=p /2, e =0.001 has been
chosen arbitrarily.

Form Figs.4.2.3 (ac), it is seen that the primary velocity (U ), the local and average shear
stressinx-axis (t |y t oy ,) decrease with the increase of a . To increase the value of the heat

source parameter a is to decrease the boundary layer which is expected when heat is
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absorbed by the buoyancy force. But opposite behavior has been seen for secondary
velocity (W), local and average shear stressin z- axis (t .t ay ) in Figs.4.2.4 (ac).

It is seen that from Fig.4.2.5 (@), the temperature (‘IT) distribution decreases with an increase
of a . Because when heat is absorbed, the buoyancy force decreases the temperature profiles

= 100/ 7
NyL o —[—BT J and Nyao« - .[ [—aT j dx
Y N-o 0 (¥)yoo

opposite behavior which have been illustrate in Figs.4.2.5(b,c). The Concentration (5)

whereas local and average Nusselt number have

distribution has an increasing effect is shown in Fig.4.2.6 (a) while the local and average

100(£] dx}have opposite behavior which are
0 oY Y=0

Sherwood number {shl_ o _(Z_fj and Spa o _.[

Y=0
shown in Figs. 4.2.6(b,c).
It is observed that in Figs4.2.7 (a-c), the primary velocity(U), local and average shear

stresses inx-axis (t .t ay) and increase with the increases of Hall parameterb,. The

inclusion of Hall parameter decreases the resistive force imposed by the magnetic field due to
its effect in reducing the effective conductivity.
Fig.4.2.8(a) depict that b, increases, firstly the secondary velocity (W) decreases up to

Y =0.6 but after that (W)show increasing trend as Y increases further, thus there is a cross
flow near Y =0.6. Since secondary velocity is aresult of Hall effect. The Local and average
shear stresses in z-axis (t .t aw ) have been decreased with an increase of b,which are
depicted in Figs.4.2.8 (b,c). The Hal parameter has a minor decreasing effect on the
temperature (‘IT) profiles whilelocal and average Nusselt number (N, , N ) increase which
has been shown Figs.4.2.9 (a-C). It is observed from Figs.4.2.10 (a-C) that the Hall parameter
has decreasing effect on concentration (5 ) whereas opposite behavior have been seen for
local and average Sherwood number (S, , Spa)-

The effect of ion-slip parameterb; on primary velocity (U) has negligible effect in Fig.
4.2.11(a) whereas on local and average shear stresses inx-axis (t .t oy ) have increasing
effect are shown in Figs.4.2.11 (b,c). As b, increases the effective conductivity, which in

turn decreases the damping force on the velocity component in the direction of the flow and
hencethe (U), t |, and(t 5, ) increase in the flow direction. It is seen from Figs.4.2.12 (a-c),

increasingb,, increase secondary velocity(W), local, average shear stress in z-axis
(t Lwit aw)- The effect of b, on the temperature profiles (f) has negligible effect and
increasing effect on local and average Nusselt number (N, , N, ) has been shown in Figs.
4.2.13(a-c). When b; increase then thermal boundary layer thickness decreases. The effect of
the b, on the concentration profiles has negligible effect and increasing effect on local and
average Sherwood number (S, , S,,a) Which have been depicted in Figs. 4.2.14(a-c).

In Fig.4.2.15(a), it is seen that permeability parameter g increases, firstly the primary
velocity (U) decrease up to Y=09 but after that (U)show increasing trend as Y increases
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further, thus there is a cross flow is obtained near Y =0.9. Thisindicates that the permeability
of porous medium exerts retarding force on the primary flow. Local and average shear stress
inX- axis (t .y, (t ay) ae decreased which is seen in Figs.4.2.15 (b,c). It is seen from

Figs.4.2.16 (a-c), the secondary velocity (w), local, average shear stressinz- axis (t |yt aw )
are increased with an increase of g. From Figs. 4.2.17(ac) and Figs. 4.2.18(a-C) it is
observed that the temperature(‘IT) and concentration (5 ) profiles increase whereas local and
average Nusselt number (N, , Ny), loca and average Sherwood number (s, ,Sw)
decrease with increasing g . Thisis due to the fact that increasing the value of permeability

parameter has tendency to increase the thermal boundary layer and concentration species.
In Figs. 4.2.19(a-c), primary velocity(U), local and average shear stress inx- axis (t .,

t oy ) profiles are plotted respectively for different values of magnetic parameter (M ). The
primary velocity (U)profiles decreases firstly, then start to increase with the increase of
(M ). Sothereisacross flow nearY =11.0. Similar behaviors are found for (t .t oy )- This
is due to the fact, the transverse magnetic field normal to theflow direction has a tendency to
create the drag known as the Lorentz force which tends to resist the flow. Similar behaviors
are found in secondary velocity (W), local and average shear stress in z-axis (t .t aw)
which are shown in Figs. 4.2.20(a-c). Figs. 4.2.21(a-c) and Figs. 4.2.22(a-C) are illustrated
that the temperature(‘IT) and concentration (5 ) profiles increase whereas local and average
Nusselt numbers (N, , Ny ) , local and average Sherwood numbers (S;, , Spa) decrease

with increasing M. The effects of a transverse  magnetic  field to an electrically
conducting fluid give rise to a resistive-type forcecaled theLorentz force. This
force hasthe tendency toincreaseitstemperature and concentration distributions.

It is seen that in Fig. 4.2.23(a) the primary velocity (U ) profiles decrease firstly, then start to

increase with the increase of rotational parameter (R). So there is a cross flow nearY =11.0.
But local and average shear stress inx- axis (t |y, t 5y ) decrease with the increase of R

which are shown in Figs4.2.23 (b-c). In fact rotation parameter defines the relative
magnitude of the Coriolis force and the viscous force, thus rotation retards primary flow in
the boundary layer. The secondary velocity (w), loca and average shear stress in z- axis
(t Lw.t aw ) have decreasing effect with the increase of effect of R are shown in Figs.4.2.24
(ac). Figs. 4.2.25(a-c) and Figs. 4.2.26(a-C) are illustrated that the temperature(T_) and
concentration (5 ) profiles increases whereas local and average Nusselt numbers (N, , Nya),
local and average Sherwood numbers (S, , Spa) are decreased.

From Figs.4.2.27 (a-C) it is found that the primary velocity (U ), local and average shear stress
inx-axis (t gt ay) profiles increase with an increase in Soret number S,. That is the

momentum boundary layer increases as Soret number increases. But opposite behaviors are
found on secondary velocity (W), local and average shear stressin z-axis (t |y ,t ayw ) Which

are shown in Figs.4.2.28 (a-C). It has been observed that there are small decreasing effects on
the temperature (‘IT) profiles in Fig.4.2.29 (a) of increasing values of S,. But local and
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average Nusselt numbers (N, , N, ) areincreased with an increasein S,in Figs.4.2.29 (b,c).
Fig.4.2.30 (a) illustrates the effect of S,on concentration (5) profiles increases with an
increase of S,. The concentration boundary layer increases rapidly and the concentration
boundary layer increases with increase of S, that signifies that S, can control concentration
boundary layer. Figs.4.2.30 (b,c) have been ploted that the local and average Sherwood
numbers (S, , Spa) have decreasing effect with an increase of S,. For buoyancy assisting
and buoyancy opposing flows, an increase in the Soret parameter tends to thicken
concentration boundary layer, thus (S, , S,») ae decreasing at the wall.
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Chapter 5

5.1 Effect of Hall and ion-dlip currents on MHD heat and
mass transfer flow past a vertical plate with high porosity
medium in arotating system

The convection flow on a vertica surface embedded in porous media occurs in many
important engineering problems such as in the design of pebble-bed nuclear reactors,
catalytic reactors and compact heat exchangers, in geotherma energy convection, in
petroleum reservoirs, in use of fibrous materials in the thermal insulation of buildings, in the
heat transfer from a storage of agricultural products. It was shown by Gebhart (1962) that the
viscous dissipation effect plays an important role in natural convection in viscous devices
that are subjected to large deceleration or which operate at high rotative speeds and also in
strong gravitational field processes on large scales (on large planets) and geological process.
Hall and ion-dlip currents are important and they have a marked effect on the magnitude and
direction of the current density and consequently on the magnetic force term. The problem of
MHD free convection flow with Hall and ion-dlip currents has many important engineering
applications, e.g. in power generators, Hall accelerators and flows in channels and ducts.
Jasem et al. (2006) analyzed double diffusive convection of a rotating fluid over a surface
embedded in athermally stratified high porosity medium. Ajay and Rama (2009) studied the
free convection heat and mass transfer with Hall current, Joule heating and thermal diffusion.
Hemant and Chaudhary (2010) have studied MHD free convection and mass transfer flow
over an infinite vertical plate with viscous dissipation. Bhuvannvijaya and Mallikarjuna
(2014) investigated the effect of variable therma conductivity on convective heat and mass
transfer over a vertical plate in a rotating system with variable porosity regime. Rachna
(2013) studied the heat and mass transfer along an accelerated vertical porous plate in the
influence of various dissipation, heat source and variable suction. Foisal and Alam (2016)
studied unsteady free convection fluid flow over an inclined plate in the presence of a
magnetic field with thermally stratified high porosity medium. Mahender and Srikanth
(2015) analyzed unsteady MHD free convection and mass transfer flow past a porous
plate in presence of viscous dissipation. Ferdows et al. (2010) studied Dufour, Soret and
viscous dissipation effects on heat and mass transfer in porous media with high porosities.
The effects of variable properties and Hall current on steady MHD laminar
convective fluid due to a porous rotating disk was studied by Maleque and Sattar
(2005). Das et al. (2013) studied Hall effect on MHD free convection boundary layer
flow past a vertical flat plate. Khaled (2014) discussed the effects of viscous dissipation
and joule heating on MHD flow of a fluid with variable properties past a stretching
vertical plate. Hydromagnetic rotating flow in a porous medium with slip condition and
Hall current was investigated by Farhad et al. (2012). Viscous dissipation, Soret and
Dufour effect on free convection heat and mass transfer from vertical surface in a porous
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medium was studied by Srinivas et al. (2015). Ali et al. (2005) investigated natural
convection flow in a rotating fluid over a vertical plate embedded in a thermally stratified
high porosity medium. Chen et al. (1987) investigated transient natural convection on a
vertical flat plate embedded in a high porosity medium.

Hence our aim is to investigate the effect of Hall and ion-dlip currents on MHD heat and
mass transfer flow past a vertical plate with high porous medium in a rotating system have
been considered. Also the effects of different flow parameters encountered in the equations
are investigated. The problem is governed by system of coupled nonlinear partia differential
equations whose exact solution is difficult to obtain. Hence the problem is solved by finite
difference method and is presented graphically.

5.1.1 Governing Equations

Consider the unsteady MHD free convection flow of an electrically conducting
incompressible viscous fluid past an infinite vertical porous plate y = 0 has been considered.
The flow is assumed to be in the x—axiswhich is taken along
the plate in the upward direction. Let the fluid and the plate
be ina rotation with uniform  angular velocity Q about
the y-axis normal to the plate. A strong magnetic
field B isimposed dong y—axisand the plate is

taken electricaly non-conducting. Since the plate is infinite
in extent, al physical quantities are functions of yand t only.

Using the relation V-B=0 for the magnetic _ _ _ _
. . ] Fig.5.1A Physical configuration
fieldB=(B,,B,,B,), thenobtain B, =B, everywhereinthe ag coordinate system

X1 =y
fluid (B,is a constant). The induced magnetic  field
IS neglected, since the magnetic Reynolds  number of a partially-ionised fluid is very

smal. If J=(J3,,J,,J,)isthe current density, from the relationV.J =0 gives .Jy = constant.

Since the plate is electricaly non-conducting, Jy=0at the plate and hence zero

everywhere. The physical configuration of the problem is shown in Fig.5.1A. However, for
such afluid, the hall and ion-dlip currents will significantly affected the flow in presence of
large magnetic fields. The equations which govern the flow under the above consideration
and Boussinesq’s approximation are as follows:

Continuity equation; % =0 (5.1.1)

Momentum equation;

1(du ou) ud4u \ u
V=22 g b(T-T,)+g,b"(C-C. )+ 20w——u—cu?
eZ (61: 8y] e ayZ gO ( oo) gO ( oo) k

s B

—m(aeu +b w)

(5.1.2)
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Energy equation;

or T _ k T ufau)" (aw)’ s ,Bs 2, 2

—+V— — = +| = [+ = us+w 514
o oy rc, oy cp l(ayj (Wj} rcpia§+bji( ) 514

Concentration equation;

€, _p, € Duks T (5.15)
oa oy o” T, oy

where the variables and related quantities are defined in the Nomenclature.

Theinitial and boundary conditions for the model are as follows;

t<0, u(y,t)=0,Wmy,t)=0,T(y,t)=T_,C(y,t)=C, everywhere (5.1.6)

t>0, u(y,t)=U,,w(y,t)=0,T(y,t)=T,,C(y,t)=C, at y=0

(5.1.7)
u(y,t)=0,w(y,t)=0,T(y,t)=T_,C(y,t)=C, aty—>wo
5.1.2 Mathematical Formulation
Now a convenient solution of equation (1) is
Vv = -V, (constant) (5.1.8)

where the constant v, represents the normal velocity at the plate which is positive or negative

for suction or blowing.
Using equation (5.1.8), the equations (5.1.2)-(5.1.5) become
Momentum Equation:

2
L (6u v, 8u] 26 +0ob(T-T,)++g,b” (C—Cw)-i-ZQW—uEU—CUz

ot oy Saxéz (5.1.9)
_ﬂﬁ)(aeu+ b.w)
2
iz ow_ ., ow)_ud? G PYMI IS 32e80 _(bu-a,w) (5.1.10)
e | ot ay eay k riae+bej

2 2 2 2
Energy equation: 8—T—voa—T:La12-+i au + w +ﬁ(u2+wz) (5.1.11)
ot oy rc,oy° c,|loy oy re,

Concentration equation: ﬁ—vo o _ D,, 82(2: + Donky 6212- (5.1.12)
ot oy oy Tn Oy

Theinitial and boundary conditions for the model are as follows;

t<0, u(y,t)=0,wmy,t)=0,T(y,t)=T_,C(y,t)=C, everywhere (5.1.13)

t>0, u(y,t)=U,,w(y,t)=0,T(y,t)=T,,C(y,t)=C,, at y=0

u(y,t) =0,w(y,t)=0,T(y,t)=T_,C(y,t)=C, aty—>wo

For the purpose of solving the system of equation numerically, the transformation of

governing equations into non-dimensional variablesisintroduced as follows;

(5.1.14)
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2
y-Woy Uy W, Yo T-T & C-C (5.1.15)
u U, U, u T,-T, C,-C,

Thus introducing the relation (5.1.15) in equations (5.1.9)-(5.1.12), the following
dimensionless differential equations have been obtained as follows,

ou U U

=e
ot oY  aY?

+e’GT +€°G,C+2e°RW-e’gU —e’T' (U +W?)

Me?(a U +bW) (51.16)
(a§+bez)
Me?(bU —a W

W _, aszeaz\’\!—zezFeu —e%GW €T (U2 +W? )+~ (bl —a W) (5.1.17)
ot oY oY (aZ+b?)
oT  oT 107 oUY (ow) | ME (U?+W?)
C ol 2 e[S+ — (5.1.18)
ot Y PaY oY oY (aZ+b?)
oC ,oC 1C _oT
€ _€_10C 0T 5.1.19
PN AR (5119

0 Us Us

-5} sba) sldss) 8 ) )

The corresponding initial and boundary conditions are as follows;

t<0,U=0,W=0T=0C=0 everywhere (5.1.20)

t >0, U(Y,t)=LW(Y,t)=0T(Y,t)=1 C(Y,t)=1atY=0
U(Y,t)=0W(Y,t)=0T(Y,t)=0,C(Y,t)=0 atY >

(5.1.21)

5.1.3 Solution Technique

The governing second order non-linear coupled partial differential equations have been
solved with the associated initial and boundary conditions. For solving a transient free
convection flow with mass transfer past an infinite plate, the implicit finite difference
method has been used by Callahan and Marner (1976) which is conditional stable. On the
contrary, the same problem has been studied by Soundalgekar and Ganesan (1980) by an
implicit finite difference method which is fast convergent and unconditional stable. But
Callahan and Marner (1976), Soundalgekar and Ganesan (1980) have been found same
result using different methods on the same problem.

From the concept of the above discussion, for simplicity the implicit finite difference
method has been used to solve the equations (5.1.16)-(5.1.19) with boundary conditions
(5.1.20)-(5.1.21). To solve the non-dimensional system of equations by implicit finite
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difference technique, a set of finite difference equations is required. In this case, the region
within the boundary layer is -
divided by some perpendicular N\
lines of Y -axis, where Y -axis t
is norma to the medium is .
shown Fig.5.1.B. It is assumed ORY—¢ L ——9—9> Y
that the maximum length of

boundary layer is Y, (= 50) as R |

corresponds to Y > i.e Y

varies from 0 to 50 and number i=0 i=1 i=2 i=3 i=m
of grid spacing in Y -direction Fig.5.1B Finite difference grid space

ism(= 400) , hence the constant

mesh size aong Y-axis becomes AY =0.13(0£Y £50) with a smaler time
step At = 0.001.

Let U",W",T" and C" denoted the values of U,W, T and C at the end of atime-step

respectively. Using the implicit finite difference approximation into the partial differential
equations (5.1.16)-(5.1.19), the following set of difference equations are as follows;

Uiml_uin_ U/ _Uin :eUirll_ZUin-’_Uirll

I i+1

At AY (AY)?

+e’G,T"+e’G,C" +2e’RW"

0 (5.1.22)
e
—e’gU"—e?Ufr-——— (@ u"+bwW"
gJI ( I ) aez+b62( e 1 e I )

n+l_ _n _n _ _n _I’l _ _n _n
W W W W W - A W o
_ezg\/\ll"—ez( I“)F+ e™ (be ,“—aeV\/,“)

aZ+b?

-Fin+l_-rin_| -rifl_-rin _i _irl_21Tin+-ri1+E Uin+1_uin 2+ Wifl—Wi” i

At AY P (AY) © AY AY

, , (5.12.24)
ME, (U W)
+
(a§+b:)

~n+l __~n ~n _~n ol Tall ~n Th _oTn T n
-G | CL=C_1CL-2C'+Cl, ¢ T5-2T"+T (5.1.25)

At AY S (AY) (AY)
Theinitial and boundary conditions with the finite difference scheme are as follows;
U’=0W°=0,T°=1,C°=1 (5.1.26)
Ug=1W,'=0,Ty' =1 Cg =1 (5.1.27)

U'=0W"=0,T,"=0,C =0 where L -
Here the subscripts i designate the grid points with Y -coordinates and superscript n
represents avalue of time, t = nAt where n =0,1,2,3,.....The primary velocity (U) , secondary

velocity (w), temperature (T )and concentration (C ) distributions at all interior nodal points
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may be computed by successive applications of the above finite difference equations. The
obtained values are discussed graphically which are shown in Figs. 5.1.3(a) to 5.1.44(a)
respectively for various parameters.

5.1.4 Stability and Convergence Analysis

The analysis will remain incomplete unless discussion the stability and convergence of the
finite different scheme. For the constant mesh sizes, the stability criteria of the scheme may

be established as follows. The general terms of the Fourier expansion for U, W, T, C at a

time are al arbitrarily called t =0 are €Y apart from a constant, wherei=+-1. At a

timet later, these terms become
U:y t)e?"

s x(t)e?”

- q()e”

f(t)e?”

Substituting (5.1.28) into equations (5.1.22)-(5.1.25), over any one time step and denoting

the values after thetime step by y ', x', q" and f ' gives after smplifications

(5.1.28)

o1z

y '=A/ +Bx+Cq + Df (5.1.29)
X' = Ex + Fy (5.1.30)
q'=Gq+Hy +1x (5.1.31)
f7=Jq +Kf (5.1.32)
where

aiAY _ 5
A=1+! (e —at +Ze(cosaA2Y 1)—engt —e’TUAt - eoh t/laeAzt :

AY (aY) a;+b
B = 2e2Rat — & MPAL
a’+b2’

C=e’G At ,
D =e’G At ,

eiaAY_l B .
E=1+1At ( )+eAt Z(CosaAZ 1)—eZgAt —AteZFW_At;VIe 2

(AY) az+bl
F = 26?RAt + e’Mb At
az+b?
iaAY
G141 at & L, 1 AcosaAy 1)
P (ay)

e -1)"  MEU

H=EU " +a2+b2’
&Y 1), MEW 2At
| =EW + INES cosaAY —1),
- ( AY J azend) Py )
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K=1+ A—t(eiaAY —1)+i 2t

———(cosaAY -1)
AY S (AY)
The equations (5.1.29) -(5.1.32) can be written in the following matrix form;
y ' A B C D)y
" E 0O Ofx
B G O0|q
J K)\f

!’

o ITm

X
q |
f 0

i.e. h'=Th where his the column vector with element y ,x,q and f . For stability, the

!

modulus of each eigenvalue of the amplification matrix T must be unity.
At At

Let a=— and b= 5 then
AY (AY)
2
! M
A=1-al —2be+|ae™" +2becosaAY —e’gAt —e’TUAt _%
aZ+b
2
' M
E=1-al —2be+|ae™" +2becosaAY —e’gAt —e’T' WAL —%
a’Z+b
Gt ta B g , 2000528
& R
K=1-I a—é—b+l ae™Y +2bCOSLAY,

The coefficients a and b are al real and nonnegative. Then demonstrate that the
maximum modulus of A E,G and K occur whena AY =np , where mis an integers and

hence A E,G and K arereal. For At sufficiently large, the value of |A,|E|,|G| and [K]

are greatest when misodd integer, in which case

’Ma A
A=(1-a —2be)+ (-l a-2be —e’gAt —e’TUAt —%),

a;+b;

2
E=(1-a —2be)+(-l a—2be-e’gAt —e’T' WAt —e'ZALEA:),

ae + e

2b 2b
G=(@-la-)+(Ha-9),
( Pr)+( Pr)

2b 2b
K=01-1a-2)+(-1a-2).
( Sc)+( Sc)

To satisfy |A<L|E|<L|G|<land |K|<1 the most negative allowable values are
A=-1E=-1G=-1,K=-1.

Hence the stability conditions are

Ia+2—b51
P

r

Ia+2—b51
S

C
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’Ma At

| a+ 2be+1engt +1e2FUAt +1%£1
2 2 2 a;+b;
’Ma A

| a+ 2be+£engt +Leorwat +1%31
2 2 2 a;+Db;

5.1.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood
number. The shear stress is generally known as the Skin friction, the following equations
represent the shear stress at the plate. Shear stressesin xand z axes are as follows;

ty = n{@J andt, = n{a_wj which are proportional to (ﬂj and (aﬂ] .
8y y=0 ay y=0 aY oo oY Y

From the temperature field, the effects of various parameters on the heat transfer coefficients
have been studied. The following relations represent the heat transfer rate that is well known

Nusselt number. Nusselt number is N, = —k[a—Tj which is proportional to(%)
y=0

Y=0
Also from the concentration field, the effects of various parameters on the mass transfer
coefficients have been studied. The following relation represents the mass transfer rate that is

well known as Sherwood number. The Sherwood number isS, =—Dm(§] which is
y=0

proportional to o« .
Y )0

The numerical values of the shear stress, Nusselt number and Sherwood number are
calculated by five point approximate formula for the derivatives. Valuesof t ,,t,,, N, and

S, are snhown graphically in Figs. 5.1.3(b) to 5.1.44(b) respectively for various parameters.

5.1.6 Results and Discussion
5.1.6.1 Justification of Grid Space

The code is conversed with three different grid space, such as m=250,300,400where m is
the grid number. It is seen that there is a little change for the above mentioned grid points
which are shown in Fig.5.1.1. For same power and time, the results of velocity, temperature
and concentration distributions have been carried out for m=300.

5.1.6.2 Steady- State Solution

The numerical solutions of the non-linear differential equation (5.1.9)-(5.1.12) under the
boundary conditions (5.1.14) have been performed by applying implicit finite difference
method. In order to verify the effects of time step sizeAt , the programming code is run our
model with eight different step sizesast = 20,60, 70,80,90,100,110,120 . To get steady—state

solutions, the computations have been carried out up tot =120. It is observed that, the result
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of computations for U,W,T andC , however show little changes aftert =100. Thus the
solutions of all variablesfor t =100 are essentially steady-state. Grid space and steady state
solution are shown in Fig. 5.1.1 and Fig. 5.1.2 only for primary velocity for rotation
parameter.

2.5

b,=02T=01 S, =10 f
b, =02,S.=060,g=25| 4|
| =03e=05P =071
M =05, E, =0.01

=120 be =O.2,F=0.l SO =1.0
b, =02S, =0.60,g=25
| =03e=05P =071

M =05, E, =0.01

; m= 400 R=05 j
B m= 300 I I
m= 250
0 10 20 Y 30 00 — 5.(

Fig.5.1.1 Primary velocity for different grid  Fig.5.1.2 Primary velocity for different time
space of rotational parameter R step of rotation parameter R

The numerical solution was obtained for distributions of the dimensionless primary velocity
(U), secondary velocity (W), temperature (T ), concentration (C ) as well as the shear stress
in x-axis (t ), shear stress in z-axis (t, ), Nusselt number (N,) and Sherwood number

(S,)- To study the behavior of these profiles are drawn for various values of the parameters
that describe the flow, e.g. Hall parameter (b,), ion-dip parameter (b;), magnetic parameter
(M), suction parameter (I ), permeability parameter (g ), prosity(e ), inertial parameter (T'),
rotational parameter (R) , Pramdtl number (P, ), Schmidt number(S.), Soret numbrt (S,),
Grashof number(G, )and modified Grashof number (G,,). The values of the Prandtl

number are chosenP. = 0.71 (Prandtl number for air at 20°C), to P =1.0 (Prandtl number for

salt water at20°C), P =1.63 (corresponds glycerin at 50°C ), which represent the specific
condition of the flow. The values of the Schmidt number are chosen to represent the
presence of species by S, =0.6correspond to water vapor. In the calculation G, and
G, are taken both positive. Throughout the calculations the values of G, and G,, are taken to
be large (G, =5.0 and G,,=2.0). The values for the parameters are chosen arbitrarily in
most cases.

It isobserved that in Fig.5.1.3 (a,b) and Fig.5.1. 7(a,b), primary velocity (U ) and shear stress
in x-axis (ty) are increased with an increase of Hall parameter b, and ion-dip
parameter b; . The effective conductivity decreases with the increase of b, and b; which
reduces the magnetic damping force on primary velocity. Similar trend arises in secondary
velocity W and shear stressin z-axis (t, ) with increasing b, which isfound in Fig. 5.1.4
(ab). It is found that b; has decreasing effect on W and t,, which is shown in Fig. 5.1.8

(ab).
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It is noted from Fig.5.1.5(a) and Fig. 5.1.9(a) that the temperature (T ) distribution decreases
when b, and b; areincreased and aso thermal boundary layer thickness decreases whereas

Nusselt number [Nu oc—(§j ] has opposite behavior which is shown in Fig.5.1.5(b) and
Y=0

Fig. 5.1.9(b). This is due to decrease in the thermal boundary layer thickness. Fig. 5.1. 6(a)
and Fig. 5.1.10(a) illustrated that concentration increase near the plate and decrease far away
from the plate with the increase of b, and b; . So thereis across flow in the boundary layer.

While Sherwood number [Sh o« —(%J ] decreases which is shown in Fig. 5.1.6(b) and Fig.

Y=0
5.1.10(b).

In Figs. 5.1.11(a,b), 5.1.12(a,b) and 5.1.13(a), it has been illustrated that primary velocity
(U), shear stress in x-axis (t, ), secondary velocity W , shear stress in z-axis (t, ) and
temperature distribution decrease with an increase of inertial parameter (I"). The inertia
parameter increases the resistance to the flow increases, causing the fluid flow in the porous
medium to slow down. This results in reducing the net velocity and therefore, al its
components as well as the wall friction. The temperature distribution decreases whereas
Nusselt number increases with the increase of T'which are found in Fig.5.1.13 (a,b). The
concentration profiles has increasing effects near the plate while Sherwood number(S,)
decreases with anincrease of I' which are found in Fig. 5.1.14(a,b).

By anayzing the Fig. 5.1.15(a,b) it is clearly seen that the primary velocity (U ), shear stress
in x-axis (t ) profiles increase with increasing values of Eckert number ( E.).Thisis due to
the heat energy stored in the liquid because of the frictional heating. But secondary velocity
W , shear stressin z-axis (t,y ) profiles have reverse effect which are found in Fig. 5.1.16
(ab). It is observed that increasing values of E;, is to increase the temperature
distribution in flow region in Fig. 5.1.17(a). The viscous dissipation will lead to a heat
generation inside the fluid. Thisis due to the fact that heat energy is stored in the fluid due to
the frictional heating. Thus the effect of increasing E., is to enhance the temperature
distribution inside the boundary layer. Nusselt number (N,) has reverse effect which is
shown in Fig. 5.1.17(b). From Fig. 5.1.18(a) it has been seen that the concentration profiles
firstly decreases in the interval 0<Y <10 and secondly increases Y >10 with an increase
(E.). Sothereis obtained a cross flow inside the boundary layer. But Sherwood number (S,)

profiles increases with an increase of E. whichisfoundin Fig. 5.1.18(b).

Fig. 5.1.19(a,b) illustrate that the primary velocity (U ), shear stressin x-axis (t, ) increase
with increasing values of porosity (e). Increasing porosity clearly serves to
enhance the flow velocity i.e. accelerates the flow. Whereas secondary velocity W
shear stressin z-axis (ty ) profiles have reverse effect which are found in Fig. 5.1.20 (a,b).
It is found that temperature profile increases with increasinge whereas Nusselt number
decreases which are shown in Fig. 5.1.21(ab). Also concentration profiles have minor
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decreasing effects with an increase of e which is found in Fig. 5.1.22(a). But Sherwood
number (S,) hasincreasing effect which is shown in Fig. 5.1.22(b).

From Fig. 5.1.23(a,b), it has been seen that the primary velocity U and shear stressin x-
axis (t ) decreases with an increase in magnetic parameter M . This is due to the fact that,
the transverse magnetic field normal to the flow direction, has a tendency to create the drag
known as the Lorentz force which tends to resist the flow . The secondary velocity w and
the shear stress (t,y ) increase with increase inM which has been illustrated in Fig. 5.1.24
(ab). The result indicates that the resulting Lorentzian body force will not act as a drag force
as in conventional MHD flows, but as an aiding body force. This will serve to accelerate the
secondary fluid velocity. Temperature distributions increases with an increase in M in Fig.
5.1.25(a) whereas Nusselt number (N, ) has reverse effect which is shown in Fig. 5.1.25(b).
As the magnetic parameter increases, all of the fluid thermal characteristics increase. It is
also seen that the concentration profiles decrease firstly, and then start to increase with the
increase of M . So thereisacross flow near Y =11.0 (approximately) which isfound in Fig.
5.1.26(a). The effectsof atransverse magnetic field to an electrically conducting fluid
gives riseto aresistivetype force caled the Lorentz force. Thisforce has the
tendency to increase its concentration distributions. But Sherwood number (S,) has
increasing effect with increasing M which is shown in Fig. 5.1.26(b).

In Fig. 5.1.27 (a,b) illustrate that the primary velocity (U ) and shear stress in x-axis (t )

profiles decrease with the increase of Prandtl number(P, ). This is because in the free
convection the plate velocity is higher than the adjacent fluid velocity and the momentum
boundary layer thickness decreases. In Fig. 5.1.28 (a,b), the secondary velocity W and the
shear stress t,, are increased with an increase of P,. In Fig.5.1.29 (@), the temperature
profiles T decrease with anincrease of P,. If P. increases, the thermal diffusivity decreases

and these phenomena lead to the decreasing of energy ability that reduces the thermal
boundary layer. The Nusselt number (N, ) has opposite behavior is shown in Fig.5.1.29 (b).

The increase of Prandtl number means slow rate of thermal-diffusion. In Fig. 5.1.30(a) the
concentration profiles increases firstly, then start to decrease with an increase P, . So thereisa

cross flow nearY =10.0. Whereas Sherwood number decreases with the increase of P

which isshown in Fig.5.1.30 (b)
Fig. 5.1.31 (a,b) are displaying the effect of rotational parameter R on primary velocity U
and shear stressin x-axis (t ;) are decreased with increase of R. In fact rotation parameter

defines the relative magnitude of the Coriolis force and the viscous force, thus rotation
retards primary flow and induces reverse flow in the boundary layer. Similar behaviors are
found on secondary velocity W and shear stress in z-axis (t,,) which are shown in
Fig.5.1.32 (ab).

Fig.5.1.33 (ab) shows that the primary velocity (U ) and shear stressin x-axis (t ;) decrease
with an increase of permeability parameter(g). This is due to the fact that increasing the
value of g has tendency to resist the flow causing to reduce the thickness of the boundary
layer whereas secondary velocity W and shear stressin z-axis (ty, ) increase in magnitude
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with increase of g which is shown in Fig.5.1.34(ab). The behavior of temperature
distributions is clearly observed from Fig.5.1.35 (@), which shows that the temperature
distributions decrease with increasing g while Nusselt number has reverse effect which is
found in Fig. 5.1.35(b). It is seen from Fig.5.1.36 (a) that the concentration distribution
increases firstly, then start to decrease with an increase of g. So there is a cross flow near

Y =11.0 (approximately). Thisis due to the fact that increases in the concentration boundary
layer thickness. But Sherwood number has opposite behavior which is shown in Fig.5.1.36

(b).
Fig.5.1.37 (a,b) are displaying that the primary velocity (U ) and shear stressin x-axis (t )

decrease with the increase of suction parameter (I ), expressing the fact that suction
stabilized the boundary layer growth. But opposite behavior are found on secondary velocity
W and shear stressin z-axis (t, ) with anincrease of | which are shown in Fig. 5.1.38(a,b).

In Figs. 5.1.39(a), 5.1.40(a), it is seen that increasing | decrease temperature and
concentration distributions, which indicates that the thermal and concentration boundary
layer thickness reduces while Nusselt and Sherwood numbers (N, and S,) increase which

are shown in Figs. 5.1.39(b), 5.1.40(b).
From Fig. 5.1.41(a,b) it is found that the primary velocity(U ) and shear stress inx-axis(t )

increase with an increase in Soret number S,. This is because either a decrease in

concentration difference or an increase in temperature difference leads to an increase in the
vaue of S,. Hence, increasing the S, increases the velocity of the fluid. But opposite

behavior are found on secondary velocity (W )and shear stress in z-axis (t, ) which are
shown in Fig.5.1.42 (ab). It has been observed that there is increasing effects on the
temperature (T ) distribution in Fig.5.1.43 (a) of increasing vaues of S,. But Nusselt

number (N, ) has decreased with an increase of Syin Fig. 5.1.43(b). Fig.5.1.44 (a) illustrates
that the concentration (C ) distribution increases with an increase of S,. The concentration
boundary layer increases rapidly with increase of Sythat signifies that S,can control

concentration boundary layer. It has been seen that the Sherwood number has opposite
behavior which is found in Fig.5.1.44 (b). This due to the fact that an increase in S,tends to

thicken concentration boundary layer, thus decreasing the mass transfer rate at the wall.
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5.2 MHD free convection flow and mass transfer over a
vertical plate with high porosity medium in presence of
Hall and ion-dlip currentsin arotating system

The natural convection flow on a vertical surface embedded in porous media occurs in many
important engineering problems such as in the design of pebble-bed nuclear reactors,
catalytic reactors and compact heat exchangers. Hall and ion-dlip currents are important and
they have a marked effect on the magnitude and direction of the current density and
consequently on the magnetic force term. The rotating hydrodynamic flows of
incompressible fluids in the presence of porous boundaries occur in MHD power generators,
including magnetically such study is also useful in metalurgy. Study of the interaction of
Coriolis force with electromagnetic force in porous media is important in some geophysical
and astrophysical problems, since many astronomical bodies posses magnetic field and fluid
interiors.

Soret and Dufour effects are interesting physical phenomenon in fluid mechanics, when heat
and mass transfer occur simultaneously, the relations between the fluxes and the driving
potentials are of a more intricate nature. The Soret effect has been utilized for isotope
separation and in mixture between gases of very light molecular weight and of medium
molecular weight. Viscous magnetohydrodynamic (MHD) flows arise in many applications
in energy systems, chemical technology, astrophysics and flow control processes in the
mechanical engineering industry. Ferdows et al. (2011) investigated the effects of Hall and
ion-dlip currents on free convective heat transfer flow past a vertical plate considering slip
conditions. Steady motions of electrically conducting viscous fluids through a porous
medium in presence of magnetic field, which are of interest in many scientific and
engineering domains, have attracted considerable attention of many investigators like
Krishna et al. (2002), Geindreau and Auriault (2002), Chauhan and Jain (2005) and Dulal
(2008). Sherman and Sutton (1962) have considered the effect of Hall current on the
efficiency of a MHD generator. Anjali and Ganga (2009) studied the effects of viscous and
Joules dissipation on mhd flow, heat and mass transfer past a stretching porous surface
embedded in a porous medium. Sngh and Rakesh(2009) analyzed Soret and Hall current
effects on heat and mass transfer in MHD flow of a viscous fluid through porous medium
with variable suction. Joaquin et al. (2009) studied the numerical solutions for unsteady
rotating high porosity medium channel couette flow hydrodynamics. Koushik et al. (2012)
investigated MHD free convection and mass transfer flow from a vertical plate in the
presence of Hall and ion-dlip current. Anwaret al. (2012) investigated hydromagnetic viscous
flow in a rotating annular high-porosity medium with nonliner Forchheimer drag effects.
Vidyasagar et al. (2013) considered the effects of heat and mass transfer over a moving
vertical porous plate. Rajput and Mohammad (2016) investigated rotation effect on unsteady
MHD flow past an impulsively started vertical plate with variable temperature in porous
medium. Rao et al. (2014) studied Soret and Dufour effects on MHD Boundary layer flow

110



over a Moving Vertical porous plate with suction. Vijaya and Mallikarjuna (2014) discussed
the effect of variable thermal conductivity on convective heat and mass transfer over a
vertical plate in arotating system with variable porosity regime. Das et al.(2015) studied Hall
effects on unsteady hydromagnetic flow past an accelerated porous plate in arotating system.
Diffusion-thermo effects on hydromagnetic free convection heat and mass transfer flow
through high porous medium bounded by a vertical surface was studied by Kiran et al.
(2015). Abdullah and Mahmud (2015) analyzed free convection fluid flow in the presence of
amagnetic field with thermally stratified high porosity medium.

Hence our aim is to investigate the viscous dissipation, Joule heating and thermal diffusion
effects on unsteady MHD free convective heat and mass transfer flow through a vertica
infinite porous plate with porous medium under the action of transverse magnetic field taking
into account Hall and ion-dip currents. The effects of various emerging parameters on the
velocity, temperature and concentration field are discussed graphically in details.

5.2.1 Governing Equations

The two dimensional unsteady flow of an electrically conducting incompressible viscous
fluid past an semi-infinite vertical porous plate has been considered. The flow is assumed to
be in the x—axis which is taken along the plate in the
upward direction and y-axis is normal to it. Initialy the

fluids as well as the plate are at rest but for time t >Othe
whole system is alowed to rotate with a constant angular
velocity Q about the y-—axis. Both the plate and the fluid
are maintained initially at the same temperature. Also it is
assumed that the temperature of the plate and spices
concentration are raised to T,(>T,) and c,(>C,)

Fig.5.2.1 Physical configuration
respectively, which are there after maintained constant, and coordinate system

where T,,,C, are temperature and spices concentration at the
wal and T, C_  are the temperature and the concentration of the spices outside the

boundary layer respectively. The physical configuration of the problem is shownin Fig.5.2.1.
A strong magnetic field is applied in the y-direction. The uniform magnetic field strength

B, can be taken as B = (0, B,,0). However, for such afluid, the Hall and ion-slip currents

will significantly affected the flow in presence of large magnetic fields. The induced
magnetic field is neglected, since the magnetic Reynolds number of a partially-ionized fluid

is very small. The equation of conservation of electric chargeVeJ =0 givesJ, =constant
because the direction of propagation is considered only along y-axis and J does not have
any variation along the y -axis. Since the plate is electrically non-conducting, the constant is
zeroi.e. J, =0 at the plate and everywhere. The equations which govern the flow under the

above consideration and Boussinesq’s approximation are as follows:

111



The continuity equation; Z—u+@ =0 (5.2.1
X

oy

Momentum equations,
1 (au au au] udiu
—+V—

. u
+U b(T-T,)+g,b (C-C_)+2Qw—-—u
—cu® - S By (@.u+bw) -

rl@2+b2) e

2 2
1 a—W+u6—W+v8W _ug W—ZQU—EW ow’ + S;BO ~(bu—a,w) (5.2.3)

ot ox oy) eoy? k riae+bei
Energy equation;
2 2 2 2

CCLISPLCLIVICLINN Sl I | T e I SezBO - (u2+wz) (5.2.4)
ot ox oy rc, oy? c,|\oy oy rcpiae+bei

Concentration equation;
oC oC oC 0°C Dk, 0°T
—+U—+V +

i +U ~ 8_y: " oy T (5.2.5)
where the variables and related quantities are defined in the Nomenclature.

Theinitial and boundary conditions for the problems are;

t<0, u=0,v=0,w=0,T=T,,C=C, everywhere (5.2.6)
t>0, u=0,v=0,w=0,T=T,,C=C_, at x=0

u=U,,v=0w=0T=T,C=C,a y=0 (5.2.7)

u=0v=0w=0T=T,,C=C, asy—>w»

5.2.2 Mathematical Formulation

The problem is simplified by writing the equations in the non-dimensional form. Now
introduce the following non-dimensional quantities

2 _ _ _
XIXU01Y: yUO!U :iyv :i,Wzﬂ,t :tUO ;-F: T TOO |C: C CDO (5'2'8)
u u U, U, U, u T,-T, C,-C.

Then introducing the dimensionless quantities (5.2.8) in equations (5.2.1)-(5.2.5)
respectively, the following dimensionless equations are as follows;

M N (5.2.9)
oX oY

2
TRV NG Li +e°’G,T +e’G, C +2e°RW —e’gU —e’TU?
o oX oY oY (5.210)
_e’M@yu +bw) -

aZ+b?

2 2M _ W
W W W OW oeepy —egn—errwe  EMEU-aW) o )
o eX oY oY aZ+b!
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LTV m}%@j {MJ} () e

o oX oY Pov? oy ) "\av aZ+b?)

£+U §+V§:i62§+80i (5.2.13)

ot oX oY S oY oY

The corresponding boundary conditions are as follows;

t <0, U=0V=0,W=0, T=0, C=0 everywhere (5.2.14)

t >0, U=0V=0,W=0,T=0,C=0 a X=0

U=1V=0W=0T=1,C=1atY=0 (5.2.15)

U=0,W=0,T=0C=0 as Y —>w

where Gr[: gob(TWS—Tw)J], Gm(: gOb*(Cwa_Cw)JJ’M[:SEBgzuj' R(Z rucpj,
U, U, rug k

o slitiere) a8 et

5.2.3 Solution Technique

The governing second order non- X

linear coupled dimensionless . _

partia differential equations have P42 :

been solved numericaly with the 1 i+1, j=- 1 i+],=j i+.]=" j+1

associated boundary conditions. ij-1 SENEREE!

The explicit finite difference U i 1

method has been used to solve the i1 AXIi-J,j-T AP
coupled equations (5.2.9)-(5.2.13) _

with  boundary  conditions " WA

(5.2.14)- (5.2.15).To obtain the .j:=c0 2 31 i+ ge2i=n”
difference equations the region of Fig.5.2.2 Finite difference grid space

the flow is divided into a grid or

mesh of lines parallel to X and Y axes, where X —axisistaken aong the plateand Y -axisis
taken normal to the plate. Here the plate height X, (80.0) is considered i.e. X variesform O
to 80 and assumed Y, (60.0) as corresponding Y — o i.e. Y varies from O to 60. There are

m=300 and n=300 grid spacing in the X and Y directions respectively and taken as
follows
AX =0.27(0£ X £80)and AY =0.2(0£ Y £ 60) with the smaller time step At =0.005.

Let U,V W', T'and C'denote the values of U,V,W, Tand C at the end of a time-step.

Then an appropriate set of finite difference equations corresponding to the equations (5.2.9)-
(5.2.13) are asfollows;
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Theinitial and boundary conditions are obtained as follows;
U’ =0V’ =0W’=0 T%=0, C° =0
Ug; =0Vg; =0, W =0, T, =0, C_:(:J =0
=1V =0W},=0T}=1C}=1
U’ =0,V =0W\=0T}=0C" =0 whereL—>o

(5.2.16)

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

Here the subscripts i designate the grid points with X -coordinates and | designate the grid

points with Y -coordinates and superscript n represents a value of time, t = NAt where
n=0,1,23,......From these conditions, the value of T,C,U and W are known a t =0.

During any one time step, the coefficients U, ; and V, ; appearing in equations (5.2.17)-

(5.2.20) are treated constants. Then at the end of any time step At , the new temperature T,

the new concentration C’, the new primary velocity U’ , the new secondary velocity W’ and
V a any grid points may be obtained by successive applications of equations (5.2.17)-
(5.2.20) respectively. This process is repeated in time and provided the time is sufficiently

smal, U,V,W,T and C should eventualy converge to values which approximate the

steady-state solutions of equations (5.2.9)-(5.2.13). These converged solutions are shown

graphicaly in Figs. 5.2.5(a,b) - Figs. 5.2.48(a,b).
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5.2.4 Stability and Convergence Analysis

The analysis will remain incomplete unless we discuss the stability and convergence of the
finite difference scheme. For the constant mesh sizes, the stability criteria of the scheme can
be established as follows. The general terms of the Fourier expansion for U,W,Tand C at a

time arbitrarily caled t =0 are €2*,€"" apart from a constant, wherei =+/-1. At time t
latter, these terms will become
U :y (t )eiaXeibY
W :x(t)e® e
-ITq(t )eiaX eibY
C:f@t)ee"
Substituting (5.2.23) into equations (5.2.17) to (5.2.20), regarding the coefficients U and
V as constants, over any one time step and denoting the values after the time step by

y ',x',q" and f ' gives after smplifications

(5.2.23)

y'=A +Bx+Cq'+Df’ (5.2.24)
X'=Ex +Fy (5.2.25)
q'=Gg+Hy +Ix (5.2.26)
f1=Jf +Kq (5.2.27)
where
2
A=1- 2Ly (1)~ 2y (@0 1)+ 22 (cosbay —1)-e?Atg —e?atry - 21 2e
AX AY (AY) ae thbe
2
E =1y (1-e*) ALy (62 _1)+ 22 (cosabY 1) - Ate’g- Ate’TW + S0 C e
AX AY (AY) a; +be
G=1-Ly (1-em )—A—tv(eibAY —1)+i 2At_(cosbAY -1)
AX AY R (aY)
3=1-2Ly (1—e“f"AX)—A—tv(e”°AY —1)+3 AL (cosbay 1)
AX AY S (AY)
Me?b At Me?b At
B=2eRAt ——— "t C=e’GAt, D=e’G,At , F=—2e’RAt +—— e
a;+bg a;+bg
At bay 2 At ME, At bay 2 At ME,
H=E u(e™ -1) +=——=U, I =E,——W/(™ -1 W,
“(aYY ( ) TaZib? EC(AY)Z ( ) TaZib?
K- 2S)At (cosbAY -1)
(av)’
Equations (5.2.24)-(5.2.27) can be written as follows;
y'=Ay +Bx+Cgq+Df (5.2.28)
x' = Ex + Fy (5.2.29)
q'=Gg+Hy +Ix (5.2.30)
fr=Jf +Kq (5.2.31)

where A = A+CH, B, =B+Cl,C, =CG+ DK, D, = DJ
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Equation (5.2.28)- (5.2.31) can be expressed in the following matrix form
y'l |A B G Dy

’

F E O
q’ H I G
f 0 OK

o O O
- O X

i.e.h"=Th where h isthe column vector withelementy ,x,q andf . T

For stability, to find out eigenvalues of the amplification matrixT. But this study is very
difficult since it is fourth order square matrix and all the elements of T are different. It is
evident that, the elements of a diagonal matrix represent eigen values of a square matrix. For

this purpose B,,C,,D,F,H,| and K are assume to be very small that is tends to zero and the
amplification matrix T can be written in the diagonal form as follows;

éA 0 0 0y
Tzéo E 0 ou
go oeog
& 0 0Jy

For stability, the modulus of each eigenvalues of the amplification matrix T must not exceed
unity. Assumethat U is everywhere no-negative and V is everywhere non-positive, let

UAt -V |At At
a= , b= , C= 5 -
AX AY (AY)

Then
A =1-a-b-2ec+ae™ +be™" + 2ce coshAY

—iaAX jaAY

E=1-a-b—-2ec+ae +be'®*" 4+ 2ce cosbAY

G=1-a-b- 2 +ae ¥ 1 phetY 4 EcosbAY

r r

J=1-a- b—E +ae X 1 phedhY 4 EcosbAY

C (o}

The coefficients a, b and ¢ are al real and nonnegative. Now demonstrate the maximum
modulus of A,E,G and Joccur when a AX =np andb AY =np , where m and n are

integer and hence A, E,G and J areredl. For At sufficiently large, the value of A, |E|, |G|
and |J| are greater when both mand n are odd integer, in which case

A =@Q-a-b-2ec)+(-a—-b-2ce)

E=(1-a-b-2ec)+(-a—b-2ce)

G:[l_a_bﬁj (_a_b_EJ

P P

J=|1-a-b-2|i[—1-p-2%
S S

To satisfy |A|£1,|E|£1,|G|£1 and |J| £ 1 the most negative allowable values are
A =-1 E=-1G=-1and J=-1. Hence the stability conditionis
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a+b+2ec<1
a+b+2ec<1

a+b+2931
P

r

a+b+£sl
S

C

5.2.5 Shear Stress, Nusselt number and Sherwood number

The quantities of chief physical interest are shear stress, Nusselt number and Sherwood
number. The shear stress is generally known as the Skin friction, the following equations
represent the local and average shear stress at the plate. Local shear stressin xand z axes are
asfollows;

ou ow : . ouU oW
t = n{é_yj » andt, = n{@j » which are proportional to [W]Y_O and (ij .

The following equations define the xand zcomponents of the average shear stress

80 80 80
t AU =mJ. (@] dx and t sy =mj [@] dx which are proportional to _[ [ﬂ] dx
0 y=0 o\ oy y=0 o \ oY

Y=0
and j 80(%j dx
0 \9Y Jy_o

Thelocal and average Nusselt numbers are denoted by N, , N, which are proportional to
—[ij and - I so[ij dx

oY Y=0 ol oY V0
respectively.
Similarly local and average Sherwood numbers are denoted by S, , S, are proportional to

80 ~
(@j and I [ﬁj o
Y Mo o LaY )y,

The values primary velocityt ,,,t,,, N, and S, are evaluated by five point approximate
formulafor the derivatives and then the integral for t ,,,t ,,, N, and S, are evaluated by

the use of the Simpson’s % integration formula. Vaues of t ,,t,, N, and §, and

t o taws Nw @d S, are shown graphically in Figs.5.2.5(c) -5.2.48(c) respectively for

various parameters.

5.2.6. Results and Discussion

5.2.6.1 Justification of Grid Space
The code is converged with different grid space such as m,n = 250, 300, 400. It is seen that
there is alittle change for the above mentioned grid points which are shown in Fig.5.2 3. For
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save power and time, the results of velocity, temperature and concentration have been carried
out for m, n=300.

5.2.6.2 Steady-State Solution

The numerical solutions of the non-linear differential equation (5.2.10)-(5.2.13) under the
boundary conditions (5.2.14)-(5.2.15) have been performed by applying explicit finite
difference method. In order to verify the effects of time step size At , the programming code
is conversed our model with different step sizes such ast = 20, 60, 70,80,90,100,110,120 . To
get steady-state solutions, the computations have been carried out up tot =120. It is
observed that, the result of computations for u,w,Tandc, however show little changes
aftert =100. Thusthe solutions of all variablesfor t =100 are essentially steady-state. Grid

space and steady-state solutions are shown in Fig. 5.2.3 and Fig. 5.2.4 only for primary
velocity for rotationa parameter.

“h R_05 So=10,b; =01 S, =10,b, =0.1
| -7 b,=05M=10 b,=0.5M =10
2ff P,0.71, g=20, P,0.71, g=20,
S, =06,=01 S, =06,I=01

E. =0.00Le=0.2 E. =0.00L,e=0.2

m=2300 n=300

m=250,n=250

05

I T

—_ > Y
Fig.5.2.3 Primary velocity for different grid space Fig.5.2.4 Primary velocity for different time step
of rotational parameter R of rotation parameter R

30

5C

In order to analyze the physical situation of the above model, the velocity profilesin x and
z components are commonly known as the primary and secondary velocities. The numerical
results has been carried out for dimensionless primary velocity (u ), secondary velocity(w),
temperature(T ), species concentration (C), local and average shear stresses in x-axis
(tw ,tau ), loca and average shear stresses inz-axis (t,w .t aw ), l0Ca8 and average Nusselt

numbers (N, , Ny ), local and average Sherwood numbers (s, , S, ) for various values of
the material parameters such as Hall parameter(b,), ion-sip parameter(b;), magnetic
parameter(M ), rotation parameter(rR), Prandtl number(r ), Schmidt number (s.), Soret
number(s,), permeability parameter(g), Eckert number (E.), porosity parameter (e),

iteration parameter (I"). The values for the parameters are chosen arbitrarily in most cases.
Some standard values for of the Prandtl number (P, ) is considered because of the physical

importance. These are P, =0.71 corresponds to air, P, =1.0corresponds to electrolyte
solution such as salt water and P. =1.63 corresponds to glycerin at 50°C and Schmidt
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number (S,) the values 0.60,1.0,2.62 are considered, which represent specific condition of
flow (0.60 corresponds to water vapor, 1.0correspond to carbonsioxid that represents the
most common effect in air, 2.62 corresponds to propyl-benzene at 20°C ). The importance of
cooling problem in nuclear engineering in connection with the cooling of reactors, the values
of G and G,are taken positive. Throughout the calculations the values of G, and G, are
taken very large (G, =5.0andG,,, = 2.0).
Form Fig.5.2.5 (a-c) and Fig.5.2.9 (a-C) it has been seen that the primary velocity (u ), local
and average shear stresses inX-axis (t ,t 5y ) increase with an increase of Hall and ion-dlip
parameter (b.andb,;). This is due to fact that the effective conductivity decreases, which
reduces the magnetic resistive force affecting on the primary flow. But secondary
velocity (w), local and average shear stresses inz-axis (t,w ,taw ) have increasing effects
with an increase of b, which are found in Fig.6 (a-c). Since w is aresult of the Hall Effect.
Also secondary velocity (w), local and average shear stresses inz-axis (t,w,taw) have
decreasing effects with the increase of b; whichisfound in Fig.10 (a-c). From thisfigureitis
clear that ion-dlip parameter b, retards the flow which leads to reduction in boundary layer
thickness. It is noted from Fig.5.2.7 (a) and Fig.5.2.11 (@) that the temperature (T ) decreases
when b,and b; are increased and also therma boundary layer thickness decreases. While
local and average Nusselt numbers are increased which are found in Fig. 5.2.7(b,c) and
Fig.5.2.11(b,c). Increases in the values of b, have a tendency to increase the frictiona
effects and to augment the heat transfer at the wall. This is reflected in the increases in the
local and average Nusselt numbers. Fig.5.2. 8(a) illustrates the concentration distribution for
different values of Hall parameter (b,). It is seen that concentration distribution decreases
with the increase of b,. But local and average Sherwood numbers increase with the increase
of b, which is seen in Fig.5.2.8 (b,c). The concentration (C) distribution has minor
increasing effects with an increased of b, whereas local and average Sherwood numbers
(S, ,S,) have opposite behavior which have been shown in Fig.5.2.12 (a-).
In Fig.5.2.13 (a), it has been illustrated that primary velocity (u) firstly decreases near the
plate, then start to increase far away from the plate with an increase of inertia parameter (T").
So there is cross flow a Y =11.0(approximately). The medium inertial (T") effects
constitute resistance to flow. Thus the inertial parameter (T ) increases, the resistance to the
flow increases, causing the fluid flow in the porous medium to slow down. The local and
average shear stresses inx-axis(t  ,t oy ) decrease with the increase of I' which is seen in
Fig.5.2.13 (b,c). The secondary velocity(w), local and average shear stresses inz-axis
(t \w-t anv) have decreasing effects which is found in Fig.14 (a-c). It is found that the
temperature and concentration profiles increase whereas local and average Nusselt and
Sherwood numbers are decreased with increasing I' which are found in Fig. 5.2.15(a-c) and
Fig. 5.2.16(a-c).
Analyzing the Fig.5.2.17 (@) it is clearly seen that the primary velocity (u) profiles firstly
increases in the interval (0<Y <21.0) and the minor decreasing effects Y >21.0 with an
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increase (E;). A cross flow inside the boundary layer has been obtained. This is due to the
heat energy stored in the liquid because of the frictional heating. The local and average shear
stresses in x-axis (t |, ,t ) increases in Fig.5.2.17 (b,c). Also the secondary velocity (w)
firstly decrease near the plate after then increases far away from the plate with an increase
(E.) in Fig.5.2.18(a). So there is cross flow at Y = 20.0(approximately). The loca and
average shear stresses inz-axis (t,w,tay) have decreasing effects which is found in

Fig.5.2.18 (b,c). The effect of Eckert number E_on the temperature is shown in Fig.5.2.19

(a). Eckert number is the ratio of the kinetic energy of the flow to the boundary layer
enthalpy difference. The effect of viscous dissipation on flow field is to increase
the energy, yieldinga greater fluid temperature and as a consequence greater buoyancy
force. The increase in the buoyancy force due to an increase in the dissipation
parameter enhances the temperature. Loca and average Nusselt numbers (N , N, ) have

reverse effect which is shown in Fig.5.2.19 (b,c). Fig.5.2.20 (a) showsthat E. isincreased,
the concentration profile decreases whereas local and average Sherwood numbers (S, ,S,)

profilesincreases which isfound in Fig.5.2. 20(b,c).

Figures 5.2.21(a-c), 5.2.23(a) and 5.2.24(a) depict the effect of the porosity parameter on the
primary velocity, loca and average shear stresses in x-axis, temperature and concentration
profiles of the flow. It is evident from this figure that an increase in the porosity parameter
improves the primary velocity, local and average shear stresses profiles in x-axis while both
temperature and concentration profiles have reverse effect. Increases in porosity parameter
widen the porous layers of the flow which increases the velocity boundary layer thickness
and decreases the thermal as well as concentration boundary layer thicknesses. Whereas
secondary velocity(w ), local and average shear stressesinz-axis (t, ,t oy ) have decreasing
effect which are found in Fig.5.2.22 (a-c). Local and average Nusselt and Sherwood numbers
increase with increasing(e )which are shown in Figure 5.2.23(b,c) and Figure 5.2.24(b,c).
From Fig.5.2.25 (a) it is seen that, firstly the primary velocity (U) decreases up to Y =200 but
after that (u)increases with the increases of permeability parameter (g ). So there obtained a

cross flow. An increase in g will increase the resistance of the porous medium which will

tend to decelerate the flow and reduce the velocity. Local and average shear stressesin x-axis
(t Lu st au ) &e decreased which are seen in Fig.5.2.25 (b,c). It is seen from Figs.5.2.26 (a-C),

the secondary velocity (w), local, average shear stresses inz-axis (t,w .ty ) a@e increased
with an increase ofg. From Fig.5.2.27 (ac) and Fig.5.2.28 (ac) it is observed that the
temperatureT and concentration (C) distributions increase whereas local and average Nusselt
(N Ny ) and Sherwood (s, , S ) humbers decrease with increasingg . This is due to the

fact that increasing the value of permeability parameter has tendency to increase the thermal
boundary layer and concentration species.

From Fig.5.2.29 (a-c) and Fig.5.2.30 (a-c), it has been seen that the primary velocity (u),
local and average shear stresses inX-axis (t,, .ty ) decrease whereas the secondary
velocity (W), local and average shear stressesinz-axis (t . ,t ay ) iNCrease with an increasein
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magnetic parameter (M ). An increase in the value of the magnetic parameter (m ) leads to
increase in the magnitude of the Lorentz force which serves to retard the primary fluid
velocity. The result of Fig.5.2.30 (a-c) indicates that the resulting Lorentzian body force will
not act as a drag force as in conventional MHD flows, but as an aiding body force. This will
serve to accelerate the secondary fluid velocity. Fig.5.2.31 (a-c) and Fig. 5.2.32(a-c) are
illustrated that the temperature(T) and concentration (C) distributions increase whereas local
and average Nusselt (N, , Ny, ) and Sherwood numbers (s, , S, ) decrease with increasing
(m). The effects of a transverse magnetic field to an electrically conducting fluid gives rise
to a resistive-type force called the Lorentz force. This force has the tendency to increase its
temperature and concentration distributions.

From Fig.5.2.33 (a-c) it is seen that the primary velocity (U ), local and average shear stresses
iNX-axis (t .y ,t au ) decrease with an increases of Prandtl number( PR, ). Thisis because in the
free convection the plate velocity is higher than the adjacent fluid velocity and the
momentum boundary layer thickness decreases. But opposite behavior is found for
secondary velocity (w), local and average shear stresses in Z-axis (t .y ,t aw ) Which are shown
in Fig.5.2.34 (a-c). From Fig. 5.2.35(a-C), it is observed that the temperature (T) distribution
decreases whereas local and average Nusselt numbers (N, , N, ) have opposite behavior
have been illustrate with an increases of Prandtl number (P, ). This is consistent with the
well-known fact that the thermal boundary layer thickness decreases with increasing (P, ).
Also the temperature decreased at a faster rate for higher values of (P, ). This shows that the
rate of cooling is faster in the case of higher Prandtl number. In Fig.5.2.36 (a) the
concentration distribution increases firstly, then starts to decrease with an increase (P, ). So
there is a cross flow near Y =22.0 (approximately). Because the concentration boundary
layer thickness increases as (PR, ) increases. But local and average Sherwood numbers
(S S ) decreasein Fig.5.2.36 (b,c).

It is seen from Fig. 5.2.37(a), the primary velocity (u)profiles decreases firstly, then start to
increase with the increase of rotational parameter (R). So there is a cross flow near
Y = 20.0 (approximately). But local and average shear stresses inx-axis (t . ,t oy ) decrease
which are shown in Fig.5.2.37 (b-c). In fact rotation parameter defines the relative magnitude
of the Coriolisforce and the viscous force, thus rotation retards primary flow in the boundary
layer. The secondary velocity (w), local and average shear stresses in z-axis (t w ,t aw ) have
decreasing effect in R are shown in Fig.5.2.38 (a-C).

From Fig.5.2.39(a-C) it is found that the primary velocity (U), local and average shear stresses
inx-axis (t . ,t oy ) profiles increase with an increase in Soret number(s,). This is because
either a decrease in concentration difference or an increase in temperature difference
leads to an increasein the value of S, . Hence, increasing the S; increases the velocity of the

fluid. But opposite behavior are found on secondary velocity (w), local and average shear
stresses inz-axis (t .y ,t aw ) Which are shown in Fig.5.2.40 (a-). It has been observed that
the temperature (T) has minor decreasing effects whereas local and average Nusselt numbers
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(N, Ny ) have reverse effects with an increase of s, which are found in Fig.5.2.41 (a-).
The concentration (C) distribution increases while local and average Sherwood numbers
(S, ,S,) are decreased with an increase of s,.in Fig.5.2.42 (a-c). As the Soret parameter is
increased, the concentration boundary layer thickness increases, thus decreasing the mass
transfer rate at the wall.
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Fig.5.2.10(c) Average Shear stressin Z -
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Fig.5.2.12(c) Average Sherwood number
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Fig.5.2.13(a) Primary velocity profilesfor
different valuesof T’

Fig.5.2.13(b) Loca Shear stressin X -
axis for different valuesof I°
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Fig.5.2.13(c) Average Shear stressin X-
axis for different values of I
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Fig.5.2.16(a) Concentration profiles for
different valuesof I

Fig.5.2.16(b) Loca Sherwood number for
different valuesof T
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Fig.5.2.16(c) Average Sherwood number
for different values of T’
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Fig.5.2.17(a) Primary velocity profilesfor

different values of E,
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axisfor different valuesof E,
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Fig.5.2.19(a) Temperature profiles for
different values of E,

Fig.5.2.19(b) Local Nusselt number for
different values of E,
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Fig.5.2.19(c) Average Nusselt number for
different values of E,
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Fig.5.2.22(b) Loca Shear stressin Z -
axis for different values of e
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Fig.5.2.22(c) Average Shear stressin Z -
axis for different values of €
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Fig.5.2.25(a) Primary velocity profiles for
different valuesof g
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Fig.5.2.25(c)Average Shear stressin X -
axis for different values of g
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Fig.5.2.28(a) Concentration profiles for
different valuesof g
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Fig.5.2.31(a) Temperature profiles for
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Chapter 6

Effects of ion-dip current on MHD free convection flow
with temperature stratified porous medium in a rotating
system

Stratification effects are an important aspect in heat and mass transfer analyses. Stratification
of fluid is a deposition/formation of layers and occurs due to temperature variations,
concentration differences of fluid. Convective heat transfer in thermal stratified ambient fluid
occurs in many industrial applications and is an important aspect in the study of heat transfer.
If stratification occurs, the fluid temperature is function of distance and convection in such
environment existsin lakes, oceans, nuclear reactors where coolant (generally liquid metals),
thermal energy storage systems such as solar ponds and heat transfer from thermal sources
such as the condensers of power plants is present in magnetic field etc. The dynamics of flow
in a thermaly stratified fluid is also important and arise in many contexts, ranging from
industrial settings to the oceanic and atmospheric environments. Thermal stratification
effects may arise when there is a continuous discharge of the thermal boundary layer into the
medium. For example, a heated vertica surface embedded in a porous bed which is of
limited extent in the direction of the plate. In such case, the thermal boundary layer
eventually heats the ceiling and at that point it falls horizontaly into the medium since it
contains hotter fluid than the rest of the medium (hotter fluid is lighter than the colder fluid).
The long time effect of this discharge activity is the stratification in the medium. Gebhart et
al. (1988) has shown that stratification increases the local heat transfer coefficient and
decreases the velocity and buoyancy levels. Another considerable effect of the stratification
on the mean field is the formation of a region with the temperature deficit (i.e., a negative
dimensionless temperature) and flow reversal in the outer part of the boundary layer. This
phenomenon was first shown theoretically by Prandtl (1952) for an infinite wall and later by
Jaluria and Himasekhar (1983) for semi infinite wall. Based on boundary- layer theory, Lai
et al. (1990) has analyzed natural convection from a vertica flat plate immersed in a
thermally stratified porous medium. Angirasa and Peterson (1997) discussed natural
convection heat transfer from an isothermal vertical surface to a fluid saturated thermally
stratified porous medium. Iranian et al. (2015) investigated an unsteady MHD natural
convective flow over vertical plate in thermally stratified media with variable viscosity and
thermal conductivity. Angirasa and Sinivasan (1989) have presented a numerical study of
the natural convection flow on a vertical surface due to the combined effect of buoyancy
forces caused by the heat and mass diffusion in a thermally stratified medium. Ihsan and
Basim (2013) studied natural convection heat transfer from a plane wall to thermally
stratified porous media. Swati et al. (2012) investigated the effects of thermal stratification on
flow and heat transfer past a porous vertica stretching surface. Sngh and Sharma (1990)
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studied integral method to free convection in thermally stratified porous medium. Chamkha
(1997) investigated MHD free convection from a vertical plate embedded

in athermally stratified porous medium with Hall effects. Natural convection boundary layer
flow of a double diffusive and rotating fluid past a vertical porous plate was investigated by
Rama et al. (2016).

Convection in porous medium has important applications in many areas including thermal
energy storage, flow through filtering devices, utilization of geothermal energy, oil
extraction, high performance insulation for buildings, paper industry etc. Hence combined
study may give some vital information which will surely be helpful in developing other
relevant areas. Permeable porous plates are used in the filtration processes and also for a
heated body to keep its temperature constant and to make the heat in solution of the surface
more effective. Viscous dissipation effects are important in geophysical flows and aso in
certain industrial operations and are usualy characterized by the Eckert number. Hall and
ion-dlip currents are important and they have a effect on the magnitude and direction of the
current density and consequently on the magnetic force term. The problem of MHD free
convection flow with Hall and ion-dlip currents has many important engineering applications,
e.g. in power generators, Hall accelerators and flows in channels and ducts. Jha and Apere
(2010) studied combined effect of Hall and ion-sip currents on unsteatdy MHD couette
flows in a rotating system. Atul et al. (2005) investigated Hydromagnetic free convection
and mass transfer flow with Joule heating, thermal diffusion, heat source and Hall current.
Nirmal et al.(2012) analyzed the effects of Hall current and ion-slip on unsteady MHD
couette flow. MHD Natural Convection Flow of an incompressible electrically conducting
viscous fluid through porous medium from a vertical flat plate was studied by Prabhakara et
al. (2015).

The aim of the present work is to investigate the effects of thermal stratification, viscous
dissipation and Joule heating on MHD unsteady free convection flow past an infinite vertical
plate in porous medium in a rotating system with ion-dlip current. The obtain nonlinear
coupled ordinary differential equations have been solved numerically using sixth order Rung-
Kutta method with shooting technique. The effects of different parameters on velocity and
temperature distribution are illustrated graphically. The numerical values of shear stress and
Nusselt number at the plate are discussed for various values of physical parameters and
presented in tabular form.

6.1 Governing Equations

Consider the natural convection boundary layer flow past an infinite vertical plate embedded
in a porous medium saturated with a stratified temperature. The plate is assumed to be
electrically non-conducting. Choose the coordinate system such that x axis isalong the
vertical plate and y axis norma to the plate, while the origin of the reference system is
considered at the leading edge of the vertical plate. The plate is maintained at a uniform and
constant wall temperature T,, . The ambient medium is assumed to be stratified with respect

to temperature in theform T_(t) =T, ., + Ss (t) where S is constant which is varied to alter
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the intensity of stratification in the medium, s (t) is thetime
dependent length schale. The value of T, is assumed to be
greater than the ambient temperature T, ,_, at any arbitrary

reference point in the medium (inside the boundary layer).
A uniform magnetic field of strength B, is applied in the y-

direction normal to the plate surface. The fluid is assumed
to be Newtonian, eectrically conducting fluid. The induced
magnetic field due to the motion of the electrically Eg%rgi'iafggfe;mﬁg“ra“o” and
conducting fluid is negligible. This assumption is valid for

small magnetic Reynolds number. The graphical model of the problem has been given aong
with flow configuration and coordinate system which is shown in Fig .6.1. The governing

equations are as follows,

The continuity equation; =0 (6.1
Momentum equation;

ou  ou o%u u s .B?

—+V—=20W=U—+ g ,b(T-T_(t))——u-— e _(au+b.w 6.2
a oy oy 9ob(T-T, (1)) ” m( U+b.w) (6.2)
oW ow o°w u s B?

— +V—+ 20U =U— ——W+ e - (bu-a.w 6.3
a oy 5 K m( LU—a w) (6.3)
Energy equation;

oT  oT k o°T u|(au) (ow) s B ,

—+V—=— +—|—| +H = [+ € us+w 6.4
ot oy rc,oy’ c, Kay] (ayJ } r cp‘a§+bezi( ) (649

where all physical quantities are defined in the Nomenclature.

Boundary conditions are as follows:

u=0 v=v(t) w=0 T=T, a y=0

u—>0 wo>0 T->T, (1) as y—owo (6.5
TLMO=T, o+,

d

S=—
dt

{T_(t)} > 0 isastratification rate of the gradient of ambient temperature profiles.

6.2 Methematical Formulation

Now in order to obtain the similarity solutions of the problem, a similarity Sattar and
Alam (1994) parameter s isnow introduced, s istime dependent length scale as;

s =s(t) (6.6)
In terms of this length scale, a convenient solution of the equation (6.1) is considered to bein
the following form:

V=v(t) = —voz— (6.7)
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where v, > 0 is the suction parameter.

The following dimensionless variables are now introduced,

y w T-T.(9
h = =y of (), g(h)- Q(h)—T T

Then introducing the relations (6.6)—(6.8) into the equations (6.2)—(6.4) and obtained the
following dimensionless ordinary coupled differential equations;

f"+h(s(t)d2t(t)j _g (—)f+Gq+Rg (—bz)g 0 6.9)

u
(s ds () Ma, Mb,

+h| =—2 +V — f-Rf =0 6.10
g (u Ta )9O TR e O e e (610

(6.8)

q"+h(ﬂd2t(t) Pq'+v,Pq ~2PS, +PE, [f'2+g'2]+;—M[ 219%]=0 (6.11)
u e

b2

2 2 2a 2 2
where, o =S| {22 Oy _SeBS O [ U
k u ru Co\Tw — T 10

_Sz(t) B _ rucp _SG—(t)
G{— uu, gob(Tw vat—O)J' P’(_ k j, ST(_TW_TWt_O]l

s (t) ds (t)
u
s (t) ds (1) .

The equations (6.9)-(6.11) are similar except for the term where time t appears

explicitly. Thus the similarity condition requires that ——=~ in the equations (6.9)-(6.11)

must be a constant quantity. Hence following the works Sattar and Alam (1994), Sattar and
Hossain (1992), Hasimoto (1957) and Sattar et al. (2000) one can try a class of solutions of
the equations (6.9)-( 6.11) by assuming that

s®as(®) = c(Constant) (6.12)
u dt

Now integrating (12) one obtains

s (t) =+2uct (6.13)

where the constant of integration is determined through the condition that s (t) =0
when t=0. It thus appears from (6.1.13) that, by making a realistic choice of c=2 in
(6.1.12) the length scale s (t) becomes equal to s (t) = 2Jut which exactly corresponds to
the usual scaling factor considered for various unsteady boundary layer flows. Since s (t) is

a scaling factor as well as a similarity parameter, any other value of ¢ in (6.12) would not
change the nature of the solution except that the scale would be different. Finally, introducing
(6.12) with in equations (6.9)-(6.11), obtain the following dimensionless ordinary differential
eguations are as follows,

f7+(2h +v, ) f'—of (—)f+Gq+Rg (—)g 0 (6.14)
b2

Ma Mb,
2h+v - = + f-Rf =0 6.15
9"+(2n +v, )9’ — T +b2 (6.15)
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q"+(2n +v, )P’ 2PST+PE[f’2+9’2]+ . [f2 J=0 (6.16)

where primes denote differentiation with respect toh.

The corresponding boundary conditions for t > O are obtained as.

f=0,g=0,g=1-S ah=0

f=0,g=0,g=0 ash - o (6.17)

6.3 Solutions Technique

The equations (6.14)-(6.16) constitute a set of ordinary differential equations, the solutions of
which should unfold the characteristics of the problem under consideration. These equations
under the boundary conditions (6.17) are solved numerically by using the Nachtsheim-
Swigert (1965) shooting iteration technique together with a sixth-order Runge-Kutta
integration scheme.

6.4 Shear Stress and Nusselt number

The parameters of engineering interest for the present problem are shear stress and Nusselt
number. The shear stress is generally known as the Skin friction, the following equations
represent the shear stress at the plate. Shear stressin xand z axes are as follows;

t, = F{@J and t, = n{a\—Nj which are proportional to [ij and (a—gj
ay y=0 8y y=0 oh h=0 oh h=0

The Nusselt number denoted by N, which is proportiona to- [Zgj .
h=0

6.5 Results and Discussion

The results of the numerical calculations are presented in the form of velocities (primary and
secondary) and temperature distributions are shown graphically in Fig.6.2 to Fig. 6.23 for
different values of thermal Stratification parameter (S;), magnetic parameter(M ), Hall

parameter (b.), ion-sip parameter(b;), Eckert number(E.), rotational parameter (R),
permeability parameter (g), suction parameter(v,), Prandtl number(P. ). The effects of
various parameters on shear stresses (t , andt ,) and Nusselt number (N, ) are shown in Table

1-Table 3. The discussion regarding the behavior of the parameters on the components of the
shear stress and Nusselt number are self evident from the Tables. The values of the Prandtl
number P, are taken equal to 0.71, 1.0,1.38 which corresponds physically to air, salt water,

ammonia. The values of Grashof number (G, =10.0) istaken to be large positive value, since
these values represent cooling of the plate.
The effects of suction parameter v, on the velocity field are shown in Fig.6.2. It is seen that

the velocity profiles decrease with the increase of suction parameter. This is fact that suction
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stabilizes the boundary layer growth. The secondary velocity has opposite behavior which is
shown in Fig.6.3. It can be noted from Fig.6.4 that by increasing the value of suction
parameter, the temperature distribution decreases in the fluid medium. As such thermal
conduction is depressed and this reduces the temperature in the boundary layer.

The variation of the primary and secondary velocities, temperature distribution for different
values of thermal dtratification parameter (S;) is illustrated in Fig. 6.5 - Fig. 6.7. It is

observed from Fig.6.5 that the primary velocity decreases with increase in thermal stratified
parameter, which is due to the layering effect of therma stratification as it acts like a
resistive force. The secondary velocity has opposite behavior which is shown in Fig. 6.6.
From Fig. 6.7, it is clear that the temperature of the fluid decreases with the increase of
thermal stratification parameter (S;). This is because, when the thermal stratification is

taken into consideration, the effective temperature difference between the plate and the
ambient fluid will decrease, therefore the thermal boundary layer is thickened and the
temperature is reduced.

The variation of the velocity (primary and secondary) profiles with magnetic parameter (M )
is shown in Figs. 6.8 and Fig. 6.9. It can be observed from Fig. 6.8 that the primary
velocity of the fluid is decreased with increase in the value of the magnetic parameter. Thisis
due to the fact that the introduction of a transverse magnetic field, normal to the flow
direction, has a tendency to create the drag known as the Lorentz force which tends to resist
the flow. It isfound from Fig.6.9, secondary velocity has opposite effects with the increase of
magnetic parameter.

Fig.6.10 and Fig.6.11 depict the influence of Hall parameter (b.) on the primary and
secondary velocity. It is evident from Figs.6.10 and Fig.6.11 that, primary and secondary
velocities increase throughout the boundary layer region. Thisimplies that, Hall current tends
to accelerate primary and secondary velocities throughout the boundary layer region. Thisis
due to the fact that Hall current induces secondary flow in theflow field.

Fig.6.12 shows that a dlight increase in the primary velocity with an increase of ion-dip
parameter (b; ). Thisis dueto the fact that b; increases, the effective conductivity decreases,

which in turn decrease the damping, force on velocity and hence primary velocity increases.
The secondary velocity decreases with the increase of ion-dlip parameter which is shown in
Fig. 6.13. From thisfigure it is clear that ion-slip parameter b, retards the flow which leads

to reduction in boundary layer thickness.

Fig. 6.14 to Fig.6.16, show the influence of the Eckert number ( E.) on the primary velocity,
secondary velocity and temperature distributions. It is clearly seen that the effect of Eckert
number is to increase both the primary velocity and the temperature distributions in the flow
region. This is due to the fact that the heat energy is stored in liquid due to the frictional
heating. The secondary velocity has reverse effect which is shown in Fig. 6.15.

From Fig.6.17 and Fig.6.18 illustrated that primary and secondary velocities decrease with an
increase the rotation parameter (R). In fact rotation parameter defines the relative magnitude
of the Coriolis force and the viscous force, thus rotation retards primary and secondary
velocities throughout the boundary layer region.
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It is evident from Fig.6.19 that primary velocity decreases with an increases of permeability
parameter (g ). Thisis due to the fact that increasing the value of permeability parameter has

tendency to resist the flow causing to reduce the thickness of the boundary layer It is seen
from Fig.6.20 that the secondary velocity has opposite behavior with an increase of (g ).

Fig. 6.21 illustrates the velocity component for different values of the Prandtl number(P, ).
The primary velocity decreases with an increase of P, . It is possible because fluids with high
Prandtl number have high viscosity and hence move slowly. It isobserved from Fig.6.22 that
the secondary velocity has reverse effect with an increase of P, . Fig. 6.23 represents the
graph of temperature distribution for different values of Prandtl number (P, ). It is seen that

the effect of increasing Prandtl number is to decrease temperature throughout the boundary
layer which results in decrease in the therma boundary layer thickness. The increase of
Prandtl number means slow rate of thermal-diffusion.

Finally, the effects of various parameters on the components of the shear stresses (t ,,t,)

and the Nusselt number (N, ) are shown in Table 8.1-Table 8.3. Table 8.1 shows that the
shear stress components t , decreases and t , increases with theincrease of B, S;,vgand g .
From this Table, it is observed that the Nusselt number increases with the increasing values
of B,Sr,v,and g.

From Table 8.2, it is seen that shear stress t  increases with the increase of b while

decreases with the increasing values of Rand M . Also the component of shear stress
t ,increases with the increasing values of b,and M whereas decreases with the increase of

R. The Nusselt number N, increases with the increase Rand M while decreases with the
increase of b,.

It is observed from Table 8.3 that stress components t ,increases and t , decreases with the
increase of b; and E.. The Nusselt number N, increases with the increase b; while
decreases with the increase of E..
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Table6.1

Numerical valuesof t ., t, and N, for G, =10.0,b, =0.2,b, =0.2,M =0.9,E, = 0.1,

R=0.6.
Gr R’ ST VO g t X t z Nu
0.71 |0.01 |05 |05 |3.6241715528 | -0.1422943632 | 1.0683140011
10 001 |05 |05 |3.1433280098 | -0.1059426549 | 1.363353855
138 {001 |05 |05 |2.7557638641 | -0.0813034334 | 1.696834592
0.71 | 0.025 |05 |05 |3.5130933222 | -0.1352936363 | 1.084002649
*tve | 0.71 | 0035 |05 |05 |3.4392349293 | -0.1306401579 | 1.094240637
0.71 |001 |03 |05 |3.6893866697 |-0.1509664447 | 0.959687995
0.71 |0.01 |07 |05 |3.5541664941 |-0.1335974968 | 1.179276909
0.71 |0.01 |05 |03 |3.6949869259 |-0.1509443392 | 1.061592986
0.71 |0.01 |05 |0.7 | 35576089923 |-0.1344422180 | 1.074446263
Table6.2
Numerical valuesof t ., t, and N, for G, =10.0,b, =0.2,E, =0.1,P, =0.71,S; = 0.0,
vV, =0.50g=0.5.
G | b, R M t . N,
02 |06 |09 3.6241715528 | -0.1422943632 | 1.0683140011
05 |06 |09 3.6795556117 | -0.0989259648 | 1.0663329579
08 |06 |09 3.7326084715 | -0.0841608228 | 1.0642041682
tve |02 |03 |09 3.6323547976 | -0.0453463800 | 1.0678734897
02 |09 |09 3.6077364616 | -0.2375275581 | 1.0691981567
02 |06 |02 3.8422364729 | -0.2203550015 | 1.0583195026
02 |06 |05 3.7446171929 | -0.1836265251 | 1.0627714935
Table 6.3

Numerical valuesof t ,,t, and N, for G, =10.0,b, =0.2,R=0.6,P. =0.7,S; =0.01,

v, =05M =09,g =05.

G, b, E. t, t, N,
0.2 0.1 3.6241715528 | -0.1422943632 | 1.068314001
0.6 0.1 3.6397621835 | -0.1514025690 | 1.068508835
+ve | 0.9 01 3.6504223692 | -0.1573372206 | 1.068563060
0.2 0.2 3.7247945542 | -0.1489930874 | 0.919735419
0.2 0.3 3.8468561/80 | -0.1571686104 | 0.744060366
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Chapter 7

Effects of stratification on MHD free convection flow past
a vertical platein a porous medium with Hall and ion-dlip
currentsin arotating system

Combined heat and mass transfer in fluid-saturated porous media finds applications in a
variety  of engineering processes such as heat exchanger devices, petroleum eservoirs,
chemical catalytic reactors and processes, geothermal and geophysical engineering, moisture
migration in a fibrous insulation and nuclear waste disposal and others. Bgjan and Khair
(1985) investigated the free convection boundary layer flow in a porous medium owing
to combined heat and mass transfer. The exhaustive volume of work devoted to this
area is documented by the most recent books by Ingham and Pop (1998), Nield and Bejan
(1999), Vafai (2000), Pop and Ingham (2001), Bejan and Kraus (2003), Ingham et al. (2004),
and Bejan et al. (2004). However, many problems which are important in applications, as
well asin theory.

Many convection processes occur in environments with stratification. Stratification of fluid
arises due to temperature variations, concentration differences, or the presence of different
fluids. In practical situations where the heat and mass transfer mechanisms run parald, it is
interesting to analyze the effect of double stratification (stratification of medium with respect
to thermal and concentration fields) on the convective transport in power-law fluid.
Stratification of the medium may arise due to a temperature variation, which givesrise to a
density variation in the medium. This is known as thermal stratification and usually arises
due to therma energy input into the medium from heated bodies and thermal sources.
Thermally stratified flows are also of great interest in various buoyant flow systems
including geotherma systems, geological transport, power plant condensation systems,
lake thermohydraulics, and volcanic flows and also in industrial thermal treatment processes.
Therma stratification occurs in cooling ponds, lakes, solar ponds and in the atmosphere.
Another situation of interest is the one in which stratification arises due to concentration
differences. Thisis relevant in many natural processes such as transport processes in the sea
where stratification exists due to sainity variation. The analysis of free convection in a
doubly  stratified  medium (stratification of medium with respect to thermal and

concentration fields) is a fundamentally interesting and important problem because of its
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broad range of engineering applications. These applications include heat rejection into the
environment such as lakes, rivers and seas, thermal energy storage systems such as solar
ponds and heat transfer from thermal sources. Also, the analysis of thermal stratification is
important for solar engineers because higher energy efficiency can be achieved with a better
stratification. It has been shown by scientists that thermal stratification in energy store may
considerably increase system performance. Due to the immense importance of stratification,
authors have analyzed the influence of thermal stratification on the rate of heat and mass
transfer. Ganesan et al. (2014) analyzed doubly stratified effects in afree convective flow
over avertical plate with heat and mass transfer. Tak and Arti (2007) studied the influence of
double stratification on MHD free convection with Soret and Dufour effects in a Darcian
porous media. Murty et al. (2004) studied the effect of double stratification on free
convection in a Darcian porous medium. Ali (1996) investigated MHD free convection from
a vertical plate embedded in a thermally stratified porous medium. Kaladhar et al. (2016)
investigated an analytical study for Soret, Hall, and Joule heating effects on natural
convection flow saturated porous medium in a vertical channel. The effects of Soret and
Dufour on an unsteady MHD free convection flow past a vertical porous plate in the presence
of suction or injection was investigated by Sarada and Shanker (2013). Lakshmi and Murthy
(2008) discussed Soret and Dufour effects on free convection heat and mass transfer from
horizontal flat plate in a Darcy porous medium.

In recent years, considerable interest has been given to the theory of rotating fluids due to its
application in cosmic and geophysical sciences. In an ionized gas where the density is low
and/or the magnetic field is very strong, the effects of Hall and ion-dip currents play a
significant role in the velocity distribution of the flow. The study of magnetohydrodynamic
flows with Hall and ion-slip currents has important engineering applications in the
problem of magnetohydrodynamic generators and of Hall accelerators as well as flight
magnetohydrodynamics. Ram and Takhar (1993) deat with MHD free convection from an
impulsively moving infinite vertical plate in arotating fluid with Hall and ion-dlip currents.
An investigation of the effect of Hall current and rotational parameter on dissipative fluid
flow past a vertical semi-infinite plate was studied by Abuga et al. (2011). Naroua (2007)
studied a computational solution of hydromagnetic free convective flow past a vertical plate
in arotating heat-generating fluid with Hall and ion-dlip currents.

The heat and mass transfer simultaneously affecting each other that will cause cross-diffusion
effect. These effects are very significant when the temperature and concentration gradient are
very high. Thus Soret effect is referred to species differentiation developing in an initial
homogenous mixture submitted to a thermal gradient and the Dufour effect referred to
the heat flux produced by concentration gradient. Nazmul and Alam (2007) investigated
Dufour and Soret effects on steady MHD free convection and mass transfer fluid flow

through a porous medium in arotating system. Soret and Dufour effects on steady MHD free
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convection flow past a semi-infinite moving vertical plate in a porous medium with viscous
dissipation were investigated by Gnaneswara and Bhaskar (2010). Dufour and Soret effects
on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a
porous medium were analyzed by Alam et al. (2006). RajaShekar (2014) analyzed the effects
of Dufour and Soret on unsteady MHD heat and mass transfer flow past a semi-infinite
moving vertical plate in a porous medium with viscous dissipation. Sreedhar et al.(2013)
studied numerical study of MHD free convection heat and mass transfer from vertical
surfaces in porous media considering Soret and Dufour effects.

The aim of the present work is to investigate the effects of stratification on MHD free
convection and mass transfer flow along a vertical plate in porous media saturated with
viscous dissipation and Joule heating effects, Soret and Dufour effects, Hall and ion-dlip
currents in a rotating system. The obtained nonlinear coupled ordinary equations have been
solved numerically using Nachtsheim-Swigert shooting iteration technique together with
sixth order Rung-Kutta iteration scheme. The effects of different parameters on velocity,
temperature and concentration are presented graphically. The numerical vaues of shear
stress, Nusselt number and Sherwood number are discussed for various values of physica
parameters and presented in tabular form.

7.1 Governing Equations

The system deals with a steady, laminar, incompressible, two-dimensional free convective
heat and mass transfer flow along a semi-infinite vertical plate in porous media embedded in a
doubly  dtratified, electrically conducting fluid. The viscous dissipation and Joule heating
terms have been retained in the energy equation. A uniform magnetic field of magnitude B, is

applied normal to the plate. The magnetic Reynolds number is
assumed to be small so that the induced magnetic field can be

2> <

neglected in comparison with the applied magnetic field. The Tw \ T.(x)
x-coordinate is taken along the plate and y -coordinate is Cw \*s Cw(XL
measured normal to the plate, while the origin of the reference " :§ v
system is considered at the leading edge of the vertica plate. __'IQ.E 007 W

The plate is maintained at uniform wall temperature and By N:%O X
concentration T,, and C, respectively. The values of T, and © N

Fig.7.1 Physical configuration
C, are assumed to be greater than the ambient temperature  and coordinate system

T,,oand C

o0

at any arbitrary reference point in the medium (inside the boundary layer).

0, X=0
At timet > 0, the plate is given an impulsive motion in its own plane with a uniform velocity
U,. The ambient medium is assumed to be vertically linearly stratified with respect to both

temperature and concentration in the form T, (x)=T, ,+Sx ad C (x)=C,, ,+SX
where S and S, are constants which are varied to ater intensity of stratification in the

medium and T and C

o0, X=0

are ambient temperature and concentration respectively.

00, x=0
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Furthermore, only positive values of S :di{Tw(x)}and S, :di{Cw(x)} are considered
X X
which imply a stable stratified ambient environment. The valuesof T, and C,, are assumed to

be greater than the ambient temperature T, , , and concentration C at any arbitrary point

0, X=0
in the medium (inside the boundary layer). The physical model and coordinate system which
is shown in Fig.7.1. By employing boundary layer flow assumptions and the Boussinesqg
approximation, the governing equations are as follows,

The continuity equation;

Moo (7.1)
oX oy
Momentum equation;
2
iz u =E6—lj+gob(T—Too(x))+gob*(C—Cw(x))+ZQW—Eu—cu2
e oXx oy) eoy k
2 (7.2)
s, Bi(au+b,w)
r(aez+bez)
2 2 _
iz u@_W+V8_W :Ea VZV_ZQlJ—EW—CVVZ—l-SeBO(bZeu ?ew) (73)
e ox oy) eoy Kk r(ae+be)

Energy equation;

or oT _ k T u|(eu) (ow) | s.Bi(u?+w?) D,k 6°C
tV—=———+—|| — | +| | |t 5 >+ 5 (7.4
ox oy rc,ay c,|lay oy rc,@z+b2) cc, oy

Concentration equation;
oC oC 0°C Dk, 0°T
+v—=0D +

x oy Tyt T, oy o
where all physical quantities are defined in the Nomenclature.
Boundary conditions are as follows;
u=Ug, v=v,(X),w=0T =Ty, C=C,, t>0 aty=0
u=0,w=0T=T_,(X)C=C_,(X) t>0 asy—>w (7.6)

where v,, is the uniform blowing/suction at the plate, the subscripts w, (oo,x=0)and «

indicate the conditions at the wall, at some reference point in the medium and at the outer
edge of the boundary layer respectively.

7.2 Mathematical Formulation

The continuity equation (7.1) is satisfied by introducing the stream functiony such that
oy &y

U=—"—,v=-—

oy oX

Introducing the following non dimensional variables:
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=\/2uouxfm),h=y\/%,u=%,v= agy w=U,glh )q(h)—%

c-c.(9 2x0(77)

f =
(h) Cw _Coc,x=0

Substituting equations (7.7) and in (7.2)-(7.5), then obtained the following equations are as
follows:

f’”+1ff” [g+—2ﬂagz}f'—erf'2+e[R—2—e2}g+eGrq+eGmf=0
a; +D0b,

: Z+b, (7.8)
1 Ma Mb

"L Taf —ela+ e —elg?—-el R= e f'=0 7.9

TR e LR L o] "

a"+Paf -S;Pf +EP [f”2+9'2]+ bz[f'2+9 J+DRf"=0 (7.10)

f7+Sff-8S f'+5809" =0 (7.12)

where G ( 2405 (T, T O)] G Lz 2xg,b " (C, _Coo,x=0)j , R{: 4)@]' g(: 2XUJ'
U ) us U, Uk
2xs B? ox oy d
( 2XC) ( ru, J' Sr[ T,-T, )i {T ( )}] Sr[ - : —{Cw(X)}J,
o(_Tus
r(_ k Ju

Df[z Dok; (Cu cwxo)]

EC = U02 ) S0 = Dka TW _TOO’XZO ) SC(: &]
Cp TW _Toc,x:o uTm Cw _Coo,x:O u
c.cu (T =T, 0)

The transformed boundary conditions are as follows;

1 1._.
=1 f=1,0=00=1-=S,f =1-= ath=0

f'=0,,=0,9=0f =0 ash — o«

where f, =-v,(X)

respect to similarity variable h . Here f, > Odenotesthe suction and f,, < Otheinjection.

7.3 Solution Technique

The set of non-linear and similar ordinary differential equations (7.8)—(7.11) with boundary
conditions (7.12) have been solved numericaly by sixth order Runge-Kutta method along
with Nachtsheim-Swigert shooting iteration technique with prescribed parameters.
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7.4 Shear Stress, Nusselt number and Sherwood number

The equation defining shear stressin x and z-axes are as follows;

t, = n{a—uJ andt, = n{a—wj which are proportionally to (ﬂj and [a_g] :
8y y=0 ay y=0 ah h=0 ah h=0

The Nusselt number denoted by N, is proportional to —(Z—EJ :
h=0

The Sherwood number denoted by S is proportional to — (%j

h=0

7.5 Results and Discussion

The governing boundary layer equations (7.8)-(7.11) with boundary conditions (7.12) are
coupled non-linear partial differential equations, which possess no similarity or closed form
solution. Therefore, for numerical solution of the problem, the sixth-order Runge-Kutta
method is needed. Numerical results which illustrate the effects of al involved physical
parameters of the present problem. The values of P is taken to be P =0.71 which

corresponds to air at 20°C, P =1.0 correspond to salt water at 20°C, P =1.38 corresponds
to ammonia, S, =0.6 corresponds to water vapor, S, =0.78 corresponds to ammonia,
S. =1.0 corresponds to carbondioxide. For free convection and cooling plate positive large
values of G, =10.0 and G, =5.0 are chosen. The values of Dufour number and Soret

number are chosen in such a way that their product is constant provided that the mean
temperature T, is kept constant. However, the values of other physical parameters on the

flow are chosen arbitrarily. The numerical results for the velocity, temperature and
concentration distributions are displayed in Figs. 7.2-7.51.
From Fig.7.2, an increase in Hall parameter (b, ) leads to an increase in the primary velocity

profiles. When the Hall parameter is increased the induced current along x-axis
increases and thistrandates to an increase in the primary velocity profiles. The secondary
velocity has the same effect which is shownin Fig.7.3.

Fig.7.4 demonstrates the dimensionless primary velocity for different values of inertial
parameter (T"). It is clear that the primary velocity of the fluid decreases with the increase of
I'. Since T" represents the initial drag, thus an increases I" increases the resistance to the
flow and so decrease in the primary velocity. The secondary velocity increases with the
increaseof I" isseeninFig.7.5.

Figs.7.6-7.9 display the non-dimensional velocity components (primary and secondary),
temperature and concentration for different values of Dufour number( D, ). It is observed

from Fig.7.6 that the primary velocity of the fluid increases with the increase of D, while
the secondary velocity has opposite behavior is seen in Fig.7.7. The dimensionless
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temperature increases for different values of Dufour number is shown in Fig.7.8. The
Dufour number signifies the contribution of the concentration gradients to the thermal
energy flux in the flow. It is found that an increase in the Dufour number causes a
rise in the temperature throughout the boundary layer i.e., the raise of Dufour number
encourages heat transfer. In Fig.7.9, it is seen that the concentration distribution decreases
with the increase of Dufour number. The Dufour effects reduce the concentration boundary
layer in the fluid.

In Figs.7.10-7.13, the influence of Eckert number (E,) on the dimensionless velocity

(primary and secondary), temperature, concentration are presented. In Fig.7.10, an increase
in Eckert number results to an increase in the primary velocity profiles. An increase in Eckert
number means an increase in kinetic energy of the fluid particles and for this reason primary
velocity increases. Whereas the secondary velocity has reverse effect is found in Fig.7.11.
From Fig. 7.12, increase in Eckert number leads to an increase in the temperature profiles.
Increasing the Eckert number causes the fluid to become warmer and therefore increase its
temperature. In Fig.7.13, concentration profiles decreases with the increase of Eckert
number.

Fig.7.14 illustrates the influence of porosity on the primary velocity. Increasing porosity
clearly serves to enhance the flow velocity i.e. accelerates the flow. The secondary velocity
decreases with increasing values of porosity parameter is shown in Fig.7.15. From Fig.7.16 it
is observed that temperature distribution decreases with increasing porosity parameter. A
reductionin the volumeof solid particles inthe medium impliesalower contribution
via therma conduction. This will serve to decrease temperature. In fig.7.17 a similar
response for the concentration field is observed, as with the temperature distributions.

The numerical results for the velocity (primary and secondary), temperature and
concentration distributions are displayed in Figs.7.18-7.21. The effects of suction parameter
f  on the velocity field are shown in Fig.7.18. It is seen from this figure that the

velocity praofiles decrease with the increase of suction parameter indicating the usual fact that
suction stabilizes the boundary layer growth. The secondary velocity has reverse effects with
increasing values of suction parameter is shown in Fig.7.19. The effect of suction parameter
on the temperature and concentration field is displayed in Fig.7.20 and Fig.7.21 respectively.
Both the temperature and concentration decreases with the increase of suction parameter.
Sucking decelerated fluid particles through the porous wall reduce the growth of the fluid
boundary layer as well asthermal and concentration boundary layers.

Figs.7.22-7.25 display results of velocity (primary and secondary), temperature and
concentration distributions for  various values of porous permeability parameter g. It is
observed from Fig.7.22 that the velocity distribution decreases with increasing the porous
permeability parameter because the presence of porous medium increases the resistance to
the flow which causes the fluid velocity to decrease. The secondary velocity increases with
increasing values of permeability parameter is shown in Fig.7.23. Fig.7.24 depicts the
variations of temperature distributions for various values of porous permeability. It is found
that increase in the value of g increases the temperature because of increase in the thermal
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boundary layer thickness due to the resistance offered to the fluid motion in the form of
Darcy drag produced by the porous medium. It is seen from Fig.7.25 that the concentration
distribution increases with increasing the value of porous permeability parameter due to
increase in the concentration boundary layer thickness.

Fig.7.26 and Fig7.27 illustrated the primary velocity decrease and the secondary velocity
increases with increasing values of magnetic parameter (M ). An increase in the magnetic
parameter leads to a decrease in the primary velocity and an increase in the secondary
velocity profiles. Due the Lorentz force, there is a resistive force along the x-axis and this
reduces the primary velocity but the secondary velocity profile increases since it is in the
direction of the induced force. It is noticed from Fig.7.28 and Fig.7.29 that the temperature
and concentration increases with  increasing values of magnetic parameter. Thisis due to the
fact that the transverse magnetic field gives rise to a resistive force known as the Lorentz
force of an electrically conducting fluid. This force makes the fluid experience a resistance
by increasing the friction between its layers and thus increases its temperature and
concentration.

Fig.7.30 illustrates that the primary velocity (f') decreases with an increase in Prandtl

number P, . Physicaly, this is true because the increase in the Prandtl number is due to

increase in the viscosity of the fluid which makes the fluid thick and hence causes a decrease
in the velocity of the fluid. From Fig.7.31, it is observed that the secondary velocity has

opposite behavior with increasing values of P, . It is observed from Fig.7.32 that temperature
of the fluid decreases with increasing the value of P, . The reason underlying such a
behavior is that P, signifies the relative effects of viscosity to thermal conductivity and
smaller values of P, posses high thermal conductivity and therefore heat is able to diffuse
away from the surface faster than at higher values of P.. This results in the reduction of
thermal boundary layer thickness. Fig.7.33 depicts the variation in the concentration
distributions for different values of P, . The concentration increases with increasing values of
P.
It is seen from Fig.7.34 that there is anegligible effect of rotation parameter on the primary
velocity. Fig.7.35 displays the influence of rotation parameter on the secondary velocity. The
secondary velocity has decreasing effect with the increasing values of rotation parameter.
This is due to the reason that Coriolis force is dominant in the region near to the axis of
rotation.

Figs.7.36,7.39 are presented the primary velocity and concentration for various values of
Schmidt number (S,). It is seen that the primary velocity and concentration decreases with
increasing S, due to a decrease in the molecular diffusivity, which resultsin a decrease in the
velocity and concentration boundary layer thickness. From Figs.7.37, it is seen that the
secondary velocity increases with increasing values of S_. Also the temperature distribution

increases with increasing values of S_ in Fig.7.38. As Schmidt number increases the thermal
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boundary layer thickness decreases due to a decrease in chemical species molecular
diffusivity.

Figs.7.40,7.43 depict the primary velocity and concentration profiles for different values of
the Soret number (S;). The Soret number defines the effect of the temperature gradients
inducing significant mass diffusion effects. It is noticed that an increase in the Soret number
results in an increase in the velocity and concentration within the boundary layer. The
secondary velocity decreases with increasing values of Soret number is shown in Fig.7.41.
Fig.7.42 depicts the behavior of S, on temperature distribution. It is observed that as S,
increases, there is a decrease in the temperature of the fluid.

The effect of thermal stratification parameter (S, ) on non-dimensional velocity (primary and
secondary), temperature, concentration is shown in Figs.7.44-7.47. 1t is observed from
Fig.7.44 that the primary velocity decreases with the increase of thermal stratification(S;).
Increase in thermal stratification parameter reduces the effective convective potentia
between the heated plate and the ambient fluid in the medium. This factor causes a decrease
in the buoyancy force, which decelerates the velocity of the flow. It is seen from Fig.7.45,
that there is an increasing effect of the secondary velocity profiles with increasing values of
S;. Influence of thermal stratification parameter S;on the temperature and concentration
distributions is shown in Fig.7.46 and Fig.4.47. Here the temperature and thermal boundary
layer thickness is decreased while concentration and its related boundary layer thickness is
increased when increase in thermal stratification parameter. When the thermal stratification
effect is taken into account, the effective temperature difference between the surface and the
ambient fluid is decreased while opposite behavior is observed for concentration profile.

In Figs. 7.48-7.51 the influence of mass stratification parameter S, on the dimensionless
velocity(primary and secondary), temperature and concentration are presented. From Fig.
7.48, it is observed that the primary velocity of the fluid decreases with the increase of mass
stratification parameter. Increase in mass stratification parameter lessens the concentration
gradient between the ambient and the surface. This declines the buoyancy force, which

reduces the velocity of the flow. Influence of mass stratification parameter S on the

temperature and concentration distributions are shown in Fig 7.50 and Fig.7.51. The
temperature profile is enhanced while the concentration profile is reduced with an increase in
mass stratification parameter.

Finally, the effects of various parameters on the components of the shear stresst ,, t ,, the

Nusselt number N, and Sherwood number S, are shown in Table 7.1-Table 7.4. From Table
7.1, it is observed that the components of shear stress t , increases with increasing values of
b, while decreases with the increasing values of Rand I'. Also the components t,

increases with increasing values of b, and I" whereas it decreases with increasing value of
R.
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Table 7.2 shows the components of the shear stress t , increases and t , decreases with the
increase of D, ,E., S, and e. The Table also shows the Nusselt number increase with
increase of € and S, while decreases with the increase of D;and E;. Again from this
Table, it is observed that the Sherwood number S, increases with the increasing values of
D, , E.,e and decreases with the increasing values of S;.

From Table 7.3, it is observed that the components of the shear stress t, decreasesand t,
increases with the increase of f,, M, P. and g. The Table also shows that the Nusselt
number increases with increase of f,, and P. while decreases with the increase of M and g.
Again from this Table, it is observed that the Sherwood number S, increases with the
increasing values of f,, whereas decreases with theincreasing valuesof M ,P.and g.

From Table 7.4, it is observed that the components of the shear stress t, decreasesand t,
increases with theincrease of S, S; and S; . The Table also shows that the Nusselt number
increases with increase of S, while decreases with the increase of S, and S;. Again from
this Table, it is observed that the Sherwood number S, increases with the increasing values

of S.and S; whereas decreases with theincreasing valuesof S; .
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Table7.1

Numerical valuesof t, and t, for G, =10.0,G,, =5.0,S, =0.6,S; =0.5M =0.9,e =0.6

D, =05P. =0.7.S. =05,f,=10,g=05S, =0.2,b, =0.2,E, = 0.1.

G &G, | R b, r t, t,
05 |03 |05 |0.8540158 |-0.1176121
06 |03 |05 |0.85232908 |-0.1642355
07 |03 |05 |0.8500862 |-0.2108412

+ve 06 |06 |05 |0.9043732 |-0.0966837
06 |09 |05 |0.9553969 |-0.0742697
06 |03 |10 |07077584 |-0.1624380
06 |03 |15 |05720807 |-0.1607554

Table7.2

Numerical values of t,, t,, N,and § for G, =10.0,G,,=5.0,S. =0.6,S; =0.5 =0.5,

P, =0.71,S; =0.5,R=0.6,b,=0.3, b; =0.2, M =09, f,, =1.0,g = 0.5

c;r & c;\'m Df Ec SJ € t X t z Nu Sn
05101 |02 |06 |0.8523298 | -0.1642355 | 0.8194647 | 0.9376818
10 |01 |02 |0.6 |1.1329476 | -0.1764397 | 0.5359260 | 1.0094275
15|01 |02 |0.6 |1.4283914 | -0.1878266 | 0.2024831 | 1.08347/0
0504 |02 |06 |1.0973506 | -0.1737405 | 0.5660066 | 0.9975611
tve 05 |07 |02 |06 |14126295 |-0.1856003 | 0.2283047 | 1.0742673
0501 |05 |06 |0.8961587 | -0.1680962 | 0.8733375 | 0.8115556
0501 |08 |06 |0.9421728 | -0.1715598 | 0.9334194 | 0.6648544
05101 |02 |07 |1.2930466 | -0.2001934 | 0.8392247 | 0.9749975
05]01 |02 |08 |1.6603251 |-0.2349740 | 0.8521140 | 1.0058803
Table7.3

Numerical valuesof t, ,t, N,and S, for G, =10.0,G,, =5.0,S, =0.6,S; =0.5 =0.5,

z

S; =0.5,R=06,b,=0.3b; =0.2,D; =05,e=06, E,=0.1, S, =0.2

Gr & Gm fW M Pr 9 t X t z Nu Sn
10 |09 |0.71 | 0.5 | 0.8523298 | -0.1642355 | 0.8194647 | 0.9376818
05 |09 071 |05 | 12784448 | -0.1747568 | 0.7136184 | 0.8460865
0.75/09 |0.71 |05 |1.0877677 | -0.1707482 | 0.7657946 | 0.8907201
10 |01 |0.71 | 0.5 | 1.0724093 | -0.2949641 | 0.8654834 | 0.9464273
+ve 1.0 |05 [0.71 | 0.5 | 0.9615540 | -0.2264331 | 0.8420795 | 0.9420856
10 |09 |10 |0.5 |0.6092746 | -0.1531513 | 1.0695553 | 0.8729027
1.0 |09 [1.38 | 0.5 | 0.1255028 | -0.1378504 | 1.9933580 | 0.7135160
10 |09 |0.71 | 1.0 | 0.6868804 | -0.1533763 | 0.8135879 | 0.9266327
10 |09 |0.71 |15 | 0.5301094 | -0.1439224 | 0.8073987 | 0.9163717
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Numerical values of t  , t

z

Table7.4

N,and S, for G, =10.0,G, =50,E, =0.1,P. =0.7LT =05,

g=05M =09,S,=02,R=06,b, =03, f,=10,b, =0.2,D, =0.5,e = 0.6,

C;r &Gm Sc Sr S; t>< tz Nu Sn

06005 |05 |0.8523298 |-0.1642355 | 0.8194647 | 0.9376818

07805 |05 |0.7855988 | -0.1594663 | 0.7269293 | 1.1659213

1.00| 05 |05 |0.7195395 | -0.1553044 | 0.6207048 | 1.4421991

+ve 060/ 0.1 |05 |1.6270881 |-0.1855449 |0.7702318 | 1.0172652

06003 |05 |1.2332185 |-0.1748621 | 0.8042110 | 0.9763110

06005 |01 |1.2514272 |-0.1790109 | 0.8782022 | 0.9188355

06005 |03 |1.0505220 |-0.1717407 | 0.8476198 | 0.9330703
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Chapter 8

Effect of Hall and ion-dip currents on MHD boundary
layer flow past along a vertical plate in porous medium
with power-law variation wall temperature in a rotating
system

The magnetohydrodynamic (MHD) flow has attracted a great interest to many researchers
during the last several decades owing to the effect of magnetic field on the boundary layer
flow control and applications in many engineering and physical aspects such as MHD
generators, plasma studies, nuclear reactors, geotherma energy extractions, purification of
molten metals from non-metalic inclusion, geotherma energy extractions etc. A
transformation of the boundary layer equation for free convection flow past a vertical flat
plate with arbitrary and wall temperature variation, was studied by Vedhanayagam (1980).
Soundalgekar and Ramana (1980) investigated the constant surface velocity case with a
power-law temperature variation. The effect of viscous dissipation and Joule heating on
MHD free convection flow past a semi-infinite vertical flat plate in the presence of the
combined effect of Hall and non-dlip currents for the case of power-law variation of the wall
temperature is anadyzed by Emad and Mohamed (2005). Chen (2004) considered the heat
and mass transfer in MHD flow by natural convection from a permeable, inclined surface
with variable wall temperature and concentration. Satish and Pradhan (2015) studied the
problem numerical solution of boundary layer equation with viscous dissipation effect along
a flat plate with variable temperature. Natural convection heat and mass transfer in MHD
fluid flow past a moving vertical plate with variable surface temperature and concentration in
a porous medium were investigated by Javaherdeh et al. (2015).

Hall and ion-dlip currents trend for the application of magnetohydrodynamic is towards a
strong magnetic field, so that the influence of the electromagnetic force is noticeable. The
problem of MHD free convection flow with Hall and ion-dlip currents has many important
engineering applications e.g. in power generators, Hall accelerators and flows in channels
and ducts. Ahmed and Sarmah (2011) analyzed MHD transient flow past an impulsively
started infinite horizontal porous plate in a rotating system with Hall current. Odelu and
Naresh (2013) studied numerical study of MHD flow and heat transfer through porous
medium between two parallel plates with Hall and ion glip effects.

The rotating flow of an electrical conducting fluid in the presence of magnetic field is
encountered in geophysical and comical fluid dynamics. Study of the interaction of Coriolis
force with electromagnetic force in porous media is important in some geophysica and
astrophysical problems. Dileep and Priyanka (2012) investigated the Hall effects on MHD
dip flow and heat transfer through a porous medium over an accelerated plate in a rotating
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system. Hall effects on MHD flow in arotating system with heat transfer characteristics was
studied by Ghosh et al. (2009).

Viscous dissipation effects play an important role in natural convection in various devices
which are subjected to large variations of gravitational force or which operate at high
speeds. Brinkman (1951) appears to be the first theoretical work dealing viscous dissipation.
Anjali et al. (2012) investigated Hall effect on unsteady MHD free convection flow past an
impulsively started porous plate with viscous and Joule’s dissipation. Palanisamy and
Muthamperumal (2011) investigated viscous dissipation effect on steady free convection and
mass transfer flow past a semi-infinite flat plate. Khaled (2016) studied Joule heating and
viscous dissipation on effects on MHD flow over a stretching porous sheet subjected to
power law heat flux in presence of heat source. Hossain (1992) studied the effect of viscous
and Joule heating on the flow of an electrically conducting, viscous, incompressible fluid
past a semi-infinite plate with surface temperature varying linearly with the distance from the
leading edge in the presence of a uniform transverse magnetic field.

The am of the present work is to study the viscous dissipation, Joule heating effect in two
dimensional MHD free convection flow past along a vertical plate in presence of Hall and
ion-dip currents, power-law variation wall temperature in a rotating system as well as
uniform magnetic field which is normal to the vertica porous plate. The nonlinear
governing partial differential equations are transformed into ordinary differential equations
using usua similarity transformations. This system is solved numerically by applying
Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order
integration scheme. Representative results are presented graphically for the velocity and
temperature distributions. The numerical values of the shear stress components and the
Nusselt number have been calculated for various values of physical parameters and presented
in tabular form.

8.1 Governing Equations
Consider a steady laminar, incompressible viscous electrically conducting fluid of
temperature T past along a semi-infinite vertical porous plate in presence of power-law wall
temperature under the influence of a transversely applied magnetic field. The wall
temperature varies with the distance aong the plate
according to a power-law model and they are always greater
than their uniform ambient values existing far from the
plate. Fluid suction or blowing is imposed at the plate
surface. The wall temperature is assumed to have power-law
variagtion form as shown in  the  follow

equationT, (x) =T, + Ax*, where A is constant, T, is

ambient temperature and a is the power index of the wall  rigg1 physica|<‘c/0nfiguration
temperature. The x-axis is assumed to be taken along the  and coordinate system
plate and the y-axis norma to the plate. The physica
configuration and coordinate system is shown in Fig.8.1. An external strong
171



magnetic field B = (0, B,,0) where magnetic field of uniform strength B, is imposed along the
y -direction. For an electrically conducting fluid, the Hall and ion-dlip currents significantly

affected the flow in the presence of large magnetic field. The induced magnetic field is
neglected, since the magnetic Reynolds number is assumed to be very small. The effects of
Hall current give rise to a force in the z-direction, which induces a cross flow in that
direction and hence the flow becomes three dimensional. The equation of conservation of
electric charge V.j =0 gives j, =constant, where | = (jx, Iys jz). This constant is assumed

to bezerosince j, = 0 everywherein the flow. The governing boundary layer equations may

be written as;
Continuity equation; @JFQ:O (8.1
ox oy
Momentum equations,
ou ou 9% u s B?
U—+V—=U—>+g,b(T-T,)+2Qw——u- e 0 _(au+bw 8.2
ox oy 8yzgo( .) km(e W) (8.2)
2 2
u WOV oouYws S By (bu—a.w) (8.3

ox oy oy’ k rf@a?+b2)

e e

Energy equation;

2 2 2 2
Uﬁ-l-vﬁ: k 6T+i[(a_l]] +(@lj :l+ SeBO (U2+W2> (84)

x oy rc, oy c,|lay) \ay) | rc,faZ+n?)

where all physical quantities are defined in the Nomenclature.
Boundary conditions are as follows,

u=U,, v=-v,(x), w=0, T=T,(x) at y=0}

u=0,w=0, T=T, as y - (8.5)

where A isconstant and a isthe power index of the wall temperature.

8.2 Mathematical for mulation

Introducing the similarity variables are as follows;

U T-T oy oy
h=—2y vy =.2U.uxf(h), = > U= L V= ,w=U
e uxf(h) ah) Ty o9th)

Now equation (8.2)-(8.4) become

f”’+ff”—{g+ ':/laeg}f#[l?—aiv'be }9+Grq=0 (8.6)

a’+b +b?

e e e e

Ma Mb
"+ fg'—|g+ € - R—- € f'=0 8.7
o {g a;m;}g{ as+b:} &0

FEM

el rg]=0 (838)

q"+Pfq'—2aP fty+ PE[f"2+ g+
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where primes denote differentiation with respect to similarity variable h .
The corresponding boundary conditions are as follows;

f'=10 f=1f, 9g=00,g=10 at h=0

f'=00, g=00,g=00 as h—->w }

— 2 ruc
where G, =2Xg°b(-l;w T.) , =4X? .9 _ 2« Y _2x5.By , P|= P
U Us; kU, ru, k

2
Elo— Yo | o |2y
c¢,(T,-T.) U

(8.9)

8.3 Solutions Technique

The system of non-linear ordinary differential equations (8.6)—(8.8) together with the
boundary conditions (8.9) are solved numerically using Nachtsheim-Swigert shooting
iteration technique (guessing the missing value) along with sixth order Runge-Kuttainitial
value solver.

In a shooting method, the missing (unspecified) initial condition at the initial point of the
interval is assumed, and the differential equation is then integrated numerically as an initial
value problem to the terminal point. The accuracy of the assumed missing initial condition is
then checked by comparing the calculated value of the dependent variable at the terminal
point with its given value there. If a difference exists, another value of the missing initial
condition must be assumed and the process is repeated. This process is continued until the
agreement between the calculated and the given condition at the terminal point is within the
specified degree of accuracy.

The Nachtsheim-Swigert iteration technique thus needs to be discussed elaborately. The
boundary conditions (8.9) associated with the non-linear ordinary differential equations
(8.6)—(8.8) are the two-point asymptotic class. Two-point boundary conditions have values of
the dependent variable specified at two different values of independent variable. Specification
of an asymptotic boundary condition implies that the first derivative (and higher derivatives
of the boundary layer equations, if exist) of the dependent variable approaches zero as the
outer specified value of the independent variable is approached.

The method of numericaly integrating a two-point asymptotic boundary-value problem
of the boundary-layer type, the initial-value method is similar to an initial-value problem.
The governing differential equations are then integrated with these assumed surface
boundary conditions. If the required outer boundary condition is satisfied, a solution has
been achieved. Hence, a method must be devised to estimate logically the new surface
boundary conditions for the next trial integration. Asymptotic boundary value problems such
as those governing the boundary-layer equations are further complicated by the fact that the
outer boundary condition is specified at infinity. In the trial integration, infinity is
numerically approximated by some large vaue of the independent variable. There is no a

173



priori general method of estimating these values. Selecting too small a maximum value for
the independent variable may not alow the solution to asymptotically converge to the
required accuracy. Selecting large avalue may result in divergence of the trial integration or
in slow convergence of surface boundary conditions. Selecting too large a value of the
independent variable is expensive in terms of computer time.

Nachtsheim-Swigert (1965) developed an iteration method to overcome these difficulties.
Extension of the Nachtsheim-Swigert iteration scheme to the system of equations (8.6)-(8.8)
and the boundary conditions (8.9) is straightforward. In equation (8.9) there are three
asymptotic boundary conditions and hence three unknown surface conditions f"(0),g’(0)
and q'(0) .

Within the context of the initial-value method and Nachtsheim-Swigert iteration technique
the outer boundary conditions may be functionally represented as follows,

f i me)=1(f"(0,0'(0.q'(0)=d,, j=12,....6 (8.10)
where f, =f'f,=9f,=q,f,=f"f.=9d'fs=q'. The last three of these represents
asymptotic convergence criteria.

Choosing f"=g,,9'=9,,9' =g, and expanding in a first-order Taylor’s series after using
equation (8.10) yield

of | _
fj(hmax)zfjvc(hmax)Jrza—g.JAgi =d;, j=12....6 (8.11)

where subscript C ’ indicates the value of the function at h . determined from the tria
integration.

Solution of these equations in a least-square sense requires determining the minimum value
of

6
E=)d} (8.12)
j=1

with respect to g;(i=1,2,3).
Now differentiating E with respect to g, , then obtain then obtain the following equations
6 ad,
Zdj “J_p (8.13)
09

Substituting equation (8.11) into (8.13) after some agebra, then obtain the following
eguation

3
D ag=h  (i=123) (8.14)
k=1
where
6 of . of 6 of
a, =Y Ll =M L (i,k=1273) (8.15)
“ =1 agl agk ; he ag'

Now solving the system of linear equation (8.14) using Cramer’s rule we obtain the missing
(unspecified) values of g, as
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gi =0 +Ag, (8.16)
Thus adopting the numerical technique aforementioned, the solution of the nonlinear
ordinary differential equations (8.6)—(8.8) with boundary conditions (8.9) is obtained
together with sixth-order Runge-Kutta initial value solver and determine the velocity and
temperature as a function of the coordinate h .

8.4 Shear Stress and Nusselt number

The quantities of physical interest are the shear stressandthe Nusselt number.
Shear stress due to the primary and secondary vel ocities are given by

t, = 8—”) ,tzzn{ﬁ—WJ which are proportional to [ﬂj and (a_gj :
8y y=0 8y y=0 ah h=0 ah h=0

The Nusselt number denoted by N, = (ﬂj which is proportional to _(a_qJ :
Y )yeo oh )

8.5 Results and Discussion

In order to get a clear insight of the physical problem, numerical results are displayed with
the help of tables and graphs. The numerical results are presented in Figs. 8.2-Fig.8.21and
Tables 8.1-8.2 to illustrate the influence of severa non-dimensional parameters. The
transformed ordinary differential equations with the corresponding boundary conditions are
solved numerically using the Rung-Kutta sixth order using shooting iteration technique by
giving appropriate initial guess values of f”(0),9'(0),q'(0)to match the values with
corresponding boundary conditions at f'(«), g(«),q(x) respectively. The numerical results
of velocity components f’(0),g(0), temperature q(0) distributions have been obtained for
value of the power-law index “a» taking values 1.0. The values of Grashof number G, are
taken to be positive, since these values represent respectively, cooling of the plate. For
brevity negligible effects on velocity and temperature distributions are not shown.

From Fig.8.2, it is observed that an increase in the Hall parameter (b,) causes negligible
effect on the primary velocity profiles. Fig.8.3 shows that the Hall parameter has a strong
increasing effect on secondary flow velocity. The secondary velocity is induced by the
component of the Lorentz force in the z-axis which arises solely due to the Hall current.
This means that the magnitude of the component of the Lorentz force in the z -axis increases
as b, increases the secondary velocity isincreased.

The effect of the viscous dissipation parameter i.e., the Eckert number (E.) on the
dimensionless primary velocity component ( f’) and temperature (q) is shown in Figs. 8.4,
8.6 respectively. The greater viscous dissipative causes a rise in the velocity as well as the
temperature, which is evident from Figs. 8.4 and 8.6. The secondary velocity ( g ) decreases
with the increase of Eckert number which is shownin Fig. 8.5.
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Figs.8.7-8.9 illustrate the velocity (primary and secondary) and temperature distributions for
different values of suction parameter ( f,). From Fig.8.7 it can be seen that for cooling of

the plate (G, >0), the velocity profiles decrease with the increase of suction parameter( f,,)

indicating the usual fact that suction stabilizes the boundary layer growth. The secondary
velocity increases with the increase of f,,which is shown in Fig.8.8. Also from Fig. 8.9 itis
observed that increase in suction parameter leads to a decrease in the temperature
distributions. Suction stabilizes the thermal boundary layers growth.

Increase in rotation parameter ( R) has minor effect on the primary velocity profiles which is
shown in Fig. 8.10. The secondary velocity decreases with the increase of rotation parameter
which isfound in Fig.8.11. Thisis due to the fact that rotation parameter defines the relative
magnitude of the Coriolis force and viscous force, thus rotation retards the secondary flow in
the boundary layer.

Fig.8.12 display results of primary velocity for various values of permeability parameter (g ).
It is observed that the primary velocity profiles decrease with increasing g because the
presence of porous medium increases the resistance to the flow which causes the fluid
velocity decrease. Whereas the secondary velocity has opposite behavior which is shown in
Fig.8.13.

Fig.8.14 and Fig.8.15 show the dimensionless primary and secondary velocity profiles for
different values of magnetic parameter (M ). An increase in the Magnetic parameter, the
primary velocity decreases. Due the Lorentz force, there is aresistive force aong the x-axis
and this reduces the primary velocity. The secondary velocity has reverse effect with the
increase of M .

Figs. 8.16-8.18 illustrate the velocity (primary and secondary) and temperature profiles for
different values of Prandtl number (P, ). The numerical results show that the effect of
increasing values of Prandtl number results in a decreasing velocity. The secondary
velocity has reverse effect which is shown in Fig. 8.17. The temperature distribution
decreases with theincreases of P. which isillustrated in Fig. 8.18. It is seen that the effect of
increasing Prandtl number P is to decrease temperature throughout the boundary layer

which results in decrease in the thermal boundary layer thickness.
Figs. 8.19 -8.21 show the effects of wall temperature power index “a» on the velocity

(primary and secondary) and temperature distributions within the boundary layer. Fig.8.19
shows that the primary velocity decreases as “a» increases. But the secondary velocity has

reverse effect which is found in Fig.8.210. From Fig. 8.21, it is seen that the temperature
distribution decreases with increases of “a».

Finally, the effects of various parameters on the components of the shear stress t,,t, and
the Nusselt number N, are shown in Table 8.1-Table 8.2. From Table 8.1, it is seen that the
component of shear stress t , increases with increasing values of b, while it decreases with
increasing values of g,M and R. Also the component t, increases with the increase of

b.,9,M whereas decreases with the increase of R.
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From Table 8.2, it is observed that the components of the shear stress t, decreasesand t,
increases with the increase of f,,, P. anda. Further from this Table, it is seen t , increases
and t ,decreases with the increase of E,. This Table also shows that the Nusselt number

increase with increase of f,,, P and a while decreases with theincrease of E..
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Numerical valuesof t , and t, for G, =10.0,E, =0.,P, =0.7,a=10,f,=15b, =09

Table8.1

G, b, g M R t, t,
048 |020 |1.40 0.60 1.3887127 -0.0393246
050 [020 |1.40 0.60 1.3987249 -0.0293501
052 |020 |1.40 0.60 1.4088152 -0.0198665
050 [040 |1.40 0.60 1.2799888 -0.0279403
tve | 050 |0.60 |1.40 0.60 1.1660146 -0.0266577
050 [020 |1.00 0.60 1.5782452 -0.1584064
050 [020 |1.20 0.60 1.4878745 -0.0914259
050 |020 |1.40 0.58 1.3988209 -0.0146801
050 [020 |1.40 0.59 1.3987808 -0.0220164
Table8.2
Numerical valuesof t ., t, and N, forM =1.4,G, =10.0,R=0.6,b, =0.5,b, =0.9,g =0.2
Gr Pr a fW EC t X t z NU
0.71 | 0.50 1.50 0.1 1.6491914 | -0.0309601 | 1.6443798
0.71 | 0.75 1.50 0.1 1.5404890 | -0.0302626 | 1.7527704
0.71 | 1.00 1.50 0.1 1.3987249 | -0.0293501 | 1.9001984
1.00 | 1.00 1.50 0.1 0.8457370 | -0.0249719 | 2.3915810
tve | 1.38 | 1.00 1.50 0.1 0.3463293 | -0.0215169 | 3.0059706
0.71 | 1.00 1.25 0.1 1.6247840 | -0.0309125 | 1.7978870
0.71 | 1.00 1.75 0.1 1.1577353 | -0.0278433 | 2.0068689
0.71 | 1.00 1.50 0.2 1.5276628 | -0.0303697 | 1.8194304
0.71 | 1.00 1.50 0.3 1.6712756 | -0.0315034 | 1.7282861
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Chapter 9

General Discussion

Considering some physical viability of the flows model studies on various aspects of the
magnetohydrodynamics (MHD) free convection and mass transfer flow has been made. In
natural processes or in engineering problems, the types of flow that arise are of similar nature
to the model studies made herein. The well recognized and widely used mathematical
approaches, analytica and numerical techniques have been adopted to analyze the construct
equations separately.

The model flows, were considered into two parts, one comparatively simple one dimensional
model flows, the second oneis arelatively difficult two-dimensional model flows. In the first
case al model problems were considered to be unsteady while in the second case both the
steady. As for the unsteady one dimensional model, the solution has been obtained by
implicit finite difference method while as for the unsteady two dimensiona model, the
solution has been obtained by explicit finite difference method which are considered in
chapter 4 and chapter 5. Also for the unsteady one dimensional and steady two dimensional
problems, the solution has been obtained by Nachtsheim-Swigert iteration technique which is
considered in chapter 6, chapter 7 and chapter 8.

In many industrial applications, porosity of materialsis an intrinsic aspect of the engineering
process and in geophysical systems and as the porosity of soil can exert a considerable
influence on flow and temperature distributions, include suction with the problem which are
considered in chapter 5.

In chapter 6, effect of ion-dip current on MHD free convection flow in a temperature
stratified porous medium in a rotating system is considered. The unsteady one dimensional
model, similarity solutions have been obtained by introducing a similarity parameters (t),

the functional value of which has been obtained during the process of analyses. This
functional value was found to correspond exactly with the usual similarity length scale
considered prior to the analyses adopted in various unsteady problems. The advantage of
taking this similarity parameter s (t) is that one can easily obtain the similarity equation of

governing equations as has been found in chapter 6.
Since viscous dissipation and Joule heating effects are also important in a high speed fluid
flow, one may include these effects with the problems are considered in chapter 5-8.

Influence of stratification is an important aspect in heat and mass transfer analysis. The
formation or deposition of the layers is known as the stratification. This phenomenon occurs
due to the change in temperature or concentration, or variations in both, or presence of
various fluids or different densities. It is important to control the temperature stratification
and concentration differences of hydrogen and oxygen in such environments such as they

may directly affect the growth of all cultured species. The ambient temperatureis
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assumed to be an increasing function with the distance along the plate. Effects of
stratification on MHD free convection flow past a vertical plate in a porous medium with
Hall and ion-dlip currentsin arotating system has been considered in chapter 7.

In chapter 8, effect of Hall and ion-dlip currents on MHD boundary layer flow past a vertical
plate in porous medium with power-law variation wall temperature in a rotating system has

been considered.

The magnetohydrodynamic heat and mass transfer flow with rotation or with Hall and ion-
dip currents or with viscous and Joule dissipation or with thermal diffusion and diffusion
thermo or stratifications or with al those phenomena together in fact results in a very
complicated structure physically as well as mathematically.
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