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Abstract

In this thesis, the thermodynamic and transport properties of Aluminum (Al)

based liquid binary alloys (Al1−xXx, here X=Zn, In, Sn, Bi, Cu, and Au) are system-

atically theoretically investigated. The thermodynamic properties of liquid binary

alloys which are named as the free energy (A), the energy of mixing (∆A), the en-

thalpy of mixing (∆H) and the entropy of mixing (∆S) have been studied.

Atomic transport properties (ATP) such as the coefficients of shear viscosity (η),

the diffusion coefficients (D), and the friction coefficients (ζ) are theoretically calcu-

lated for Al-based liquid binary systems. On the other hand, for electron transport

properties, I have also studied the electrical resistivity (Ω) and conductivity theoret-

ically.

The general microscopic theory (GMT) is employed to describe the inter-ionic

and electron-ion interactions of the above metals. The inter-ionic interaction and a

reference liquid are the fundamental components of this theory. For understanding

the inter-ionic interactions in the high temperature liquid state, the Bretonnet-Silbert

(BS) model has been used and extended it for simple metals (Al, In, Sn, Bi). This

model treats sp and d bands separately within the well established pseudopotential

mechanism. A liquid of hard spheres (HS) of two different effective diameters and

charges is used to describe the reference system. The LWCA thermodynamic pertur-

bative method is used to calculate the effective hard sphere diameter and the partial

structure factor, Sij(q).

For studying ATP, the distribution function method has been used which was

proposed by Rice-Allnatt (RA) and is very convenient for numerical calculations

due to its simple form. More importantly, the physical significances of each term



in the theory are very transparent for understanding various transport mechanisms

involved. Besides, studying the ETP for different liquid binary alloys, extended form

of Faber and Ziman (1965) formula has been employed to calculate the electrical

resistivity. Ziman’s theory is based on the Nearly Free Electron (NFE) model and

predicting reasonable values for resistivity of liquid metals, and this theory has been

extended here for liquid binary systems.

In addition, I have also studied the thermodynamic and transport properties such

as the excess entropy, the shear viscosity and the diffusion coefficient using the Uni-

versal Scaling Laws (USL) proposed by Dzugutov for single system namely for Al.

Excess entropy is the main ingredient in the USL.

Results for both thermodynamic and transport properties of Aluminum (Al)

based liquid binary systems agree well with the available experimental data.
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Chapter 1

Introduction

The main purpose of the present research work is to study the ‘Thermodynamic

and Transport Properties of Al-Based Liquid Binary Alloys, Al1−xXx; here, X=Zn,

In, Sn, Bi, Cu, and Au’. Thermodynamic properties such as Helmholtz free energy

(A), the energy of mixing (∆A), the enthalpy of mixing (∆H), the entropy of mix-

ing (∆S), and transport properties (both Atomic Transport Property (ATP) and

Electrical Transport Property (ETP)) namely, the shear viscosity (η), the diffusion

coefficients (D), the friction coefficients (ζ), the electrical resistivity (Ω), and the

electrical conductivity are of utmost interest [1–3] for several reasons. Aluminium

and its alloys are used in many facets of our daily lives and are produced in huge

amounts every year. Aluminium based liquid binary alloys have always been the key

aspect of industrial development.

Therefore, physicists, chemists, and metallurgists are finding ways to have a better

understanding of the thermodynamic and transport properties of liquid Al metal

and its various alloys. The experimental studies of atomic transport properties and

electron transport properties [1–3] are not always auspicious and sometimes are very

costly. In addition, they are very difficult to manage properly as well.

A, ∆A, ∆H and ∆S play the important roles to understand the properties like the

1

User
Typewritten text
Dhaka University Institutional Repository 



CHAPTER 1. INTRODUCTION

segregation of alloys, phase transition of alloys, compound formation and stability of

liquid metals and their alloys at different thermodynamic states [1–3]. Besides, the

X-ray diffraction [4–6] for the measurements of the total and partial structure factor

raises further attention to calculate the mixing behavior theoretically, and to compare

it with the experimental data [4–6]. Viscosity (η) of different fluids inside the human

body control a great number of [1, 5, 6] physiological activities. Similarly, diffusion

(D) is another basic and important factor that helps to design and understand [2,4]

many important phenomena, such as precipitation, homogenization of alloys, recrys-

tallization, grain boundary migration, creep, solidification, protective coatings and

also controls many industrially important reactions. The protein synthesis and trans-

portation of necessary biochemicals can only be possible with the help of diffusion.

Among the various diffusion coefficients (self-diffusion, impurity diffusion, intrinsic

diffusion, and chemical diffusion coefficients), the impurity diffusion coefficient is of

the greatest importance. It is defined as the diffusion of a solute in a solvent at an

extremely small concentration.

In the modeling of microstructure and the micro-segregation in multicomponent

commercial use of Al-based alloys, Xie et.al [7] and Yan et.al [8] had shown the

presence of back-diffusion in the solid by using impurity diffusion coefficients of var-

ious elements and their alloys. Electron transport is another important concept for

describing various physical quantities of alloys such as the electrical resistivity (ρ),

thermoelectric power and thermal conductivity (σ) of materials. Further study of

electrical resistivity (ρ) of liquid metal alloys is being spread out day by day [9–28].

The reasons for choosing to study the Al-based alloys are fourfold. First, the

alloy forming elements Al, In, Sn and Bi are heavy polyvalent metals and Zn, Cu, Au

are transition metals and are sometimes difficult to handle theoretically, particularly,

in the framework of pseudopotentials. Second, Al1−xXx, (here, X=Zn, In, Sn, Bi,

2



CHAPTER 1. INTRODUCTION

Cu, Au) liquid binary alloys have not been studied yet, from any microscopic theory

to our knowledge, although some attempts are made from the empirical or semi-

empirical models. Third, experimental data for static structure factors for elemental

liquid Al, Zn, In, Sn, Bi, Cu, and Au are available in the literature [29] at the thermo-

dynamic state in question. Fourth, the physical properties that we are interested in

to investigate theoretically are already measured by different experimentalists. The

above aspects and prospects motivate us to study the Al-based liquid binary alloys

theoretically.

On a molecular level, A, ∆A, ∆H and ∆S are of great interest [1,5,6,8,29] because

these macroscopic variables provide information about molecular properties. In ideal

materials, intermolecular forces are the same between every pair of molecular kinds,

so that a molecule feels no difference between itself and its molecular neighbors.

Consequently, there might be different in between the intermolecular forces [1, 6]

or specific molecular effects between various species despite being chemically non-

reacting. The mixing behaviors (∆A, ∆H, ∆S) provide the information about dif-

ferent intermolecular forces or specific molecular effects in the materials. The energy

of mixing (∆A), the enthalpy of mixing (∆H), the entropy of mixing (∆S) are not

independent of each other and rather related by the following thermodynamic rela-

tion [4, 29],

∆G = ∆H − T∆S (1.1)

where ∆G denotes the Gibbs free energy of mixing. Note that at one atmospheric

pressure [4, 29] (p), ∆G ' ∆A and ∆H ' ∆E, where ∆A and ∆E are Helmholtz

free energy of mixing and internal energy of mixing; and at zero pressure the above

relations become equal. However, evaluation of energy of mixing directly involves

the full profile of the inter-ionic pair potentials (Vij) whereas the entropy of mixing

is related directly to the derivative of free energy with respect to temperature. So, it

3
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CHAPTER 1. INTRODUCTION

is always a challenging task to calculate them theoretically. The statistical concept

of randomness is used for statistical mechanical explanation of ∆A, ∆H, and ∆S.

Mixing of ideal materials is regarded as random at a molecular level and correspond-

ingly mixing of non-ideal materials may be non-random. So far, several theories have

been used to advance to study A, ∆A, ∆H and ∆S for liquid binary alloys, these are

mentioned below,

(i). The Quasi-Lattice Theory (QLT) [30,31],

(ii). The General Microscopic Theory (GMT) [32],

(iii). The Computer Simulation (CS) [33], and

(iv). The Empirical Linear Free Energy Theory (ELT) [34].

In QLT the activity is expressed in terms of average inter-ionic interaction energy

and the formation of mixing via the Gibbs free energy. The energy of formation

is determined by fitting to the experimental data of the activity [4, 15]. The ELT

is empirical and is applicable only when the solute concentration is very low [15].

The GMT is based on the electronic theory of metals, the static structure factor

obtainable from the knowledge of inter-ionic pair interaction through the statistical

mechanics and the perturbation or variational theory [31]. The first principle pertur-

bation approach uses the full profile of the potential. Each term in GMT is clearly

understandable from the physical point of view. Moreover, the GMT is relatively

simple to handle numerically and has proven to be successful for some liquid binary

alloys [35–58]. It is to be noted here that, the advent of sophisticated theories of

4
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metals for transition and less simple metals in the last two decades have opened a

new window of interest to revisit old approaches like the GMT for better predictions.

The present research work also justifies this statement.

Several theories have advanced to study the ATP of (namely, η, D and ζ) liquid

metals and their alloys [41–44]. Among them, we can especially mention mode-mode

coupling (MCM) and the distribution function method. These two theories are based

on two different ideas and consequently have their own limitations for success. The

dynamic structure factor S(q, ω) lies at the heart of the MCM approach. In the limit

q → 0 and ω → 0 the dynamic structure factor S(q, ω) gives the shear viscosity.

Anyway, the calculation of the dynamic structure factor itself is a difficult problem

computationally. On the other hand, the distribution function method as developed

by Rice and Allnatt (RA) [59–64] is very convenient due to its simplicity of numerical

calculations. More importantly, the physical significance of each term in the theory is

very transparent for understanding various transport mechanisms involved. Another

advantage of the RA theory is that it has already been extended for the liquid binary

alloys [41–44]. Moreover, the RA theory proved to be successful for some liquid simple

metals [37–40] and their binary alloys [41–44,50]. The RA theory divides the effective

inter-ionic pair potential into a long-range called soft part and a short-range called

hardcore part. This division is made possible by considering the statistical events

due to the strong repulsive core of the pair potential at short inter-ionic distances. It

can conveniently be separated from the remaining statistical events considered which

justifies the division of the potential for our concerned system.

From the distribution function method [59–64], we can write the total viscosity

as a sum of three separate contributions. The first contribution arises from the

kinetic part, which was derived using the singlet reduced distribution function in the

statistical mechanics. The second contribution comes from the momentum transfer

5
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that occurs during the hardcore collisions. This term is evaluated by using the doublet

reduced distribution function. Finally, the third contribution comes from the region

r > σ(σ is the effective hard sphere diameter) is obtained by using the small step

theory involving the doublet reduced distribution function. These terms are denoted

by ηk, ηv(σ) and ηv(r > σ) respectively. The RA theory for viscosity then has the

final form of,

η = ηk + ηv(σ) + ηv(r > σ) (1.2)

For full numerical calculation of viscosity, the RA theory also needs the pair distri-

bution function of the hard spheres and the first and second derivatives of the partial

pair potentials. For some systems, reports say ηv(r > σ) evolves as the dominating

part [4, 29], while for some systems ηv(σ) dominates over the other terms [59–64].

Due to the comparison, it is established that the soft part contribution plays the

significant role in viscosity calculation. The soft term consists of an integration

whose upper limit is infinity. But for potentials with long-range Friedel oscillations

(for example, pseudopotentials) the integrand diverges although the pair correlation

function and the potentials and their derivatives converge. In a work, Bhuiyan et.

al [41–44] has given the proper prescription to truncate the upper limit of the inte-

gration. So, we consider the way shown in Bhuiyan et al [41–44] to determine the

proper value of the soft part contribution. It can also be addressed that for RA the-

ory, the correlation between the hard and soft part (sometimes referred to as cross

term) is negligibly small relative to the others. Now, the calculation of ATP involves

the first and second order derivatives of the pair potential in RA theory. This makes

the potential a delicate candidate, whose involvement greatly affect the calculation

of shear viscosity and diffusion coefficient. Thus, it is most important to determine

appropriate potentials for our concerned alloys.

One widely used theory for the electrical resistivity (Ω) is Ziman’s formula based

6
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on single-site scattering [9]. Its starting point rests on first-order time-dependent

perturbation theory [4]. For the present research work, the electrical resistivity (Ω)

is calculated with the extended Ziman’s theory [9,15,65–68]. Ziman’s theory is based

on the long Mean Free Path (MFP) approximation. But, practically, the MFP of

conduction electrons in liquid metals has a finite range. This finiteness of the MFP,

following the Heisenberg uncertainty principle results in a blurred Fermi surface in-

stead of a sharp one which is assumed in Ziman’s theory [9]. In some papers [9, 15]

the extended Ziman’s theory is found to be in very good agreement with correspond-

ing data calculated for the electrical resistivity. Anyway, most of these papers are

somewhat accountable to the question of the internal uniformity of the calculations.

In the present work, internal consistency is retained. By consistency we mean the

following: Static structure and pair correlation function are intimately connected

with inter-ionic interaction [65–68]. In addition, the static structure profile is very

sensitive for the electrical resistivity. An inconsistency arises when the structural

data and the potential are chosen independently. Thereupon, the reliability of the

resistivity results reduces remarkably.

To estimate the inter-ionic interactions for a real metallic system, many pseu-

dopotential theories have been proposed over the years [16–58]. Among them, the

Bretonnet and Silbert model [44] is a promising candidate due to its successful appli-

cation. In 1992, Bretonnet and Silbert [44] proposed a local pseudopotential model

to describe the inter-ionic potential of simple liquid metals and binary alloys. This

model combined the d-band effect and the sp-band contribution within the pseu-

dopotential formalism. The sp-band effect is described by the empty core potential

while the d-band effect is derived from the d-band phase shift by an inverse scatter-

ing approach. Our concerned alloys namely Al1−xZnx, Al1−xInx, Al1−xSnx, Al1−xBix,

Al1−xCux and Al1−xAux consist of transition elements Zn, Cu and Au which show

7
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a fair amount of hybridization effect. In principle, BS model is easy to calculate

pseudopotential numerically. Besides, this model can account adequately for the hy-

bridization effects. BS model is also used for the calculations of atomic transport

properties of elemental system [37–40], binary alloys [41–44], electronic transport

and thermodynamic properties of binary alloys [45–58]. Considering this success,

we intend to employ the BS model for our present study. We note here that the

pseudopotential can be local or non-local in character. We have chosen the local

pseudopotential instead of a non-local one. The sd-hybridization effect is accounted

for approximately by changing the relative occupancy of the s and d bands. In doing

this, there is no restriction to use the suitable values for the effective valency, Z. For

example, Will-Harrison [48,49] used Z=1.5 for all elements of the 3d, 4d and 5d series

except for Au for which they used Z=2.

The pair correlation function, gij(r) for hard spheres of reference liquid is a very

important ingredient to describe the thermodynamics of mixing and transport proper-

ties for liquid binary systems. In order to evaluate g(r), the different approximation

methods are used. These are classified into three groups. First, the perturbation

and variational [4, 29] theories. Second, the integral equation theories and third,

computer simulation methods. A reference system is required in thermodynamic

perturbation theory. Hard sphere (HS) reference system is used in the present work.

Among the various perturbation theories available for liquid systems we have used

Weeks-Chandler-Anderson (WCA) [69–72] and Linearized Weeks-Chandler-Anderson

(LWCA) [71,72] theories along with Percus-Yevick (PYHS) theory for pair correlation

function.

The main objective of the structural theories of the liquids or dense fluid is to

find the appropriate form for pair correlation function g(r) and its counterpart in

momentum space S(q) at some specified state point for a given pair potential. For
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simple liquid, this task is done by the so called ’reference system’ approach in light

of physical basis that the structure of dense fluid is mostly determined by the inter-

atomic repulsive forces, which gives rise to the volume effect [70]. As a consequence,

a fluid explained by pair potential leads to the consideration of infinitely strong HS

system. Structural properties of such a system can be calculated approximately

[71, 72]. The actual fluid of concern is then investigated by variational method after

getting the appropriate reference system by determining the specific form of the

remaining non-repulsive part of interaction as well as their influence on the structure

of the reference systems [70]. Using these reference systems particularly the HS one in

our case, the treatment of thermodynamic perturbation theory is discussed in chapter

3. Development of the WCA perturbation theory [71, 72] and its simplified model

LWCA [69] are explained in details there. The WCA theory starts with dividing the

effective inter-ionic interaction into a soft core repulsive part and a perturbation tail

part. The LWCA is capable to produce S(q) that is almost produced by the full

WCA, except a disagreement for small q. It is worth mentioning that, σ12 evaluated

from the LWCA is close enough (within 0.01%) to the mean value of (σ11 + σ22)/2.

Therefore, we can take the average of these two values instead of calculating σ12.

Besides, we have also systematically investigated for the first time the effect of the

core size of the ion and the role of conduction electron density [73–75] on the inter-

ionic pair interactions of monovalent and polyvalent metals. The effective inter-ionic

interaction [73–75] is described by the Ashcroft empty core model [4] and Ichimaru-

Utsumi theory for dielectric function [76, 77]. Here, the combined effect of the core

size and the conduction electron density plays the role. More interestingly, for smaller

core size [73] conduction electron density plays the major role [74] and for larger core

size the core [75] radius plays the major role in determining the local minimum.

Details are given in Appendix A.
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This research dissertation has been organized in the following way. In chapter

2 we have described the classification of metals and properties of the constituent

elements of Al-based liquid binary alloys in brief. Chapter 3 is devoted to a brief

discussion of related theories and models used in this study. I have presented the

results, discussions, and conclusions for Al-based alloys in Chapter 4. Appendix B, C,

and D are organized for the transport properties of liquid Al, some relevant theories,

and phase diagrams of the studied Al-based liquid binary alloys, respectively.
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Chapter 2

Metals

Most elements of the modern periodic table are found in their metallic state in na-

ture (see Figure 2.2). Many scientists, chemists, and physicists consider the electronic

configuration, and band structure for classifying these fundamental elements. There

are different groups of these elements, such as the Alkali metals, Alkaline earth met-

als, Transition metals, Lanthanide (rare earth elements), Actinides, etc. Although

separate position on the periodic table, the Lanthanide and Actinides are really spe-

cific types of transition metals. According to the rearrangement of the elements in

the periodic table, we can classify the elements as given below:

(i). Alkali Metals,

(ii). Alkaline Earth Metals,

(iii). Transition Metals,

(iv). Semi-metals or Metalloid,

(v). Nonmetals,

(vi). Basic Metals,

(vii). Halogens,

(viii). Noble Gases or Inert Gases,

(ix). Lanthanide, and
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(x). Actinides.

In this Chapter, we have focused on discussing the classification and a brief

discussion of Metals.

2.1 Concept of Metals

To understand the insight features of metals, one needs a clear concept about Elec-

tronic Band Structure [4,29], Fermi Surfaces [32] and Density State Theory [4]. The

electrons of a single isolated atom occupy atomic orbitals which set a discrete energy

level, but in a molecule, atomic orbitals separate into molecular orbitals at different

energies, which are very small and they form molecular bands.

With the help of the Schrödinger equation, we can calculate the band structure,

which describes the energy as a function of wave number k. Besides, a filled band

cannot conduct electricity but partially filled bands can, as they have available un-

occupied states of scattered electrons. The Fermi level is the highest filled level at

T = 0, in which the band energy is called Fermi energy. The energy surface in k-space

corresponding to Fermi energy is called Fermi surface. In a filled band there is no

Fermi surface between occupied and unoccupied states. The behavior of metals can

be thoroughly described using the Fermi surface.

Materials in nature exist in different states, for example, solid, liquid, and gas

at a certain thermodynamic condition. Besides this, there are two other states; the

Plasma and the Liquid crystal, which are potential candidates for the position of the

fourth state of matter [4, 29]. But, unfortunately, none of them has yet been able to

occupy this position firmly. Any preferred state among these three depends on the

temperature (T ), pressure (P ), and volume (V ), which can be depicted in a single

P − V − T phase diagram as shown in Figure 2.1. At the triple point, all the three

states of the matter remain in equilibrium. Above the critical point, we can not
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distinguish between liquid and vapor, because this is the state of fluid with uniform

density. The phenomenon of supercooling of liquid exists at the temperature below

the triple point.

Liquid, one of the three commonly recognized states in which matter occurs, is,

the state, as distinguished from solid and gas, in which a substance has a definite

volume but no definite shape. The concept of the idealized model is the key to the

study of properties of matter. If we look at the progress of these studies from ancient

times to the present days, it becomes clear that a tremendous amount of progress

has been made for the solids and liquids both in experiment and theory. It is very

unfortunate that, there is still no idealized model for liquid systems. Therefore, it

is more difficult to analyze the behavior of the liquid. Evidently, available scientific

literature tells us that, the liquid has intermediate properties of solid and gas, but in

reality, we cannot merely average between those properties [4, 29].

Figure 2.1: P-V-T phase diagram [4].
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Most of the solids around us are nonmetals. In spite of that, if we look at the

periodic table as shown in Fig. 2.2, we find that almost two third of the elements

are metals. The most striking characteristics of metals are their high electrical and

thermal conductivity. Metals have temperature independent carrier concentrations.

They have high optical absorption coefficient, which remains almost constant in the

visible spectrum, causing the high reflexivity. The total energy of metal consists of

two parts. One is the structure-independent energy which determines largely by the

high binding energy of metals and which depends only on the volume. Another part

is the structure dependent energy (coming from the effective pair potential) [4, 29],

which depends on the detailed configuration of the respective ions.

2.2 Classification of Metals

According to electronic configuration and band structure, we may classify metals into

seven categories which are as follows:

(i). Alkali Metals,

(ii). Alkaline Earth Metals,

(iii). Transition Metals,

(iv). Semi-metals or Metalloid,

(v). Basic Metals,

(vi). Lanthanide, and

(vii). Actinides.

2.3 Alkali Metals

In Alkali metals, all electrons reside at the Fermi surface [4], and they are named

as s-electrons and p-electrons. The Fermi surface is spherical and the conduction

14
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Figure 2.2: Position of Alkali Metals, Alkaline Earth Metals, Transition Metals, Semi

Metals, Basic Metals, Lanthanide, and Actinides in the periodic table.
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electrons are nearly free. But the valence band is separated from the next core-level

bands. Properties of these kinds of metals can be explained by the nearly free electron

model. In this model, it is assumed that the crystal potential is so weak that, the

electrons behave essentially like free particles. The metals whose physical properties

are explained by this model are known as simple metals. Specifically, the potential

energy in the liquid simple metals can be presented by the pairwise additive approach

and their structure mostly by the hard sphere theory.

The Alkali metals are the elements located in Group IA of the periodic table.

The alkali metals are Lithium (Li), Sodium (Na), Potassium (Ca), Rubidium (Ru),

Cesium (Cs), and Francium (Fr).

2.3.1 Properties of Alkali Metal

The alkali metals exhibit many of the physical properties common to metals, although

their densities are lower than those of other metals. Alkali metals have one electron in

their outer shell, which is loosely bound. This gives them the largest atomic radii of

the elements in their respective periods. Their low ionization energies result in their

metallic properties and high reactivities. An alkali metal can easily lose its valence

electron to form the univalent cation. Alkali metals have low electronegativities.

They react readily with nonmetals, particularly halogens.

Common Properties:

The common properties for Alkali metals are discussed below:

(i). Lower densities than other metals,

(ii). One loosely bound valence electron,

(iii). Largest atomic radii in their periods,

(iv). Low ionization energies,
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(v). Low electro-negativities, and

(vi). Highly reactive.

2.4 Alkaline Earth Metals

The Alkaline earth metals are the elements located in Group IIA of the periodic

table. This is the second column of the table. The list of elements that are alkaline

earth metals is small. In order of increasing atomic number, the six element names

and symbols are Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr),

Barium (Ba), and Radium (Ra).

If element 120 is produced, it will most likely be a new alkaline earth metal.

Presently, Radium is the only one of these elements that is radioactive with no

stable isotopes. Element 120 would be radioactive, too. All of the Alkaline earth

metals except Magnesium and Strontium have at least one radioisotope that occurs

naturally.

2.4.1 Properties of Alkaline Earth Metals

The alkaline earths possess many of the characteristic properties of metals. Alkaline

earths have low electron affinities and low electro-negativities. As with the alkali

metals, the properties depend on the ease with which electrons are lost. The alkaline

earths have two electrons in the outer shell. They have smaller atomic radii than the

alkali metals. The two valence electrons are not tightly bound to the nucleus, so the

alkaline earths readily lose the electrons to form divalent cations.

Common Properties:

The common properties for Alkaline earth metals are discussed below:

(i). Two electrons in the outer shell and a full outer electron s shell,
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CHAPTER 2. METALS

(ii). Low electron affinities,

(iii). Low electro-negativities,

(iv). Relatively low densities,

(v). Relatively low melting points and boiling points, as far as metals are con-

cerned,

(vi). Typically malleable and ductile. Relatively soft and strong,

(vii). The elements readily form divalent cations (such as Mg2+ , Ca2+),

(viii). The alkaline earth metals are very reactive, although less so than the alkali

metals. Because of their high reactivity, the alkaline earths are not found free in

nature. However, all of these elements are found naturally. They are common in a

wide variety of compounds and minerals,

(ix). These elements are shiny and silver-white as pure metals, although they

usually appear dull because they react with air to form oxide layers on the surface,

(x). All the alkaline earths except beryllium form corrosive alkaline hydroxides,

and

(xi). All of the alkaline earths react with halogens to form halides. The halides

are ionic crystals, except for beryllium chloride, which is a covalent compound.

The Alkaline earth metals get their names from their oxides, which were known

to mankind long before the pure elements were isolated. These oxides were called

Beryllia, Magnesia, Lime, Strontia, and Baryta. The word ”earth” comes from an

old term used by chemists to describe a nonmetallic substance that did not dissolve

in water and resisted heating. It wasn’t until 1780 that Antoine Lavoisier suggested

the earths were compounds rather than elements.
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CHAPTER 2. METALS

2.5 Transition Metals

Of all the groups of elements, the transition metals can be the most confusing to iden-

tify because there are different definitions under which elements should be included.

According to the IUPAC, a transition metal is any element with a partially filled

d-band electron sub-shell. This describes groups 3 through 12 on the periodic ta-

ble, although the f -band elements (Lanthanide and Actinides, below the main body

of the periodic table) are also transition metals. The d-band elements are called

transition metals, while the Lanthanide and Actinides are called ”inner transition

metals”. The elements are called ”transition” metals because the English chemist

Charles Bury used the term in 1921 to describe the transition series of elements,

which referred to the transition from an inner electron layer with a stable group of 8

electrons to one with 18 electrons or the transition from 18 electrons to 32.

Transition metals have features of narrow (tight binding) bands and nearly free

electron behavior. In the noble metals, the tight binding structure is maintained with

minimum energies equal to the highest occupied energy level. In transition metals,

the Fermi level lies within the d-band. For transition metals [4,29], d-band electrons

specifically cannot be classified as core or valence electrons. The rare earth elements

with incomplete f -band may be sometimes described by the approach similar to that

of transition metals.

The transition elements are located in groups IB to VIIIB of the periodic table.

In other words, the transition metals are:

(i). 21 (Scandium) through 29 (Copper),

(ii). 39 (Yttrium) through 47 (Silver),

(iii). 57 (Lanthanum) through 79 (Gold), and

(iv). 89 (Actinium) through 112 (Copernicium)- which includes the Lanthanide

and Actinides.

19

User
Typewritten text
Dhaka University Institutional Repository 



CHAPTER 2. METALS

Another way to view it is that the transition metals include the d-band block

elements, also many people consider the f -band block elements to be a special subset

of transition metals. While Aluminium, Gallium, Indium, Tin, Thallium, Lead, Bis-

muth, Nihonium, Flerovium, Moscovium, and Livermorium are metals, these ”basic

metals” have less metallic character than other metals on the periodic table and tend

not to be considered as transition metals.

2.5.1 Properties of Transition Metals

Because they possess the properties of metals, the transition elements are also known

as the transition metals. These elements are very hard, with high melting points and

boiling points. Moving from left to right across the periodic table, the five d orbitals

become more filled. The d electrons are loosely bound, which contributes to the high

electrical conductivity and malleability of the transition elements. The transition

elements have low ionization energies. They exhibit a wide range of oxidation states

or positively charged forms. The positive oxidation states allow transition elements

to form many different ionic and partially ionic compounds. The formation of com-

plexes causes the d orbitals to split into two energy sublevels, which enables many

of the complexes to absorb specific frequencies of light. Thus, the complexes form

characteristic colored solutions and compounds. Complexation reactions sometimes

enhance the relatively low solubility of some compounds.

Common Properties:

The common properties for Transition metals are discussed below:

(i). Low ionization energies,

(ii). Positive oxidation states,

(iii). Multiple oxidation states, since there is a low energy gap between them,
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(iv). Very hard,

(v). Exhibit metallic luster,

(vi). High melting points,

(vii). High boiling points,

(viii). High electrical conductivity,

(ix). High thermal conductivity,

(x). Malleable,

(xi). Form colored compounds, due to d− d electronic transitions,

(xii). Five d orbitals become more filled, from left to right on periodic table,

(xiii).Typically form paramagnetic compounds because of the unpaired d-

electrons, and

(xiv). Typically exhibit high catalytic activity.

2.6 Semi-Metals or Metalloid

Between the metals and nonmetals is a group of elements known as either the Semi-

metals or the Metalloid, which are elements that have properties intermediate be-

tween those of the metals and nonmetals. Most Metalloids have a shiny, metallic

appearance, but are brittle, unexceptional electrical conductors, and display non-

metallic chemical properties. Metalloids are elements that have semiconductor prop-

erties and form amphoteric oxides.

The Metalloids or Semi-metals are located along the line between the metals and

nonmetals in the periodic table. Because these elements have intermediate properties,

it is sort of a judgment call as to whether a particular element is a metalloid or

should be assigned to one of the other groups. The name of these elements are

Boron (B), Silicon (Si), Germanium (Ge), Arsenic (As), Antimony (Sb), Tellurium

(Te), Polonium (usually recognized, sometimes considered a metal), and Astatine

21

User
Typewritten text
Dhaka University Institutional Repository 



CHAPTER 2. METALS

(sometimes recognized, otherwise seen as a halogen).

Element 117, Tennessine, has not been produced in sufficient amounts to verify

its properties, but is predicted to be a metalloid. Some scientists consider neigh-

boring elements on the periodic table to either be Metalloids or to have metalloid

characteristics. An example is Carbon, which may be considered either a nonmetal

or a metalloid, depending on its allotrope. The diamond form of carbon looks and

behaves as a nonmetal, while the graphite allotrope has a metallic luster and acts

as an electrical semiconductor, so is a metalloid. Phosphorus, and Oxygen are other

elements that have both non-metallic and metalloid allotropes. Selenium is consid-

ered to be a metalloid in environmental chemistry. Other elements that may behave

as Metalloids under certain conditions are hydrogen, nitrogen, sulfur, tin, bismuth,

zinc, gallium, iodine, lead, and radon.

2.6.1 Properties of Semi-Metals

The electro-negativities and ionization energies of the Metalloids are between those

of the metals and nonmetals, so the Metalloids exhibit characteristics of both classes.

Silicon, for example, possesses a metallic luster, yet it is an inefficient conductor and

is brittle. The reactivity of the Metalloids depends on the element with which they

are reacting. For example, boron acts as a nonmetal when reacting with Sodium (Na),

yet as a metal when reacting with fluorine. The boiling points, melting points, and

densities of the Metalloids vary widely. The intermediate conductivity of Metalloids

suggest that they tend to make good semiconductors.

The most abundant metalloid in the Earth’s crust is silicon, which is the second

most abundant element overall (oxygen is most abundant). The least abundant

natural metalloid is tellurium. Metalloids are valuable in the electronics industry.

Silicon, for example, is used to make chips found in phones and computers. Arsenic
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and polonium are highly toxic Metalloids. Antimony and tellurium are used primarily

in metal alloys to add desirable properties.

Common Properties:

The common properties for Semi-metals are discussed below:

(i). Electro-negativities between those of metals and nonmetals,

(ii). Ionization energies between those of metals and nonmetals,

(iii). Possess some characteristics of metals/some of nonmetals,

(iv). Reactivity depends on properties of other elements in reaction,

(v). Often make good semiconductors,

(vi). Often have a metallic luster, although may have allotropes that appear

non-metallic,

(vii). Usually behave as nonmetals in chemical reactions,

(viii). Form alloys with metals,

(ix). Usually brittle, and

(x). Usually solids under ordinary conditions.

2.7 Metals or Basic Metals

Metals are located on the left side and the middle of the periodic table. Group

IA and Group IIA (the alkali metals) are the most active metals. The transition

elements, groups IB to VIIIB, are also considered metals. The basic metals make up

the element to the right of the transition metals. The bottom two rows of elements

beneath the body of the periodic table are the lanthanides and actinides, which are

also metals.

Most of the elements on the periodic table are metals. In order of increasing

atomic number, the name & symbols of the eleven basic elements are:
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(i). Aluminum (Al),

(ii). Gallium (Ga),

(iii). Indium (In),

(iv). Tin (Sn),

(v). Thallium (Ti),

(vi). Lead (Pb),

(vii). Bismuth (Bi),

(viii). Nihonium (Nh, Element 113),

(ix). Flerovium (Fl, or Element 114),

(x). Moscovium (Mc, or Element 115), and

(xi). Livermorium (Lv, or Element 116).

2.7.1 Properties of Metals

Metals are shiny solids at room temperature (except mercury, which is a shiny liq-

uid element) with characteristic high melting points and densities. Many of the

properties of metals, including large atomic radius, low ionization energy, and low

electro-negativity are due to the fact that the electrons in the valence shell of metal

atoms can be removed easily. One characteristic of metals is their ability to be de-

formed without breaking. Malleability is the ability of a metal to be hammered into

shapes. Ductility is the ability of a metal to be drawn into wires.

Because the valence electrons can move freely, metals are good heat conductors

and electrical conductors.

Common Properties:

The common properties of metals are given below:

(i). Shiny ”metallic” appearance,
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(ii). Solids at room temperature (except mercury),

(iii). High melting points,

(iv). High densities,

(v). Large atomic radii,

(vi). Low ionization energies,

(vii). Low electro-negativities,

(viii). Usually high deformation,

(ix). Malleable,

(x). Ductile,

(xi). Thermal conductors, and

(xi). Electrical conductors.

2.8 Lanthanides

The Lanthanides or d-block elements are a set of elements of the periodic table. Here

is a look at their location and common properties:

The Lanthanides are located in block 5d of the periodic table. The first 5d

transition element is either Lanthanum or Lutetium, depending on the interpretation

of the periodic trends of the elements. Sometimes only the Lanthanides, and not the

Actinides, are classified as rare earths. The Lanthanides are not as rare as was once

thought; even the scarce rare earths (e.g., Europium, Lutetium) are more common

than the platinum-group metals. Several of the Lanthanides form during the fission

of Uranium, and Plutonium.

The Lanthanides have many scientific and industrial uses. Their compounds are

used as catalysts in the production of petroleum and synthetic products. Lanthanides

are used in lamps, lasers, magnets, phosphors, motion picture projectors, and X-ray

intensifying screens.
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Common Properties of the Lanthanides:

Lanthanides share the following common properties:

(i). Silvery-white metals that tarnish when exposed to air, forming their oxides,

(ii). Relatively soft metals. Hardness increases somewhat with higher atomic

number,

(iii). Moving from left to right across the period (increasing atomic number), the

radius of each lanthanide 3+ ion steadily decreases. This is referred to as ’lanthanide

contraction’,

(iv). High melting points and boiling points,

(v). Very reactive,

(vi). React with water to liberate hydrogen (H2), slowly in cold/quickly upon

heating. Lanthanides commonly bind to water,

(vii). React with H+ (dilute acid) to release (H2) (rapidly at room temperature),

(viii). React in an exothermic reaction with (H2),

(ix). Burn easily in air,

(x). They are strong reducing agents,

(xi). Their compounds are generally ionic,

(xii). At elevated temperatures, many rare earths ignite and burn vigorously,

(xiii). Most rare earth compounds are strongly paramagnetic,

(xiv). Many rare earth compounds fluoresce strongly under ultraviolet light,

(xv). Lanthanide ions tend to be pale colors, resulting from weak, narrow, for-

bidden f x f optical transitions, and

(xvi). The magnetic moments of the lanthanide and iron ions oppose each other.
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2.9 Actinides

At the bottom of the periodic table there is a special group of radioactive metallic

elements. These elements have interesting properties and play a key role in nuclear

chemistry. The Actinides or Actinoids are a set of radioactive elements on the periodic

table, ranging from atomic number 89 to atomic number 103. The modern periodic

table has two rows of elements below the main body of the table. The actinides are

the elements in the bottom row. The top row is the lanthanide series. The reason

these two rows of elements are placed below the main table is because they don’t

fit in the design without making the table confusing and very wide. However, these

two rows of elements are metals, sometimes considered a subset of the transition

metals group. In fact, the Lanthanides and actinides are sometimes called the inner

transition metals, referring to their properties and position on the table. Two ways

of including the Lanthanides and actinides within a periodic table are to include

those elements in their corresponding rows with the transition metals (making the

table wider) or ballooning them out to make a three-dimensional table. The 15

Actinide elements. Actinium (Ac), Thorium (Th), Protactinium (Pa), Uranium (U),

Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk),

Californium (Cf), Einsteinium (Es), Fermium (Fm), Mendelevium (Md), Nobelium

(No) and Lawrencium (Lr).

Actinide Abundance:

The only two actinides found in appreciable quantities in the Earth’s crust are Tho-

rium, and Uranium. Small quantities of Plutonium and Neptunium are present in

Uranium orders. Actinium and Protactinium occur as decay products of certain Tho-

rium and Uranium isotopes. The other Actinides are considered synthetic elements.

If they occur naturally, it is part of a decay scheme of a heavier element.
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Common Properties of the Actinides:

Actinides share the following common properties:

(i). All are radioactive. These elements have no stable isotopes,

(ii). Actinides are highly electro-positive,

(iii). The metals tarnish readily in air. These elements are pyrophoric (sponta-

neously ignite in air), particularly as finely divided powders,

(iv). Actinides are very dense metals with distinctive structures. Numerous

allotropes may be formed (plutonium has at least 6 allotropes!). The exception is

Actinium, which has fewer crystalline phases,

(v). They react with boiling water or dilute acid to release Hydrogen gas,

(vi). Actinide metals tend to be fairly soft. Some can be cut with a knife,

(vii). These elements are malleable and ductile, and

(viii). All of the actinides are paramagnetic.

Actinide Uses:

For the most part, we don’t encounter these radioactive elements much in daily life.

Americium is found in smoke detectors. Thorium is found in gas mantles. Actinium

is used in scientific and medical research as a neutron source, indicator, and gamma

source. Actinides may be used as dopants to make glass and crystals luminescent.

The bulk of actinide use goes to energy production and defense operations. The

primary use of the actinide elements is as nuclear reactor fuel and for the production

of nuclear weapons. The actinides are favored for these reactions because they readily

undergo nuclear reactions, releasing incredible amounts of energy. If the conditions

are right, the nuclear reactions may become chain reactions.
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2.10 Properties of Al, Zn, In, Sn, Bi, Cu and Au

In this report, we are interested to study the thermodynamic and transport properties

of Al-based liquid binary alloys (Al1−xXx, here X=Zn, In, Sn, Bi, Cu and Au).

Aluminium (Al):

Aluminium is the most widely used non-ferrous metal. The global production of

Aluminium in 2017-2018 was 88.03 million metric tons (Daily Mirror, British national

daily tabloid newspaper). It exceeded that of any other metal except Iron (Fe, 1231

million metric tons). Aluminium is almost always alloyed, which markedly improves

its mechanical properties, especially when tempered. For example, the common

Aluminium foils and beverage cans are alloys of 92% to 99% Aluminium. Aluminium

is used for transportation (automobiles, aircrafts, trucks, railway cars, marine vessels,

bicycles, spacecraft, etc) because of its low density; packaging (cans, foil, frame, etc)

because it is non-toxic, non-adsorptive, and splinter-proof; electricity related uses

because it is relatively cheap, highly conductive, has adequate mechanical strength

and low density, and resists corrosion; machinery and equipment related uses because

of its corrosion resistance, non-pyrophoricity, and mechanical strength [4].

Zinc (Zn):

Zinc is most commonly used as Galvanizing (55%), Brass and Bronze (16%), other

alloys (21%), and miscellaneous (8%). In 2009, in the United States, 55% or 893

thousand tonnes of the Zinc metal was used for galvanization. Zinc is more reactive

than Iron or Steel, and thus will attract almost all local oxidation until it completely

corrodes away. Galvanization is used on chain-link fencing, guard rails, suspension

bridges, lightposts, metal roofs, heat exchangers, and car bodies. Zinc is also used

to cathodically protect metals that are exposed to sea water. A zinc disc attached
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to a ship’s iron rudder will slowly corrode while the rudder stays intact. Similarly,

a zinc plug attached to a propeller or the metal protective guard for the keel of the

ship provides temporary protection. Zinc powder is sometimes used as a propellant

in model rockets. Zinc sheet metal is used to make zinc bars.

A widely used zinc alloy is brass, in which Copper is alloyed with anywhere from

3% to 45% zinc, depending upon the type of brass. Brass is generally more ductile and

stronger than Copper, and has superior corrosion resistance. These properties make

it useful for communication equipment, hardware, musical instruments, and water

valves. Alloys of zinc with small amounts of copper, Aluminium, and magnesium are

useful in die casting as well as spin casting, especially in the automotive, electrical,

and hardware industries. These alloys are marketed under the name Zamak. An

example of this is zinc Aluminium. The low melting point together with the low

viscosity of the alloy makes possible for the production of small and intricate shapes.

The low working temperature leads to rapid cooling of the cast products and fast

production for assembly. Another alloy, marketed under the brand name Prestal,

contains 78% zinc and 22% Aluminium, and is reported to be nearly as strong as

steel but as malleable as plastic. This super-plasticity of the alloy allows it to be

molded using die casts made of ceramics and cement [4].

Indium (In):

Indium was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter

by spectroscopic methods. Indium has no biological role, though its compounds

are somewhat toxic when injected into the bloodstream. Indium has no metabolic

role in any organism. In a similar way to Aluminium salts, indium(III) ions can

be toxic to the kidney when given by injection. The first large-scale application

for indium was coating bearings in high-performance aircraft engines during World
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War II, to protect against damage and corrosion; this is no longer a major use of

the element. Indium has many semiconductor-related applications. Some indium

compounds, such as indium antimonide and indium phosphide, are semiconductors

with useful properties. Indium wire is used as a vacuum seal and a thermal conductor

in cryogenics and ultra-high-vacuum applications, in such manufacturing applications

as gaskets that deform to fill gaps [4].

Tin (Sn):

The first Tin (Sn) alloy used on a large scale was bronze, made of Tin and Copper,

from as early as 3000 BC. After 600 BC, pure metallic Tin (Sn) was produced. Tin

(Sn) has long been used in alloys with Lead (Pb) as solder, in amounts 5 to 70% w/w.

Tin (Sn) bonds readily to Iron and is used for coating Lead, Zinc, and Steel to prevent

corrosion. Tin (Sn)-plated steel containers are widely used for food preservation, and

this forms a large part of the market for metallic Tin. Tin (Sn) in combination with

other elements forms a wide variety of useful alloys like Al1−xSnx liquid binary alloy.

This metal alloy is referred to as spotted metal. Major advantages of using Tin (Sn)

alloys for pipes include its appearance, its workability, and resistance to corrosion [4].

Bismuth (Bi):

Bismuth metal has been known since ancient times, although it was often confused

with Pb and Sn, which share same physical properties. Bismuth was long consid-

ered the element with the highest atomic mass that is stable. Bismuth appears in

the 1660s, from obsolete German Bismuth, Wismut, Wissmuth (early 16th century);

perhaps related to Old High German hwiz (”white”). Bismuth has few commercial

applications, and those applications that use it generally require small quantities

relative to other raw materials. In the United States, for example, 884 tonnes of
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Bismuth were consumed in 2010, of which 63% went into chemicals (including phar-

maceuticals, pigments, and cosmetics); 26% into metallurgical additives for casting

and galvanizing; 7% into Bismuth alloys, solders and ammunition; and 4% into re-

search and other uses. Bismuth is an ingredient in some pharmaceuticals, for example

subsalicylate is used as an antidiarrheal. Bibrocathol is an organic Bismuth contain-

ing compound used to treat eye infections. Bismuth-Subgallate the active ingredient

in Devrom, and it is used as an internal deodorant to treat malodor from flatulence,

and feces [4].

Copper (Cu):

Cu is one of the few metals that occur naturally in directly usable metallic form.

The major applications of copper are electrical wire (60%), roofing and plumbing

(20%), and industrial machinery (15%). Cu is used mostly as a pure metal, but

when greater hardness is required, it is put into such alloys as brass and bronze (5%

of total use). For more than two centuries, copper paint has been used on boat hulls

to control the growth of plants and shellfish. A small part of the copper supply is

used for nutritional supplements and fungicides in agriculture. Machining of copper

is possible, although alloys are preferred for good machinability in creating intricate

parts [4].

Gold (Au):

Gold is the most malleable of all metals. Gold has been widely used throughout the

world as money, for efficient indirect exchange (versus barter), and to store wealth in

hoards. For exchange purposes, mints produce standardized gold bullion coins, bars

and other units of fixed weight and purity. [4]
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The properties for heavy polyvalent Al element is given below in a table.

Table 2.1: Physical and Atomic Properties of Aluminium(Al)

Properties Details

Period 3

Group 13

Block p

Atomic Number 13

Atomic Mass 26.98

Group Name Simple Element

Electronic Configuration [Ne]3s23p1

Electrons per shell 2, 8, 3

Phase Solid

Liquid Density 2.3758 gm.cm−3

Melting Point 933.47K

Boiling Point 2792K

Heat of fusion 10.71 kJ/mol

Heat of vaporization 284 kJ/mol

Molar heat capacity 24.20 J/(molK)

Crystal Structure fcc

Atomic radius 143 pm

Thermal conductivity 237 W/(mK)

Electrical resistivity 28.2 nm

Magnetic susceptibility +16.5*106 cm3/mol

Oxidation Number +3

Similar results for Zn, In, Sn, Bi, Cu and Au can be found in [4, 29].
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Chapter 3

Theories

3.1 Pseudopotential for Inter-Ionic Interaction

In physics, a pseudopotential or effective potential is used as an approximation for

the simplified description of complex systems. This is an attempt to replace the

complicated effect of the motion of the conduction electrons and the positive ions

with an effective potential. The Schrödinger equation [4,29] thus contains a modified

effective potential term instead of the bare Coulomb potential term for core electrons,

but provide the same energy eigenvalue. The pseudopotential approximation [4,5,29]

was first introduced by Harris in 1934 [5]. According to this, the valence wave function

generated is to be orthogonal to all core states.

The pseudopotential is constructed to replace the atomic “all electron” potential

in the way that, the core states are eliminated and the valence electrons are described

by node less pseudo-wave function. Here, only the chemically active valence electrons

are dealt with explicitly, and the core electrons are ’frozen’, being considered together

with the nuclei as rigid non-polarized ion cores. Norm-conserving pseudopotentials

are derived from an atomic reference state requiring that the pseudo eigenstates, and

all electron eigenstates have the same energies and amplitude outside a chosen core
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radius, rc. Pseudopotentials with larger cutoff radius are said to be softer, that is

more rapidly convergent. There are different types of pseudopotentials such as the

model pseudopotentials, and ”ab initio” pseudopotential etc. Again the ”ab initio”

pseudopotential is constructed by using different methods.

But for all instances, the pseudopotential [4, 5, 29] is based on these following

assumptions:

(i). There exist a self-consistent ”one electron Hamiltonian” in metals [4, 5, 29].

The interaction between electrons can be replaced by a potential, which depends

upon the states, and is occupied by electrons.

(ii). The conduction band is the range of electron energies enough to free an

electron from binding with its atom to move freely within the atomic lattice of the

material as a delocalized electron state or valence level unless this state include filled

d− shell as core levels. Both the valence, and core levels are separable, and the later

is assumed to be small, and the same eigenstates in metals as in the free atoms.

(iii). The pseudopotential is sufficiently weak, and the corresponding pseudo

wave function is sufficiently smooth. For one particle time independent Schrödinger

equation for the conduction electrons, we can write the following approximation:

[
− ~2

2m
∇2 + V (r)

]
|Ψγ〉 = E|Ψγ〉. (3.1)

The Schrödinger equation for the core electron is[
− ~2

2m
∇2 + V (r)

]
Ψc(r) = EΨc(r). (3.2)

Where V(r) is the one electron self-consistent real potential, ψ(r) defines the

state function, and the superscript γ and c indicate the valence, and the core states,

respectively.
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By knowing the core states, the conduction electron states could be obtained. A

useful approach to this problem is to expand the conduction electron in the plane

waves which have been modified so as to be automatically orthogonal to the core

states. This is known as the method of orthogonal plane waves or OPW. Now the

orthogonalized plane wave may be written as

|OPW 〉 = |k〉+
∑

bc|Ψc〉, (3.3)

and this will be orthogonal to the core states. Such as,

〈Ψc′ |OPW 〉 = 0 (3.4)

or,

〈Ψc′|k〉+
∑
c

bc〈Ψc′|Ψc〉 = 0 (3.5)

or,

〈Ψc′|k〉 = −
∑
c

bcδcc′ (3.6)

= −bc′ . (3.7)

Equation (3.7) can be written in the form also

bc = −〈Ψc|k〉. (3.8)

So we get,

|OPW 〉k = |k〉 −
∑
c

|Ψc〉〈Ψc|k〉. (3.9)

36



CHAPTER 3. THEORIES

Where,

|k〉 = exp(i~k.~r). (3.10)

The OPW is orthogonal to all the states as to say,

〈Ψc|OPW 〉k = 〈Ψc|k〉 −
∑
c

〈Ψc|Ψc〉〈Ψc|k〉 (3.11)

= 〈Ψc|k〉 − 〈Ψc|k〉

= 0.

Let us define the projection operator as

p =
∑
c

|Ψc〉〈Ψc|. (3.12)

From equation (3.9) we have,

|OPW 〉k = (1− P )|k〉. (3.13)

The band wave function can be expanded in terms of the OPW as

|Ψk〉 =
∑

k ak(1− P )|k〉

or, |Ψk〉 = (1− P )
∑

k ak|k〉

or, |Ψk〉 = (1− P )
∑

k |φk〉. (3.14)
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Here

|φk〉 =
∑
k

ak|k〉, (3.15)

and ak’s are the coefficient of expansion. Now putting the value of |ψ〉 in equation

(3.2) we find (
− ~2

2m
∇2 + V (r)

)
(1− P )|φk〉 = E(1− P )|φk〉

or,

(
− ~2

2m
∇2 + V (r)

)
|φk〉 −

(
− ~2

2m
∇2 + V (r)

)
|ψc〉〈ψc|φk〉 = E|φk〉

or,

(
− ~2

2m
∇2 + V (r)− EcP + EP

)
|φk〉 = E|φk〉. (3.16)

Thus we get

(
− ~2

2m
∇2 +W (r)

)
|φk〉 = E|φk〉. (3.17)

Where the expression for W (r) can be written as

W (r) = V (r) +
∑
c

(E − Ec)P. (3.18)

Equation (3.18) is the pseudopotential equation. There are two important points

in the formulation of the pseudopotential theory.

(i). The pseudopotential, in general, is non-local because of the energy-dependent

operator, which is obvious from equation (3.18).
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(ii). We have the freedom of choosing pseudopotential for the same energy eigen-

value. The second term of the right-hand side of the equation (3.18) acts as a repul-

sive potential because of the positive sign of the (E − Ec) and the operator p tends

to cancel the strong attractive potential V (r) in the core again. Therefore valence

electrons in the metal behave as if they did not interact strongly with ions.

3.1.1 Pseudopotential Theory

The form of pseudopotential [1, 4, 5, 29] is,

W (r) = V (r) +
∑
c

(E − Ec)|Ψc〉〈Ψc|. (3.19)

Let us assume that

|Ψc〉 = |α〉. (3.20)

Here, V (r) is the strong potential and ψc is the core wave function which is defined

as,

Ψc = α(E − Ec). (3.21)

So, substitute the value from equation (3.20) and (3.21) into equation (3.19), we

get as

W (r) = V (r) +
∑

α(E(k)− Eα)|α〉〈α|

or,W (r) = V (r) +
∑

α f(k, α)|α〉〈α|. (3.22)

Now multiplying both sides from the right with |k〉 in equation (3.22), then we

get

W |k〉 = V |k〉+
∑
α

f(k, α)|α〉〈α|k〉. (3.23)
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As the potential terms due to the cores also contribute to V (r), we may be able

to write it approximately as a sum of potentials associate with the individual ions,

and these are spherically symmetric. So,

V ion =
∑
j

vion(|~r − ~rj|). (3.24)

Here, the index j labels the ions. Finally, the core states entering the final term

in the pseudopotential may be written as

|α〉 = Ψt(|~r − ~rj|). (3.25)

Where subscript t denotes the energy and the angular momentum numbers for

the core state of the ion. Therefore, f(k, α) depend upon through t. Thus we can

write as,

W =
∑
j

w(|~r − ~rj|). (3.26)

From these above equations we get,

W (|~r − ~rj|)|k〉 = V (|~r − ~rj|) (3.27)

+
exp(i~k.~r)

Ω
1
2

[∑
t

f(k, t)Ψt(|~r − ~rj|)
∫
d3rΨ∗t (|~r − ~rj|)

]
.

From the scattering theory we can write,
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〈k + q|W (r)|k〉 = Ω−1

∫
exp

(
− i(~k + ~q).~r

)∑
j

w(|~r − ~rj|) exp

(
i~k.~r

)
d3r (3.28)

= Ω−1 ×N × 1

N

∑
j

exp(−i~q.~rj)
∫

exp

(
− i(~k + ~q).(~r − ~rj)

)

w(|~r − ~rj|)× exp

(
i~k.(~r − ~rj)

)
d3r

=
N

Ω
× S(q)

∫
exp

(
− i(~k + ~q).(~r − ~rj)

)
w(|~r − ~rj|)

× exp

(
i~k.(~r − ~rj)

)
d3r

= S(q)×
∫

exp

(
− i(~k + ~q).(~r − ~rj)

)
w(|~r − ~rj|)

× exp

(
i~k.(~r − ~rj)

)
d3r.

Where we define the static structure factor S(q) as 1
N

∑
j exp(−i~q.~rj).

It is convenient to rewrite the matrix element in the form

〈k + q|W (r)|k〉 = S(q)〈q + k|w|k〉, (3.29)

and

〈q + k|W |k〉 = Ω−1

∫
exp

(
− i(~k + ~q).~r

)
exp

(
i~k.~r

)
dτ. (3.30)

Here, Ω0 is the volume per ion, Ω
N

. Since the static structure factor is

S(q) =
1

2

∑
j

exp(−i~k.~r)dτ. (3.31)

So, we can write as

〈k + q|W (r)|k〉 =
N

Ω
S(q)

∫
exp(−i(~k~q).(~r − ~rj)

× (|~r − ~rj|) exp(−i~k.(~r − ~rj))dτ

= S(q)〈q + k|w|k〉. (3.32)
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We are interested primarily for the matrix elements, in-between states on the

Fermi sphere i.e. 〈k + q|W |k〉 for which the magnitude of k and the magnitude of

k + q have the eigenvalue kF , which is Fermi radius. In the diffraction model, we

do not explicitly include any interaction between conduction electron, this has been

done with the determination of the potential w. Therefore, in the calculation of

the total energy in the diffraction model, we add only the interaction between the

electrons and ions, not the interaction between electrons. Now, the total energy of

an ion is defined as,

Eel =
1

N

∑
k<KF

E(k) =
2σ0

2π3

∫
E(k)d3k. (3.33)

From the second order perturbation theory we get,

E(k) =
~k2

2m
+ 〈k|w|k〉+

′∑
q

〈k + q|W |k〉〈k|W |k + q〉
~2
2m

(k2 − |(k + q)2|)

=
~k2

2m
+ 〈k|w|k〉+

∑
q

S∗(q)S(q)
〈k + q|W |k〉〈k|W |k + q〉

~2
2m

(k2 − |(k + q)2|)
, (3.34)

where the prime over the sum indicates that q 6= 0.

So, the contribution to the Eel from the first term is simply valence Z, and average

K.E. of the electrons in the form of

Z
kF∫
0

4πk2

(
~2k2
2m

)
dk

kF∫
0

4πk2dk

=
3

5
Z

(
~2k2

F

2m

)
. (3.35)

Where Z is the number of valence electron per ion.

Now from the contribution of the 2nd term, 〈k|W |k〉 will be shifted to the total

energy by a constant amount.
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Considering, the third term we get

∑
q

S∗(q)S(q)
2Ω0

(2π)3

∫
d3k
〈k + q|W |k〉〈k|W |k + q〉

~2
2m

(k2 − |(k + q)2|)
. (3.36)

This is known as the band structure energy [4], and may be written as

Ebs =

′∑
q

S∗(q)S(q)F (q). (3.37)

In equation (3.37) F (q) is the structure factor, and can be expressed in below

F (q) =
2Ω0

(2π)3

∫
d3k
〈k + q|W |k〉〈k|W |k + q〉

~2
2m

(k2 − |(k + q)2|)
. (3.38)

The first two term together gives the free electron energy,

Eg = Z

(
3

5

~2

2m
+ 〈k|W |k〉

)
. (3.39)

So,

E = Eg + ZEbs. (3.40)

The peak of F (q) comes at the position where the OPW form factor cross zero,

these are the wave numbers for which the repulsive and attractive terms in the

effective potential of each ion as seen by the electrons cancel each other. Thus

Ebs =
∑
q

S∗(q)S(q)F (q)

=
∑
q

∑
ij

1

N2
F (q) exp(−i~q(~ri − ~rj))

=
∑
i 6=j

1

2N

(
2

N

)∑
q

∑
ij

1

N2
F (q) exp(−i~q(~r − ~rj)) +

∑
q

1

N
F (q). (3.41)
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Where, ∑
ij

exp(−i~q(~ri − ~rj)) = N. (3.42)

Let us define,

(
2

N

)∑
q

∑
ij

1

N2
F (q) exp(−i~q(~r − ~rj)) = Vind(|~r − ~rj|). (3.43)

Therefore,

Ebs =
1

2N

∑
i 6=j

Vind(|~r − ~rj|) +
∑
ij

1

N
F (q). (3.44)

From equation (3.44),

Vind =
2Ω

(2π)3

∫
F (q) exp(−iqr sin θ)q2dq sin θdθdφ

=
Ω0

π2

∞∫
0

F (q)
sin qr

qr
q2. (3.45)

Here Vind is a two bodied central force interaction between ions [4] just as the

direct interaction. The two bodies may be added to give a total effective interaction

between ions. Screening plays an important role in the behavior of metals, but we

are interested in non-screened inter-ionic interaction too.

The final interaction between ions can be written as,

V (r) =
Ze2

2
+

Ω0

π

∞∫
0

F (q)
sin qr

qr
q2dq. (3.46)

We can use this interaction to determine the pseudopotentials over the elements

in the binary alloys.
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3.1.2 Purpose of Pseudopotential

The purpose [4], of pseudopotentials hold in our theory is mostly to achieve a smooth

potential for core states, which suffice the difficulty faced by the wave function in the

core region.

Pseudopotential has more unique features. It is additive and transferable. Addi-

tivity can most easily be achieved by building pseudopotentials for atoms in reference

states. Whereas by transferable, we mean that, the same pseudopotential should

work accurately for an atom in all possible chemical environments. This feature of

pseudopotential is quite important as our allocated environment of simulation might

differ for different phase transitions due to chemical reaction [21–28].

3.2 Models of Pseudopotential

Norm-conserving and Ultra-soft are the two most common forms of pseudopotential

used in modern plane-wave electronic structure calculation. They allow a basis set

with a significantly lower cut-off to be used to describe the electron wave functions.

Norm-conserving pseudopotentials are constructed to enforce the condition that,

inside the cut-off radius, the norm of each pseudo-wave function is to be identical to

its corresponding all-electron wave function. But Ultra-soft pseudopotentials relax

the norm-conserving constraint to reduce the necessary basis-set size further at the

expense of introducing a generalized eigenvalue problem.

In our present study, we consider a model pseudopotential for simplicity. There

are several established model to describe this form of pseudopotential. But in midst of

them, Bretonnet-Silbert(BS) model [44,55–58] of pseudopotential is the most reliable

candidate. And we have considered another model pseudopotential for finding the

core interaction in the elemental system (for liquid Al, Appendix B) namely Empty
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Core Model Pseudopotential (EMC) [4,5, 29].

3.2.1 Bretnot-Silbert Model Pseudopotential (BS)

Bretonet-Silbert (BS) model [44] is based on the modification of already established

Pseudopotential model. The BS model makes the pseudopotential function continu-

ous and thus it’s quite easy to manipulate. Previously, the local Oli [4,45,47] model

potential accounts for the ‘s − d’ scattering inside the ion core of radius Rc, while

outside Rc , the Coulomb ion-electron potential is suggested as,

W0(r) =


∑2

m=1 Bm exp

(
−r
mRc

)
: r < RC ,

−Zse2

r
: r > Rc,

where B1, and B2 are the Dirichlet coefficients and Zs is the effective number of

valence electrons per atom. The form inside the core is obtained using an inverse

scattering approach, especially using the distorted plane wave method, developed

by Swan [4, 45] and improved by Oli [4, 45]. But in the core potential W0(r) is not

continuous at r = Rc.

In the Bretonet-Silbert (BS) model pseudopotential [44], an arbitrary parameter,

”a” is introduced in place of Rc. This parameter is called the softness parameter.

Now the potential can be written as,

WBS(r) =


∑2

m=1 Bm exp

(
−r
ma

)
: r < RC ,

−Zse2

r
: r > Rc.

This implies that, WBS must be continuous at the core, r = Rc. In the BS model,

another condition is implied, which states that the derivative is also continuous at

the core. We need to apply this condition because, physically the repulsive part

should not affect drastically the behavior of the s electrons, while the attractive part
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should only slightly depend on the interaction potential so as to counteract the s

states making the transition metals more compact, and more tightly bound.

The softness parameter, ”a” in this model plays an important role in determining

the effective pair interaction, particularly the repulsive part and the depth of the

interactive potential well. As the value of ”a” increases, the repulsive part becomes

softer and the depth of the attractive well decreases and the position of the first

minima shift towards larger values of r. Here, in Bretonet-Silbert model, B1 and B2

are defined in terms of parameters namely, ”a”, ”Rc”, and ”Z” to satisfy the approx-

imations written above. Consequently, the form factor is different. These coefficients

are written as,

B1 =
Zse

2

Rc

(
1− 2a

Rc

)
exp

(
RC

a

)
, (3.47)

and

B2 =
2Zse

2

Rc

(
a

Rc

− 1

)
exp

(
RC

2a

)
. (3.48)

The unscreened form factor can be expressed as,

WBS(q) = 4πna3

[
B1J1

1 + a2q2
+

8B2J2

(1 + 4a2q2)2

]
− 4πnZse

2 cos(qRc)

q2
. (3.49)

From equation (3.49), n is the ionic number density, and Jm is defined as

Jm = 2− exp(− Rc

ma
)

[
Rc

ma
(1 +m2a2q2) + (1−m2a2q2)

]
sin(qRc)

maq
(3.50)

+ exp(− Rc

ma
)

[
2 +

Rc

ma
(1 +m2a2q2)

]
cos(qRc).
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Although in this particular form, the term corresponding to the sd mixing effects

tends to zero when q approaches zero, and for the long-wavelength limit of second

form factor W (r) is preserved,

lim
q−→0

WBS(q)

ε(q)
−→ −2

3
EF , (3.51)

where, ε(q) is the dielectric function related to the local Field-function G(q).

The effective inter-ionic pair potential(in atomic units) is given by,

v(r) =
Zse

2

r

[
1− 2

π

∫
FN(q)

sin(qr)

q
dq

]
, (3.52)

where, FN is the normalized energy wavenumber characteristic in the form of,

FN =

(
q2

4πne2Zs

)2

W 2
BS

[
1− 1

ε(q)

][
1

1−G(q)

]
. (3.53)

Here, ε(q), and G(q) denotes the dielectric function, and the local field correction

respectively. And the dielectric screening function ε(q) is given by,

ε(q) = 1− 4πe2

q2
[χ(q)−G(q)] (3.54)

These are taken from Ichimaru and Utsumi [48–51,71] because their form satisfies

the compressibility sum rule, and the short-range correlation condition in addition

to their applicability over a wide range of metallic densities.

3.2.2 The Empty Core Model Pseudopotential (EMC)

The Empty core potential (EM) for one component metallic systems may expressed

as [4, 5, 29],
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Em(r) =



0; if r < rc,

−Ze2/r; if r > rc.

(3.55)

In equation (3.55), rc, Z, and e are the core radius, the effective s-electron

effective valence, and the electronic charge respectively. The partial unscreened form

factor [4] from equation (3.49) can be written as,

vij(r) = −4πZρ

q2
cos(qrc), (3.56)

where, ρ is the ionic number density, and q is the momentum transfer.

If we observe the equation (3.56), then it could be noticed that the core radius

rc, enters into the form factor of the interaction through the scattering matrix. This

form factor finally carries the rc into the inter-ionic interaction.

Within the pseudopotential formalism, the effective inter-ionic pair interaction

can be written as,

veff (r) =
Z2

r

[
1− 2

π

∫
dqIN

sin(qr)

q

]
. (3.57)

Here, the energy wave number characteristic can be defined as,
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IN = [
q2

πnZ
]2|V (q)|2

[
1− 1

ε(q)

][
1

1−G(q)

]
, (3.58)

where, V (q) denotes the local pseudopotential of the component, and n is the

number density of ions. Besides, ε(q), and G(q) are the dielectric screening function,

and the local field factor, respectively. Here, the dielectric function,

ε(q) = 1−

[
4πe2

q2
χ(q)

1 + 4πe2

q2
G(q)χ(q)

]
, (3.59)

where χ(q) is Lindhard function, and can be written as

χ(q) = −mkF
π2~2

[
1

2
+

4k2
F − q2

8qkF
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣] . (3.60)

3.3 Structural Properties of Liquid Alloys

Here, we are interested to study the structure of our concerned alloys. Among all of

them, we are most anticipating to learn the behavior of hard-sphere diameter, and

the partial pair correlation function. These two are the basic building blocks of our

calculation along with the thermodynamic perturbation theory.

3.3.1 Effective Hard-Sphere Diameter

The Weeks-Chandler-Anderson [69–72] theory describes, the static structure factor

for a system of particles interacting through a repulsive potential in terms of hard

sphere diameter, σ. The Linearized Weeks-Chandler-Anderson [70] (LWCA) pertur-

bation theory, is used to determine the values of hard-sphere diameters.
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3.3.2 LWCA Theory

The LWCA theory [69–72] describes, the structure factor, S(q) for a system of parti-

cles interacting via a repulsive potential, corresponding to a system of hard-spheres,

called hard-sphere potential vσ. For such a hard-sphere system, there is an associated

function Yσ(r). This function is continuous at r = σ, where σ is the diameter of the

hard-sphere is equal to the hard-sphere radial function g(r) for r > σ.

Simple liquids which are composed of spherical or nearly spherical molecules,

the intermolecular structure of them are very similar to a fluid made up of the hard

sphere. In a dense liquid, nearest neighbors are packed extremely close to one another.

Any displacement of a particle will cause a large change in the energy associated with

the inter-particle repulsions. These interactions are not quickly varying functions of

the inter-particle separation. As a result, the high density structure is mainly occurs

by the repulsive forces.

The diameter of the hard-sphere diameter is determined by the Blip function. This

method is used to determine the effects of repulsive forces. The Blip function provides

a good relationship between the equilibrium properties of the hard sphere fluid, and

the properties of fluids with realistic repulsive forces. In accordance with the LWCA

theory, the free energy of a system is expressed in terms of a functional Taylor

expansion with a soft repulsive potential v(r) and hard sphere repulsive potential

vσ(r) related to the Blip function B(r) given by,

B(r) = Yσ{exp[−βvσ(r)]− exp[βvσ(r)]}. (3.61)

The mathematical terms in equation (3.61) can be expressed

β = (kBT )−1, (3.62)

and kB is known as the Boltzmann constant.
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By taking the Fourier transform of B(r) we get,

B(k) = 4π

∞∫
0

B(r)r2 sin(kr)

kr
dr. (3.63)

Now the LWCA structure factor S(k) is formulated as

S(k) = Sσ(k) + nB(k), (3.64)

where Sσ(k) is the hard-sphere structure factor. If we consider that

h(r) = g(r)− 1, (3.65)

where h(r) can be represented in terms of hσ(r), and B(r) in terms of bond

density expansion. From Jacobs and Anderson, we get that summing over all chain

diagrams [4] in the expansion results in the following expression for the structure

factor,

S(k) =
Sσ(k)

(1− nSσ(k)B(k))
, (3.66)

which has the advantages of eliminating a spurious bump at k ≈ π
σ

which appears

when equation (3.66) is used. For this approximation, σ is chosen as such that

B(0) = 0 which completes the description.

Now another function, C(r) = r2B(r) always consists of two sharp teeth, so this

is useful to approximate it by triangulation in the fashion indicated above.

Again, C(r) has a short range, so J0 ≡ sin(kr)
kr

can be extended about r = σ.

So, equation (3.66) becomes,

B(k) = 4π
∞∑
0

−1n

n+ 2
(kσ)nJn0 (kσ)

(
σ
C−
Kn=1
−
− σ C+

Kn=1
+

)
. (3.67)
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From equation (3.67) we can therefore achieve,

σC− = σ3g0 exp[−βv(σ)], (3.68)

σC+ = σ3g0(exp[−βv(σ)− 1),

K− = −βσv(σ) + Y + 2,

and

K+ = −βσv(σ)
exp[−βv(σ)]

exp[−βv(σ)]− 1
+ Y + 2. (3.69)

Here, g0 is the value of the hard sphere radial distribution function at r = σ, and

Y =

[
∂ ln gσ(r)

∂ ln r

]
. (3.70)

These equations are known with good precession for packing fraction, ξ = 1
6
nσ3.

Any given system which is specified via v(r), and β any choice of σ can be very

easily summed and the convergence is fast. In fact the first term vanishes in equation

(3.69), and the next step gives a good approximation of the series.

Now we need to attribute the thermodynamic condition in such a way that the

hard-sphere diameter vanishes and this will lead to the transcendental equation to,

βv(σ) = ln

(
−2βσuij(r) + Y + 2

−βσuij(r) + Y + 2

)
. (3.71)

Solving this equation, we have found the trivial solution for σ. The solution of

this transcendental equation gives the hard-sphere diameter of a metal and it can be

extended for liquid binary alloys. From the above equation, we get σij when i = j i.e.

σ11 and σ22 for constituent metals of the alloys. By using the hard-sphere formulation

we obtain σij when i 6= j as of the form of

σ12 =
σ11 + σ22

2
= σ21. (3.72)
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This will be the desirable hard-sphere diameter (equation (3.72)) for liquid binary

alloys.

3.3.3 Partial Pair Correlation Function

The Pair Distribution Function (PDF) describes the probability of finding two atoms

separated by a short-range distance in the materials. It can be applied to all kinds

of amorphous and liquid material systems. Recently it has been applied to the quan-

titative study of disordered crystalline materials. It is important for two reasons:

(i). If we assume that the total potential energy is pairwise additive i.e.,

v(r) =
∑
j>i

u(rij). (3.73)

Then all thermodynamic quantities can be expressed in terms of the radial distribu-

tion functions.

(ii). The pairwise distribution function can be derived from the experiment of

diffraction (i.e. X-ray, Neutron, and Electron diffraction) data. So, we can compare

the theoretical diffraction with observed value.

The Ashcroft-Langreth (AL) partial structure factors Sij are calculated in line

with their original work [50]. In order to calculate the structure factors we need the

concentration of two spheres in the alloy, the number of ions per unit volume and the

effective hard-sphere diameter. These effective hard-sphere diameters are determined

by using the Linearized Weeks-Chandler-Anderson theory [69–72].
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3.3.4 The Ashcroft-Langreth (AL) Partial Structure Factor

Ashcroft-Langreth in their work [50] in 1967, proposed the following definition for

the partial structure factor Sij(q),

Sij(q) = (NiNj)
− 1

2

〈
N1∑
m=1

N2∑
n=1

exp[−i~q.(~rmi − ~rnj)]

〉
− (NiNj)

1
2 δk,θ. (3.74)

The forward scattering term of the above definition is excluded. Combining

equations we obtain an expression for the coherent intensity of a liquid binary alloy

(excluding the forward scattering), which may be written as

Icoh = N
∑
i

∑
j

(cicj)
1
2fi(q)fj(q)Sij

= N1f
2
1 (q)S11(q) +N2f

2
2 (q)S22 + 2(N1N2)

1
2f1(q)f2(q)S12(q). (3.75)

We can define the scattering intensity per atom as,

Icohα =
∑
i

∑
j

(cicj)
1
2f1(q)f2(q). (3.76)

At large value of q, the atom independently scatter x-rays, and we get

Icohα = c1f
2
1 (q) + c2f

2
2 (q) (3.77)

= 〈f 2(q)〉.

Using the relation Sij −→ δij, we get the AL total structure factor SAL(q) as,

SAL(q) =
Icohα

〈f 2(q)〉

=
∑
i

∑
j

(cicj)
1
2
fi(q)fj(q)

〈f 2(q)〉
Sij(q). (3.78)

For a two component system in real space, the structure is given by the three

partial pair distribution functions. We can introduce, the number density of j-type
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atoms found at a radial distance r from an α-type atom at the origin. The formula

states,

ρij(r) = cjρ0gij(~r)

= N−1
i

〈∑
m

∑
n

δ[~r − (~rmi − ~rnj)]

〉
− δijδ(~r). (3.79)

We have also used that

cjρji(r) = ci(r), (3.80)

Njρij(r) = Niρij(r), (3.81)

In equation (3.81), we have followed that gij(r) = gji(r).

Since ρij(r) becomes equal to
Nj

V
= cjρ0 at large value of r, then gij tends to

unity. Using these properties we can rewrite ρij as,

ρij(~r) = cjρ0

[
gij(~r)− 1

]
+ cjρ0. (3.82)

So we get,

N−1
i

〈∑
j

∑
k

δ[~r − (~rij − ~rjk)]

〉
− cjρ0 = cjρ0

[
gij(~r)− 1

]
+ δijδ(~r). (3.83)

Taking the Fourier transform on both sides of equation (3.83) and multiplying by

(NiNj)
− 1

2 we obtain the relation as,

(NiNj)
− 1

2

〈∑
j

∑
k

δ[~r − (~rij − ~rjk)]

〉
− (NiNj)

− 1
2 δQ0 =

(cicj)
1
2ρ0

∫ [
gij(~r)− 1

]
exp(−i~q.~r)d~r + (

ci
cj

)
1
2 δij. (3.84)

The left hand side of this equation corresponds to the partial structure factor. Thus

we can obtain a relation between Sij(q) and gij such as,

Sij(~q) = δij(~r) + (cicj)
1
2ρ

∫ [
gij(~r)− 1

]
exp(−i~q.~r)d~r. (3.85)
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Now, taking the inverse Fourier transformation to both sides of the above equation

and after some further simplification we get,

gij = 1 +
1

(2π)3√cicj

∫ (
Sij − δij

)
exp(−i~q.~r)d~r. (3.86)

This relation is therefore used to obtain the partial pair correlation in our

concerned alloys.

3.4 Thermodynamic Properties for Liquid Binary

System

In this section, I will discuss the Thermodynamic Properties namely the energy of

mixing (∆A), the enthalpy of mixing (∆H), and the entropy of mixing (∆S). The

Free energy (A), the entropy (E) and the enthalpy (H) of a physical system are

of great importance in the physical quantities to be clearly understood to predict

different behaviors of matters such as segregation of alloys [3,53,54], the Materialistic

phase transition in crystalline solids [2], the glass transition temperature [17,18], the

nucleation effect [4] and the stability of liquid metals and their alloys at different

thermodynamic state.

The study of energy of mixing (∆A), the enthalpy of mixing (∆H), and the

entropy of mixing (∆S) for liquid binary alloys are always a challenging task to do

theoretically. The entropy is related directly to the derivative of the free energy

with respect to the temperature but not directly to the full profile of the inter-ionic

potentials as in the case of energy and enthalpy evaluation [5].

That means that, the success of the entropy calculations depends not on the free

energy (A) and the value for enthalpy (H), but on the accuracy of the detailed shape

of the free energy (A) and the enthalpy (H) profile as a function of temperature for

the concerned system. So, the magnitude of the free energy (A) and enthalpy (H)
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can be, sometimes, found to be good in agreement with experimental data [92], but

the enthalpy of mixing (∆H), and the entropy of mixing (∆S) evaluated from the

same approach is not found to be even qualitative in agreement.

Moreover, both the enthalpy of mixing (∆H) and the entropy of mixing (∆S) are

of very small quantity relative to the total enthalpy (H) and entropy (S), so any

small change in the free energy (A) profile may cause a very large discrepancy. We

believe that, these are the root causes of not finding many works on this subject in

the literature.

The energy of mixing (∆A), enthalpy of mixing (∆H) and entropy of mixing

(∆S) are not independent to each other, these are rather related by the following

thermodynamic relation [4],

∆G = ∆H − T∆S, (3.87)

where ∆G denote the Gibbs free energy of mixing. We note that, at one atmo-

spheric pressure (p), ∆G ' ∆A and ∆H ' ∆E, where ∆A and ∆E are Helmholtz

free energy of mixing and internal energy of mixing; and at zero pressure the above

relations become exactly equal. Here, we are interested to study the structure of our

concerned alloys. Among all of them, we are most anticipating to learn the behavior

of hard-sphere diameter and the partial pair correlation function. These two are the

basic building blocks of our calculation among with the thermodynamic perturbation

theory.
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3.4.1 Energy of Mixing for Liquid Binary Alloys

Within the first order perturbation theory, the Helmholtz free energy per ion for an

alloy may be written, in general [4, 29,66] as

A = Avol + Aeg + AHS + ATail, (3.88)

where,

Avol is the volume term;

Aeg is the electron gas term;

AHS is the hard sphere (HS) term; and

ATail is the tail term of potential contributions, respectively.

So, the energy of formation without excess volume correction is expressed as

∆A = A−
∑
i

CiA
(i)

= ∆Avol + ∆AHS + ∆Aeg + ∆ATail, (3.89)

where, A(i) denotes the free energy of the elemental components. Finally,

including the excess volume correction, the total free energy of formation can be

written

∆A′ = ∆A+ ∆AEV C . (3.90)

Here, ∆AEV C is excess volume correction.

Volume Dependent Contribution:

In this calculation, we consider local pseudopotential [4, 29, 66] instead of non-local

pseudopotential. Now, the electron-ion interaction is written as,
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U(N) = NZuel +
N2Z2

V

β(0)

Z

+
1

2

∑
q 6=0

8πZ2

V q2

∑
i 6=j

eiq.(Ri−Rj)

+
1

2

∑
q 6=0

q2

8πV

{
1

ε(0)
− 1

}
|vi(q)|2

∑
i,j

eiq.(Ri−Rj). (3.91)

Here, uel is the energy per electron-gas system; the second one is the diagonal

term of the electron-ion interaction; the third one is the direct Coulomb interaction

between the ions with effective valency, Z and last one is the second order term of

the electron-ion interaction.

Here, Vi(q) is the matrix elements of the electron-ion pseudopotential and β(q)

its non-coulomb part, then Vi(q) is defined as,

Vi(q) = −8πZ

q2
+ β(q), (3.92)

and ε(q) is the dielectric function which is defined as

ε(q) = 1 +
8π

q2
P (q). (3.93)

In equation (3.93), P (q) is the polarization and defined as P = χel/χF which

is taken from [76, 77]. Here, χel, and χF denote the isothermal compressibility of

interacting, and non-interacting electrons, respectively.

From equation (3.93) we get,
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U(V ) = NZuel +
N2Z2

V

β(0)

Z

+
N

2

∑
q 6=0

q2

8πV

{
1

ε(q)
− 1

}
|vi(q)|2

−N(N − 1)

2V
lim
q→0

[
8πZ2

q2
+
q2

8π

{
1

ε(q)
− 1

}
|vi(q)|2

]

+
1

2

[
8πZ2

q2
+
q2

8π

{
1

ε(q)
− 1

}
|vi(q)|2

]∑
i 6=j

eiq.(Ri−Rj). (3.94)

Hence, the first and the last terms are electron gas term and structure term

respectively. The volume terms are rest of terms. So, for the volume term, we can

write,

U(V ) =
N2Z2

V

β(0)

Z

+
N

2

∑
q 6=0

q2

8πV

{
1

ε(q)
− 1

}
|vi(q)|2

−N(N − 1)

2V
lim
q→0

[
8πZ2

q2
+
q2

8π

{
1

ε(q)
− 1

}
|vi(q)|2

]

' N2Z2

V

β(0)

Z
+
N

2

V

(2π)3

∫
q2

8πV

{
1

ε(q)
− 1

}
|vi(q)|2d3q

−N(N − 1)

2V
lim
q→0

[
8πZ2

q2
+
q2

8π
{ 1

ε(q)
− 1}|vi(q)|2]

=
N2Z2

V

β(0)

Z
+

N

16π

V

(2π)3

∫ 2π

φ=0

∫ π

θ=0

∫ ∞
q=0

q2

V
{ 1

ε(q)
− 1}|vi(q)|2dq sin θdθdφ

−N
2

2V
lim
q→0

[
8πZ2

q2
+
q2

8π
{ 1

ε(q)
− 1}|vi(q)|2]. (3.95)
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So, the energy per ion is

U(V )

N
=

NZ2

V

β(0)

Z

+
1

32π3

∫
q4{ 1

ε(q)
− 1}|vi(q)|2dq

− N

2V
lim
q→0

[
8πZ2

q2
+
q2

8π
{ 1

ε(q)
− 1}|vi(q)|2]

= ρZβ(0) +
1

32π3

∫ ∞
q=0

q4{ 1

ε(q)
− 1}|vi(q)|2dq

−ρ
2

lim
q→0

[
8πZ2

q2
+
q2

8π
{ 1

ε(q)
− 1}|vi(q)|2]. (3.96)

Taking the values from equation (3.97) and (3.98), respectively we can write,

lim
q→0

[
8πZ2

q2
+
q2

8π
{ 1

ε(q)
− 1}|vi(q)|2

]
= 2Zβ(0) +

Z2

P (0)
. (3.97)

Putting this value in equation (3.97), we get,

Avol =
U(V )

N

1

32π3

∫ ∞
q=0

q4{ 1

ε(q)
− 1}|vi(q)|2dq −

ρZ2

2P (0)
. (3.98)

In [4, 29,57], this value is taken as,

Avol =
1

32π3

∫ ∞
q=0

q4{ 1

ε(q)
− 1}|vi(q)|2dq −

ZEF
3P

. (3.99)

Here, EF is the Fermi energy for electrons.

Electron Gas Contribution:

Electron gas term contribution is treated from the Hartree-Fock perturbation [4, 29]

approximation for jellium. Jellium is just a collection of electrons, into which ions
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are introduced a spatially uniform back ground to maintain overall charge neutrality.

Let us consider that, the wave functions of electron in jellium may be presented by

plane waves. For N-electrons in a volume, V they are expressed as,

ElΦl(~r) = −
[
~2

2m
O2

]
Φl(~r)− Φl(~r)

(
N

V

)∫
d~r2

e2

|~r − ~r2|

+Φl(~r)

∫
d~r2

N∑
j=1

e2 |Φj(~r)|2

|~r − ~rj|

−δxixj
N∑
j=1

Φl(~r)

∫
d~r2

e2Φ∗j(~r)Φl(~r2)

|~r − ~r2|
. (3.100)

Total energy

= Kinetic energy + Interaction with ions + Coulomb interaction among electrons +

Exchange interaction.

Let us consider, that the normalized plane wave,

Φl(~r) =
ei
~kl.~r

V 1/2
. (3.101)

In equation (3.100), the kinetic energy term is,

−[
~2

2m
O2]

ei
~kl.~r

V 1/2
= [

~2k2

2m
]Φl(~r). (3.102)

Since, |Φj|2 = 1
V
. The interaction with ions, and the Coulomb interaction among

electrons cancel each other. So, the exchange interaction is,

e2

N∑
j=1

ei
~kj .~r

V 1/2

∫
d3~r2

V

ei(
~kl−~kj).~r2

|~r − ~r2|
δxixj = e2 e

i~kl.~r

V 1/2

N∑
j=1

∫
d3~r′

V

e−i(
~kl−~kj).~r′

~r′
δxixj

= e2Φl(~r)
N∑
j=1

1

V

4π

|kl − kj|2
δxixj. (3.103)
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Let us consider a ground state. So, states are occupied up-to the Fermi level

[4], and the inter-level spacing is very small. Therefore, we can approximate the

summation on integration,

∑
k

→ V

(2π)3

∫ kF

0

d3k.

Therefore,

e2Φl(~r)

∫ kF

0

d3k

2π3

4π

|kl − kj|2
δxixj =

e2Φl(~r)

(2π)3

∫ kF

0

k2dk

∫ Π

θ=0

sin θdθ

k2
l + k2 − 2kkl cos θ

∫ 2π

φ=0

dφ

=
e2Φl(~r)

π

∫ kF

0

k2dk

2kkl
ln
|k + kl|
|k − kl|

=
e2Φl(~r)

π

1

2kl
[(k2

F − k2
l ) ln(

kF + kl
kF − kl

) + 2klkF ]

=
2e2Φl(~r)

π
kFF (kl/kF ). (3.104)

Here, the Linhard dielectric function,

F (x) =
1

2
+

1− x2

4x
ln

1 + x

1− x
,

x =
kl
kF
.

So, the energy of state l is,

El =
~2k2

l

2m
− 2e2

π
kFF (

kl
kF

). (3.105)

Thus the total energy,

E =
∑
l

[
~2k2

l

2m
− e2

π
kFF (

kl
kF

)]

= N

[
3

5
EF −

3

4

e2

π
kF

]
. (3.106)
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The free energy per electron can be written

E

N
= [

2.21

(rs/a0)2 −
0.916

(rs/a0)
]Rydberg’s

or,
E

Z
= [

2.21

rs2
− 0.916

rs
]Rydberg’s. (3.107)

Here, rs is the dimensionless parameter and can be defined as,

rs = (
3

4πρZ
)
1
3/a0, (3.108)

where a0 is the first Bohr radius, and the ionic number density,

ρ =
ρ1ρ2

(C1ρ2 + C2ρ1)
. (3.109)

Correction term is,

Ecorr
Z

= [0.031 ln rs − 0.115]Rydberg’s. (3.110)

So, the total free energy per electron is,

Aeg
Z

=
E

Z
+
Ecorr
Z

. (3.111)

Including, the correction term, it may be written as [45],

Aeg
Z

=

[
2.21

rs2
− 0.916

rs
+ 0.031 ln rs − 0.115

]
Rydberg’s. (3.112)

Hard Sphere Contribution:

The hard sphere model for liquid metal, where hard sphere is taken as the reference

system for the calculation of structure and thermodynamic properties was proposed

by N.W. Ashcroft and J. Lekner [4, 50].
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In the hard sphere model, potential is given by,

u(R) =


∞; if R < σ,

0; if R > σ.

(3.113)

In equation (3.113), σ is the hard sphere diameter. Free energy per atom of the

reference HS liquid (using C1 = x and C2 =1-x) [4, 57] is

AHS
kBT

=
∑
i

[
− ln(Λ3

i v) + lnCi
]
− 3

2

(
5

3
− y1 + y2 + y3

)
+

(3y2 − 2y3)

(1− η)
+

3

2

(1− y1 + y2 + y3
3

)

(1− η)2
+ (y3 − 1) ln(1− η); (3.114)

From equation (3.114) we can express the individual terms [4] in such a way given

below,

Λi = (
2π~2

m1
C1m2

C2kBT
)
1
2 , (3.115)

mi is the Ionic mass, and

Packing fraction is,

η =
∑
i

ηi; (3.116)

ηi =
Ciπρiσ

3
ii

6
. (3.117)

In equation (3.117) Ci is the atomic concentration of i’th component. From

equation (3.114)

y1 =
∑
j>i

∆ij(σii + σjj)/(σiiσjj)
1
2 (3.118)
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where σii, and σjj are the additive hard sphere diameter (HSD)

y2 =
∑
j>i

∆ij

∑
k

(
ηk
η

)
1
2/σkk, (3.119)

y3 = [
∑
i

(
ηi
η

)
2
3C

1
3
i ]3, (3.120)

and

∆ij = [(ηiηj)
1
2/η][(σii − σjj)2/σiiσjj](CiCj)

1
2 . (3.121)

Tail Potential Contribution:

The contribution of tail part is written in the form given below

ATail = D
∑
ij

CiCjMij. (3.122)

In equation (3.122), Ci, and Cj are the atomic concentrations for ith, and jth

components, respectively and

D = 2πρ. (3.123)

Here, ρ is the ionic number density, and

Mij =

∫ ∞
σ

vij(r)g
HS
ij (r, σij, ρ)r2dr, (3.124)

where vij(r), and gij(r) are partial pair potential, and correlation functions,

respectively.

3.4.2 Enthalpy of Mixing for Liquid Binary Alloys

A thermodynamic state can be specified by fixing the set of independent

thermodynamic variables. A single homogeneous substance has two degrees of free-

dom with a wide possible choice of pairs for independent variables. For condensed
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material [4, 57], it is experimentally convenient to define the temperature, (T ), and

pressure, (p). The relation between temperature (T ), and pressure (p) can be related

in terms of enthalpy (H) is

H = U + pV. (3.125)

Here, U is the internal energy of the system. According to the canonical

ensemble theory, we can also relate the enthalpy (H) relation with temperature (T )

and pressure (p) as,

H =
3

2
NkBT +Nug +

N

2
n

∫
g

(2)
0 (R)u(R)d3R

+pV. (3.126)

In equation (3.126), kB is the Boltzmann constant, and g
(2)
0 is the pair

distribution function.

The Enthalpy of mixing (∆H) for liquid binary alloys can be written as in general

[4, 45],

∆H = ∆Hvol + ∆Heg + ∆HTail. (3.127)

3.4.3 Entropy of Mixing for Liquid Binary Alloys

After finding the energy of mixing, (∆A), and the enthalpy of mixing, (∆H), we

can easily get the entropy of mixing (∆S) for liquid binary alloys at different

thermodynamic state using the equation (3.125) after applying some conditions.
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T∆S = ∆H −∆A

or,∆S =
∆H −∆A

T
(3.128)

3.5 Atomic Transport Theory for Liquid Binary

System

Transport properties of condensed matters have been a subject of interest [4] to

the metallurgies and physicists from the long past to the present day. Transport

properties can be classified into two parts. Firstly, the atomic transport property,

and secondly, the electron transport property. In this section, we will discuss the

relevant theories involved for studying the transport properties.

We will also discuss, the theories for elemental system study of transport proper-

ties at the end of this chapter.

3.5.1 Atomic Transport Property

The concept of Atomic Transport theory is described by the Statistical Mechanics.

According to the statistical mechanical theory [4] of atomic or molecular transport

properties of simple liquids, it is possible to calculate transport coefficient from the

knowledge of atomic or molecular properties, such as mass, and pair potentials and

the equation of motion only. The time correlation function and the memory function

is used to study the self-diffusion process in liquid metals, which is calculated from

the Hard-sphere diameter and the pair-potentials.

The microscopic expression for the hydrodynamic equation of liquids are taken

into account, and the time evolution of distribution functions appearing in those
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expressions is considered from the point of view of kinetic theories developed by

Kirkwood [59], Born and Green [4], Rice and Allnatt [59–64], and others. The vis-

cosity of liquid metals can be achieved using these atomic properties.

The most important forms of atomic transport properties are Viscosity, Thermal

conductivity, Electrical conductivity and Diffusion coefficient. The understanding of

these properties for liquid metals can be done using the neutron inelastic scattering

measurements. Such experiment allows us to determine a scattering law of dynamic

structure factor, S(q, ω) which is the Fourier Transformation of the space-time cor-

relation function of Van Hoove G(r,t). The shear viscosity of liquid metals is also

calculated using a moment method. Diffusion and Viscous coefficients of liquid alloys

are discussed from the same point of view as for pure liquid metals.

3.5.2 Shear Viscosity for Liquid

The transport properties of a liquid, as it is explained by the statistical mechanical

equation, we need to determine reduced distribution function. The equation of singlet

distribution functions f1 is

δf1

δt
− p1

M
∇1f1 = Ω1

H + Ω1
S. (3.129)

Here,

Ω1
H = −

∫
~FH,12∇pf

2d3R2d
3p2 (3.130)

Ω1
S = −

∫
~FS,12∇pf

2d3R2d
3p2 (3.131)

Similar equation can be written for f 2. By solving these equations, we can get

both f 1 and f 2.
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Substituting the solution of f 1 into equation (3.130) and comparing the equations

for f 1 and f 2 one obtains a relation for the kinetic part of the shear viscosity,

σk(R, t) = −M−1

∫
(P −M)(P −Mu)f 1(R, p), (3.132)

and

σv(R, t) =
1

2

∫
R0R

R

δu(R)

δ(R)
f 2(R,R +R0, P

1, P 2; t)d3Rd3P1d
3P2. (3.133)

Hence we get,

ηk =
5KBT

8g(σ)

1 + 4πσ3g(σ)
15v

Ω + 5ζsv
4Mg(σ)

. (3.134)

Using the solution of f 2, Rice & Allant [59–64] found,

ηv(σ) = η1
v + η2

v(σ). (3.135)

Here

η1
v(σ) =

5KBT

8g(σ)
(
2πnσ3

15
)[1 +

4πnσ3

15
g(σ)]Dσ, (3.136)

and

η2
v =

8π

15

n2σ6g(σ)KBT

Ω
. (3.137)

Besides, from equation (3.137)

Dσ =

[
Ω +

5ζs
8Mg(σ)

]−1[
1 +

4Ω0

Ω
+

5ζs
nMg(σ)

]
, (3.138)

and

Ω =

(
4πKBT

M

) 1
2

. (3.139)
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The contribution of the shear viscosity from the region R > σ is obtained by

replacing R as r and using small step theory expansion of f 2. According to Rice and

Kirkwood [59],

ηv(r > σ) =
4πMn2

30ζs

∞∫
0

r4

(
∂2u

∂r2
+

4∂u

r∂r

)
g(r)dr. (3.140)

Thus The total viscosity is

η = ηk + ηv(σ) + ηv(r > σ). (3.141)

Shear Viscosity for Alloys:

The theory developed for pure metals can be extended for liquid alloys. The starting

point of Rice-Allnatt [59–64] theory for atomic transport properties of a fluid, is the

general Statistical Mechanical theory of heat flux and Stress Tensor. Considering,

the inter-ionic interactions as the pairwise additive, the pair potential is separated

into hard and soft parts.

The interaction between the hard cores are treated by the theory of dense rigid

sphere [81] fluid, while the soft interaction are handled following Kirkwood, in the

Fokker-Plank approximation [80]. Finally, the shear viscosity coefficient appears as

a sum of three different contributions (a) the kinetic energy contribution ηk , (b) the

hard core interaction contribution, ηv(σ) and (c) the soft interaction contribution

ηv(r > σ). Symbolically,

η = ηk + ηv(σ) + ηv(r > σ). (3.142)

where σ denotes the hard sphere diameter. It is worth for noting that, Rice and

Allnatt [59–64] originally developed the theory for single component systems. This
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theory can be extended to the liquid binary alloys in a straightforward way by [69–72].

Different terms for the alloys can be represented by

ηk =
∑
i

∑
j

5KBT

8gHS0ij (σij)

1 + 4πρjgij(σij)σ
3
ij/15

(4πKBT/Mi)
1
2σ2

ij + [5ζSi/4Miρig2
0ij(σij)]

, (3.143)

and

ηv(σ) =
∑
i

∑
j

[
5KBT

36

Mijρj
Miρi

12πσ3
ijρj/(5g

HS
0ij (σij) + (4πσ3

ijρi/5)2)

(4πKBT/Mi)
1
2σ2

ij + (5ζSi/4MiρigHS0ij (σij))
(3.144)

+
8πKBTρiρjσ

3
ijg0ijσij

15(4piKBT/Mi)
1
2σ2

ij

]
.

Equation (3.145) can be separated into 4 parts such as,

ηv(σ) = ηH11 + ηH22 + ηH12 + ηH21. (3.145)

As for the contribution outside the core radius, we get,

ηv(r > σ) =
∑
i

∑
j

Mij

30

(
1

ζSi
+

1

ζSj

)
Xij(r) = ηS11 + ηS22 + ηS12 + ηS21. (3.146)

In equation (3.146) the term integrand Xij(r) can be written as,

Xij(r) = ρiρj

∞∫
r>σij

(
r2d

2uij
dr2

+ 4r
duij
dr

)
gHS0ij (r)d3r, (3.147)

and

ζSi = niζ
S
ii + njζ

S
ij. (3.148)

Another fact from equation (3.148),

ζSij =

(
1

ζi
+

1

ζj

)
Cij, (3.149)
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and

Cij =
Mij

3

∫
(v′′ +

2

r
v′)r2gij(r)dr. (3.150)

In the above equation, single and double prime over v(r) denote the first and the

second derivative, respectively, with respect to r. Now solving (3.150), we get

ζ1 =

[
A+B + FB

2F
+

1

2F
[(A+D + FB)2 − 4FBD]

1
2

] 1
2

, (3.151)

and

ζ2 =

[
ζ1

n2C1

− 2n1C11

ζ1n2C)1
− 1

ζ1

]−1

. (3.152)

In equation (3.151), the constant terms can be expressed like below,

A = C2
12n

2, (3.153)

B = n1C11 + n2C12, (3.154)

D = 2n2
1C11C12 + 4n1n2C11C22 + 2n2

2C12C22, (3.155)

and

F = n1C12 + 2n2C22. (3.156)

3.5.3 Diffusion Coefficient for Liquid

The Einstein Relation for Diffusion:

The probability that a particle starting at some position at the initial time t0 of any

liquid will make a displacement ∆R after τ = t− t0 is governed by the self-diffusion
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in mono-atomic liquids. Such a probability satisfy the Ficks law:

δGs

δt
= D∇2

RGs. (3.157)

Here, D is the self-diffusion coefficient, ∇2
R is the Laplace operator. If the origin

is considered the initial position of the particle, then we obtain from equation (3.158)

that

Gs(~R, t0) = δ(∆~R, t0), (3.158)

where δ(∆~R, t0) is the delta function. Solution of the equation (3.158) is in the

Gaussian form,

Gs(~R, τ) = (4πDτ )
3
2 exp(−∆~R

4Dτ

). (3.159)

There the mean-square value of ∆~R is given by,

〈
(∆~R)2

〉
=

∫
(∆~R)2Gs(~R.τ)d3(∆~R) = 6Dτ. (3.160)

So the self-diffusion coefficient D is,

lim
τ→0

〈
(∆~R)2

〉
6τ

= D. (3.161)

This expression for D can be rewritten in terms of time correlation function. If

v(t) is the velocity of the particle of interest at time t, then,
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(∆~R)(τ) =

τ∫
0

~vdt, (3.162)

and

(∆~R)2 =

τ∫
0

dt′
τ∫

0

dt′′~v(t′)~v(t′′). (3.163)

The ensemble average
〈

(∆~R(τ))2
〉

is

〈
(∆~R)2

〉
=

τ∫
0

dt′
τ∫

0

dt′′ 〈~v(t′)~v(t′′)〉 , (3.164)

where 〈~v(t′)~v(t′′)〉 is the velocity correlation function. Now,

〈~v(t′)~v(t′′)〉 = 〈~v(0)~v(t′′ − t′)〉 . (3.165)

By putting t = t′′ − t′ and integrating by parts we get,

〈
(∆~R(τ))2

〉
=

τ∫
0

dt(τ − t) 〈~v(0)~v(t)〉 . (3.166)

Substituting this into the equation of self-diffusion coefficient D, we obtain

1

3
lim
τ→0

τ∫
0

dt(1− t

τ
) 〈~v(0)~v(t)〉 = D. (3.167)

Since the correlation function tends to be zero in some short interval, the term t
τ

can be ignored. Then,

D =
1

3

∞∫
0

〈~v(0)~v(t)〉 . (3.168)

Using the normalized correlation function 〈~v(0)~v(t)〉 /
〈
v(0)2〉, and considering the

random collision gives us a solution of the classical Langevin equation (for Brownian

76

User
Typewritten text
Dhaka University Institutional Repository 



CHAPTER 3. THEORIES

motion) of the following form

〈~v(0)~v(t)〉 =
〈
v(0)2〉 eξt/m. (3.169)

In equation (3.169), ξ is the friction coefficient. Using the average kinetic energy

1
2
m 〈|v|2〉 = 3

2
kBT and substituting this in eqn. (3.169) we can find the Einstein

relations,

D =
kBT

ξ
. (3.170)

Diffusion Coefficient for Alloys:

If the inter-ionic pair potential is conveniently divided into a hard and soft part

u(r) = u(r)H + u(r)S, the memory function for hard sphere collision leads to

ξH =
8

3
ρσ2(πmkBT )

1
2 g2

0(r), (3.171)

where σ is the hard sphere diameter, ρ is the ionic number density, m is the mass

of the atom and kB is the Boltzmann constant. The probability function of changing

inter-atomic distance between two atoms decays exponentially with time leads

ξS =
1

3
mρ

∫
r>σ

∇2
ruS(r)g2

0(r)d3r. (3.172)

The extension to the liquid binary alloys thus become,

ξHi =
8

3

2∑
j=1

ρjgij(σij)σ
2
ij(2πmijKT )2. (3.173)

Here,

mij =
mimj

mi +mj

, (3.174)

and
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ξSi = ρiξ
S
ij + ρ2ξ

S
ij. (3.175)

In those formula mentioned earlier can be written,

ξSij =

(
1

ξSi
+

1

ξSj

)
Cij, (3.176)

and

Cij =
mij

3

∫
(v′′ij +

2

r
v′ij)r

2gijdr. (3.177)

Here, vij denotes the partial inter-ionic pair potentials, single and double prime

represent the first and second order derivatives respectively. Therefore, the Diffusion

Coefficient of its component in the case of liquid binary alloys reads,

Di =
KT

ξHi + ξSi
. (3.178)

3.6 Electron Transport Theory for Liquid Binary

System

We shall first describe the physical principles of Ziman’s [9,15,65,67,68] formula for

the electron transport to real liquid metals. Ziman’s theory is based on the Nearly

Free Electron (NFE) [4] model, predicting reasonable values for the resistivity of liq-

uid metals by the use of adequate pseudopotentials and accurate structure factors.

Some corrections proposed for this formula are described which are important for

transition or noble liquid metals. Ziman’s formula can straightforwardly be extended

to liquid alloys, as performed by Faber and Ziman [83] which can formally be em-

ployed in resistivity calculation even for liquid metals with strong ionic potentials

such as noble metals, transition metals by using pseudopotentials. The concentra-
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tion dependence of the resistivity of various liquid alloys is discussed in terms of this

formalism.

Weak Scattering Theory of Electrical Resistivity:

The idea behind weak scattering theory is to represent the total potential energy

V (r) scattering the conduction electron by a sum of screen potential v(r) at the ionic

sites Ri, where one has taken a snapshot of the ion at a particular time,

V (r) =
∑
i

v(|r −Ri|). (3.179)

One can evaluate this force-force correlation function to second order in V by

replacing the energy derivative σ of the density matrix by its free electron value.

The density matrix ρ for free electrons is readily calculated for plane waves

ρ0(r1r2) =
∑
|k|<kF

γ−1exp(ik.r1 − r2). (3.180)

Replacing the summation of K by an integration with the usual constant density

of states in K space as

ρ0(r1r2) =
K2
F

π2

j1(KF |r1 − r2|)
|r1 − r2|

. (3.181)

The energy derivative follows by using KF=(2E)1/2. The resistivity ρ is then

found by using this result for σ0; clearly, as only pairs of sites Ri are now corrected,

taking the liquid average one obtains a result in terms of the structure factor S(k)

and the Fourier transform of the localized v̄(k). The result, when one puts back all

the numerical factors, is for weak scattering with a sharp Fermi surface of diameter

2KF ,
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ρ =
3π

he2v2
Fρi

1

(2kF )4

∫ 3kF

0

S(k)|v̄(k)2|4k3dk. (3.182)

This is the basic formula for the electrical resistivity of simple (s-p) nearly met-

als, ρl is the ionic number density, and since S(k) is measurable by diffraction ex-

periments, the only quantity needed to determine ρ is the Fourier transform of the

localized atomic-like screened potential energy v̄(k). Some discussion of the way

approximations may set up for this quantity has already been given.

It also relevant to note here that real liquid metals have blurred Fermi surface, in

accord with the Heisenberg uncertainty principle. The week scattering formula is not

self-consistent in the sense that on the right-hand side the integration is out to the

Fermi sphere diameter 2kF , which clearly implies a perfectly sharp Fermi surface,

whereas on the left-hand side, there is a finite electrical resistivity; this, in turn,

implies a finite mean free path through the elementary formula,

ρ =
hkf
ne2l

. (3.183)

Ferraz and March (1969) make the assumption that the free electron density matrix

σ(|r1− r2|) can be modified to take into account of Fermi surface blurring by writing

σ(r1r2) = σ0(|r1 − r2|) exp

(
−|r1 − r2|

2l

)
. (3.184)

the arguments leading to a damping of the off-diagonal matrix being quite anal-

ogous to those used to derive the probability of a mean free path of a given length l

in classical kinetic theory. These arguments were first applied quantum mechanically

be Bardeen (1956), who did not, however, derive a liquid a metal transport theory.

The result of electrical resistivity obtained by Ferraz and March [67,68],

ρ =
hkF
ne2l

=

∫ ∞
0

K4S(k)|v̄(k)2|Γ(k, kF , l)dk. (3.185)
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3.6.1 Ziman’s Formula for the Electrical Resistivity

The Nearly Free Electron model is very useful for describing the behavior of con-

duction electrons in liquid metals. The conduction electrons are supposed to form a

free-electron gas and to be scattered by the ions with appropriate pseudopotentials

in a liquid metal. This scattering can be computed by the first-order time-dependent

perturbation theory; the transition rate from an initial state ψ0
k= | k〉 to final states

ψ0
k+q= | k+ q〉 on the Fermi level with the density of states NFE(EF ) is given by the

golden rule

P (θ) =
2π

~
(| 〈k + q | W | k〉 |)2NFE(EF ). (3.186)

Here, θ is the angle between K and K+q, the factor 1/2 arises from the fact that

electron spin does not change on scattering, and the factor (| 〈k + q | W | k〉 |)2 is

decomposed in the same form. Thus the expression for the electrical conductivity σe

is,

σe =
1

3
(| e |)2v2

F τNFE(EF ). (3.187)

Where, vF is the Fermi velocity or velocity of an electron on the Fermi surface

and τ is a relaxation time given by,

1

τ
=

∫
(1− cos θ)(P (θ)4π)dΩ, (3.188)

with Ω the solid angle.

Some authors (Szabo, 1972,1973; Rousseau et al., 1973; Evans et al.,1973) have

alternatively attempted to derive the resistivity ρ formula with the use of force-
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force correlation functions. Ballentine and Heancy (1974) showed that, these force

correlation derivations are erroneous unless the random force distinguished from the

total force is taken into account; the total force formula was found to be correct only

in the lowest order.

The well known Ziman formula [82] for the resistivity of the liquid metal is

ρ =
3m2π

4Ze2h3nelk6
F

∫ ∞
0

q3S(q)|W (q)2|θ(2kF − q)dq. (3.189)

where S(q) is the static structure factor, W (q) is the form factor.ηel is the con-

duction of electron density which is related to Fermi wave vector kF=(3π2nel)
1/3, ”e”

is the electron charge, m is the electron mass, and h is Planck’s constant. The unit

step function θ is defined as,

θ(2kF − q) =

 0, for q > 2KF ;

1, for q ≤ 2KF .
(3.190)

The extension to a liquid metal binary alloy is done by Faber-Ziman [67] as,

ρ =
3m2π

4Ze2h3nelk6
F

[ ∫ ∞
0

q3[CiSii(q)|Wi(q)
2|+ CjSjj(q)|Wj(q)

2|]θ(2kF − q)dq(3.191)

+

∫ ∞
0

q3[2(CiCj)
1
2Sij(q)Wi(q)Wj(q)]θ(2kF − q)dq

]
.

The finite mean free path corresponds to a finite uncertainty in the electron

momentum. Thus the Fermi surface is not perfectly sharp but it is blurred. Some

attempts have been made to take into account this blurring. Ferraz-March approach
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[67, 68] yields in place of equation.(3.189)

ρ =
3m2π

4Ze2h3nelk6
F

∫ ∞
0

q3S(q)|W (q)2|Γ(q, kF , l), (3.192)

Here,

Γ(q, kF , l) =
2

π

[
tan−1(ql)− 1

2
tan−1 2ql

1 + 4(KF l)2
− π

2
Θ

(
q− (

1

l2
+ 4K2

F )

)]
. (3.193)

The mean free path l can be determined self consistently. The first step in the

self consistently loop is to calculate ρ using l=∞. A new l is then calculated from

Drude relation as,

ρ =
hkF
ne2l

. (3.194)

In which the iterations are continued until ρL converges. The extension of the

Ferraz-March expression to binary alloys is straight-forward with θ replaced by

Γ(q, kF , l) in Eq.(3.193),

ρ =
3m2π

4Ze2h3nelk6
F

[ ∫ ∞
0

q3[CiSii(q)|Wi(q)
2|+ CjSjj(q)|Wj(q)

2|]Γ(q, kF , l)dq

+

∫ ∞
0

q3[2(CiCj)
1
2Sij(q)Wi(q)Wj(q)]

]
Γ(q, kF , l)dq.

Using equation (3.193) and equation (3.194), and taking the consideration that

the unit step function θ(2kF − q) cuts off the integration at 2KF corresponding to

perfect sharp Fermi surface, we get the formula as,
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ρ =
3m2π

4Ze2h3nelk6
F

[ ∫ 2kF

0

q3[CiSii(q)|Wi(q)
2|+ CjSjj(q)|Wj(q)

2|]dq

+

∫ 2kF

0

q3[2(CiCj)
1
2Sij(q)Wi(q)Wj(q)]dq

]
.

which is used to calculate the electrical resistivity for Al-based liquid binary alloys

in this thesis.

3.6.2 Corrections to Ziman’s Expression

The Ziman’s formula [9,15,65–68], for the resistivity is valid as long as the deviation

from the free-electron behavior is small. But the basic assumptions involved implic-

itly or explicitly in the derivation still remain to be examined. For example, electron

inelastic scattering due to the ionic motion would be negligible; high-order correla-

tions of ionic configuration would be unimportant; the Born approximation would

be valid. Only these problems are briefly described here. The usual pseudopotential

concept employed in deriving Ziman’s formula is not always valid for the resistiv-

ity calculation in liquid noble metals and transition metals. The use of the static

structure factor S(q) implies that the motion of the ions is completely neglected and

electron scattering due to the motion of the ions is treated as elastic. However, the

effects of ionic density fluctuations strictly yield inelastic scattering of electrons, as

in the case of neutron inelastic scattering.

3.6.3 Scaling Laws for Transport Coefficients

Using the universal scaling law proposed by Dzugutov [85], the study of atomic

transport coefficients, for the elemental system, has also been completed in this

research work for liquid Al and details are given in Appendix B. The transport
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coefficients, namely the reduced diffusion coefficient (D∗R) and reduced shear viscosity

(η∗R) may be written as

D∗R = D
n1/3

(kBT/m)1/2
, (3.195)

η∗R = η
n−2/3

(mkBT )1/2
. (3.196)

where n, and T are the number density and temperature of the systems. These

macroscopic reduction parameters (n and T ) were chosen for the reduced transport

coefficients. Based on the hundreds of simulation results [86–88], the reduced trans-

port coefficients can be written as

D∗R = 0.6e0.8Sex , (3.197)

η∗R = 0.2e−0.8Sex . (3.198)

where, Sex is the excess entropy of the systems. The excess entropy, Sex, can be

approximated keeping the two-body contribution as,

S2 = −2πn

∫ ∞
0

{g(r) ln[g(r)]− [g(r)− 1]}r2dr, (3.199)

where g(r) is the radial distribution function.

In 1996, the scaling law for diffusion constant is revised by Dzugutov [85] using the

microscopic reduction parameters, collision frequency Γ, and inter-particle distance,

σ. In 2005, following Dzugutov, Li [87] defined a scaling law relation for viscosity.
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Based on, the microscopic reduction parameters, they defined the following

reduced diffusion and viscosity coefficients equations are,

D∗Z = D
1

Γσ2
, (3.200)

η∗L = η
σ

Γm
. (3.201)

From equations (3.200) & (3.201), the collision frequency, Γ according to Enskog

theory [89] is,

Γ = 4σ2g(σ)n(πkBT/m)1/2. (3.202)

Here g(σ) is the radial distribution function evaluated at hard sphere diameter, σ.

The hard sphere diameter was chosen at the position of the first principal peak of g(r).

Based on the hundreds of simulation results for the reduced transport coefficients,

they proposed the following scaling laws,

D∗R = 0.049eSex (3.203)

η∗R = 0.035e−0.55Sex . (3.204)

86



Chapter 4

Results, Discussions, &

Conclusions

The study of ‘Thermodynamic and Transport Properties of Al-based (Al1−xXx, here

X=Zn, In, Sn, Bi, Cu, Au) liquid binary alloys’, is the main purpose of the present re-

search work. In this chapter, the calculated results for Al1−xZnx, Al1−xInx, Al1−xSnx,

Al1−xBix, Al1−xCux and Al1−xAux liquid binary alloys will be discussed gradually.

For thermodynamics of mixing, I have gone through the study of Helmholtz free

energy (A), the energy of mixing (∆A), enthalpy of mixing (∆H), and entropy of

mixing (∆S) for Al1−xZnx, Al1−xInx, Al1−xSnx, Al1−xBix, Al1−xCux and Al1−xAux

liquid binary alloys at different thermodynamic states.

Moreover, I have also studied the Atomic Transport Properties (ATP) and Elec-

tron Transport Properties (ETP). Firstly, for understanding the behavior of ATP

in liquid states, the coefficients of viscosity (η), diffusion coefficients (D), and fric-

tion coefficients (ζ) have been calculated. Secondly, for ETP, the theoretical results

of electrical resistivity (Ω) and conductivity for those aforementioned liquid binary

alloys have been found at different thermodynamic states serially.

The experimental studies of ATP and ETP are not always auspicious and some-
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times are very costly. In addition, they are very difficult to manage properly as well.

This is why the experimental results for both ATP and ETP are very rare. Conse-

quently, we did not find the sufficient experimental results of liquid binary alloys for

the transport properties to compare our results.

Finally, I have submitted all my research works and results with graphical analysis

and tables of the corresponding systems.

4.1 Effective Values of Parameters

For, the final calculations, of all the Thermodynamic and Transport properties, we

had to determine the two basic ingredients for the binary systems. These two ingre-

dients are, namely:

a) The effective pair potentials (Vij),

and

b) The pair correlation function for the reference hard sphere liquids (gij).

We have to calculate the effective partial pair potentials (Vij) for understanding

the inter-ionic interaction [76–91] in alloys state and then partial pair correlation

functions (gij) for the hard sphere reference liquids for different Al-based alloys for

the different set of concentrations, using the Bretonnet-Silbert pseudopotential model

[44]. The BS model has three parameters,

(i). The Core Radius, Rc,

(ii). The Softness Parameter, a, and

(iii). The effective electron occupancy number, Z.
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These parameters are chosen only to calculate the effective pair potentials. Once

it is done, the rest of the calculations (for A, ∆A, ∆H, ∆S, η, D, ζ, and Ω) are

completely parameter free. Calculations from the theoretical point of view are also

self-consistent and as a result, the accuracy of calculations are much more reliable

than the empirical and semi-empirical methods.

Table 4.1: BS Pseudopotential Parameters for Different Liquid Binary Systems.

Elements Z Rc a Temperature (K)

Al 3.0 1.91 0.49 -

Zn 2.0 1.275 0.285 1000

In 3.0 1.37 0.27 1173

Sn 4.0 1.30 0.26 973

Bi 5.0 1.49 0.363 1173

Cu 1.30 1.44 0.30 1373

Au 1.80 2.03 0.49 1338

The values of Rc are generally determined by fitting the physical properties of the

system of interest, and the values of the softness parameters, a, are found by fitting

the structure factor at low q to the experimental data [29]. We have chosen the three

parameters for BS model which listed in the table for Al, Zn, In, Sn, Bi, Cu, and Au.
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4.2 Thermodynamic Properties for Al1−xZnx Liq-

uid Binary System

In this section, the results for Free energy (A), Energy of mixing (∆A), Enthalpy

of mixing (∆H), and Entropy of mixing (∆S) for Al1−xZnx liquid binary sys-

tem at thermodynamic state 1000 K, obtained from the first principles approach,

specifically from the perturbation method, and the electronic theory of metals (ETM)

are presented.

4.2.1 The Effective Partial Pair Potentials (Vij)
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Figure 4.1: Partial pair potential (Vij) for Al1−xZnx liquid binary system for concen-

trations x=0.1 and 0.5.

Figure (4.1-4.2) show the effective partial pair potentials [4, 29, 44] for three dif-

ferent concentrations, x=0.1, 0.5, and 0.9 for Al1−xZnx liquid binary system, respec-

tively. From the pseudopotential [16–58] formalism, we can easily say that the direct

interactions occurring between the two ion cores and, the interaction [4,29] between

the ion cores are mediated by the conduction electrons. In determining the effec-

tive [4, 21] pair potentials, the dielectric function for screening plays an important
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role. From the Figure (4.1-4.2), it is seen that the depth of the well of the partial

potential is the largest for VAl−Al, and smallest for VZn−Zn, in all concentrations.

We have found that the potential well for VAl−Zn lies between VAl−Al and VZn−Zn

without any exception for the whole range of concentrations.
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Figure 4.2: Partial pair potential (Vij) for Al1−xZnx liquid binary system for concen-

tration x=0.9.

Figure (4.1-4.2) also illustrate the positions of the minimum energy lev-

els for different concentrations of these alloys, and the positions of these al-

loys vary from concentration range of x=0.1 to 0.9, in the following order,

VZn−Zn < VAl−Zn < VAl−Al. Following the same order, the energy levels of this

minimum are shifted to large r. Numerically, the values for VAl−Al, VAl−Zn, and

VZn−Zn potential well are found to be -0.0032 eV, -0.0016 eV, -0.001 eV, respectively

for concentration x=0.1, and these values slightly increase with the increasing concen-

tration of Zn. But the changing order remains the same for different concentrations

in the alloy states.
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4.2.2 The Pair Correlation Functions (gij) for the Reference

Hard Sphere Liquids and Hard Sphere Diameters (σij):
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Figure 4.3: Partial pair correlation function for Al1−xZnx liquid binary system for

concentrations x=0.1, 0.5, and 0.9, respectively.

We evaluated the partial pair correlation function using the Ashcroft-Lagranth [4,

50] theory for the hard sphere. In order to calculate gij(r), the essential parameter is

the effective hard sphere diameter, which we determined by using the thermodynamic

perturbation theory known as, linearized WCA (LWCA) [70] theory. In the case of

binary alloys, we replace the effective inter-ionic potentials, V(r) with the partial

potentials, Vij(r), and follow the same procedure as for the one component systems
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[28–31].

Figure 4.3 illustrates the partial pair distribution functions for Al1−xZnx liquid

binary alloy at thermodynamic state 1000 K for three different concentrations x=0.1,

0.5 and 0.9, respectively. In this figure, we see that the principal peak of gAl−Al(r) is

much larger than that of gZn−Zn(r) for x=0.1 and this trend reverses for x=0.9.

This is due to the fact that, for x=0.1 the alloy is rich in Al. So, the probability

of finding another Al ion from the reference one is larger. The situation reverses for

x=0.9, because the alloy is rich in Zn. This trend suggests that the peak values of

gAl−Al(r) and gZn−Zn(r) would be comparable for an equiatomic composition i.e for

x=0.5 concentration. It is exactly reflected in Figure 4.3, for x=0.5 concentration.

Hard Sphere Diameter (σij):
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Figure 4.4: Hard sphere diameter for Al1−xZnx liquid binary alloys.

Figure 4.4 shows the values of the partial hard sphere diameters (σij) as a function

of the concentrations for Al1−xZnx liquid binary system. Values of HSD decrease

with increasing concentrations of Zn but values for σAl−Al remain larger than σZn−Zn

for the whole range of concentrations. So, symbolically it can be rearranged as
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σZn−Zn < σAl−Zn < σAl−Al. The hard sphere contributions from σAl−Zn always lies

between σZn−Zn and σAl−Al which is consistent as expected.

4.2.3 A, ∆A, ∆H and ∆S for Al1−xZnx Liquid Binary System

It is a very challenging task to study the inter-ionic interaction in the liquid state,

especially for Al-based alloys, because, Al has some interesting features. Al in the

solid phase has a fcc crystalline structure. It is relatively soft, durable, lightweight,

ductile and malleable metal. It is a good electrical and thermal conductor, and also

a superconductor. It is a polyvalent system with chemical valence 3. Because of

its wide application in the industry and it has interesting features; the interest of

studying the Al and its alloys is growing.

Inter-ionic interactions of alloys are largely changed from those of individual com-

ponents. Thermodynamic properties for liquid binary alloys have been studied both

experimentally and theoretically for many decades and there are extensive works of

literature on this subject [16–58]. At the present section, we have focused our aim

to discuss the findings for A, ∆A, ∆H and ∆S for Al1−xZnx Liquid Binary System.

Here, it is worth mentioning that, the energy of mixing, ∆A, and the entropy

of mixing, ∆S, are not independent of each other. They are related through the

equation,

∆A = ∆U − T∆S (4.1)

for a particular temperature, T . Here, ∆U is the internal energy of mixing. It

is seen from the equation that, the free energy of formation is lowered when the

entropy of formation, ∆S positive, and so the formation of alloys are favored. As

a negative value of ∆S increases ∆A; the alloy state becomes more or less unstable

from the point of equilibrium condition. So, it is expected that, if ∆S reaches to the
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most negative value, a maximum instability of the alloys will occur. The free energy

depends directly on the partial pair interaction, Vij(r), and partial pair correlation

gij(r). Besides, the link between the enthalpy of mixing, ∆H and the internal energy,

∆U of a system can be defined as,

∆H = ∆U + P∆V (4.2)

It can also be observed from the equation that, at the very low pressure the

enthalpy of mixing and the internal energy of a system are almost equal. After

combining these two equations, we can easily get the entropy of mixing, ∆S for

any system. The entropy is related directly to the derivative of the free energy with

respect to temperature but not directly to the full profile of the inter-ionic potentials,

as in the case of energy evaluation [95]. Therefore, the accuracy of the enthalpy, and

entropy calculation at a particular concentration mostly relies on the accuracy of the

slope of the free energy versus temperature (F-T) curve.

The free energy (A) depends on the inter-ionic interactions and it also depends on

the ionic number density, and the number density. Again, these densities change with

the change of concentrations in alloy states. Due to this complicated dependence of

the free energy on the concentrations, it is difficult to obtain correct slope for all

concentrations of the alloys. It possesses a great challenge in calculating numerically

the enthalpy of mixing ∆H, and the entropy of mixing ∆S, in correct order from the

same inter-ionic potential and partial pair correlation function which were used for

the calculation of the energy of mixing.

Free Energy (A):

Free energy, (A) has been illustrated with the detailed breakdown in Figure 4.5 for

Al1−xZnx system at thermodynamic state 1000 K. We found here that the largest
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Figure 4.5: Free energy for Al1−xZnx liquid binary system.

contribution arises from the electron-gas part, Aeg, which is a very strange behavior

for the concerned Al1−xZnx system. The second contributory part comes from the

HS reference system.

To understand this strange behavior of Aeg, [4]. we have performed our study in

threefold. Firstly, we have chosen the valency, Z as an integral value for the alloy

forming elements Al and Zn. We have taken Z=3.0 for Al and 2.0 for Zn respectively.

We always found that the largest contribution arises from Aeg and the second largest

contribution from Ahs. Secondly, we have fixed Z=3.0 for Al and took the hybridiza-

tion effect of Zn and put Z=1.50 [28]. The first and second largest contributions

arise from the inter-ionic interactions as Aeg and Ahs, respectively. Thirdly, we have

considered the hybridization effect both for Al and Zn as 1.50. Surprisingly, this time

we have found that the largest contribution arises from Ahs of the HS reference sys-

tem of the inter-ionic interactions. This actually manifests that in polyvalent metal

with Z > 3 the electron gas, Aeg contribution gets larger than the hard sphere term.

The third and the fourth largest contributions come from the Avol and Atail part of

the inter-ionic interactions. The results of Avol contribution is always negative and
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is increased with increasing the concentrations of the system. And, we have always

noticed that the Atail is very small compared to the other three contributory parts.

The total free energy for Al1−xZnx liquid binary system is negative from x=0.1 to

0.9. Symbolically one can present the magnitude of contribution as in the following

order Aeg > Ahs > Avol > Atail. Finally, the summation of all four concentrations

yields the total free energy Atotal of the alloy which lies at the bottom in Figure 4.5.
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Figure 4.6: Energy of mixing (∆A) for Al1−xZnx liquid binary alloys.

Energy of Mixing (∆A):

Energy of mixing for Al1−xZnx liquid binary alloys at T = 1000 K has been illustrated

in Figure 4.6. From the Figure (4.6), it is observed that the major contribution comes

from the hard sphere (∆Ahs) reference liquid. It is negative across the whole range of

concentration, and very close to the experimental values, ∆Aex [92]. The contribution

arises from the tail part is large between x=0.4 to 0.8 and a maximum at x=0.7 which

is in Zn rich region. The contribution from ∆Aeg is very close to zero eV . The ∆Avol

part is positive for the whole range of concentrations. The shape of this part is like

a parabola.
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Figure 4.7: Enthalpy of mixing (∆H) and Entropy of mixing (∆S) for Al1−xZnx liquid

binary system.

Enthalpy of Mixing (∆H) and Entropy of Mixing (∆S):

Figure 4.7 (a-b) describes enthalpy of mixing, ∆H, and entropy of mixing, ∆S for

Al1−xZnx liquid binary alloy at T = 1000 K. From the figure it is remarked that

the value for both ∆H and ∆S are positive across the whole range of concentrations

which are very close to the experimental results [92]. It is noted in Figure 4.7(a)

that, the argument is excellent at x=0.1 and 0.9, where the system is rich in Al, and

Zn, respectively. In those regions, the theoretical and experimental results are very

close to each other. It starts to deviate from the experimental [110] results, and that

can be found from concentrations of x=0.2 to 0.8. The maximum deviation is found

at x=0.5. Similar trends we have found in Figure 4.7(b) for ∆S.

4.2.4 Conclusion

The results of a systematic investigation for the free energy, energy of formation,

enthalpy of formation and entropy of formation for Al1−xZnx liquid binary alloy have

been presented here. The first order perturbation theory and the microscopic theory
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of metals are used to perform the calculations.

An effective hard sphere liquid is considered as a suitable reference system for the

perturbation treatment. The results for ∆A, ∆H, and ∆S are found to be good in

agreement with the available experimental data [92] for the concerned alloy. From

the above results, we can draw the following concluding remarks.

(i) The energy of formation for Al1−xZnx liquid binary alloys is almost 10−2 an

order smaller than the values for the total free energies. This is also much smaller than

any possible contribution to the free energy. The available experimental data [92]

confirms our findings.

(ii) The volume effect plays an important role in producing a nearly quantitative

agreement with the observed data for the energy of formation, although its contri-

bution to the total free energy is relatively insignificant.

(iii) The results for enthalpy of mixing and entropy of mixing are fairly good in

agreement when compared with the available experimental data [92].

(iv) The general microscopic theory (GMT) of metals along with a perturbation

approach is capable of producing the thermodynamics of formation correctly when

adequate care is taken in calculating all different contributions for Al1−xZnx liquid

binary alloy.

(v) Since the energy of formation for the system is negative for all the studied

concentrations range, it indicates that the liquid Zn will be miscible with Al at any

concentration.

(vi) Finally, the excellent agreements in the case of Al1−xZnx alloy indicate that,

the reliability and predictability of the present approach is inherent not accidental.

So, this approach may be applied to study other Al-based liquid binary alloys.
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4.3 Thermodynamic Properties for Al1−xInx Liq-

uid Binary System

The results of the calculation for free energy (A), the energy of mixing (∆A), the

enthalpy of mixing (∆H), and the entropy of mixing (∆S) are presented in this

section for Al1−xInx liquid binary alloys. First order perturbation theory along with

the electronic theory of metal is again applied to perform the calculations. The

basic ingredients such as, the effective inter-ionic partial potentials, Vij(r), and the

corresponding pair correlation functions, gij of the reference system are very essential

for calculating A, ∆A, ∆H, and ∆S at thermodynamic state T=1173 K, and are

evaluated using the same procedure as discussed before for Al1−xZnx liquid binary

system.

4.3.1 The Effective Partial Pair Potentials (Vij)
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Figure 4.8: Partial pair potential for Al1−xInx liquid binary alloys.

The study is conducted upon the basis of changing the concentrations of Al1−x

from 0.9 to 0.1. Figure (4.8-4.9) showed that, the effective partial pair potentials
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for three different concentrations x=0.1, 0.5 and 0.9 for the concerning system,

respectively. It is seen in these figures (Figure (4.8-4.9)) that, the depth of the

well of the potential is the largest for VIn−In and smallest for VAl−Al. The potential

well for VAl−In always lies between VIn−In and VAl−Al.

The systems, Al and In belong to the same column in the periodic table of ele-

ments and they are also from the group IIIB [93]. The group position for Al and In

are 2nd and 5th, respectively. Seeing that as the position of In is lower in group IIIB,

VIn−In gives the larger depth of the potential well. On the other hand, the position

of Al is upper in group IIIB. Consequently, VAl−Al shows the smaller depth of the

potential well. So apparently, the potential well is directly related to the position of

the elements in periodic table.
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Figure 4.9: Partial pair potentials for Al1−xInx liquid binary alloys.

4.3.2 The Pair Correlation Functions (gij) for the Reference

Hard Sphere Liquids and Hard Sphere Diameters (σij):

Figure 4.10 illustrates the partial pair distribution functions for Al1−xInx liquid bi-

nary alloys at thermodynamic state 1173 K for three different concentrations x=0.1,
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Figure 4.10: Partial pair correlation functions for concentration x=0.1, 0.5, and 0.9,

respectively for Al1−xInx liquid binary alloys.

0.5 and 0.9. The principal peak of gAl−Al(r) is much greater than gIn−In(r) for con-

centration, x=0.1, and this trend reverses for x=0.9. This feature is as same as that

of Al1−xZnx liquid binary alloys that, we described before.

As we mentioned earlier, this is due to the fact that, for x=0.1, the alloy is rich in

Al. So, the probability of finding another Al ion, at a distance r from the reference one

is larger. The situation reverses for x=0.9 because the alloy is then rich in In. This

trend suggests that the peak values of gAl−Al(r) and gIn−In(r) would be comparable

for an equiatomic composition i.e for x=0.5 concentration. It is exactly reflected in
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Figure 4.10, for x=0.5 concentration.

Hard Sphere Diameter (σij):

Figure 4.11. illustrates the feature of the partial hard sphere diameters for the

corresponding system. It can be rearranged as σIn−In < σAl−In < σAl−Al. The hard

sphere [94] diameters σAl−In always lie between σIn−In and σAl−Al which is consistent

of our additive hard sphere theory [71].
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Figure 4.11: Hard sphere diameter for Al1−xInx liquid binary system.

4.3.3 A, ∆A, ∆H and ∆S for Al1−xInx liquid Binary System

Free Energy (A):

We now have moved on to the results of free energy, A, for Al1−xInx liquid binary

alloys at T=1173 K. The breakdown details for free energy, A is presented in Figure

4.12 for the concerning system. We get the largest contribution from the electron-gas

part, Aeg [95] and the second one from the HS reference system.

In order to understand this eccentric behavior [96] of Aeg, we have performed our

study in twofold again for Al1−xInx system. We began by choosing the valence, Z as
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Figure 4.12: Free energy for Al1−xInx liquid binary alloys.

an integral value for the alloy forming elements Al and In. Since Al, and In are in

the same position in periodic table elements. We considered Z=3.0 for both Al, and

In, respectively. In every case, we found that the first contribution arises from Aeg

and the second contribution from Ahs. Lastly, we took the hybridization effect for

both Al and In as 1.50. Note that, this time we got the different result as expected

i.e, the higher contribution came from Ahs of the HS reference system. Meaning that

in polyvalent metal with Z > 3 the electron gas, Aeg contribution gets larger than

the hard sphere term. The third and fourth largest contributions come from the

volume, Avol, and tail, Atail, part of the inter-ionic interactions. The results of Avol

contribution is always negative and increases with increasing the concentrations of

the system, from x=0.1 to 0.9.

And, we have audited invariably that the Atail is very small compared to other

three contributory parts from concentrations, x=0.1 to 0.9. The total free energy of

Al1−xInx liquid binary system is always negative from x=0.1 to 0.9 which is consistent

with expectation. The magnitudes of different contributions can be represented in

the following order Aeg > Ahs > Avol > Atail.
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In conclusion, the summation of all four concentrations yields the total free energy

Atotal of the alloy which lies at the bottom in the figure 4.12.

Energy of Mixing (∆A):
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Figure 4.13: Energy of mixing (∆A) for Al1−xInx liquid binary alloys.

Figure 4.13 describes the total free energy of mixing, ∆A for the corresponding

system. Here, the largest contribution comes from the ∆Ahs of the reference system.

It is maximum for x=0.5 i.e at the equiatomic position. The contribution arising

from the tail part possesses both positive and negative values; in the region x ≤ 0.6

it is positive and in the region 0.6 ≤ x < 0.9 it is negative. It is maximum in negative

value at x=0.9 region which is the In rich region. Similarly, the contribution from

∆Aeg is very close to zero eV . The ∆Avol part is positive for the whole range of

concentrations which is similar to Al1−x based system.

Enthalpy of Mixing (∆H) and Entropy of Mixing (∆S):

Figure 4.14(a) represents the enthalpy of mixing, ∆H, as a function of concentra-

tion, x, for Al1−xInx liquid binary alloys at 1173 K. At x=0.1 and 0.9 the results are
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Figure 4.14: Enthalpy of mixing (∆H) and Entropy of mixing (∆S) for Al1−xInx

liquid binary system.

good in agreement with the experimental results. This region is rich in Al, and In,

respectively. But, the results are found to be deviated in the concentration range

0.2 6 x 6 0.8 while compared with the experimental data [92]. The qualitative agree-

ment is good as far as the uncertainty of the measurement is concerned. Here, both

theory and experiment show the maximum of ∆H at the equiatomic concentration.

Figure 4.14(b) represents the entropy of mixing (∆S). Here, ∆S is symmetric around

the equiatomic concentrations as in the case of enthalpy of mixing. The discrepancy

between calculated and experimental results [92] is the largest around x = 0.5 but it

is within the 18% of the experimental data [92]. The discrepancy reduces away from

the equiatomic concentration. Therefore, the agreement is qualitatively good as far

as the experimental uncertainty is concerned.

4.3.4 Conclusion

The first principle calculation, specifically the application of perturbation method

along with the Percus-Yevick [4] HS model as a reference alloy, and electronic theory
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of metal is able to describe at least qualitatively the free energy, energy of mixing,

enthalpy of mixing and entropy of mixing for Al1−xInx liquid binary alloys. The local

model (BS) for inter-ionic interaction can be a good starting point for studying the

heavy polyvalent simple liquid binary alloys, provided that the model parameters are

determined appropriately. The volume term plays an important role as far as the

agreement with the experiment [92] is concerned. For Al1−xInx liquid binary alloy,

the volume effect is more significant, and consequently, this effect plays a greater

role in the present case. Finally, the results of the present calculations imply that

our parameter free first principle approach for the study of A, ∆A, ∆H, and ∆S is

reliable for the less simple heavy polyvalent liquid binary alloys.
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4.4 Thermodynamic Properties for Al1−xSnx Liq-

uid Binary System

The system we are interested to discuss in this section which is the Al1−xSnx liquid

binary alloys at a thermodynamic state T=973 K. The cause of choosing this system

is fourfold. Firstly, the alloy forming elements Al and Sn both are heavy polyvalent

metals and are sometimes difficult to handle theoretically, particularly in the frame-

work of pseudopotentials. Secondly, Al1−xSnx liquid binary alloys have not been

studied yet, so our knowledge from any microscopic theory, although some attempts

are made from the empirical or semi-empirical models [97–99]. Thirdly, experimental

data for static structure factors for the elemental liquid Al and Sn are available in

the literature at the thermodynamic state in question [4, 29]. Fourthly, the physical

properties that we are interested to investigate theoretically are already measured by

different experimentalists [92] from the different experimental approaches.

The microscopic theory, we have applied again in the present research study is

the combination of the electronic theory of metals along with perturbation approach

and the statistical mechanics. The electronic theory of metals employed in this work

is based on a local pseudopotential proposed by Bretonnet and Silbert (BS) [44].

The band structure energy calculated from the pseudopotential theory provides the

inter-ionic interaction, which is used to have a static structure factor as well as other

physical properties investigated here. It is worth noting that these two parameters

of BS pseudopotential (core radius, Rc , and the softness parameters, a) need to

be fixed to perform the effective calculations. Here, values of Rc are taken from

other published work and values of a are determined following the spirit of original

work [57], that is by the best fit of the static structure of the elemental system Al

and Sn. Once this is done, the rest of the calculations for thermodynamic proper-
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ties of the concerned metals and their alloys is completely parameter free (unlike

the self-associated model, SAM). Not only that, the approach we have used is also

highly self-consistent from the theoretical point of view. By the term self-consistent,

we mean that this approach starts from the electron-ion interaction in metals to de-

rive the inter-ionic interaction, a microscopic property of the condensed state, and

then allow us to evaluate static structure factor from it by using thermodynamic

perturbation theory and the statistical mechanics. Finally, these results for structure

and interactions are applied as inputs to calculate the thermodynamic properties of

mixing using the electronic theory of metals. No free parameter or nothing is irrel-

evant to the inter-ionic interaction which enters in this process laterally. However,

the perturbation theory always requires an unperturbed state which is often referred

to as reference system. The reference system is also chosen such that it can largely

represent the real system in question. In the case of simple metals and their alloys,

the hard sphere liquid is a good option as demonstrated in many works [16–58].

4.4.1 The Effective Partial Pair Potentials (Vij)

The study is carrying on the basis of changing the concentrations of Al1−x from 0.9

to 0.1 at T=973 K for Al1−xSnx liquid binary system, respectively. Figure 4.15 shows

the effective inter-ionic partial pair potentials for Al1−xSnx liquid binary alloys for

three different concentrations (x =0.1, 0.5 and 0.9). Partial pair potential VAl−Al

and VSn−Sn exhibits usual behavior that potential decreases rapidly to a minimum

value and then it increases with increasing r, and then performs the so-called Friedel

oscillation due to the fluctuation of electronic charge density [27]. But, VAl−Sn(r)

exhibits a different feature that a local minimum at small r appears first and then

gradually increases and starts oscillation with a minimum value at large r (around

4Å). In order to examine the origin of this unusual feature of the local minimum
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Figure 4.15: Partial pair potential for Al1−xSnx liquid binary alloys.

of the partial pair potential, VAl−Sn(r), we have calculated V (r) for pure liquid Al

for different values of Rc (see Figure 4.16). It is interesting that for core radius

Rc=1.91 a.u, the pair potential does not show a local minimum; rather than exhibits

a principal minimum which is followed by Friedel oscillation. Notwithstanding, when

the value of Rc is decreased gradually, the depth of the principal minimum reduces

and the minimal value shifts from the negative to the positive one.
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Figure 4.16: Static structure factors for liquid Al element for different core raduis

Rc.

Hafner and Jank reported a similar feature for Al with empty core potential

for Rc = 1.12 a.u. Notwithstanding, they have not performed the calculation with

higher values of core radius [57]. In [57, 73–75], it is also reported that even the

optimized non-local potentials calculated with relativistic and non-relativistic core

orbitals produced similar features. Now, in the present study, the values of Rc for

elemental Al and Sn are 1.91 and 1.26 a.u. [57] respectively. The average value of Rc

in the alloy state (= X1RC1 +X2RC2) is 1.58 a.u. which is less than 1.91 a.u. As a

result, the local minimum of VAl−Sn(r) potential appears as a characteristic feature

due to the influence of Al.

It is worth for noting here, that the BS-model uses the empty core potential from

outside the core.
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Figure 4.17: Partial pair correlation function.

4.4.2 The Pair Correlation Functions (gij) for the Reference

Hard Sphere Liquids and the Hard Sphere Diameters

(σij):

Figure (4.17-4.18) illustrate the partial pair correlation functions gij(r) calculated by

using the LWCA [69–72] theory within the HS Percus-Yevick framework for concen-

trations x =0.1, 0.5, and 0.9, respectively. Figure 4.19 illustrates the partial effective

hard sphere diameters, σij, for different concentrations of the alloys; this is used in

calculating gij(r). A closer look at the Figure 4.19 reveals that the σSn−Sn decreases

with increasing concentration of Sn, and σAl−Al increases with increasing concentra-

tion of Al. This is due to the fact that, in the alloy state, the electronic charge is

transferred from the atom with higher valence to the atom of lower one [100].

From Figure 4.17 it is also visible that in the Al-rich alloy the height of the

principal peak of gAl−Al(r) is maximum whereas the peak of gSn−Sn(r) is minimum.

This scenario reverses for concentration x =0.9, in Figure 4.18 that is, at this con-

centration, the peak value of gSn−Sn(r) becomes maximum and that of gAl−Al(r)

becomes the minimum value. The pair correlation function, gij(r) is a measure of
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Figure 4.18: Partial pair correlation function.

the probability of finding an ion from another ion located at the origin, so, in Al-rich

alloys probability of finding a second Al ion at the nearest neighbor distance will be

obviously higher as expected, and vice-versa.
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Figure 4.19: Hard sphere diameter for Al1−xSnx liquid binary system.
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4.4.3 A, ∆A, ∆H and ∆S for Al1−xSnx liquid Binary System

Free Energy (A):
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Figure 4.20: Free energy for Al1−xSnx liquid binary alloys.

Now we analyze, the results of free energy, (A) for Al1−xSnx liquid binary alloys

at T=973 K. In this case, we have found almost similar trends as in Al1−xZnx and

Al1−xInx for free energy (A). The total features for free energy, (A) has been shown

in Figure 4.20 for the concerning system. Similar to the other cases, the largest

contribution arises from the electron-gas part, Aeg, of the inter-ionic interaction which

is a very strange behavior for the concerned Al1−xSnx system. The second largest

contributory part comes from the HS reference system.

To understand this mystical behavior of Aeg, we have to redact our study into

twofold. Firstly, we have chosen the valency, Z as an integral value for the alloy

forming elements Al and Sn. Regarding, they are heavy polyvalent metals, both

of them are from the group IIIB, and IVB, respectively. We have taken Z=3.0 for

Al and 4.0 for Sn. As usual, we found that the first contribution arises from Aeg

and the second contribution from Ahs. Lastly, we have considered the hybridization
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effect for both Al, Sn and put the value Z=1.50 respectively. As a result, this time

we have found that the largest contribution arises from Ahs of the HS reference

system of the inter-ionic interactions. It actually patents that in polyvalent metal

with Z > 3, 4 the electron gas, Aeg contribution gets larger than the hard sphere,

Ahs term. The third and fourth contributions come from the Vol Avol and Tail Atail

part of the inter-ionic interactions. The results of the Avol contribution is always

negative and is increased with increasing the concentrations of this system. And, it

is noticeable that the Atail is very small compared to the other three contributory

parts which are similar to our previously studied systems. The total free energy of

Al1−xSnx liquid binary alloy is negative from x=0.1 to 0.9 which is consistent with

our expectations. We can show up the magnitude of the contributions as in the

following order, Aeg > Ahs > Avol > Atail. The summation of this four individual

contribution yields the total free energy Atotal of the alloys which lies at the bottom

in the figure 4.20.

Energy of Mixing (∆A):
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Figure 4.21: Energy of mixing (∆A) for Al1−xSnx liquid binary alloys.
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The energy of mixing for liquid binary Al1−xSnx alloys at T = 973 K is pictorial in

Figure 4.21. From the breakdown details of the energy of mixing, it appears that the

contribution of the hard sphere reference liquid dominates others and it is negative

across the whole range of concentration. The shape of the ∆A profile is asymmetric

in nature i.e. its value goes to a minimum in the Sn-rich alloy rather than to be at

the equiatomic concentration. On the other hand, the volume contribution of the

inter-ionic interaction is positive for the whole span of concentration. The gas term

of energy gives a very small contribution, which is almost zero. The contribution of

the tail part of the potential shows negative value at a small (up to x ∼= 0.2) and

large (x > 0.8) concentration x and positive magnitudes in between (0.26 x 60.8).

However, their combined results yield ∆A, which is negative for all concentrations.

When we compare the calculated values with those of experimental ones at 973 K,

an excellent agreement is found up to x =0.7. For x >0.7, theoretical values deviate

slightly from the experimental ones; if the uncertainty of measurements (±0.004 eV)

is taken into account, the agreement in the region x = 0.07 also becomes reasonably

good. Recently, Odusute et al . [97] studied the energy of mixing for Al1−xSnx liquid

binary alloys using the self-association model (SAM). In this model, the free energy

of mixing is directly related to the free parameters W , known as ordering energy

parameter, and η. These parameters are also related to the activity of liquid.

For an arbitrarily chosen parameter value (W/RT=1.97) they (Odusute et al .)

have found a good agreement for the energy of mixing, but in the case of activity, the

agreement is hardly fair for Al1−xSnx. It is worth for noting that choosing the other

value for W and η might yield good agreement for activities but agreement in the

case of free energy of mixing could be worse then. In the present study, we have used

the microscopic theory involving perturbation scheme and the statistical mechanics.

Here, two parameters Rc and a are chosen only to calculate effective pair potentials.
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Once it is done, the rest of the calculations (for A ∆A, ∆H, ∆S) are completely

parameter free. Not only that, calculations from the theoretical point of view are

also self-consistent and as a result, the accuracy of calculations and the predictability

of the theory are much more reliable than the empirical and semi-empirical methods.

Enthalpy of Mixing (∆H) and Entropy of Mixing (∆S):
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Figure 4.22: Enthalpy of mixing (∆H) and Entropy of mixing (∆S) for Al1−xSnx

liquid binary system.

The calculated results for enthalpy of mixing (∆H) and entropy of mixing (∆S)

has been presented in Figure 4.22(a-b). ∆S is calculated using equation (8). Here,

theoretical values for ∆H and ∆S in different concentrations agree well with exper-

iment [92], at least qualitatively. Theoretical values around the equiatomic concen-

trations (0.5 < x < 0.7) are slightly overestimated. Odusute et .al [97] in their work

also studied the energy of mixing and the entropy of mixing from the SAM, and

the enthalpy is obtained by adding temperature times entropy with the free energy

of mixing. But in the entropy calculation, they have used another free parameter,

dW/dT , for which they have chosen arbitrarily a value 0.6602, and found a good
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agreement with experiment for ∆H as in the case of ∆A.

4.4.4 Conclusion

A systematic study on the thermodynamics of mixing, specifically total free en-

ergy [4], energy, enthalpy, and entropy of mixing are presented in this section. Mi-

croscopic theories such as the electronic theory of metals treated within the per-

turbation approach and the statistical mechanics have been employed for numerical

calculations. However, from the results of calculations, we can draw the following

conclusions.

(i) A combination of pseudopotential theory, first principles perturbation ap-

proach and statistical mechanics provides a good starting point for the microscopic

description of the thermodynamics of mixing for Al1−xSnx liquid binary alloys.

(ii) Agreement between theory and experiment in the case of the energy of mixing

(∆A), is found to be very good within the experimental uncertainty (±0.004 eV).

(iii) In case of enthalpy of mixing, H, and entropy of mixing, S, the agreement

is excellent up to nearly equiatomic concentrations, but in the concentration range

0.56 x 60.8 the agreement is not as quantitative as the low concentrations alloys. It

is said that the pseudopotential theory has the limited ability in predicting physical

properties of the polyvalent metals. Al and Sn both are heavy polyvalent metals

with chemical valence 3 and 4, respectively, so, describing Sn-rich alloy will be more

difficult, in principle. This is what is reflected through the discrepancy between

theory and experiment in Sn-rich alloys. As the entropy of mixing is derived from

the energy of mixing and enthalpy of mixing, the agreement between theory and

experiment suffers from the backlash of discrepancy in the case of enthalpy.
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(iv) However, from the point of view of the good overall qualitative agreement, we

can conclude that the present approach could be employed for a microscopic descrip-

tion of other physical properties for Al1−xSnx binary alloys as well as to the study

of other metallic alloys. We intend to extend the present approach to investigate

very interesting segregating properties of Al1−xSnx liquid binary alloys, in our next

project.
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4.5 Thermodynamic Properties for Al1−xBix Liq-

uid Binary System

In this section, the segregating properties of Al1−xBix liquid binary alloys through

the thermodynamic route that involves energy of mixing (∆A), enthalpy of mixing

(∆H) and entropy of mixing (∆S) will be discussed. In the alloy state, the inter-ionic

interactions differ largely from those of individual components that form the alloys.

Consequently, a tendency for miscibility or segregation or phase separation increases

in some metallic alloys. This mysterious feature of segregation of liquid binary metal-

lic alloys is yet to be completely understood microscopically. This understanding is

necessary for the application of segregating materials for technological advancement.

The knowledge of segregation of some liquid metallic binary alloys has been ad-

vanced so far by different authors, from the point of the electronic theory of metal

in conjunction with the perturbation approach. Bhuiyan et .al [53, 54, 101] showed

that in their articles, that the origin of the positiveness of the energy of mixing,

a characteristic feature of segregation, is strongly related to the volume contribu-

tion to the free energy of mixing. This is important to note that, those studies

successfully predicted not only the energy of mixing but also some segregating prop-

erties such as critical concentrations and critical temperatures of these systems. The

present study is also the consecutive series study in which I have studied the ther-

modynamic mixing properties for Al1−xBix liquid binary system keeping the main

focus on the segregation behaviors for verifying the critical temperature and critical

concentration [102–107], respectively.
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4.5.1 The Effective Partial Pair Potentials (Vij)

The alloy, Al1−xBix is formed by two different elements Al and Bi. Al lies in the

group IIIB of the periodic table. It has a face-centered-cubic (fcc) structure in the

solid phase and its melting point is 933 K. It is a superconducting material. The

chemical valency, Z is 3 for Al. On the other hand, Bi is a Basic-metal that lies in

the group VB of the periodic table. It has a rhombohedral crystal structure in the

solid phase and its melting temperature is 544 K. It becomes a superconductor under

high pressure. The chemical valency of Bi is 3 and 5 respectively [4, 29]. There are

some shreds of evidence [108–110] from the point of the quasi-lattice theory that the

peculiarity in behavior is related to the structural fluctuation. In any way, liquid

Al1−xBix is a segregating alloy [102–107]. The study is being carried on the basis of

changing the concentrations of Al1−x from 0.9 to 0.1 to study the thermodynamic

mixing properties of segregation for ∆A, ∆H, and ∆S of Al1−xBix liquid binary

system at different thermodynamic states.

Figure 4.23 shows the effective inter-ionic partial potentials for Al1−xBix liquid

binary alloys for three different concentrations (x =0.1, 0.5 and 0.9). Partial pair

potentials, VAl−Al and VBi−Bi, respectively, exhibit the usual behavior that potential

decreases rapidly to a minimum value and then increases with increasing r, and then

perform the so called Friedel oscillation due to the fluctuation of electronic charge

density [4,27,29]. But, VAl−Bi(r) exhibits a different feature at concentration x=0.9;

a local minimum at small r appears first and then gradually increase and starts

oscillation with a minimum value at large r (around 4.5Å). In order to examine

the origin of this unusual feature of the local minimum of the partial pair potential,

VAl−Bi(r), we have calculated V (r) for pure liquid Al and Bi for different Rc values

(see Fig 4.24). It is interesting that for core radius Rc=1.91 a.u., the pair potential

does not show a local minimum; it rather exhibits a principal minimum followed
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Figure 4.23: Partial pair potential for concentrations x=0.1, 0.5 and 0.9 for Al1−xBix

liquid binary alloy at T=1173 K.

by the Friedel oscillation [27]. But, when the value of Rc is decreased gradually,

the depth of the principal minimum reduces and the minimal value shifts from the

negative to the positive one.

For Bi, Rc=1.49 a.u, the pair potential does not show a local minimum. Hafner

and Jank reported [73–75] a similar feature for Al with empty core potential for

Rc = 1.12 a.u. However, they have not performed the calculation with higher values

of core radius [74]. In [73–75] it is also reported that even the optimized non-local

potentials calculated with relativistic and non-relativistic core orbitals produced sim-
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Figure 4.24: Static structure factors for liquid Al and Bi for different core radius Rc.

ilar features. Now, in the present study, the values of Rc for elemental Al and Bi

are 1.91 and 1.49 a.u., respectively. The average value of Rc in the alloy state

(= X1RC1 + X2RC2) is 1.70 a.u. which is less than 1.91 a.u. As a result, the local

minimum of VAl−Bi(r) potential appears as a characteristic feature due to the influ-

ence of Al. It is worth noting here that the BS-model uses the empty core potential

outside the core.

4.5.2 The Pair Correlation Functions (gij) for the Reference

Hard Sphere Liquids and the Hard Sphere Diameters

(σij):

Figure 4.25 illustrates the partial pair correlation functions, gij calculated by using

the LWCA [69–72] theory within the HS Percus-Yevick framework for concentrations

x =0.1, 0.5 and 0.9, respectively, at thermodynamic state 1173 K. Figure 4.26 illus-

trates [4] the partial effective hard sphere diameters (σij) for different concentrations

of the alloy which are used in calculating gij. A closer look at the Figure 4.26 unfolds
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Figure 4.25: Partial pair correlation function for Al1−xBixliquid binary alloys.

that the σBi−Bi decreases with increasing concentration of Bi, and σAl−Al increases

with increasing concentration of Al. This is due to the fact that, in the alloy state,

the electronic charge is transferred from the atom with higher valency to the atom

with lower one [111–119]. From Figure 4.25, it is also noticed that in the Al-rich

alloy, the height of the principal peak of gAl−Al(r) is maximum whereas the peak of

gBi−Bi(r) is minimum. This scenario reverses for concentration x =0.9, that is, at this

concentration the peak value of gBi−Bi(r) becomes maximum and that of gAl−Al(r)

becomes minimum. gij is a measure of the probability of finding an ion from another

ion located at the origin, so, in Al-rich alloys, the probability of finding a second
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Figure 4.26: Hard sphere diameter for Al1−xBix liquid binary alloys.

Al ion at the nearest neighbor distance will be obviously higher as expected and

vice-versa.

4.5.3 Systematic Study of Segregation for Al1−xBix liquid

Binary System

The results of segregation for the energy of mixing, enthalpy of mixing and entropy

of mixing for Al1−xBix liquid binary system will be discussed here gradually.

Energy of Mixing (∆A):

Energy of mixing for Al1−xBix liquid binary alloys at T = 1173 K is illustrated in

Figure 4.27. From the breakdown details of the energy of mixing, it appears that

the contribution of the hard sphere reference liquid dominates others and is negative

across the whole range of concentration. The shape of the ∆A profile is asymmetric

in nature. It goes to a certain region which is in minimum in Bi mixture alloys rather

than to be at the equiatomic concentration. On the other hand, both the tail and the

volume contribution part of the inter-ionic interaction is positive for the whole range
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Figure 4.27: Energy of mixing as a function of concentration for Al1−xBix liquid

binary alloys at 1173 K.

of concentration. The gas term of energy gives a very small contribution, which is

almost zero. We note here that the contribution of the volume part of the potential

becomes positive for segregating alloys [100–107].

But it is interesting that, unlike other segregating alloys [53, 101], the tail part

of the inter-ionic interaction is positive for the whole range of concentration for

Al1−xBix and exhibits positive values up to x=0.1 to 0.9 [54]. However, their com-

bined results yield ∆A, which is negative between 0.56 x 60.9 and is positive from

0.16 x 60.5 concentrations range. The combination of all contributions, ∆A, agree

very well, as far as experimental uncertainty is concerned, with the available exper-

imental data [92]. It is now interesting to examine the reliability of the parame-

terization [120–124] made for the local pseudopotential by calculating the energy of

mixing at another thermodynamic state and comparing them with corresponding ex-

perimental and computational work. Figure 4.27 showed that the agreement of ∆A

with experimental data is reasonably good for T=1173 K. This result also reflects

the suitability of the potentials, those are used in the present study.

Figure 4.28 also demonstrates that the values of ∆A increase and move towards
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positive values with decreasing temperature. It appears that at temperature T=1350

K, values of ∆A remain negative across the full concentration range while it becomes

partially positive for T=1290 K. Further reduction of temperature increases the con-

centration width of segregation gap gradually and become positive for complete con-

centration range at T=1050 K. Positivity of ∆A manifests the segregation to occur.

From the above result, one can infer qualitatively that the critical temperature of

segregation is 1290 K for Al1−xBix liquid binary alloys.
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Figure 4.28: Energy of mixing as a function of concentration for Al1−xBix liquid

binary alloys at different temperatures.

It is also noticed from the figure (Figure 4.28 ) that the critical concentration of

segregation is at x=0.15. The observed critical concentration reported by A.J. McAl-

ister [102] is 0.1975. This value is very close to our theoretical study. The correspond-

ing critical temperature reported in [100–107] is 1310 K in different journals [4, 29].

So the theoretical value for both critical concentration and critical temperature agree

fairly well with the experimental as well as with other theoretical results.

As the positivity of the energy of mixing indicates the segregation for the system

whereas the fundamental components namely ∆Avol and ∆ATail are the main con-

tributor to the energy of mixing, those dictate segregation to happen for Al1−xBix
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liquid binary alloys.

Enthalpy of Mixing (∆H) and Entropy of Mixing (∆S):
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Figure 4.29: Enthalpy of mixing (∆H) and Entropy of mixing (∆S) for Al1−xBix

liquid binary system.

We have mentioned above that the positiveness of the energy of mixing indicates

segregation of Al1−xBix liquid binary alloys. But in the case of enthalpy of mixing

(∆H) and entropy of mixing (∆S), it is just the opposite, that is, the negativity

of ∆H and ∆S manifest segregation of alloys. In order to examine whether the

entropy of mixing for the present system of the alloy can predict segregation or

not, we have calculated ∆H and ∆S at different thermodynamic states characterized

by temperature, T. The calculated results for the enthalpy of mixing (∆H) and

the entropy of mixing (∆S) as well as segregation are presented in Figure 4.29(a-b)

respectively. These are calculated using equation (8) and (10) one after another.

Figure 4.29(a-b) showed that the magnitude of ∆H and ∆S decrease with de-

creasing temperatures and become partially negative at T=1173 K. For, T<1173 K

the concentration gap increase gradually and at T= 1050 K, the gap becomes the

largest one. The critical concentration and critical temperature are found for both
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the enthalpy of mixing and entropy of mixing are xc=0.15 and 1290 K, respectively.

Most interestingly, these critical values are found to be the same as those obtained

from the energy of mixing. Final results from different thermodynamic probes fairly

justify the reliability of our approach.

4.5.4 Conclusion

The segregation properties of Al1−xBix liquid binary alloys are systematically in-

vestigated through three different thermodynamic quantities, namely, the energy of

mixing, the enthalpy of mixing and the entropy of mixing. We have applied for the

first time, the enthalpy route to the theoretical study of segregation of liquid binary

alloys. The calculated results for ∆A, ∆H, and ∆S are found well in agreement with

the corresponding experimental data [92] in the mixed state. However, ∆Avol for

Al1−xBix system becomes positive for all concentrations as found in the other segre-

gating alloys [54,101], and thus satisfies the characteristic criteria. But for the present

alloy, the ∆Atail also becomes positive for all concentrations and dominates unlike

other segregating alloys (Cu1−xFex, Co1−xCux). Most importantly, ∆A, ∆H, and ∆S

are calculated using the same inter-ionic interactions and pair correlation functions,

and all these results describe the critical concentration, and critical temperature of

segregation for the Al1−xBix alloys with the same level of accuracy. However, ∆Atail,

and ∆Ahs increase gradually with decreasing temperature. We have observed that

a fine balance of all these contributions ultimately turns the segregation of liquid

Al1−xBix binary alloys on. The critical concentration for Al1−xBix alloys is found in

the Al-rich alloys unlike the other segregating alloys [54,101] for which the values for

xc is not found to be close to the equiatomic concentration.
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4.6 Thermodynamic Properties for Al1−xCux Liq-

uid Binary System

In this section, I will discuss gradually the thermo-physical properties as well as

Free energy (A), Energy of mixing (∆A), Enthalpy of mixing (∆H) and Entropy

of mixing (∆S) for Al1−xCux liquid binary alloys at temperature 1373 K, within

the first principle approach, specifically employing the perturbation method and the

electronic theory of metals (ETM). The ingredients of this approach are the effective

partial pair potentials (Vij) and partial pair correlation functions (gij). So, I will

start the discussion for the results of the concerning Al-alloys from these ingredients.

The study is carrying on the basis of changing the concentrations of Al1−x from

0.9 to 0.1.

4.6.1 The Effective Partial Pair Potentials (Vij)
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Figure 4.30: Partial pair potential for concentration x=0.1 for Al1−xCux liquid binary

alloy.

Figure (4.30-4.31) showed that the effective partial pair potentials for Al1−xCux
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liquid binary alloys for concentrations x=0.1, 0.5, and 0.9, respectively. The position

of the principal potential minimum and the depth of the potential are the results of

the exquisite balance between the repulsive and attractive interactions in metals and

their corresponding alloys. From our previous study [56] of elemental systems [4,15,

17,19,37,39,44,49], we can claim that this is our second local minima and it appears

when after the first local minimum disappear. Here, the second minimum behaves

like the principal minimum and is followed by Friedel oscillations [27,47,56,57]. From

the pseudopotential formalism, we can easily say that the direct interactions occur

between ion cores and the indirect interactions occur also between the ion core and

the conduction electrons. In determining the effective pair potentials, the dielectric

function for screening plays an important role.
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Figure 4.31: Partial pair potential for concentrations x=0.5 and 0.9 for Al1−xCux

liquid binary alloy.

From Figure (4.30-4.31), it is also observed that the depth of the well of the

potential is the largest for VCu−Cu and smallest for VAl−Al . The well for VAl−Cu lies

in between for concentration x< 0.9. For x=0.9 the potential well for VAl−Cu goes

below to that of VCu−Cu. This feature is very unusual and we have not observed in

any alloys which we have studied so far. In all cases, we have found VAl−Cu in between
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VAl−Al and VCu−Cu without any exception. But if the negativity is unusually large

as in the present case, one may attribute it to the tendency of compound formation.

4.6.2 The Pair Correlation Functions (gij) for the Reference

Hard Sphere Liquids and the Hard Sphere Diameters

(σij):
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Figure 4.32: Partial pair correlation function for Al1−xCux liquid binary alloys for

concentration x=0.1.

We evaluated the partial pair correlation function for our present research work

using the Ashcroft-Lagranth [125] theory for the hard sphere. In order to calculate

gij(r), the essential parameter is the effective hard sphere diameter which we deter-

mine by using the thermodynamic perturbation theory known as linearized WCA

(LWCA) [69–72]. In the case of binary alloys, we replace the effective inter-ionic

potentials V(r) with partial potentials Vij(r) and follow the same procedure as for

the one component systems.

The partial pair correlation function gij for Al1−xCux liquid binary alloys cal-

culated from the LWCA theory are shown in Figure (4.32-4.33) for three different
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Figure 4.33: Partial pair correlation functions for Al1−xCux liquid binary alloys for

concentrations x=0.5 and 0.9, respectively.

concentrations. It is noticed, that for concentration x=0.1, i.e. in the Al-rich alloys

the principal peak of gAl−Al(r) is much larger than the gCu−Cu(r), what is for x=0.1

and this trend reverses for x=0.9, that happens when the alloy becomes rich in Cu

concentration. This is due to the fact that, for x=0.1 the alloy is rich in Al.

So, the probability of finding another Al ion from the one at the origin is higher

than that of finding a Cu ion and vice versa. This trend, in principle, suggests that

for x=0.5 the principal peak value of both gAl−Al(r) and gCu−Cu(r) should be of equal

magnitudes. This is exactly reflected in figure 4.32. We note here that for some

alloys, a slight variation of peak values of gAl−Al(r) and gCu−Cu(r) for concentration

x=0.5 might arise due to the size difference of hard spheres.

Hard Sphere Diameter (σij):

The hard sphere diameters for the corresponding system has been presented in Figure

4.34. Figure 4.34 illustrates the values of effective hard sphere diameters determined

by the LWCA theory [69–72]. The hard sphere contributions from σAl−Cu always lies

between gCu−Cu and σAl−Al between concentrations range from x=0.1 to 0.7 which is
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Figure 4.34: Hard sphere diameter for Al1−xCux liquid binary system.

consistent with our theory. In this figure, it is also seen that x=0.1 to 0.7 the values

of hard spheres increases with increasing concentrations but at x=0.8 and 0.9 instead

of increasing it starts to decrease. At x > 0.8, the alloy is in Cu rich region and due

to the hybridization effect, it might have occurred. The values of σij can be arranged

in order to the hard spheres as σCu−Cu 6 σAl−Cu 6 σAl−Al.

4.6.3 A, ∆A, ∆H and ∆S for Al1−xCux liquid Binary System

Free Energy (A):

Figure 4.35 interprets the detailed breakdown of the free energy, (A) obtained from

general microscopic theory (GMT) for Al1−xCux liquid binary alloys at thermo-

dynamic state 1373 K. We find here that the largest contribution arises from the

electron-gas part, Aeg, of inter-ionic interactions which is very strange behavior for

the concerned Al-based system. The second contributory part comes from the HS

reference system.

To understand this obscure behavior of Aeg, we have again performed our study

in threefold for this system. Firstly, we have chosen the valency, Z as an integral
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Figure 4.35: Free energy for Al1−xCux liquid binary alloys.

value for the alloy forming elements Al and Cu. We have taken Z=3.0 for Al on the

other hand 1.0 and 2.0 for Cu, respectively. We have found that the first contribution

arises from Aeg and second contribution from Ahs. Then, we have fixed Z=3.0 for

Al and took the hybridization effect for Cu and put Z=1.30. Similarly, the first

and second contribution appeared from the inter-ionic interactions as Aeg and Ahs

respectively. Thirdly, we have taken the hybridization effect both for Al and Cu as

1.50 and 1.30 respectively. As seen in the cases of previous systems this time too we

have found the largest contribution comes from Ahs of the HS reference system of

the inter-ionic interactions. This actually means that in polyvalent metal with Z > 3

the electron gas, Aeg contribution gets larger than the hard sphere term. The third

and fourth contributions come from the Vol Avol and Tail Atail part of the inter-ionic

interactions. The results of Avol contribution is always negative and is increased

with increasing the concentrations of the system. And, we have seen always that the

Atail is very small comparable to the other three contributory parts. The total free

energy of Al1−xCux liquid binary system is alloys negative from x=0.1 to 0.9 which

is consistent with our predictions. One can present the magnitude of contribution,
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as in the following order Aeg > Ahs > Avol > Atail. Finally, the summation of all four

concentrations yields the total free energy Atotal of the alloy which lies at the bottom

in the figure 4.35.

Energy of mixing (∆A):
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Figure 4.36: Energy of mixing (∆A) for Al1−xCux liquid binary system.

Figure 4.36 illustrates different parts of Helmholtz free energy of mixing for

Al1−xCux liquid binary system obtained using the electronic theory of model (ETM)

in conjunction with the perturbation theory. Here it is seen in Figure 4.36 that the

largest contribution part comes from the HS reference system which is consistent with

our theory and defined as ∆Ahs. According to the principle of the first order pertur-

bation method with GMT, this is what we expected. The second largest contribution

comes from the tail part and is defined as ∆Atail. The feature of this contributory

part is very interesting because it has the oscillatory behavior. From x=0.1 to 0.9,

this oscillatory behavior can be easily understood because this is similar to that of

Friedel oscillation [27]. Within this range, the ∆Atail is always negative. The third

contribution part comes from the electron-gas and is defined as ∆Aeg. This is very
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small and almost close to zero. The fourth contributory part comes from the volume

part and defines as ∆Avol.

The shape of this part as like as parabolic and is positive for the whole range

of concentrations which is expected. From x=0.1 to 0.5, it starts to increase and

then it starts to decrease from 0.5 to 0.9. However, all four contributions together

yield the total energy of forming ∆Atheo. We found that, these results agree very

well with the available experimental energy of mixing ∆Aexp [92] for the full range of

concentrations x. And, the experiment [92] suggests that the energy of mixing (∆A)

for the system is 10−2 order smaller than the total free energy, Atotal.

Entropy of mixing (∆S):
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Figure 4.37: Entropy of mixing (∆S) for Al1−xCux liquid binary system.

Figure 4.37 illustrates the entropy of mixing, ∆S for the concerning system. The

results for ∆S of the system is positive for a whole range of concentrations and which

is compatible with compare to the experimental results [110]. But our results for ∆S

deviated far from the experimental results [110] but shows similar trends.
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4.6.4 Conclusion

We, in the present section, have systematically investigated A, ∆A, and ∆S for liquid

Al1−xCux binary alloys employing the perturbation method along with the electronic

theory of metals. Although the Helmholtz free energy and entropy are closely related

to thermodynamically, and the entropy of mixing is much more difficult to calculate

as mentioned before. This is because the accuracy of the latter depends on the precise

shape of the former one in A versus T curve which is difficult to have in numerical

calculation.

From the above results, we can, however, draw the following conclusions. The

ETM as described via a local pseudopotential (BS) model in conjunction with the

perturbation approach is able to describe the energy of mixing for Al1−xCux binary

alloys with a great degree of accuracy. In the case of the entropy of mixing, the

calculation is completely free from any adjustable parameter. From this point of

view, the result for the entropy of mixing is fairly good qualitatively. The main

cause of the discrepancy between theory and experiment in the Cu-rich alloy is in

our view, due to the existence of the complicated d-band characteristics including

the sd- hybridization effect in Cu. In addition, the tendency to form a compound

in the Cu rich alloy might also be responsible to widen the discrepancy; in order to

establish it, further research is required along with the simulation approach.

So apparently, a quantitative description of thermodynamic properties of

Al1−xCux liquid binary alloys from the present approach require a precise account

of the d-band effects in the inter-ionic interaction with Cu. As our present ap-

proach provides total entropy of the elemental and alloy systems, it may be ex-

tended to the study of atomic transport properties through the universal scaling

laws [85, 86, 126–128]. To conclude, our present approach for free energy calculation

may also be applied to the study of temperature dependent on other properties.
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4.7 Thermodynamic Properties for Al1−xAux Liq-

uid Binary System

The results for the thermodynamic mixing properties for Al1−xAux liquid binary

system at thermodynamic state 1338 K will be discussed in this section. Al1−xAux

is the sixth (6th) liquid binary alloys of this series study while the study is carrying

on the basis of changing the concentrations of Al1−x from 0.9 to 0.1.

Resembling with Al1−xCux system, the Al1−xAux is also a transition alloy. Be-

cause Au is a d-band transition element and I have taken the hybridization effect for

Au in here. In the study of Al1−xCux system, we have found a lot of deviation for the

results of enthalpy of mixing (∆H). But in Al1−xAux system, we have found deviation

for studied thermodynamical contents like A, ∆A, ∆H, and ∆S. To understand this

dislodgement of behavior to compare with experimental results, we need to study the

system in different theoretical aspects like simulations and others.

For this system, the results for σ, ∆A, and ∆S [4, 29] will be discussed hereafter

to understand the behavior.

Hard Sphere Diameter (σij):

The hard sphere diameters (σij) for the current system has been presented in figure

4.38. The hard sphere contributions from σAl−Au always lies between gAu−Au and

σAl−Al with the whole range of concentrations which is consistent with our theory.

In this figure, it is also seen that the values of σij are decreasing with increasing

the concentrations in Au. Surprisingly, at x=0.5, the decrease rate for σij is very

high to compare the other concentrations. Symbolically, it may be expressed as

σAu−Au < σAl−Au < σAl−Al.
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Figure 4.38: Hard sphere diameter for Al1−xAux liquid binary system.

Energy of mixing (∆A) & Entropy of mixing (∆S):

Figure 4.39 explains the different parts of the free energy of mixing (∆A) for Al1−xAux

liquid binary system obtained using the ETM in synchronism with the perturbation

theory. It is seen in Figure 4.39, that the largest contribution of the mixing part

comes from the HS reference system which is consistent with our theory and defined

as ∆Ahs. According to the principle of the first order perturbation scheme with

GMT, this is what we expected. The tail part is defined as ∆Atail and it gives the

second largest contribution of mixing part to ∆A. The feature of this contributory

part is very interesting because it has the oscillatory behavior. From x=0.1 to 0.9

range, this oscillatory behavior can easily be comprehended which is similar to Friedel

oscillation [4, 27, 29]. Within this range, the ∆Atail is always negative.

The smallest exploiting part of this system is defined as ∆Aeg of the inter-ionic

interaction and its numerical value is almost very close to zero. The fourth contri-

bution comes for ∆A is Volume part and defined as ∆Avol. The shape of this part

is like a parabola and positive for all range of concentrations. From x=0.1 to 0.3, it

starts to increase and then it starts to decrease from 0.3 to 0.9. However, all four
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Figure 4.39: Energy of mixing (∆A) for Al1−xAux liquid binary system.

contributions together yield the total energy of forming ∆Atheo. We find that these

results are deviated more by comparing the available experimental energy of forming

∆Aexp [92] for the full range of concentrations x. The greater portion of deviation

occurs at the x=0.1 concentration which is the Al rich region also. And, the exper-

iment [92] suggests that the energy of mixing, ∆A for the concerning system that

I have found using the ETM model did not pursuit well for the concerning system.

But, drawing a concrete conclusion regarding this feature requires further study in

detail.

Figure 4.40 illustrates the entropy of mixing, ∆S for the concerning system. The

results for ∆S of the system is positive for the whole range of concentrations and

which is compatible with compare to the experimental results [92]. But, our results

for ∆S deviated far from the experimental results [92], but shows similar trends.
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Figure 4.40: Entropy of mixing (∆S) for Al1−xAux liquid binary system.

Although, the approach is quite far from the experimental value in the concen-

tration range from x=0.2 to 0.8, but the shape of theoretical and experimental data

are in symmetric in shape which is found in Figure. 4.40. Bhuiyan et al . [45] show

that, the excess volume correction plays a significant role in the theoretical approach

in hybridization effect. But, we do not have the available data for Al1−xAux system

regarding excess volume correction. Therefore, we could not take it into account in

our work. But, we can predict that, the excess volume could play the vital role in

the present system.

4.7.1 Conclusion

We have systematically investigated the results for A, ∆A, ∆H, and ∆S for Al1−xAux

liquid binary alloys employing the perturbation method along with the electronic

theory of metals. But, the results that we have found are not good enough to compare

with the experimental data [92]. For this, we only present the results for ∆A and

∆S for the liquid binary system. So, further studies are required to understand the

thermodynamic mixing behavior in the liquid state for Al1−xAux liquid binary alloys.
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4.8 Comparative Study for ∆A, ∆H and ∆S for

Al-based Alloys

:

Let us compare our results for the energy of mixing (∆A), the enthalpy of mixing

(∆H), and the entropy of mixing (∆S) for Al-based liquid binary systems, Al1−xXx;

here, X= Zn, In, Sn, and Bi in a common Figures 4.41(a). The results for ∆A of

Al1−xCux and Al1−xAux systems are very large in scale compare to each other. So it

is difficult to adjust to the same figure due to their large range of values. But, the

results for these systems can be found in sections 4.6 and 4.7, respectively.
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Figure 4.41: Comparing the results of ∆A for Al based liquid binary systems,

Al1−xXx; here, X= Zn, In, Sn, and Bi.

Figure 4.41(a) illustrates, the results for ∆A, for Al1−xZnx, Al1−xInx, Al1−xSnx

and Al1−xBix liquid binary systems for temperatures 1000 K, 1173 K, 973 K, and

1350 K, respectively. We found that the contribution of the Al1−xBix system is always

greater than the other three systems for the whole range of concentrations, except

for concentration at x=0.1. Because, in this region, the value of Al1−xZnx is greater.

At concentrations, x=0.8 and 0.9, the results for ∆A are greater for Al1−xSnx system

143



CHAPTER 4. RESULTS, DISCUSSIONS, & CONCLUSIONS

than Al1−xZnx and Al1−xInx system. Symbolically, the results can be presented for

concentration x=0.1, Al1−xZnx > Al1−xBix > Al1−xSnx > Al1−xInx.

For concentration range x=0.2 to 0.7, Al1−xBix > Al1−xZnx > Al1−xSnx >

Al1−xInx and finally for concentrations, x=0.8 to 0.9, the results for ∆A of these

liquid systems are in order, Al1−xBix > Al1−xSnx > Al1−xZnx > Al1−xInx.
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Figure 4.42: Comparing the results of ∆H for Al based liquid binary systems,

Al1−xXx; here, X= Zn, In, Sn, and Bi.

Figure 4.42(b) presents, the results for Al1−xZnx, Al1−xInx, Al1−xSnx and

Al1−xBix systems for ∆H. We found that, Al1−xBix system gives the largest re-

sult for ∆H and is 10 times larger than the others, we have calculated theoreti-

cally from concentration range, x=0.1 to 0.9. The results from Al1−xZnx system

is always smaller for ∆H to compare other systems from x=0.1 to 0.9. Symboli-

cally, one may present the results for ∆H from concentration range x=0.1 to 0.4,

as Al1−xBix > Al1−xInx > Al1−xSnx > Al1−xZnx. From x=0.5 to 0.9 likely to be

presented symbolically, Al1−xBix > Al1−xSnx > Al1−xInx > Al1−xZnx.

The results for ∆S for four different Al-based liquid systems are presented in

Figure 4.43(c). We found that, Al1−xCux system gives the largest result for ∆S from
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concentration range, x=0.2 to 0.8 (see Figure 4.37). Here, Cu is a transition metal

and we have taken the hybridization effect for Cu (Table 4.1). This time the smallest

result for ∆S comes from Al1−xInx liquid system in the concentration range from

x=0.1 to 0.9.
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Figure 4.43: Comparing the results of ∆S for Al based liquid binary systems, Al1−xXx;

here, X= Zn, In, Sn, and Bi.

Symbolically, one may present the results for ∆S from the concentration range,

x=0.1 to 0.5, as Al1−xCux > Al1−xAux > Al1−xBix > Al1−xSnx > Al1−xZnx >

Al1−xInx; for concentrations x=0.6 to 0.8, Al1−xCux > Al1−xBix > Al1−xAux >

Al1−xSnx > Al1−xZnx > Al1−xInx; for concentration x=0.9, Al1−xAux >

Al1−xBix > Al1−xCux > Al1−xSnx > Al1−xZnx > Al1−xInx.

The calculated results employing the perturbation method along with the elec-

tronic theory of alloys that we have discussed above for ∆A, ∆H, and ∆S for Al-based

liquid binary systems deviate far from experimental results [92], but show the similar

trends for all the systems.
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4.9 Results & Discussions for Atomic Transport

(ATP) Properties

In the present section, theoretically studied results for atomic transport properties

(ATP) such as shear viscosity (η), diffusion coefficients (D) and friction coefficients

(ζ) for Al-based liquid binary alloys namely Al1−xZnx, Al1−xInx, Al1−xSnx, Al1−xCux

and Al1−xAux will be presented. The essential ingredients for the calculation of ATP

are the effective pair potential and the pair distribution function for hard spheres.

The Rice-Alnatt theory [59–64] based on the distribution function method is em-

ployed here to calculate atomic transport properties as mentioned above.

Necessary ingredients are required to perform the calculations for η, D, ζ, and

the ingredients are the inter-ionic interactions and the pair correlation functions of

the reference hard sphere systems. We have discussed the ingredients in the study of

the thermodynamic of mixings, and used the same functions without any change. In

addition, we have employed the BS model [44] for finding the inter-ionic interactions

in liquid alloys, used the LWCA [69–72] theory for finding the pair correlation func-

tions, gij(r) for hard sphere reference liquids, and the Ashcroft-Langreth theory [50]

is used for static structure factors for alloys.

The RA theory divides the effective inter-ionic pair potential into a long-range soft

part, and a short-range hardcore part. The statistical event due to the short repulsive

core of the pair potential at short inter-ionic distances can conveniently be separated

from the remaining statistical events considered; this justifies [4] the division of the

potential. In the distribution function method, the total viscosity is a sum of three

separate contributions. The first one arises from the kinetic theory of dense fluid

model through a singlet distribution function [56]. The second contribution arises

from the momentum transfer that occurs during the hardcore collisions [63,64].
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This part is derived from using a doublet reduced distribution function. The third

contribution for the region r > σ, σ being the hard sphere diameter, is obtained by

deriving the stress tensor for the attractive part of the potential and comparing with

the classical Newtonian stress tensor [63,64]. In this process, the friction coefficient is

derived by using the small step diffusion theory [4]. Finally, the total shear viscosity

reads η = ηK + ηv(σ) +ηv(r > σ). The RA theory for the viscosity involves the pair

distribution function of hard spheres and also the first and the second derivatives of

the partial pair potential (see below). In a study on viscosity, it is reported [4] that,

ηv(r > σ) evolves as the most dominating term for some liquid metals, while some

other studies show that ηv(σ) dominates more [41–43,58]. Whatever be the situation,

the soft part contribution is significant for a quantitative study.

As the first and the second derivatives of the potentials are involved in the RA

theory [59–64]. Transport properties are sensitive to the whole potential profile.

We need to have appropriate potentials for the concerned liquid systems, as we

intend to study the transport properties for both the ATM and ETM of liquid Al-

based alloys in which d-band plays an important role in determining the physical

properties. The transition elements such as Zn, Cu, and Au are involved in Al1−xZnx,

Al1−xCux and Al1−xAux systems, have the hybridization effect. However, we have

used the same potentials derived from the BS [44] local model to describe the behavior

of ATP of liquid Al-based alloys that we have used for studying thermodynamic

mixing properties (∆A, ∆H, ∆S). As this model has already been tested in the

study of thermodynamic properties [36–38, 102] that we have recapitulated in the

earlier sections, we will employ it again for calculations of η, D, and ζ.
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4.9.1 The First and Second Derivatives of the Partial Poten-

tial Curve for Different Binary Systems

This study of ATP is dependent on the first and second derivatives of the partial pair

potential curves. The effective partial pair potentials vij(r) for all Al-based alloys

under study are obtained from the BS [44] model pseudopotential which is already

discussed in earlier sections where the thermodynamic properties are presented. Here,

the first and the second derivatives of vij(r) are shown in Figures (4.44-4.48) for odd

values of concentration, x, for different Al-based liquid binary alloys.

These derivatives give a definitive accuracy profile of potential generated by our

parameters. The first derivative gives the slope while the second derivative gives the

curvature of the potential. These derivatives have the features which explain that,

when the slope is negative the curvature becomes positive and vice versa.

This nature is exactly mirrored in these Figures (4.44-4.48). This also provides

the level of accuracy of the numerical calculations. It is rather important to say that,

the first and the second derivatives converge with increasing r, and also the positions

of the minimum in these corresponding Figures (4.44-4.48), change gradually with

the increasing values of concentration. These figures are:
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Figure 4.44: Partial pair potential Vij and their derivatives for Al1−xZnx liquid binary

system for concentration x=0.1 for temperature 1000 K, respectively.

Figures (4.44-4.48) showed that, the first and the second derivatives of the poten-

tial profile for Al1−xZnx, Al1−xInx, Al1−xSnx, Al1−xCux and Al1−xAux liquid binary

alloys. It is seen for all the concerning systems mentioned above from Figures (4.44-

4.48) that, the oscillations of the first and the second derivatives are 1800 out of

phase with each other. Most importantly, the partial potentials and their derivatives

exhibit convergence with increasing r.
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Figure 4.45: Partial pair potential Vij and their derivatives for Al1−xInx liquid binary

system for concentration x=0.1 for temperature 1173 K, respectively.

The major differences observed among these different alloys are that, the depths

and positions of the well are larger for Al1−xCux (see Figure 4.47) and Al1−xAux

(see Figure 4.48). But among these different partial pair potentials, the depth is the

smallest in the case of VSn−Sn for Al1−xSnx liquid binary alloy (see Figure 4.46).
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Figure 4.46: Partial pair potential Vij and their derivatives for Al1−xSnx liquid binary

system for concentration x=0.1 for temperature 973 K, respectively.

The reason is that, Sn largely behaves like simple metals [57], and on the other

hand, Cu and Au are transition metals. Besides, I have calculated the partial pair

potential for Al1−xZnx system without taking any hybridization effect.
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Figure 4.47: Partial pair potential Vij and their derivatives for Al1−xCux liquid binary

system for concentration x=0.1 for temperature 1373 K, respectively.

Therefore, one can present the magnitude of the depths, and the positions of the

different potential wells for these aforementioned liquid binary alloys in the following

order, Al1−xAux > Al1−xCux > Al1−xInx > Al1−xZnx > Al1−xSnx.
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Figure 4.48: Partial pair potential Vij and their derivatives for Al1−xAux liquid binary

system for concentration x=0.1 for temperature 1338 K, respectively.

4.9.2 The Partial Integrand (Xij) for Different Binary Sys-

tems

Using the same values for partial pair potentials, Vij(r), hard sphere diameters, σij,

and partial pair correlation functions, gij(r), we have calculated the values for shear

viscosities (η), friction coefficients (ζ) and self diffusion coefficients (D) for differ-

ent concentrations of Al-based alloys. In this calculations, we have to evaluate the

partial integrands, χij, which are found to diverge for large values of r. The par-
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tial integrands, χij are shown in Figures (4.49-4.50) for those Al-based alloys for

concentration x=0.5.
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Figure 4.49: Partial integrand Xij as a function of r for Al1−xXx liquid binary systems

for concentration x=0.5; here, X=Zn, In, and Sn respectively.

From the Figures (4.49-4.50), it can easily be understood that the integrand

diverges for large values of r where the inter-ionic potentials contain the long range

of Friedel oscillations [27]. Despite the first and second derivatives of the partial

potentials as well as partial pair correlation functions individually converge, whereas

the integrands diverse. The main cause of this phenomena is that, the integrand

being directly proportional to r4. Therefore, the amplitude of oscillation increases
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Figure 4.50: Partial integrand Xij as a function of r for Al1−xXx liquid binary systems

for concentration x=0.5; here, X=Cu, Au, and Bi respectively.

with the increasing values of r even when there is no correlation at large r, that is

gij(r) ≈ 1. So, we need to fix an upper cut off region to truncate the integration at

some value of r for all the effective numerical calculations.

In references [41–43], this infinite limit is truncated at a finite value at which the

magnitude of the partial pair potential becomes of the order of 10−4eV . This could

have been a good approximation for our present study of shear viscosities (η), friction

coefficients (ζ) and self diffusion coefficients (D) for different concentrations. But in

the case of shear viscosity, the integrand remains proportional to 1/r, not r2.
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Bhuiyan et al . [41–43] have developed an efficient cutoff procedure for this pur-

pose. In those research works, they showed that the cutoff region can be evaluated

with respect to gij. Their works suggest that one can intend a truncation point

based on the minimum value of r for which the correlation effect vanishes, or to say

gij(r) ∼ 1. This condition is fulfilled around the region where r ∼ 4σ, where σ is

the effective hard sphere diameter. For the present study of different Al-based liquid

alloys, I have followed the same procedure to tackle the problem of divergence. We

note that, the divergence appears not only for BS model [44] but also for all form

of pseudopotentials having Friedel oscillations [27] at large values of r [41–43]. With

this feature of truncation, we have integrated the partial integrand, Xij, and the

results of those are shown in Figures (4.49-4.50).

Three terms of the shear viscosity arise due to three different mechanisms. It is

therefore very interesting to see how much each mechanism contributes, and in what

way. To this end, we examined the breakdown details of the η in Tables 4.3, 4.5, 4.7,

4.9 and 4.11 for different contributions of Al1−xZnx, Al1−xInx, Al1−xCux, Al1−xAux,

and Al1−xBix, systems, respectively.

4.9.3 Table for Atomic Transport Coefficients for Al-based

Systems

In the evaluation process for atomic transport properties, we have calculated the

hard and soft-core part of the friction and diffusion coefficients. These values are

listed below:

As listed in Table 4.2, we can see that the friction coefficients for the first con-

stituent, namely, Al, the hard part (ζHAl) increases with increasing concentration in

the range from x=0.1 to 0.4 and then it starts to decrease from x=0.4 to 0.7. The

increasing and decreasing rate, both are very slow for it. For the soft part (ζSAl), it
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Table 4.2: The soft and hard core parts of the friction coefficients, ζ(×10−12 ∗ kgs−1)

and partial diffusion coefficients, DAl,Zn(×10−9 ∗ m2s−1) for both constituents and

mutual diffusion coefficients, DAl−Zn(×10−9 ∗m2s−1) are listed for Al1−xZnx alloys.

x ζHAl ζSAl ζHZn ζSZn DAl DZn DAl−Zn

0.1 0.858 1.33 1.10 1.78 6.31 4.78 4.93

0.2 0.864 1.15 1.09 1.49 6.85 5.35 5.65

0.3 0.872 1.05 1.08 1.31 7.16 5.77 6.19

0.4 0.875 0.93 1.06 1.08 7.64 6.43 6.92

0.5 0.874 0.83 1.04 1.26 8.08 5.99 7.04

0.6 0.873 0.94 1.02 1.01 7.60 6.81 7.29

0.7 0.871 0.83 1.00 0.78 8.09 7.75 7.98

0.8 0.864 1.13 0.97 0.64 6.92 5.96 6.73

decreases from x=0.1 to 0.5. At x=0.6, it increases and at x=0.7, it shows the same

value as it was on x=0.5. At x=0.8 the value increases again.

The friction coefficients for second constituent Zn; the hard part ζHZn decreases

with increasing concentration x on Zn and for soft part ζSZn, it decreases from x=0.1

to 0.4. At x=0.5, for ζSZn it increases and then again decreases to x=0.8.

But it is noticeable in Figure 4.4, that Zn has a smaller hard sphere diameter

than Al. It is obvious, that the HS with smaller diameter plays the important role

for the frictions in the alloy states. The consequence of this effect is reflected in

ρ. We know that the diffusion coefficient is less for a system with larger friction

coefficients. This effect is observed with the results in the table above. As the

friction coefficient increases for Zn and then the diffusion coefficient tends to decrease

in each step of increment for concentration x. On the other hand, the diffusion

coefficient for liquid Al increases with the concentration, x. We did not find any
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experimental data of diffusion coefficients for Al1−xZnx liquid binary alloy to compare

our calculated results. But theoretical values are of the same order of magnitudes as

the experimental data for elemental systems [4, 29].

It is obvious that, if the diffusion were more then the friction would be less. This

effect is exactly reflected by the result of the diffusion for both the cases of par-

tial diffusion coefficients and the mutual diffusion coefficients. The partial diffusion

coefficients for Al increases with the increasing concentrations of x. Consequently,

the partial diffusion coefficients for Zn increases from x=0.1 to 0.4 and at x=0.5 it

decreases to 5.99 cP, then it again increases till x=0.7 and at x=0.8 it decreases.

In all cases, the mutual diffusion coefficient, DAl−Zn lies between DAl and DZn

which is explained in details in [8]. The weighted average of two individual component

of self-diffusion coefficients are taken as the mutual diffusion coefficient, DAl−Zn =

(1− x)DAl + xDZn. This relation is valid for Lennard-Zones liquids but not for the

strongly ordering systems [4, 29]. For mutual diffusion coefficients, DAl−Zn, it starts

to increase from concentration range x=0.1 to 0.7 and then starts to decrease from

x=0.8.

Now we present the values of shear viscosity for Al1−xZnx, obtained from our

theoretical calculation. The results are presented in Table 4.3.

Here ηK is the kinetic contribution to the viscosity while ηv(σ) and ηv(r > σ)

are the hard-core and the soft-core contributions, respectively. We can see that, the

hard-core part plays the most significant role in determining the shear viscosity (η).

The most important feature to notice here is that the soft core part mostly varies

with the increment of concentration, x.

It shows a linear trend of increment for most of the parts. For the slight discrep-

ancy in theoretical and experimental results, we conclude that many body potentials

instead of pseudopotential may improve the agreement. We further note that, the
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Table 4.3: Different contributions to the viscosity (η) for Al1−xZnx liquid binary

alloys. Units are in cP.

x ηK ηv(σ) ηv(r > σ) η ηexpt

0.1 0.0723 0.869 0.256 1.20 -

0.2 0.0827 0.868 0.345 1.30 0.90 [129]

0.3 0.0902 0.868 0.416 1.37 -

0.4 0.1020 0.868 0.440 1.41 -

0.5 0.0974 0.850 0.610 1.56 -

0.6 0.1050 0.839 0.727 1.67 -

0.7 0.1220 0.839 0.799 1.76 -

0.8 0.0851 0.785 0.767 1.64 1.28 [129]

different size ratio of HS might be a factor. For further studies of transport prop-

erties, we intend to apply the molecular dynamics approach for Al1−xZnx system to

get more informative information.

Table 4.4 describes the features of friction coefficients (ζ) and diffusion coefficients

(D) for Al1−xInx liquid binary alloys at thermodynamic state T=1173 K. We see

that the friction coefficients for Al, for hard part (ζHAl) increases with the increasing

concentrations from the range x=0.1 to 0.7.

For the soft part (ζSAl), at concentrations x=0.1, 0.2 and 0.3, 0.4, the values of

ζSAl are same as 1.03 and 1.11 (×10−12 ∗ kgs−1), respectively. Then it decreases from

x=0.5 to 0.7.

The friction coefficients, for the second constituent, In, for hard part (ζHIn) in-

creases in the range from x=0.1 to 0.4 and then it decreases in the range from x=0.5

to 0.7. But, for the soft part (ζSIn), it remains the same at x=0.1 & 0.2, then it

decreases from the concentration range x=0.1 to 0.6, but at 0.7 it again increases
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very slowly.

Table 4.4: The soft and hard core parts of the friction coefficients, ζ(×10−12 ∗ kgs−1)

and partial diffusion coefficients, DAl,In(×10−9 ∗ m2s−1) for both constituents and

mutual diffusion coefficients, DAl−In(×10−9 ∗ m2s−1) are listed for Al1−xInx liquid

binary alloys.

x ζHAl ζSAl ζHIn ζSIn DAl DIn DAl−In

0.1 0.722 1.03 0.973 1.65 9.24 6.16 6.47

0.2 0.727 1.03 0.983 1.65 9.21 6.14 6.75

0.3 0.732 1.11 0.989 1.63 8.80 6.18 6.97

0.4 0.740 1.11 0.992 1.62 8.73 6.19 7.21

0.5 0.744 1.05 0.984 1.61 9.03 6.24 7.64

0.6 0.752 0.96 0.978 1.50 9.42 6.53 8.26

0.7 0.757 0.82 0.962 1.52 10.02 6.53 9.13

If the diffusion coefficients are less for any liquid binary alloys then it will produce

the higher friction coefficients for that system. This effect is observed with the

results in Table 4.4 for Al1−xInx liquid binary alloys. As the friction coefficient

increases for In, the diffusion coefficient tends to decrease in each step of increment

for concentration x.

On the other hand, the diffusion coefficient for liquid Al decreases from x=0.1 to

x=0.4 and again it increases with the concentration, x. In all concentrations, up to

x=0.1 to 0.7 the mutual diffusion coefficient, DAl−In lies between DAl and DIn which

is stated in [8]. We did not find any experimental data of diffusion coefficients for

Al1−xInx liquid binary alloy to compare our results. But, theoretical values are of

the same order of magnitudes as the experimental data for elemental systems [4,29].
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Now we present the values of shear viscosity, obtained from our theoretical cal-

culation. The results are given as a tabular form (Table 4.5) right below:

Table 4.5: Different contributions to the viscosity (η) for Al1−xInx liquid binary

alloys. Units are in cP.

x ηK ηv(σ) ηv(r > σ) η ηexpt

0.1 0.0866 0.694 0.095 0.876 -

0.2 0.0866 0.696 0.144 0.927 -

0.3 0.0855 0.692 0.159 0.937 0.68 [130]

0.4 0.0856 0.692 0.177 0.955 0.78 [130]

0.5 0.0873 0.687 0.214 0.988 0.98 [130]

0.6 0.0927 0.687 0.237 1.020 -

0.7 0.0964 0.683 0.238 1.020 -

The breakdown details of the shear viscosity are shown in Table 4.5 for Al1−xInx

liquid binary alloys at 1173 K. ηK is the kinetic contribution to the viscosity while

ηv(σ) and ηv(r > σ) are the hard-core and the soft-core contributions, respectively.

It is seen from the Table 4.5, that the largest contribution which comes from the hard

part, ηv(σ), of the potential, is more than 89% of the total value in the concentration

range x=0.1 to 0.4, but from x=0.5 to 0.7 is 80%.

The second largest contribution comes from the soft part which is up to 18%. At

concentration x=0.1, this is more than 1% in the concentration range x=0.2 to 0.4,

this is more than 8% and for the concentration range x=0.5 to 0.7, this is up to 18%.

The rest of the contribution comes from the kinetic part, ηK .

We observed that the hard-core part plays the most significant role in the mea-

surement of the shear viscosity (η). Another important feature to notice here is that

the soft-core part, ηv(σ), mostly varies with the increment of concentrations from
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x=0.1 to 0.8. It shows a linear trend of increment for the most part. Symbolically,

one can present the magnitude of the breakdown details of the shear viscosity as in

the following order, η > ηv(σ) > ηv(r > σ) > ηK . Table 4.6 illustrates the fric-

tion coefficients (ζ) and diffusion coefficients (D) for Al1−xCux liquid binary alloys

at thermodynamic state T=1373 K. It is seen that, the hard part (ζHAl) of friction

coefficients for Al, increases with the increasing concentrations from x=0.1 to 0.7.

We have also found, the similar trends for soft part (ζSAl). But at x=0.8, it decreases

and remains the same at concentration x=0.9.

At concentration x=0.1 the values of ζSAl is 0.85×10−12kgs−1 and at x=0.7 the

values for ζSAl is 1.92 ×10−12kgs−1. The friction coefficients, ζHCu, for the second con-

stituent, Cu show the same value from concentrations x=0.1 to 0.7 and its numerical

value is around 1.14∼1.16 ×10−12kgs−1.

But for ζSCu, it increases from x=0.1 to 0.7, and for these range the numerical

values are found in the order 0.77 ∼ 1.60 ×10−12kgs−1. We have seen that, the

contributions for ζHAl, ζ
S
Al, and ζSCu increase from x=0.1 to 0.7. However, the results

at concentrations x=0.8 & 0.9 remain same for ζHAl, ζ
S
Al, respectively; but it decreases

for ζSCu.

The diffusion coefficient tends to decrease in each step of increment for concen-

tration x. We have not found any experimental data of diffusion coefficients for

Al1−xCux liquid binary alloy to compare our calculated results. But theoretical val-

ues are of the same order of magnitudes as the experimental data for the elemental

systems [4, 29]. The partial diffusion coefficients, DAl, starts to decrease from the

concentration x=0.1 to 0.8 and for DCu it decreases from the concentration range

x=0.1 to 0.8, but at x=0.9 both starts to increase.

In all concentrations, the mutual diffusion coefficient, DAl−Cu lies between DAl

and DCu which is explained in details in [8]. The results for DAl−Cu decreases con-
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Table 4.6: The soft and hard core parts of the friction coefficients, ζ(×10−12 ∗ kgs−1)

and partial diffusion coefficients, DAl,Cu(×10−9 ∗ m2s−1) for both constituents and

mutual diffusion coefficients, DAl−Cu(×10−9 ∗m2s−1) are listed for Al1−xCux alloys.

x ζHAl ζSAl ζHCu ζSCu DAl DCu DAl−Cu

0.1 1.27 0.85 1.14 0.77 8.95 9.90 9.81

0.2 1.30 0.93 1.15 0.99 8.90 9.19 9.14

0.3 1.33 1.04 1.15 1.03 8.01 8.67 8.47

0.4 1.35 1.27 1.16 1.18 7.22 8.12 7.76

0.5 1.37 1.50 1.16 1.32 6.60 7.65 7.13

0.6 1.39 1.66 1.15 1.43 6.21 7.35 6.67

0.7 1.40 1.92 1.14 1.60 5.69 6.89 6.05

0.8 1.41 1.91 1.13 1.59 5.70 6.96 5.95

0.9 1.41 1.91 1.10 1.58 5.71 7.05 5.85

tinuously up to the concentration range x=0.1 to 0.9.

Now we present the values of shear viscosity, obtained from our theoretical cal-

culation. The results are given as a tabular form (Table 4.7) right below:

The detailed part of the shear viscosity are given in Table 4.7 for Al1−xCux liquid

binary alloys at thermodynamic state 1373 K, where Cu is a d-band transition ele-

ment. It is seen in Table 4.7 that, the contribution comes from the hard part, ηv(σ),

is almost same from concentration range x=0.1 to 0.8 which shows almost the similar

trend of our previously studied results for Al1−xZnx and Al1−xInx and its numerical

values vary from 1.33 ∼ 1.35, 1.37 in cP range.

ηK is the kinetic contribution to the viscosity and its numerical values vary from

0.181 ∼ 0.104 cP from concentration, x=0.1 to 0.9. The largest contribution coming
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Table 4.7: Different contributions to the viscosity (η) for Al1−xCux liquid binary

alloys. Units are in cP.

x ηK ηv(σ) ηv(r > σ) η ηexpt [131]

0.1 0.181 1.33 3.12 4.64 3.963

0.2 0.177 1.37 2.33 3.87 4.868

0.3 0.156 1.37 1.45 2.97 4.740

0.4 0.138 1.37 0.893 2.40 5.075

0.5 0.124 1.37 0.738 2.23 2.560

0.6 0.115 1.37 0.692 2.18 -

0.7 0.104 1.37 0.642 2.12 1.484

0.8 0.104 1.37 0.408 1.88 1.032

0.9 0.104 1.35 0.474 1.93 1.331

from the soft part, ηv(r > σ), of the potential; which is more than 80% of the total

value in the concentration range x=0.1 to 0.3, but from concentration, x=0.4 to 0.9

this trends is totally different from previous.

So, we can say from the Table 4.7, we have found the largest contribution from

the two different parts of the total viscosity. For ηv(r > σ), the largest contribution

comes from concentration range, x=0.1 to 0.3 and on the other hand, the largest

contribution comes for ηv(σ), from the concentration range x=0.4 to 0.9. It is re-

ported [4] that, for some elemental simple and less simple liquid metals, the major

contribution comes from the soft part for some potentials [4]. In the present case,

the situation is different.

As we can say, that the hard-core part plays the most significant role in the

measurement of shear viscosity (η). Another important feature to notice here is that

the soft-core part, ηv(σ), varies very rapidly at the concentrations range from x=0.4 to

164



CHAPTER 4. RESULTS, DISCUSSIONS, & CONCLUSIONS

0.8. We have found that, the experimental data [131] of shear viscosity for Al1−xCux

liquid binary alloys, where it is seen that, our calculated shear viscosity results are

very close to the experimental results at every concentration. Symbolically, one

can present the magnitude of the breakdown details of the shear viscosity as in the

following order for concentration range, x=0.1 to 0.3, are η > ηv(r > σ) > ηv(σ) >

ηK . From concentration range, x=0.4 to 0.8 it can be written as, η > ηv(σ) > ηv(r >

σ) > ηK .

Table 4.8: The soft and hard core parts of the friction coefficients, ζ(×10−12 ∗ kgs−1)

and partial diffusion coefficients, DAl,Au(×10−9 ∗ m2s−1) for both constituents and

mutual diffusion coefficients, DAl−Au(×10−9 ∗m2s−1) are listed for Al1−xAux liquid

binary alloys.

x ζHAl ζSAl ζHAu ζSAu DAl DAu DAl−Au

0.1 1.07 1.40 2.15 3.35 7.47 3.36 3.77

0.2 1.08 1.42 2.11 3.61 7.39 3.22 4.06

0.3 1.09 1.42 2.06 3.56 7.37 3.28 4.51

0.4 1.09 1.42 2.01 3.56 7.35 3.32 4.93

0.5 1.08 1.27 1.94 3.14 7.87 3.63 5.75

0.6 1.08 1.12 1.90 2.58 8.41 4.12 6.70

0.7 1.07 1.10 1.84 1.54 8.53 5.45 7.61

Table 4.8 shows, the features of the friction coefficients (ζ) and the diffusion

coefficients (D) for Al1−xAux liquid binary alloys at thermodynamic state, T=1338

K. We can see that, the friction coefficients for Al, for hard part (ζHAl) are almost the

same from x= 0.1 to 0.7 and its values around (1.07 ∼ 1.09) ×10−12kgs−1. Moreover,

the values for ζSAl, increases at x=0.2 and remains 1.42 ×10−12kgs−1 till x=0.4, then

again decreases till x=0.7.
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But the values for ζHAu, and ζSAu are decreasing with the increasing values of x.

In Table 4.8, the 6th, 7th and 8th column from left side present the partial diffusion

coefficients and mutual diffusion coefficients for Al1−xAux liquid binary alloys and

defined as DAl, DAu, and DAl−Au, respectively. The value for DAl decreases from

concentration x=0.1 to 0.4 and then it starts to increase from x=0.5 to 0.7. We have

seen the similar pattern for DAu.

It starts to decrease from x=0.1 to 0.3 and then it starts to increase up to x=0.7

Similarly, from our previous studied results, the mutual diffusion coefficient, DAl−Au

lies between DAl and DAu which are expected [8]. We don’t have any experimental

data for diffusion coefficients, so, we couldn’t compare our theoretical results for

Al1−xAux liquid binary alloys with the experimental results.

But theoretical values are of the same order of magnitude as the experimental

data for elemental systems [4, 29].

Now we present the values of shear viscosity, obtained from our theoretical cal-

culation. The results are given in a table below:

Table 4.9: Different contributions to the viscosity for Al1−xAux liquid binary alloys.

Units are in cP.

x ηK ηv(σ) ηv(r > σ) η ηexpt [132]

0.1 0.131 1.71 0.663 2.50 3.25

0.2 0.124 1.68 0.430 2.24 -

0.3 0.124 1.65 0.147 1.92 -

0.4 0.123 1.60 -0.229 1.50 -

0.5 0.134 1.55 -0.271 1.41 2.47

0.6 0.154 1.53 -0.329 1.36 2.25

0.7 0.205 1.53 -0.447 1.29 1.78
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The breakdown detailed of the results for shear viscosity for Al1−xAux liquid

binary alloys at thermodynamic state 1338 K where Au is a d-band transition element

are shown in Table 4.9. It is seen in the table that, the contribution comes from the

hard part, ηv(σ), decreases from concentration range x=0.1 to 0.7, which shows the

different trend from our previous studied results for Al1−xZnx, Al1−xInx and Al1−xCux

and its numerical values vary from 1.71 ∼ 1.53 cP range.

ηK is the kinetic contribution to the viscosity and its numerical values vary from

0.123 ∼ 0.205 cP from concentration, x=0.1 to 0.7. The largest contribution comes

from the hard part, ηv(σ), of the potential, which is more than 78% of the total value

in the concentration range x=0.1 to 0.3, but from concentration, x=0.4 to 0.7 this

trends is totally different from the previous.

On the other hand, the contribution comes from ηv(r > σ), is negative from x=0.4

to 0.7 which is very unusual. It is also reported that for some simple element and

less simple liquid metals the contribution comes from ηv(r > σ) may be negative and

detailed can be found in [4, 29]. Thus we can say that the hard-core part plays the

most significant role in the measurement of shear viscosity (η). Another important

feature to notice here is that the soft-core part, ηv(r > σ), varies very rapidly at

the concentrations range from x=0.4 to 0.7. We have found the experimental data

[132] of shear viscosity for Al1−xAux liquid binary alloys, and it is seen that our

calculated shear viscosity results are very close to the experimental results at those

concentrations. Symbolically, one can present the magnitude of the breakdown details

of the shear viscosity as in the following order for concentration range, x=0.1 to 0.3,

are η > ηv(σ) > ηv(r > σ) > ηK . From concentration range, x=0.4 to 0.7 it can be

written as, η > ηv(σ) > ηK > ηv(r > σ).

Table 4.10 illustrates the results for mutual diffusion coefficients, DAl−Bi, for

Al1−xBix segregating liquid binary alloys at different temperatures to understand the
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Table 4.10: Mutual diffusion coefficients, DAl−Bi(×10−9 ∗m2s−1) for Al1−xBix liquid

binary segregating alloys at different temperatures.

x D1350k D1290k D1223k D1173K D1050K

0.1 11.4 9.64 9.16 8.85 8.17

0.2 10.7 10.4 10.1 9.79 8.68

0.3 10.1 9.78 9.48 9.89 9.30

0.4 10.0 9.78 9.53 9.28 8.72

0.5 9.38 9.16 8.93 8.70 8.69

0.6 8.72 8.54 9.01 8.83 8.43

0.7 8.42 8.27 8.16 8.00 7.62

0.8 7.68 7.50 7.34 7.23 6.88

0.9 7.02 6.83 6.65 6.50 6.21

behavior in segregating states. It is reported in [102–106] that, the critical tem-

perature and concentration are 1310 K, and 0.195 moles in Bi for Al1−xBix system,

respectively. But we have found in our study that, Tc, and xc are 1290 K and 0.20

moles in Bi, respectively. The second column in Table 4.10 presents the results of

DAl−Bi for 1350 K. It is found that the value of DAl−Bi decreases from concentration

x=0.1 to 0.9. Third to sixth column present the results for temperatures 1290 K,

1223 K, 1173 K, and 1050 K, respectively.

It is seen at concentration x=0.1, the mutual diffusion coefficients, DAl−Bi for

different studied temperatures are always less than for DAl−Bi, at x=0.2. From con-

centrations x=0.1 to 0.2, it always increases and then it starts to gradually decrease

from x=0.2 to 0.9 concentrations range.

But for temperature 1223 K the value constantly goes up and down from x=0.2

to 0.6 and then starts to decrease.

168



CHAPTER 4. RESULTS, DISCUSSIONS, & CONCLUSIONS

Table 4.11: Different contributions to the total viscosity for Al1−xBix liquid binary

segregating alloys at different temperatures. Units are in cP.

x η1350k η1290k η1223k η1173K η1050K

0.1 0.367 0.991 0.991 1.00 1.04

0.2 0.483 0.415 0.322 0.239 0.998

0.3 0.593 0.542 0.474 0.381 0.166

0.4 0.658 0.614 0.553 0.504 0.346

0.5 0.703 0.668 0.620 0.581 0.455

0.6 0.725 0.702 0.634 0.595 0.465

0.7 0.718 0.697 0.670 0.641 0.536

0.8 0.737 0.712 0.684 0.669 0.587

0.9 0.756 0.731 0.701 0.680 0.623

Table 4.11 presents the breakdown details for the total viscosity, η, of Al1−xBix

segregating liquid binary alloys at different temperatures. The first column presents

the concentration in Bi from 0.1 to 0.9 range. The second column presents the results

of η1350 for 1350 K. It is found that, the value of η1350 increases from concentration

x=0.1 to 0.6, and decreases at x=0.7 and again increases to x=0.9. Third to the

sixth column presents the results for temperatures 1290 K, 1223 K, 1173 K, and 1050

K, respectively.

At T=1290 K, the value for η1290 maximum at concentration x=0.1. At x=0.2, the

value for η1290, drops very fast and again it starts to increase from x=0.3 to 0.6. We

found at x=0.7, η1290 slightly drops and its numerical value is 0.697 cP and it starts

increasing from x=0.8 to 0.9 concentrations. η at temperatures 1223 k and 1173 K

at x=0.1 is maximum. At x=0.2, it drops very fast and starts to increase from x=0.3

to 0.9. At temperature 1050 K, the value is maximum for η at concentration x=0.1.
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It decreases slightly at x=0.2 and drops very fast at x=0.3 and again increases from

x=0.4 to 0.9.

4.9.4 Conclusion

The present study on atomic transport properties is summarized in this section with

some concluding remarks. We, in this study, have presented results of an intensive

study of ATP, namely shear viscosity, diffusion coefficient and friction coefficient for

the Al-based liquid binary alloys (Al1−xXx, here X=Zn, In, Cu, Au, Bi). Here, the

distribution function method theory has been employed for the study of viscosity.

The BS model has been employed to describe the effective inter-ionic interactions of

the alloys. The effective HSDs essential for the calculations are obtained from the

LWCA theory [69–72]. The results of the calculations are found to be satisfactory,

in particular, the results for the shear viscosity are found to be in good in agreement

with available experimental data [129–131] for Al1−xZnx, Al1−xInx, and Al1−xCux

systems, respectively.

From the studied results, and discussions we can conclude that, the BS model [44]

for the inter-ionic interaction is a good starting point for the concerned metallic Al-

based liquid binary alloys. The integrand, χij, related to the soft part contribution is

oscillatory, and it diverges with increasing r. Regarding the cutoff of the upper limit

of integration, the even node positions give the maximal cancellation, and thus it is

required for the good agreement of the viscosity results. To take more care about the

small variations in the values of viscosity for different even positions one should take

the cutoff at a distance r ∼ 4σ for all systems where gab ∼ 1. The ATP of the Al1−xXx

(here, X= Zn, In, Cu, Au, Bi) liquid binary alloys may be well described by using the

additive HS reference systems. The contribution of the repulsive part of the potential

to the viscosity dominates for the concerned systems. Shear viscosity for Al1−xXx
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(here, X= Zn, In, Cu, Au, Bi) liquid binary alloys increase almost linearly with

increasing Al1−x concentrations. Finally, the level of agreement with experimental

data [129–131] for Al1−xXx (here, X= Zn, In, Cu) liquid binary alloys confirms the

validity and effectiveness of the truncation approach proposed in [41–43].

4.10 Comparative Study for Viscosity and Diffu-

sion Coefficients for Al-based Alloys

:

In this section, the results for viscosity, η, and mutual diffusion coefficients, D,

will be discussed for Al-based liquid binary systems, Al1−xXx. Here, X= Zn, In, Au,

and Bi in Figures (4.51-4.54). The results for η, and D of Al1−xCux system are not

presented in those figures but can be found in the earlier mentioned table in the

result section.
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Figure 4.51: Comparison of Mutual Diffusion Coefficients for Al-based alloys at dif-

ferent thermodynamic states

Figure 4.51 illustrates the results for D, for Al1−xZnx, Al1−xInx, and Al1−xAux
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liquid binary systems for temperatures 1000 K, 1173 K, and 1338 K, respectively. We

found that the contribution comes from the Al1−xAux system is always greater than

the other systems for the whole range of concentrations. Besides, the contribution

arises from Al1−xInx system is the smallest from the concentration range x=0.1 to

0.7.

Symbolically, the results for mutual diffusion coefficients, D, can be presented

from concentrations, x=0.1 to 0.7, Al1−xAux > Al1−xZnx > Al1−xInx.
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Figure 4.52: Comparison of total Viscosity for Al-based liquid binary alloys at dif-

ferent thermodynamic states

Figure 4.52 presents, the results for viscosity, η for Al1−xZnx, Al1−xInx and

Al1−xAux systems. We found that Al1−xAux system gives the largest result for η

from concentration range, x=0.1 to 0.4. After that, from concentration range, x=0.4

to 0.7, the largest value for η comes from Al1−xZnx system.

We have seen a rapid decrease in results for the Al1−xAux system in those concen-

tration ranges. Similarly, with comparing to the feature of D, Al1−xInx system gives

the smaller results for η from the concentration range, x=0.1 to 0.7. Symbolically, the
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results for η from concentration range, x=0.1 to 0.4 can be presented as Al1−xAux >

Al1−xZnx > Al1−xInx; from x=0.4 to 0.7 range, Al1−xZnx > Al1−xAux > Al1−xInx.

The result for η of Al1−xCux system is not plotted in this figure and can be found in

Table 4.7.
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Figure 4.53: Comparison of Mutual Diffusion Coefficients for Al1−xBix liquid binary

alloys at different thermodynamic states

The results for mutual diffusion coefficients, D for Al1−xBix system are presented

in Figure 4.53 for five different temperatures. Al1−xBix is a segregating system. To

understand this segregating behavior in ATP, we have studied both D, and η for

different temperatures.

The critical temperature, Tc, and critical concentration, xc for this system are

reported in [102–106], 1310 K, and 0.195 moles in Bi, respectively. But in our study,

we have found that the results for Tc, and xc are 1290 K, and 0.15 mole in Bi,

respectively; and discussed in detail in thermodynamic section (Section 4.5).

But from Figure 4.53, we found that, at concentration x=0.2, the behaviors of D

are very strange from temperature range 1290 K to 1050 K. So we could predict that,

the critical concentration region might be around this point which is consistent with
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the experimental value [102]. The numerical values for D, below 1350 K temperature

also show some unpredictable results.

It is seen in Figure 4.53, that the value for D of temperature 1350 K gradually

decreases from concentrations x=0.1 to 0.9 and which is very normal behavior. But

for other below temperatures with respect to 1350 K, the values for D sometimes

increase or decrease of our different studying concentrations. So we could also predict

from our ATP study for Al1−xBix system, that the critical temperature might be exist

below 1350 K. Symbolically, it can be presented according to the magnitude of D for

Al1−xBix system at different temperatures for concentrations, x=0.1 to 0.2 and 0.7

to 0.9, D1350 > D1290 > D1223 > D1173 > D1050.
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Figure 4.54: Comparison of the total Viscosity for Al1−xBix liquid binary alloys at

different thermodynamic states

Figure 4.54 illustrates the results for viscosity, η for Al1−xBix liquid binary alloys

for different thermodynamic temperatures. It can easily be understood from this

figure that Al1−xBix has some strange behavior again, around concentration x=0.2

mole in Bi, and in our study for η we can claim that it is our critical concentration.

This behavior starts with T=1290 K which is the critical temperature that we have
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claimed in our thermodynamic section, and similar strange results we found for the

concerning system. The continuation of this strange behavior observed till 1000 K.

At concentration x=0.1, we have found that the value of η is the largest for all the

studied high temperatures except for 1350 K of Al1−xBix system. For x=0.2, we have

found the minimum value of η, again except for 1350 K. It is shown in Figure 4.54

that, the certain rapid decrease of η is very surprising for Al1−xBix liquid binary alloy

below 1350 K. Then, it starts increasing up to x=0.9 concentration for all studied

thermodynamic temperatures, T. So we could again predict from the analysis of η at

ATP that the critical temperature might exist is below at 1350 K.

Another interesting behavior is that, at T=1050 K, we have found the total segre-

gating nature for the studied system, and discussed all the facts in our thermodynamic

section for Al1−xBix liquid binary alloys, but below this temperature, at T=1000 K,

the critical concentration position shifts from x=0.2 towards an increasing range of

Bi which is a very interesting nature of this segregating system. To understand this

segregating nature in liquid state further studies is required.

Therefore, the numerical value for η from the study of ATP for the Al1−xBix liquid

binary alloys can be written according to the range of concentrations from x=0.2 to

0.9, η1350 > η1290 > η1223 > η1173 > η1050 > η1000.
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4.11 Results, Discussion, & Conclusions for Elec-

tron Transport Properties for Al-based Liq-

uid Binary Systems

Electron transport properties such as the electrical resistivity (Ω), the thermoelectric

power, and thermal conductivity (β) of materials play a major role in metallurgy,

technology and industry. In alloys, electron transport is an important concept for

interpreting various physical quantities of alloys.

Mankind is now experiencing its fifth and most intense technological revolution

[133–147] which is mainly relying on electric power. Electricity works like a driving

force in the field of medicine, transport, communication, entertainment, manufacture,

industry, home appliance, and even art. Without exaggerating we can safely say

that everything depends on electricity. Here, obviously conductor plays a vital role

to conduct electricity to every-where, and it is well known that the Aluminium and

Aluminium based different alloys behave like a good conductor, and has the lowest

resistivity as far as our knowledge [133–147]. If we can reduce the resistivity of

conductor then the waste of electricity would be minimized, and this minimization

certainly will help us to provide more electricity in the aforementioned fields.

The melting temperatures for basic metals are very high, and it is very difficult to

do experiment due to convection effects. Besides, the experiments are very expensive,

and time consuming also. On the other hand, computer simulation also takes a

lot of time to study this properties [120, 121]. From the theoretical point of view,

Harrison [4, 43] applied pseudopotential methods to the transition metals for the

first time. Moriarty [42] modified these pseudopotential methods to study the basic

metals like Al, In, Sn, Bi, the alkaline earth metals, Ca, Sr, and Ba; and transition

metals namely Zn, Cu, Au etc. Some fundamental reasons also inspire us to conduct
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the study on resistivity of Al-based liquid binary alloys.

Firstly, working in this method is totally cost effective. Secondly, studying about

transport properties at high temperature is very precise, and accurate, and most

importantly, it’s firmly a time saving process. And hence, the study of electrical

transport properties of liquid metals and their alloys remain one of the favorite quan-

tities theoretically [6].

Theoretical results for the electrical transport properties mainly electrical resis-

tivity (Ω) of Al-based liquid binary alloys namely Al1−xZnx, Al1−xInx, Al1−xCux

and Al1−xAux are presented in the section. The study is carried out by changing

the concentrations of Al1−x from 0.9 to 0.1. Previously, Faber and Ziman [9] and

Dreirach et al . [147] had investigated the resistivity of noble liquid metal alloys by

using pseudopotential, and a simple muffin tin model.

Difficulties arise, when the study involves simple and heavy polyvalent metals

like Al, In, Sn, Bi; transition metals as Zn, Cu, Au, and rare-earth metals. In noble

metals, Zn, Cu, and Au, narrow d-bands are filled, and lied below the Fermi energy.

Since, the d-bands are not seriously affected by melting, as suggested by experimental

studies, pseudopotenial for noble metals have to be energy dependent. For simple

Electronic Transport Properties (ETP) such as for electrical resistivity, the local

energy is independent of pseudopotentials, and it seems to give results reasonably

good in agreement with the experimental results [133–147]. But for our studied Al-

based liquid binary alloys, we do not have the experimental results to compare our

theoretical results, but the calculated results are in the same order with comparing

their results with the elemental system. So, we could predict that our theoretical

results are consistent.
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Figure 4.55: Variation of Form-factor, F (q) as a function of q for Al1−xZnx liquid

binary system for concentration, x=0.1, 0.5, and 0.9, respectively.

4.11.1 Form-factor for Different Al-Based Binary Systems

Figures (4.55-4.58) present, the different Form-factor, F (q), for Al1−xZnx, Al1−xInx,

Al1−xCux and Al1−xAux systems, respectively. As far as Faber and Ziman [9] or,

Ziman [65] formulas are concerned, then the Form-factor, F (q), of electron-ion

interaction is essential to perform the calculations. Necessary inputs for evaluat-

ing the form factors and the effective inter-ionic pair potentials are taken from the

previous study for the energy of mixing for different Al-based alloys because we use

the same potentials.
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Figure 4.56: Variation of Form-factor, F (q) as a function of q for Al1−xInx liquid

binary system for concentration, x=0.1, 0.5, and 0.9, respectively.

In Figure (4.54-4.55), the peak positions and the height of the peaks for FAl−Al

are always changing for different alloys with the changing of concentrations, x. The

height of the peaks for FAl−Al are always greater than the height of the peaks for

FZn−Zn, FIn−In, FCu−Cu and FAu−Au, in different systems, respectively.
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Figure 4.57: Variation of Form-factor, F (q) as a function of q for Al1−xCux liquid

binary system for concentration, x=0.1, 0.5, and 0.9, respectively.

The consequence of these discrepancies is nicely reflected in the corresponding

profiles for the effective inter-ionic pair potentials. That is the position of minimum

of the potential for (Al-Al) alloys has shifted toward the large r relative to the others

in the alloys state. The depth of the potential well is a result of delicate balance

among the different contributions of the input parameters, and is found to be largest

for Al. The difference between depths for the other systems are small.
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The similar explanation is also applicable for the other alloys.
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Figure 4.58: Variation of Form-factor, F (q) as a function of q for Al1−xAux liquid

binary system for concentration, x=0.1, 0.5, and 0.9, respectively.

4.11.2 Table for Electrical Resistivity (Ω)

Table 4.12 shows the calculated resistivity for different Al-based systems. From this

phenomenon, we can conclude that the reasonably good results are found at cut off

region 2kF , and our consideration is very justifiable.

181



CHAPTER 4. RESULTS, DISCUSSIONS, & CONCLUSIONS

Besides, with Figure 4.56, we have also compared our calculated resistivity (Ω)

results for Al-based systems. The results for Ω, of Al1−xCux liquid binary alloys at

thermodynamic state 1373 K is presented in the second column in Table 4.12. It is

seen in the Table (4.12), that the value for Ω starts to increase from concentration,

x=0.1 to 0.7 and then it starts to decrease from x=0.7 to 0.9. So, the maximum

value for Ω reaches at concentration, x=0.7 and its numerical value is 25.4806 Ω-m.

The results for Ω, of Al1−xZnx liquid binary alloys at thermodynamic state 1000 K

Table 4.12: Comparison among the calculated resistivity at different concentrations

for Al-based liquid binary alloys. Units are in Ω-m

Ω

Al1−x Cux Znx Inx Aux

0.1 5.44815 7.28650 8.96227 22.2576

0.2 10.5241 11.2542 11.6722 34.9515

0.3 15.3050 13.0051 12.5520 41.2972

0.4 19.5599 13.2197 12.1000 42.5141

0.5 23.0660 12.2809 10.7803 40.4613

0.6 25.3222 10.5715 8.84485 35.0706

0.7 25.4806 8.33404 6.62418 27.8769

0.8 22.7600 5.75257 4.34063 19.3445

0.9 15.2250 2.98830 2.14730 9.99879

is presented in the third column in Table 4.12. It is seen in the Table (4.12) that

the value for Ω starts to increase from concentration, x=0.1 to 0.4 and then it starts

to decrease from x=0.4 to 0.9. The maximum value for Ω, of Al1−xZnx is found at

concentration, x=0.4 and its numerical value is 13.2197 Ω-m.

The fourth column in Table 4.12 presents the calculated results of Ω, for Al1−xInx
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liquid binary alloys. We have found the maximum result for this alloys at concentra-

tion, x=0.3 and its numerical value is 12.5520 Ω-m. Its minimum result is found at

concentration, x=0.9.

The results for Ω, of Al1−xAux liquid binary alloys at thermodynamic state 1338

K is presented in the fifth column in Table 4.12. It is seen in the Table (4.12) that

the value of Ω starts to increase from concentration, x=0.1 to 0.4 and then it starts

to decrease from x=0.4 to 0.9. So, the maximum value for Ω, of Al1−xAux liquid

binary alloys is found at x=0.4 and its numerical values is 42.5141 Ω-m.

Symbolically, one can present the magnitude of the calculated resistivity, Ω for

the studied Al-based liquid binary alloys according to its maximum values as in the

following order Al1−xAux > Al1−xCux > Al1−xZnx > Al1−xInx
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Figure 4.59: Comparison of resistivity, Ω, for Al1−xZnx, Al1−xInx, Al1−xCux, and

Al1−xAux liquid binary alloys.

4.11.3 Conclusion

We have investigated the electronic transport properties of Al-based liquid binary

alloys, Al1−xZnx, Al1−xInx, Al1−xCux and Al1−xAux respectively. The essential in-

gredients in the calculations are the BS [44] model potentials, the LWCA [50] theory

of liquids and extended Zimans original theory [68] for the electrical resistivity.
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The analysis of the results of the present work allows us to draw the following

concluding remarks:

(i). The BS pseudopotential may be a good starting point for studying structural,

thermodynamics, atomic and electronic transport properties of liquid less-simple met-

als and their alloys.

(ii). We did not find any experimental data of electrical resistivity for Al1−xZnx,

Al1−xInx, Al1−xCux, and Al1−xAux liquid binary alloys to compare our calculated

results. But the theoretical values are the same in order of magnitudes as the exper-

imental data for the elemental systems [4].

(iii). Finally, we would like to say that, our present approach provides the GMT

theory along with the extended Ziman’s theory of alloys and, it may be extended to

the study of simulation through the molecular dynamics.
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Appendix A

Origin of Local Minimum in

Potentials of Polyvalent Metals

A.1 Introduction

Local minimum appearing in the inter-ionic pair potentials, when derived from local

model pseudo-potential, for Al (and some other polyvalent metals) remains as a long

standing problem of clear understanding of it’s origin, although some attempts have

been made by a few researchers. The origin of this feature of local minimum is

systematically investigated for the first time in this research work, considering both

the core size and the conduction electron density as variables. ”Ashcroft’s empty core

model” [4] is used to describe the inter-ionic pair-potential, because it depends on

these two variables only. Results of this investigation showed that, the monovalent

metals do not exhibit a local minimum at all.

However, trivalent Al and some other polyvalent metals do exhibit. Here, the

combined effect of the core size and the conduction electron density plays the role.

More interestingly, for smaller core size conduction electron density plays major role

and for larger core size the core radius plays the major role of ion determining the
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local minimum.

Knowledge of inter-ionic interactions is vital for microscopic description of many

physical and chemical properties of condensed matters [87–90]. In order to eval-

uate the inter-ionic interactions, many theories, semi-empirical [4] and empirical

models have been proposed so far. Among them ”The Pseudopotential theory”

is being widely used with a high degree of reliability. In the pseudopotential the-

ory, which effectively started in the sixties of the last century, the electron-ion pair

pseudopotentials are treated in two different ways [125]. One is the ab-initio type,

which derived by employing the first principles right from the atomic level descrip-

tion [133, 134] and the second types are the model pseudopotentials, proposed by

many authors [4–6, 44, 48, 49], which are generally parameter dependent. Among

the model of pseudopotentials, the Ashcroft’s empty core model [137, 138], and its

kin [35] are widely used, and hundreds of articles studying physical properties of

simple metals and their alloys have been published so far.

However, Hafner and coworkers [139–141] studied structural and electronic prop-

erties of many polyvalent metals using EMC and optimized pseudo-potentials. The

inter-ionic interactions derived by them from these pseudopotentials with Vashista

and Singwi [142], or Ichimaru and Utshumi [67] for dielectric function including

relativistic, or non-relativistic core orbitals. In all cases, they found a positive local

minimum at small r near the first nearest neighbor distance in solid [140] and in liquid

phase for Al. Similar trends were also found for some other polyvalent metals such as

Zn, In, Sn etc. Abbas et al. also found the existence of local minimum for Al in their

study on Al1−xSnx liquid binary alloys [102]. According to Jank and Hafner [140],

the strong electron-ion interaction leads to high electron density around the ion core

and as a result, the first attractive minimum closed to rnb distances becomes quite

shallow, and the minimum is practically coverd by the repulsive core.
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Now question remains, if the repulsive core be much stranger, would the attractive

minimum go up to yield a local minimum in the positive energy region of potential as

in the clear case of Al?. This question is not addressed in [140], but an explanation of

shifting the position of the first minimum is given by Jank and Hafner [139–141] that

”As the electron density increases the core radius, rc decreases and the minimum is

shifted relative to the nearest distance and gets flattened”. Jank and Hafner [139–141]

also suggested that, the essential trend may be parameterized in terms of rc/Rs (Rs

being the also electron density parameter also sometimes refereed to as Wegner-Seitz

radius) ratio. But any such theory explaining local minimum is yet to be seen. In

this Appendix section, we have rather observed a different trend, that is, when the

core radius increases, potential well gets shallow, relatively flattened and the same

time the position of the minimum shifts of large r (see the figures).

It is surprising why no one, until now attempted systematically to explain the

origin of the characteristic feature of local minimum in the positive energy region of

potential, particularly for Al, during the last couple of decades after encountering

the local minimum. theoretically for the first time. In the present research work,

we intend to address the root cause of the characteristic feature. Specially, we shall

investigate the role of the core size rc and the conduction electron density mediated

by chemical valence, and how do they effect the local minimum of the effective pair

interactions.

A.2 Result

We are interested to investigate the origin of forming local minimum in the effective

pair potentials of polyvalent metals, in particularly, for Al, at small r. In order

to examine this feature systematically, we have started calculations for monovalent

metals such as Na and K. Then we gradually advance toward the divalent (Zn),
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Figure A.1: Effective partial pair potential for liquid Na and Zn from core radius

rc=0.15 a.u to 2.0 and 0.90 a.u respectively.

trivalent (Al, In), tetravalent (Sn) and pentavalent (Bi) metals.

Figure A.1 shows the effective pair potentials, Veff (r), for monovalent Na and

divalent Zn as a function of r for different values of Rc. It is noticed that, the

potential well for Na is the deepest for the smallest core size that is for the smallest

value of core radius, Rc (=0.015 Å). As core radius increases the depth of the well

reduces gradually and at the same time the position of the minimum shifts toward

large r. However, the value of the minimum remains always negative and no local

minimum appears for any value of Rc. Hafner and Jank [139–141] argued that, as

the core radius decreases the electron density increases and the parameter defined

as rc/Rs (Rs being the also electron density parameter also sometimes refereed to as

Wegner-Seitz radius) can easily explain the essential trend of the pseudopotential.

We note that, the average conduction electron density, in this study, is assumed to

remain constant during variation of core size.

It is worth for nothing that, we have also observed similar feature in Veff (r) for

monovalent metal, K. So, we have not presented potentials for K. Figure A.1 also

shows how the depth of the well reduces with increasing value of Rc for diatomic
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metal, Zn. It is noticed that, the depth of the potential well reduces and the position

of the well shifts with increasing Rc as in the case of mono atomic metals.

But, in this case, a difference is noticed; the first minimum crosses the zero

energy level and goes up to the positive energy region to yield a local minimum for

a certain value of Rc. Farther, increase of Rc value causes the local minimum to be

gradually shallow and flattened and finally to disappear from the scene completely.

Consequently, the second minimum turns to be as the principal minimum of the

effective potential.
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Figure A.2: Effective partial pair potential for liquid Al from core radius rc=0.15 a.u

to 0.90 a.u.

Figure A.2 shows the Veff (r) as a function of r for the trivalent metal Al. Here, it

is seen that the first minimum lies in the positive energy region of Veff (r) even seen

for the smallest core size used in the calculation and it behaves like a local minimum.

The energy level of this local minimum moves upward and at the same time position

of the minimum shifts to large r as Rc value increases. After certain value of Rc,

which may be referred to as critical core radius Rc
c, this local minimum disappears

from the scene completely, and then second minimum, then becomes the principal

minimum as shown by Zn.
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Figure A.3: Effective partial pair potential for liquid Sn and Bi from core radius

rc=0.15 a.u to 0.90 a.u respectively.

Similar trends of changing in the local minimum are also found in the case of

tetravalent (Sn) and pentavalent (Bi) metals (see Figure A.3). But, in the latter

cases, the level of the well of the local minimum goes to higher and higher energy

positions with increment of Rc
c. Other minor differences in the behavior of local

minimum, between different monovalent and polyvalent metals are also discussed in

Figure A.4.

Let us now look at, what is the underlying physics involved in forming the local

minimum in the effective pair potentials of some polyvalent metals. From the global

perspective of the metallic sample, increment of the core size increases the distance

r, from the center of the core to the nearest conduction electron in metals, and thus

reduces the strength of the electron-ion interaction due to the fact of the Coulomb

potential energy is inversely proportional to r.

As a result, magnitude of the form factor F (q) diminishes, because Rc lies in the

argument of the cosine function (see eqn (3.59)). On the other hand, the attractive in-

direct interaction is proportional to |F (q)|2 (see eqn (3.60) and (3.61)). Consequently,

attractive indirect interaction term gets weaker with increasing Rc, and the repulsive
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Figure A.4: (a) Position of minimum of the 1st well of Veff (r) as a function of Rc.

(b) Energy level of the 1st well of Veff (r) as a function of Rc.

direct term becomes relatively stronger and dominates to reduce the depth of the

well. It is informative that the conduction electron density (ρ=nZ; n being ionic

number density) of Na, K, Zn, Al, Sn and Bi at T= 300 K are 0.025, 0.013, 0.0136,

0.180, 0.0140 and 0.140 Å
−3

respectively. So. ρ is the largest for Al the smallest for

K, for the rest density lies in following order, ρAl > ρBi > ρSn > ρZn > ρNa > ρK .

Now it is clear that, the depth of the well of Veff (r) reduces due to the interplay

between the repulsive direct and attractive indirect interactions of equation (3.60).

The interesting thing is that, as the core size (Rc) increases the principal well gradu-

ally rises keeping the well in the memory [139–141] and, it continuous until a critical

core radius Rc
c, is reached for each metal.

For, Rc = Rc
c, the form factor F (q) becomes such a weak that the local minimum

of Veff (r) in the memory is then totally lost, it means, the local minimum disappears

completely. It is interesting to note here, that the values of Rc
c are found to be ∼ 90Å

for all polyvalent systems. Figure A.4(a) shows the amount of shifting of the first

minimum of the Veff (r) for different values of Rc and for different metals. In a general

point of view, it appears that the slope of shifting of minimum versus Rc curve is
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the smallest for mono-atomic metals Na and K, respectively, and it is much larger

for polyvalent metals. That is, increase of Rc value cause polyvalent metals to shift

position of minimum of Veff (r) to large r much than monovalent ones.

It is also noticed from Figure A.4(a), that the position of the first minimum for

the smallest Rc value lies at the larger r for mono-atomic metals than polyvalent

ones. Interestingly, for the smallest value of Rc, positions of first minima are almost

same for all polyvalent metals irrespective of their valence Z. But the lines indicating

shifting of position of minima differ from each other with increasing Rc, and cross

each other at large Rc.

Figure A.4(b) illustrates how the energy level of the first minimum of the effective

inter-ionic potential varies with the change of Rc values. In this case, it appears that

Na, K, Zn and Al show one kind of trends and, Sn and Bi showed that a different

one. Metals belong to the former group are monovalent, divalent and trivalent, and

and in the later group are tetravalent and pentavalent. From Figure A.4(b) it is also

noticed that, for the smallest value of Rc(=0.015 Å) energy level of the first minimum

is positive for Al, Sn and Bi., whereas it is negative for others (i.e for Na, K, Zn).

That is, polyvalent metals Al,Sn and Bi exhibit local minima even from the

smallest core size chosen and the divalent Zn shows at larger values of Rc; but Na

and K never show. Figure A.4(b) illustrates another very interesting feature that, the

energy levels of the first minimum at the smallest value of Rc are different for different

metals and varies in the following order, V Al
eff > V Bi

eff > V Sn
eff > V Zn

eff > V Na
eff > V K

eff .

Interestingly enough that, the conduction electron density of the envisaged systems

varies exactly in the same order as Veff (r). This obviously raises a question that,

is the energy level of the first minimum at the smallest possible core size strongly

related to the conduction electron density of the corresponding metals?

In order to address the above question, and to find any possible relation between
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Figure A.5: Efective partial pair potential for liquid Na and Zn for fixed core radius

rc=0.15 a.u, but for different electron number density, ρ(=nZ).

the energy level of the local minimum and the conduction electron density we have

calculated Veff (r) for different conduction electron densities keeping Rc constant.

These calculated results are presented in Figure A.5 and Figure A.6. Here, it is

worth for nothing that, as the direct interaction depends on chemical valence Z,

we kept Z fixed for each system and varied ionic number density, n, in calculating

conduction electron densities ρ(=nZ) for different metals. Figure A.5 and Figure

A.6 showed that, the energy level of the first minimum i.e. the depth of the potential

well reduces with increasing ρ and at the same time the position of the minimum

shifts towards small r; the later trend is just opposite to that found for increasing Rc.

The indirect interaction term of equation (3.59) depends on both Z and conduction

electron density through the dielectric function. It is therefore obvious that, with the

increase of ρ dielectric function increase and consequently indirect attractive term

will get weaker. This will cause reduction of the potential well of Veff (r). This is what

exactly displayed in Figure A.5 and Figure A.6. From Figure A.5, and Figure A.6,

it is also noticed that, at metallic density of the individual element, the minimum

energy level and position of local minimum for Rc=0.15 Å matches exactly with
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Figure A.6: Efective partial pair potential for liquid Al, Sn and Bi for fixed core

radius rc=0.15 a.u, but for different electron number density, ρ(=nZ).

those in Figure A.1, Figure A.2 and Figure A.3. Here, it is relevant to note that the

local minimum disappears again when ρ ∼ 0.36 Å
−3

for all polyvalent metals. The

knowledge of variation of Veff (r) with change of electron density might be useful in

the study of physical properties at high pressures, because the density will increase

with increasing the pressure.
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A.3 Conclusion

We have systematically investigated for the first time that, the effect of core size of the

ion, and the role of conduction electron density on the inter-ionic pair interactions of

monovalent and polyvalent metals. The effective inter-ionic interaction is described

by the Ashcroft empty core model [15] and Ichimaru- Utsumi theory for dielectric

function [67]. From the analysis of the core radius Rc and the conduction electron

density ρ, we can draw the following conclusions:

(i) The depth and position of the first minimum of Veff (r) are results of delicate

valence between the repulsive direct and attractive indirect interactions.

(ii) The depth of the first minimum of Veff (r) reduces and at the same time its

position shifts towards large r with increasing values of Rc, and an opposite

trend of shifting towards small r happens with increasing electron density ρ.

But any local minimum has not not been found at all for monovalent metals.

Only polyvalent metals are exhibiting the local minimum.

(iii) The local minimum and its position are results of combined effects of the core

size and the conduction electron density. Effects of core size dominate at large

Rc and that of ρ, dominates Rc.

(iv) Among polyvalent metals divalent Zn does not exhibit a local minimum initially

but it does for large values of Rc, whereas all other polyvalent systems with

Z > 2 show local minimum right from the smallest value of Rc chosen.

(v) For Rc > Rc
c form factor, F (q), becomes negligibly small. The critical values of

core radius are almost same (0.90 Å) for different metals.

(vi) At the smallest possible of core size, the energy level of the first minimum of

Veff (r) is mostly determined by conduction electron density of metals, that is,
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the level of the minimum is higher with larger value of ρ. But, for large values

of Rc, energy levels are affected by the core size. Then the initial relative order

of magnitudes of minimum energy level for different metals understudy is not

strictly followed; they may cross each other.
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Effects of Local Minimum

appeared in Inter-atomic Potential

on Atomic Transport of Liquid

Aluminium

B.1 Introduction

The study of the relationship between the structural and the thermodynamic prop-

erties of metallic liquids has been attracted to scientists and metallurgists because of

its importance in both academic and industrial researches. Universal Scaling Laws

(USLs) proposed by Dzugutov [85] and Rosenfeld [121] showed how the structure and

thermodynamics are connected to the transport coefficients, for example, the diffu-

sion and the shear viscosity coefficients. Diffusion and shear viscosity coefficients are

usually known to play a important role for a detailed understanding of the solidifica-

tion process including crystal growth [135–137], vitrification [138] and in the casting

industry as well [139–141].
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Very recently, the authors in ref. [57] performed a study on thermodynamic mixing

behaviors for liquid binary segregating alloys, namely Al1−xSnx at near the melting

temperature (973 K) of Al where they had seen some interesting features in the

potential of the liquid binary alloys [56]. The interesting feature is that, a local

minimum is appeared near the principal potential well and it is shifted from its

negative region to the upper positive region [56, 73–75] with increasing core radius,

rc of liquid Al, which motivated us to study in the mentioned topics.

Atomic transport properties can be studied either using theoretical approaches

[148–151], or experimental techniques [151–153] or computer simulation methods

[85,121,149,151,154]. Recently, USLs [155] have been widely used to calculate trans-

port coefficients theoretically, especially for high temperature melts, we should note

here that, in ref. [148], the author used 3 body excess entropy for the calculation

of diffusion coefficient. In ref. [149], Ju Yuan et .al have observed the the effects of

variation of temperature to calculate diffusion coefficients from molecular dynamics

where the chosen potential is obtained from the Embedded atom method (EAM).

In addition, shear-viscosity using the Stokes-Einstein relation have been studied and

then compared their MD results with experimental data [149]. Differently from the

above consideration, Iida et .al [150], Iida et .al introduced a new parameter indi-

cating the hardness and softness of the interaction to calculate transport properties.

Still the problem was that, this considered model is dependent on experimental data.

In ref. [151], temperature dependent self diffusion coefficients of liquid Al has been

studied experimentally by using incoherent quasi elastic scattering theory. Besides

they also compare the self diffusion coefficients results with calculated results using

the Sutherland-Einstein relation instead of Stokes-Einstein relation. The calculated

and experimental results agree surprisingly well.

Apart from the theoretical study, these properties can be studied experimentally,
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for example, Demmel et .al [153] has been performed the coherent quasi-elastic neu-

tron scattering for the study the diffusion coefficients of liquid Al. They also compare

their experimental results with theoretical results obtained from Stokes-Einstein re-

lation and some MD results obtained from different potential like pseudo-potentials

and first-principles molecular dynamics. In ref. [151], the authors used highly pure

Aluminium (99.99) as Hydro-Aluminium. In ref. [152], the oscillating vessel viscome-

ter has been performed to measure experimentally viscosity for liquid metals such as

Al at various temperatures.

Recently, simulation studies come forward to explain diffusion and viscous behav-

ior of liquid metals, such as, Kargil et al. did MD simulation with different model

potential like LOARH, MKBA1, LEA and MDSL and then compare them to their

experimental results. In ref. [154] had chosen ab initio molecular dynamics for the

study of diffusion and viscosity of liquid Al. In their article, they compared the re-

sults obtain from MD with experimental data and different MD results obtain from

different potentials. Dzugutov et .al [85] introduced a Universal scaling law based

on the microscopic origin for diffusion coefficients for liquid metals and combined

it with MD simulations. Before that, in Ref [121], Rosenfeld studied the transport

properties using USL described from the macroscopic parameters. For finding the

transport coefficients using USLs, temperature dependent excess entropy is the main

ingredient. Besides al this articles discussed above some other articles for Pasturel

et .al [155–157], where they studied about the MD simulations with different poten-

tials and combined it with Stokes-Einstein formula and excess entropy used as for

basic ingredient.

In those studies [148–158], we have observed that for calculations of atomic trans-

port properties, the prescribed theories are revised from different point of views, but

the effect of local minimum or local structures appeared at low rc for liquids Al, Bi,
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Sb. etc. on the transport properties has not been considered with the combination

of USLs and empty core model(EMC) potential.

Therefore, we, in the present article, intend to study for the first time to investi-

gate the atomic transport coefficients for liquid Al at near its melting temperatures

using the EMC model [4] for inter-ionic interaction along with VMHNC theory. The

principle reason for applying the EMC model in the present study is to understand

the behavior of interaction in valence level with change of its core radius, rc. Es-

sentially, the EMC model potential is a local potential which makes an effective

complete cancellation in the region r < rc [4]. Actually it consists of both repulsive

and attractive interaction between ions. The repulsive inter-ionic interaction in the

model is manifested by just Coulomb interaction, where as the attractive inter-ionic

interaction is mediated by conduction electron density [56]. Considering all the facts

mentioned above, we have studied the transport coefficients of liquid Al with EMC of

various core radius with VMHNC theory to see either this combination can explain

the transport properties or not.

The layout of the Appendix is as follows: In section 2, we describe theory in brief

related with the study. In section 3, we will present our obtained results and then

discuss with arguments. Finally, in section 4, we conclude the study with future plan.

B.2 Theory

The theory we have used in this study are given below,

B.2.1 Scaling Laws for Transport Coefficients

The relation between the transport coefficients and structural properties, the USLs

are proposed by several authors [85,86,121,122]. Among them, Rosenfeld [82] consid-
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ered macroscopic reduction parameters, temperature and density whereas Dzugutov

and Li [85,122] considered microscopic reduction parameter, collision frequency and

hard sphere diameter (HSD) to calculate transport coefficients. Hoyt et al. [121]

applied scaling law provided by Dzugutov et al. [85] to calculate transport coeffi-

cients numerically for various systems with different potentials. Following Dzugutov,

recently, Li et al. [122] proposed a similar scaling relationship for viscosity. These

are as follows.

Atomic transport coefficients, namely the reduced diffusion coefficient (D∗R), and

the reduced shear viscosity (η∗R) proposed by Rosenfeld et al. [121] may be written

as,

D∗R = D
n1/3

(kBT/m)1/2
(B.1)

η∗R = η
n−2/3

(mkBT )1/2
(B.2)

where, n, and T are the number density and temperature of the systems re-

spectively. These macroscopic reduction parameters (n and T ) were chosen for

the reduced transport coefficients. Based on the hundreds of simulation results

[121,122,158], the reduced transport coefficients can be written as,

D∗R = 0.6e0.8Sex (B.3)

η∗R = 0.2e−0.8Sex (B.4)

where, Sex is the excess entropy of the sytems. The excess entropy, Sex, can be

approximated using the two-body contribution as,

S2 = −2πn

∫ ∞
0

{g2(r) ln[g(r)]− [g2(r)− 1]}r2dr (B.5)
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where, g2(r) is the pair distribution function.

In 1996, the scaling law for diffusion coefficients is revised by Dzugutov [85] using

the microscopic reduction parameters, collision frequency Γ, and HSD, σ. In 2005,

following Dzugutov, Li [122] defined a scaling law relation for viscosity. Based on the

microscopic reduction parameters, they defined the following reduced diffusion and

viscosity coefficients,

D∗Z = D
1

Γσ2
(B.6)

η∗L = η
σ

Γm
(B.7)

where collision frequency Γ according to Enskog theory is,

Γ = 4σ2g2(σ)n(πkBT/m)1/2. (B.8)

where, g2(σ) is the pair distribution function evaluated at hard sphere diameter, σ.

The hard sphere diameter was chosen at the position of first principal peak of g2(r).

Based on the hundreds of simulation results for the reduced transport coefficients,

they proposed the following scaling laws,

D∗R = 0.049eSex (B.9)

η∗R = 0.035e−0.55Sex . (B.10)

B.2.2 The Empty Core Model Potential(EMC)

The Empty core potential (EMC) for one component metallic systems may be ex-

pressed as [4, 125],
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Wb(r) =



0; if r < rc,

−Ze2/r; if r > rc.

(B.11)

Where, rc, Z, and e are the core radius, the effective s-electron effective valence

and the electronic charge respectively. The unscreened form factor of equation (B.11)

is [4, 73–75],

vij(r) = −4πZρ

q2
cos(qrc) (B.12)

where, ρ is the ionic number of density, q the momentum transfer. If we observe

the equation (12) then we can noticed that the core radius rc, enters into the form

factor of the interaction through the scattering matrix. This form factor finally

carries the rc into the inter-ionic interaction.

Within the pseudo-potential formalism, the effective inter-ionic pair interaction

can be written as,

veff (r) =
Z2

r

[
1− 2

π

∫
dqIN

sin(qr)

q

]
(B.13)

Here, the energy wave number characteristic can be defined as,

IN = [
q2

πnZ
]2|V (q)|2

[
1− 1

ε(q)

][
1

1−G(q)

]
(B.14)

Where, V (q) denotes the local pseudo-potential of the component and n the

number density of ions. Besides ε(q), and G(q) the dielectric screening function and

the local field factor, respectively. Here, the dielectric function,

ε(q) = 1−

[
4πe2

q2
χ(q)

1 + 4πe2

q2
G(q)χ(q)

]
(B.15)
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Where, χ(q) is Lindhard function,

χ(q) = −mkF
π2~2

[
1

2
+

4k2
F − q2

8qkF
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣] (B.16)

B.2.3 VMHNC Integral Equation Theory

The VMHNC theory, originally proposed by Rosenfeld [121], belongs to a new gener-

ation of integral equation theory of liquid. Like most other integral equation theories,

the VMHNC solves the Ornstein-Zernike (OZ) equation with a closure relation

g2(r) = exp

[
h(r)− c(r)− βueff (r)−B(r)

]
(B.17)

Table B.1: Temperature dependent number density (ρ), hard sphere diameters (σ)

and excess entropy (SE) for our concerned liquid.

T (K) ρ σrc0.90 σrc1.092 σrc1.20 SErc0.90
SErc1.092

SErc1.20
SEExpt.

950 0.05314 2.4814 2.6100 2.6785 -1.5396 -2.9101 -4.5281 -3.55

975 0.05298 2.4772 2.6057 2.6740 -1.5219 -2.8594 -4.4208

1000 0.05282 2.4732 2.6014 2.6696 -1.5047 -2.8118 -4.4073

1025 0.05267 2.4691 2.5971 2.6653 -1.4883 -2.7658 -4.3094 -3.40

1050 0.05251 2.4651 2.5930 2.6610 -1.4719 -2.7218 -4.2133

1075 0.05236 2.4612 2.5888 2.6567 -1.4552 -2.7114 -4.1232

1100 0.05220 2.4573 2.5847 2.6525 -1.4408 -2.6633 -4.0348

1125 0.05204 2.4535 2.5807 2.6484 -1.4245 -2.6263 -3.9499

1150 0.05189 2.4497 2.5767 2.6443 -1.4104 -2.5868 -3.8706

where g2(r), h(r), c(r), B(r) and β denote pair correlation function, total corre-

lation function, direct correlation function, bridge function and inverse of tempera-
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Figure B.1: (a) Hard sphere diameter for core radius, rc= 0.90 a.u, 1.092 a.u and

1.20 a.u respectively for liquid Al. (b) Excess entropy for core radius, rc= 0.90 a.u,

1.092 a.u and 1.20 a.u respectively for liquid Al.

ture times Boltzmann constant, respectively. The bridge function B(r) is approxi-

mated by using the analytic solution of the Percus-Yevick equation for HS namely

B(r) = BHS
PY (r, ζ). ζ is the variation parameter which is determined by minimizing

the free energy.

B.3 Results and Discussion

We have presented the effects of local minimum on the calculation of temperature

dependent atomic transport co-efficients, namely the shear viscosity and the diffusion

coefficient of liquid Al using USLs. As we said earlier, the essential ingredients of the

study are the temperature dependent effective HS diameter σ(T) and excess entropy,

Sex in USLs. To calculate Sex, we have used equation (5), where g2(r) is obtained

using VMHNC [121] with EMC model potential of various core radii.

EMC model [4, 125] has been developed from the combination of a perturbation

scheme and the statistical mechanics approach. It has two parameters, namely core

radius, rc and valency Z. Before the numerical calculation, one has to fix them. In
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this study, the parameter, rc, has been chosen from the fitting of the experimental

data [29] of g2(r). The fitting values of rc=0.90 a.u, 1.092 a.u, and 1.20 a.u have

been plotted in Figure B.2 and potential full profiles plotted in Figure B.3 (a-f).

The valency Z=3.0 [57], has been chosen for liquid Al. Once the parameterization

is done, the rest of the calculations for the transport coefficients are parameter free

and theoretically much consistent and sound. Consequently accuracy is much more

reliable.

The results for the transport coefficient namely the shear viscosities, η has been

calculated using core radius rc=0.90 a.u, 1.092 a.u, and 1.20 a.u for EMC model,

respectively. On the other hand, the diffusion coefficients, D have been calculated

by using the EMC model only for understanding the core interactions very deeply

[17, 28, 29, 37]. Valency Z=3.0 has been taken for this model. Values of atomic

transport coefficients are very sensitive to the profile of the potentials and their

corresponding pair correlation functions.

Figure B.1 represents the profile of (a) the hard sphere diameter (σ) and (b) excess

entropy (Sex) of liquid Al at three different rc=0.90 a.u, 1.092 a.u and 1.20 a.u. In

each rc, we have studied the transport coefficients from T=950 K to 1150 K, and we

observe that, the value of σ is maximum at low temperature and it starts to decrease

with increasing the temperatures. It is observed that, the value of Sex is negative

from whole range of temperature from three different rc, which is consistent with

our theory. At T=950 K, the negative value is minimum and at T=1150 K negative

value is maximum which is also consistent with our theory. Table B.1 represent the

numerical value of number density (ρ), σ, and Sex.

The pair correlation function g(r) for liquid Al at different core radius rc=0.90 a.u,

1.092 a.u and 1.20 a.u have been presented at T=1323 K for fitting the parameters and

compare them with available experimental data [29] in Figure.2. The peak value is
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Figure B.2: Pair correlation function for liquid Al with EMC model for core radius,

rc= 0.90 a.u, 1.092 a.u and 1.20 a.u respectively. The red circles are corresponding

experimental data [29].

maximum for rc=1.20 a.u and minimum for rc=0.90 a.u. It is also observed that, the

peak value is shifted slightly right side for increasing rc. It directly indicate that, the

empty core size is also increasing. But if we see the value of η and D in Table B.2 and

Table B.3, it can be easily said that, it causes the effect for this transport coefficients

and which are not consistent with theoretical [148–151], experimental [151–153] and

simulated data [85,121,149,151,154].

Figure B. 3(a-f) represent the effective partial pair potentials u(r) for Al with

three different core radius rc for finding the interaction with EMC model at different

thermodynamic temperatures. In Figure B. 3(a-f), it can be seen that, the well

depth of the first minima is maximum for rc=1.20 a.u, and if we start to decrease the

value of rc then the first minima value also decrease in Figure B. 3(e-d)) and after

certain value of rc the first minima is just disappeared Figure B. 3(a-b) which is very

interesting features of liquid Al in interaction level.

It means that after certain value of rc, the interaction is very low and sometimes

there might be no interaction [57, 73–75] and we have found the similar pattern on
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our study. At high rc, the values of η and D are maximum and far deviate from the

results of theoretical, experimental and simulation. Figure B. 3(b,d,f) provide the

informations that, the position of first minima also slightly shifted from left side to

right side. The depth of the potential well also related with temperature. It is seen

in Figure B. 3(b,d,f) that, the potential well depth also increase with the increasing

temperatures [151, 154]. This behavior still remains where there is no interaction in

ion.

Table B.2: Presents viscosities of liquid polyvalent Al metal. Calc.1 present calcu-

lated viscosities by Empty Core model with core radius rc=0.90 a.u, 1.092 a.u and

1.20 a.u respectively. Similarly, Calc.2 present calculated viscosities by Rosenfeld

model with core radius rc=0.90 a.u, 1.092 a.u and 1.20 a.u respectively. Calculated

viscosities are compared with Experimental, Theoretical and Simulated results.

T (K) η(mPa s)

Expt. Calc.1 Calc.2 Theory Sim

[152] rc0.90 rc1.092 rc1.20 rc0.90 rc1.092 rc1.20 [148–150] [154] [85] [121]

950 1.298 0.452 1.292 3.917 0.2358 0.706 2.576 1.125 - 1.36 1.21

975 1.235 0.444 1.226 3.538 0.2351 0.685 2.390 1.05-1.237 - - -

1000 1.178 0.440 1.178 3.397 0.2343 0.666 2.390 - 1.05-1.51 1.25 1.15

1025 1.126 0.439 1.144 3.150 0.2337 0.649 2.233 1.10 - - -

1050 1.079 0.446 1.119 2.954 0.2330 0.633 2.088 1.035 1.15 1.17 1.01

1075 1.035 0.470 1.118 2.803 0.2322 0.634 1.962 0.935 - 1.155 -

1100 0.996 0.484 1.091 2.756 0.2317 0.616 1.846 0.95 1.0 1.13 0.92

1125 0.959 0.489 1.074 2.817 0.2308 0.603 1.740 - 0.98-1.21 1.07 -

1150 0.925 0.486 1.048 2.811 0.2303 0.590 1.648 - 0.88 1.05 0.85
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Figure B.3: Figure: (a) and (b) representing the potential well for rc=0.90 a.u. for

two different range. Similarly, Figure: (c) and (d), Figure: (e) and (f) representing

the potential well for rc=1.092 a.u. and 1.20 a.u, respectively.
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Table B.3: Diffusion coefficients of liquid polyvalent Al metal. Calc.1 present calcu-

lated diffusion coefficients by Empty Core model with core radius rc=0.90 a.u, 1.092

a.u and 1.20 a.u respectively. Similarly, Calc.2 present calculated diffusion coefficients

by Rosenfeld model with core radius rc=0.90 a.u, 1.092 a.u and 1.20 a.u respectively.

Calculated diffusion coefficients are compared with Experimental, Theoretical and

Simulated results.

D(10−9m2s−1)

T (K) Expt. Calc.1 Calc.2 Theory Sim.

[153] [151] rc0.92 rc1.092 rc1.20 rc0.90 rc1.092 rc1.20 [151] [149,151]

950 6.097 - 19.744 7.845 2.094 25.092 8.383 2.297 6.20-6.50 -

975 7.060 7.14-7.26 19.841 8.015 2.167 25.809 8.853 2.538 - -

1000 7.311 - 20.085 8.250 2.222 26.528 9.323 2.601 7.80-7.82 4.39-6.42

1025 - 7.20-8.60 20.435 8.560 2.328 27.239 9.802 2.851 - 5.05

1050 8.776 8.10-9.50 21.211 8.918 2.521 27.961 10.287 3.119 9.10-9.25 4.11

1075 - - 22.809 9.014 2.738 28.699 10.506 3.395 - 5.47-5.81

1100 9.696 - 23.914 9.433 3.074 29.396 11.055 3.690 10.20-10.40 -

1125 - - 24.645 9.783 3.566 30.151 11.528 3.998 - 6.17-8.75

1150 11.1201 - 24.949 10.11 4.005 30.858 12.041 4.311 11.30-12.02 7.17-9.97

The pair correlation function (g(r)) of Al with different rc has been presented in

Figure B. 4(a,b) with different temperature. Figure B. 4(a) represents the character-

istics of g2 for rc=0.90 a.u, 1.092 a.u and 1.20 a.u at temperature 950 K. The peak

value is maximum for rc=1.20 a.u and minimum for rc=0.90 a.u, where there is very

low interaction in core. On the other hand, Figure B. 4(b) presents g(r) for rc=1.092

a.u at temperature T=950 K and 1150 K. But, the change of g(r) is very negligible.
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Figure B.5 represents the verification of stokes-Einstein law. From the Figure, we

can easily claim that, the multiplication of transport coefficients of liquid Al violates

the stokes-Einstein law.

Table B.2 represents the shear viscosities, η for liquid Al at different temperatures

with core radius rc=0.90 a.u, 1.092 a.u, and 1.20 a.u, respectively using the USLs

for both Dzugutov [85] and Rosenfeld [121] approach. Here, Cal.1 and Cal.2 denote

the results for shear viscosity using the method of Dzugutov [85] and Rosenfeld

[121], respectively. It is seen that, the conjunction of EMT model with VMHNC

approximation does not work very well to predict results of η near the core region,

and also far distance of core. Moreover, the combination can predict the results

for η within Dzugutov [121] approach works nicely. At rc=1.092 a.u, the calculated

results are very close to experimental, simulated and some other theoretical results.

For rc=1.20 a.u, the calculated results are larger than our reference and rc=0.90 a.u

obtained results very low to compare with them.

Similarly, the atomic diffusion coefficients, D for liquid Al has been presented

in Table B.3, for three difference core radius. The trends are very common for D.

The calculated results obtain from Dzugutov [85] are more physical than the results

from Rosenfeld [121]. With increasing the temperature the diffusion coefficients also

increase, but the increase rate are very slow. But the results are found to be very

close to the experimental data’s [151,153], and some other simulated and calculated

data’s.

Table B.4 represent the stokes-Einstein law verification data. From the table, we

can easily claim that, the multiplication of this two transport coefficients is almost

same. So, the results we have obtained is good enough for liquid Al.

We have observed that, the Universal Scaling Laws proposed by Dzugutov [85]

work very well to investigate the transport coefficients for liquid Al than Rosenfeld
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Figure B.4: (a) Black circle, dashed line and black-white circle representing the pair

correlation function with temperature 950 K for core radius rc=1.20 a.u, 1.092 a.u and

0.90 a.u respectively (b) Triangle and dashed line representing the pair correlation

function with different temperatures for T= 950 K and 1150 K respectively with core

radius, rc= 1.092 a.u.
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Table B.4: Verification of Stokes-Einstein Law.

T (K) η(mPa s) D(10−9m2s−1) η*D

950 1.292 7.845 10.135

975 1.226 8.015 9.8263

1000 1.178 8.250 9.7185

1025 1.144 8.560 9.7926

1050 1.119 8.918 9.9792

1075 1.118 9.014 10.077

1100 1.091 9.433 10.291

1125 1.074 9.783 10.506

1150 1.048 10.110 10.5952

[121] approach. Among the three core radius, rc=0.90 a.u, 1.092 a.u, and 1.20 a.u,

we have observed that, at nearest core region rc=1.092 a.u the transport coefficients

results are found to be very close with experimental [148–151], simulation [85, 121,

149,151,154] and other theoretical [148–151] results.

In the inter-ionic interaction, the depth of the first minimum of Empty Core

(EMC) potential profile also increases with the increasing of rc value. The reverse

trend is found, that if we decrease the value of rc the well depth also decrease and

at certain value of rc, the mimimum is just disappeared which is very interesting. A

further study is required to understand this behavior.

Another interesting feature at rc=0.90 a.u, the calculated results for η are very low

for both Dzugutov [85], and Rosenfeld [121] to compare with other results. Similarly,

for D the results are very high. This behavior suggests us that, the interaction is

very low or interaction empty in that core region within the ion.
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B.4 Conclusion

A combination of EMC and VMHNC can give a good starting point for the study

of the atomic transport coefficients for polyvalent simple elements. From the point

of view for USLs, it can work very nicely for polyvalent simple elements. Finally, we

would like to extend our study for different polyvalent systems, for understanding the

potential well behavior in core level as well as how the transport coefficients change

with changing its core radius.
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Some Relevant Theories for

Liquids

C.1 Pair Distribution Function for Liquids

For a canonical ensemble or NΩT ensemble the normalized equilibrium probability

density f
(N)
0 for a system of homo-nuclear atoms of the number, N is given by

f
(N)
0 (r̄1, ......, r̄N , p̄1, ......, p̄N) =

exp [−βH(r̄1, ......, r̄N , p̄1, ......, p̄N)]

N !h3NZN(Ω, T )
(C.1)

where the number N ! comes from indistinguishably of particles, β = (kBT )−1,

kB denotes Boltzmann constant, T is the temperature and h is the Plank’s constant

and normalizing factor ZN(Ω, T ) is the configuration partition function which can be

expressed as,

ZN(Ω, T ) = Tr exp(−βH) (C.2)

The trace runs over both electronic and ionic states of the system. By using
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adiabatic approximation we may separate electronic and ionic states as [15] in the

total partition function

QN =
1

N !h3N

∫
dr̄1, ......, dr̄N

∫
dp̄1, ......, dp̄NTre exp(−βH) (C.3)

where Tre refers to a complete set of electronic states corresponding to particular

ionic configuration. In the case of classical statistics for ions the integration over the

momentum in trivial. Then the total partition function comes:

QN =
1

N !

[2πM
h2β

]3N/2
ZN(Ω, T )

=
1

N !
Λ3NZN(Ω, T )

(C.4)

where, Λ =
(
MkBT/2π~2

) 1
2 is the partition function for the kinetic energy in one

dimensional motion∗ and ZN is the confrontational partition function and is defined

as

ZN(Ω, T ) =

∫
dr̄1, ......, dr̄N exp(−βHii) {Tre exp [−β(He +Hee +Hei)]} (C.5)

since Hii is independent of electronic coordinates in equation (C.5) the term

inside the curly brackets is just exp
[
−βF ′(r̄1, ......, r̄N)

]
where F ′(r̄1, ......, r̄N) is the

Helmholtz free energy of an electron system interacting in the presence of an external

potential describe by Hii. The latter corresponding to the fixed ionic configuration

(r̄1, ......, r̄N). Within the same approximation approach F ′ can be evaluated which

we discuss in Chapter 3. Once F ′ is evaluated the electronic degrees of freedoms

disappear and the problem is reduced to that of a classical fluid in which the ions

move in an effective interaction potential given by

UN = Hii + F ′ (C.6)

∗Λ−1 is the de Broglie thermal wavelength
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Equation (C.5) can now be written as

ZN(Ω, T ) =

∫
dr̄1, ........., dr̄N exp(−βUN) (C.7)

From the above, we see that the direct evaluation of the configuration partition

function ZN of a liquid is very difficult because of the complicated positional depen-

dence of the potential energy UN in the liquid. We know that [4], potential energy

of a metal consists of volume dependent part UΩ = NE(Ω) which is independent of

the relative positions of the particles and the structure dependent part which can be

approximately (neglecting many-body interactions) taken in to account as a sum of

pairwise additive potentials of central force type u(rij), where rij is the separation

distance between atoms i and j. So the total potential energy turns in the form

UN (r̄1, ......, r̄N) = NE(Ω) +
1

2

N∑
i 6=j

u(rij). (C.8)

We should note here that, the configuration partition function ZN for liquids

is mathematically intractable because of the presence of the pair potentials. So the

concept of distribution function or correlation function is conveniently adopted in the

theory of liquids. In this approach, the probability of configuration grouping of two

or more particles are introduced so that the use of such a function may give the same

information on the properties of liquids as is obtained from the direct calculation of

the configuration partition function [15].

Consider a small volume d3r in a system of uniform density. Now the probability

of finding a particle in such an element is nd3r, where n is the number density defined

as N/Ω. n is also regarded as the one body distribution function n(1). The subsequent

case in the hierarchy of the groups of particles is concerned with the two body or

pair distribution function n(2). If d3r1 and d3r2 be the two volume elements separated
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by a distance r = |r̄2 − r̄1| the probability of finding particles in these two elements

is given by n(2)(r)d3r1d
3r2. Similarly, we may define the higher order distribution

function n
(L)
N (r̄1, ......, r̄N) for the group of L particles as,

n
(L)
N =

N !

(N − L)!

∫
......

∫
dr̄L+1......dr̄N exp(−βUN)

ZN
(C.9)

which is related to the L-particle distribution function g(L)(r̄),

g
(L)
0 (r̄1, ......, r̄L) =

n
(L)
N

nL
=

N !

nL(N − L)!

∫
......

∫
dr̄L+1......dr̄N exp(−βUN)

ZN
(C.10)

putting L = 2 in equation (C.10) we get pair distribution function (PDF) [15]

g
(2)
0 (r̄1, r̄2) =

N(N − 1)

n2

∫
......

∫
exp(−βUN)dr̄3..............dr̄N

ZN
(C.11)

The inter-ionic interaction in simple liquid is spherically symmetric. Therefore,

g(r̄1, r̄2) depends only upon the relative distance r̄2 − r̄1 = r̄ between particle 1 and

2. Hence, in such case PDF is g(r̄1− r̄2) = g(|r̄1− r̄2|) = g(r). It is very important to

note that PDF g
(2)
0 is of central importance in the theory of liquid. Experimentally

this function can be determined from the X-ray or neutron diffraction experiments.

In grand canonical ensemble, we define the densities as,

n(n)(r̄n) =
1

Ξ

∞∑
N≥n

Zn

(N − n)!

∫
........

∫
exp

(
−βUN(r̄N)

)
d̄rn+1........d̄rN

=
1

Ξ

∞∑
N≥n

ZN

N !
ZNn

(n)
N (r̄n) (C.12)
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where the partition function of the grand canonical ensemble is given as,

Ξ =
∞∑
N≥n

exp(−βµN)

N !h3N

∫ ∫
exp
[
−βH

(
r̄N , p̄N

)]
d̄rN d̄pN (C.13)

µ is the chemical potential. Equation (C.12) has the normalization condition

∫
n(n)(r̄n)d̄rn =

〈
N !

(N − n)!

〉
(C.14)

Applying two particle density in the above normalization condition we get

∫ ∫
n(2) (r̄1, r̄2) d̄r1d̄r2 =

〈
N
〉2 −

〈
N
〉

(C.15)

Now subtracting from n(2) (r̄1, r̄2) its asymptotic form n(1)(r̄1)n(2)(r̄2) we get from

equation (C.15)

∫ ∫ [
n(2)
(
r̄1, r̄2

)
− n(1)

(
r̄1

)
n(1)
(
r̄2

)]
d̄r1d̄r2 =

〈
N2
〉
−
〈
N
〉
−
〈
N
〉2

(C.16)

Replacing n(2) (r̄1, r̄2) for a homogeneous system by n2g(2)(r̄1− r̄2) and n(1)(r̄) by

n =
〈
N
〉
/V we get

1 + n

∫ [
g(2)(r̄)− 1

]
d̄r =

〈
N2
〉
−
〈
N
〉2〈

N
〉 = kBTχT (C.17)

This is known as compressibility equation [4]. We write equation (C.30) as

1 + n

∫
h(r̄)d̄r = kBTχT (C.18)
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where total correlation function h(r̄) is defined as

h(r̄) = g
(2)
0 (r̄)− 1 (C.19)

Practically equation (C.11) cannot be solved analytically for real effective [4,29,57]

inter-ionic pair potential for liquids. Eventually, different approximation methods are

used to evaluate g(r). We may classify these approximations in three major groups:

(a) The perturbation and variational theories, (b) The integral equation theories and

(c) Computer simulations. Some of these theories concerning our present studies are

discussed below.

C.2 Gibbs-Bogoliubov Variational Scheme

The statistical-mechanical variational principle is based on the minimizing of free

energy. The Gibbs-Bogoliubov method becomes the most popular although there

are several other variational techniques [15]. This variational method gives a rigor-

ous lower bound to the exact partition function, namely an upper bound to the free

energy. In this method Helmholtz free energy of a real system is expressed in terms

of the free energy of the reference system along with the perturbation energy as an

additive or averaged over the reference system.

Now we may recall the partition function QN(Ω, T ) from equation (C.4) as

QN =
1

N !

[2πm
}2β

] 3N
2 ZN(Ω, T ) (C.20)

where ZN is the configuration partition function.

Now we may express the Helmholtz free energy in terms of the logarithm of the

partition function for an ion at temperature T as follows:
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F = −kBT lnQN(Ω, T ). (C.21)

The effective potential involved in the configuration partition function can be

rewritten as

UN = NE(Ω) + U ′(r) (C.22)

and

U ′(r) = Uref + Upert (C.23)

where NE(Ω) is the structure independent term of the total energy, Uref is the

contribution of the reference fluid and Upert is assumed to be pairwise additive inter-

action, which can be given as

Upert =
1

2

N∑
i 6=j

upert(rij). (C.24)

If F be the Helmholtz free energy of a system with Hamiltonian H and F0 be the

Helmholtz free energy of a system with a Hamiltonian H0, then it is found that [15]

F ≤ F0 +
〈
H −H0

〉
0

(C.25)

Here in equation (C.25) the symbol
〈
......

〉
0

means average over the system of

Hamiltonian H0 i.e.

〈
X
〉

0
=


Tr{X exp(−βH0)}
Tr{exp(−βH0)}

quantal case∫
X exp(−βH0)dNpdNq∫
exp(−βH0)dNpdNq

classical case

(C.26)
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where X represents any dynamical variable.

Equation (C.25) is known as Gibbs-Bogoluibov inequality which gives the upper

bound of the exact free energy [15]. Now if we take the system with subscript 0 as a

reference system we may write the equation (C.25) by using equation (C.22) as

FH ≤ Fref + E(Ω) +
〈
Upert

〉
ref

(C.27)

where,

〈
Upert

〉
ref

=
n

2

∫
Upert(r)gref (r)dr̄ (C.28)

FH in equation (C.27) denotes the free energy per atom.

In this method, any free parameter is determined by minimization of Helmholtz

free energy and this method is consistent with thermodynamics. The real system is

described by gref and F . This method works well for a wide range of temperature

and metallic densities [15] and holds for quantum and classical statistics [15] as well.

C.3 Derivative form for Entropy

The concept of Atomic Transport theory is described by the Statistical Mechanics.

According to the statistical mechanical theory of atomic or molecular [4] transport

properties of simple liquids, it is possible to calculate transport coefficient from the

knowledge of atomic or molecular properties, such as mass, and pair potentials and

the equation of motion only. The time correlation function and the memory function

is used to study the self-diffusion process in liquid metals, which is calculated from

the Hard-sphere diameter and the pair-potentials.

The microscopic expression for the hydrodynamic equation of liquids are taken

into account, and the time evolution of distribution functions appearing in those

expressions is considered from the point of view of kinetic theories developed by
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Kirkwood [59], Born and Green [4], Rice and Allnatt [59–64], and others. The vis-

cosity of liquid metals can be achieved using these atomic properties.

The most important forms of atomic transport properties are Viscosity, Thermal

conductivity, Electrical conductivity and Diffusion coefficient. The understanding of

these properties for liquid metals can be done using the neutron inelastic scattering

measurements. Such experiment allows us to determine a scattering law of dynamic

structure factor, S(q, ω) which is the Fourier Transformation of the space-time cor-

relation function of Van Hoove G(r, t). The shear viscosity of liquid metals is also

calculated using a moment method. Diffusion and Viscous coefficients of liquid alloys

are discussed from the same point of view as for pure liquid metals.

∫ ∫ [
n(2)
(
r̄1, r̄2

)
− n(1)

(
r̄1

)
n(1)
(
r̄2

)]
d̄r1d̄r2 =

〈
N2
〉
−
〈
N
〉
−
〈
N
〉2

(C.29)

Replacing n(2) (r̄1, r̄2) for a homogeneous system by n2g(2)(r̄1− r̄2) and n(1)(r̄) by

n =
〈
N
〉
/V we get

1 + n

∫ [
g(2)(r̄)− 1

]
d̄r =

〈
N2
〉
−
〈
N
〉2〈

N
〉 = kBTχT (C.30)

This is known as compressibility equation [15]. We write equation (C.30) as

1 + n

∫
h(r̄)d̄r = kBTχT (C.31)

where total correlation function h(r̄) is defined as

h(r̄) = g
(2)
0 (r̄)− 1 (C.32)

Practically equation (C.11) cannot be solved analytically for real effective inter-

ionic pair potential for liquids. Eventually, different approximation methods are used
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to evaluate g(r). We may classify these approximations in three major groups: (a)

The perturbation and variational theories, (b) The integral equation theories and (c)

Computer simulations. Some of these theories concerning our present studies are

discussed in Chapter 3.
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Appendix D

Phase Diagram

Phase diagram for Al1−xZnx System:

Figure D.1 presents the phase diagram for Al1−xZnx system for thermodynamic state

at 1000 K.

Figure D.1: Phase diagram for Al1−xZnx liquid binary system.
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Phase diagram for Al1−xInx liquid Binary System:

Figure D.2: Phase diagram for Al1−xInx system for liquid state at 1173 K.

Phase diagram for Al1−xSnx liquid Binary System:

Figure D.3: Phase diagram for Al1−xSnx system for liquid state at 1173 K.
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Phase diagram for Al1−xCux liquid Binary System:

Figure D.4: Phase diagram for Al1−xBix system for liquid state at 1373 K.

Phase diagram for Al1−xAux liquid Binary System:

Figure D.5: Phase diagram for Al1−xBix system for liquid state at 1338 K.
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