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ABSTRACT 

Establishing the causal relations of any disease or health event is crucial as to its prediction and 

protection is concerned. Taking dengue as a model case in the city of Dhaka, Bangladesh and 

Singapore, this study has ventured to apply an innovative step-by-step approach to find out the 

causal correlations within the climate-vector-disease associations as well as ecological and human 

variables in the cities of Dhaka and Singapore. The study has discovered a significant correlation 

amongst climatic variables and vector availability, ecological factors and vector abundance and 

between vector concentration and dengue occurrence in temporal and spatial dimensions. Also, 

the study has been able to establish the variation of dengue incidence in different seasons 

accounted for 30 years, and long-term trends of climate and dengue incidence over a 10-year 

period, the study developed a bank of applicable data set which could be used by the enthusiastic 

researches in the field of the effects of climate change as well as ecology on dengue transmission 

in Dhaka and Singapore and in the regions of the South and South East Asia at large. Based on the 

findings, a model mapping system was envisioned to predict the future incidence of dengue and 

thereby, to predict any such disease or health event and devising prevention guidelines thereto at 

local, national, regional and global level. In one hand, differences of variables in different cities 

and regions have been proved as to applying one regional model for another region, on the other 

hand, incorporating crucial variables in one model through a compare and contrast study enabled 

to frame a relatively common model mapping system applicable for any given entity of a region. 

It is a huge enabler on global and regional scale to address the outbreak of any given disease in 

entities with different economic and geographical setting. Devising this technique of mapping and 

modelling by addressing Spatial variations is an important novelty of this study. Finding out 

Temporal variations of variables over time, particularly decadal impact of variables is another 
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crucial attribute of the Model to apply it effectively in preventive medicine and urban planning. 

This research also found that city areas having more built and paved areas and areas with 

unplanned urbanization had the highest abundance/density of Aedes mosquitoes-the vector of 

dengue. These results demonstrate that alteration of the ecology in city area is one of the major 

reasons for the increase of dengue incidence, especially in metropolitan areas. This is a crucial 

inference as to the dengue prediction and prevention mapping is concerned that, unplanned 

urbanization, particularly development of shanty slum area is crucial to dengue fever spread. 

Again, the mapping results of this study has mentionable contributory function to assist in drafting 

appropriate, differentiated plan, policies and strategies for controlling vectors, i.e. aedes mosquito 

and preventing the spread of the resultant disease-dengue in the Dhaka city of Bangladesh and 

Singapore and other vulnerable areas of the regions and the globe at large.  

Keywords: Epidemiology, Eco-Epidemiology, Temporal Variation, Spatial Variation. 
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Chapter One 

1. Introduction 

1.1 Overview 

Modes of human disease vary from coming into contact with infected animals, through contact 

with the environment (water, air, soil) contaminated by infected animals. Modes of disease 

transmission also entail indirect communication through vectors, and through modification of this 

classical disease cycle by ecological aberration. The eco-environmental factors in disease 

transmission include high rainfall, flooding, natural disasters, population growth, urbanization, and 

poor sanitation and hygiene [1–4]. Disease risk also depends on individual behavior (e.g. 

swimming in freshwater, working outdoors), and contact with animals including livestock, rodents, 

pets, & wildlife [1,3] in case of infectious disease while living in and on polluted milieu for non-

communicable diseases and health events. So, the risk factors of etiology of disease and epidemic 

depend on interactions between humans, animals, and the environment, and vary significantly 

between locations based on environmental, cultural, and socio-demographic issues [3]. 

Transmission dynamics are therefore factors of global environmental change of both natural and 

anthropogenic environments [1,2,4]. 

Environmental changes have a huge impact on the emergence and re-emergence of certain diseases 

and health events, mostly in countries with high biodiversity and serious unresolved 

environmental, social, and economic issues. An extensive literature review revealed a relationship 

between new health events and diseases outbreaks and climate change events (El Niño, La Niña, 

heatwaves, droughts, floods, increased temperature, higher rainfall, and others) or environmental 

changes (habitat fragmentation, deforestation, urbanization, bushmeat consumption, and others). 
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To prevent and or control this chain of the emergence of new disease and health-related events, 

integrated surveillance systems and effective outreach programs by developing integrated eco-

epidemiological mapping are essential. Due to strong global and local influence on the emergence 

of infectious diseases, a more holistic approach is necessary to mitigate or control them in low-

income nations. 

Several studies have described that disruption of the ecosystem has largely been attributed to local 

environmental change which has acted as drivers of a wide range of life-threatening infectious 

diseases, including hantavirus pulmonary syndrome, dengue fever, yellow fever, malaria, 

trypanosomiasis, leishmaniasis, and leptospirosis, and health events eg arsenicosis, spreading of 

HIV-AIDS, new emergence of ancient diseases, etc.  There is strong evidence that some of these 

environmental changes will intensify shortly if key anthropogenic activities are not controlled. So 

devising a combined eco-epidemiological mapping is the call of the day [5].  

Several aspects of Global environmental change (GEC), including human mobility, climate 

change, and the trade-in livestock and plants have been explicitly linked to emerging infectious 

diseases (EIDs) in humans and other species [6–8]. These identified connections between two 

dimensions of a greater problem; GEC and EIDs matter, but the relevance of most identified factors 

to future infectious diseases may be dwarfed by factors whose importance is at present far less 

well appreciated. Indeed, it is possible that circumstances more familiar to earlier human 

generations could evolve, creating a fertile terrain that could enable the resurgence of currently 

dormant infectious diseases, of great consequence to our forebears [9].  

Climate change does exert its effect on the survival, reproduction, or distribution of disease 

pathogens and their hosts [10]. According to Patz et al. (2005), correlating the emergence or 

increased range of infectious diseases with climate change is still not possible due to a dearth of 
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longitudinal, quality data sets and sociodemographic factors [11]. Nonetheless, ample evidence 

has shown that climate change results in long-term drifts in climate conditions as well as extreme 

climate patterns and resultant erratic weather events, both of which may threaten human health 

and well-being [10,12]. 

A sustained change in weather pattern over a long period of time leading to erratic climate patterns 

constitutes the basics of climate change. It results in myriads of health problems, including 

multiplication of the existing health maladies. This study has aimed in examining the evidences of 

this climate change over health and well-being, particularly on the infectious diseases of human 

being and animals. It has also ventured to underpin the research progress and gaps with a view to 

developing preparedness to contain the changes and their impacts. The co-relations between 

climate change and infectious diseases of human being is evident in literature. It is also evident 

that, as an agent of the disease causation and as a care giver, human being may effectively contain 

the spread of the infectious diseases through taking preparedness, including studying and 

understanding the trends of the climate change patterns, their health impacts on humankind and 

thereby allocating funds and relocating technologies and technical know-how to protect and 

promote public awareness and healthy life styles.  

Some health effects of climate change may result from indirect impacts on natural ecosystems. For 

example, altered climatic conditions can change the habitats of vectors such as mosquitoes or rats 

and affect the parasites they carry. The consequences resulted from global warming depends 

heavily on preparedness, such as the ability of humans and public health systems to adapt. Human 

migration and economic stresses from climate variability could threaten human settlement and 

seriously overwhelm the public health infrastructure [5].  
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So, newer ways and means have been devised by the scientists to develop better prediction models 

for different modes of transmissions and etiological sequel of various diseases or health events, 

giving new thoughts of the foundational mechanisms of the diseases and their causation and 

spread. They have used two genres of models- time series and spatial methods.  

Time series methods use two different approaches- statistics driven traditional methods and 

mechanisms based dynamic models. Important traditional methods are Generalized Linear 

Models, Autoregressive Integrated Moving Average (ARIMA) models etc. They use cumulated 

past values to predict future incidences and have been proved useful in short term predictions in a 

climatically vulnerable area(s). ARIMA method was successfully applied to study seasonal 

variability of streptococcus pyogenes infections with relations to the change in the climate 

variables in Iceland from 1975 to 2010. Dynamics models have been used to examine correlations 

between humidity and influenza in the United States, rainfall and cholera in Haiti and temperature 

and mosquito population, and dengue incidences in Maderia, Portugal. 

Spatial Methods, on the other hand, use static vis-à-vis dynamic risk maps, which can effectively 

discern the risk of a given disease or health event on national and regional scale. In the process, 

the methods depict the result in mapping format utilizing data from the target location. The classic 

example of this method is the use of Global Risk Map to underpin the effect of El Nino on the 

spread of Zika Virus in the South America in 2015 [13]. 

The paragraphs ante underscore that, while the discussed models have been successful in 

predicting a number of diseases and health events, they are not free from drawbacks as well. The 

Static models have the shortcomings of not being able for long term assumptions like dynamic 

models while the later does not offer the short-term accuracy of predictions like static models. 

Furthermore, both the models need to be fed with experimental data to hone with observed values. 
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Nevertheless, while researchers continue to adjust and adapt newer techniques and technologies 

towards continued upgradation of the models, it may be opined that, a better model which may 

effectively address the research gaps will be key in the days to come for more precision as to the 

prediction and preparedness of diseases in an ever-changing climate scenario [103,104,105].  

Kuate Defo B has summarized the planning, development and sustainable implementation of 

health policies and health systems ought to be based on precise measurements and understandings 

of prevalence and incidence of communicable and non-communicable diseases, accidents, and 

other disabilities, given past and current demographic and epidemiological profiles in societies as 

well as how they are predicted to change over time [14]. Equally crucial is the need to understand 

and appreciate the underlying mechanisms and influential factors of these changes. 

Acknowledging Barthelme’s postulates, various theoretical perspectives, notably the 

epidemiological transition theory [15,16], have been developed and practiced in an attempt to both 

describe and understand local, national, and global patterns in demographic and epidemiological 

profiles within and across societies, given the multiple domains of health, diseases, and health 

events [17]. 

The planning, development and sustainable implementation of health policies and health systems 

ought to be based on precise measurements and understandings of prevalence and incidence of 

communicable and non-communicable diseases, accidents and other disabilities, given past and 

current demographic and epidemiological profiles in societies as well as how they are predicted to 

change over time. Equally crucial is the need to understand and appreciate the underling 

mechanisms and influential factors of these changes, and their monetary and non-monetary costs 

and implications to individuals, families, communities and governments in the global context. In 

specific contexts, it may be the interactions between factors from different levels and categories 
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of determinants, and their timing and sequencing during the life courses, which are crucial for 

public health and the health care systems to be responsive to the need of a society in a rapidly 

changing environment  

In summary, based on the successful prediction Models, pro-active surveillance measures could 

be taken. Active surveillance is indispensable in preventing disease emergence by identifying areas 

of risk before they become a threat to human and animal health. Especially in times of reduced 

budgeting for research funding, it is worth highlighting to policymakers the importance of 

recognizing anthropogenic drivers, their ecological connections, and the dynamics of specific 

diseases, reservoirs, and environments. An integrated surveillance system of the health of at-risk 

human and animal populations should be designed to identify the geographic regions, populations, 

vectors, and interactions that may result in emerging and reemerging pathogens. This would 

establish a system of the early outbreak warning system and permit the modeling of spread, 

analyses, and potentially the application of prompt control or mitigation measures. 

So, towards devising effective containment measures, a comprehensive prediction model remains 

at the core. Spatial and temporal associations between climate and diseases  in conjunction with 

empirical and exercise-driven studies infer that, these factors can affect diseases or health events 

in a nonlinear fashion, unlike the hitherto linear regression way [18].  

The forecasted incidence and prevalence of infectious diseases in the wake of rapidly changing 

climates heralds an impending social emergency. The predicted increase and distribution of 

infectious diseases in time and space depicts that, the impact of climate change can impact the 

entire ambit of epidemiology of infectious diseases in a nonlinear fashion. The Ecological Society 

of America, in a 2009 Report, mentioned that, many variables will have direct impact on the 
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incidence and prevalence of infectious diseases while many factors might overshadow the 

consequences of climate change. 

This has paved the way as to the usher of  new branch of  epidemiology-crisis discipline- a new 

research topic to develop a holistic model of eco-epidemiological mapping embodying all health 

attributes hitherto unfactored in. 

To put the theory into context, particularly to come up with a mapping model, dengue as a test 

case and its comparative epidemiological studies in Singapore and Bangladesh could be a model 

study as the disease has been a havoc in these two settings where numerous studies have also been 

conducted to contain it with a prediction and prevention scheme. It could, in deed, be modelled for 

other diseases in other country set ups including subnational, regional and global set ups. 

Dengue has been one of the most talked about infectious diseases of late. This is a viral disease 

transmitted through mosquito as a vector. Transmission of dengue virus depends on the presence 

of Aedes mosquito-the vector. Mosquito generation and development is known to be influenced 

by the climate. Numerous studies were carried out to examine whether the climatic factors data 

can be used to predict dengue cases of different tropical countries and cities, particularly in 

Singapore and Dhaka city, Bangladesh. So, a comparative study of Dengue virus, of its vector 

Aedes mosquito and of the prediction models posed a unique opportunity towards developing a 

comprehensive model which might be of great importance as to dengue prediction and prevention 

in particular cities, at national level, regional level and to compare in regions. 

Such a comprehensive modelling of a communicable disease like Dengue might also usher in 

developing holistic approaches for other communicable and non-communicable diseases and 

health related states and events. So, the holistic study of Dengue clinical, epidemiological and 
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statistical viewpoints is not only important in preventive medicine but also bear equal bearing as 

to the national and international policies are concerned for human development. 

As described earlier, dengue is a viral fever. It has an incubation period of 2-7 days. Its signs and 

symptoms include, headache, pain in the eyes, joint and muscle pain, rash and bleeding through 

different orifices of body. There are two types of the disease: 

Dengue hemorrhagic fever: 

In this pattern of the disease, there are traditional signs and symptoms of dengue fever along with 

bleeding manifestations, which is evident by bleeding spots under skin, bleeding from body 

cavities and reduced number of platelets in blood. There is also leakage of blood fluid (plasma) 

due to increase permeability of the blood vessels.  

Dengue shock syndrome 

In this variety, all above manifestations are added to failure of blood circulations leading to lack 

of oxygen in tissue which is manifested by low blood pressure, cold extremities and restlessness. 

Dengue is diagnosed clinically based on the above manifestations along with laboratory findings 

and serological study of the virus. In all the data used in dengue prediction, these criteria are 

followed. 

As to the variables are concerned, daily, weekly and monthly climatic variables such as average 

temperature, rainfall, sunshine and humidity are usually collected from the concerned Met Offices 

of the countries/cities. The periodic climate data are then correlated with the data of periodically 

reported cases of dengue. 
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Regarding methodology, monthly averages of rainfall, temperature, sunshine and humidity are 

used as independent variables while monthly dengue incidence numbers are used as the dependent 

variable. One-way analysis of variance (ANOVA) is used to compare and contrast the data of 

climate variables in different seasons. 

As to development of the Model, an empirical model is usually designed taking negative binomial 

generalized linear model analysis as the base model. A negative binomial model having a log-link 

function in the generalized linear model is used to devise the models and methods to calculate 

dengue incidence cases in relations to the independent climate variables as mentioned above. Since 

a significant correlation is considered to be present in the numbers and spread of dengue cases 

across seasons, a season is usually included as a covariate to find out modified models. A negative 

binomial model is then developed as outcome variables are measured as counts and are usually 

over-dispersed; i.e., the conditional variance becomes very high when compared to the conditional 

mean of the variables. 

When there are a number of maximum likelihood models are in place, the performance of 

alternative models on the basis of several likelihood or goodness of fit measures could be 

compared. Akaike information criterion (AIC) and the likelihood ratio chi-square are the most 

popular methods in this regard. The model which depicts maximum change in the value of AIC 

and likelihood ratio chi-square in comparison to the same of the previous models are considered 

as the most feasible model. Based on the comparative findings of correlation between the climate 

variables and clinical data, a suitable data could be discerned for appliance in the comparative 

studies. This is equally applicable whether the models used are applicable to find out whether the 

models are suitable for annual or decadal of any other time frame comparison of predictions. 
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These issues are addressed, analyzed, compared and contrasted to draw inferences in different 

chapters of this thesis. This introductory chapter of the thesis elaborates, inter alia, t h e  

background of this research, the research question, objective and scope of the research project, 

basic framework of the research and study, brief methodology, and contributions of the research 

to the body of knowledge. 

The goals of this chapter are to: 

• Review the concept of eco-epidemiological mapping and modeling from different 

perspectives on specific disease control and prevention context (Section 1.1)  

 Highlight the situation and context: summary of the problem (Section 1.2). 

 Detail the study background (Section 1.3). 

• Discuss the research issue along with the background of the research and  

summary of the problem of research (Section 1.4)  

• Propose research questions and objectives (Section 1.5)  

• Elaborate the proposed conceptual framework of the study (Section 1.6).  

 Provide scope of the research (Section 1.7).  

• Provide significance of undertaking the research (Section 1.8). 

 Research methods and analysis: 

Specify the present research setting as a new model addressing all aspects of a probable 

disease or health events to ensue (Section 1.9). 

 Depict the study in context (1.10). 

• Focus on h o w  t h e  r e s e a r c h  w i l l  c o n t r i b u t e  t o  t h e  b o d y  o f  k n o w l e d g e  

a n d  p r a c t i c e .   
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(Section 1.11)  

• Briefly discuss the limitations of the research study (Section 1.12)  

• Elaborate an outline of this write up (Section 1.13) 

1.2 Situation and Context: Summary of the Problem 

According to the World Health Organization, natural and human-induced threats to human health 

at global and regional levels include: “climate change, stratospheric ozone depletion, changes in 

ecosystems due to loss of biodiversity, changes in hydrological systems and supplies of freshwater, 

land degradation, urbanization, and stresses on food-producing systems” [19]. It is noticeably 

discernible in tropical and lower climate zones where there is high biodiversity, ecological change 

is greatest, making these regions potential hotspots for the emergence of new pathogens affecting 

human, wildlife, and domestic animal health [20,21]. These areas including the sub-tropical and 

high altitudinal North, where drastic socio-economic and environmental changes are occurring, 

especially in the form of migration and transportation are particularly vulnerable to the risks of the 

rapid spread of infectious diseases [22].  

The correlation between environmental change and disease causation, particularly infectious 

disease etiology is a much talked about issue in epidemiology. Some of the postulates in force are 

higher proliferation and reproduction rates at higher temperatures, extended transmission season, 

changes in ecological balances, and climate-related migration of vectors, reservoir hosts, or human 

populations [18,23]. 

Environmental variables as per the agents of disease causation involved have been incorporated as 

temperature, humidity, rainfall, and wind speed, etc. while the agent-host relationship has been 
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described as through changes in the duration of agents and agent’s life cycles or influences on 

human, vector, or agent behavior [24,25]. 

It has been inferred through extensive research that; temperature plays the most crucial role in the 

transmission of the agent of infectious diseases. The influence of temperatures on vector-borne 

diseases has been studied by WHO and Gratz. They have shown that a trivial change in temperature 

imparts a tremendous effect on vector-borne disease transmission and epidemic potential by 

altering the vector’s reproductive or biting rate; by shifting a vector’s geographic range or 

distribution; by altering the extrinsic incubation period of the pathogen; and, by increasing or 

decreasing vector–pathogen-host interaction and thereby affecting host susceptibility [19,26].  

Rainfall is another factor affecting agents of diseases, particularly vectors of infectious diseases. 

It was depicted that with an enhancement in  rainfall there is an  increase in available breeding 

sites which in turn leads to an increase in the population  of the vectors -the mosquitoes, while an 

increase in the net number of adult female mosquitoes increases the odds of a mosquito acquiring 

a pathogen and transmitting it to a second susceptible host [24]. 

Humidity lengthens the life span of parasites, insects, and ticks.  As they thrive in hot and humid 

climates and can exploit newly disturbed ecosystems, tropical and subtropical regions 

experiencing high levels of urbanization and increased deforestation are often the areas at the 

greatest risk for vector-borne disease epidemics [27].  

As the growth and development of dengue vectors has long been established to be dependent on 

climate conditions, dengue is being studied as a test case in the context of climate change and 

disease infection co-relation as depicted above. Being a vector-borne disease, the occurrence of 

dengue infections depends not only on the presence, but also on the density of its vector- aedes 

mosquito. Substantial studies conducted across the globe have inferred that, climate variables, 
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particularly rainfall, temperature and humidity have a positive correlation with the seasonal 

variations as to the concentration of Aedes aegypti and occurrence of DENV. 

Numerous studies conducted in Bangladesh and Singapore have also established a discernible 

relationship between dengue incidences and rainfall. This is consistent with some other studies, 

such as the findings of Focks & Barrera, who opined that rainfall enhances vector density leading 

to an increase in dengue cases. Rainfall again is the cause of higher humidity which provides an 

ideal environment for the growth and survival of mosquitoes during wet seasons. However, there 

are also a few studies in the literature which depicted contradictory findings as to the relationship 

between humidity and dengue incidence, since the correlation depends on local characteristics, 

particularly terrain of the area and its latitudinal position. 

The correlation between average temperature and dengue incidence was one of the pivotal findings 

of this study. Karim et al. and Chandy et al. demonstrated similar results while Su reported a 

negative correlation among the two variables.  

Higher temperature is critical as to the limitation of the maturation of the dengue vector. 11.9°C 

has been proposed as the threshold temperature for the survival of the dengue virus while it has 

been shown that, the vector of the virus ceases to thrive once temperature falls below 17°C and 

virus stops multiplication in a temperature below 18°C. It could be opined that, low temperature 

is not conducive for long term survival of the aedes mosquito which is crucial for its being infected 

with the virus for transmission to human body. Similarly, virus itself cannot survive in the low 

temperature to complete its life cycle once it enters host. 

Again, a higher temperature reduces the extrinsic period of virus within the vector mosquito, thus 

increasing the probability of transmitting the disease to human host earlier, leading to epidemic 
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scale of infection.  However, a temperature above 30°C has been shown to negate the viral 

transmission as sweating has been shown to decapitate mosquito from biting human being. Hence 

temperature study remains at the core of epidemiological understanding of the dengue disease. 

The study also underpins the correlations between dengue incidences and relative humidity of a 

given place. Relative humidity of an area is dependent on temperature and rainfall of the region at 

large. The combination of these three variables is crucial as to the prolongation of life span of the 

virus and its vector- the aedes mosquito. Karim at el. and Promprou et al. reported that that there 

were more dengue incidences in their experiments during monsoon season, which, according to 

their opinion, was clearly because of high humidity prevailing during wet rainy days. The 

postulated that, a higher humidity during wet seasons was responsible for the development and 

spread of mosquitos, thus leading to the rate of their infection. Barbazan et al. have shown that, 

such increase in mosquito propagation fortifies the frequency of transmissions of virus as high as 

five times when the survival rate rises from .80 to .95 in a drastic way.  Hales et al. have also 

shown that, the average vapour pressure per annum was considered to be the most crucial climatic 

predictor regarding dengue occurrence across the globe. 

In sum, the combined effect of the three climatic variables- temperature, rainfall and relative 

humidity significantly influences the tally and duration of blood meal by mosquito, average 

survival of the vector and the likelihood of the vector being infected with the dengue virus. Hence, 

the above variables by dint of their impacts on the vector mosquito are important determining 

factors of the transmission of dengue in a geographic area. 

To complicate and ultimately to ease the description of correlation, now it has already been 

established that ecological factors have been the pivot of changes to the environment [28–
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30]. Naomi Oreskes (2004) postulated that there is a systemic and cumulative impact of ecology 

on eco-environmental change. Of them, anthropogenic environmental change has already been 

established by evidence-based scientific research [31]. Scientists are using a new terminology 

called Anthropocene to dub the new geological epoch [32]. Building on the Millennium Ecosystem 

Assessment definition of drivers of ecosystem defines drivers of ecosystem change as “a complex 

web of interactions between humans and their surroundings as humans seek to satisfy their basic 

needs and improve their wellbeing” [33]. Ironically, as scientific progress is speeding up to keep 

pace with development, so is the emergence of many an anthropogenic driver of environmental 

changes resulting from economic and social development [34]. 

Typically, urbanization has a diverse pitfall in developed and developing countries. While in 

developing countries it results in the development of slum and shanty areas, in the developed 

society, migrated people are covered with more certain health facilities. In a poor economic setting, 

it leads to unplanned urban dwellings with high poverty levels, poor dwelling construction, and 

low education rates, such as the favelas of Brazil [35,36]. Interestingly, despite the lowly health 

system, urbanization might subside the risk of infection in certain geographical setting, such as in 

Fiji urban dwellers have a lower risk of infection than those in rural areas, mostly due to differences 

in exposure to subsistence livestock animals [4,37] which are considered as reservoirs of diseases 

[3,38–41], although exposure to these animals differs across communities [37] and even for 

different individuals within the same communities. 

Demographic changes due to migration and human mobility are crucial to bringing about new 

epidemiological change. Unplanned urbanization, particularly the development of shanty and slum 

areas are important causative factors to facilitate the introduction and dissemination of new 

infectious agents into a community, in which no previous immunity has been acquired [24,42].  
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On the other hand, a better-equipped health system, such as screens, medication, and vaccinations 

can reduce the level of infection in a susceptible group of people, if the provisions are made 

available and affordable [42].  

There is a reverse narrative as to whether climate change causes an enhancement of infectious 

diseases [11,43–47]. This has partly resulted from a paucity of work using empirical-statistical 

models to investigate the link between environmental variables and environmental, most 

importantly, there is virtually no effort to incorporate environmental variables into mathematical 

models describing malaria transmission [48–50].  

Addressing this gap necessitates the development of a new model to incorporate the ecological 

and environmental factors holistically, which will be process-based in one hand to discern the 

correlation between the two categories of factors, on the other hand, will give a better 

understanding as to the effects of complex feedbacks and nonlinear processes typically underlying 

disease transmission [51]. In this research, we are calling them, dynamic multiplicative processes 

and thresholds which will explain endemicity and seasonal extinction of a particular disease or 

health event, as well as disease emergence in new regions as climatic conditions change, provide 

a credible basis for prediction beyond the range of current climatologic experience. The new 

Models also represent valuable strategic tools for policymakers evaluating contingency, 

mitigation, and abatement instead of traditional statistical models [46]. 

Based on the above uncertainties, we may categorize the epidemiological and ecological factors 

as those related solely to epidemiological aspects independent of climate, those related to 

uncertainties associated with climate models themselves, and those related to the interaction 

between disease and climate. Understanding, quantifying, and improving our knowledge in each 
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of these areas is vital if we are to better understand a develop a model to address all pertinent 

factors comprehensively [52].  

By assessing the estimated risk of leptospirosis infection under different scenarios and for different 

sub-populations, such as urban versus rural areas, these groups or areas can be targeted with more 

precise interventions that specifically focus on the key drivers of infection most relevant to them. 

Common methods used in epidemiology, such as logistic regression models, do not easily allow 

for scenario analysis and in many cases separate models are required for each scenario, retraining 

the model each time on a subset of the data [36,40]. Geographically weighted regression models 

have been used to determine the spatial variation in the relative importance of environmental 

factors [53], but like standard regression models, they are not designed for scenario analysis. 

As such, quantifying uncertainties in climate model predictions is vital to get rid of uncertainties 

emanating out of transmission-driven models.  Out of numerous techniques and methods, multi-

model ensembles have occupied special place and attention in climate modeling [54,55] and which 

is based on full integration of multi-model ensembles of climate and disease models in one hand, 

on the other hand, which scientifically incorporate the anthropogenic, i.e. human-driven factors of 

ecology into the model to address the entire gamut of factors involved for a better understanding 

of prediction and to devise plans for mitigation, adaptation, and control, accordingly. 

In this study, venture has been made to take dengue as a test case for the development of a 

prediction model so as to enable the policy makers towards developing a hassle-free, simple, 

measurable, realistic and time bound prediction system. The generation of climate-based model 

was decided, considering the correlations of the climatic variables and dengue incidence, to aide 

in controlling the vectors, containing the disease incidence and prevalence through proper 
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preparedness and surveillance of the disease and its causative factors. The model is expected to, 

through the precise prediction, contribute towards early preparedness as to prevention of the 

diseases in all three triads of the communicable disease paradigm- agent, host and environment 

level. In this process, it is likely to reduce the burden of the disease in terms of health care giving 

and also operational, financial and administrative expenses.  

Nonetheless, the long-term prediction of dengue incidence remains elusive as the variables vary 

in time and space, given erratic climate behavior owing to rapidly advancing climate change 

scenario across the globe. Added to this dilemma, is the development dynamics of nations, 

particularly unplanned urbanization, afforestation, desertification, reduction of water resources 

and close proximity of human being and animal, the latter being vulnerable due to their loss of 

habitats. Therefore, the model might need to be adjusted and recalibrated in the time to come to 

maintain prediction precision by anticipating the changes in the variables of dengue transmission 

and distribution pattern, and, but not limited to addition of subtraction of newer factors in the new 

environmental landscape.  

The pen picture sketched above depicts that, a mapping model for the prediction of dengue, and to 

that connection to any communicable disease, could be studied from different perspectives, 

particularly factors of temporal and spatial dimensions. It, therefore, warrants a comparative study 

of the model in different settings. Selection of Dhaka, Bangladesh and Singapore was the principal 

logic to quench this quest of an ideal research work. The present study, however, explores a 

holistic approach to study the variables of ecology and epidemiology having a direct bearing on 

the causation of dengue, with the aim in view to envision a new model to design an eco-
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epidemiological mapping based on the existing research gap, as revealed by the dengu data 

analysis in Bangladesh and Singapore.   

Based on above, the conceptual definition of eco-epidemiology and eco-epidemiological mapping 

adopted for this comparative epidemiological study of dengue in Dhaka, Bangladesh and 

Singapore are:  

a .  Eco-epidemiology: The study of natural, environmental factors as well as human 

modifiers influencing agent, host, and environment in the causation of dengue.  

b. Eco-epidemiological mapping: A model of mapping combining environmental, clinical, 

and ecological factors as well as quantification of their gaps to assess and predict dengue 

incidence in decadal temporal prediction to devise control and preventive measures. 

1.3 The Study Background: 
 

The etiology and epidemiological factors are crucial to treat, contain and prevent the emergence 

of any health-related state and event, particularly communicable diseases. Of particular importance 

is the geographical prevalence of a given health condition, which, unfortunately, because of erratic 

data and method of interpretation of data, is absent so to speak. More so, if one unique model could 

be devised based on accurate epidemiological data, it could be emulated to address control and 

prevention of numbers of other diseases [56].  

It has now been well established that infectious diseases transmitted within human habitat with 

human host populations represent almost 75% of the infectious diseases that have (re-)emerged in 

human populations in the last century [57,58]. As these pathogens are typically transmitted to 

multiple host species [59], wildlife is often an important component of such systems [60], as is 
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illustrated by the novel coronavirus SRAS-COV-2 which is thought to have emerged in seafood 

markets in Wuhan, China [61]. 

It has been estimated that more than 1400 species of infectious agents have been reported to cause 

disease in humans [62–65]. These include pathogens for some 347 diseases of sustained clinical 

importance with established clinical diagnosis, epidemiology, and therapy, as a decision-support 

tool for clinicians [66]. Among these, 110 diseases pose a threat to non-immune travelers [66]. 

Sixty-two of these clinically significant diseases can be prevented by vaccination; 19 usually as 

routine childhood immunizations [66–68]. However, all these clinical procedures are rendered 

meaningless when the diseases get community-level dimensions, if not epidemic with the rapidly 

advancing climatic and ecological make-ups. So, clinical diseases, with the climate and ecology 

factoring in, are no longer clinical scenario solely, their containment, prevention, and control, and 

most importantly their evolution in newer forms and dimensions have been the topic of 

epidemiology and ecology [65]. 

Although many factors modulate agent, host, environment cycles of any health event, particularly 

the dynamism of a any communicable disease, it is important to discern the correlations between 

the propagation of diseases and eco-epidemiological factors to address them holistically. A better 

realization of this relation sis of crucial importance to devise accurate models, which could 

increase the precision and usher into a more robust and result-oriented control and prevention 

system. Metcalf at el. seconds the opinion that, a precision model based on holistic approach of 

the study of the variables can better address the preparedness and preventive measures. [69].  

There remain a good number of reasons for wanting to map the geographical distribution of an 

infectious disease. Mapping is a primary goal in spatial epidemiology [65,70–78]. Maps of disease 

distribution and intensity allow immediate visualization of the extent and magnitude of the public 
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health problem. When based on empirical evidence, maps can support carefully weighted 

assessments by decision-makers on the advantages and disadvantages of alternative courses of 

action [79–81]. These may range from helping plan national scale intervention strategies [82] to 

advice for individuals on whether to vaccinate and/or provide prophylaxis before travel [67,83]. 

These maps can also document a baseline from which intervention success or failure can be 

monitored. 

The purpose of spatial modelling in animal and public health is three-fold: describing existing 

spatial patterns of risk, attempting to understand the biological mechanisms that lead to disease 

occurrence and predicting what will happen in the medium to long-term future (temporal 

prediction) or in different geographical areas (spatial prediction). Traditional methods for temporal 

and spatial predictions include general and generalized linear models (GLM), generalized additive 

models (GAM) and Bayesian estimation methods. However, such models require both disease 

presence and absence data which are not always easy to obtain. Novel spatial modelling methods 

such as the Model of Maximum Entropy (MAXENT) and that of Genetic Algorithm for Rule set 

Production (GARP) require only disease presence data and have been used extensively in the fields 

of ecology and conservation, to model species distribution and habitat suitability. Other methods, 

such as multicriteria decision analysis (MCDA), use knowledge of the causal factors of disease 

occurrence to identify areas potentially suitable for disease. In addition to their less restrictive data 

requirements, some of these novel methods have been shown to outperform traditional statistical 

methods in predictive ability (Elith et al., 2006). This research provides details of some of these 

novel methods for modelling disease distribution, highlights their advantages and limitations, and 

identifies studies which have used the methods to model various aspects of disease distribution.  
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Maps of disease distribution and intensity allow immediate visualization of the extent and 

magnitude of the public health problem. When based on empirical evidence, maps can support 

carefully weighted assessments by decision-makers on the advantages and disadvantages of 

alternative courses of action  

Besides, as modes of data gathering evolve and improve (for example, through enhanced electronic 

surveillance [79] and Internet-based health reporting [84], including HealthMap/ProMED [85,86], 

BioCaster [87,88], and Argus [89,90]) and techniques developed to exploit these data (for example, 

semi-automated rapid mapping), these geographical distributions (often referred to in this literature 

as baseline disease risk assessments) can also provide a ‘normal’ against which real-time outbreak 

alerts can be assessed for international bio surveillance [91–93]. 

Furthermore, as the portfolio of infectious disease distribution maps expands and their fidelity 

improves, the public health community will be better able to evaluate the factors that predispose a 

time and place to the origin [94,95], and the emergence of infectious disease outbreaks 

[20,64,65,96–102].  

 

Previous models have been successful in predicting the spread of certain illnesses, while they failed 

to depict or predict many health events accurately. As evident, different types of models have their 

shortcomings. Static models have limitations as to predict the same long-term reliability of 

dynamic, mechanistic models. On the other hand, the latter does not always provide the short-term 

accuracy of traditional, static methods. Besides, in dynamic models, disease incidence and 

prevalence need to be incorporated to reveal real-time observed reality [105].   

Dr. Andrew Farlow of Oxford and his team unveiled such a unique system during the innovation 

session of a seminar organized by Trans-NIH Global Health Working Group. The model was 
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originally designed to map dengue fever but, as the team claimed,  could be applied to many of the 

350 infectious diseases currently registered by the Global Infectious Disease and Epidemiology 

Network. Only about seven have been fairly well mapped by other methods, he noted in his talk, 

"Disease Mapping and the Economics of Vaccines: Opportunities and Challenges" [56].   

The mapping model entails several input factors, depending on a particular disease or health event. 

For the dengue model, the research team selected factors like population density and movement, 

vegetation, and urbanization because the main vector mosquito thrives in densely populated 

suburban environments. Average monthly rainfall, temperature, and humidity were used as 

independent variables and the number of dengue cases reported monthly was used as the dependent 

variable. One-way analysis of variance (ANOVA) was used to determine whether each of the 

climate variables differed significantly between seasons. 

"Incorporating all data together, the model was generated which could predict the probability of 

occurrence of an infectious disease of any given disease which was intended ultimately to target 

more effective surveillance strategies." 

The first model map was able to identify dengue's presence in 128 countries, including 36 

previously classified as dengue-free by the WHO. However, the general of the dengue mapping 

was a huge undertaking, requiring five years of work, 15 staffers, and 22,000 parasite rate surveys, 

and not to mention, highly expensive [56].  

The model was encouraging for dengue, but it didn't last as first it was a herculean effort and most 

importantly it lacked accuracy as it could not incorporate all the basic data needed to develop a 

general model for any given disease.  
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This research explores four key questions about statistical models developed to describe the recent 

past and future of vector-borne diseases, with special emphasis on dengue: (1) How many variables 

should be used to make predictions about the future of vector-borne diseases? (2) Is the spatial 

resolution of a climate dataset an important determinant of model accuracy? (3) Does inclusion of 

the future distributions of vectors affect predictions of the futures of the diseases they transmit? 

(4) Which are the key predictor variables as to the causation and spread of vector-borne 

communicable diseases at present and in the days to come? Examples are given of dengue models 

using one, five or 10 meteorological variables.  

However, the result of the failure of generalization of this study was crucial: we need to generate 

an atlas of the disease factors and disease together in addition to quantifying statistical 

uncertainties in each case. This is the essence of the eco-epidemiological mapping model [106]. 

The following sub-chapter will detail this Research Problem. 

1.4 Research Problem: 
 

It is evident that there continue to be gaps in the methods as well as information available, so 

experimentation and devising of a new holistic approach is a call of the day. A combination of the 

two models, as well as quantifying the gaps of the two different methods seem to be the option 

ahead which can equally be applicable for short-term disease prevention and long-term planning 

[56].  

However, in the past, cartographers were poised with many problems. First, the authors did very 

rarely use the reference of the baseline study during mapping. Second, cartographic errors were 

obvious as the GPS was yet to be invented in those days. These errors were magnified enormously 

when working on a global scale. Third, no assessment of the fidelity of the map was done and 
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spatial and temporal differentiation was never assessed. These limitations constrained significantly 

the public health utility of the maps. However, despite the continuity of the limitations and advent 

of newer problems, these old issues to a greater or lesser extent have been addressed in many of 

the contemporary mapping efforts reviewed here [65]. A particular example regarding Dengue 

epidemic in Bangladesh worth mentioning here. Dengue epidemic impinged on Bangladesh, a 

country of the South Asia in 2000 after three decades of sporadic and seasonal presence, 

particularly in monsoon[107]. From 2000 to 2009, out of 64 districts, reports were available from 

only 29 districts, of which 91% cases were from the capital city of Dhaka [108] presumably due 

to paucity of  confirmatory laboratory diagnosis under the changing criteria [107,109].  

In the city of Dhaka too, the reporting cases lacked proper threshold of epidemic, although the 

clinical cases were everywhere. Mohammad Zahirul Islam showed that, the monsoon season of 

2000 witnessed the first ever epidemic of dengue in the history of the city of  Dhaka which  resulted 

in 5,521 officially reported cases, with only 93 fatalities [110–112]. 

To summarize, there is  a clear gap as to Baseline Risk Assessments for routine public health, 

improve bio surveillance and provide better long-term preparedness by improving fundamental 

eco-epidemiological understanding [92]. 

This is, needless to mention, is the research problem, which, in the following section, will be put 

forward in the form of Question and Objective of the Research. 

1.5 Research Questions and Objectives: 

The research undertaken would like to address the fundamental question: “First, from 2000-2010, 

what natural imbalances occurred in the nature leading to epidemiological and ecological changes 

leading to upsurge of dengue in the epidemic form, secondly, how can those changes be depicted 
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and thirdly, how could they be generalized to use for the prediction and prevention of any health 

event [113]. 

Based on a holistic approach to address the research problem and background as elaborated above 

the research question is: 

How a holistic model of epidemiological mapping could be developed, which will 

a. General Prediction Mapping: Address the short-term forecasts (e.g. Like Static ARIMA 

methods) by modelling by using the weighted sum of the values of past incidences to 

estimate prospective values in future of any health event or communicable diseases, dengue 

in Bangladesh and Singapore in this case; 

b. New Precise Prediction Mapping: Will quantify and address the gap between the clinical 

data and the prediction values emanated out of model outputs from epidemiological 

variables based on the decadal data by adding new epidemiological and ecological factors; 

c. Spatial Mapping: Generalize a Model by fine tuning the best suitable model to forecast 

dengue incident on a broader regions and global scale, by a comparative study of different 

models in Bangladesh and Singapore 

d. Temporal Mapping: To finetune the time gap-annual, biennial or decadal- in a Model 

required for the variables to factor in accurate future prediction 

It goes without saying that, hitherto, there were no study of daily temperature variation and disease 

variance, no correlation study of dengue and rainfall, population density or humidity, not to 

mention the study of impact of human induced factors e.g., unplanned urbanization, air, water and 

soil pollution, global warming and son on directly impacting not only on the disease progression, 

but also on the climate. This model development research is intended to take into account all these 

factors of the city of Dhaka, including some nouvelle issues like anomalies in Sea Surface 
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Temperature (SSTA), an index of El Nino-Southern Oscillation (ENSO) responsible for the erratic 

behavior of climate in the South Asian Region [107,114,115].  

It should be borne in mind that,  the policy makers in public health sectors, be in the government 

or Non- Government Organizations ( NGO) or Community Based Organizations ( CBO)  would 

be in a better positions  in terms of time, resources and preparedness if there are better models in 

place. It would aide them in better preparedness to bolster preparation, which will lead to a 

healthier society in an ever-changing climate and ecology [65].  

Not to mention, this remains the ultimate objective of any epidemiological study now a days. This 

research is no exception. 

1.6 Proposed Conceptual Framework: 
 

In the previous sections, the possible causation and consequences of climate change on human 

health related states and events, in particular communicable diseases have been summarized [116]. 

In addition to climate change, health states and events are generally impacted by socio-economic 

and ecological factors such as human mobility, erratic urbanization, and habitat issues etc. 

Woodward et al. (2011) and Confalonieri et al. (2007) elaborated climate and ecological effects 

on health into two major categories i.e. direct and indirect [116,117]. Changing weather pattern s 

imparts direct impact on human health while it results in indirect ecological consequences through 

food and water quality and quantity, agriculture, among others. In sum, climate and ecology could 

affect human health through three ways: directly, indirectly and through social and economic 

disruptions [10,118–121]. 

From the discussions presented earlier, inference could easily be drawn as to the determination of 

the variables concerning specific diseases or health events. However, there are some variables that 

not only have direct bearing on particular communicable diseases, but also play a mediating role 
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towards its full fruition. Accordingly, the proposed framework in Figure 1.1 depicts a stepwise 

relationship and Framework Planning, about the chosen disease, i.e., dengue infection in a chosen 

area, i.e., district of Dhaka of Bangladesh and the city state of Singapore to ultimately develop a 

general model of prediction and prevention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Chart for individual clinical data in temporal variations. 
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diseases. There have been numbers of different models across the globe to for the prediction of  

the distribution of dengue in response to climate change in the days to come [11,122,123]. 

However, there is paucity of studies to identify the association between weather variables and 

dengue transmission with particular regard to the South Asia, the most affected and vulnerable 

area of dengue fever [114,115,124–126]. Shahera Banu et al. have endeavored to undertake 

experiment on the potential impact of changes in climate on the pattern of dengue in Dhaka [114]. 

Taken all these into considerations, the research will similarly study the impact of base line data 

of climate change in two separate occasions of temporal zones to find out possible solutions as to 

gap of Figure 1.1 is concerned. So, the Figure 1.2, to study the climate impact on dengue 

associations, will echo the similar study framework as Figure 1.2. It is mentionable herewith that, 

there will still be a gap between the deduction data and field data, which remains to be addressed 

yet by any study conducted so far. This will be the crux of the current study to minimize this gap 

of data before developing a model mapping system. To address this gap, a weighted variable as to 

the ecological factors are concerned, have been planned in Figure 1.3 as below: Adding the 

variable closest to the existing gap, the ultimate model will be figured out. It has also been revealed 

that, the added variables which were expected to fill the gap between clinical findings and 

statistical deductions, vary in temporal and spatial lines. New factors are added over time with the 

changing paces of human mobility, new host-agent-environment relationships and newer 

evolutions of climate and anthropogenic variables in time and space. 
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Figure 1.2: Chart for individual climate data in temporal variations. 
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Figure-1.3: Paired and weighted variables of anthropogenic (anthro) factors. 
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climatic variables in different seasons and over time, given rapidly advancing impact of climatic 
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towards a change of agent-host-environment relationship of an entity (city or country). Needless 
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to mention, unlike the seasonal variation, this temporal variation takes time to impart its effect on 

the responsible variables. This is a fascinating finding of this study that, a decadal variation, rather 

a yearly variation of the factors was evident amongst the factors, most probably owing the impact 

time required for these variables to exert their impact. Here is a schematic presentation of this 

finding: 
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Spatial variation scheme:  Depending on altitude, latitude, terrain, geographical disposition and 

urban development, the climatic and host-vector variables vary from city to city, country to country 

and region to region. Incorporation of the same variables in the same model thus pose questions 

as to the region-specific authenticity of the modular output. Indeed, it has been discerned that, 

every entity, be it a city or a country has a few own variables which in one hand differ from those 

of other entity, but on the other hand, play a crucial role to the output of the Model mapping in that 

entity.  In sum, one city or country specific model is not ideal for another city or country, rather a 

regional modelling structure, incorporating the common variables of different entities seem 

realistic for a region-wide mapping model, if not a global one. Indeed, a unique global model might 

never be feasible, given wide range of variance of the variables across the globe.  Development of 

such region-specific model, which ecstatically, differ from sub-regional or city model is an 

interesting finding in this study which were deduced from differential findings in the modular 

study of the Cities of Dhaka and Singapore. The following scheme depicts this regional model, 

vis-à-vis traditional national or city model: 
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Figure-1.4: Yearly versus Decadal resultants in temporal variations 
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1.7 Scope of the Study: 

 

This study is aimed at developing a holistic model of eco-epidemiological mapping of a given 

disease, particularly an infectious disease so as to enable the concerned authorities for the 

prediction and prevention of the event. As a reference case, the incidence of Dengue fever in the 
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cities of Dhaka of Bangladesh and Singapore have been taken in the time duration of 2000 to 2020. 

Although the study variables, initially taken, were limited to clinical and climatic factors, to 

address the gap as per the motion of hypothesis, ecological factors of the two regions were 

incorporated to develop the comprehensive model [113]. 

As repeatedly described earlier, the four dengue viruses, the agents of dengue fever and dengue 

hemorrhagic fever in humans, are transmitted predominantly by the mosquito Aedes aegypti in the 

urban settings, while Aedes albopictus in the rural settings. The abundance and the transmission 

potential of both the vectors are influenced by temperature and precipitation. While there is strong 

biological evidence for these effects, empirical studies of the relationship between climate and 

dengue incidence in human populations are potentially confounded by seasonal covariation and 

spatial heterogeneity. Using 20 years of data and a statistical approach to control for seasonality, 

we show a positive and statistically significant association between monthly changes in 

temperature and precipitation and monthly changes in dengue transmission in the study areas. We 

also found that the strength of this association varies spatially, that this variation is associated with 

differences in local climate, and that this relationship is consistent with laboratory studies of the 

impacts of these factors on vector survival and viral replication. These results suggest the 

importance of temperature and precipitation in the transmission of dengue viruses and suggest a 

reason for their spatial heterogeneity. Thus, while dengue transmission may have a general system, 

its manifestation on a local scale may differ from global expectations.  

There have been a good number of studies to unveil the relationship between climate and dengue 

in various spatial and temporal directions. While temperature and rainfall has been attributed to 

etiology of dengue viral out surge [127], erratic climate has been suggested to have direct effect 

on the biology of the vector mosquitoes of dengue namely, Aedes aegypti and Aedes albopictus 
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[128–130]. Exclusive studies have shown that, high rainfall and temperatures can provide the 

conditions for oviposition, stimulation of egg-hatching, high vector development and a decrease 

in the reproductive period of the virus in the mosquito [128–130].  In separate studies, it was seen 

that, high temperatures were associated with dengue in Brazil [131], China [132], Costa Rica 

[133], Indonesia [134], Mexico [135], Puerto Rico [127], Singapore [136], Taiwan [137] and 

Thailand [138] and high rainfall with dengue in Barbados [139], Indonesia [134], Mexico [135], 

Puerto Rico [127], Taiwan [137], Thailand [140], Trinidad [141] and Venezuela  [142]. Some 

studies have suggested an association between dengue epidemics and El Niño [143–146].  

So, dengue has posed ample scope to study as a topic disease to study and develop the proposed 

model to predict and prevent any given infectious disease and or health event. 

So, dengue has posed ample scope to study as a topic disease to study and develop the proposed 

model to predict and prevent dengue in the two study areas. It has given scope to have a 

comparative study as to the variables’ selection and differentiations of the two regions, to find out 

their spatial and temporal variations and finally, to have a unified narrative for the model applicable 

in general. 

1.8 Significance of the Study: 
 

Although it is yet to be discerned whether difference in socio-economic status led to variation of 

disease incidence, particularly dengue incidence and prevalence in Bangladesh and Singapore, it 

has already been established that, socio-demographic profile of the population is a major 

facilitating factor to transmit dengue transmission in the study areas [147].  

Sharmin et al. has conducted a study on the slum dwellers of the six major cities of Bangladesh, 

namely, Dhaka, Chittagong, Khulna, Rajshahi, Barishal and Sylhet. They found that, an estimated 
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number of 35.2% of the city dwellers live in slum and shanty areas., where improper waste 

disposal, sanitation  and swage together with contaminated water supply  and shanty habitats create 

favorable breeding sites for aedes aegypti and aedes albopictus-two important vectors of dengue 

fever in Bangladesh [148,149].  

Notified cases of dengue infections in Singapore reached historical highs in 2004 (9459 cases) and 

2005 (13 817 cases) and the reason for such an increase is still to be established. A mathematical 

model for dengue infection that takes into account the seasonal variation in incidence, 

characteristic of dengue fever showed that the result mimics the 2004-2005 epidemics in 

Singapore.  

Bouts of dengue epidemics are expected to ensue in future in the absence of any preparedness or 

preventive measures, let alone intervention or prophylaxis.  With the pace of unplanned 

urbanization, there is a continued changes in city population along with habitat of virus, vectors 

and the environment itself, which all together may contribute to uncertainty regarding future risks 

of dengue surge. While plausible climatic changes, including increase rainfall in monsoon and 

more frequent episodes of drought pose future risk factors for epidemics, ecological factors such 

as changes in demography, habitat and other anthropogenic issues are likely to contribute to more 

dengue break outs in future. High fertility rate in poor economic setting with poor hygiene and 

habitat resulting in an increased percentage of the shanty dwellers with naïve immunity will also 

increase the risk of dengue incidence in future. Added to the sore is continued unplanned 

urbanization in the pace of erratic human mobility are likely to exacerbate disease risk. So, a proper 

surveillance-based prediction and prevention tool is instrumental to address the issue holistically 

[148].  
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However, haphazard and passive public health surveillance and current containment plans are 

insufficient to address future risk. In the absence of a reliable vaccine or prophylactic measure, 

behavioral impact programs are crucial which too, are yet to be planned and executed in the 

absence of a model health prediction and prevention strategy [148].  

To impart protective behavioral and attitudinal adjustments a pro-active Standard Operational 

Procedure (SOP) in the form of a Knowledge, Attitude and Practices (KAP) is mandatory. Md. 

Siddikur Rahman has elaborated that, ‘KAP surveys are representative of a specific population to 

collect information on what is known, believed, and done in relation to a particular topic and are 

the most frequently used study tool in health-seeking behaviour research [150]. However, almost 

all dengue KAP research has been area-based and conducted in several countries, except for some 

studies conducted at the university level [151–153]. 

So, a scientific model of eco-epidemiological mapping system is long due in the study areas and 

the region, if not at global scale. 

1.9 Research methods and analysis: 
 

As stated, ante, the model development was intended for addressing prediction and prevention of 

any health event, particularly infectious disease, and the study subject was specifically discerned 

and devised for dengue infection and epidemic in Bangladesh and Singapore, and the South Asia 

and the South East Asia at large. 

At the outset a working definition of the variables, most importantly, diagnostic criteria of the 

disease in subject, i.e. Dengue fever, characteristics to single out the variables causing dengue 

outbreak in space and time in Dhaka and Singapore were discerned.  In this regard, the Multi 

Criteria Design Analysis (MCDA) process was adopted. MNCDA involves the following stages: 
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1) Defining the objective, 2) Identifying factors and constraints using different information sources 

(e.g. expert opinion, a literature search and analysis of historical data), 3) Defining the relationship 

between the factors and the vulnerability of a location for dengue, 4) Transforming or 

standardizing the values of the factors on a relative scale to allow comparison between each 

criterion, 5) Weighting the criteria based on their relative importance to vulnerability, 6) 

Combining and aggregating all the layers/criteria to produce a final weighted estimate of 

vulnerability in each location and, 7) Conducting sensitivity analysis and validating the results 

[154]. 

This study was conducted for a period of 20 years in two separate sessions from 2000-2010 and 

2010-2020 period in the specific hospitals of Dhaka, Bangladesh and Singapore. The study 

population comprised individuals of all age groups, attending the outpatient and inpatient 

departments of tertiary hospitals in the cities of Dhaka and Singapore. Inclusion and exclusion 

criteria were developed for the clinical dengue patients for linear regression study. Monthly details 

of total rainfall, temperature, sunshine and relative humidity for all the months of the study period 

were obtained from Meteorological Department and retrospectively analyzed in relation to total 

number of dengue cases. According to the intensity of the rainfall, temperature, humidity and 

sunshine, weather data was divided in two periods namely, Pre-Monsoon (Off period) and 

Monsoon (On- period) [125]. 

A person diagnosed with dengue on discharge from the hospital was designated a study case. The 

physicians in each hospital diagnosed dengue fever from those patients who were admitted with 

acute febrile illness following a clinical case definition of dengue fever, as mentioned in the WHO 

guideline for dengue fever [110,155]. 

 A trained data extraction team consisting of a study medical officer and a research associate and 
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two volunteers extracted dengue case records from all major catchment hospitals of Dhaka City 

Corporations and Singapore Metropolitan area. The data extraction team had had an exhaustive 

exercise to find out individual file of each study case based on the criteria for the study period, 

which they tabulated in the supplied pro-forma [156]. 

In separate operation, the data for the cities of Dhaka and Singapore were obtained from Center 

for Disease Control (CDC), which monitors situation of infectious disease and health events across 

the respective country. CDC predicts, monitors and supervise the diseases situation throughout the 

countries by collecting information through its control room cell, which is now is now designated 

as the National Health Crisis Management Centre (NHCMC), DGHS. Dengue surveillance is 

mostly conducted actively either by communicating directly with the public and private health 

facilities or passively through “Hot Line” daily. Besides, at the end of the month, each facility 

produces a cumulative report of morbidity and mortality on the dengue situation and submits it to 

the CDC. The team obtained all the data pertinent to dengue infection in the cities of Dhaka and 

Singapore during the same period than made a confidence interval by comparing with the field 

data obtained from the city itself. In this way, it collected a fine-tuned data for all major cities of 

the country as stated above and for the country itself, at large [113]. 

Similarly, we obtained average daily weather data including temperature, rainfall, sunshine and 

humidity recorded in the weather station of the district office of Bangladesh and Singapore 

Meteorological Departments (BMD) located in Dhaka for the city of Dhaka and Singapore 

respectively. Then, the daily average maximum and minimum temperatures, average 

rainfall, sunshine and relative humidity data were obtained from the Met offices of Dhaka and 

Singapore over a period of 10 years (2000-2009) and (2010-2020) for Dhaka and Singapore which 
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later were compared and with the national data obtained from BMD for each district and zones of 

Bangladesh and Singapore to get a mean value as done in dengue study case [110].  

For data analysis and interpretation, SPSS software (version: 20) and other mapping models were 

used. The plan was simple and included running frequency tables and some cross tables. Prediction 

analysis was done based on MCDA process with weighted values of each variables, which is the 

crux of the study, elaborated at length in the Methodology and Data Interpretation Chapters 

[113,154].  

1.10 Study in Context: 
 

Since the time of Eon, human mobility is an integral attribute of human being. The pull factors for 

human migration include economic necessity, better living standards, better and safer society and 

social factors e.g., health, education and humanitarian dimensions. Important push factors are 

environmental deterioration, man-made and natural disasters. Movement across borders and 

internal displacement also take place for economic, cultural, social and political reasons. 

Unfortunately, though, human mobility also entails movement of viraemic people and infected 

vectors expanding the range of the infected diseases. Along with human movement, comes the 

behavioral patterns and attitudinal perspectives of different communities which bring around 

newer health event or state in a new society. Dengue spread, while remains a classic case in the 

cities of Dhaka and Singapore in this regard, government’s agencies’ helplessness to contain it 

despite all out efforts is also noteworthy [148,157,158].  

In the past , dengue used to occur in the city of Dhaka sporadically from 1964 until a discernible  

epidemic in 2000 established the disease as a new phenomenon in the societal and state psyche. 

The first introduction of dengue in this city and the country at large was traced back so as to single 
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out the sources and factors likely to contribute future episodes of the diseases here. It was found 

that, the surge in 2000 was likely the result of the import of the strain of the virus from a nearby 

endemic country, probably nearby region of the South East Asia or ASEAN region. This prompted 

us in selecting Singapore, an ASEAN country, which is also a City State, as the other study area. 

In the study areas, the highest incidence of cases was reported in 2002, following which there was 

a general decline in the annual surge, although there were enhanced incidences in the alternate 

years subsequently. The decline in the incidence might have been because of increased public 

awareness, which is a general reaction of any population towards a new disease or health events, 

which resulted in a reduction of the propagation of mosquito and an increase in the herd immunity. 

Also, there is a subsequent change in outbreaks’ incidence with mandatory introduction of 

serological diagnosis in the case reporting of the dengue disease in clinical set ups. Further, many 

of the dengue cases didn’t report to the hospital as only a few of the total dengue fever requires 

hospitalization. So, the apparent reduction of the dengue incidence was a fallacy of the surveillance 

system. Serological testing of patients in hospital testifies that, dengue incidence is on the rise and 

it did never decline. In the days to come, paucity of intervention and prophylaxis, rapid 

urbanization, erratic environmental factors and human mobility with ecological changes might 

fortify the incidence of dengue. Predicted rise in global temperature and rainfall may exacerbate it 

further.  

the largest number of cases was notified in 2002 and since then reported outbreaks have generally 

declined, although with increased notifications in alternate years. The apparent decline might be 

partially due to public awareness with consequent reduction in mosquito breeding and increased 

prevalence of immunity. However, passive hospital-based surveillance has changed with 

mandatory serological confirmation now required for case reporting. Further, a large number of 
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cases remain undetected because only patients with severe dengue require hospitalization. Thus, 

the reduction in notification numbers may be an artefact of the surveillance system. Indeed, 

population-based serological survey indicates that dengue transmission continues to be common. 

In the future, the absence of active interventions, unplanned urbanization, environmental 

deterioration, increasing population mobility, and economic factors will heighten dengue risk. 

Projected increases in temperature and rainfall may exacerbate this.  

For both study areas, while there is strong biological evidence for these effects, empirical studies 

of the relationship between climate and dengue incidence in human populations are potentially 

confounded by seasonal covariation and spatial heterogeneity. Using 20 years of data and a 

statistical approach to control for seasonality, we show a positive and statistically significant 

association between monthly changes in temperature and precipitation and monthly changes in 

dengue transmission in the areas concerned. We also found that the strength of this association 

varies spatially, that this variation is associated with differences in local climate, and that this 

relationship is consistent with laboratory studies of the impacts of these factors on vector survival 

and viral replication. These results suggest the importance of temperature and precipitation in the 

transmission of dengue viruses and suggest a reason for their spatial heterogeneity. Thus, while 

dengue transmission may have a general system, its manifestation on a local scale may differ from 

global expectations.  

Climate change is likely to profoundly modulate the burden of infectious diseases. However, 

attributing health impacts to a changing climate requires being able to associate changes in 

infectious disease incidence with the potentially complex influences of climate. This aim is further 

complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the 

processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers 
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can shape infectious disease incidence, from direct effects on vector life history to indirect effects 

on human susceptibility, and detail the scope of variation available with which to probe these 

mechanisms. We review approaches used to evaluate and quantify associations between climate 

and infectious disease incidence, discuss the array of data available to tackle this question, and 

detail remaining challenges in understanding the implications of climate change for infectious 

disease incidence in the years to come. We point to areas where synthesis between approaches 

used in climate science and infectious disease biology provide potential for progress in future. 

There have been a methodological approach to outline mechanisms underlying climate and 

infectious disease associations in non-human pathogens [159,160], reviewed conceptual 

challenges in detection and attribution [161], and provided an overview of core knowledge gaps 

[162]. A similar Standard Operational Procedure (SOP) for human pathogen and health events 

have been tried to work out in this research. 

Here, endeavors have been made to review the mechanisms by which climatic variables might 

affect infectious disease transmission ( dengue as the subject disease), issues and  challenges 

involved in linking climate drivers to infectious disease (dengue) transmission, codify a unified 

system incorporating statistical and mechanistic models that can be used to quantify these 

connections, and finally inference were made as to  how these might contribute to generating future 

projections, prediction and prevention  of the effects of ecology and epidemiology on the given 

disease and or health event [69].  
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1.11 Major Areas of Contributions: 
The study is expected to add new dimensions to the bod y of knowledge of the field. The major 

areas of contribution are: 

 In theory, establishing the causal relations of any disease or health event is crucial as to its 

prediction and prevention is concerned. Taking dengue as a model case in Dhaka, 

Bangladesh and Singapore, this study has ventured to adopt a stepwise approach to 

establish the correlations amongst the triad of disease causation, i.e., host-agent-

environment. It also explored the ecological and anthropomorphic factors responsible for 

the outbreaks of dengue in the cities of Dhaka and Singapore.  

 The study was able to deduce a significant correlation between climate variable and 

availability of the vector, ecological factors and vector density and between vector 

abundance and dengue occurrence in temporal and spatial dimensions.  

 Also, the study undertook extensive analysis of the annual, seasonal and decadal variation 

of climate factors and dengue incidences thus generative a useful data set for future study 

and research on the effects of climate change as well as ecology on dengue transmission in 

Dhaka and Singapore, in the regions of the South and South East Asia at large. 

  Based on the findings, a model mapping system was envisioned to predict the future 

incidence of dengue and thereby, to predict any such disease or health event and devising 

prevention guidelines thereto at local, national, regional and global level 

 In one hand, differences of variables in different cities and regions have been proved as to 

applying one regional model for another region, on the other hand, incorporating crucial 

variables in one model through a compare and contrast study enabled to frame a relatively 

common model mapping system applicable for any given entity of a region. It is a huge 

enabler on global and regional scale to address the outbreak of any given disease in entities 
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with different economic setting. Mapping and modelling by addressing Spatial variations 

is an important novelty of this study. 

 Finding out temporal variations of variables over time, particularly decadal impact of 

variables is another crucial attribute of the Model to apply it effectively in preventive 

medicine and urban planning. 

 This research also found that city areas with more paved roads and concrete buildings and 

infrastructures did exhibit a higher number of aedes population. The results depict that, 

rapid changing in urban ecology, particularly unplanned urbanization may pose a big threat 

for the accelerating spread of dengue, especially in metropolitan areas. This is a crucial 

inference as to the dengue prediction and prevention mapping is concerned that, unplanned 

urbanization, particularly development of shanty slum area is crucial to dengue fever 

spread. 

 Again, the mapping results of this study have important contributory function to aide in 

taking appropriate, differentiated policies for containing multiplication of vectors and 

propagation of dengue disease in Dhaka, Bangladesh and Singapore, the region and the 

globe at large.  

 Finally, through the integrated dengue management framework based on a model eco-

epidemiological mapping system is expected to play a pivotal role in upgrading national 

health sectors of the cities of Dhaka and Singapore and can contribute towards policy 

guidelines for any health event or disease across the country, the region and the world in 

general. 

The contributions of this Study have further been detailed in Chapter 7 (Summary and 

Implications). 
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1.12 Limitations of the Study: 
 

As any other vigorous research study, this research also faced with numbers of limitations, which, 

nevertheless, will act as torch bearer for further research in this field. Some of the limitations are: 

First, continuous time-series data on dengue infected cases, the viral information and vector 

epidemiology difficult to retrieve from public depository, which the study team had to prepare 

impromptu by themselves based on the secondary data available.  

Secondly, owing to paucity of resource, time, and data, this study was unable to investigate the 

relationship between climatic variables, ecological factors and vector breeding. The seasonal 

variations could not therefore be analyzed.  

Thirdly, keeping out the private hospitals out of the research areas remain a limitation of the study, 

as gradually more and more private sectors are being involved in the health management of the 

both the study areas. 

Fourth, framing a detailed questionnaire on institutional (governmental and NGO) control 

measures beyond the scope of this study, as it was not crucial for model development. However, 

further study and research on these issues, with a holistic approach to incorporate public and 

private sectors alike in the effective vector and dengue prevention and control will be important as 

to devising a better control program of the disease.  

Fifth, surveillance data on aedes mosquito or dengue disease incidences in Dhaka, Bangladesh and 

Singapore were not tailored for longitudinal analysis. Moreover, in the absence of a statutory 

principle, the limited data available were not ready to be used in general as there is no data sharing 

policy procedure in place across the different administrative authorities of the study areas. This 

posed the most serious limitation while conducting this study. 
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Sixth, although, dengue mapping model was almost a unique one, it could easily be deducted that, 

the model could be applicable for all vector borne diseases, however as to other diseases, agent-

host-environment needs to be weight- adjusted which remains a crucial limitation, as well as 

lesson, from this study prior to delving into development of a Map for any given disease or health 

event. A few studies on such a few diseases or health events could have been more fitting to show 

the implications of the Model. 

1.13 Thesis Outline: 

 

 Fundamentally, the presentation of this thesis abides by the structural guidelines 

of the doctoral thesis espoused by Perry (1998). The study kick started by 

outlining the broad view of theoretical gap and practical new normal leading 

to the core issue of the research. The identification of the problem then follows 

a conceptual framework being supported by the theory and literature to testi f y  

i t  e mpirically and conceptual validation. The overall framework a s  well as 

organizational outline of this thesis is elaborated in this section. The thesis 

comprises eight chapters and each of the chapters is introduced as under:  

 Chapter 1: Introduction describes the concept of the topic, background of the 

research and problem, research question, objective of the research, a framework 

based on background literature, scope and significance of the study, brief 

methodology, research context, expected contributions and finally, limitations of 

the study. 

 Chapter 2: Literature review explores major perspectives which solidify the 

review of the theories, general focus in different types of studies concerned, 

mainstream studies of the topic and review of the identified antecedents. 
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Additionally, this chapter discusses the literature related to the antecedents 

of the topic from diverse angles and dimensions than simply from the context of 

new research question.  

 Chapter 3: Conceptual framework develops a n d  f i n a l i z e  a conceptual 

model based on a comparative and contrastive relationships of different 

variables of the core topic and a framework for conceptual insight to explore 

the unfolding dimensions of the topic, ie model generation and its development 

process based on qualitative data. This chapter further proposes a competing 

model to verify the mediating impact of the new factors along with plausible 

paucity of the old and existing correlations. 

 Chapter 4: Methodology of the study pens the relevant scientific, statistical and 

numerical research approaches to be followed in this study. These include the 

rationale for the qualitative and quantitative approaches for this study, population 

and sample, response rate, unit of analysis, selection of key informants, 

measurement of constructs, research instrument, survey data, analytical tools 

of quantitative data, qualitative data collection, protocol and analytical approach 

of qualitative data.  

 Chapter 5: Sample profile, measurement model development and testing the 

proposed models of Singapore data. The sample profile details the sample 

demographics, responses, data cleaning and descriptive statistics. Secondly, in 

the process of measurement validation, all construct measures have been 

assessed individually in myriads of models available. Finally, proposed and 

competing models have been tested and compared with the overall measurement 



50 
 

model to verify the overall fit to the data and the theory.  

 Chapter 6 discusses the same things about city of Dhaka, Bangladesh aspects.  

 Chapter 7 differentiates t he  findings of Singapore and Dhaka, Bangladesh study.  

 Chapter 8 gives the summary and implications of the research, most specifically, 

the novelty of this study. To crystalize the answer to the research question and to 

innumerate the objective, this chapter synthesizes the overall findings, which 

follow the implications for researchers and practitioners of the days to come. 

Detailed contributions to the theory and the body of knowledge have also been 

discussed here. Being obliged by the present research findings and background, 

several future research directions have been suggested herewith. Finally, the 

limitations of this research have also been depicted to be overcome by future 

workers in this field.  

In sum, this chapter has elaborated the background and overview of the thesis. The background 

study explicitly explores the research gap that emanated from the literature review. The research 

problem, research question and objective, and justification of the study highlight the importance 

of undertaking this research. This chapter also provides an outline of the research framework, 

methodological approach, and areas of contribution. Given the framework of this thesis, the 

following chapter contains a comprehensive discussion that emerged from a detailed, critical, and 

exhaustive review of the literature focusing on infectious disease predictions from various 

perspectives. 
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Chapter Two 

2. Literature Review 

2.1 Overview:  

Since the time of Eon, even before the basic ideas and notion of the causative agents of infectious 

diseases, people were aware that climatic change had had a relationship with epidemic. The Roman 

orthodox leaderships used to take refuge in mountainous abode in summer to avert malaria, while 

the South Asian discovered that, foods cooked with strong curry items could deter diarrheal 

diseases [163]. 

A vast number of the infections are benign and even have benevolence for both the host and vector. 

Only a meagre number of them do cause adverse impact on hosts, thus bearing the name ‘infectious 

diseases. In the long sojourn of human cultural and social advancement along with human mobility 

and interaction, the patterns of theses infectious diseases have also evolved diversely. So are the 

impact of agricultural evolution and livestock’s herding which have had a direct bearing on the 

course of infection and infectious diseases [163].  

Now a days, keeping pace with socio environmental changes in both low- and high-income 

settings, human mobility has become the prime mover of rapid spread of infectious diseases [21]. 

Particularly in the low altitude areas in both  sides of the Equator, the traditional regions of high 

biodiversity, emergence of newer pathogens are discernible with the rapid change of ecology 

[20,164]. 

Anthropogenic interactions of habitat and habitants are important modifiers of transmission of 

endemic infections to epidemic scales. These drivers range from water-land-air pollution, rapid 
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and unplanned urbanization, deforestation, road and dam constructions, agricultural 

encroachment, erosion of river and ocean and human migration [165]. 

Socio-economy, health and hygiene, body immunity are amongst the most important factors that 

modulate the transmission of infectious diseases [23]  

Climate conditions have been sensitively corelated with numbers of infection-their agents, vectors, 

reservoir, and their biological replications [105]. To explain these correlations, several theories 

have been developed over time. These include high multiplication and reproduction at high 

temperature, extension of transmission seasons owing to change in climate, change in ecology and 

its balances with nature, vectors migration, changes in hosts and reservoirs of pathogen in relation 

to climate change. So, a careful assessment and analysis is warranted as to any discourse and 

decision between climate change and infectious diseases [23]. 

Keeping pace with the forces of urbanization, there have been rapid change in human life and 

habitat, ranging from working conditions, consumerism, population aging, changes in social norms 

and values, cultures and behavior, and health service techniques and technologies. With these, 

there are emergence of new diseases and manifestations of old diseases including their spread and 

virulence in newer forms to adapt with the new ecology, environment and human nature [166]. 

Unlike other health events, infectious diseases are very much dependent on climate sensitive 

entities like biology and behavior of both hosts, agents, and environment. So, with the change of 

global climate and day to day environment, it is likely to impinge on disease pathology, 

progression, and impact on human life. It is likely to manifest in depths and dimensions, 

particularly in transmission and expansion in newer time and space lines, in the coming years and 

decades as the newer change in global climate become more and more evident. Along with the 

climatic changes, are the changes in social, economic, behavioral and habitat factors which are 
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equally contributory to the factors and processes of infectious disease causality, transmission, and 

impacts [166].  

The World Health Organization (WTO), brought into fore the plausible causes of communicable 

diseases and health events with respect to human environment and ecology through a report 

published in 2017. The discernible causes enlisted include, climate change, stratospheric ozone 

depletion, changes in ecosystems due to loss of biodiversity, changes in hydrological systems and 

supplies of freshwater, land degradation, urbanization, and stresses on food-producing systems. 

The symbiosis of human being with domesticated animals and wildlife poses important links as to 

the causation of infectious disease outbreak in the past centuries [167]. However, the etiological 

link between host and pathogen varies with species diversity and diversity of the composition of 

the community [168]. Therefore, it is of crucial importance to realize the correlation between the 

effects of fragmentation of habitat and other changes in ecology on host–pathogen interactions 

[164,169]. 

 In 1878, during one of the strongest El Niño episodes on record, one of the most severe 

summertime outbreaks of yellow fever took place in the southern United States. In the Northern 

hemisphere, it is now an established fact that, mid-winter is the season of  recurrent influenza 

epidemics every year [163]. 

Emerging infectious diseases (EIDs), in line with the historical perspectives, continue to pose 

global threats with rapid dissemination [170,171]. Therefore, it is the call of the day that, to 

efficiently device EID prevention and control plans and programs, the complex and un-orthodox 

relationships among myriads of hosts and pathogen, environmental change, and members of 
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humankind ought to be understood [172]. Only a developed and specific surveillance systems 

could provide better understanding  for analysis of the emergence of newer diseases [164,173]. 

This review of the extant literature is devised to study the theoretical foundation highlighting 

different studies conducted as to the causal relationships of disease, agents and environment to 

predict and prevent future incidence of such disease and health events, with particular regard to 

Dengue infections in Bangladesh as a subject case to develop a general model applicable to all 

health events and states. This attempt also ventures to solidify the antecedents of evolving gap 

so as to design a model to address such gap. In this chapter, all these directions have been 

exhausted in the context of narrowing the research gap to answer the research question. The aims 

of this chapter are to: 

• Review the relevant theories and their rational arguments into a new 

theoretical paradigm (Section 2.1.1) 

• Review the supportive streams that provide more insights for this study 

(Section 2.1.2) 

• Consolidate the comparative and contrastive studies of modelling methods which 

have provided a clear indication of 

antecedents of new ideas in this regard (Section

• Review the relevant literature related to the identified antecedents of 

Modelling and to specify their probable impact o n  new model designing 

(Section 2.2)  
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• Synthesize the review to consolidate the antecedents mapping and modelling methods. 

(Section 2.3) 

2.2 Review of the Fundamental Research Streams: 
 

The main purpose of this review is to develop a theoretical grounding of the study of dengue, 

its host, vectors and environment to discern the correlations amongst the variables so as to 

i d e n t i f y  antecedents of epidemiological and ecological approaches for devising a 

comparative method of predicting the disease incidence. Initially the review consolidates 

literature on relevant theories before discussing the literature pertinent to epidemiology, 

ecology, mapping, and modelling. Further, the review identifies some of the key studies 

that have examined either of these issues. Therefore, the following sub-sections review 

following fundamental research streams for this study; the theoretical foundation, a brief review 

of the pertinent studies, studies of prediction models and methods. 

2.2.1 Study on theoretical foundation: 
 

Of late, transmission of infectious diseases from animal to human being have phenomenally 

enhanced, such as HIV-AIDS, tick-borne diseases, mosquito-borne diseases, and most importantly 

bat-induced Covid-19 global pandemic. While these have a huge and devastating impact on human 

health and development, primary negligence as to the early reporting of such cases have not been 

conducted historically lest it had impacted regionally or globally [170]. 

Humankind strived for finding ways of salvation from the scourge of infectious diseases without 

any avail. However, by the late 20th century, with the invention of modern techniques as to 

diagnostics and therapeutic inventions, the prevalence of infectious diseases went down to a great 

extent. But unfortunately, despite the discovery of antibiotics and sophisticated treatment methods, 
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newer arrays of infections ushered in under the pretext of bioterrorism, population mobility, erratic 

climatic behavior and unequal distribution of health facilities ( in line with wealth cycles of the 

state and society). It has thus warranted a second thought as to giving prevention and control of 

infectious diseases a place ahead of treatment [174]. 

Environmental change lies in the epi-center of emergence of newer infectious diseases and re-

emergence of ancient world’s infection, as postulated by modern day public health scientists [175–

177]., the real causology as to the establishment of relationship between diseases and key factors 

of environment and ecology is still evolving. Some put more emphasis on proximal environmental 

characters such as agent-host-ecology cycles than the distal factors like habitat development, water 

and land use, biodiversity loss etc. for the causation of prevalence, distribution and severity of 

infectious diseases [178]. 

Human ecology is classically dubbed as the study of interactions amongst individuals and groups and their 

aggregate and segregate actions with the environment they live in. Thus Disease Ecology , which entails 

medical geography and epidemiology is of critical approach as to understanding emergence and resurgence 

of diseases, particularly infectious diseases [179,180]. Again this human interaction is very much a 

politico-economic and social issue. Starting from land and resource distribution, addressing 

environmental preservation vis-à-vis economic development are all dictated and discerned by 

socio political governance. Thus Political Ecology and Political ecologic approach has gradually 

been developing as a new tool for interpretative framework for new disease emergence and their 

prevention and control (Political Ecology vs Disease Ecology – new approach to framework of 

disease epidemiology) [181]. 
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2.3 Epidemiological theories: 
 

The definition of Environmental Health, to be more specific, the Environmental dimension of 

Health has tracked a tortuous and serpentine route in its evolution from ‘bad, toxic air’ theory to 

‘germ theory’. Surprisingly, though seemingly funny, the former theory emphasized a great deal 

on environmental protection in comparison to the lately evolved postulate. According to the ‘bad, 

toxic air’ or Miasma theory, foul smelling environment emanating out of a bad environment was 

causative agents of infectious disease, thus putting more impetus on environmental cleanliness and 

biodiversity management. However, following the postulate of scientific Germ Theory that, 

microbes lie in the core of causation of all infectious diseases, the social environment and its 

determinants’ contributing roles in the etiology of diseases supplanted resulted in an ear of 

negligence towards the environment, in the age of so called first and second industrial revolution. 

However, of late, the very role of environment, particularly its interaction with humankind under 

the guise of ecological exchange has been established as the pivot of infectious agents’ life and 

thrive in the environment to impart infection in human beings. So the combined role of 

environment and ecology as to the prime mover of infectious disease prevalence, spread and 

containment has now again taken its firm seat in public health domain [182]. 

The rather side line benefits of Miasma theories such as reducing the spread of habitat of mosquitos 

in the wetland by water removal during dry season, removing raw waste from river and pond beds, 

thus reducing water-borne diseases and relocating habitat in fresh location continued till late 1800. 

Later on, with the advent of germ theory, all these but went to die down completely after their very 

recent rejuvenation from long hibernation after the renewed emphasis of environment and ecology 

as to the causation of spread of diseases [183].  
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Over the years, scientists have developed two basic systems to quantify the disease occurrence and 

causal factors-the risk factor approach and biological approach. The former is based on association 

of disease occurrence with factors ranging from environmental, behavioral, ecological, and genetic 

attributes. In this approach, an odds ratio or relative risk is calculated based on presumed factors 

of causation so that preventive measures could be taken apriori. On the other hand, the biologic 

approach, which has evolved since 1980s is a statistical method based on evolutionary dynamics 

of host pathogens interactions, which is essentially a function of fundamental biology of host and 

agents such as, mutation, gene flow & migration, contact & transmission rates leading to a complex 

but natural disease patterns in time and space. Since this phenomenon is derived from underlying 

dynamics of host and pathogens, it is of crucial importance as to understanding deeper causal 

mechanisms in addition to predicting disease patterns. Not to speak, the future discourse of disease 

epidemiology will revolve round this approach as it seems to be the holy grail the scientists have 

been expounding over ages [174].  

In the contemporary public health age, biomedical thoughts and praxis have evolved in a different 

dimension based on previous experiences of Miasma or Contagion versus Germ theory of disease 

causation. The former approach led to the innovation of healthy practices such as sanitation, 

hygiene, habitat and food & nutritional dimensions of health leading to giant leaps in extended 

life expectancy and longevity[184], even though the proper scientific pathophysiological and 

patho-epidemiological studies were yet to be discerned under the auspices of this method [185].  

In contrast, with the invention of the Germ theory of disease causation, a reductionist trajectory 

developed in public health domain which, inter alia, emphasized on vaccinations, antibiotics and 

therapeutics, pesticides and larvicides and biological barriers to infection. This praxis has resulted 

in wonderful improvement of public health with regard to communicable diseases’ spreading. 
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Given the fact that, establishing the ecological and environmental factors as to the causation and 

impact on disease prevalence is not based on empirical studies, the study of natural pattern changes 

in disease modality (although, mostly caused by epigenetics) and subsequent preventive measures 

seem to be the call of the day and of future in Public Health and Epidemiology. This research is 

intended to establish this trajectory of future preventive medicine in epidemiology based on a 

comparative studies of contrast of eco-epidemiological causation in different scenarios, while 

synergistic statistical changes in disease patterns in those  varying environment [178]. 

2.4 Ecological theories: 
 

Keeping pace with the advancement of civilization and development, newer and newer diseases 

are surfacing. These emergences of diseases are attributed to either the resurgence of hitherto 

unknown diseases, thanks to newer technology and technical know-how or due to spread of old 

diseases in new domains in both time and space [176]. Both causalities have largely been resulted 

from a number of factors ranging from social, economic, scientific, environmental and 

demographic dimensions [186]. For instance, human mobility has been attributed to many new 

diseases in the course of human development, such as small pox, plague, cholera and covid19 in 

recent times. So newer infections will continue to be discovered while old infections will go on 

changing in virulence, frequency, and geographical dispersion [187]. 

Although the agent-host-environment relationship is yet to be discerned holistically, it is 

understood that, the three components of infectious disease cycle remain in a dynamic equilibrium 

under normal situation. Newer diseases ensue when this equilibrium is breached, mostly owing to 

ecological disturbances, such as changes in land use, human mobility, building new structures etc. 

Historically, the European and American explorers were witnessing victims of this ecological 

imbalances, perpetrated mostly by themselves [188–192]. Contemporary examples include, flare 
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up of Schistosoma infections following the construction of Aswan Dam in the Nile in Egypt, 

increases in malaria after Volta River project in African heartland, increase in malaria following 

deforestation in Malaysia for rubber plantation and most lately, reforestation (!) of sub-urbs in the 

US Mid-East resulting in increase of Lyme’s disease, by bringing the deer-the bearer of vector( 

Tick for Borrelia burgdorferi)  to close proximity of human habitat [181].  

To address the causality factors for increasing trends of infectious diseases in space and time, a 

number of interdependent socio-political, economic and environmental issues have been 

discerned. These include, increasing in number of populaces, unplanned urbanization, migration, 

in equal distribution of resources and facilities, climate change, loss of biodiversity and lack of 

infrastructure etc. [193].  It is hoped that, once the causal relations are established, it will lead to a 

framework action as to prevent or contain the incidence of newer disease, curtail the emergence of 

newer infections and the prediction, detection and control of future diseases and thereby 

minimizing their impact [172,193]. 

Human mobility, mode of transportation and population concentration has directly been attributed 

to spread of infectious diseases in space of time through empirical studies. The human migration, 

both forced and opportunistic may equally contribute to the dispersion of diseases. It may happen 

either by the conveyance of diseases with the migrant themselves or through their vulnerability to 

a new pathogen faced by them in the new setting. Means of transportation has become yet another 

factor contributing to migration of diseases. For example, the postulate of ‘ airport malaria’ which 

is a concept of malarial outburst amongst the people living in vicinity of the airport areas in the 

United Sates, England and the Nordic Countries ( National Research Council, 2001), Asian dengue 

vector-Aedes albopictus, reported to be air borne to Houston in wet tires of consignment carrying 

wagons etc. are mentioned worthy in this regard [121,194].  
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Community ecology aims to identify the factors that govern the structure, assembly, and dynamics 

of ecological communities. This study describes how analytical and conceptual approaches from 

this discipline can be used to address fundamental challenges in disease research, such as (i) 

managing the ecological complexity of multi host-multi parasite assemblages; (ii) identifying the 

drivers of heterogeneities among individuals, species, and regions; and (iii) quantifying how 

processes link across multiple scales of biological organization to drive disease dynamics. It shows 

how a community ecology framework can help to determine whether infection is best controlled 

through “defensive” approaches that reduce host suitability or through “offensive” approaches that 

dampen parasite spread. Examples of defensive approaches are the strategic use of wildlife 

diversity to reduce host and vector transmission, and taking advantage of antagonism between 

symbionts to suppress within-host growth and pathology. Offensive approaches include the 

targeted control of super spreading hosts and the reduction of human-wildlife contact rates to 

mitigate spillover. By identifying the importance of parasite dispersal and establishment, a 

community ecology framework can offer additional insights about the scale at which disease 

should be controlled [195]. 

Based on hitherto discussion, gradually there have been development of a new discipline to study 

the issues governing structure, aggregation, and dynamics as to the communities in ecology. It has 

primarily been named as Community Ecology. It entails, inter alia, study of topics, such as 

management of multiple hosts and agents interactions in a given ecological setting, identification 

of diversities amongst host, agents and environments, quantification of disease dynamics in 

complex linkages. Gradually, two holistic approaches of prevention and containment of infectious 

diseases have evolved under the paradigm of Community Ecology namely Defensive and 

Offensive Approaches. The former espouses strategic use of diversity in the wild and its livelihood 
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to shackle spread of vector, pathogen and host interactions, thereby using the opposition of inmates 

of hosts’ symbiosis to curtail growth and pathogenesis of the microbes. The offensive approach, 

on the other hand, target the superfluous spreading of hosts and their contact with wildlife to 

mitigate the infection rates. Community Ecology, thus offers the measurement of the scale of 

controlling the infection to impart a permanent impact on the disease spread in the long run [195]. 

2.5 Mapping models 

Stocking myriads of data is a prerequisite of disease mapping. The first and foremost information 

required is the scientific study of host-pathogen relationship for the causality of a disease or a state 

of health. Secondly, the trend of spatial and temporal expansion of disease is a crucial factor to 

map a disease. The third information is how this trend is influenced by environmental and 

ecological factors. The fourth and most important factor is the reliability, robustness and 

contemporariness of the gathered data which is essential to predict and formulate a nearly real 

mapping of a disease or health related state and event of a given entity [196–198]. 

A variety of mapping are in force in epidemiology. Point data mapping is used practically to 

showcase prevalence data or incidence data from a geographical perspective. Occurrence data 

map, on the other hand is the graphical presentation of an observation of any disease or health state 

or event in time and space in a given geographical entity {HealthMap/ProMED [82,199], 

BioCaster [87,88] and Argus [89,200]}. 

The principal achievement of a mapping endeavor is to find out an accurate measurement of 

endemicity of a given disease in a given area [201]. This endemicity is a function of prevalence of 

a disease in an area and fraction of the cases and control in the populace concerned in time and 

space. This , in turn, enables the authorities to afford variations of operations and endeavors of 
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public health interventions, such as measurement of clinical burden [79,202], national reproductive 

number measurement [80,203] which in turn, lead to a national feasibility assessment and action 

plan. 

Based on Point Observation of Occurrence, this study, has endeavored to develop a method of 

mapping, named Boosted Regression Trees (BRT) method, with the prime objective of discerning 

the basic niche of the target pathogen in relation to host and environment [204]. To be more 

specific, the environmental, ecological, and clinical factors directly impacting the pathogen and 

pathogenicity of the disease were enumerated and depicted in the map to have a direct impact 

study. The factors that paved the way of decision towards this method, include,  

A. Out of a number of study, BRT method has topped in terms of accurate evaluation of Area 

Under Curve(AUC) and Correlation statistics [78,205]; 

B. Both continuous and categorical data of all kinds of predictor variables could be easily 

accommodated in this Method. 

C. It is user friendly and pretty easier to understand and implement. 

D. It includes a ranked codes of environmental and ecological predictors, which do not need 

further justification

Important usefulness of mapping include: 

i. Determining crucial baseline estimates of diseases [206–211]; 

ii. Transmission factors of diseases [212–214]; 

iii. Clinical burden in the society [81,202,215,216]; 

iv. Surveillance system and outbreak tracking undertaken by the stake holders [86,217]; 

v. Resource allocation at micro, meso and macro levels [82,218–221]; 



64 
 

vi. Local, national, regional and international travel restrictions [222–224] etc. 

In contrast to the easier system of developing mapping, there has always been a gap between the 

data available and the map drawn to use for preventive and surveillance medicine. To address this 

issue, a software named the Atlas of Baseline Risk Assessment for Infectious Diseases (ABRAID) 

has been developed over time which can use continuously updated data and do depict situation 

mapping accordingly in an automation fashion. For individual infectious disease, disease specific 

methodological data or spatial inference method as and when necessary, are used to tailor the 

disease specific map [224,225]. 

The databases in force have two major setbacks. The first is mainly resulted from irregular pattern 

of collection of data when different countries need data on a given time. This is crucially needed 

when subnational and regional data required to be discerned from methodical periodic census data 

of individual country [226]. The second constraint is unavailability of the specific epidemiological 

information of the population mapped under a census data-base. So different data sets need to be 

incorporated and integrated into mapping before being produced from census data [226,227].  

The classic example of spatial analysis of epidemiological data in the Soho area of London in 1854 

to detect the source of cholera in the area-the infame water pump and its subsequent removal to 

cutdown the cholera infection in the area, constitute the basic premises of spatial mapping and its 

significance [228]. Routine datasets which are gathered in hospital setting might usher in new era 

of epidemiological diction if they were inclusive of the area and habitat of the cases and cohorts. 

The relation between geographic context and incidence of any given disease is not only important 

from predicting or preventing a communicable disease in a given area, it could equally been 

applicable in other health states and events, such as pollution or radiation in relation to childhood 

leukemia and other relevant diseases [229–237]. So a simple tools and application should be 



65 
 

designed and developed so that, health professionals in general can easily be contributive as well 

as beneficiary in formulation of the spatial mapping by applying spatial dimensions of diseases 

and health states [238].  
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Chapter Three 

 Conceptual and Theoretical Framework 

3 Theories of new model: 
 

The contemporary modelling techniques for mapping of diseases and health states revolve round 

the Presence and Absence databases as and when necessary. The Presence data are of particular 

importance in geographical distribution in both time and space of factors concerning planning, 

epidemiology, ecology and evolution of communicable species [239–244]. General-purpose 

statistical methods are used in depicting both Presence and Absence database [242,245]. Presence 

only data are modelled in conservation purpose while Absence databases are used in poorly 

sampled data of tropical and high-altitude areas [246–248]. 

If we are to develop a model, or more specifically a mapping model, the fundamental principle 

would be co-relating the set of occurrence localities with environmental variables which are likely 

to determine the suitability of the environment to thrive a species in a particular locality  [249,250].  

Traditionally, the geographical location is discerned by its latitude-longitude pair which is 

applicable to all such locations in the globe, where similar environmental suitability ought to 

persist, which will act as the function of environmental variables required for the livelihood of a 

given species or health state [247,251]. 

A niche-based model is the representation of the approximate ecological niche in each 

environmental facility. Therefore, there might be two sets niches – the fundamental niche and the 

realized niche. The former denotes the conditions, if persists, would cater the full realization of a 

species’ thriving to the fullest form, while the later niche, the realized niche is the manifestation 

of the observed datasets in the given environmental conditions [252].  
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Over ages, it has been observed that, the realized niche is supposed to be smaller than the 

fundamental data due to factors like human influence (such as preventive measures), biotic and 

symbiotic interactions or geo-physical barriers which often hinders the dispersal, colonization, and 

habitation of the species in question [253,254]. However, with the advent of human influence in 

nature, particularly global warming and erratic climate behavior, some realized niche are becoming 

larger than the fundamental niche, indicating the excessive growth and dispersion of pathogen and 

health states, in a newly revived environment due to human activity. Revival of malaria in hitherto 

sub-tropic zones of Europe is a classic example in this regard. 

In practical situations, the departure between the two niches is not discernible. However, from 

scientific and epidemiological context, if the two niche do not coincide, the modelling algorithm 

will not be representative of the occurrence localities. So , the intention of this study is to 

incorporate both the factors-environmental, fundamental factors and realization-influencing, 

ecological factors to develop the potential nice modelling which will be almost close to the reality 

[255].  

Of late, a copious number of methods have been exercised and put into practice with a view to  

study biodiversity research [256], biology of conservation [257] and invasion biology [258]. These 

devices include, MaxEnt, GARP, CLIMEX, BIOCLIM, BRT, GLM, GAM etc. Out of them, 

MaxEnt has extensively been used on study based on Prsence-data only, such as, the study of 

climatic study of giant African snails (Achatina fulica Fe´russac, 1821) [259], Eastern grey 

squirrels (Sciurus carolinensis Gmelin, 1788) [260] and different xerophyte species such as orchids 

(Epipactis helleborine) [261]. 

MaxEnt has superiority over other methods in the following domains: 

1. It does not need a comprehensive datasets, it only requires Presence-only data [205]; 
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2. The MaxEnt software better user-friendly and economical via-a-vis other approaches 

[205]; 

3. It has been proved robust in modelling even scare numbers of data sets [262,263]. 

MaxEnt methodology is described underneath in a nut shell: 

1. The software has been developed to measure incidence or prevalence of species by 

Presence-only data by tallying environmental data on given areas with known occurrences 

of a particular species.  A target landscape or a model background is fixed for the 

comparison of the data [264]; 

2. All statistical sets such as , linear, quadratic, product , threshold and hinge methods are 

applicable in MaxEnt feature typology; 

3. A continuous map is generated with an estimated Presence-only data in a 0-1 scale 

regarding prevalence probability; 

4. A jackknife test is used to test the P value, i.e. Significance of the each of the variables 

(To run the model, the convergence threshold (10−5), maximum iterations (5000) and max number 

of background points (10000) are used. The MaxEnt model is, at the outset, generated based on 

the 10-fold cross-validation method.) 

The AUC of the Receiver Operating Characteristic (ROC), was used to estimate the performance 

of the model [265]. AUC values range from 0 to 1, where a value of 0.9 indicates high performance 

[240,266]. To improve the displays of prediction in this study, the continuous suitability maps 

predicted by MaxEnt were converted into suitable/unsuitable area (binary habitat) by applying a 

threshold value. Here, maximum training sensitivity plus specificity was used to define habitat and 

non-habitat for P. solenopsis. This threshold has been used in many primary studies [267–270]. 

Maxent has strong similarities to some existing methods for modeling species distributions, in 
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particular, generalized linear models (GLMs), generalized additive models (GAMs) and machine 

learning methods such as Bayesian approaches and neural networks. GLMs, GAMs, Bayesian 

approaches and neural networks are all broad classes of techniques, and we refer here only to the 

way they have been applied to presence only modeling of species distributions. Theoretically, 

Maxent is most similar to GLMs and GAMs [271]. A frequently-used GLM is the Guassian logit 

model, in which the logit of the predicted probability of occurrence is 

 α + β1f1(x) + γ1f1(x) 2 + ... + βnfn(x) + γnfn(x) 2  

where the fj are environmental variables, α, βj and γj are fitted coefficients, and the logit function 

is defined by logit(p) = ln (p 1−p). The expression in (6) is the same form as the log (rather than 

logit) of the probability of the pixel x in a Maxent model with linear and quadratic features. A 

common method for modeling interactions between variables in a GLM is to create product 

variables, which is analogous to the use of product features in Maxent. In the same way, if 

probability of occurrence is modeled with a GAM using a logit link function, the logit of the 

predicted probability has the form  

g1(f1(x)) + ... + gn(fn(x)) 

 where the fi are again environmental variables. The gi are smooth functions fit by the model, with 

the amount of smoothing controlled by a width parameter. This is the same form as the log 

probability of the pixel x in a Maxent model with threshold features, and regularization has an 

analogous effect to smoothing on the otherwise arbitrary functions g1. In both cases, the shape of 

the response curve to each environmental variable is determined by the data. Despite these 

similarities, important differences exist between GLM/GAMs and Maxent, causing them to make 

different predictions. When GLM/GAMs are used to model probability of occurrence, absence 

data are required. When applied to presence-only data, background pixels must be used instead of 



70 
 

true absences[272]. However, the interpretation of the result is less clear-cut—it must be 

interpreted as a relative index of environmental suitability. In contrast, Maxent models a 

probability distribution over the pixels in the study region, and in no sense are pixels without 

species records interpreted as absences. In addition, Maxent is a generative approach, whereas 

GLM/GAMs are discriminative, and generative methods may give better predictions when the 

amount of training data is small [273]. For a joint probability distribution p(x, y), a discriminative 

classifier models the posterior probability p(y|x) directly, in order to choose the most likely label 

y for given inputs x. Typically, a generative classifier models the distribution p(x, y) or p(x|y), and 

relies on Bayes’ rule to determine p(y|x). Our unconditional Maxent models are generative: we 

model a distribution p(x|y = 1) [255]. 

The basic essence of  Maxent models is probability measurement  of species presence by observing 

the dispersion and distribution  of the maximum entropy (i.e., closest to uniform), with constraints 

poised by the empirical values of actually observed  spatial distributions of the species and the 

climatic variables data of the given area [274].Maxent models generally rely on presence only 

data. They have extensively been applied to develop model for species distribution and have 

exhibited excellent predictive performance vis-à-vis  other structured decision making models, 

particularly those models relying o  presence-absence data [205,275]. Moreover, These models 

have also been applied in the distribution of project species given a rapidly changing climate milieu 

in future. [276,277]. 

 Point Sampling is another model approach used to predict species distribution when only vector 

presence data are available [278]. It involves assigning the presence data in a random location 

within a given county or location. Then explanatory data are estimated at that point and assigned 

to the presence data for modeling with Maxent. To minimize the uncertainty emanated out from 
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random data, the experiment is repeated time and again and the mean prediction value is calculated 

at each pixel.  

Validation and evaluation of models are done by splitting the data into two parts randomly: training 

and validation datasets. In practice, 75% of the presence data are randomly selected to act as 

training data, with the remaining 25% acting as validation data [277,279]. To minimize the 

uncertainty resulting from training and validation set splits, the model results are repeated several 

times for each species and all data are used to make the final predictions.  Point  sampling model 

methods were first successfully used for malaria prediction  when the above methods were 

separately and repeatedly used for all four species of anopheles mosquito -the vector of malaria 

juxtaposed to other climate variables responsible for the transmission of the parasite and 

propagation of the vectors [280].  

The research approach here was to first analyze the mutual interactions of the epidemiological 

triad of agent-host and environment, subsequently to find out individual impact of the variables on 

each other, such as effects of climatic variables on dengue abundance, then subsequently analyze 

the effect of year/time on dengue incidence. The meteorological, ecological and dengue case data 

were analyzed in two stages: 

3.1 Model 1: Analysis of climate & Ecological factors versus dengue case incidence:  

 

At the outset, mean temperature (MT), mean relative humidity (MRH), mean rainfall (MR) and 

mean sunshine (MS) were calculated, apart from the ecological variables. We then attempted to 

find relationships between climate variables (MT, MR, MRH, and MS) and the number of 

confirmed dengue cases from clinical data. As the values were obtained by counts, the following 

Poisson Regression method was applied to model the correlations between climate variables and 

dengue incidence of study period (2004-2020): 
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log(µ)= β0 + β1 *MT + β2 * MRH+ β3 *MR+ β4 *MS + β5* EF + error ----------------------- (1) 

where; µ is the mean case count; β0 is the intercept; β1, β2, β3, β4 and β5 are the coefficients of 

MT, MRH, MR MS and EF respectively. 

3.2 Model 2: 

Analysis of estimated dengue cases over time/year: Here, we emphasized 

examining the relationship between predicted confirmed dengue cases over year. The following 

Linear regression model was used to predict the number of dengue cases over the upcoming year: 

Yt= β0 + β1*Xt , ------------------------------ (2) 

where; Yt is the estimated mean count dengue cases and Xt is the time/year. 

3.3 Synthesis: 

 

  The above depictions result in a number of inferences, c o n c e r n i n g  climate data as well as 

ecological data. Therefore, further study needs to be undertaken to address this gap and provide 

empirical assessment which might aide in realization and understanding of  predic t ing 

dengue  cases  and  death  resu l t ing f rom dengue  fever  over  t he  year s .   
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Chapter Four 

4. Methodology 

4.1 Study Area and Design 

 

Singapore, city-state located at the southern tip of the Malay Peninsula, about 85 miles (137 

kilometers) north of the Equator. It consists of the diamond-shaped Singapore Island and some 60 

small islets; the main island occupies all but about 18 square miles of this combined area. The 

main island is separated from Peninsular Malaysia to the north by Johor Strait, a narrow channel 

crossed by a road and rail causeway that is more than half a mile long. The southern limits of the 

state run through Singapore Strait, where outliers of the Riau-Lingga Archipelago—which forms 

a part of Indonesia—extend to within 10 miles of the main island. 

The average monthly temperature varies from about 81° F (27° C) in June to 77° F (25° C) in 

January. The daily range is somewhat greater, averaging about 13° F (7° C). Singapore’s maritime 

location and constant humidity, however, keep maximum temperatures relatively moderate: the 

highest temperature ever recorded was only 97° F (36° C). The seasons are defined by the relative 

incidence of rainfall, which, in turn, is determined by the movements of the monsoon air masses. 

The wettest and windiest period is during the northeast monsoon (November–March), with rainfall 

reaching an average monthly high of more than 10 inches (250 millimeters) in December. 

Conversely, the period of the least amount of rainfall and the lightest winds is during the southwest 

monsoon (May–September), with rainfall dropping to a monthly low of less than 7 inches in July. 

April and October are intermonsoonal periods characterized by sluggish air movements and 

intense afternoon showers and thunderstorms. Altogether, Singapore’s precipitation averages 

https://www.britannica.com/topic/city-state
https://www.britannica.com/place/Malay-Peninsula
https://www.britannica.com/place/Equator
https://www.britannica.com/place/Singapore-Island
https://www.britannica.com/place/Peninsular-Malaysia
https://www.britannica.com/place/Johore-Strait
https://www.britannica.com/place/Singapore-Strait
https://www.britannica.com/place/Indonesia
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about 95 inches annually, and rain falls somewhere on the island every day of the year (Singapore 

| Facts, Geography, History, & Points of Interest). 

4.2 Data Collection Techniques 
 

In Singapore, the Ministry of Health (MOH) is responsible for the epidemiology and clinical 

management of dengue, whereas the National Environment Agency (NEA), an agency under the 

Ministry of Environment and Water Resources, is responsible for vector surveillance and control. 

Under the Infectious Diseases Act, it is mandatory for all medical practitioners and clinical 

laboratories to notify MOH of all clinically suspected and laboratory confirmed dengue cases 

within 24 hours of diagnosis. Laboratory confirmation of dengue cases is achieved through 

nonstructural protein 1 (NS1) antigen detection, viral RNA detection by polymerase chain reaction 

(PCR), or immunoglobulin Mdetection. 14,15 Imported dengue cases are defined as cases who 

have traveled to a dengue-endemic area outside of Singapore within 7 days before the onset of 

illness. National Environment Agency’s epidemiologically trained officers interview the cases 

when necessary to obtain epidemiological and demographic data including occupation, residential 

and school/workplace addresses, and dates of diagnosis and onset of illness. Data on deaths from 

DF/DHF are obtained from the national Registry of Births and Death (Dengue in Singapore from 

2004 to 2016: Cyclical Epidemic Patterns Dominated by Serotypes 1 and 2). 

4.3 Data screening and Analysis 

The meteorological, ecological and dengue case data were collected, analyzed and interpreted as 

under: 

 

Data 

Monthly dengue cases from 2000 to 2020 in Dhaka city of Bangladesh was collected from the 

Directorate General of Health Services (DGHS) in Bangladesh. Climatic variables such as 
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temperature, humidity, rainfall, and sunshine hour from 2000 to 2020 in Dhaka city were collected 

from Bangladesh Met Office (BMD). We consulted the MOH, Singapore 

(https://www.moh.gov.sg/ ) for all dengue data about the city of Singapore from 2000 to 2020. 

From 2000 to 2020, Singapore's maximum temperature, humidity, precipitation, and sunlight hour 

data are sourced from (https://data.gov.sg/ ).  

Dependent variable 

In this study, the total number of dengue cases for each month in both Singapore and Bangladesh 

has been considered as the outcome variable. 

Independent variables 

The maximum temperature (°C), humidity (g/kg air), precipitation (mm), and sunshine hour (in 

(average) hours per day) are the independent variables in this study.  

Statistical Analysis 

To determine the basic properties (mean) of each variable for every year, descriptive statistics are 

first calculated for both Bangladesh and Singapore. Secondly, to ascertain whether the dengue 

cases varied at different month and year, a time series plot and seasonal plot was also carried out. 

We also used the Augmented Dickey-Fuller Test to ascertain whether there is a correlation between 

variables of climate and dengue incidence and prevalence, regardless of period, we employed a 

stationary test with R packages t series. We also observed different seasonal plots to detect the 

seasonality of the data.  Later we utilized different Seasonal Autoregressive Integrated Moving 

Average (ARIMA) models using different combinations of parameters ARIMA (p, d, q) × 

Seasonal (P, D, Q)s (Mekparyup and Saithanu 2015). The Akaike Information Criterion (AIC) was 

utilized to evaluate the models' fit quality. The lowest AIC values determine which model is chosen 

in the end  (Adams and Somto 2022). Moreover, we also used Poisson regression to estimate the 

https://www.moh.gov.sg/
https://data.gov.sg/
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parameters and compare it with the Seasonal ARIMA model (Hossain et al. 2023). Machine 

Learning Methods, such as Artificial neural network (ANN), Support vector machine (SVM), 

error, trend and seasonality model with trigonometric seasonality (ETS), Trigonometric 

seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal (TBATS) model, and 

Two-component K-H model were fitted to forecast the dengue data (Du et al. 2021; Naher et al. 

2022; Polwiang 2020; Redondo-Bravo et al. 2019). We used R software (version 4.0.0) to 

complete the analysis part.  

Seasonal ARIMA Model 

ARIMA model is a time series statistical model used to explore the time series nature of the data 

and forecast the future series points (Kharmayana Rubaya et al. 2018). The AR parts of ARIMA 

indicate that the outcome variable is regressed by its own lag values. The MA parts of ARIMA 

indicate that the regression error terms are a linear combination of the error terms at the current 

time point and with its past values. When the seasonality is reported in the data sets, then the 

seasonal difference needs to be addressed to reduce the seasonal component. Suppose Yt is an 

outcome variable at time point t and et is a white noise with zero mean and variance then the AR 

model with order p can be presented as: 

𝑌𝑡 =  𝛽1𝑌𝑡 − 1 +  𝛽2𝑌𝑡 − 2 + ⋯ +  𝛽3𝑌𝑡 − 𝑝 +  𝑒𝑡 

The MA model with order q is:  

𝑌𝑡 =  𝛼1𝑒𝑡 − 1 +  𝛼2𝑒𝑡 − 2 + ⋯ +  𝛼3𝑒𝑡 − 𝑞 +  𝑒𝑡 

Then the ARIMA model can be written as: 

𝑌𝑡 =  𝛽1𝑌𝑡 − 1 +  𝛽2𝑌𝑡 − 2 + ⋯ +  𝛽3𝑌𝑡 − 𝑝 + 𝛼1𝑒𝑡 − 1 +  𝛼2𝑒𝑡 − 2 + ⋯ +  𝛼3𝑒𝑡 − 𝑞 + 𝑒𝑡 

The seasonal ARIMA model with seasonal order s is (Polwiang 2020):  



77 
 

𝑌𝑡 =  𝛽1𝑌𝑡 − 1 +  𝛽2𝑌𝑡 − 2 + ⋯ +  𝛽3𝑌𝑡 − 𝑝 + 𝛼1𝑒𝑡 − 1 +  𝛼2𝑒𝑡 − 2 + ⋯ +  𝛼3𝑒𝑡 − 𝑞

+ (𝛷1𝑌𝑡 − 𝑠 +  𝛷2𝑌𝑡 − 2𝑠 +  ⋯ +  𝛷𝑃𝑌𝑡 − 𝑃𝑠)

+  (𝛩1𝑒𝑡 − 𝑠 +  𝛩2𝑒𝑡 − 2𝑠 +  ⋯ +  𝛩𝑄𝑒𝑡 − 𝑄𝑠) +  𝑒𝑡 

The first part represents the non-seasonal ARIMA model described earlier. The second part 

represents the non-seasonal MA model. The third part captures the seasonal AR component with 

coefficients Φ1 to ΦP. The fourth part captures the seasonal MA component with coefficients Θ1 

to ΘQ and 'et' is the white noise error term with zero mean and variance, as you mentioned. 

Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) can be used in time series analysis to model and forecast time 

series data. ANNs are particularly well-suited for capturing complex patterns and relationships 

within the data. However, explaining an ANN model with a single equation is challenging, as 

ANNs consist of multiple layers of interconnected nodes (neurons). Input Layer (layer consists of 

neurons that represent the input features), Hidden Layers (these intermediate layers contain hidden 

neurons that perform various transformations and calculations on the input data) and Output Layer 

(layer typically consists of a single neuron (for univariate time series) or multiple neurons (for 

multivariate time series). Data processing, data splitting, model training, model evaluation, and 

model testing steps are involved in cases of forecasting ANN time series model (Polwiang 2020).  

Support Vector Machine (SVM) 

Support Vector Machines (SVMs) are mechanisms learning algorithm primarily intended for 

classification and regression tasks. SVMs can also be applied to time series data, particularly for 

time series forecasting, by treating the problem as a regression task. In time series forecasting 

using SVM, one would typically predict future values based on historical observations. At first, 

Time series data need to be prepared by splitting it into input (features) and target (output) 
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variables. Each observation is paired with its corresponding future value (e.g., lagging the time 

series by one or more-time steps). Then the dataset is divided into a training set and a testing set 

for model evaluation. Depending on the problem, one can create additional features to support in 

forecasting. The SVM is trained as a regression model to predict future values based on the input 

features. The objective is to find a regression function that minimizes the prediction error. In the 

case of SVM regression, the goal is to find a function that estimates the target values (Y) based on 

the input features (X). The SVM regression equation for a linear kernel is as follows (Co et al. 

2017): 

𝑌 =  𝑤 ×  𝑋 +  𝑏 

 Here, Y represents the predicted values (the target), X represents the input features, w is the weight 

vector, and b is the bias term. 

  The SVM regression algorithm aims to find the optimal `w` and `b` that minimize the 

prediction error while maximizing the margin between the predicted values and the training data. 

Error, Trend and Seasonality Model with Trigonometric Seasonality (ETS) 

Error, trend and seasonal models are used in time series analysis which decompose the models into 

three components including trend, error and seasonality. The ETS model can be written as under 

with Yt as outcome variable (Hyndman, R.J., & Athanasopoulos 2015): 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡 

Where Tt is the trend component, St is the seasonal component and et is the error component. 

Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal 

(TBATS) 

The TBATS (Trigonometric, Box-Cox transformation, ARMA, Trend, Seasonal) model is a 

comprehensive time series forecasting approach that incorporates various elements to capture and 
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predict patterns in time series data. It integrates trigonometric seasonality through sine and cosine 

functions, applies Box-Cox transformation for data normalization, incorporates ARMA 

(Autoregressive Moving Average) errors for handling noise, and encompasses trend and seasonal 

components, enabling a comprehensive and flexible framework for time series forecasting. (Pal 

and Prakash 2017). The TBATS can be modelled as 

𝑌𝑡 =  𝑇𝑡 +  𝑆1, 𝑡 +  𝑆2, 𝑡 + . . . + 𝑆𝑘, 𝑡 +  𝐸𝑡 

Where Yt is the observed value at time t, Tt represents the trend component, S1,t, S2,t, ..., Sk,t 

represent the seasonal components with different harmonic frequencies (e.g., yearly, quarterly, 

monthly), and Et is the error term.  

The Box-Cox transformation is used to stabilize the variance and make the data more 

normally distributed. It is applied to the time series data to reduce heteroscedasticity and ensure 

that the model assumptions are met. The ARMA component models the autocorrelation in the error 

terms. It includes both Auto Regressive (AR) and Moving Average (MA) terms to capture serial 

correlation in the residuals. The ARMA errors model can be written as 

𝐸𝑡 =  𝜑1𝐸𝑡 − 1 +  𝜑2𝐸𝑡 − 2 + . . . + 𝜑𝑝𝐸𝑡 − 𝑝 +  𝜃1𝑍𝑡 − 1 +  𝜃2𝑍𝑡 − 2 + . . . + 𝜃𝑞𝑍𝑡 − 𝑞 

Here, Et represents the error term at time t, φ1, φ2, ..., φp are the AR terms, θ1, θ2, ..., θq are the 

MA terms, and Zt-1, Zt-2, ..., Zt-q are white noise residuals. The trend component captures the 

long-term changes in the time series. As part of the TBATS model, the trend component is typically 

more complex and may include additional terms to account for multiple trend patterns. 

Two-Component K-H model 

The Two-Component K-H (Kuznets-Henderson) Model is a time series model used to decompose 

economic time series data into two primary components: a short-term (cycle) component and a 
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long-term (trend) component. In our study we assumed both short term and long-term dengue 

incidence cases. The K-H model can be represented as (Earnest et al. 2012b): 

𝑌𝑡 =  𝑇𝑡 +  𝐶𝑡 +  𝐸𝑡 

Where Yt represents the observed value of the time series at time t, Tt represents the trend 

component, which captures the changes over a long period of time in addition to gradual changes 

in the data, Ct represents the cyclical component, which captures the short-term fluctuations in 

dengue cases and Et represents the error or residual component, which includes random variations 

and irregularities that cannot be attributed to either the trend or cyclical component. 
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Chapter Five 

5. Data Analysis and Research Findings in Singapore 

a. Descriptive Statistics 

For this study, dengue and climate data from 1990 to 2021 was used. Maximum temperature, 

rainfall, humidity, sunshine hour was considered in this study. This study was considered the 

annual mean value of the mentioned weather variables. The descriptive statistics, such as mean, 

standard deviation, minimum and maximum dengue incidences, and climate variables, are shown 

for each year (Table 1). The mean maximum temperature was increasing over the year from 1990 

to 2020. The highest temperature was recorded in 2016 and 2018. It looks like an ups and downs 

trends over the period. The lowest temperature was observed in 1992. The reported mean rainfall 

depicted an ups and downs patterns over the periods. But overall, it seems to be an upward pattern 

over the period. The mean humidity almost constant before 2011 and the mean value has decreased 

after 2011. Overall, the humidity has a downward trend over the year. The mean sunshine hour 

increased over the period and it showed an upward trend. The highest mean sunshine hour observed 

in 2019. The highest dengue cases were observed in 2020. It has also an upward trend over the 

year (Figure 1).  

Table 1: Summary statistics: N mean sd min max by(year)  

 

Year: 1990  

     N   mean   sd   min   max 

 max 

temp 

12 27.592 0.787 26.2 28.6 

 rain 12 126.983 60.602 24.1 204.5 

 hum 12 82.208 2.109 77.6 86 

 sunshine 12 6.2 1.251 4.6 8.9 

 cases 12 144.417 184.484 11 608 

 

 

1991  



82 
 

 max 

temp 

12 27.433 0.888 25.6 28.6 

 rain 12 156.417 127.487 37.3 492.3 

 hum 12 83.133 3.491 78.7 90.7 

 sunshine 12 5.375 1.440 3 7.1 

 cases 12 181.583 227.506 21 667 

 

1992  
 max 

temp 

12 27.35 0.884 25.5 28.4 

 rain 12 188.4 158.155 62.4 502.7 

 hum 12 83.308 2.898 80.5 90.3 

 sunshine 12 5.525 1.351 3.4 7.7 

 cases 12 239.833 256.876 19 765 

 

1993  
 max 

temp 

12 27.433 0.815 26.2 28.6 

 rain 12 180.725 84.862 61.7 308.5 

 hum 12 83.658 2.728 79.4 87.4 

 sunshine 12 5.883 1.171 4.2 8.5 

 cases 12 78.833 73.478 10 256 

 

1994  
 max 

temp 

12 27.592 0.664 26.7 28.4 

 rain 12 161.817 125.749 23.7 425.4 

 hum 12 83.317 3.124 78.7 88.4 

 sunshine 12 5.417 1.207 3.5 7.6 

 cases 12 103.25 104.645 13 345 

 

1995  
 max 

temp 

12 27.583 0.810 26.3 28.9 

 rain 12 194.383 124.747 29.5 372.8 

 hum 12 84.542 2.047 81.6 87.5 

 sunshine 12 5.05 1.026 3.1 6.6 

 cases 12 167.333 169.653 23 545 

 

1996  
 max 

temp 

12 27.492 0.742 26.2 28.5 

 rain 12 201.5 63.410 107.5 300 

 hum 12 83.35 1.252 81 85.5 

 sunshine 12 5.558 1.097 4.3 7.7 

 cases 12 260.667 261.541 23 807 
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1997  
 max 

temp 

12 28.25 0.757 27.1 29.3 

 rain 12 93.242 92.452 15.4 351.9 

 hum 12 79.633 2.882 76.5 85.3 

 sunshine 12 5.708 1.455 3.2 7.7 

 cases 12 358.333 347.648 50 1008 

 

1998  
 max 

temp 

12 28.3 0.852 26.6 29.5 

 rain 12 218.592 121.852 32.5 463.4 

 hum 12 82.458 2.840 77.8 88.5 

 sunshine 12 5.725 1.635 3.1 8.9 

 cases 12 438.167 430.458 75 1380 

 

1999  
 max 

temp 

12 27.492 0.548 26.6 28.3 

 rain 12 177.833 75.867 67.4 340.5 

 hum 12 84.158 2.105 81.7 88.3 

 sunshine 12 5.408 1.031 3.9 6.8 

 cases 12 112.917 70.944 34 301 

 

2000  
 max 

temp 

12 27.458 0.642 26.3 28.6 

 rain 12 197.542 97.274 81.1 385.7 

 hum 12 84.742 2.087 82.1 87.6 

 sunshine 12 5.167 1.065 3.7 6.8 

 cases 12 56.083 36.669 7 122 

 

2001  
 max 

temp 

12 27.608 0.653 26.5 28.5 

 rain 12 231.925 150.136 86.6 609 

 hum 12 84.267 1.915 80.8 87.4 

 sunshine 12 5.217 1.146 3.7 8.1 

 cases 12 197.667 153.977 34 565 

 

2002  
 max 

temp 

12 28.083 0.675 27 28.9 

 rain 12 145.742 99.391 10.8 307.2 

 hum 12 82.492 2.613 79.2 88.7 
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 sunshine 12 6.3 0.932 4.6 7.6 

 cases 12 328.75 202.835 202 899 

 

2003  
 max 

temp 

12 27.75 0.823 26.5 29.2 

 rain 12 199.267 110.367 50.3 444.2 

 hum 12 84.3 2.695 78.5 87.3 

 sunshine 12 5.433 0.961 3.9 7 

 cases 12 399 164.043 144 740 

 

2004  
 max 

temp 

12 27.858 0.765 26.8 29 

 rain 12 178.033 145.948 31.9 600.9 

 hum 12 83.467 2.429 79.8 86.7 

 sunshine 12 5.967 1.091 4.2 7.7 

 cases 12 788.25 364.269 341 1402 

 

2005  
 max 

temp 

12 28.017 0.678 26.6 28.8 

 rain 12 160.892 116.466 8.4 362.9 

 hum 12 83.158 2.476 77.7 86.4 

 sunshine 12 6.067 1.319 4.4 9.1 

 cases 12 1184.167 486.616 642 2178 

 

2006  
 max 

temp 

12 27.725 0.652 26.5 28.4 

 rain 12 229.433 197.529 83.1 765.9 

 hum 12 84.592 2.831 80.9 88.5 

 sunshine 12 5.633 1.205 3.2 7.4 

 cases 12 278.083 113.454 120 502 

 

2007  
 max 

temp 

12 27.533 0.651 26.4 28.4 

 rain 12 240.517 126.131 105.5 468.6 

 hum 12 84.5 1.582 82.5 86.8 

 sunshine 12 5.317 1.148 3.5 7.6 

 cases 12 735.5 435.989 256 1399 

 

 

 

2008  
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 max 

temp 

12 27.483 0.689 26.5 28.8 

 rain 12 193.758 91.041 87.2 327.3 

 hum 12 83.408 2.304 79.1 87.1 

 sunshine 12 5.242 0.782 4 6.6 

 cases 12 586 447.313 202 1340 

 

2009  
 max 

temp 

12 27.917 0.751 26.8 29.1 

 rain 12 160.075 74.471 21.8 281.8 

 hum 12 82.367 2.358 79.1 86.3 

 sunshine 12 5.95 0.759 4.7 7 

 cases 12 374.833 217.866 134 767 

 

2010  
 max 

temp 

12 28.1 0.686 26.8 29.2 

 rain 12 172.925 84.023 6.3 298.5 

 hum 12 82.875 2.422 77.3 85.9 

 sunshine 12 5.692 1.396 3.6 8.8 

 cases 12 439.917 307.832 190 1088 

 

2011  
 max 

temp 

12 27.575 0.753 26.3 28.7 

 rain 12 210.35 138.021 23 513.2 

 hum 12 84.625 2.474 81.1 88.4 

 sunshine 12 5.575 1.367 3.3 7.8 

 cases 12 444.167 341.674 188 1134 

 

2012  
 max 

temp 

12 27.533 0.611 26.7 28.7 

 rain 12 179.992 103.077 53 363.4 

 hum 12 83.475 3.174 79 87.3 

 sunshine 12 5.533 0.971 3.6 7 

 cases 12 386 308.778 102 946 

 

2013  
 max 

temp 

12 27.65 0.751 26.5 29 

 rain 12 229.033 94.086 85.8 395.2 

 hum 12 81.692 3.322 74.6 86.9 

 sunshine 12 5.433 1.136 3.5 7.5 

 cases 12 1847.5 1051.561 403 3459 
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2014  
 max 

temp 

12 27.908 0.822 26.2 29 

 rain 12 128.2 80.121 .2 250.8 

 hum 12 78.525 2.568 74.5 82.6 

 sunshine 12 5.975 1.401 3.7 8.8 

 cases 12 1527.167 1057.019 230 3386 

 

2015  
 max 

temp 

12 28.25 0.726 26.9 29.1 

 rain 12 105.592 73.046 18.8 302.3 

 hum 12 76.9 1.944 74.9 81.1 

 sunshine 12 6.167 1.156 4.3 7.4 

 cases 12 941.167 570.293 210 2033 

 

2016  
 max 

temp 

12 28.417 0.662 27.4 29.4 

 rain 12 162.975 78.965 6.2 292.6 

 hum 12 75.95 2.456 72 79.6 

 sunshine 12 6 1.241 3.5 8 

 cases 12 1090.417 645.640 234 2053 

 

2017  
 max 

temp 

12 27.7 0.615 26.9 28.5 

 rain 12 170.467 84.347 79.6 371.2 

 hum 12 82.625 2.156 79.6 86.3 

 sunshine 12 5.8 0.827 4.2 7.1 

 cases 12 291.667 247.593 22 669 

 

2018  
 max 

temp 

12 27.892 0.749 26.1 28.7 

 rain 12 142.35 77.238 14.8 287 

 hum 12 79.6 2.877 77 86.6 

 sunshine 12 5.75 1.260 3.8 8 

 cases 12 273.75 165.829 39 496 

 

2019  
 max 

temp 

12 28.425 0.706 26.7 29.3 

 rain 12 113.958 116.208 11.8 421.5 

 hum 12 76.65 3.559 72.1 83.9 



87 
 

 sunshine 12 6.783 1.283 4.8 9.2 

 cases 12 1333.167 751.762 258 2543 

 

2020  
 max 

temp 

12 28.042 0.587 27.2 28.9 

 rain 12 157.217 70.498 65 255.6 

 hum 12 78.083 2.193 75.2 81.7 

 sunshine 12 5.875 1.423 4 8.3 

 cases 12 2942.917 2145.673 802 6590 

 

2021  
 max 

temp 

8 27.85 0.896 26 28.7 

 rain 8 249.4 204.818 1 692.8 

 hum 8 78.05 2.695 73.8 82.6 

 sunshine 8 6.325 1.304 4.2 8.2 

 cases 8 541.125 351.546 125 1178 
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Figure 1: mean of dengue incidences and climate variables from 1990 to 2021. 
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b.  Correlation analysis 

Maximum and minimum temperature and humidity were positively correlated with dengue cases. 

However, rainfall and sunshine hours were negatively associated with dengue cases. Since all 

climate factors showed a correlation with dengue cases, we considered all climate variables as 

predictor variables for the outcome of dengue cases.  

 

Maximum 

temperature Rainfall Humidity Sunshine hour Dengue Cases 

Maximum 

temperature 

1.000 -0.531 -0.627 0.489 0.194 

Rainfall 

-0.531 1.000 0.598 -0.574 -0.051 

Humidity 

-0.627 0.598 1.000 -0.576 -0.361 

Sunshine 

hour 

0.489 -0.574 -0.576 1.000 -0.001 

Dengue 

Cases 

0.194 -0.051 -0.361 -0.001 1.000 

Table 2: Correlation analysis with dengue cases and climate factors 
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c.  Time series stationary test 
As penned before, a stationary test was conducted which showed that, the time series process is 

stationary with Dickey-Fuller = -5.0617, Lag order =7, and p-value =0.01. it was , therefore,  

decided to conduct data analysis by-passing the time point and considering it as cross-sectional 

data.  

d.  Fitting count data model  

Since the outcome was count data, the Poisson model was fitted. The results of the Poisson 

Regression model are as under:  

Variables Coefficient (95% CI) 
P value 

(Intercept) 17.260 (16.989, 17.529) 
<0.000 

Maximum Temperature 0.145 (0.138, 0.153)  
<0.000 

Rainfall 0.002 (.001, 0.002) 
<0.000 

Humidity -0.171 (-0.172, -0.170) 
<0.000 

Sunshine hour -0.225 (-0.229, -0.221) 
<0.000 

Table 3: Poisson regression model results of the association between dengue cases and climate 

variables. 

Table 3 represents the exp (estimate), 95% confidence interval, and p-value. From the p-value, it 

can be interpreted, that the four climatic variables, viz, maximum temperature, rainfall, humidity, 

and sunshine hour were significantly associated with dengue cases. We could infer that, on the one 

hand, the mean number of dengue cases increased with a higher level of maximum temperature, 

and rainfall, while the mean number of dengue cases decreased with a higher level of sunshine 

hours and humidity. 
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Since outcome was count data, negative binomial models were also fitted. Accordingly, two 

models were run, model-1 (Poisson regression model) and model-2 (negative binomial regression 

model). AIC values were then calculated for these two models and minimum AIC values were 

found for model-2, thus considering this model  as the final regression model for this study.  

Model AIC 

Poisson regression model (Model-1) 204428.53 

 

Negative binomial regression model (Model-2) 5490.90 

 

Table 4: Two model comparisons by AIC values. 

e.  Final model results and interpretation  
After the final screening, the selected negative binomial regression model was chosen as the final 

model and it was run for testing with variables. Table 5 presents the negative binomial regression 

model results. This table shows the exp (estimate) with 95% CI, and P value. IT was seen that, the 

mean number of dengue cases increases with a higher level of maximum temperature, and rainfall. 

On the contrary, average dengue cases decreased with two other variables-humidity and sunshine 

hour. Average dengue cases increase by 0.277 and 0.002 times if maximum temperature and 

rainfall increase by 1oC and I unit respectively. On the other hand, dengue incidence decreases on 

average 0.277 and 0.225 times if humidity and sunshine hour increase by 1 unit.  

Variables Coefficient (95% CI) 
P value 

(Intercept) 15.603 (8.796, 22.412) 
<0.000 
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Maximum Temperature 0.277 (0.097, 0.456)  
0.002 

Rainfall 0.002 (.001, 0.003) 
0.001 

Humidity -0.277 (-0.391, -0.163) 
<0.000 

Sunshine hour -0.225 (-0.229, -0.221) 
<0.000 

 

Table 5: Negative binomial regression model results of the association between dengue and 

climate factors. 

Numerous studies [40-41] indicate that ecological and climate factors play an important role in the 

seasonal occurrence of dengue virus. Certain climate variables have a direct impact on the 

reproduction and proliferation of mosquito vectors, which are closely associated with these factors. 

In regions characterized by subtropical and tropical climates, which have historically been 

conducive to the breeding of dengue vectors, such as  Singapore and neighboring South East Asian 

countries, climate change is of paramount significance as to the containment of health maladies. 

This is caused predominantly by the spread of dengue fever in these regions. In 2020, a total of 

35,315 confirmed dengue cases were reported in Singapore [42]; this represented a significant 

increase from the previous year.   

This study examines the connection between climate factors and the incidence of dengue fever 

outbreaks in Singapore. There has been observed to be a correlation between the incidence of 

dengue and climate factors. Statistical analysis of the correlation between dengue incidence and 

climatic variables is difficult, however, due to the complexity of the vector and host life cycles. 
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This complexity is a result of the sensitivity of the life cycles of Aedes aegypti and Aedes 

albopictus to climate conditions. 

Singapore does not exhibit traditional seasons as typically experienced in temperate regions. The 

local population experiences a period of reduced precipitation, commonly referred to as the dry 

season, which spans from March to August. During this time, temperatures reach their peak. 

Conversely, a period of increased rainfall, known as the rainy season, occurs from September to 

February, coinciding with lower temperatures. However, the magnitude of the change is rather 

small. In the arid season, precipitation occurs nearly on a daily basis [43]. This study presents a 

computational model that evaluates the impact of various climatic conditions on the incidence 

of dengue cases, which are predominantly observed in the Indian Subcontinent during the 

monsoon season. Several investigations [43-47] have been undertaken in the South Asia and 

ASEAN regions to examine the impact of changing climate on dengue transmission. Dengue has 

emerged as a significant public health concern in these regions, according to these studies. 

Temperature and precipitation are the primary climate factors that have a significant impact on 

dengue outbreaks, according to these studies. In addition, these studies have revealed a 

previously unaccounted-for impact of particular climate factors over time. This study finds the 

impact of a comprehensive set of climate variables with the inclusion of humidity and sunshine 

hours along with the traditional temperature and rain fall, on dengue incidence. The result is 

fascinating as the two added variables negated the impact while the previous two factors positively 

factored in dengue incidence. Thus, a complete scenario of dengue-climate relationship got 

unleased. It would now comprehensively address the exact incidence picture of dengue and would 

help reduce and contain (the hitherto untamed) havoc of  dengue incidence in Singapore, allowing 

time, resources and administrative measures for preparedness. 



94 
 

The goal of this study is to identify the climatic factors that may influence the occurrence of dengue 

cases and the specific pattern in which they affect the number of cases. According to the findings 

of this study, there is a positive correlation between maximum temperatures and the occurrence of 

dengue cases. A rise in global temperature is likely to increase the occurrence of vector-borne 

diseases [48]. A recent scientific investigation discovered that the ideal temperature range for 

Aedes aegypti vector multiplication is between 21.3 and 34 C [49]. Once again, the findings of our 

investigation show a significant inverse association between relative humidity and the prevalence 

of dengue cases. There was a drop of reported dengue cases during the monsoon seasons which 

correlated with an increase in relative humidity levels.  

Several studies have also found a continuous positive relationship between rainfall and the 

frequency of dengue cases [44-46]. Rainfall and dengue cases had a negative link during the winter 

season, whereas a positive correlation was seen during the summer months, notably April and 

June. Rainfall has an impact on mosquito growth that is both beneficial and destructive. Rainfall 

has the ability to create standing water, which mosquitoes use as a hatching site. However, it is 

crucial to highlight that excessive or unwise rainfall might have a negative impact on mosquito 

populations [50]. 

Furthermore, there was a significant correlation between the duration of sunshine exposure and a 

decrease in the incidence of dengue cases. According to a recent study, there exists a correlation 

between the duration of sunshine and a reduced incidence of dengue fever [51]. The transmission 

of dengue is more probable in conditions of reduced sunlight, as mosquitoes exhibit increased 

activity during nighttime hours and tend to engage in more frequent biting behavior in darkness 

[48]. When considering both positive and negative elements, a comprehensive statistical outcome 

is derived. 
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This study's main focus is to address the relationship gap between the two traditionally used 

climate factors-temperature and rainfall and dengue incidence in Singapore. The two new 

variables-humidity and sunshine hours were added to fil the gap, thus addressing the association 

of climate and dengue holistically. Dengue incidence has been observed to be positively impacted 

by maximum temperature and rainfall, but negatively impacted by humidity and daylight hours. 

By simulating dengue outbreaks using all four of these climate factors, this research discovered a 

potential alarm system. This is necessary to devise a thorough correlation scenario that will 

enhance public health and disease management systems. Policymakers in Singapore will find the 

study's conclusions useful in creating a climate-based warning system that takes into account all 

potential variables, which were not taken into account up until now. As a result, this study will 

serve as a trailblazer for all subsequent attempts to develop an all-encompassing model to predict 

the overall incidence of dengue, taking into account vector and human factors, demographic, and 

climatic data. Additionally, community-based observation will be utilized to develop more useful 

dengue prevention strategies in Singapore in order to avert an epidemic. Based on Singapore model 

and experience, all other countries could also develop respective dengue prevention and 

containment strategy nationally and locally. International organizations, particularly World Health 

Organization (WHO) could also venture to device regional and global dengue prevention plan and 

preparedness in light with the new model.  
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Chapter Six 

6. Data Analysis and Research Findings in Bangladesh 

Like other Southeast Asian (SE) nations, Bangladesh is located in the tropical and subtropical 

regions and like them, has developed into a favorable habitat for the dengue vector and its 

increased transmission. Before 2000, Dhaka and other areas of the country only sometimes 

reported dengue cases. Following an extreme epidemic in 2000 that resulted in 5,551 cases and 93 

fatalities across the country, dengue became a significant public health concern. Both types of the 

vectors (Aedes aegypti and Aedes albopictus) were identified in Bangladesh during the dengue 

outbreaks between 2000 and 2017. According to the findings of the Bangladesh National Health 

Accounts study, the current dengue situation in Bangladesh causes an economic burden on our 

health sector as funding for health care decreases gradually each year while out-of-pocket expenses 

are rising (67%, which is highest in the Southeast Asia Region) [Health Economics Unit, 

Bangladesh National Health Accounts (BNHA-V), 1997-2015, Ministry of Health & Family 

Welfare, Dhaka, Bangladesh, 2015]. In Bangladesh, dengue is a major source of disease and 

mortality (Ahsan et al. 2021; Sharmin et al. 2015). The two Aedes mosquito species that are the 

major vectors of the dengue virus in the environment are Aedes aegypti (Ae. aegypti) and Aedes 

albopictus (Ae. albopictus) [Lambrechts, Scott, and Gubler 2010]. A study estimates that by 2080 

there will be 2.25 billion dengue cases globally (Messina et al. 2019). Local climate factors 

including rainfall, temperature, relative humidity, and unplanned rapid urbanization influence the 

risk of dengue fever significantly (WHO 2021). In both tropical and subtropical regions of the 

world, it has become recognized as a major global public health concern (Gubler 2011). When 

bitten by an infected mosquito, people become infected with the virus that causes dengue fever. In 

South-East Asia, Pacific Asia and Latin America, dengue fever is the most devastating. But South 
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Asian countries like Pakistan, India and Bangladesh have also noted a significant increase in 

infections which has had a significant impact on public health (Anders and Hay 2012; Bhatt et al. 

2013; Stanaway et al. 2016). Unexpectedly it has been shown that the local climatic variables, such 

as temperature, rainfall, sunshine and humidity affect dynamics of the vector population, viral 

circulation and the probability of dengue fever transmission (Correia Filho 2017a; Ruzman and 

Rahman 2017; Xiang et al. 2017). Additional studies have been carried out regarding the 

correlations amongst climatic conditions and surge of dengue. The majority earlier studies (Adnan 

et al. 2020; S. C. Chen et al. 2010; Y. Li et al. 2020; Malik et al. 2017; Ruzman and Rahman 2017; 

Shaheen 2020; Singh et al. 2022) found that there is a significant association between climatic 

variables and dengue incidence. In addition to average temperature, diurnal temperature range 

(DTR, the difference between daily maximum and minimum temperature) has an impact on 

dengue fever transmission. Aedes aegypti, the primary mosquito that transmits dengue fever, is 

affected by temperature change in terms of biting rate, dengue fever transmission possibility, 

extrinsic incubation duration and vector mortality rate according to temperature-dependent 

empirical and mathematical research. Vectorial capacity rises with narrow daily temperature 

difference at high mean temperatures. Adult Ae. aegypti had a reduced rate of survival in 

temperatures above 30°C  as rainfall can be either light or very heavy. Rainfall and dengue 

incidence are positively correlated, as has been seen in multiple locations. Inter-annual weather 

variability around the world has been associated with large-scale climatic events such as the El 

Nino phenomenon- Southern Oscillation, which is caused by the combination of large-scale ocean 

and atmospheric circulation processes in the equatorial Pacific Ocean. Local temperature and 

rainfall as well as year-to-year variations in dengue occurrence are known to be determined by the 

warm and cold phases of the Southern Oscillation, El Nino and La Nina respectively. The 
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incidence of dengue is also influenced by socio economic variables. Economic development is 

expected to decrease risk even though the number of people at risk for dengue will probably 

increase as a result of increases in population. Bangladesh is a member of the World Health 

Organization (WHO). After over three decades of occasionally dengue, the South-East Asia region 

experienced its first pandemic in 2000. In Bangladesh, dengue is a very seasonal disease with a 

monsoon-related surge in their frequency. From 2000 to 2009, scenarios were reported from 29 of 

Bangladesh's 64 districts with the capital city Dhaka, accounting for 91% of the total number of 

instances (Disease Control Directorate, Directorate General of Health Services. Dengue Register. 

Dhaka, Bangladesh). Since 2010, very few instances from regions other than Dhaka have been 

identified (Disease Control Directorate, Directorate General of Health Services. Dengue Register. 

Dhaka, Bangladesh) most likely as a result of a change in reporting requirements that currently 

require for providing laboratory diagnosis. Aedes mosquitoes are sensitive to changes in the 

weather. It acts as the main host for dengue and yellow fever virus amplification and transmission. 

Climate plays a significant role when determining the Aedes mosquito's geographic range. 

Multiple studies have found an important and accurate correlation between the number of dengue 

cases and the climate in a specific region of the world. The capability of Aedes mosquitoes to 

survive and reproduce is significantly impacted by differences in mean temperature. Since they 

consume all over the day, it is most effective for mosquitoes to transmit dengue when the diurnal 

temperature range (DTR) is near to 29.3°C. As Aedes mosquitoes prefer to lay their eggs in man-

made containers which are more frequently found in urban areas. Rainfall and human population 

density are also significant factors. As a result, dengue cases in Bangladesh reflect significant year-

to-year variability and seasonality. This indicates that dengue is a highly climate-wise sensitive 

disease. In Bangladesh, there are four distinct seasons- the dry winter season (December to 
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February), the hot pre-monsoon summer season (March to May), the rainy monsoon season (June 

to September) and the post-monsoon autumn season (October to November). The monsoon and 

post-monsoon seasons are when dengue cases are most common (Mordecai E A et al 2019 Thermal 

biology of mosquito-borne disease Ecol. Lett. 22 1690–708). For a milieu with a high emission of 

green house gases, projected increases in Bangladesh's mean temperature relative to the pre-

industrial period (1861-1880) range from 3.2°C to 5.8°C by the end of the 21st century. In this 

regard, figuring out the future quantity, timing and spatial distribution of dengue burden in 

Bangladesh requires an understanding of the correlations between dengue and climatic factors. In 

order to encourage appropriate public health responses and the establishment of an official policy 

for adaptation and risk mitigation, country-specific evidence is necessary. In Bangladesh, dengue 

or "Dacca Fever" was first noted in the 1960s.  But during the 2000 monsoon, Bangladesh noticed 

its first known dengue fever pandemic, with a reported 5521 officially recorded cases and having 

a death toll of 93. Due to urbanization and the increasing number of the Aedes aegypti mosquito, 

dengue has become widespread in Bangladesh. The rise in dengue incidence since 2010 has been 

linked with a heavier regional precipitation scenario (May to September) and a rise in ambient 

temperatures. Bangladesh's climatic environment are becoming more conducive for the 

propagation of  dengue as well as other vector-borne diseases like malaria, leishmania, yellow 

fever and chikungunya due to excessive rainfall, water logging, flood, high temperature and erratic 

changes in the country's normal seasons (Dengue-Bangladesh, World Health Organization, 2022). 

The estimated annual frequency of dengue incidence decreased between 2000 and 2010. The 

number of annual dengue cases has however sharply increased in Bangladesh since that period. 

The second-biggest incident occurred in 2018, while the largest outbreak the country has witnessed 

in 2019. 
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Bangladesh is located in South Asia between latitude of 20-27 °N and longitude of 88- 93 °E. It is 

a low-lying, riverine country with a large marshy jungle coastline of 710 km on the Northern 

littoral of the Bay of Bengal. It is one of the most densely populated countries (density 964/km²) 

in the world and covers 147,570 km². Bangladesh is divided into eight administrative divisions 

and these are subdivided into districts. There are 64 districts in Bangladesh, each further 

subdivided into Upazila or Thana. A subtropical humid climate prevails in Bangladesh which is 

distinguished by significant seasonal changes in rainfall, temperatures and high relative humidity. 

 

Figure: Dhaka City GIS Map. Source: (Google) 
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Dhaka is the capital of Bangladesh. Dhaka is located in central Bangladesh at 23°42′ North latitude 

and 90°22′ East longitude or almost in the geographical center of Bangladesh, on the eastern bank 

of Buriganga River with an area of 1464 km². Dhaka is currently the center of population 

concentration and economic activity in the nation as a result of its geographic location and 

historical, economic and political dynamics (Source: Google). 

According to the Dhaka City Corporation Urban Area Plan, the total population of the city as a 

whole in the twenty-first century is estimated to reach close to 25 million. This statistic indicates 

the rise in population density and the pronounced impact of humans on the environment. The 

physical environment is defined by diverse physiographic zones including lowlands, rivers, plain 

lands and ponds and it is always changing as a result of social interactions between people. The 

Dhaka City Corporation has seen a number of environmental system consequences as a result of 

historical societal development including air temperature and highest decrease in vegetation and 

rainfall (Source: Google). 

Year wise monthly dengue cases for Dhaka City Area (2008 - 2022) are collected from the 

International Centre for Diarrheal Disease Research, Bangladesh (icddr,b).  ICDDR, B is an 

international health research organization located in Mohakhali, Dhaka, Bangladesh. Dedicated to 

saving lives through research and treatment, ICDDR, B addresses some of the most critical health 

concerns facing the world today, ranging from improving neonatal survival to HIV/AIDS. In 

collaboration with academic and research institutions over the world, ICDDR, B conducts 

research, training and extension activities, as well as programmed-based activities to develop and 

share knowledge for global lifesaving solutions. ICDDR, B has a mix of national and international 

staff including public health scientists, laboratory scientists, clinicians, nutritionists, 
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epidemiologists, demographers, social and behavioral scientists, IT professionals and experts in 

emerging and re-emerging infectious diseases and vaccine sciences. 

Observed climatic data of temperature, rainfall, wind speed and humidity are collected from 

Bangladesh Meteorological Department (BMD). The Bangladesh Meteorological Department is 

the national meteorological organization of  Bangladesh, working under Ministry of Defense of 

the Government of Bangladesh. It is responsible for maintaining the network of surface and upper 

air observatories, radar and satellite stations, agrometeorological observatories, geomagnetic and 

seismological observatories and meteorological telecommunication system of Bangladesh. 

However, for this study purpose, data of temperature, precipitation, wind speed and humidity are 

being collected for Dhaka Station of BMD during the period 2008 - 2022. 

This chapter explains the methodology adopted to attain the objectives as analyze study area 

selection and data collection procedure, data analysis etc. Flow chart of the research methodology 

is presented in the bellow- 
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Figure: Flow Chart of the Research Methodology. 

a.  Descriptive Statistics 
 

For this study, dengue and climate data from 2008 to 2022 was used. Average temperature, average 

maximum temperature and minimum temperature, average rainfall, average relative humidity, 

average wind speed and dengue cases were considered in this study. This study was considered 

the annual mean value of the mentioned weather variables. The descriptive statistics, such as mean, 

standard deviation, high and low picks of dengue incidences, and climate variables are shown for 

each year (Table 1). The mean maximum temperature was increasing over the year from 2008 to 

2022. The highest maximum temperature was found in 2014 and 2021. It looks like an ups and 

downs trends over the period. The lowest maximum temperature was observed in 2011. The mean 

rainfall also showcased an ups and downs trend over the periods. But overall, it seems to be an 

upward pattern over the period. The mean humidity almost constant between 2009-2015 and the 

mean value has variations after 2016-2022. Overall, the humidity has a downward trend over the 

year. The mean wind speed increased over the period and it showed an upward trend. The highest 

mean wind speed observed in 2019. The highest dengue cases were observed in 2022. It has also 

an upward trend over the year (Figure 1). 

 

Present Situation Evaluation 

Final Report Preparation 
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Table 1: Summary Statistics: N mean sd min max by (Year)  

Year: 2008  

     N   mean   sd   min   max 

 Av. Temperature 12 25.875 3.936 19 29.3 

 Av. Max 

Temperature 

12 30.566 3.416 24.46 34.67 

 Av. Min 

Temperature 

12 22.171 4.580 14.48 26.49 

 Av. Rainfall  12 152.917 149.958 0 461 

 Av. Relative 

Humidity 

12 73.417 7.561 61 83 

 Av. Wind Speed 12 3.068 0.497 2.25 3.91 

 Dengue Cases 12 95.917 160.777 0 473 

 

2009  
 Av. Temperature 12 26.525 3.748 19.7 30.2 

 Av. Max 

Temperature 

12 31.604 3.133 25.91 35.56 

 Av. Min 

Temperature 

12 22.534 4.566 14.84 26.72 

 Av. Rainfall  12 132.46 180.448 0 553 

 Av. Relative 

Humidity 

12 70.25 9.265 53 82 

 Av. Wind Speed 12 3.056 1.011 1.6 4.58 

 Dengue Cases 12 39.333 71.438 0 188 

 

2010  
 Av. Temperature 12 26.575 4.314 17.6 30.4 

 Av. Max 

Temperature 

12 31.401 3.538 23.82 35.52 

 Av. Min 

Temperature 

12 22.828 5.209 12.8 27.43 

 Av. Rainfall 12 105 95.291 0 278 

 Av. Relative 

Humidity 

12 70.417 7.609 56 79 

 Av. Wind Speed 12 2.722 0.593 2.01 4.11 

 Dengue Cases 12 34.083 60.072 0 183 

 

2011  
 Av. Temperature 12 25.817 4.122 17.3 29.2 

 Av. Max 

Temperature 

12 30.575 3.305 23.44 33.46 

 Av. Min 

Temperature 

12 21.942 4.999 12.2 26.71 

 Av. Rainfall 12 122.417 125.822 0 335 

 Av. Relative 

Humidity 

12 70.917 8.989 54 82 
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 Av. Wind Speed 12 2.185 0.498 1.25 2.81 

 Dengue Cases 12 113.25 200.894 0 691 

 

2012  
 Av. Temperature 12 26.092 4.244 18.4 30.1 

 Av. Max 

Temperature 

12 30.826 3.658 23.96 34.62 

 Av. Min 

Temperature 

12 22.249 4.930 14.49 26.91 

 Av. Rainfall 12 91.647 86.375 .76 230 

 Av. Relative 

Humidity 

12 70.25 8.730 52 79 

 Av. Wind Speed 12 2.183 0.430 1.43 2.71 

 Dengue Cases 12 55.917 81.707 0 262 

 

2013  

 Av. Temperature 12 26.092 4.037 17.6 30.1 

 Av. Max 

Temperature 

12 30.951 3.077 24.22 34.21 

 Av. Min 

Temperature 

12 22.188 5.001 12.25 27.16 

 Av. Rainfall 12 107 117.061 0 309 

 Av. Relative 

Humidity 

12 70.5 9.415 55 81 

 Av. Wind Speed 12 2.163 0.477 1.55 2.97 

 Dengue Cases 12 145.75 177.135 0 495 

 

2014  
 Av. Temperature 12 26.233 4.489 18.3 30.7 

 Av. Max 

Temperature 

12 31.127 3.885 24.29 36.44 

 Av. Min 

Temperature 

12 22.219 5.051 13.66 26.87 

 Av. Rainfall 12 96.583 113.613 0 320 

 Av. Relative 

Humidity 

12 69.833 9.311 52 82 

 Av. Wind Speed 12 2.043 0.445 1.26 2.83 

 Dengue Cases 12 31.25 33.273 0 82 

 

2015  
 Av. Temperature 12 26.175 3.711 19.1 29.9 

 Av. Max 

Temperature 

12 30.887 2.970 24.77 34.07 

 Av. Min 

Temperature 

12 22.267 4.427 14.6 26.9 

 Av. Rainfall 12 149.563 172.171 0 510 

 Av. Relative 

Humidity 

12 70.75 7.979 52 81 

 Av. Wind Speed 12 2.067 0.467 1.39 2.79 

 Dengue Cases 12 263.5 375.095 0 965 
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2016  
 Av. Temperature 12 26.733 3.688 18.9 30.4 

 Av. Max 

Temperature 

12 31.609 2.997 24.87 35.13 

 Av. Min 

Temperature 

12 23.091 4.451 14.15 27.02 

 Av. Rainfall 12 93.667 98.852 0 331 

 Av. Relative 

Humidity 

12 72.583 6.775 59 82 

 Av. Wind Speed 12 2.13 0.456 1.41 2.84 

 Dengue Cases 12 505 588.625 3 1544 

 

2017  

 Av. Temperature 12 26.375 3.391 20.1 29.9 

 Av. Max 

Temperature 

12 31.107 2.535 26.36 34.5 

 Av. Min 

Temperature 

12 22.643 4.350 14.86 26.88 

 Av. Rainfall 12 199.25 180.347 0 478 

 Av. Relative 

Humidity 

12 73.417 8.649 57 83 

 Av. Wind Speed 12 1.924 0.434 .96 2.82 

 Dengue Cases 12 230.75 165.272 36 512 

 

2018  
 Av. Temperature 12 26.083 3.985 17.5 29.8 

 Av. Max 

Temperature 

12 31.177 3.320 23.59 34.12 

 Av. Min 

Temperature 

12 22.184 4.662 12.64 27.14 

 Av. Rainfall 12 119.583 134.065 0 321 

 Av. Relative 

Humidity 

12 71.583 7.609 59 81 

 Av. Wind Speed  12 2.983 0.610 2 3.77 

 Dengue Cases 12 845.667 1064.104 7 3087 

 

2019  
 Av. Temperature 12 26.358 3.901 19.3 29.9 

 Av. Max 

Temperature 

12 31.337 3.084 24.76 34.58 

 Av. Min 

Temperature 

12 22.465 4.648 14.6 27.15 

 Av. Rainfall 12 127.23 95.765 .76 313 

 Av. Relative 

Humidity 

12 72.5 7.810 59 82 

 Av. Wind Speed 12 3.315 0.584 2.48 4.01 

 Dengue Cases 12 8446.167 15226.544 17 52636 
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2020  
 Av. Temperature 12 26.242 4.011 18.5 29.6 

 Av. Max 

Temperature 

12 31.143 3.390 24.02 33.83 

 Av. Min 

Temperature 

12 22.518 4.829 14.35 27.25 

 Av. Rainfall 12 131.897 118.605 0 330 

 Av. Relative 

Humidity 

12 74.833 9.262 57 85 

 Av. Wind Speed 12 2.517 0.510 1.44 3.29 

 Dengue Cases 12 117.083 155.128 10 546 

 

2021  

 Av. Temperature 12 26.775 3.846 19.4 30.4 

 Av. Max 

Temperature 

12 31.929 3.326 25.58 36.12 

 Av. Min 

Temperature 

12 22.871 4.462 14.83 26.71 

 Av. Rainfall 12 129.083 137.923 0 462 

 Av. Relative 

Humidity 

12 71.917 9.385 57 83 

 Av. Wind Speed 12 2.387 0.340 1.68 2.93 

 Dengue Cases 12 2369.083 3054.993 3 7841 

 

2022  
 Av. Temperature 12 26.85 3.917 19.6 30.5 

 Av. Max 

Temperature 

12 31.664 3.239 25.14 34.26 

 Av. Min 

Temperature 

12 23.128 4.614 15.33 27.72 

 Av. Rainfall 12 110.333 81.864 9 243 

 Av. Relative 

Humidity 

12 70.667 7.353 55 80 

 Av. Wind Speed 12 2.593 0.531 1.8 3.35 

 Dengue Cases 12 5198.5 7801.190 20 21932 
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Figure 1: Mean of Climate Factors and Dengue Cases from 2008 – 2022. 

b.  Correlation Analysis 
Average temperature, average maximum temperature, average minimum temperature, average 

rainfall, average relative humidity average wind speed was positively correlated with dengue 

incidence. However, there was no negative association with dengue cases. Since all climate factors 

showed a positive correlation with dengue cases, we considered all climate variables as predictor 

variables for the outcome of dengue cases. 
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Table 2: Correlation Analysis with Dengue Cases and Climate Factors. 
 

  Variables   (1)   (2)   (3)   (4)   (5)   (6)   (7) 

 (1) Av. 

Temperature 

1.000 

 (2) Av. Max 

Temperature 

0.973 1.000 

 (3) Av. Min 

Temperature 

0.981 0.914 1.000 

 (4) Av. Rainfall 0.594 0.459 0.673 1.000 

 (5) Av. Relative 

Humidity 

0.394 0.207 0.550 0.692 1.000 

 (6) Av. Wind Speed 0.336 0.372 0.291 0.190 -0.014 1.000 

 (7) Dengue Cases 0.131 0.116 0.151 0.099 0.149 0.112 1.000 

 

 

c.  Poisson Regression  

 

Since the outcome was count data, Poisson model was fitted. Table 3 represents the expected 

estimation of 95% confidence interval and p-value. From the p-value, it can be inferred that 

average temperature, average maximum temperature, average minimum temperature, average 

rainfall, average relative humidity, average wind speed had a significant positive correlation with 

dengue cases. It could also be postulated that, on the one hand, the mean value of dengue incidence 

increased with a higher degree of average maximum temperature, average minimum temperature, 

average relative humidity, average wind speed, while the mean number of dengue cases decreased 

with a higher level of average temperature and average rainfall. The results of the Poisson 

Regression model are depicted underneath- 

Table 3: Poisson Regression Model Results of the Association between Dengue Cases and 

Climate Variables. 

 Dengue Cases  Coef.  St. Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Av. 

Temperature 

-3.249 .016 -

197.43 

0 -3.281 -3.216 *** 

Av. Max 

Temperature 

1.546 .008 193.82 0 1.53 1.561 *** 
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Av. Min 

Temperature 

1.826 .01 187.92 0 1.807 1.845 *** 

Av. Rainfall -.001 0 -29.17 0 -.001 -.001 *** 

Av. Relative 

Humidity 

.029 .001 31.70 0 .027 .031 *** 

Av. Wind Speed .517 .003 157.14 0 .51 .523 *** 

Constant -.48 .105 -4.59 0 -.684 -.275 *** 

 

Mean dependent var 1232.750 SD dependent var  4918.385 

Pseudo r-squared  0.215 Number of obs.   180 

Chi-square   204337.645 Prob > chi2  0.000 

Akaike crit. (AIC) 746437.461 Bayesian crit. (BIC) 746459.811 

*** p<.01, ** p<.05, * p<.1 

 

d.  Negative Binomial Regression  
 

As elaborated earlier, after the final screening, the negative binomial regression model was 

selected as the final model and the variables were fit into it to run the model. Table 4 presents the 

negative binomial regression model results. This table shows the exp (estimate) with 95% CI, and 

P value. It clearly showcases that, the mean number of dengue cases increases with a higher degree 

of average maximum temperature, average minimum temperature, average rainfall and average 

wind speed. Analysis shows that 1oC increase of average maximum and minimum temperature 

will increase 3.844 and 4.23 times of dengue cases. Again, 1mm increase of average rainfall will 

increase .006 times of dengue cases. On the contrary, the mean number of dengue cases decreases 

with average temperature and average relative humidity. Analysis shows that 1oC increase of 

average temperature will decrease 7.783 times of dengue cases. Again, 1% increase of average 

relative humidity will decrease .081 times of dengue cases. 

 

Table 4: Negative Binomial Regression Model Results of the Association between Dengue 

and Climate Factors 
 

 Dengue Cases  Coef.  St. Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Av. 

Temperature 

-7.783 1.332 -5.84 0 -10.394 -5.173 *** 

Av. Max 3.844 .758 5.07 0 2.357 5.33 *** 
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Temperature 

Av. Min 

Temperature 

4.23 .818 5.17 0 2.627 5.833 *** 

Av. Rainfall .006 .003 1.74 .082 -.001 .012 * 

Av. Relative 

Humidity 

-.081 .079 -1.02 .31 -.236 .075  

Av. Wind Speed .102 .336 0.30 .762 -.557 .76  

Constant .978 10.576 0.09 .926 -19.75 21.705  

ln alpha 1.614 .095 . b . b 1.427 1.8  

 

Mean dependent var 1232.750 SD dependent var  4918.385 

Pseudo r-squared  0.023 Number of obs.   180 

Chi-square   51.163 Prob > chi2  0.000 

Akaike crit. (AIC) 2189.034 Bayesian crit. (BIC) 2214.577 

*** p<.01, ** p<.05, * p<.1 

 

 

e.  Discussion 

Our research results indicate that the dengue incidence in Dhaka City Area had a positive 

correlation with the monthly average maximum and minimum temperature, rainfall, and humidity. 

These results are in contrast to the findings of other studies and might assist in anticipate dengue 

outbreaks in different locations. (Descloux et al., 2012; Hii et al., 2009; Hsieh and Chen, 2009; 

Johansson et al., 2009). The most significant weather variables for mosquito vector growth and 

dispersal as well as possible indicators of dengue epidemics are temperature and humidity (Chen 

et al., 2010; Wu et al., 2007). Aedes mosquitoes' life cycle, including growth rate, larval survival, 

and the length of the reproductive cycle, is influenced by temperature (Hopp and Foley, 2001; Patz 

et al., 2005). A maximum mosquito survival rate of 88-93% between 20-30 °C was observed (Tun-

Lin et al., 2000). The virus's ability to replicate, mature, and have an infectious phase are all 

impacted by temperature. Higher temperatures reduce the period of viral incubation within the 

vector, increasing the likelihood that mosquitoes will get an infection during the span of their 

lifetime (Hopp and Foley, 2001; Patz et al., 1998; Yang et al., 2009). Humidity is also necessary 

for adult mosquito survival (Hopp and Foley, 2001; Patz et al., 1998). Given the association 

between temperature and dengue, the anticipated temperature alter as a result of climate change 
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may make it easier for diseases to spread in Dhaka City Area. By the end of the 21st century, the 

annual mean temperature in Dhaka City will have increased by 3.3 °C, according to the IPCC. 

Both the summer and the winter will experience the anticipated warming (IPCC, 2007). Since 

summer will be warmer than usual, it is anticipated that the warmer weather may facilitate disease 

transmission and raise the incidence of dengue. Few dengue cases were previously reported in 

Dhaka throughout the winter. If the winter temperature rises as predicted, dengue transmission 

conditions may improve, extending the outbreak season. Therefore, if climate change occurs, 

dengue outbreaks may become more severe in the future. In several succeeding months, 

temperature and humidity have an impact on the occurrence of dengue (IPCC, 2007). 

The biology of mosquitoes, the viruses they spread, and more broadly, the cycles of dengue 

transmission, are all significantly influenced by climatic variables. Higher temperatures hasten the 

growth of mosquito larvae and adult mosquitoes, increase mosquito biting rates, and shorten the 

time needed for virus replication inside the insect. Extremely high temperatures may shorten the 

period that mosquitoes may survive, which might counteract the beneficial effect on insect 

abundance. These studies have made use of a variety of statistical techniques while taking into 

account various temperature indices, such as mean, maximum, and lowest temperatures. The 

findings are typically similar, demonstrating that the dengue outbreaks are partially influenced by 

the climate. 

Another important element that has an impact on different stages of the life cycle of mosquitoes is 

relative humidity. The combined effects of temperature and humidity have a substantial impact on 

the frequency of blood meals. They can also have an impact on the vector's survival rate and the 

likelihood that it will become infected and spread dengue. Temperature and relative humidity are 

two of the most significant factors that could affect dengue transmission, according to the 
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literature. Temperature and rainfall both have an impact on relative humidity, which in turn affects 

mosquito lifetime and the likelihood of viral transmission. According to research by Hales et al., 

the most significant meteorological predictor of the occurrence of dengue worldwide was yearly 

average relative humidity. Therefore, by effecting the vector of dengue- the aedes egypti mosquito, 

temperature, rainfall, and relative humidity will significantly factor in determining the geographic 

boundaries within which dengue propagation can be anticipated to continue. Seasonal variations 

in these variables will also play a significant role in determining the duration and possibly the 

intensity of transmission within places where the lowest optimum limits of these climate 

parameters are sufficient to maintain dengue transmission. 

f.  Conclusion:  

The objective of this study was to determine how the impacts of climate change factors on  the 

occurrence of dengue in Dhaka, Bangladesh. The results show that average temperature, average 

maximum and minimum temperature, average rainfall, average relative humidity, average wind 

speed was positively associated with dengue incidence. However, there was no negative 

association with dengue cases. Analysis shows that 1°C increase of average maximum and 

minimum temperature will increase 3.844 and 4.23 times of dengue cases. Again, 1mm increase 

of average rainfall will increase .006 times of dengue cases in Dhaka City. Dengue, an emerging 

disease, will remain in Bangladesh and will continue to constitute a serious public health problem 

as is happening worldwide. Addressing changing epidemiology is important, as is constant 

monitoring, resulting in the need for increasing the surveillance areas and addressing the problems 

that mitigate the disease's effects on the nation's economic and public health. It may be challenging 

to totally eradicate the disease from the supply side, and an ongoing effort is needed to alter urban 

citizens' behavior so that they can join the fight against Aedes mosquitoes. In order to devise a 

more effective prevention strategy in Dhaka, Bangladesh, additional efforts should be made to 
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build a model to predict dengue incidences, taking into account immunological and entomological 

data, demographic and climate variables. To determine the primary causes of dengue infection, 

future study will also need to take into account additional unmeasured confounders, such as 

deteriorating water quality, air pollution, waste management, etc. Bangladesh therefore needs to 

put in place a very strong action to stop the rising trend of dengue transmission in Bangladesh. 

Based on Bangladesh's seasonal climate change, the study's findings will assist policymakers and 

public health officials in taking the appropriate dengue preventative measures. 
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Chapter Seven 

7. Comparison between Singapore and Bangladesh Cases 

There has been a consistent increase in monthly dengue cases over the years, with a notably higher 

occurrence in 2019 compared to other years (Figure 1). Dengue cases in Singapore exhibited 

fluctuations from 1990 to 2020 (Figure 1). Meanwhile, the mean temperature has shown a 

continuous upward trend during this period, with Bangladesh consistently having higher mean 

temperatures than Singapore. Both Bangladesh and Singapore experienced fluctuations in average 

precipitation levels until 2014, after which Singapore's levels began to decrease while 

Bangladesh's increased. In terms of mean sunshine hours, there was no significant difference 

between Bangladesh and Singapore until 2010, but after that, Singapore's mean sunshine hours 

increased while Bangladesh's decreased. Additionally, Singapore had higher mean humidity levels 

than Bangladesh throughout the entire period (Figure 2). Although Singapore had higher mean 

dengue cases from 2003 to 2007, it's noteworthy that after that period, Bangladesh had higher 

mean dengue cases. Likewise, the incidence rate of dengue cases has been consistently higher in 

Singapore compared to Bangladesh over the years, with the highest rate reaching 51.7 in Singapore 

in 2020 and 41.6 in Bangladesh in 2019 

Figure 1: Month Dengue cases in both Bangladesh and Singapore from 2000 to 2020.  
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Figure 2: Mean temperature, rainfall. humidity, sunshine and dengue cases in both 

Bangladesh and Singapore from 2000 to 2020.  
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Figure 3: Incidence rate of dengue cases (per 100,000 people) in both Bangladesh and 

Singapore from 2000 to 2020.  

 

a.  Time series stationary test 
As previously mentioned, a stationary test was conducted and it was found that the time series 

process displayed stationary results. The Dickey-Fuller test statistic yielded a value of -5.2952, 

with a lag order of 7 and a p-value of 0.01 for Bangladesh. Moreover, the Dickey-Fuller test 

statistic yielded a value of -3.5813, with a lag order 6 and a p-value of 0.036 for Singapore. These 

p-value from the Dickey-Fuller test confirmed the stationary of the time series process for dengue 

cases in both Bangladesh and Singapore. 

b.  Seasonality Test  

Based on the analysis of Figure 4, it was evident that dengue cases exhibit seasonality throughout 

the year. While a minor trend effect was observable, it had been disregarded in our time series 

modeling. Our decision to exclude this trend was based on the Autocorrelation (ACF) and partial 
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autocorrelation (PACF) analyses, which favor the adoption of an ARIMA (1,0,0) model for 

Bangladesh and ARIMA (2,0,1) for Singapore, as illustrated in Figures 4 and 5. Nevertheless, in 

our study, we pursued a comprehensive approach by running multiple models. The final model 

selection was determined by evaluating each model's feat against the Akaike Information Criterion 

(AIC) (Figure 7).  

c.  Spearman Correlation Test 

From the spearman correlation test, it is observed that rainfall, humidity and sunshine hour is 

significantly associated with dengue cases in Bangladesh. Temperature, rainfall, and humidity is 

significantly associated with dengue cases in Singapore. Therefore, only significant variables are 

considered for the final model fitting.  

Table 1: Spearman Correlation test between climate variables and Dengue cases 

Variables Bangladesh Singapore 

 Rho P value Rho P value 

Temperature 0.20 0.11 0.26 <0.001 

Rainfall 0.39 <0.001 -0.12 0.04 

Humidity 0.50 <0.001 -0.42 <0.001 

Sunshine -0.45 <0.001 0.05 0.43 
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Figure 4: Decompose of Time series data of Dengue Cases using Seasonal and Trend 

decomposition using Loess. Left panel (Bangladesh), and right panel (Singapore).   

 

 

 

 

Figure 5: ACF plot for time series data of dengue cases 
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Figure 6: PACF plot for time series data of dengue cases 

 

d.  Sensitivity analysis and Final time series model selection 

In the case of modelling dengue time series data, we primarily started with an ARIMA (1,0,0) and 

ARIMA (2,0,1) model for Bangladesh and Singapore, respectively. Since we identified the 

presence of seasonality in our data, we conducted different types of Seasonal ARIMA models 

which capture the seasonality in the model. 

We considered different types of ARIMA (p,d,q) × Sesonal (P,D,Q)s models. Parameters 

of ARIMA model such as p, d, and q, determine the autoregressive order, differencing, and moving 

average order in the ARIMA model. The parameters P, D, and Q indicate the autoregressive order, 

seasonal differencing, and moving average order in the Seasonal ARIMA model. Moreover, we 

explored two different seasonal periods, S=12, representing monthly seasonal influence, and S=4, 

indicating quarterly seasonal patterns. 

After conducting this analysis and comparing various model configurations, we identified 

the model with the best fit to the data, based on the evaluation of statistical criteria AIC values. 

This model, denoted as ARIMA (1,1,2) × Seasonal (0,1,2) with S=12, emerged as the most suitable 
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choice for Bangladesh with AIC values 4543.63. Furthermore, the ARIMA (3,1,1) × Seasonal 

(0,1,2) with S=12 got selected as the best model for Singapore with AIC values 3506.13. 

AR1 (Auto Regressive coefficient for lag 1) signifies the impact of a 1-unit increase in the 

prior month's Dengue cases, denoted as a lag of 1 (one-time step back). An increase of 

approximately 0.41 units in the current Dengue cases in Bangladesh is associated with such an 

increment. MA1 (Moving Average coefficient for lag 1) implies the consequence of a 1-unit 

increase in the prior month's error term at lag 1. This change is related to a decrease of roughly 

0.79 units in the current Dengue cases. MA2 (Moving Average coefficient for lag 2) suggests the 

outcome of a 1-unit increase in the prior month's error term at lag 2. This is associated with an 

increase of approximately 0.19 units in the current Dengue cases. SMA1 (Seasonal Auto 

Regressive coefficient for lag 12) denotes the effect of a 1-unit increase in the value of Dengue 

cases at a seasonal lag of 12, representing the same month in the previous year. Such an increase 

is associated with a decrease of roughly 0.96 units in the current Dengue cases. SMA2 (Seasonal 

Auto Regressive coefficient for lag 24) signifies the influence of a 1-unit increase in the value of 

Dengue cases at a seasonal lag of 24, equivalent to the same month in the two years prior. It is 

associated with an increase of approximately 0.35 units in the current Dengue cases (Table 2).  

An increase of approximately 0.92 units in the current Dengue cases in Singapore is 

associated with such an increment. AR2 is linked to a decrease of approximately 0.04 units in the 

current Dengue cases (Table 2). Similarly, AR3 is also associated with a decrease of 0.32 units in 

the current dengue cases. MA1 change is related to a decrease of roughly 0.78 units in the current 

Dengue cases. SMA1 reports a decrease associated with a decrease of roughly 0.53 units in the 

current Dengue cases. SMA2 is associated with a decrease of approximately 0.29 units in the 

current Dengue cases. 
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Table 2: Estimated values from model ARIMA (p,d,q) × Seasonal (P,D,Q) with S=12 

 Bangladesh 

ARIMA (1,1,2) × Seasonal (0,1,2) 

Singapore 

ARIMA (1,1,2) × Seasonal 

(0,1,2) 

Model Coefficient Estimate (SE) Estimate (SE) 

AR1 0.41*** 

(0.11) 

0.92*** 

(0.09) 

AR2  -0.04*** 

(0.09) 

AR3  -0.32*** 

(0.07) 

MA1 -0.79*** 

(0.12) 

-0.78*** 

(0.07) 

MA2 -0.19*** 

(0.11) 

 

MA3   

SMA1 -0.96*** 

(0.06) 

-0.53*** 

(0.07) 

SMA2 0.35*** 

(0.13) 

-0.29*** 

(0.07) 

Rainfall -0.08 

(2.30) 

0.09 

(0.17) 

Humidity -38.46 

(89.76) 

-19.38 

(11.79) 

Temperature  -34.09 

(61.98) 

Sunshine 161 

(250) 

 

                                           <0.001***, 0.01 <p<0.05**, 0.05<p<0.10* 
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Table 3: Poisson regression estimates 

 Bangladesh 

 

Singapore 

Model Coefficient Estimate 

(SE) 

Estimate 

(SE) 

Rainfall 0.0027*** 

(0.00173) 

-0.005*** 

(0.00046) 

Humidity -0.124*** 

(0.00587) 

-0.316*** 

(0.00934) 

Temperature  0.665*** 

(0.184) 

Sunshine -0.487*** 

(0.00263) 

 

 

e.  Poisson regression estimates 

Table 3 reports that a 1-unit increment in rainfall is positively correlated with a modest rise of 

approximately 0.027 units in the incidence of Dengue cases in Bangladesh. Conversely, a 1-unit 

elevation in relative humidity and sunshine hour demonstrates a notable negative association, 

resulting in a substantial reduction of about -0.124 and -0.487 units in Dengue cases, respectively. 

Rainfall (-0.005) and humidity (-0.316) reports negative association with dengue cases in case of 

Singapore whereas temperature (0.665) showed positive association the dengue incidence.  
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Figure 7: AIC values for different Seasonal ARIMA models for Bangladesh (left panel), and 

Singapore (right panel). 

 

Forecasting of Dengue cases in Bangladesh and Singapore using different forecasting 

models’ 

Information obtained from various forecasting models and corresponding plots indicates that 

dengue cases in Bangladesh are projected to increase over the next 10 years, spanning from 2021 

to 2030 (Figure 8-11). Notably, ARIMA models predict the highest number of dengue cases in 

Singapore will occur in 2023, surpassing the cases in Bangladesh (Figure 8). Other forecasting 

models show fluctuations in total dengue cases projections from 2021 to 2030 in Singapore. Based 

on the Root Mean Square Error (RMSE) analysis, it is evident that the TBATS model is the most 

accurate forecasting model for predicting dengue cases in Bangladesh, with an RMSE of 2904.48. 

In the case of Singapore's dengue cases, both the ARIMA model (RMSE = 341.55) and the TBATS 

model (RMSE = 341.92) performed well. In conclusion, the TBATS model is considered the 
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superior choice for forecasting dengue cases in both Bangladesh and Singapore (Table 4).

 

Figure 8: Forecasting of Dengue cases for next 10 years using Seasonal ARIMA model for 

both Bangladesh and Singapore 

 

Figure 9: Forecasting of Dengue cases for next 10 years using ETS model for both 

Bangladesh (left panel) and Singapore (right panel) 
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Figure 10: Forecasting of Dengue cases for next 10 years using TBATS model for both 

Bangladesh (left panel) and Singapore (right panel) 

 

Figure 11: Forecasting of Dengue cases for next 10 years using Two component K-H model 

for both Bangladesh (left panel) and Singapore (right panel) 
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Table 4: Forecasting accuracy for different models. 

Model Names Bangladesh  Singapore 

 Root Mean square error 

(RMSE) 

Root Mean square error 

(RMSE) 

Seasonal ARIMA 2985.70 341.55 

ANN 8035.34 1601.25 

SVM 8204.64 1448.26 

ETS 3360.15 402.08 

TBATS 2904.48 341.92 

Two component KH Model 3241.45 393.59 

 

f.  Discussion: 
The relationship between environmental change and disease causation is a much-talked about issue 

in epidemiology. Higher temperatures can lead to increased rates of proliferation and reproduction 

of vectors, as well as an extended transmission season for diseases. Furthermore, these changes 

can disrupt ecological balances and contribute to climate-related migrations of disease vectors, 

reservoir hosts, and human populations. To analyze the agents of disease causation, various 

environmental variables such as temperature, humidity, rainfall, and sunshine hours have been 

considered (Butler 2012; Weiss and McMichael 2004). This study examined the connection 

between climate factors and the incidence of dengue fever outbreaks in Singapore and Bangladesh. 

Statistical analysis of the correlation between dengue incidence and climatic variables is difficult 

due to the complexity of the vector and host life cycles. In this research, we found the impact of a 

comprehensive set of climate variables with the inclusion of humidity and sunshine hours along 

with the traditional temperature and rainfall, on dengue incidence.  

  This study found a significant positive correlation between temperature and dengue 

incidence in Singapore. Pinto et al. (2011) also found that for every 2-10°C of variation of the 
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maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue 

cases (Pinto et al. 2011).  Gharbi et al. (2011) showed that minimum temperature at lag-5 weeks 

and average temperature at lag-11 weeks were variables the most positively correlated to dengue 

incidence (Gharbi et al. 2011). Temperature has been established as the  most important weather 

variable in the growth and transmission of aedes mosquito vector and potential predictor of dengue 

surge according to a study in 2010 (Campbell-Lendrum et al. 2015; Chen et al. 2010) . Temperature 

influences the life cycle of Aedes mosquitoes including growth rate and larval survival and the 

length of reproductive cycle (Patz et al. 1998). Several studies also found strong relation between 

temperature and dengue cases (Cazelles et al. 2005; Descloux et al. 2012; Earnest et al. 2012a; 

Hossain et al. 2023; Hu et al. 2012; Johansson et al. 2009) which is similar to our study.  

This study also ventured to determine the association between rainfall and dengue cases 

both in Bangladesh and Singapore. A positive correlation was found in Bangladesh, but a negative 

relation was noticeable for Singapore. Several studies have also found an association between 

rainfall and dengue cases (Cazelles et al. 2005; Chen et al. 2010; Descloux et al. 2012; Hu et al. 

2012; Johansson et al. 2009). Among these studies, some studies had found strong positive 

correlation and other negative correlation between rainfall and dengue cases. Rainfall is affects 

agents of diseases, particularly vectors of infectious diseases. It has been demonstrated that 

increased precipitation increases the number of reproductive sites, which in turn increases the 

mosquito population. Insects, mites, and parasites survive longer in humid environments. Tropical 

and subtropical regions with high levels of urbanization and expanding deforestation are frequently 

the most vulnerable because vector-borne diseases flourish in hot, humid climates and can exploit 

recently damaged ecosystems (Wu et al. 2016).  It was observed that the incidence of Dengue was 

reduced during the winter months of April and June, when precipitation was abundant, but 
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increased during the summer months of winter. Rain is believed to have both positive and negative 

impacts on the development of mosquitoes. An excess of precipitation can harm mosquitoes that 

may be present and produce standing water in which they can deposit their eggs (Lindsay and 

Birley 1996). This study found a significant negative association between dengue cases and 

relative humidity in both Bangladesh and Singapore. The findings of our investigation show a 

significant inverse association between relative humidity and the prevalence of dengue cases. But 

some researchers found positive association between relative humidity and dengue cases 

(Descloux et al. 2012; Hossain et al. 2023). 

Also, there was a significant adverse correlation between sunshine hour and dengue cases 

in Bangladesh. This study finds the impact of a comprehensive set of climate variables with the 

inclusion of humidity and sunshine hours along with the traditional temperature and rainfall, on 

dengue incidence. An earlier study also recorded a negative correlation  between dengue incidence 

and average  sunshine hours (Pham et al. 2011). Fewer sunshine hours for shorter periods is good 

for spreading dengue because mosquitoes are more active when it's dark, which means more times 

they will bite (Pham et al. 2011).  

Predicting the rise in dengue cases is becoming increasingly critical for the coming decades 

due to the growing incidence of this disease in both Bangladesh and Singapore. Developing 

effective forecasting models is essential to assist policymakers in mitigating the disease's impact. 

Our research revealed that machine learning models, such as Artificial Neural Networks (ANN) 

and Support Vector Machines (SVM), did not perform well in this context. In contrast, both the 

ARIMA and TBATS models proved to be suitable for accurately forecasting dengue cases in both 

Bangladesh and Singapore. A study conducted in 2022 specifically found that the TBATS model 

provided precise forecasts for dengue cases in Bangladesh (Naher et al. 2022) which is similar to 
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our study. Previous research, including studies conducted by Co et al. in 2017, Du et al. in 2021, 

Polwiang in 2020, and Zhao et al. in 2020 (Co et al. 2017; Du et al. 2021; Polwiang 2020; Zhao et 

al. 2020), employed a variety of forecasting models, such as ANN, SVM, ETS, TBATS, and 

ARIMA, to predict dengue cases in various countries. In our investigation, we comprehensively 

assessed all these models and discovered that the TBATS model outperformed the others in 

forecasting dengue cases in both the countries. So, it emerged as the Model of choice.  

g.  Limitations 

This research has some limitations also. Initially, the government repository lacks continuous time-

series data pertaining to dengue cases and vectors. Furthermore, the correlation between climate 

and environmental factors and vector reproduction was insufficiently investigated in this study due 

to financial, time, and resource constraints. Furthermore, longitudinal surveillance statistics 

pertaining to vectors and dengue diseases are absent in Bangladesh. Administrative officials in 

Bangladesh lack a strategy for data exchange, resulting in the dispersion of the limited data at their 

disposal. Fourth, an exhaustive survey on institutional (government and NGO) control methods 

was not conducted because it was unnecessary for the model's construction. However, additional 

research and effort on the part of private sector entities and individuals to prevent and control 

dengue vectors would strengthen the disease control program.  

h.  Conclusion 

Understanding the historical trends of dengue cases and predicting future scenarios is crucial for 

policymakers to formulate effective preventive measures. In light of this, the authors have 

developed a model to analyze the current dengue situation and project future cases over the next 

decades in both Bangladesh and Singapore. This study investigates the correlation between climate 

factors and the incidence of dengue fever outbreaks in the two countries. The findings suggest that 
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maximum temperature and rainfall positively impact on dengue incidence, while humidity and 

daylight hours have a negative impact on the disease occurrence. Model selection criteria indicate 

that the seasonal ARIMA model and TBATS model perform well, showing lower Root Mean 

Square Error (RMSE) and proving to be the most suitable models for forecasting dengue cases in 

both Bangladesh and Singapore.  

The study's findings indicate a projected increase in the incidence of dengue cases in 

Bangladesh in the coming years. In response, it is imperative for both government and non-

government organizations, as well as policymakers, to launch nationwide initiatives aimed at 

enhancing public awareness on these issues. Anticipating future dengue cases, effective preventive 

measures is crucial. Additionally, policymakers in both Singapore and Bangladesh can use this 

study as a roadmap to formulate a comprehensive model for forecasting overall dengue cases, 

considering factors such as immunological, entomological, demographic, and climatic data. 

Drawing from the experiences of Singapore and Bangladesh, other countries can develop their 

own tailored dengue prevention and containment strategies at both national and local levels. 

Furthermore, international organizations, particularly the World Health Organization (WHO), 

could take the lead in creating regional and global dengue prevention plans and preparedness based 

on the insights provided by this new model. 
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Chapter Eight 

8. Novelty and Findings of the study: Narratives and Summary 

Theory interpretation in context: 

The germination, transmission, and propagation of dengue depends on the prevailing climate 

scenario of a given region. Dengue is transmitted by vectors, specifically Aedes aegypti and Aedes 

albopictus, two species of mosquitoes. The density and presence of these vectors have the greatest 

impact on the spread of dengue. Numerous studies [40-41] indicate that ecological and climate 

factors play an important role in the seasonal occurrence of dengue virus. Certain climate variables 

have a direct impact on the reproduction and proliferation of mosquito vectors, which are closely 

associated with these factors. In regions characterized by subtropical and tropical climates, which 

have historically been conducive to the breeding of dengue vectors, erratic climatic change poses 

a significant bad impact on human health. This is caused predominantly by the spread of dengue 

fever in these regions. In 2020, a total of 35,315 confirmed dengue cases were reported in 

Singapore [42]; this represented a significant increase from the previous year.   

This study presents a computational model that evaluates the impact of various climatic 

conditions on the incidence of dengue cases, which are predominantly observed in the Indian 

Subcontinent during the monsoon season. Several experiments [43-47] have been carried out in 

the South Asia and ASEAN region to examine the impact of climate change on all the 

epidemiological dimensions of dengue. Dengue fever has emerged as a significant public health 

concern in these regions, according to these studies. Temperature and precipitation are the 

primary climate factors that have a significant impact on dengue outbreaks, according to these 

studies. In addition, these studies have revealed a previously unaccounted-for impact of 

particular climate factors over time. This study finds the impact of a comprehensive set of climate 
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variables with the inclusion of humidity and sunshine hours along with the traditional temperature 

and rain fall, on dengue incidence. The result is fascinating as the two added variables negated the 

impact while the previous two factors positively factored in dengue incidence. Thus, a complete 

scenario of dengue-climate relationship got unleased. It would now comprehensively address the 

exact incidence picture of dengue and would help reduce and contain (the hitherto untamed) any 

prospective dengue outbreak in Singapore, allowing sufficient time for preparedness. 

In sum,  this study was driven by the objective that, it would identify the climate variables that 

may influence the occurrence of dengue cases and the specific pattern in which they affect the 

number of cases. According to the findings of this study, there is a positive correlation between 

maximum temperatures and the dengue incidence. A rise in global temperature may increase the 

vector-borne disease cases, dengue being no exception [48]. A recent scientific investigation 

discovered that the ideal temperature range for Aedes aegypti vector multiplication is between 

21.3 and 34 C [49]. Once again, the findings of our investigation show a significant inverse 

association between relative humidity and the prevalence of dengue cases. There was a reduction 

in the tally of reported dengue cases during the monsoon season, which correlated with an increase 

in relative humidity levels.  

Furthermore, there was a significant correlation between the duration of sunshine exposure and a 

decrease in the incidence of dengue cases. According to a recent study, there exists a correlation 

between the duration of sunshine and a reduced incidence of dengue fever [51]. The transmission 

of dengue is more probable in conditions of reduced sunlight, as mosquitoes exhibit increased 

activity during nighttime hours and tend to engage in more frequent biting behavior in darkness 

[48]. When considering both positive and negative elements, a comprehensive statistical outcome 

is derived. 
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Case study in perspective: 

 In theory, establishing the causal relations of any disease or health event is crucial as to its 

prediction and protection is concerned. Taking dengue as a model case in Bangladesh and 

Singapore, this study has ventured to apply an innovative step-wise approach to determine 

the causal associations within the epidemiological triad of climate-vector-disease 

relationships as well as ecological and human factors in the cities of Dhaka and Singapore. 

The study established a significant correlation between climatic variables and vector 

abundance, ecological factors and vector population and between vector population and 

dengue occurrence in temporal and spatial dimensions. Again, the study investigated the 

relationship between seasonal variation and dengue incidence accounted for 20 years and 

long-term climate trends of climatic factors and dengue incidence over a 10-year period. 

In this study, the study was able to generate a useful data set for future researches in the 

field of impact of climate change as well as ecology on dengue transmission in Dhaka and 

Singapore, in the regions of the South and South East Asia at large. 

  Based on the findings, a model mapping system was envisioned to predict the future 

incidence of dengue and thereby, to predict any such disease or health event and devising 

prevention guidelines thereto at local, national, regional and global level. 

 In one hand, differences of variables in different cities and regions have been proved as to 

applying one regional model for another region, on the other hand, incorporating crucial 

variables in one model through a compare and contrast study enabled to frame a relatively 

common model mapping system applicable for any given entity of a region. It is a huge 

enabler on global and regional scale to address the outbreak of any given disease in entities 

with different economic setting. Devising this technique of Mapping and modelling by 

addressing Spatial variations is an important novelty of this study. 
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 Finding out temporal variations of variables over time, particularly decadal impact 

of variables is another crucial attribute of the Model to apply it effectively in 

preventive medicine and urban planning. 

 This research also found that city areas with more paved roads, highways and concrete 

building had the highest level of aedes mosquito concentrations. These results showcase 

that, the rapidly changing urban and suburban landscape of developing world is one of the 

major reasons leading to a fortified incidence of dengue in metropolitan areas. This is a 

crucial inference as to the dengue prediction and prevention mapping is concerned that, 

unplanned urbanization, particularly development of shanty slum area is crucial to dengue 

fever spread. 

 Again, the mapping results of this study have important contributory function to aide in 

developing apt and differentiated policies for containing vectors and preventing the 

propagation of dengue disease in Dhaka, Bangladesh and Singapore and other vulnerable 

areas of the regions and the globe at large.  

Conclusive Interpretation and findings of the Study: 

For both the study areas-Dhaka, Bangladesh and Singapore, the 10 years comprehensive data of 

the four determined variables are placed and interpreted against the chosen two models as under:  

 After incorporating 10 years data of Bangladesh 

Poisson regression 
 Dengue_Cases_B  Coef.  St.Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Max_T_B .594 .002 278.36 0 .59 .599 *** 

Rainfall_B -0.003 0 -17.51 0 0 0 *** 

Humidity_B -.145 .001 -

199.93 

0 -.146 -.143 *** 

Sunshinehour_B -.865 .003 -

312.37 

0 -.871 -.86 *** 

Constant 3.538 .092 38.64 0 3.358 3.717 *** 
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Mean dependent var 608.869 SD dependent var  3667.187 

Pseudo r-squared  0.275 Number of obs   252 

Chi-square   214048.815 Prob > chi2  0.000 

Akaike crit. (AIC) 563308.235 Bayesian crit. (BIC) 563325.883 

*** p<.01, ** p<.05, * p<.1 

 

Interpretation: The estimated coefficient 0.594 means that for a one-degree Celsius change 

in the maximum temperature, the difference in the logs of expected counts is expected to 

change by 0.594, given the other predictor variables in the model are held constant which is 

statistically significant at 1% level.  

The estimated coefficient -0.003 means that for a one mm change in rainfall, the difference in 

the logs of expected counts is expected to change by 0.003, given the other predictor variables 

in the model are held constant which is statistically significant at 1% level.   

The estimated coefficient -0.145 means that for a one percentage change in the relative 

humidity, the difference in the logs of expected counts is expected to change by 0.145, given 

the other predictor variables in the model are held constant which is statistically significant at 

1% level.   

The estimated coefficient -.865 means that for a one-hour change in the sunshine hour, the 

difference in the logs of expected counts is expected to change by 0.865, given the other 

predictor variables in the model are held constant which is statistically significant at 1% level. 

 

After incorporating 10 years data of Bangladesh 

Negative binomial regression 
 

Dengue_Cases_

B 

 Coef.  St.Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Max_T_B .44 .083 5.27 0 .276 .603 *** 

Rainfall_B -.003 .002 -1.89 .059 -.007 0 * 

Humidity_B .035 .043 0.81 .419 -.05 .119  

Sunshinehour_B -.763 .152 -5.03 0 -1.06 -.465 *** 

Constant -5.81 3.996 -1.45 .146 -13.642 2.022  

lnalpha 1.836 .087 .b .b 1.666 2.005  
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Mean dependent var 608.869 SD dependent var  3667.187 

Pseudo r-squared  0.020 Number of obs   252 

Chi-square   53.361 Prob > chi2  0.000 

Akaike crit. (AIC) 2613.755 Bayesian crit. (BIC) 2634.932 

*** p<.01, ** p<.05, * p<.1 

 
 

 

 Interpretation: The estimated coefficient 0.44 means that for a one-degree Celsius change 

in the maximum temperature, the difference in the logs of expected counts is expected to 

change by 0.44, given the other predictor variables in the model are held constant which is 

statistically significant at 1% level.  

 The estimated coefficient -0.003 means that for a one mm change in rainfall, the difference 

in the logs of expected counts is expected to change by 0.003, given the other predictor 

variables in the model are held constant which is statistically significant at 10% level.   

 The estimated coefficient 0.35 means that for a one percentage change in the relative 

humidity, the difference in the logs of expected counts is expected to change by 0.35, given 

the other predictor variables in the model are held constant which is not statistically 

significant.   

 The estimated coefficient -.763 means that for a one-hour change in the sunshine hour, the 

difference in the logs of expected counts is expected to change by 0.763, given the other 

predictor variables in the model are held constant which is statistically significant at 1% 

level. 

 

After incorporating 10 years data of Singapore 

 Poisson regression 
 Dengue_Case_S  Coef.  St.Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Max_T_S .047 .004 11.15 0 .039 .055 *** 

Rainfall_S .001 0 29.94 0 .001 .001 *** 

Humidity_S -.149 .001 -

211.59 

0 -.151 -.148 *** 

Sunshine_Hour_ -.249 .002 - 0 -.254 -.244 *** 
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S 104.84 

Constant 18.724 .149 125.89 0 18.432 19.015 *** 

 

Mean dependent var 783.151 SD dependent var  932.025 

Pseudo r-squared  0.269 Number of obs   252 

Chi-square   52971.788 Prob > chi2  0.000 

Akaike crit. (AIC) 144076.349 Bayesian crit. (BIC) 144093.996 

*** p<.01, ** p<.05, * p<.1 
 

 Interpretation: The estimated coefficient 0.047 means that for a one-degree Celsius 

change in the maximum temperature, the difference in the logs of expected counts is 

expected to change by 0.047, given the other predictor variables in the model are held 

constant which is statistically significant at 1% level.  

 The estimated coefficient 0.001 means that for a one mm change in rainfall, the difference 

in the logs of expected counts is expected to change by 0.001, given the other predictor 

variables in the model are held constant which is statistically significant at 1% level.   

 The estimated coefficient -0.149 means that for a one percentage change in the relative 

humidity, the difference in the logs of expected counts is expected to change by 0.1459 

given the other predictor variables in the model are held constant which is statistically 

significant at 1% level.   

 The estimated coefficient -.249 means that for a one-hour change in the sunshine hour, the 

difference in the logs of expected counts is expected to change by 0.249, given the other 

predictor variables in the model are held constant which is statistically significant at 1% 

level. 

After incorporating 10 years data of Singapore 

 Negative binomial regression 
 

Dengue_Case_S 

 Coef.  St.Err.  t-

value 

 p-

value 

 [95% 

Conf 

 Interval]  Sig 

Max_T_S .106 .104 1.02 .308 -.098 .309  

Rainfall_S .001 .001 1.55 .122 0 .003  

Humidity_S -.176 .021 -8.45 0 -.216 -.135 *** 

Sunshine_Hour_ -.285 .062 -4.58 0 -.406 -.163 *** 
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S 

Constant 19.39 3.817 5.08 0 11.908 26.871 *** 

lnalpha -.323 .081 .b .b -.482 -.164  

 

Mean dependent var 783.151 SD dependent var  932.025 

Pseudo r-squared  0.023 Number of obs   252 

Chi-square   87.154 Prob > chi2  0.000 

Akaike crit. (AIC) 3787.163 Bayesian crit. (BIC) 3808.340 

*** p<.01, ** p<.05, * p<.1 

 

 Interpretation: The estimated coefficient 0.106 means that for a one-degree Celsius 

change in the maximum temperature, the difference in the logs of expected counts is 

expected to change by 0.106, given the other predictor variables in the model are held 

constant which is not statistically significant.  

 The estimated coefficient 0.001 means that for a one mm change in rainfall, the difference 

in the logs of expected counts is expected to change by 0.001, given the other predictor 

variables in the model are held constant which is not statistically significant.   

 The estimated coefficient -0.176 means that for a one percentage change in the relative 

humidity, the difference in the logs of expected counts is expected to change by 0.176, 

given the other predictor variables in the model are held constant which is statistically 

significant at 1% level.   

Novelty of the Research: 
Summary Point-One: Data Interpretation for variable determination in city/zone:  The 

germination, transmission, and spread of dengue depend on the prevailing enviroment. Dengue is 

transmitted by vectors, specifically Aedes aegypti and Aedes albopictus, two species of 

mosquitoes. The density and presence of these vectors have the greatest impact on the spread of 

dengue. Numerous studies [40-41] indicate that ecological and climate factors play an important 

role in the seasonal occurrence of dengue virus as certain climate variables have a direct impact 

on the reproduction and proliferation of mosquito vectors, which are closely associated with these 
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factors. In regions characterized by subtropical and tropical climates, which have historically been 

conducive to the breeding of dengue vectors, climate variables pose a discernible vulnerability to 

human health. This is caused predominantly by the spread of dengue fever in these regions. This 

study is driven by the objective to identify the climate variables in Space and Time that may 

influence the occurrence of dengue cases and the specific pattern in which they affect the number 

of cases. 

Temperature:  

a. Warm temperatures are conducive to the growth of Aedes aegypti mosquitoes, which have 

been implicated for transmitting the dengue virus between host and vectors. Elevated 

temperatures expedite the maturation process of mosquitoes and the dengue virus they 

harbor, thereby precipitating a surge in the rate of transmission. The replication of the 

dengue virus within mosquitoes may be facilitated by higher temperatures, which may 

result in a reduction of the incubation period and an increase in transmission efficacy. 

b. According to the findings of this study, there is a positive correlations between maximum 

temperatures and dengue incidence. A rise in temperature may increase the occurrence of 

vector-borne disease cases, such as dengue [48]. A recent scientific investigation 

discovered that the ideal temperature range for Aedes aegypti vector multiplication is 

between 21.3 and 34 degree celcius [49].  

c. Rainfall; 

d. Plasmids of the species Aedes aegypti proliferate in bodies of standing water. As 

precipitation can generate and restock breeding grounds, including pools, containers, and 

other water-retentive structures, mosquito populations can increase. Transmission 

Variations: Although heightened precipitation facilitates the establishment of additional 
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breeding grounds, an overabundance of precipitation can effectively flush away these 

breeding sites. Hence, a multifaceted correlation may exist between precipitation patterns 

and the transmission of dengue, whereby inadequate or excessive precipitation can have an 

impact on mosquito populations. 

b.  Several studies have also found a continuous positive relationship between rainfall and 

the frequency of dengue cases [44-46]. Rainfall and dengue cases had a negative link 

during the winter season, whereas a positive correlation was seen during the summer 

months, notably April and June. Rainfall has an impact on mosquito growth that is both 

beneficial and destructive. Rainfall has the ability to create standing water, which 

mosquitoes use as a hatching site. However, it is crucial to highlight that excessive or 

unwise rainfall might have a negative impact on mosquito populations [50]. 

Humidity:  

Again, the findings of our investigation show a significant inverse association between 

relative humidity and the prevalence of dengue cases. There was a decrease in dengue 

incidence during the monsoon season, which correlated with an increase in relative 

humidity levels.  

Sunshine: 

Furthermore, there was a significant correlation between the duration of sunshine exposure 

and a decrease in the incidence of dengue cases. According to a recent study, there exists 

a correlation between the duration of sunshine and a reduced incidence of dengue fever 

[51]. The transmission of dengue is more probable in conditions of reduced sunlight, as 

mosquitoes exhibit increased activity during nighttime hours and tend to engage in more 

frequent biting behavior in darkness [48].  
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Summaries of variables:  

When considering above positive and negative elements together, a comprehensive 

statistical outcome is derived. This study finds the impact of a comprehensive set of climate 

variables with the inclusion of humidity and sunshine hours along with the traditional 

temperature and rain fall, on dengue incidence. The result is fascinating as the two added 

variables negated the impact while the previous two factors positively factored in dengue 

incidence. Thus, a complete scenario of dengue-climate relationship got unleashed. It 

would now comprehensively address the exact incidence picture of dengue and would help 

reduce and contain (the hitherto untamed) any prospective dengue outbreak in Dhaka, 

Bangladesh and Singapore, allowing sufficient time, administrative measures and 

resources for preparedness. 

Summary Point-Two: Comparative Model Study: model determination of spatial 

variation (regions and national level versus city/zone) 

It's common in epidemiological and environmental studies to use a variety of statistical methods 

to analyze the relationship between variables and predict outcomes. In this case, the study 

employed multiple linear regression, Poisson regression, negative binomial regression, and a 

machine learning approach to assess the impact of temperature and rainfall on dengue cases. Here 

is the summary of each of these methods and why machine learning was proved advantageous over 

others while selecting a model applicable across a region or nationwide in lieu of a model feasible 

for a specific city or zone. 
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Multiple Linear Regression: 

Used when there is a linear relationship between the dependent variable (e.g., dengue cases) and 

multiple independent variables (e.g., temperature, rainfall). Assumes a linear and additive 

relationship between the variables. 

Poisson Regression: 

Appropriate when the dependent variable represents counts, such as the number of dengue cases, 

and follows a Poisson distribution. This model is useful for modeling the relationship between 

independent variables and the occurrence of rare events. 

Negative Binomial Regression: 

Similar to Poisson regression but more flexible in handling over dispersion, which occurs when 

the variance of the dependent variable is greater than the mean. It is suitable for count data with 

excess zeros or variability. 

Machine Learning Approach: 

Offers a more flexible and complex modeling technique that can capture nonlinear relationships 

and interactions among variables. Can handle large datasets and complex patterns that may be 

challenging for traditional statistical methods. Common machine learning algorithms for 

regression tasks include decision trees, random forests, support vector machines, and neural 

networks. Choosing the best model depends on the characteristics of the data, the assumptions of 

each method, and the specific goals of the analysis. Machine learning approaches are particularly 

powerful when dealing with complex, nonlinear relationships or when there are interactions 

between variables that traditional regression models might not capture as effectively. 
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When comparing the results, researchers typically evaluate the models based on criteria such as 

accuracy, precision, recall, and F1 score, depending on whether the problem involves classification 

or regression. The choice of the "best" model also depends on the interpretability of the results and 

the specific requirements of the study. 

Summaries of the Models:  

It's positive that the machine learning approach yielded the best results in our study, as this suggests 

that it can capture the complexity of the relationship between temperature, rainfall, and dengue 

cases more effectively than traditional regression models in this context. 

Summary Point Three: Data Interpretation for the determination of temporal variation 

(year versus decade): 

Table: Bangladesh Decadal Scenario 

Year Dengue Cases Temperature Rainfall Humidity Sunshine 

2000 462.5833333 30.40333 197.0517 81.2575 6.270833 

2001 202.5 30.785 185.1258 80.86833 6.298333 

2002 519.3333333 30.63167 200.5892 81.25583 5.975833 

2003 40.5 30.48167 178.5883 81.37583 5.880833 

2004 327.8333333 30.51 217.8233 81.225 5.9 

2005 87.33333333 30.8725 203.3633 81.165 5.930833 

2006 183.3333333 31.1825 172.6258 80.56083 5.66 

2007 38.83333333 30.46833 222.31 81.03083 5.51 

2008 96.08333333 30.48417 191.9775 81.41083 5.5625 

2009 39.5 31.30417 178.5783 79.5975 6.086667 
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2010 34.08333333 31.22167 173.8117 80.06417 5.830833 

2011 113.25 30.59833 200.5042 80.15167 5.285 

2012 55.91666667 30.79417 184.1225 79.8475 5.160833 

2013 145.75 30.86083 186.0175 79.77917 5.100833 

2014 31.25 31.125 164.3808 79.39583 5.285833 

2015 263.5 30.89667 232.0467 80.40917 5.223333 

2016 505 31.35083 191.3283 80.85333 5.444167 

2017 230.75 31.0325 255.9258 80.7775 5.145833 

2018 845.6666667 30.905 178.2167 79.85167 5.1775 

2019 8446.166667 31.34 161.555 72.98167 5.286667 

2020 117.0833333 31.14667 160 74.83333 5.1875 

 

Table: Singapore Decadal Scenario 

Year Dengue Cases Temperature Rainfall Humidity Sunshine 

2000 56.08333 27.45833 197.5417 84.74167 5.166667 

2001 197.6667 27.60833 231.925 84.26667 5.216667 

2002 328.75 28.08333 145.7417 82.49167 6.3 

2003 399 27.75 199.2667 84.3 5.433333 

2004 788.25 27.85833 178.0333 83.46667 5.966667 

2005 1184.167 28.01667 160.8917 83.15833 6.066667 

2006 278.0833 27.725 229.4333 84.59167 5.633333 

2007 735.5 27.53333 240.5167 84.5 5.316667 

2008 586 27.48333 193.7583 83.40833 5.241667 

2009 374.8333 27.91667 160.075 82.36667 5.95 
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2010 439.9167 28.1 172.925 82.875 5.691667 

2011 444.1667 27.575 210.35 84.625 5.575 

2012 386 27.53333 179.9917 83.475 5.533333 

2013 1847.5 27.65 229.0333 81.69167 5.433333 

2014 1527.167 27.90833 128.2 78.525 5.975 

2015 941.1667 28.25 105.5917 76.9 6.166667 

2016 1090.417 28.41667 162.975 75.95 6 

2017 291.6667 27.7 170.4667 82.625 5.8 

2018 273.75 27.89167 142.35 79.6 5.75 

2019 1333.167 28.425 113.9583 76.65 6.783333 

2020 2942.917 28.04167 157.2167 78.08333 5.875 

 

Accruing data from both the study areas and interpreting them through varied models, it has 

become clear that, the impacts of the variables do not become evident by one year or two. It is 

rather a decadal phenomenon, i.e., the results of the changing variables are felt at a gap of 10 years. 

This is a very interesting finding of the research. The most plausible cause behind this finding 

might lie in the fact that the epidemiological variables, particularly those that are directly 

influenced by anthropogenic factors such as human mobility and urbanization, take a time gap to 

impart their visible impacts on nature. Admittedly, it might not be necessarily 10 years in all 

epidemiological settings, but the findings of this research have stirred our understanding that the 

variables silently impart their effects to a fully bloomed climate event(s) at a later time. This 

warrants a policy planning a priori.  

 



147 
 

Preventive measure taken by Singapore and Bangladesh:  

When it comes to combating dengue disease, Singapore and Bangladesh demonstrate the 

contrasting nature of their preventive measures. Singapore exemplifies meticulous and proactive 

planning, while Bangladesh faces challenges that hinder its ability to achieve the same level of 

preparedness as Singapore.  

Singapore: Pioneering the Movement 

Singapore, known for its careful organisation and resolute resolve, has become a world leader in 

the fight against dengue disease. The country's all-encompassing strategy include a diverse vector 

control programme coordinated by the National Environment Agency (NEA). Singapore 

effectively controls mosquito populations and reduces the transmission of the dengue virus by 

conducting frequent inspections, implementing focused fumigation measures, and utilizing 

advanced technical solutions.  

 

In addition to vector control measures, Singapore is dedicated to preventing dengue by conducting 

intensive public awareness programmes among its population. These activities serve the purpose 

of educating residents about the significance of eradicating mosquito breeding areas, while also 

promoting a culture of attentiveness and accountability. Remarkably, this principle is well 

ingrained in communities, where engaging in proactive measures to prevent dengue has become 

the standard practice. Residents actively identify potential breeding areas and work together to 

keep their surroundings clean, so strengthening the nation's defences against dengue outbreaks. 
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Bangladesh: Confronting Different Obstacles   

Unlike Singapore's proactive strategy, Bangladesh faces numerous hurdles in its efforts to prevent 

dengue fever. Despite sincere endeavours, the country faces limitations in resources, insufficient 

infrastructure, and social inequalities that hinder the execution of effective preventive measures. 

Vector control attempts face substantial obstacles, especially in rural and highly inhabited regions 

where breeding grounds multiply in unhygienic settings, intensifying the risk of dengue 

transmission.  

In addition, the effectiveness of health education initiatives is hindered by low levels of literacy 

and communication obstacles, which restrict their scope and influence. Resistance to community 

mobilisation initiatives arises from conflicting priorities and deeply rooted socio-cultural norms, 

impeding collective action in the control of dengue. In addition, Bangladesh's surveillance 

systems, while in place, suffer from deficiencies in reporting and delays in responding, which 

diminishes their efficacy in controlling outbreaks and minimising the disease's impact on public 

health.  

Summary: Closing the Divide  

Singapore serves as a shining example in the worldwide battle against dengue fever, showcasing 

the effectiveness of proactive policies and comprehensive interventions. The comprehensive 

strategy, which includes strict vector control measures, substantial public education programmes, 

and active community involvement, sets an example for dengue prevention globally. On the other 

hand, the difficulties faced by Bangladesh highlight the urgent need for specific actions, more 

funding, and improved cooperation among all groups involved, in order to strengthen its ability to 

protect against dengue. 
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By closing the divide between ambition and execution, both countries may together work towards 

a future when dengue fever no longer poses a significant danger to public health. By leveraging 

the experiences of Singapore and Bangladesh, we can make a determined and focused effort to 

achieve a dengue-free world, safeguarding the health and prosperity of current and future 

generations. 

 Limitations of the Research Findings  

Some limitations have been encountered during the study period to complete this research work. 

Those are given below- 

 Both quantitative and qualitative methodologies are used in this research. However, 

quantitative data relates to secondary data for dengue cases, and climate variables such as, 

temperature, rainfall, sunshine and humidity are gathered from the Met offices of Dhaka, 

Bangladesh and Singapore and the International Centre for Diarrheal Disease Research, 

Bangladesh (ICDDR, B). ICDDR, B collected this data, particularly the dengue data, 

however it is just intended for reporting purposes. As a result, age, sex, and other 

socioeconomic characteristics were not taken into consideration when analyzing the data 

for this study. Only a few clinical settings used computers to record and retain data at the 

time of data collection; the majority of data record keeping systems were manual. 

 This study is based on accessible, regularly gathered data. We were unable to account for 

a variety of environmental factors, such as urbanization, mosquito species and densities, 

and population immunity, that may have an impact on the link between anthropological 

factors of climate and the transmission of dengue fever. For Dhaka City, specific 

information on these factors is not available. However, in the case of Singapore, there were 

no paucity of such data. 
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 Data on temperature, rainfall, sunshine, and humidity were gathered for Dhaka Station 

from BMD between 2008 and 2022 for the sake of this study. Prior to 2008, we were unable 

to access data on the climate and dengue. Between 2000 and 2007, there were no particular 

data records at BMD and ICDDR, B. These data were gathered by the field workers from 

the office and hospital records. It was a huge undertaking, as most of the data were hand 

written. Again, the data of Singapore were handy. 

 Since disease diagnosis and monitoring methods are customized based on time and place, 

the quality of dengue fever notification data may also change. While dengue non-prevalent 

countries (such as Australia) have the luxury to use more accurate molecular methods to 

identify and record dengue fever cases, nations in the Asia-Pacific area, such as Bangladesh 

and Singapore, only use symptomatic assessment to confirm a dengue fever case. 

Although, we developed the working definition of dengue in this research, the variation in 

dengue fever reporting could introduce bias into our analysis. 

 In Bangladesh, a small number of dengue-infected persons do not seek treatment or a 

diagnosis at a hospital. This leads to an under-enumeration issue because these patient 

types were not accurately counted by DGHS, Bangladesh. The study result would be more 

accurate and consistent if we could account for all the factors mentioned. 

 Insufficient financial support also posed a big constraint while conducting the research 

work. 

Recommendations for Improving the Adaptive Response for Climate Change and Health, 

Focusing on Dengue Fever in Bangladesh 

This study recommends the following to address dengue fever and its relation to climate change 

that takes into account the research and key needs. These are: 
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 Hospitals and Health offices should be properly equipped with data collection and analysis 

procedures to study temporal and spatial variations of diseases and variables.  

 Based on the differences of disease incidence and variables, R and D wings of the 

concerned health departments should be specialized for adaptation responses. 

 Awareness raising and capacity building with community and other sectors relating to 

health and climate change. 

 Integration of climate change into health policies within the health sector and system. 

 Integration of public health issues into climate change adaptation and mitigation policies 

of UN member states and UN itself. 

It also recommends- 

 By using a mechanism like the creation of a national research agenda, strengthening the 

body of knowledge already available about the hitherto unaccounted for factors of climate 

change on human health, 

 Finding susceptible areas, or "hotspots," prioritizing health concerns that require 

intervention, and then creating a set of suitable short-, medium-, and long-term measures 

within an implementation framework. Principles and illustrations from worldwide 

guidance could be applied to this recommendation. 

 Adapting current health and basic service infrastructure to anticipated changes, as well as 

developing methods and strategies to incorporate climate resilience into future 

infrastructure and system design. 

 Creating a framework for monitoring, evaluation, and review that takes into account the 

iterative nature of adaptation as well as the continuously evolving body of knowledge 

regarding the effects and efficiency of adaptation. 
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 Aiding local governments with resources and support so they can take part in and, if 

necessary, take the lead in health-related climate change adaptation, mitigation and reversal 

projects. 

 Increasing the ability of health professionals to promote, direct, organize, plan, or carry out 

activities related to health adaptation to climate change. 

Future Research Directions: 

One of the most significant global public health issues is dengue disease. It is evident that more 

research in this area is necessary given how complex the connection between climate change and 

dengue disease is. The following suggestions for further research may be made on the basis of the 

key results of this study- 

Better Understanding of the Ecology of Dengue Fever: Continuous changes in socio-

demographic characteristics and the climate have been proposed as potential causes for the dengue 

fever outbreak in the cities of Singapore and Dhaka. On this topic, more study is warranted. To 

evaluate the effects of rapidly changing climate on dengue fever, it is also useful to integrate varied 

meteorological data with long-term dengue  data in various regions. More information on essential 

factors like mosquito species and densities, population immunity and mosquito control efforts and 

anthropogenic variables such as urbanization rate, housing and habitats data are needed to be 

gathered. 

Evaluation of the Effectiveness of the Public Health Interventions: Using spatiotemporal 

analysis approach, which enables the identification and monitoring of high-risk areas for disease 

transmission and the targeting of education campaigns and vector control at specific sites, can 

increase the effectiveness of public health interventions. Controlling dengue fever epidemics can 

also be addressed by training medical staff and public health experts in high-risk locations. As a 
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result, it's important to assess the efficiency of public health interventions for dengue fever while 

taking spatiotemporal approaches into account. 

Policy Development: 

Guidelines, methods, and carefully planned and controlled activities are needed for dengue 

management. The cooperation of individuals, families, and the larger society is necessary for 

dengue prevention and management. Effective control, prevention, and management of dengue 

could be based on a dengue management strategy that includes recommendations and activities. 

There are some key broad elements that need to be incorporated for better dengue management. 

These are- 

 Increasing understanding of climate change, vulnerability, and adaptability as well as 

dengue fever dynamics. 

 National responses should take into account the variety of local challenges and seek to 

prioritize action based on methodical assessments of vulnerability and risk. 

 Maintaining institutions and capacities at all levels; institutions at the national and sectoral 

levels must be able to create integrative policy frameworks that ensure efficient 

coordination and implementation, and institutions below the national level must be able to 

recognize their local vulnerability and adaptation requirements and take appropriate action 

using the direction provided by national and sectoral policy. 

 Establishing and maintaining political will is a difficult task, especially in nations of the 

Asia Pacific regions where changing administrations may have different priorities and 

strategies for treating dengue fever and climate change that are at least partly motivated by 

political views. So, policy stability, if not political stability, lies at the core of the dengue 
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management plan, based on ecological and epidemiological realities. This was the call of 

this research, not to speak. 
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