
A Multistage Model for Prediction of Sequence
of Events

By

Rafiqul Islam Chowdhury
Ph.D. Candidate (Reg. No: 111 Session: 2014-2015 )

A thesis submitted in total fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY (Ph.D.).

Institute of Statistical Research and Training (ISRT)
University of Dhaka
Dhaka, Bangladesh

December, 2017

http://researchgroup.university.com
http://department.university.com
http://department.university.com


i

Supervisor’s declaration

The undersigned hereby certify that this thesis titled, “A Multistage Model for Prediction of
Sequence of Events” submitted as a requirement for the degree od Ph.D. is the result of Rafiqul
Islam Chowdhury’s (Reg. No: 111 Session: 2014-2015 ) research work under our supervision and
that this study in whole or in part has not been submitted for an award, including a higher degree,
to any other University or Institution.

Dated: December, 2017

Supervisors:

M. Ataharul Islam, Ph.D A. H. M. Mahbub Latif, Ph.D
Q. M. Husain Professor Professor
Institute of Statistical Research Institute of Statistical Research
and Training (ISRT) and Training (ISRT)
University of Dhaka University of Dhaka
Dhaka, Bangladesh. Dhaka, Bangladesh.

Anis
Typewritten text
Dhaka University Institutional Repository



ii

Abstract

This dissertation investigates the existing methods for risk prediction of a sequence of
events from longitudinal studies for the continuous time data, in addition to, proposing a
simple alternative method. These outcomes (events) can change status at different follow-
ups that may produce a large number of paths or trajectories. Also, regressive models
for multinomial and ordinal outcomes for discrete time data to obtain a joint model for a
sequence of events for risk prediction is proposed. A key challenge is the simplification
and generalization of the existing method for continuous time data for risk prediction for
a large sequence of events at different stages. Most of the models are proposed to solve
the problem arising from the progression of specific diseases process.

The proposed alternative multistage procedure simplifies the transition models for risk
prediction of a sequence of events for continuous time data. This framework provides
the estimates for each stage in the process conditionally and the conditional estimates are
linked based on marginal and conditional models to obtain the joint probabilities needed
for predicting the status of disease based on the potential risk factors. The proposed
method of prediction is a new development using a series of events in conditional setting
arising from the beginning to the endpoint. Also, a general form of integral is devel-
oped for predicting the joint probability of a sequence of events from longitudinal studies
for (i) different types of trajectories and (ii) any segment of a trajectory along with the
generalization to any number of stages which is a new development.

In follow-up or panel studies, multinomial outcomes may occur within an interval where
transition times are not exactly known, or the time of the event is itself discrete. Available
models for risk prediction for multinomial outcomes with specified risk factors are only
for a single response and are not extended for prediction of a sequence of events for
discrete time data for different stages.

The regressive models for multinomial outcomes are proposed and then a modeling frame-
work is developed to predict the joint probabilities for a sequence of events. The proposed
models link the marginal and sequence of conditional models to provide the joint model
needed for predicting the probability of a trajectory based on specified covariate patterns.
The marginal model uses the outcome variable at the baseline and the models at the sub-
sequent follow-ups provide the estimates of the parameters of the conditional models.
The major improvement of the proposed framework is that one needs to fit a significantly
smaller number of models compared to the conditional models such as Markov models.

The independence of the repeated outcomes will allow using simpler models, and the
goodness-of-fit of the joint model is required for model performance. The proposed

Anis
Typewritten text
Dhaka University Institutional Repository



iii

goodness-of-fit test for joint model is obtained by linking marginal and conditional mod-
els. The test for independence uses marginal models for each repeated outcomes. The
simulation study and application using real data prove the usefulness and illustrate the
performance of these tests.

For ordinal outcomes from longitudinal studies regressive proportional odds model, and
in the case of violation of proportional odds assumption regressive partial proportional
odds model are proposed. Then a framework is developed to predict joint probabilities
for a sequence of ordinal outcomes. The major improvement of the proposed model is
that only one model is required for each repeated outcome compared to the sequence of
conditional models such as Markov models. Results from these two models are compared
to that from the proposed regressive multinomial logistic model. Also, test for goodness-
of-fit and test for independence are shown. The proposed models provide the estimates
for each stage in the process conditionally, and the joint model can be obtained for any
order to predict the risk of a sequence of events. Proposed regressive partial proportional
odds model and regressive multinomial models showed better performance compared to
the regressive proportional odds model when proportional odds assumption is violated.
Simulation studies showed satisfactory performance of the proposed regressive models
for ordinal outcomes.

All the proposed model and the risk prediction framework for both continuous and dis-
crete time data are a new development. The major improvement of the proposed model
is that it reduces the over-parameterization. One can easily add interaction terms among
previous outcomes, and predictors in the proposed framework which may provide a better
understanding of the underlying process and the relationships between outcomes and risk
factors. Using the developed framework, modeling and risk prediction for a sequence of
events can be performed in many fields of studies such as epidemiology, public health,
survival analysis, genetics, reliability, environmental studies, etc. This model would be
very useful for analyzing big data. One can use the existing software for model fitting,
and risk prediction of a sequence of events.
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Chapter 1

Introduction

1.1 Background

In longitudinal, panel or cohort studies, responses and covariates are repeatedly collected
over time on each study participant or experimental unit. This repeated measures data
are collected in various disciplines such as biomedical sciences, epidemiology, reliability,
econometrics, environment, social science, etc. The responses may be qualitative (cate-
gorical) or quantitative (discrete or continuous) and time can be continuous or discrete.
For example, a leukemia patient after bone marrow transplantation may experience mul-
tiple events, such as platelet recovery, acute graft versus host disease (GVHD), relapse
or death. In this case, events are discrete and are observed over continuous time. When
subjects move from one state to another, a transition occurs. In many instances, event
occurrence of patients is only observed within an interval, e.g., transition times are not
exactly known or the time of an event is itself discrete. In cohort studies, for example,
depression status can repeatedly be measured over regular interval produces a sequence of
discrete events at the discrete times. Multi-state models are the most common statistical
technique to describe the occurrence of multiple events over time or disease progression
longitudinally (Hougaard, 1999). When describing a sequence of similar or distinct types
of events, multi-state models can be viewed as a series of nested models at different stages.

There is a growing interest on prediction of the probability of a sequence of events for a
subject with specified covariate values and event history using multi-state model. Klein
et al. (1994) first illustrated the prediction probability calculation for a future event from
the multi-state model. Putter et al. (2006) demonstrated how to use the results of multi-
state model to obtain predictions at a certain time after surgery for a patient. Computa-
tional aspects of prediction is illustrated in Putter et al. (2007). A key challenge is the
simplification and generalization of the existing method for continuous time data for pre-
diction for a large number of events or stages. For example, uncontrolled diabetes can lead
to nephropathy, diabetic retinopathy, pulmonary tuberculosis, and coronary heart disease
may occur in a large number of stages.
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Chapter 1. Introduction 2

In social and behavioral science applications, discrete-time survival analysis is often more
natural where time is likely to be measured discretely. Such data are better handled by
the discrete time models (Commenges, 2002; Klein and Moeschberger, 2003; Sun, 2006).
Prentice and Gloeckler (1978) and Pierce et al. (1979) discussed the use of the grouped
proportional hazards model for the regression analysis of right censored data where life-
times are partitioned into intervals. Lawless (2003) suggested a flexible and convenient
method to analyze discrete time data using logistic regression. D’Agostino et al. (1990)
proposed pooled logistic model to analyze discrete time data. By pooling the observa-
tions over multiple intervals into a single sample, logistic regression is employed to relate
the risk factors to the occurrence of the event. The pooled logistic regression produced
similar results as the Cox model. Barnett et al. (2009) provided practical accounts for the
use of multinomial logit model for discrete time data. Beyersmann et al. (2012) suggested
additional refinement for varying baseline risk for that model. However, this model is not
extended for prediction for the competing risks for discrete time data under multi-state
modeling framework. The motivation for this model stems from the need for generaliza-
tion of competing risks models at different stages for discrete time data and prediction
of future events. This can be achieved by extending the regressive model (Bonney, 1986,
1987) for prediction of disease status proposed by Islam and Chowdhury (2010) for multi-
nomial and ordinal outcomes. This formulation can easily handle a large number of states
emerging from different follow-ups from longitudinal data. Here, the difference is in
the formulation of models based on multiple outcomes at various stages starting from an
initial state.

Following Data sets are examples of longitudinal, cohort or panel studies and are based
on biological and health sciences that represent specific data analysis challenges.

1.1.1 Data set I: Bone Marrow Transplantation (BMT) data

Complete data set is presented in the book by Klein and Moeschberger (2003), also, freely
available in the ‘mstate’ package in R. The study consists of transplant patients from four
hospitals in the USA, conducted from 1 March 1984 to 30 June 1989. A total of 137
patients went through transplantation. The maximum follow-up was seven years with 42
patients who relapsed and 41 who died in remission. Both pre and post transplant risk
factors were recorded for patients, for example, recipient and donor sex and age, waiting
time from diagnosis to transplantation and GVHD status. Researchers are interested in
answering various questions from this data. Questions like following few are unanswered
due to the complexity of the existing methods or unavailability of proper models.

(1) what is the probability of survival at some point after transplantation of a patient
who is in remission;

(2) what is the probability of relapse whose platelet has not yet recovered;
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Chapter 1. Introduction 3

(3) what is the probability of survival past two years for a patient who has first GVHD
then platelet recovery after transplant.

1.1.2 Data set II: Maternal morbidity data

This data set comes from a prospective study on maternal morbidity in Bangladesh con-
ducted by the Bangladesh Institute of Research for Promotion of Essential & Reproduc-
tive Health and Technologies (BIRPERHT), during November 1992 to December 1993
(Akhter et al., 1996). A total of 1020 pregnant women was followed during the antenatal,
delivery and postnatal stages.The occurrence of different types of complications, for ex-
ample, excessive haemorrhage or fits/convulsion during pregnancy were recorded. Age,
age at marriage, whether regular visits to a doctor for check-ups, planned index pregnancy
are some of the risk factors. The health of a woman during pregnancy or childbirth has an
impact on the health and development of the next generation and well-being of the family
both economically and socially. Another consequence after delivery is that, there may
be severe obstetric complication, including excess mortality and mental health problems
(Filippi et al., 2007). Therefore, clinician’s and researcher’s are interested in finding the
answer to different questions. For some questions it is not be possible to find answer due
to the unavailability of proper methods, for example,

(1) what is the impact of selected risk factors on the occurrence of complications during
the three stages;

(2) Are the hazard rate for different stages differ;

(3) what is the probability of delivery complication for a woman with or without any
antenatal.

1.1.3 Data set III: Health and Retirement Study (HRS) data

The Health and Retirement Study (HRS) is a panel study on retirement and health among
the elderly born between 1931 and 1941 in the United States (HRS, 2014). This study
was conducted by the University of Michigan and supported by the National Institute of
Aging (NIA) and the Social Security Administration (SSA). In the HRS, the first wave of
data is collected in 1992, which includes 12,652 individuals over age 50 and their spouses
at two years apart. So far twelve waves of data are available. This survey collected
data on demographics, income, assets, employment, and the outcome variables are health
status (e.g., depression, self-reported health condition), chronic conditions (e.g., diabetes,
stroke, heart, cancer, etc.), and health care service utilization. Details can be found at the
HRS website (http://hrsonline.isr.umich.edu/). The special characteristics of HRS data
are that the event time is discrete with a large number of follow-ups. There is a growing
interest to predict the risk of a sequence of events from this type of data, and methods
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Chapter 1. Introduction 4

are either unavailable or cannot handle large number of repeated outcomes. From this
Data set following are some questions of interest that may not be answered in the existing
methods:

(1) what is the risk of different diseases at various follow-ups or stages;

(2) what is the effect of selected variables effect on different transitions;

(3) what is the predicted risk of a sequence of events with covariate values and history.

1.2 Objectives

My doctoral research will focus on developing a simple framework for risk prediction of
a sequence of events with specified covariate vector for both continuous and discrete time
data. The proposed framework is expected to perform better than the existing methods
and will be useful in answering questions of interest like the ones raises for the example
Data sets in the previous section. Following are the specific objectives of the research:

(1) Devlop statistical model using multistage modeling framework to simplify the ex-
isting method for risk prediction for a sequence of events for continuous time data.

(2) Propose regressive models for multinomial and ordinal outcomes to predict the joint
probability of a sequence of events at different stages for discrete time data.

(3) Use marginal and regressive models to obtain the joint probability of multinomial
and ordinal outcomes by linking marginal and conditional probabilities.

(4) Propose test of independence for repeated outcomes and test for goodness-of-fit for
the joint model.

(5) Conduct simulation studies to check the proposed model’s performance.

(6) Illustrate the proposed models using real-life data described previously.

Rest of the chapters of the thesis are organized as follows. In chapter 2, a framework
using the multistage model for risk prediction of a sequence of events for continuous time
data is proposed. Chapter 3, describe the proposed regressive models for risk prediction
of a sequence of multinomial outcomes from repeated measures for discrete time data.
Test of independence and goodness-of-fit of a joint model for multinomial outcomes from
discrete time data is proposed in Chapter 4. In chapter 5, regressive models for ordinal
outcomes from repeated measures, for risk prediction of a sequence of events are pro-
posed extending proportional odds, partial proportional odds and multinomial regression
models. Chapter six, covers general conclusions and possible future research directions.
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Chapter 2

Risks Prediction of Sequence of Events:
Multistage Proportional Hazards Model

2.1 Introduction

In recent years, there is a growing interest to analyze the sequence of events that occurs
over time. The occurrence of events and covariate information on each individual are
collected at several time points. For example, the occurrence of maternal complications
during the three stages of the childbearing process, namely, the antenatal, delivery and
postnatal stages produce a sequence of events (Islam et al., 2004; Islam and Chowdhury,
2017). If more than one complications are of concern, then it is the problem of compet-
ing risk. For example, after bone marrow transplantation, patients are subject to several
competing risk, including the platelet recovery, relapse of leukemia, acute graft versus
host disease (GVHD), or death, so that experience of such events may prevent the occur-
rence of the event of interest, or vice versa (Klein et al., 1994). Analysis of these types
of data involves the problems of censoring and repeated observations. Multi-state models
are the most common statistical technique to describe the occurrence of these sequence
of events or disease progression longitudinally (Hougaard, 1999). This is the model for
a continuous time stochastic process that describes the movement of individuals among a
finite number of states (e.g., healthy, disease, death, etc.). Once an individual moves from
one state to another, then it is a transition, or an event occurs. In practice, it is often as-
sumed that multi-state model follows Markov property though this assumption should be
checked. To assess the covariates effect on each transition the Cox proportional hazards
model is usually used (Cox, 1972).

Gail (1975) reviewed the actuarial model of competing risk and introduced notations
to define competing risk models and independence assumption of competing risk. Holt
(1978) illustrated the use of time dependent covariates along with the generalization of the
Cox model to cause-specific hazard functions. Prentice et al. (1978) focused on the anal-
ysis of failure time in the presence of competing risk and interrelations among competing
events and estimation of hazard rates after the elimination of causes. Farewell (1979)
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 6

discussed the use of the Cox proportional hazard model to study multiple infections fol-
lowing bone marrow transplantation for patients with aplastic anemia and leukemia. Kay
(1982) proposed an extension of the proportional hazards model for some transient dis-
ease states between the initial state and death along with possible competing causes of
death. Islam (1994) extended the Kay’s model to several transitions, reverse transitions,
and repeated transitions and proposed a method for testing the equality of parameters for
transitions and repeated transitions. Hougaard (1999) presented general discussions about
multi-state models including various state structure and related assumptions. The role of
different time scales and assumptions used in the multi-state model discussed elsewhere
(Commenges, 1999; Putter et al., 2007; Meira-Machado et al., 2009). Andersen and
Perme (2008) provides a review of methods for analyzing data from patients with bone
marrow transplantation. In the presence of competing risk, Andersen (2002) suggested
using cause-specific hazards model as a starting augmented by other available methods,
e.g., sub-distribution hazards proposed by Fine and Gray (1999).

In the estimation of cause-specific hazard model competing events are considered as cen-
sored, in addition to existing lost to follow-ups, withdrawal or censored cases, assuming
independent censoring. This is a hypothetical situation where a competing event is impos-
sible to occur for a subject, where the competing cause is eliminated from the population.
For correct estimation, the cause-specific hazard approach requires the strong assump-
tion of independence among competing events, which is unverifiable (Kalbfleisch and
Prentice, 1980, p .250). Non-independence might produce biased parameter estimates in
survival analysis hence misleading conclusions (Kleinbaum and Klein, 2012). The cu-
mulative incidence function (CIF) also called ‘crude cumulative incidence function’ or
‘sub-distribution function’ is another summary measure which extends survival function
for competing risk. No assumption of the independence of the competing risk is needed.
Overall survival is computed by combining survival from all competing events. The cu-
mulative incidence function estimates the probability that the event of interest occurs
before time t and that it happens before any of the competing events. It is the estimate of
the probability of the event of interest in the real world where any of the competing events
can occur for a subject (Klein and Moeschberger, 2003). In the presence of the compet-
ing risk, the CIF provides a marginal probability of an event (Kalbfleisch and Prentice,
1980). Plots of hazard or survival from cumulative incidence function, cause- specific
hazard function, and Kaplan-Meier estimate against time provide some insight about the
dependency in the competing risk.

The CIF is extensively used in the calculation of prediction probabilities in the multi-state
models. The effect of one or two binary risk factors can be assessed by estimating cumula-
tive curve non-parametrically and testing whether the curves differ by risk factor category.
Gray (1988) developed a log-rank type test to compare two or more Cumulative Incidence
Curves (CICs) without covariates adjustment for one or two binary covariates vectors.
Fine and Gray (1999) proposed a methodology to regress covariate effects directly on the
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 7

cumulative incidence function. In analogy with the relation between hazard and survival
function, they defined a sub-distribution hazard. Fine and Gray (1999) imposed a pro-
portional hazards assumption on the sub-distribution hazards. This method differs in the
risk set compared to the cause-specific hazard. For the sub-distribution hazard, failure of
a subject from the competing events remain in the risk set forever. The failure time of
all subjects from the competing events is replaced by the which is larger than the highest
observed event time in the data set. Putter et al. (2007) conducted a goodness-of-fit test
by comparing the predicted cumulative incidence curve of the regression model with the
non-parametric regression curve to the subset of a covariates.

There is a growing interest in using multi-state model for the clinical prognosis of a patient
at a pre-specified time given the event history and the covariate values. This predicted risk
or the transition probability is the probability of an individual of moving from one state to
another state. The transition probability estimates the risk for a future event to a specified
time for a subject who is event free at time 0. The probability of an event at time u is
estimated. Hence, this transition probability is the probability for an interval. Klein et al.
(1994) first presented the calculation of the transition probability in terms of hazards for
the transition from the multi-state model by appropriately combining baseline hazards
and regression coefficients based on the work of Arjas and Eerola (1993). Dabrowska
et al. (1994) discussed the estimation and prediction of the realization of a process for a
new subject in a Markov renewal model and used the Cox model to estimate transition
hazards. More recently, Putter et al. (2006) reanalyzed the data arising from a study by
the European Organization for Research and Treatment of Cancer, using the multi-state
model to predict the risk of future events. In another study, Putter et al. (2007) presented a
comprehensive illustration of prediction of probability of events based on the multi-state
model. Aalen et al. (2008) noted that this predicted probability is a reasonable estimate
of the transition probability. Meira-Machado et al. (2009) reviewed modeling approaches
for multi-state models and available software.

Due to the complexity involved in using multi-state model along with related software,
it’s application is still limited. A key challenge is the simplification and generalization of
the existing method for prediction for the large number of events that occurs at different
stages. For example, uncontrolled diabetes can lead to nephropathy, diabetic retinopathy,
pulmonary tuberculosis, and coronary heart disease among others that may occur in sev-
eral stages. The existing framework for prediction involves multiple complex integrals
and needs special computer skills to use multistate models for prediction. Generaliza-
tion of these models for large number of stages becomes complicated and even difficult
to handle as one has to derive separate prediction integrals for different trajectories. An-
other problem with some existing software those use same duration of time for events in
a trajectory to ease the probability calculations that may not be appropriate for all types
of problems. For example, in case of the maternal complications, the end point time for
antenatal and delivery periods are more or less fixed, whereas for the postnatal period, it
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 8

could be much longer. Making the same duration for all these periods would be inappro-
priate as the total time for the antenatal and delivery periods would be unrealistic. Also,
use of existing softwares need to define transition matrix as the first step among others. It
would be problematic for maternal morbidity example as events (or-nonevent) in a stage
are stratified depending on both events and non-event in previous stages.

The progression in a disease process may involve occurrence of a series of events over
time. It is of great interest to predict the disease status at different stages and endpoints.
In predicting the disease process, we need to link the likely transitions at different stages
of the process through potential trajectories. In the previous attempts, the events were not
considered in multistage framework and hence the underlying theory remained complex.
As a result, the theories were demonstrated on the basis of specific problems. If the disease
process involves several stages till the endpoint, those theories cannot be generalized as a
simplified approach. This prediction procedure can be simplified and generalized for the
large number of stages in a multi-state model if events in a stage are stratified. This will
provide a better conditional model with application of Markov property. Also, probability
calculations can be simplified from multiple integrals to single integrals for joint events
risk prediction.

At this backdrop we proposed a simple framework for risk prediction of sequence of
events using marginal and conditional models based on the work of Islam et al. (2004) and
Islam and Chowdhury (2017). A general form of integral for risk prediction of a sequence
of events is developed for (i) different types of trajectories and (ii) any segment of a
trajectory along with the generalization to any number of stages. Section 2.2, focuses on
the multistate models for prediction using existing framework. In section 2.3, we present
the proposed method. Results using proposed method and comparison with the existing
method are illustrated using ‘European Group for Blood and Marrow Transplantation’
(EBMT) data in Section 2.4. The second example from Maternal Morbidity data are
presented in Section 2.5. Finally, conclusions are presented in Section 2.6.

2.2 Existing framework of multi-state models for risk prediction

In this section, the multi-state model is reviewed with the following state structure (Fig-
ure 2.1) for risk prediction proposed by Putter et al. (2006). Five states in Figure 1 are:
i) event free and alive after surgery (State 0), ii) local recurrence only and alive (State 1),
iii) distant metastasis only and alive (State 2), iv) both local recurrence and distant metas-
tasis and alive (State 3) and v) the absorbing state death (State 4). This study used ’clock
reset’ approach (i.e., time start from zero once an individual moves to a new state). The
Cox proportional hazards model is employed to evaluate the covariates effect on transition
hazards i→ j. The hazard function for a subject with covariates vector Z for transition
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 9

State 0
Surgery

State 1
Local recurrence (R)

State 2
Distant metastasis(M)

State 3
Local recurrence &
distant metastasis

State 4
Death (D)

FIGURE 2.1: State structure of multi-state model used by Putter et al. (2006).

i→ j is defined as
λi j(t) = λi j,0(t)exp(βββ T

i jZZZ), (2.1)

where λi j,0(t) is the baseline hazard for transition i→ j, βββ i j is the vector of regression
coefficients and time t refers to time from entering state i, not from the begining of the
study. Therefore, t should be understood as a different variable for each transition. Using
the notation from Andersen et al. (1991) above hazard function can be re-written as:

λi j(t) = λi j,0(t)exp(βββ T ZZZi j), (2.2)

where ZZZi j is a vector of covariates specific to the transition i→ j, with ZZZi jk denoting
vector of covariates of subject k, estimates β̂ββ and Λ̂i j,0 can be obtained by maximizing
generalized Cox partial likelihood.

Klein et al. (1994) defined notations for patient history and is used by Putter et al. (2006),
where Hi,rm(t) denotes the event history of a subject who is at state i at time t after surgery,
and, if appropriate, has experienced a local recurrence at time r and/or distant metastasis
at time m. For example, H3,rm(t) represents the history that a patient had both a local
recurrence at time r and a distant metastasis at time m and is still alive at time t. The local
recurrence and/or distant metastasis can occur in any order. The probability that a subject
who is in state 3 at time t after surgery, will make a transition to state 4 at time u (u > t),
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 10

is given as

π
4
3,rm(u, t) = P(D≤ u | H3,rm(t))

=
∫ u−max(r,m)

t−max(r,m)
λ34,r,m(s)exp

[
−
∫ s

t−max(r,m)
λ34,rm(v)dv

]
ds

=
∫ u−max(r,m)

t−max(r,m)
λ34,r,m(s)S34,rm(s)ds/S34,rm(t−max(r,m))

=
S34,rm(t−max(r,m))−S34,rm(u−max(r,m))

S34,rm(t−max(r,m))

= 1− S34,rm(u−max(r,m))

S34,rm(t−max(r,m))
. (2.3)

This is the conditional probability of death at time u for a subject who was at risk at
time t after experiencing both local recurrence and distant metastasis. The probability
that this subject is still alive is, π3,rm(u, t) = 1− π4

3,rm(u, t). Note that, in the left hand
side of the equation (2.3), t is the lower limit and u is the upper limit of the integral.
All time variables t, r, m and u in the integral are measured from the begining of the
study (i.e., surgery). Here, {t−max(r,m)} = l is the length of time for a subject since
entered into state 3 who was at risk before making a transition 3→4. Similarly, {u−
max(r,m)} = l′ gives the length of the time for a subject since entered into state 3 up
to time u, to where the prediction for death is made with the length of interval for the
prediction {u−max(r,m)}−{t−max(r,m)} = l′′. It may be noted that time t defined
in the hazards model in equation (2.1) refers time since entry into a state not from the
beginning of the study.

The time scale for the above equation for selected transitions are displayed in the Fig-
ure 2.2. Line number 1 in the figure gives the time max(r,m) =m where a local recurrence
occurred first at time r then a distant metastasis at time m. Therefore, time t as defined in
equation (2.1) starts from distant metastasis time m (since entry into state 3, i.e., clock is
reset) and {t−max(r,m)}= l is the length of time at risk at state 3 that always starts from
zero. Line 2 in the the figure explains the length {u−max(r,m)} = l′ up to prediction
time u starting from m. Line line 3 shows the starting time of prediction interval and it’s
length l′′ used in the equation (2.3). Line number 4 shows the scenario when probability
of death is predicted since entry into a state up to u (u > t) for the interval [0−u] with the
length of the interval l′′′ = u− t. In this case the prediction time coincides with either ’r’
or ’m’. In the figure, time t measured from the time as soon as distant metastasis occurs.
In this case, t = max(r,m) = m and then t−max(r,m) = t− t = 0. If distant metastasis
occurs first at time m and next local recurrence at time r, then t = max(r,m) = r and
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Line # Time (T) 

1 

                                          max( , ).l t r m   

                                                                Here, max( , ) .r m m  

             r                m                         t    

2 

                                            max( , ).l u r m     

                                                                                          

             r                m                         t                         u 

3 

                                                                        max( , ) max( , ) .l u r m t r m       

                                                                 

             r                m                         t                         u 

4 

     max( , ) max( , ) .l u r m t r m u t        

                                                                                          Here, max( , ) .r m m t    

             r              m= t                                                 u 

     Surgery                    Here, time starts at 0, since entry into a state clock is reset.   
 (beginning of the study)     

FIGURE 2.2: Time-scale for multi-state model.

t−max(r,m) = 0, then equation (2.3) can be written as

π
4
3,rm(u, t) =

∫ u−t

0
λ34,r,m(s)exp

[
−
∫ s

0
λ34,rm(v)dv

]
ds

=
∫ l′′′

0
λ34,r,m(s)exp

[
−
∫ s

0
λ34,rm(v)dv

]
ds

=
∫ u−t

0
λ34,r,m(s)S34,rm(s)ds = S(0)−S34,rm(u− t)

= 1−S34,rm(u− t), (2.4)

where, S34,rm(t) = 1, since t = r = 0 and u− t is the length of the interval for which the
prediction is made and π3,rm(u, t) = 1− π4

3,rm(u, t) = S34,rm(u− t) is the probability of
staying in state 3.

Consider a patient only with the local recurrence at time r and alive without distant metas-
tasis at time t [H1,r(t) = {R = r,M≥ t,D≥ t}]. With this history, four mutually exclusive
transitions may occur through different paths. For example, the conditional probability,
given that a subject is in state 1 at time t, and has arrived there at time r, with t = r will
visit state 3 before or at time u is

π
3
1,r(u, t) = P(M ≤ u,D > u | H1,r(t))

=
∫ u

t
λ13,r(m− r)exp

[
−
∫ m

t
{λ13,r(s− r)+λ14,r(s− r)}ds

]
×π3,rm(u,m)dm

=
∫ u

t
λ13,r(m− r)π3,rm(u,m)S1,r(m− r, t− r)dm, (2.5)
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where,
S1,r(m, t) = exp [−

∫ m
t {λ13,r(v)+λ14,r(v)}dv] = S13,r(m)S14,r(m)

S13,r(t)S14,r(t)
and

π3,rm(u,m) is the probability of staying in state 3.

The conditional probability, given that a subject is in state 1 at time t, and has arrived
there at time r, with t = r, first will visit state 3 then state 4 before or at time u is

π
34
1,r(u, t) = P(M < D≤ u | H1,r(t))

=
∫ u

t
˘13,r(m)exp

[
−
∫ m

t
{λ13,r(s)+λ14,r(s)}ds

]
π

4
3,rm(u,m)dm

=
∫ u

t
λ13,r(m− r)π4

3,rm(u,m)S1,r(m− r, t− r)dm. (2.6)

Following this approach, derivation for π134
0 (u, t) will be complicated as three transitions

are involved. This notational complexity arises as two transitions (1→ 3 & 2→ 3) were
made into the same state (i.e., non-progressive state structure). The generalized Cox
partial likelihood function based on this approach for the example in Figure 1 is

L(βββ) = ∏
transition

i→ j

∏
k=1

di j,k=1

exp(βββ T Zij,k)

∑
l∈Ri(ti j,k)

exp(βββ T Zij,l)
, (2.7)

where ti j,k is the failure or censoring time of individual k for transition i→ j and Ri(t)
is the risk set of state i at time t (since entry at state i). Same time variable t is used for
both integral and in equation (2.1). With this approach, it will be difficult to derive and
handle necessary integrals for a large number of stages, for example, the case of diabetes
complications given in the introduction section.

2.3 Proposed method

Islam et al. (2004) and Islam and Chowdhury (2017) proposed a multistage model for
analyzing potential risk factors associated with complications at different stages of child-
bearing process and interrelationships among the incidence of complications during these
stages. At the beginning of the study, individuals are event free. Events in stage two on-
wards are conditional on the occurrence of events (or non events) at previous stages. The
time of an event in a stage starts from 0, i.e., ’clock reset’ approach. Model with this state
structure is a progressive multi-state model. Proportional hazards model is used to assess
the impact of covariates on each transition. The proposed method of risk prediction is
an extension of Islam et al. (2004) and Islam and Chowdhury (2017) model by extend-
ing hazard, survival, density function and predicting risk of a sequence of events for the
required time interval.
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The multi-state models in Figure 2.1 is re-structured and shown in Figure 2.3, where
events at stage two and onwards are stratified on the occurrence of the events in previous
stages. The events are local recurrence (State 1), distant metastasis (State 2), both local
recurrence and distant metastasis (State 3), death (State 4) and study begins after surgery
(State 0). Here, all the events that occurred for the first time are in stage 1. After having
first event, any second event following that is in stage 2. Similarly, events in stage 3 are
conditional on all events from stage 2 and stage 1. Hence, this is an effective stratification
on the outcomes at different stages. In Figure 2.3, there are six trajectories, for example,
0→ 1→ 2→ 4 is the first trajectory with state 0 as the beginning of the study and state
4 as the endpoint. Part of the above trajectory 0→ 1→ 2 is termed as the segment of a
trajectory, i.e., transition from state 0 to state 1 and to state 2 and being in the same state
without any further transition to state 4. The Markov assumption, in particular the Markov
process (continuous time) is assumed for this multi-state model which should be checked
from the data. If in a stage, there are two or more events then it is a competing risk. This
multi-stage model can be viewed as series of models which are nested in previous stages.

Consider a group of event free individuals can make transitions from the beginning of the
study i (i = 0) to state j ( j = 0,1, · · · ,J) in stage one to state k (k = 0,1, · · · ,K) in stage
two and to state l (l = 0,1, · · · ,L) in stage three, m (m = 1,2,3) denotes the stages, with
i, j,k, l = 0 indicates non-event and j = 1, · · · ,J; K = 1, · · · ,K; l = 1, · · · ,L indicate the
events. Let us denote ZZZkl| j(t) for the regression vector for those who make transitions
from state k at (m−1)th stage to state l at mth stage for given state j at stage m−2 and
βββ kl| j as the corresponding regression coefficients. Here t refers to a specific transition
time (Ti j) in any stage. The hazard function for transition k→ l can be defined as follows:

λkl| j(t;z) = λ0,kl| j(t)e
Zkl| j(t)βββ kl| j (2.8)

where λkl| j(t;zzz) is the hazard for a transition from a state k within a stage to state l
in the next stage and λ0,kl| j(t;z) is the corresponding baseline hazard. The vector of
regression coefficients corresponding to the covariate vector Zkl| j(t) is βββ kl| j and Z(t) =
[Z1(t),Z2(t), ...,Zp(t)]). Similarly, λi j(t;zzz) refers particular transition during stage 1 and
λ jk|i(t;zzz) refers particular transition during stage 2. For simplicity, we will use Z instead
of Z(t) and λkl| j(t) for λkl| j(t;z) henceforth. Also, let β̂ββ kl| j is the vector of the estimated
regression parameters.

The subscript kl | j of λkl| j(t) identifies a specific transition. Also, it identifies the history
of all states visited before making a transition to a state in next stage and the order of
the state visited before. This history also identifies the corresponding conditional models.
For example, λ12|1(t) is the hazards of transition to state 2 in stage 3 from state 1 in stage
2. Time Tkl for a transition in a stage starts from 0 as soon as an event takes place. The
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 15

generalized Cox partial likelihood function for transition k→ l can be shown as:

L(βββ kl| j) = ∏
transitions

n

∏
r=1

exp(βββ kl| jZkl|j,r)

∑
l∈Ri(tkl| j,r)

exp(βββ kl| jZl)
, (2.9)

where βββ kl| j is the vector of regression coefficients ZZZkl| j, the ordered transitions are tkl| j,1 <

tkl| j,2 < ...< tkl| j,n, n is the number of transition from k to l in a particular stage and R is the
risk set. The censoring indicator dkl,r = 1 if an individual r has an event for any transition,
0 otherwise.

Following notations are defined for cumulative hazard function, the survival function, the
density function and cumulative distribution function for the random variable Tkl as

Λkl| j(t) =
∫ t

0
λkl|j(t) dt, Skl| j(t) = e−Λkl| j(t), fkl| j(t) = λkl| j(t)Skl| j(t)

and Fkl| j(t) = 1−Skl| j(t). (2.10)

Similarly, for stage one and stage two we can define the same quantities as below:

Λi j(t) =
∫ t

0
λi j(t) dt, Si j(t) = e−Λi j(t), fi j(t) = λi j(t)Si j(t), and

Fi j(t) = 1−Si j(t). Λ jk|i(t) =
∫ t

0
λ jk|i(t) dt, S jk|i(t) = e−Λ jk|i(t),

f jk|i(t) = λ jk|i(t)S jk|i(t) and Fjk|i(t) = 1−S jk|i(t).

2.3.1 Predicted Risk (Transition probability)

The transition probability or the predicted risk is the probability of an event or sequence
of events of interest within an interval. For homogeneous Markov process (i.e., transition
to next state depends only on current state not on the arrival time to current state), the
probability calculations depend on the length of the time interval (Beyersmann et al.,
2012, pp. 30). To derive equations to calculate this probability, for simplicity, consider
two transitions from the first trajectory of Figure 2.3 as shown below:

State 0
Surgery

State 1
Local recurrence

State 4
Deathλ01(t1) λ14|0(t2)

We consider the first transition as the local recurrence from surgery and the second tran-
sition as death from the local recurrence. Let T1 (0≤ T1 ≤ t1) be the time for transition to
the local recurrence from surgery and T2 (0≤ T2 ≤ t2) be the time to death measured from
the local recurrence. Thus T = T1 + T2 is the total time till death starting from surgery,
where T1 = t1 is the time for the local recurrence and T2 = t2 is the time to death since the
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 16

time of the local recurrence. Since, T2 = T −T1 there is an inbuilt dependence between
T1 and T2 through the fixed value of T.

Denote f01(t1) as the density function of T1 for the local recurrence and f14|0(t2 | t1) as
the density function of T2 for the second event (death) given the first event at t1. Here, T2

is the time for occurrence of the second event since the occurrence of the first event. Since
T1 is non-negative continuous random variable, the transition probability is obtained by
integrating the corresponding density function on the required interval. We add up the
"point probabilities" by integrating the density, fX (x), to obtain cumulative probability.
The probability of the local recurrence by a given time T1 = t1 starting from surgery is
obtained using the following integral:

Q01(t1) = π
1
0 (0, t1) =

t1∫
0

λ01(s1)exp

− s1∫
0

λ01(v1)dv1

 ds1

=

t1∫
0

f01(s1)ds1. (2.11)

The notation π1
0 (0, t1) is used by Putter et al. (2006). This is the transition probability

of the local recurrence for the interval [0, t1]. It is also cumulative incidence of local
recurrence as time started from 0. It may be of interest to predict probability for the
interval [u1, t1], u1 < t1, which is obtained using the following integral:

Q01(u1, t1) = π
1
0 (u1, t1) =

t1∫
u1

λ01(s1)exp

− s1∫
u1

λ01(v1)dv1

 ds1

=

t1∫
u1

λ01(s1)S01(s1)ds1/S01(u1)

=
1

S01(u1)

 t1∫
0

λ01(s′1)S01(s′1)ds′1−
u1∫

0

λ01(t ′1)S01(t ′1)dt ′1


=

F01(t1)−F01(u1)

S01(u1)
=

S01(u1)−S01(t1)
S01(u1)

= 1−S01(t1)/S01(u1), since S01(t1) = 1−F01(t1).

The conditional probability of the second event given the first event occurred at a given
time for an interval can be obtained by integrating the conditional density function. In
the following conditional pdf, t1 is any given value for which the corresponding marginal
probability can be obtained. In this way, the probability of different values of T2 can be
estimated given the knowledge that first event is observed at T1 = t1. The conditional
probability of death by time t2 (measured from the time of local recurrence) given that the
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 17

local recurrence has occurred at time t1 is obtained using the following integral:

Q14|0(t2 | t1) = π
4
1 (0, t2) = P(T2 ≤ t2 | T1 = t1) =

t2∫
0

f14|0(s2 | t1)ds2. (2.12)

Here, the time t1 is the history of local recurrence given at time t1. Note that the integral
is taken from 0 to t2 which is the time since local recurrence.

The probability of both events [Q14(t1, t2) = P(T1 ≤ t1,T2 ≤ t2)] i.e., the local recurrence
at time T1 = t1 and death by time T2 = t2 where T = T1 + T2 can be obtained using the
relation of the conditional marginal and joint probability (Moreira and Meira-Machado,
2012). The probability of both events for an interval (0 to t) can be obtained as follows:

Q14(t1, t2) = P(T1 ≤ t1,T2 ≤ t2) = Q01(t1)Q14|0(t2 | t1) = π
1
0 (0, t1)π4

1 (t1, t2),

since, PY |X (Y ≤ y | X = x) =
PXY (x,y)

PX (x)
, (2.13)

where Q14|0(t2 | t1) is the conditional probability for the second event for the subset of
T1 = t1 among those with the first event. Q1(t1) is the probability of the first event for
the interval [0, t1]. This fixed value could be thought as the length of the interval for the
first event. Time t1 is an arbitrary value for which prediction can be made. Using the
above equation, it is possible to predict the probability of the both events for any values
of T1 = t1 and T2 = t2.

Alternatively, the probability of both events i.e., the local recurrence at time T1 and death
by time T where T = T1+T2 can be expressed as the probability of occurrence of the first
event at time T1 = t1 and the second event by time T = t using the following integral:

π
14
0 (t1, t) =

t1∫
0

t∫
t1

f01(s1) f14|0(s | s1)dsds1 . (2.14)

Now, let T2 = T − t1 for given value of T1 = t1. Then the equation (2.14) can be shown as
follows:

π
14
0 (t1, t) =

t1∫
0

t2∫
0

f01(s1) f14|0(s2 | t1)ds2 ds1 =

t1∫
0

f01(s1)ds1×

t2∫
0

f14|0(s2 | t1)ds2 = π
1
0 (0, t1)π4

1 (0, t2) = Q14(t1, t2). (2.15)

Here π14
0 (t1, t) is the probability for both events for the interval [0, t] with the local recur-

rence at time T1 = t1 and death by time T = t. Equation (2.15) can easily be generalized
to more than two stages. We can generalize (2.15) for trajectory with three stages using
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 18

the relationship shown in equation (2.13) as follows:

Q123(t1, t2, t3) = Q01(t1)Q12|0(t2 | t1)Q23|01(t3 | t2, t1).

Further generalization for m stages is quite straightforward. For example, the predicted
risk for a trajectory, i.e., for a sequence of events from beginning to the endpoint can be
shown as follows:

Q123...L(t1, t2, t3, ..., tm) = Q01(t1)Q12|0(t2 | t1)Q23|01(t3 | t2, t1), (2.16)

...,QKL|0,1,··· ,J(tm | tm−1, · · · , t1). (2.17)

We may need to predict the risk of a segment of a trajectory, i.e., transition from one state
to another state and being in the same state without any further transition. For instance,
predicted probability from surgery to local recurrence and being alive, could be estimated
as:

Q01(t1)× [1−Q14|0(t2 | t1)] = Q01(t1)×S14|0(t2 | t1). (2.18)

First part of the above equation is the predicted probability to move to local recurrence
after surgery. Then the subject should be alive, so multiplication by the probability of
surviving from death. The predicted risk for a segment of a trajectory as shown in equation
(2.18) readily generalizes for several stages.

To compute these prediction probabilities using multistage model following steps are
used. First, estimate of the regression coefficient β̂ββ for each transition is obtained by
fitting the Cox regression model. Proportional hazard assumption should be checked for
each variable. Next, cumulative baseline hazard Λ̂0 is obtained for each transition. Using
this estimate the cumulative hazard for a patient with specified covariate vector (Z∗) can
be obtained. For example, for the first transition the cumulative hazard for a subject with

covariate vector (Z∗) is Λ̂(t) = Λ̂0(t)exp(β̂ββ
>

Z∗). Let τ1 denote the event time-points for
t1 for which dΛ̂1(t1) = Λ̂1(t1)−Λ̂1(t1−)> 0. This is the estimator of the hazard function
λ̂01(t1). Then using these estimates the density function is estimated for each transition.
The estimator of the prediction probabilities are obtained by replacing each integral by a
sum and by replacing hazard and survival function by their estimated counterparts (Klein
et al., 1994; Klein and Moeschberger, 2003; Putter et al., 2006, 2007). For instance,
Q01(t1) in equation (2.11) is estimated by Q̂01(t1) = ∑

0<s1≤t1
s1∈τ1

λ̂01(s1)Ŝ(s1−). Finally, us-

ing equations (2.11), (2.12) and (2.13) the required prediction probabilities are obtained.
Overall predicted probability of the event of interest through different trajectories can be
obtained by adding the probability of the event through each trajectory.
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Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 19

2.4 Application: EBMT data

To demonstrate the proposed method, data on 2204 patients from the ‘European Group
for Blood and Marrow Transplantation’ (EBMT) collected between 1995 and 1998 are
used. This data set is available from the ‘mstate’ package. In the paper by Putter et al.
(2007) used the same data for the prediction using multi-state model. The computa-
tional details for clock reset method for this data set can be found in Putter (2011). The
state structure used for this multi-state model is presented in Figure 2.4. The transitions
are: Transplant (TX)→Platelet Recovery (PR), PR→Relapse or death and TX→ Relapse
or death. Platelet recovery and relapse or death are competing events. Covariates used
are: disease subclassification (AML, ALL, CML); patient age at transplant (20, 20-40,
>40); donor-recipient gender match (No gender mismatch, Gender mismatch) and GvHD
prevention: T-celll depletion (No TCD, TCD), reader’s are referred to Putter (2011) for
details. Interest is on the risk prediction of relapse or death through two paths.

State 0
Transplant

(TX)

State 1
Platelet recovery

(PR)

State 2
Relapse or death

(D)

State 2
Relapse or death

(D)

λ01(t1) λ12|0(t2)

λ02(t3)

FIGURE 2.4: Progressive multi-state model for EBMT data.

For comparison, prediction is made using five methods: (i) First, we estimated cumulative
baseline hazards using the model in the paper by Putter et al. (2007) and predicted prob-
abilities using the ’mstate’ package as shown in Putter (2011). Both SAS and R package
’mstate’ are used for estimation and predictions.

(ii) SAS is used to fit the proposed model and cumulative hazards for all transitions are es-
timated by setting the covariates value to their reference value to demonstrate the method.
Estimated coefficients of cause-specific hazards for all three transitions are presented in
the upper panel of Table 2.1. Since Platelet recovery (PR) and Relapse or Death (D) in
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stage 1 are competing risk, cumulative incidence function (CIF) is estimated as follows:

Q̂01(t1) =

t1∫
0

λ̂01(s1)exp

− s1∫
0

[
λ̂01(v1)+ λ̂02(v1)

]
dv1

ds1

=

t1∫
0

λ̂01(s1)Ŝ(s−1 )ds1, where

Ŝ(s1) = exp

− s1∫
0

[
λ̂01(v1)+ λ̂02(v1)

]
dv1

 .

Q̂02(t3) =

t3∫
0

λ̂02(s3)Ŝ(s−3 )ds3 and

Q̂12|0(t2) =

t2∫
0

λ̂12|0(s2)exp

− s2∫
0

λ̂12|0(v2)dv2

ds2

=

t2∫
0

λ̂12|0(s2)Ŝ12|0(s
−
2 )ds2.

(iii) Kaplan-Meier (KM) method (Kaplan and Meier, 1958) is used to estimate the survival
and cumulative hazard function assuming independence between two competing risk. The
transition probability is estimated as follows:

Q̂′01(t1) = ∑
s1:s1≤t1

λ̂01(s1)Ŝ01(s−1 ), Q̂′02(t3) = ∑
s3:s3≤t3

λ̂03(s3)Ŝ03(s−3 ) and

Q̂′12|0(t2) = ∑
s2:s2≤t2

λ̂12|0(s2)Ŝ12|0(s
−
2 ).

(iv) Again, Kaplan-Meier method is used to estimate the survival and cumulative hazard
function. However, cumulative incidence function (CIF) is estimated as follows

Q̂01(t1) = ∑
s1:s1≤t1

λ̂1|0(s1)Ŝ(s−1 ), and Q̂02(t3) = ∑
s3:s3≤t3

λ̂02(s3)Ŝ(s−3 ) where

Ŝ(t) = Ŝ01(t)+ Ŝ02(t).

(v) Finally, sub-distribution hazards were estimated by changing the time of competing
events higher than the event time in the study (Fine and Gray, 1999) and the estimates are
presented in the lower panel of Table 2.1.

Disease classification, age at transplantation and GvHD prevention is found to be signif-
icant (p < 0.05) for transition T X → PR as shown in Table 2.1. However, for transition
T X → Rel/Death age at transplantation and GvHD prevention is found to be significant
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TABLE 2.1: Parameter Estimates for different transitions using EBMT data.

Variables TX->PR TX->Rel/Death PR->Rel/Death
Coef. (SE) P Coef. (SE) P Coef. (SE) P
Cox proportional hazard models

Disease classification
AML
ALL -0.044 (0.078) 0.576 0.256 (0.135) 0.058 0.120 (0.148) 0.416
CML -0.297 (0.068) 0.0001 0.017 (0.108) 0.877 0.252 (0.117) 0.031
Age at transplantation
6 20
20-40 -0.165 (0.079) 0.037 0.255 (0.151) 0.091 0.066 (0.153) 0.668
> 40 -0.090 (0.086) 0.299 0.526 (0.158) 0.001 0.582 (0.160) 0.0003
Donor-recipient
No gender mismatch
Gender mism. 0.046 (0.067) 0.492 -0.075 (0.110) 0.495 0.170 (0.115) 0.138
GvHD prevention
No TCD
+ TCD 0.429 (0.080) 0.0001 0.297 (0.150) 0.048 0.197 (0.126) 0.119

Fine and Gray models: sub-distribution hazard
Disease classification
AML
ALL -0.062 (0.078) 0.423 0.268 (0.135) 0.048
CML -0.274 (0.068) 0.000 0.273 (0.108) 0.012
Age at transplantation
6 20
20-40 -0.189 (0.079) 0.017 0.403 (0.150) 0.007
> 40 -0.130 (0.086) 0.133 0.587 (0.158) 0.000
Donor-recipient
No gender mismatch
Gender mism. 0.058 (0.067) 0.386 -0.098 (0.110) 0.374
GvHD prevention
No TCD
+ TCD 0.428 (0.080) 0.000 -0.226 (0.150) 0.131

(p < 0.05). For transition PR→ Rel/Death disease classification, age at transplantation
is significant (p < 0.05). It should be noted that same multistate hazard model is used for
both proposed and Putter’s method. Estimates from Fine and Gray’s model for transition
T X → PR were similar with higher significant level.

Figure 2.5 presents the cumulative baseline hazards for all three transition using cause-
specific hazards model. Differing baseline hazard for transitions T X → PR and T X →
Rel/Death justifies stratification. Predicted transition probabilities of trajectories and
segment of trajectories for different scenarios using estimates from all five methods are
plotted in the graphs. Predicted transition probabilities for T X→ Rel/Death for different
time points is displayed in Figure 2.6. Predicted probabilities for proposed and Puter’s
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FIGURE 2.5: Cumulative baseline hazards
for three transitions.
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FIGURE 2.6: Predicted probability of
TX→Rel/Death.
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FIGURE 2.7: Predicted conditional proba-
baility of PR→Rel/Death.
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FIGURE 2.8: Predicted probability of
trajectory TX→PR→Rel/Death.

approach coincides, the second line from bottom. The top line is based on the KM es-
timates assuming independence and the second line from the top is based on cumulative
incidence function considering survival from all competing events. This difference is be-
cause of dependencies among the competing events. However, the predicted risk is much
lower based on estimates from Fine and Gray approach. This is because 1159 cases from
competing event PR remains in the risk set forever, which decreases this predicted risk.

Figure 2.7 shows the conditional predicted risk of relapse or death given the platelet re-
covery. The bottom line of figure using proposed, Putter and Fine & Gray approach
coincides as expected, because of no competing events. The top line is based on KM
method assuming both independence and using CIF. However, this prediction is overesti-
mated based on KM hazards. Predicted risk of both platelet recovery and relapse or death
(TX→PR→Rel/Death) are presented in Figure 2.8. The third line from the bottom based
on proposed approach that very closely follows that of Putter (second line from bottom)
and the first line from the bottom based on Fine and Gray estimates. The first line from top
based on KM assuming independence and the second line using CIF those overestimates
the predicted risk for both events.

Figure 2.9 displays the overall death through both paths. The first line from the bottom
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FIGURE 2.9: Total predicted probability
of Rel/Death through two paths.
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FIGURE 2.10: Predicted probability of
being in state TX.

based on Fine and Gray approach; the second line is the proposed one, and the third one
is using Putter’s approach. Prediction using KM estimates assuming independence (first
line from the top) are much higher as seen in the graph. The second line using CIF gives
a closer prediction, though higher than the proposed one. Fine and Gray shows lowest
predicted risks.

The predicted probability of being in state TX (0) is presented in Figure 2.10. Proposed
and Putters coincides third and second line from the top closely followed by an estimate
from KM assuming dependence, fourth line from the top. But using Fine and Gray’s
model predicted risks (first line from the top) are over estimated. Predicted risk using KM
assuming independence goes to negative teritory at the tail due to dependent competing
events. The predicted risk of having platelet recovery and being alive is shown in Fig-
ure 2.11. The proposed (top line) and Putters (second top) coincide and closely followed
by Fine and Gray (third from top). The reason is only 458 patients (TX-> Relapse or
Death) from competing events are considered as censored those remains in the risk set
forever. The last two line using KM method underestimate this probability.

Predicted transition probability of trajectory or segment of a trajectory using proposed
method either coincides to that using Putter’s method or follows very closely. The same
predicted risk using Fine and Gray’s method is also similar. However, estimate using KM
assuming independence overestimate the risk much higher rate compares to that from CIF.

2.4.1 Computational procedure

Steps involved in the computation of risk prediction are explained in this section. Ta-
bles 2.2, 2.3 and 2.4 provide examples of calculations based on the proposed method.
All computations are performed using SAS. Table 2.2 shows the first few event times for
three transitions and corresponding cumulative baseline hazards. Events for three transi-
tions occurred at different time points (Table 2.2). To make computations simple event

Anis
Typewritten text
Dhaka University Institutional Repository



Chapter 2. Risks Prediction of Sequence of Events: Multistage Proportional Hazards Model 24

Pr
ed

ict
ion

 pr
ob

ab
ili

tie
s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Years Since Transplant

0 1 2 3 4 5 6 7 8

PLOT

FIGURE 2.11: Predicted probability of being in state PR and being alive.

time points from all three transitions are combined considering unique time points (Ta-
ble 2.3). This table provides the corresponding cumulative baseline hazards and all other
quantities needed in the risk prediction, which is continued in Table 2.4. The time point
for which there is no event for a transition cumulative baseline hazard is repeated. Differ-
ence between two time points dΛ̂1(τ1) = Λ̂1(τ1)− Λ̂1(τ1−) > 0 provides the estimates
of λ̂ (t) for a transition. Using this cumulative baseline hazard and hazard, the estimate
of the survival probability for each transition and overall survival S(t) in the presence of
competing events and probability density function f (t) are obtained using the equations
shown earlier. Based on these quantities the prediction for a trajectory or segment is easily
computed.

TABLE 2.2: Cumulative baseline hazard using SAS for three transitions.

TX->PR TX->Rel/Death PR->Rel/Death
Time (τ) ∆̂0 Time (τ) ∆̂0 Time (τ) ∆̂0

1 0.00052777 1 0.00030470 5 0.00053859
3 0.00105609 4 0.00060974 10 0.00107757
7 0.00158576 6 0.00122040 12 0.00215679
9 0.00211674 7 0.00183162 14 0.00269708
10 0.00318014 8 0.00244385 17 0.00323805
11 0.00371233 9 0.00305655 20 0.00432073
12 0.00637587 11 0.00336354 21 0.00486320
13 0.01172665 12 0.00489959

13 0.00520808
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2.5 Maternal morbidity example

As a second example, the data on maternal morbidity is used to demonstrate the proposed
method of prediction. Two stages (stage 1 and stage 2) are considered. The antenatal
complications are: hemorrhage, edema, excessive vomiting, fits/convulsion; and deliv-
ery complications: excessive hemorrhage before or after delivery, retained placenta, ob-
structed labor, prolonged labor, other complications. Study sample comprises 993 preg-
nant women. Among them, 485 women were free from antenatal complications while
508 women suffered antenatal complications during stage 1. During stage 2 among 485
women, 364 women were free from delivery complications while 115 women suffered de-
livery complications. Out of 508 women with antenatal complications, 342 were compli-
cations free during delivery while 160 women suffered delivery complications. It should
be noted that there is no competing risk for this example.

To keep the illustration simple only four explanatory variables are considered for differ-
ent transitions, those are Z1: whether the index pregnancy was desired or not, Z2: age
at marriage (15 years or lower, more than 15 years), Z3: number of pregnancies prior to
the current pregnancy (0, 1+) and Z4: educational attainment of respondent (no educa-
tion, primary or higher). The estimate of regression parameters for three transitions are
presented in Table 2.5. Age at marriage with sixteen years or above decreases antenatal
complications (0→ 1), it is significant at ten percent level. Delivery complications given
that antenatal complication has occurred (0→ 1→ 1) is reduced significantly if the preg-
nancy is desired, i.e., planned. This transition rate is also significantly lower for women
with primary or higher education. Without antenatal complications, delivery complica-
tions (0→ 0→ 1) is lowered significantly for women with the experience of previous
pregnancies. Figure 2.12 displays the cumulative baseline hazards for transitions 0→ 1
and 0→ 0 (i.e., censoring distribution) in stage-1. Conditional on stage 1, the cumu-
lative baseline hazards for delivery complication for two transitions ( 0→ 1→ 1 and
0→ 0→ 1) in stage-2 are presented in Figure 2.13. It is evident from the figure that the
baseline hazards are different.

Predicted risk of antenatal, delivery and both complications together are estimated for a
woman without education with the value of Z1 = Z2 = Z3 = Z4 = 0 and for a woman
who has primary or higher education, i.e., Z1 = Z2 = Z3 = 0 and Z4 = 1. For example,
the predicted probability of antenatal complications by 2.61 months for a woman with
no education and a woman with primary or higher education are 0.003215 and 0.003376,
respectively. This is expected as education was not significant for the transition 0→ 1.
Similarly, the predicted conditional probability of delivery complications (0→ 1→ 1)
given that antenatal complications has occurred by time 2.85 months for women without
and with education are 0.959179 and 0.8435461, respectively. Which is expected as ed-
ucation affects this transition significantly. This predicted probability for different time
points are shown in figure 2.14.
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FIGURE 2.12: Baseline hazards of 0→ 1
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FIGURE 2.13: Baseline hazards of 0→
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FIGURE 2.14: Predicted probability of
delivery complications given antenatal
complications.
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FIGURE 2.15: Predicted risk of both
complications (0→ 1→ 1) by education.

The predicted probability of both antenatal and delivery complications i.e., the probability
of both events are estimated next. The delivery complication by t = 9.5 month is fixed.
Then the time of antenatal complications is varied (4.16 ≤ t1 ≤ 9.5) and using equation
(2.15) the joint probabilities are calculated for different values of t1. The predicted risks
of both antenatal and delivery complications for two categories of education are shown in
figure 2.15 and both the lines coincides. The influence of education in stage 2 (p<0.01)
disappear while predicting both events together. In the figure 2.16 the predicted risk of
both events by desired or undesired pregnancy are shown. The bottom line of this figure
displays antenatal complications for women with desired pregnancy, and this complica-
tion is lower than that of undesired one (the top line).
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FIGURE 2.16: Predicted risk for antenatal and delivery complications for 0→ 1→ 1 transition by
desired pregnancy.

2.6 Conclusions

In this study, an alternative multistage procedure is developed in order to simplify the
transition models for the underlying trajectories for risk prediction. The proposed alter-
native provides the estimates for each stage in the process conditionally and the condi-
tional estimates is linked based on marginal-conditional models in order to provide the
joint probabilities needed for predicting the status of disease based on the potential risk
factors. This simplification will allow any number of intermediate stages without making
the theory complicated. As compared to the existing method (Putter:2006) the proposed
method provides a generalization that can be employed for any prediction model for any
sequence of occurrence of events longitudinally. It may be noted here that previous meth-
ods require problem-specific modeling and a generalization cannot be shown due to lack
of exposition of the probabilities of survival and failure over segments and linking the
probabilities in a general form to arrive at the risk prediction of trajectories. On the other
hand, the probabilities in segments as well as transitions to various states are expressed
coherently for trajectories in a general form for a sequence of events in the proposed
method using the multistage approach. Hence, the models for different transitions can be
handled conveniently without making the exposition difficult for estimation and test of
hypothesis.
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The proposed method of prediction is a new development using a series of events in con-
ditional setting arising from the beginning to the endpoint. This method used a marginal-
conditional approach to link the events occurring in the trajectory. The main improvement
of the proposed method is that it is simple, as a general form of integral is developed for
predicting the joint probability of a sequence of events from longitudinal studies for (i)
different types of trajectories and (ii) any segment of a trajectory along with the general-
ization to any number of stages. The timescale is easier to understand as it starts from zero
for each transition in a stage (clock-reset method). A simple method of risk prediction
from multi-state models for continuous time data is demanding. The proposed methods
can be applied in many field of studies such as epidemiology, public health, survival anal-
ysis, genetics, reliability, environmental studies, etc.
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TABLE 2.5: Estimates for three transitions from multi-state model.

Variables β S.E p-value HR
Antenatal complication: 0→ 1
Desired pregnancy -0.06277 0.09669 0.5162 0.939
Age at marriage -0.15935 0.09670 0.0994 0.853
Number of previous pregnancy 0.01528 0.10782 0.8873 1.015
Education 0.04893 0.09098 0.5907 1.050
Delivery complication after antenatal complication: 0→ 1→ 1
Desired pregnancy -0.46601 0.18861 0.0135 0.628
Age at marriage 0.10864 0.17543 0.5357 1.115
Number of previous pregnancy 0.13674 0.18933 0.4702 1.147
Education -0.54482 0.17047 0.0014 0.580
Delivery complication given no antenatal complication: 0→ 0→ 1
Desired pregnancy -0.13080 0.21838 0.5492 0.877
Age at marriage -0.26930 0.20024 0.1787 0.764
Number of previous pregnancy -0.61007 0.19948 0.0022 0.543
Education 0.32378 0.19371 0.0946 1.382
Model χ2 (p-value, d.f.) 37.1 (0.0002,12)
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Chapter 3

Regressive Models for Risk Prediction
for a Sequence of Multinomial
Outcomes

3.1 Introduction

In longitudinal, cohort or panel studies repeated outcomes are observed along with various
risk factors on the same subjects. The outcome variables may be discrete or continuous.
If the outcome variables are categorical, either nominal or ordinal, then the sequence of
outcomes for each subject may produce outcomes that may follow multivariate binary
or multivariate multinomial distributions. For example, uncontrolled diabetes can lead
to nephropathy, diabetic retinopathy, pulmonary tuberculosis, and coronary heart disease
that may be observed longitudinally in a large number of follow-ups producing nomi-
nal outcomes. Activities of daily living (ADL) indices measure functional limitations
as ordinal outcomes. Repeated outcomes over time may produce a large number of tra-
jectories as transitions between states may occur at different follow-ups. A multinomial
outcome with three states from three follow-ups produces a total of twenty-seven trajecto-
ries (paths) as shown in Figure 3.1. A growing area of interest is to understand the disease
progression over time, predict risks of a sequence of events with risk factors and status
at previous outcomes (Wen et al., 2016; Islam and Chowdhury, 2010; Putter et al., 2006,
2007; Rothman, 2002; Klein et al., 1994). With the risk quantification of a sequence of
events, health care providers could screen individuals that would help them to suggest
necessary therapy and prevention (Tripepi et al., 2013). Risk prediction would also allow
a patient to be aware of the future course of disease (Tripepi et al., 2013).

Prediction of risk of a sequence of events for multinomial outcomes with specified pre-
dictors is a challenge to the researchers. To understand this process we need to examine
the sequence of events during subsequent follow-ups. One need to deal with transitions to
a number of states over time generating a large number of trajectories from beginning to
the end of the study (Figure 3.1). With the increased number of follow-ups, this problem
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becomes even more difficult to model. For survival data, Klein et al. (1994) illustrated
risk prediction for a sequence of events based on the work of Arjas and Eerola (1993).
Putter et al. (2006) and Putter et al. (2007) provided a comprehensive illustration of risk
prediction for a sequence of events using multistate modeling framework, among others.
For discrete survival time data, two commonly used regression models are the grouped
proportional hazard models (Pierce et al., 1979; Prentice and Gloeckler, 1978) and the
logistic model (Lawless, 2003). D’Agostino et al. (1990) illustrated pooled logistic re-
gression model for discrete time data.

The multistate higher order Markov model is a natural choice to study the underlying
property of dependence in consecutive follow-ups (Islam et al., 2009). Using this model
one can investigate the relationship between outcomes and predictors and risk could be
calculated for a sequence of events (Islam et al., 2012). For better prediction, it is im-
portant to understand how the transitions between states occur and how the covariates
influence these transitions. However, Markov chain models appear to be restricted due to
over-parameterization (Islam et al., 2013). For example, outcomes from three follow-ups
with three categories (Figure 3.1) one need to fit thirteen models, one marginal model for
the outcome at follow-up one or baseline, three first order and nine second order Markov
models. Outcomes from large number of follow-ups would be intractable and computa-
tionally infeasible (Wen et al., 2016). Generalized estimating equations (GEE), a marginal
model, is used for model parameter estimation for correlated outcomes. Yu (2003) used
first-order Markov transition model to evaluate the impact of risk factors on longitudinal
back-pain data for ordinal outcomes.

Another class of models is the regressive model. Muenz and Rubinstein (1985), Bon-
ney (1986, 1987), Azzalini (1994), Islam et al. (2004), Islam and Chowdhury (2006),
Islam and Chowdhury (2010) and Islam et al. (2014) proposed regressive logistic models
under the Markovian assumptions to include both binary outcomes in previous times in
addition to covariates in the conditional models. The regressive model for binary out-
comes proposed by Bonney (1986, 1987) is extended by Islam and Chowdhury (2010). A
framework to predict joint probability of a sequence of events for binary outcomes from
repeated measures based on specified risk factors is proposed by Islam and Chowdhury
(2010). In this paper, we extended the regressive models for multinomial outcomes from
repeated measures and proposed a framework for risk prediction for a sequence of events
for specified covariate values. The proposed framework links the conditional process and
obtains predictive outcome based on the whole process through all possible trajectories.
This model allows to include interaction between previous outcomes and covariates in the
model as long as sample size permits.
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3.2 Models

The method for risk prediction for a trajectory is based on the proposed regressive mod-
els for multinomial outcomes. Figure 3.1 displays the transitions between three outcome
levels from three follow-ups. Outcome levels (0,1,2) are denoted inside the rectangles.
Here, first column shows marginal probabilities and second onward are conditional prob-
abilities.

t1 t2 t3
Follow-up 1

P(Y1 = y1 | xxx)
Follow-up 2

P(Y2 = y2 | y1,xxx)
Follow-up 3

P(Y3 = s | y2,y1,xxx)

0 = no event 0 = no event 0 = no event

1 = event 1 1 = event 1 1 = event 1

2 = event 2 2 = event 2 2 = event 2

FIGURE 3.1: Transitions between states for regressive models.

3.2.1 Notations

Let Yi1,Yi2, ...,YiJi represent the past and present responses for i-th subject at j-th follow-
up where (i = 1,2, ...,n) and ( j = 1,2, ...,Ji), Ji is the number of follow-ups for subject
i. For simplicity, subscript i is omitted what follows next unless explicitly specified. As-
sume, Y j = s follows multinomial distribution where (s = 0,1,2, ...,S) with S+1 outcome
categories. The category 0 denotes non-event.

The joint probability mass function of Y1,Y2, ...,YJ with covariate vector XXX = xxx can be
expressed as:

P(Y1 = y1,Y2 = y2, ...,YJ = yJ | XXX = xxx)

= P(Y1 = y1 | XXX = xxx)×P(Y2 = y2 | Y1 = y1;XXX = xxx)

× ...×P(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;XXX = xxx)

= Py1(xxx)×Py2.y1(xxx)× ...×Ps.y j−1,...,y1(xxx), (3.1)

where XXX ′ = [1,x1, ...,xp] is vector of covariates for a subject at first follow-up. It should
be noted that XXX = xxx can be time dependent.

Explanations of the functions of the right hand side in equation (3.1) are as follows:
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P(Y1 = s | XXX = xxx) = Ps(xxx) is the marginal probability function of Y1 conditional on xxx;

P(YJ = s | Yj−1 = y j−1;XXX = xxx) = Ps.y j−1(xxx) is the probability function of Y j conditional
on y j−1 and xxx of order one;

P(YJ = s |Yj−1 = y j−1,Yj−2 = y j−2;XXX = xxx) = Ps.y j−1,y j−2(XXX = xxx) is the probability func-
tion for Yj conditional on y j−1,y j−2 and xxx of order two;

P(YJ = s | Y j−1 = y j−1,Yj−2 = y j−2, ...,Y1 = y1;XXX = xxx) = Ps.y j−1,y j−2,...,y1(xxx) is the proba-
bility function of Y j conditional on y j−1, ...,y1 and xxx of order k = j−1.

The unconditional probabilitiy of the left hand side of equation (3.1) is defined as:

P(Y1 = y1,Y2 = y2, ...,YJ = yJ | XXX = xxx) = Py1,y2,...,y j(xxx).

3.2.2 Multinomial logistic regression (Marginal model)

For simplicity, let us consider outcomes with three categories (s = 0,1,2) as shown in
Figure 3.1, a natural choice is multinomial logistic regression to model outcome (Y1) as a
function of covariates vector XXX = xxx. Two sets of parameters would be estimated (Y1 = 1
vs. Y1 = 0 and Y1 = 2 vs. Y1 = 0). Then the marginal model P(Y1 = y1 | ZZZ) can be shown
as:

Ps(ZZZ) = P(Y1 = s | ZZZ) = e(ZZZ
′
βββ s)

2
∑

s=0
e(ZZZ

′
βββ s)

=
egs(ZZZ)

2
∑

s=0
egs(ZZZ′)

, s = 0,1,2, (3.2)

where gs(ZZZ) =

{
0 if s = 0

ln
[

P(Y1=s|ZZZ)
P(Y1=0|ZZZ)

]
if s = 1,2,

here gs(ZZZ) is the first logit of s-th component of y1 conditional on ZZZ and

gs(ZZZ) = βs0 +βs1Z1 + ...+βspZp, s = 1,2,

where ZZZ′′′= [1,Z1, ...,Zp] = XXX ′= [1,X1, ...,Xp] and βββ
′
sss = [βs0,βs1, ...,βsp] are the parameter

vectors of the s-th component for outcome Y1 where βββ
′
111 = [β10,β11, ...,β1p] and βββ

′
222 =

[β20,β21, ...,β2p], βββ
′
111 and βββ

′
222 are 1× (p + 1) vectors totalling a [(p + 1)2] regression

coefficients.

For ordinal outcome, the proportional odds model could be used. However, proportional
odds assumption should be checked from the data which in many instances are not attain-
able. Hence to model ordinal outcome, a multinomial logistic regression model is one
of the choices among other alternatives. Multinomial logistic regression disregards the
ordering of the outcome levels.
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3.2.3 Proposed first order multinomial regressive model

Consider a subject moves between states from Y1 = y1 at time t1 to Y2 = y2 at time t2 as
shown in Figure 3.1. Then the first order regressive model P(Y2 = y2 | Y1 = y1,ZZZ) can be
shown as:

Ps.y1(ZZZ) = P(Y2 = s | Y1 = y1,ZZZ) =
egs.y1 (ZZZ)

2
∑

s=0
egs.y1 (ZZZ

′)
, s,y1 = 0,1,2, (3.3)

where gs.y1(ZZZ) =

{
0 if s = 0

ln
[

P(Y2=s|ZZZ)
P(Y2=0|ZZZ)

]
if s = 1,2,

here gs.y1(ZZZ) is the second logit of s-th component of y2 conditional on previous outcome
y1, ZZZ and

gs.y1(ZZZ) =βs.y10 +βs.y11Z1 + ...+βs.y1 pZp +βs.y1(p+1)Zp+1

+βs.y1(p+2)Zp+2 s = 1,2,

where ZZZ′′′ = [1,Z1, ...,Zp,Zp+1,Zp+2] = [XXX ′′′,DDD′′′] = [1,X1, ...,Xp,D11,D12]. Here D11 and
D12 are the dummy variables for categories 1 and 2 of outcome Y1 with 0 as the reference
category. Here XXX ′′′ is a 1× (p+1) and DDD′′′ is a 1×2 vector producing a total of [(p+1)+
2]2 regression coefficients.

3.2.4 Proposed second order multinomial regressive model

The second order regressive model P(Y3 = y3 | Y1 = y1,Y2 = y2,ZZZ) can be shown as:

Ps.y2,y1(ZZZ) = P(Y3 = s | Y1 = y1,Y2 = y2,ZZZ) =
egs.y2 (ZZZ)

2
∑

s=0
egs.y2 (ZZZ

′)
, s = 0,1,2, (3.4)

where gs.y2(ZZZ) =

{
0 if s = 0

ln
[

P(Y3=s|ZZZ)
P(Y3=0|ZZZ)

]
if s = 1,2,

here gs.y2(ZZZ) is the third logit of s-th component of y3 conditional on previous two out-
comes y1, y2, ZZZ and

gs.y2(ZZZ) =βs.y20 +βs.y21Z1 + ...+βs.y2 pZp +βs.y2(p+1)Zp+1

+βs.y2(p+2)Zp+2 +βs.y2(p+3)Zp+3,+βs.y2(p+4)Zp+4 s = 1,2,

where ZZZ′′′ = [1,Z1, ...,Zp,Zp+1,Zp+2,Zp+3,Zp+4]

=
[
XXX ′′′,DDD′′′

]
= [1,X1, ...,Xp,D11,D12,D21,D22] .
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Here D11 and D12 are the dummy variables for categories 1 and 2 of outcome variable Y1

and D21 and D22 are the dummy variables for categories 1 and 2 of outcome variable Y2

with 0 as the reference category. XXX ′′′ is a 1× (p+ 1) and DDD′′′ is a 1× 4 vector producing
[(p+1)+4] regression coefficients with a total of [(p+1)+4]2 regression coefficients.

3.2.5 Proposed higher order multinomial regressive model

Above regressive model could be generalized for k-th order (k = j−1) for s = 0,1,2, ...,S
outcome levels as follows:

Ps.y j−1,...,y1(ZZZ) = P(Yj = s | Y1 = y1, ...,Yj−1 = y j−1,ZZZ) =
egs.y j−1 (ZZZ)

S
∑

s=0
egs.y j−1 (ZZZ

′)
,

s = 0,1,2, ...,S, (3.5)

where gs.y j−1(ZZZ) =

{
0 if s = 0

ln
[

P(Y j=s|ZZZ)
P(Y j=0|ZZZ)

]
if s = 1,2, ...,S,

is the j-th logit of the s-th component of y j conditional on previous previous j− 1 out-
comes y1,y2, ...,y j−1, ZZZ and

gs.y j−1(ZZZ) = βs.y j−10 +βs.y j−11Z1 + ...+βs.y j−1 pZp +βs.y j−1(p+1)Zp+1

+ ...+βs.y j−1(p+S)Zp+S +βs.y j−1(p+S+1)Zp+S+1

+ ...+βs.y j−1(p+2S)Zp+2S + ...+βs.y j−1[p+( j−1)S+1]Z[p+( j−1)S+1]

+ ...+βs.y j−1[p+( j−1)S+S]Z[p+( j−1)S+S], s = 1,2, ...,S, j > 1

where ZZZ′′′ = [1,Z1, ...,Zp,Zp+1, ...,Zp+S,

Zp+S+1, ...,Zp+2S, ...,Z[p+( j−1)S+1], ...,Z[p+( j−1)S+S]

]
=
[
XXX ′′′,DDD′′′

]
=
[
1,X1, ...,Xp,D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S

]
.

Here, D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S are the dummy variables for cate-
gories 1,2, ...,S of outcomes y1,y2, ...,y j−1 with 0 as the reference category, respectively.
XXX ′′′ is a 1× (p + 1) vector of covariates and DDD′′′ is a 1× [( j− 1)S] vector of dummy
variables for previous y j−1, ...,y1 outcomes with S+1 categories considering 0 as the ref-
erence category. There are [(p+1)+( j−1)S] regression coefficients for s-th component
of the model and with a total of [(p+ 1)+ ( j−1)S]S regression coefficients.
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3.2.6 Estimation

Let δs = 1 if Yj = s otherwise δs = 0, s = 0,1, ...,S, is an indicator variable to identify
observed levels of Yj.

Then the likelihood function for a single subject of jth order model can be expressed as:

L =
S

∏
s=0

[
Ps.y j−1(ZZZ)

]δs

,

and the log likelihood for l-th component for a subject is given by

lnLl =

[
S

∑
s=1

δsgs.y j−1(ZZZ)− ln

(
S

∑
s=0

egs.y j−1 (ZZZ)

)]
, l = 1,2, ...,S.

Differentiate with respect to the parameters and solving the following equations we obtain
the likelihood estimates for S sets of parameters:

∂ lnLl

∂βs jq
=
[
δs−Ps.y j−1(ZZZ)

]
ZZZq q = 0,1, ..., p.

Observed information matrix can be obtained using following second derivatives:

∂ 2 lnLl

∂βs jq∂βs jq′
= −

[
Ps.y j−1(ZZZ){1−Ps.y j−1(ZZZ)}

]
ZZZ′′′qZZZq,

and

∂ 2 lnLl

∂βs jq∂βs′ jq′
=
[
Ps.y j−1(ZZZ)Ps′y j−1(ZZZ)

]
ZZZ′′′qZZZq,

where q,q′ = 0,1, ..., p;s,s′ = 1,2, ...,S; l = 1,2, ...S.

For n subjects, there will be summation over i = 1,2, ...,n. Here, subscript i is omitted for
notational convenience. The information matrix I(βββ ) is the [(p+1)+( j−1)S]S× [(p+
1)+ ( j−1)S]S matrix where elements are the negative of the second derivatives and the
asymptotic covariance matrix is [I(βββ )]−1.

It may be noted that first and all higher order regressive models are equivalent to that
of the marginal multinomial logistic regression models shown in equation (3.2). Regres-
sive models for higher order shown in equation (3.5) can be estimated using appropriate
data structure and usual SAS, STATA or R-package or other software capable of fitting
multinomial logistic regression. It should be noted that the regressive model proposed by
Bonney (1986, 1987) and Islam and Chowdhury (2010) are special cases of the model
shown in equation (3.5) for s=0,1.
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3.2.7 Predictive models and joint probabilities

Our objective is to predict the risks of occurring a sequence of events from repeated
measures for a subject with specified covariate vector XXX∗ = xxx∗. Which is the predicted
risk that a subject with covariate vector (XXX∗ = xxx∗) would follow a particular trajectory as
shown in the Figure 3.1.

The predicted joint probabilities of P̂(Y1 = y1,Y2 = y2, ...,Yj = y j | xxx∗) can be obtained as:

P̂(Y1 = y1,Y2 = y2, ...,YJ = yJ | xxx)
= P̂(Y1 = y1 | xxx)× P̂(Y2 = y2 | Y1 = y1;xxx)

×, ...,×P̂(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;xxx)

= P̂y1(xxx)× P̂y2.y1(xxx)× ...× P̂s.y j−1,...,y1(xxx).

(3.6)

Based on the equation (3.6) the predicted joint probabilities for Y1 and Y2 is

P̂y1,y2(xxx) = P̂(Y1 = y1,Y2 = y2 | xxx),

the conditional probability for Y2 = s given Y1 and xxx is

P̂s.y1(xxx) = P̂(Y2 = s, | Y1 = y1;xxx),

and the marginal probability for Y1 given xxx is

P̂y1(xxx) = P(Y1 = y1 | xxx).

The joint probabilities can be predicted using marginal and conditional probabilities as:

P̂(Y1 = y1,Y2 = y2 | xxx) = P̂(Y1 = y1 | xxx)× P̂(Y2 = s, | Y1 = y1;xxx)

=⇒ P̂y1,y2(xxx) = P̂y1(xxx)× P̂s.y1(xxx).
(3.7)

Then for outcomes y1, y2 with categories 0,1 and 2 and using equation (3.7) we can predict
joint probabilities from conditional and marginal probabilities as follows:

P̂(Y1 = y1,Y2 = s | xxx) = P̂(Y1 = y1;xxx)× P̂(Y2 = s | Y1 = y1;xxx),

s = 0,1,2; y1 = 0,1,2; j = 1,2.

Similarly, for j-th outcomes y1,y2, ...,y j we can predict joint probabilities using marginal
and conditional probabilities as:

P̂(Y1 = y1,Y2 = y2, ...,YJ = s | xxx) = P̂(Y1 = y1;xxx)× P̂(Y2 = y2 | Y1 = y1;xxx),

× ...× P̂(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;xxx),s = 0,1,2; y1, ...y j−1,= 0,1,2;

j = 1,2, ...,J.
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3.3 Steps involved in prediction

Using following steps, the marginal and conditional probabilities can be estimated from
fitted marginal and regressive models for a subject with a specified covariates vector XXX∗=[
1,X∗1 , ...,X∗p

]′. Then using relation shown in equation (3.6), we can predict the risk of
joint events for any number of follow-ups as follows:

(i) The predicted marginal probabilities P̂2(xxx∗); P̂1(xxx∗); P̂0(xxx∗) can be estimated from the
fitted marginal model shown in equation (3.2). The first order conditional probabilities
P̂s.y1(xxx

∗), s,y1 = 0,1,2, can be estimated from the fitted first order regressive model using
covariates vector ZZZ′′′ = [xxx∗,D11,D12]′ where D11,D12 = 0,1. For example, P̂2.0(xxx∗) is
estimated using ZZZ = [xxx∗,0,0]′ in equation (3.3) for s = 2, P̂1.0(xxx∗) using covariates vector
ZZZ = [xxx∗,0,0]′ for s = 1, and P̂0.0(xxx∗) = 1− P̂1.0(xxx∗)− P̂2.0(xxx∗) and so on. Similarly, using
appropriate covariates vector ZZZ second order conditional probabilities can be estimated.
For example, P̂2.00(xxx∗) is estimated using ZZZ = [xxx∗,0,0,0,0]′ in equation (3.4) for s = 2,
and P̂1.00(xxx∗) using covariate vector ZZZ = [xxx∗,0,0,0,0]′ for s = 1.

(ii) Now using predicted marginal and conditional probabilities showed in equation (3.6)
joint probabilities for events are obtained. For example, P̂01(xxx∗) = P̂0(xxx∗)× P̂1.0(xxx∗),
P̂001(xxx∗) = P̂0(xxx∗)× P̂0.0(xxx∗)× P̂1.00(xxx∗) and so on.

3.4 Tests

3.4.1 Significance of the joint model

The significance of the joint model can be tested using likelihood ratio test between joint
constant only model (Reduced) and joint full model (Full) as follows:

−2
[
lnLReduced(β̂ββ 000)− lnLFull(β̂ββ )

]
(3.8)

which is distributed asymptotically as χ2 with [{(p+ 1)S}+ {(p+ 1+ S)S}+ {(p+
1+ 2S)S}+ ...+ {p+ 1+ ( j− 1)S}S]− jS degrees of freedom. Here β̂ββ

′′′
000 includes all

the regression parameters from the constant only joint model and β̂ββ
′′′
111 includes all the

parameters from the full joint model. Calculation of the degrees of freedom is shown in
the following table. Each of the constant only marginal, first and higher order regressive
models have S sets of constants as we are obtaining the number of categories minus one
(S) sets of parameter estimates.
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Number of parameters for different models.

Models Constant only s-th component Full
Marginal S [p+ 1] [p+ 1]S
First order S [p+ 1+ S] [p+ 1+ S]S
regressive
Second order S [p+ 1+ 2S] [p+ 1+ 2S]S
regressive
... ... ... ...
j−1 th order S [(p+ 1+( j−1)S)] [(p+ 1+( j−1)S)]S
regressive

3.4.2 Test for proportional odds assumption

If the outcome is ordinal it is common to use proportional odds model (McCullagh, 1980).
Let, P(Yj ≤ s) = π0 + ...+πs,s = 0,1, ...,S where P(Y j ≤ 0) ≤ P(Yj ≤ 1) ≤ ...≤ P(Yj ≤
S) = 1. The ordinal logistic regression model can be shown as:

logit[P(Yj ≤ S)] = ln
[

π0+...+πs
πs+1+...+πS

]
= αs +β1x1 + ...+βpxp = αs + xxx′′′βββ ,

s = 0, ...,S−1 and P(Yj = s | xxx) = P(Yj ≤ s+ 1 | xxx)−P(Yj ≤ s | xxx).

One of the important assumptions of this model is proportional odds assumption. In this
model, the coefficients that describe the relationship between lower level versus all higher
levels of the response variable are the same as those that describe the relationship between
the next lowest level and all higher levels. Likelihood ratio test (Peterson and Harrell,
1990) and Brant test (Brant, 1990) is used to test the proportional odds assumption. How-
ever, these tests have been criticized for having a tendency to reject the null hypothesis
(Harrell, 2001). If this assumption is violated the multinomial logistic regression is one
option among others (Hosmer and Lemeshow 2013, McCullagh and Nelder 1989).

3.4.3 Brant test

Brant (1990) proposed a test by by creating S− 1 binary logits on the outcomes defined
by Y ∗ = 1 if Y > s and Y ∗ = 0 if Y ≤ s. An outcome Y with levels s = 0,1,2, one can
define two binary outcomes Y ∗1 = 1 if Y > 0, Y ∗1 = 0 if Y ≤ 0 and Y ∗2 = 1 if Y > 1, Y ∗2 = 0
if Y ≤ 1.

Then one can estimate β̂ββ
′
111 = [β̂10, β̂11, ..., β̂1p], β̂ββ

′
222 = [β̂20, β̂21, ..., β̂2p], V̂ar(β̂ββ 111), V̂ar(β̂ββ 222),

π̂i1(xxxiii) = P(Y ∗1 = 1 | xxxiii) and π̂i2(xxxiii) = P(Y ∗2 = 1 | xxxiii) from two binary logistic regres-
sion model. Define β̂ββ

∗′
111 = [β̂11, β̂12, ..., β̂1p], β̂ββ

∗′
222 = [β̂21, β̂22, ..., β̂2p] and wiuv = π̂iv(xxxiii)−

π̂iu(xxxiii)π̂iv(xxxiii), u,v = 1,2.
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The null hypothesis for proportional odds assumption is H0 : βββ
∗
111 = βββ

∗
222. This hypothesis is

equivalent to H0 : DDDβββ
∗ = 000, where

DDD =


III −−−III
III
...
III

000
...
000

 .

III is a (p+ 1)× (p+ 1) identity matrix and 000 is a (p+ 1)× (p+ 1) matrix of 0’s. The
test statistic can be shown as:

X2 = (DDDβ̂ββ
∗
)′[DDDV̂ar(β̂ββ

∗
)DDD′]−1(DDDβ̂ββ

∗
) (3.9)

distributed as χ2 with [(S+ 1)−2]p = (3−2)p degrees of freedom. Where

V̂ar(β̂ββ
∗
) =

[
V̂ar(β̂ββ

∗
111) V̂ar(β̂ββ

∗
111, β̂ββ

∗
222)

V̂ar(β̂ββ
∗
222, β̂ββ

∗
111) V̂ar(β̂ββ

∗
222)

]
.

The diagonal elements are the variance-covariance matrix from each binary logistic re-
gression and the off-diagonal elements is estimated by deleting first row and column of
(XXX ′WWW uuXXX)−1(XXX ′WWW uvXXX)−1(XXX ′WWW vvXXX)−1, where WWW uv is a N ×N diagonal matrix whose
diagonal element is wiuv and XXX is a N× (p+1) covariate vector including constant. This
test easily generalize for s = 0,1, ...,S and details can be found in Long (1997).

3.4.4 Goodness-of-fit

Islam and Chowdhury (2010) proposed modified deviance for repeated measures for bi-
nary outcome to test the goodness-of-fit for the joint model. We generalized this for
multinomial outcome from repeated measures.

3.4.5 Modified deviance for repeated measures

Let the outcome y has s = 0,1, ...,S with S+1 categories. In the case of multinomial logis-
tic regression, suppose the observed data is of the form (z1,y1), (z2,y2) , ..., (zi,yi), ..., (zn,yn)

where yi is a (S+1) indicator vector identifies which class an observation belongs to. From
the fitted model the estimate of a vector of probabilities is p̂i(z) = [ p̂i0(z), p̂i1(z), ..., p̂iS(z)].

Then the model-based likelihood for ith subject can be shown as:

S

∏
s=0

[P̂is(zi)]
yis (3.10)
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where yis = 1 if the outcome is in category s, otherwise yis = 0. E(Y ) = E(Y1) = Ps(x)
as defined in (3.1). The saturated model assigns probability one to each observed events.
Here the vectors of probabilities p̂i(z) is equal to yi for each observation and the ratio of
these likelihood can be written as:

S

∏
s=0

[
P̂is(zi)

yis

]yis

(3.11)

where yis is observed outcome for subject i with sth category. By taking minus two times
the log of this quantity, we find the deviance for all n subjects as

D1 = −2
n

∑
i=0

S

∑
s=0

yislog
[

P̂is(zi)

yis

]
. (3.12)

The contribution of marginal model shown in equation (3.1) to the overall deviance is
D1. All first and higher order regressive models shown previously are equivalent to the
marginal model. Similarly, the contribution of jth order regressive model to overall de-
viance is:

D j = −2
n

∑
i=0

S

∑
s=0

yi jslog
[

P̂i js(zi)

yi js

]
, j = 2,3, ...J, (3.13)

where yi js is ith subject from jth outcome of sth category. Following, Islam and Chowd-
hury (2010) the summary deviance statistic for y1,y2, ...,yJ is the sum of deviance from
marginal and all regressive models and can be written as:

D = D1 +D2 + ...+D j = −2
n

∑
i=0

S

∑
s=0

δislog
[

P̂is(zi)

yis

]
+

J

∑
j=2

{
−2

n

∑
i=0

S

∑
s=0

δi jslog
[

P̂i js(zi)

yi js

]}
.

(3.14)

3.4.6 Tests for order

Islam et al. (2009) proposed a simple and flexible test to check the order of the Markov
model for binary outcomes. For j-th order regressive model, dummy variables for each
category except for reference level from previous j-1 outcomes are incorporated as the
covariates for investigating the adequacy of the order of the model as shown in equation
(3.5). Then the null hypotheses

H0 :βs.y j−1(p+1) = · · ·= βs.y j−1(p+S) = βs.y j−1(p+S+1) = · · ·= βs.y j−1(p+2S)

= · · ·= βs.y j−1[p+( j−1)S+1] = · · ·= βs.y j−1[p+( j−1)S+S] = 0,

s = 1,2, · · · ,S; j = 2, · · · ,J, can be tested using following statistic:

−2
[
lnL(β̂ββ 111)− lnL(β̂ββ )

]
, (3.15)
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which is distributed asymptotically as χ2 with [{p+1+( j−1)S}S]−{( j−1)S}] degrees
of freedom, [{p+ 1+ ( j− 1)S}S] is the total number of parameters of ( j− 1)th order
regressive model and j− 1 in ( j− 1)S are the number of previous outcomes y1, ...,y j−1

multiplied by the number of dummy variables (S) for each outcomes. Let,

β̂ββ
′′′
111 =[β̂s.y j−1(p+1), · · · , β̂s.y j−1(p+S),βs.y j−1(p+S+1), · · · , β̂s.y j−1(p+2S), · · · ,

β̂s.y j−1[p+( j−1)S+1], · · · , β̂s.y j−1[p+( j−1)S+S]], s = 1,2, · · · ,S

be a 1× ( j− 1)S vector of the regression coefficients of dummy variables D11, · · · ,D1S,
D21, · · · ,D2S, · · · ,D( j−1)1, · · · ,D( j−1)S corresponding to previous y1, · · · ,y j−1 outcomes
and

β̂ββ
′′′
=[β̂s.y j−10, β̂s.y j−11, · · · , β̂s.y j−1 p,

β̂s.y j−1(p+1), · · · , β̂s.y j−1(p+S),βs.y j−1(p+S+1), · · · , β̂s.y j−1(p+2S), · · · ,

β̂s.y j−1[p+( j−1)S+1], · · · , β̂s.y j−1[p+( j−1)S+S]], s = 1,2, · · · ,S

be a 1× [p+1+( j−1)S]S vector of all regression coefficients of ( j−1)th order regres-
sive model.

Alternatively, we can test the above hypothesis that some subset of parameters equal to
zero and construct a Wald test. Let,

βββ =

[
β̂ββ 000

β̂ββ 111

]

where β̂ββ 000 = [β̂s.y j−10, β̂s.y j−11, ..., β̂s.y j−1 p]
′, s = 1,2, ...,S

is a [p + 1]S× 1 vector of parameters corresponding to [1,X1, ...,Xp] and β̂ββ 111 defined
above is a [{p+1+( j−1)S}S− (p+1)S]×1 vector of parameters corresponding to the
dummy variables D11, ...,D1S, D21, ...,D2S

, ...,D( j−1)1, ...,D( j−1)S. Let,

V̂ (βββ ) = I(β̂ββ )−1 =

[
V̂00(β̂ββ ) V̂01(β̂ββ )

V̂10(β̂ββ ) V̂11(β̂ββ )

]

where I(β̂ ) is the observed information matrix and V̂11(β̂ββ ) is the lower sub-matrix of
V̂ (βββ ). The Wald statistic is then

β̂ββ
′′′
111[V̂11(β̂ββ)]−1

β̂ββ 1 (3.16)

which is asymptotically χ2 with [( j−1)S]S degrees of freedom.

Then one can perform the test as follows:
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(i) The likelihood ratio test can be used to test the significance of the overall model at the
first stage.

(ii) The Wald test can be used to test the significance of the parameter(s) corresponding
to the previous outcomes as shown below:

W = β̂s.y j−1[p+( j−1)s+s]/se(β̂s.y j−1[p+( j−1)s+s]), s = 1,2, ...S.

Good fit models with the better discriminative ability and predictive power are expected
to provide higher prediction accuracy. Predictive accuracy of models can be estimated
based on confusion matrix and over(under)fitting can be evaluated using training and test
data sets approach (James et al., 2013).

3.5 Application

The panel data from the Health and Retirement Study (HRS), sponsored by the National
Institute of Aging (grant number NIA U01AG09740), conducted by the University of
Michigan (HRS, 2014) is used for the application. In wave one, a total of 12652 subjects
were interviewed in the HRS cohort. Out of all these subjects, 9762 were age eligible
(those with birth years 1931-1941). A total of six waves (follow-ups) of the RAND ver-
sion of the data from wave six (2002) to wave 11 (2012) is considered for this application.
At wave six minimum age of the subjects was 60. The outcome variables considered are
Activity of daily living index (ADL) from wave six to wave eleven (Y1, ...,Y6). This index
is the sum of five tasks (yes/no) ranging from 0 to 5: whether respondents faced difficulties
in walking, dressing, bathing, eating and getting in/out of bed. Due to small frequencies
3 and higher values were coded as 2. The explanatory variables considered are: age (in
years), marital status (married/partnered=1, single/separated=0), whether drink (yes=1,
no=0), sex (male=1, female=0), number of conditions ever had (N.cond) ranges from 0
to 8, White (yes=1, no=0), Black (yes=1, no=0) with others as reference category, edu-
cation (in years) and veteran status (1=yes, 0= no). The variable drink indicates whether
the respondent drinks alcoholic beverages. After removal of cases with missing values
for outcome variable at wave six, the number of subjects is 7130. Table 3.1 displays the
frequency distribution of the outcomes for different waves.

The outcomes used here are ordinal in nature and it is common to use proportional odds
model (McCullagh, 1980). One of the important assumptions of this model is proportional
odds assumption. The proposed regressive models for the ordinal outcome for first and
higher order are equivalent to the ordinal regression for a single outcome. Likelihood
ratio test and Brant test for proportional odds assumption are shown in Table 3.2. The
likelihood ratio test for marginal and first order models and Brant test for marginal model
satisfies the assumption.
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TABLE 3.1: Distribution of Activity of Daily Living Index, Waves 6 to 11.

Outcome Wave
6 7 8

Value N % N % N %
0 6210 87.1 5906 86.7 5459 84.9
1 477 6.7 462 6.8 503 7.8
2 443 6.2 445 6.5 467 7.3

Total 7130 100.0 6813 100.0 6429 100.0
Wave

9 10 11
Value N % N % N %

0 5459 84.9 4600 81.7 4262 81.5
1 503 7.8 460 8.2 479 9.2
2 467 7.3 569 10.1 491 9.4

Total 6429 100.0 5629 100.0 5232 100.0

TABLE 3.2: Test results for proportionality odds assumption.

Approximate LRT Brant test
Wave χ2 p.v. χ2 p.v. d.f.

6 13.4 0.145 13.7 0.134 9
7 18.2 0.076 23.9 0.013 11
8 22.8 0.044 25.5 0.020 13
9 41.8 0.000 45.9 0.000 15
10 31.3 0.016 34.4 0.008 17
11 42.4 0.002 43.8 0.001 19

Parameter estimates along with standard error and significance level for marginal and re-
gressive models are shown in Table 3.3 and Table 3.4. Various predictors are found to
be significantly associated with outcome variables for different models. All dummy indi-
cators for previous outcomes are significantly and positively associated with the current
outcomes except for fifth-order model. Model statistics are shown in Table 3.5. Like-
lihood ratio test for the joint model is statistically significant (p < 0.001) as shown in
Table 3.5.The prediction accuracy based on confusion matrix for full data and test and
training data varies between 0.86 to 0.89 which is reasonably high. Also, accuracy from
full, training and test data are very close, which shows the absence of over(under)fitting
for all models.

3.6 Predicted joint probabilities

Specified covariates vector were used to predict marginal and conditional probabilities
and to predict the joint probability of outcomes for three selected trajectories. Three
paths are: (i) P̂(Y1 = 0,Y2 = 0,Y3 = 0,Y4 = 0,Y5 = 0,Y6 = 0 | XXX∗= xxx∗) remains functional
limitations free from wave six to eleven. (ii) P̂(Y1 = 1,Y2 = 1,Y3 = 1,Y4 = 1,Y5 = 1,Y6 =

1 | XXX∗ = xxx∗) one functional limitations among all six waves. (iii) P̂(Y1 = 2,Y2 = 2,Y3 =
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2,Y4 = 2,Y5 = 2,Y6 = 2 | XXX∗ = xxx∗) two or more functional limitations from wave six to
eleven. Figure 3.2-3.4 displays three joint predicted risks for selected trajectories along
with the average from 10,000 bootstrap samples. It should be noted that predicted risk at
wave six in the graphs are marginal probabilities and from wave seven onward are joint
probabilities.

Figure 3.2 displays the predicted joint risks for three trajectories by number of previous
conditions (0,2,4,6, and 8) and gender. The value of other predictors were set to: mstat=0,
Age=65 years, whether drink=1, white=1, Educ. =12 years, and veteran status=1. The
risk of functional limitations free for zero previous conditions was close to one at wave
six this risk decreases in later waves and the risk was little higher for male compared
to female. The risk to follow path (iii) remains flat for all six waves with zero previous
conditions. However, this risk increases with increased number of previous conditions.
Figure 3.3 displays the predicted joint risks for three trajectories by gender. The predicted
risk for trajectories (i, ii, and iii) are shown in the graph. The value of other predictors
was set to: age=65 years, mstat=0, N.cond =2, whether drink=1, white=1, Educ. =12
years, veteran status=1. Male subject has more risk compared to female subject. Pre-
dicted joint risks for three trajectories by veteran status is presented in Figure 3.4. The
value of other predictors was set to: age=65 years, mstat=0, N.cond =2 N.cond, whether
drink=1, white=1, Educ. =12 years, gender=1. Non-veteran subject has higher risk com-
pared to veteran subject. A sample calculation of marginal, conditional and joint risk for
a trajectory is shown in Table 3.6.

TABLE 3.6: Computation of predicted risk for a trajectory.

N.cond Gender P0 P0.0 P0.00 P0.000 P0.0000 P0.00000 P000000

0 Female 0.97 0.98 0.98 0.97 0.96 0.97 0.85
2 Female 0.91 0.96 0.96 0.95 0.93 0.95 0.70
4 Female 0.76 0.91 0.91 0.92 0.88 0.91 0.47
6 Female 0.51 0.81 0.84 0.85 0.80 0.85 0.20
8 Female 0.24 0.64 0.72 0.76 0.68 0.75 0.04
0 Male 0.97 0.98 0.97 0.97 0.95 0.97 0.82
2 Male 0.91 0.95 0.95 0.95 0.91 0.94 0.67
4 Male 0.76 0.89 0.90 0.91 0.85 0.90 0.43
6 Male 0.50 0.77 0.82 0.85 0.76 0.83 0.17
8 Male 0.24 0.58 0.69 0.74 0.63 0.72 0.03

3.7 Bootstrapping

To measure the accuracy of sample estimates, bootstrapping is used. We performed
10,000 bootstraps and computed bias, standard error, and mean squared error for esti-
mates. Estimates from Table 3.3 and Table 3.4 are considered as population parameters
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FIGURE 3.2: Predicted risk by gender and no. of conditions from original and bootstrap sample.

while bias, standard error and mean squared error are computed. Bias is very small gen-
erally (less than 1 percent) for the estimators of parameters of all models. Standard error
and mean squared errors are also found to be very small (Table 3.7-3.9). Convergence
is achieved for all 10,000 bootstrap samples. We also predicted joint risks as shown in
Figures 3.2-3.4 from all 10,000 samples. Average of the predicted joint risks from all
bootstrap samples and predicted risk are also shown in the Figure 3.2-3.4. Lines of pre-
dicted risk from original sample and bootstrap samples are overlapped in all three graphs.
Therefore, very minimal or no bias in the case of predicted joint risk.

3.8 Conclusions

In this paper, a modeling framework is proposed to predict joint probabilities for a se-
quence of multinomial events from longitudinal studies that may change through differ-
ent trajectories. The proposed models provide the estimates for each stage in the process
conditionally, and the conditional estimates are linked using marginal and sequence of
conditional models to provide the joint model needed for predicting the probability of a
trajectory based on specified covariates pattern. The estimates of the parameters of the
marginal models are obtained from the outcome variable at the baseline and the models
at the subsequent follow-ups provide the estimates of the parameters of the conditional
models. Proposed approach also allows interaction among previous outcomes and predic-
tors. The interaction terms may provide a better understanding of the underlying disease
process and the relationships between outcomes and related risk factors. The likelihood
ratio test for the goodness of fit, deviance and AIC for the proposed model are shown in
this paper. Also, 10,000 bootstrap simulation is undertaken to study the performance of
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the proposed model and predicted joint probabilities for a sequence of events. One can
easily fit proposed models and predict the risk of a sequence of events using the available
statistical softwares when there are multiple outcomes at each follow-up time.

The major improvement of the proposed framework is that one needs to fit a significantly
smaller number of models compared to the conditional models such as Markov models.
The bias of parameter estimates for all models from all bootstrap simulation is less than
one percent in most of the cases except for intercepts and the explanatory variable, race.
The estimated mean squared error is also very low. Predicted joint risks for trajectories
from bootstrap simulation overlap with that of the assumed population as shown in Fig-
ures 3.2-3.4. The proposed methods can be applied in many fields of studies such as
epidemiology, public health, survival analysis, genetics, reliability, environmental stud-
ies, etc. Also, we believe that the proposed framework would be very useful for analyzing
big data.
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Ŝ.

E
.

M̂
SE

B̂
ia

s
Ŝ.
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Chapter 4

Goodness-of-fit Test of Joint Model for a
Sequence of Multinomial Outcomes
from Repeated Measures

4.1 Introduction

There is a growing interest in the risk prediction model to predict the risk of a sequence
of responses for a multinomial outcome from repeated measures based on patient-specific
characteristics. Islam and Chowdhury (2010) proposed a regressive model to predict the
risk of a sequence of binary outcomes from repeated measures. The predicted risk could
be used to present the evidence to decision makers (e.g., clinicians and patients) and are
highly relevant to clinical decision support, personalized health care, and shared deci-
sion making (Moons et al., 2009). The development of robust and accurate risk predic-
tion models are a resource-demanding task and their performance needs to be rigorously
validated (Calster et al., 2017; Wehberg and Schumacher, 2004). Core elements of per-
formance include (i) discrimination and (ii) classification (calibration). Discrimination
considers the ability how well the model discriminates between the different categories of
outcome and classification which is not error free measures the reliability of the predicted
risks (Steyerberg, 2009; Johnson and Wichern, 2008; Harrell, 2001). A good classifica-
tion method should result in few misclassification. Classification techniques are often
evaluated in terms of their misclassification rate ignoring misclassification cost. For ex-
ample, misclassifying a diseases subject as a non-diseased may have serious implications.
For dichotomous outcome, many discrimination performance measures exist such as the
receiver operating characteristic curve (ROC), the area under the curve (AUC), sensitivity,
specificity and accuracy among others. A comprehensive discussion regarding ROC and
AUC can be found in the book of Krzanowski and Hand (2009). Toledano and Gatsonis
(1996) generalized ROC curve for multiple category outcomes. Accuracy and overfitting
are popularly estimated by splitting the data into training and test sets. This approach is
fine for the very large data set (Johnson and Wichern, 2008). There are several variants
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of this technique and can be used for the polytomous outcome (James et al., 2013). For
a multinomial risk prediction model, either a set of dichotomous measures or one over-
all measure can be used to assess the discriminative ability (Calster et al., 2012). The
bootstrap simulation is a very useful technique to derive bias (Efron and Tibshirani, 1997,
1993). AIC and BIC can be used for model comparison.

Calibration curve and goodness of fit test for the prediction model are commonly used
as calibration measure (Austin and Steyerberg, 2014; Steyerberg, 2009; Goeman and
le Cessie, 2006; Hand and Till, 2001). For example, Hosmer-Lemeshow test for good-
ness of fit (Hosmer and Lemeshow, 1980) for binary outcome. Fagerland et al. (2008)
generalized the Hosmer-Lemeshow test for multinomial logistic regression. Various au-
thors reported several drawbacks of Hosmer-Lemeshow statistic (Fagerland et al., 2008;
Peek et al., 2007; Vergouwe et al., 2005; Harrell, 2001; Hosmer et al., 1997; Tsiatis,
1980). A score test is suggested by Tsiatis (1980), a generalized logistic model frame-
work to test the adequacy of the fitted model is proposed by Stukel (1988), a class of
test based on smoothed residuals by le Cessie and van Houwelingen (1995) and using
partial sum of residuals by Royston (1992). A detailed overview can be found in Hosmer
et al. (1997). The Brier score measures the accuracy (prediction error) of probabilistic
predictions (Brier, 1950). It can be thought of as either a measure of the "calibration" of
a set of probabilistic predictions. Two other well-known statistics are the deviance and
Pearson chi-square for comparing the observed number with the expected number. Using
a fitted model and saturated model deviance uses a likelihood ratio test. All the methods
discussed above are for a single outcome and are not readily applicable to the joint model.

Muenz and Rubinstein (1985), Bonney (1986, 1987), Azzalini (1994), Islam and Chowd-
hury (2006), Islam et al. (2009), and Islam and Chowdhury (2010) proposed regressive
logistic models under the Markovian assumptions to include both binary outcomes in pre-
vious times in addition to covariates in the conditional models (Islam et al., 2014, 2012,
2009, 2004). This approach reduces the over-parameterization as occurs for conditional
models such as Markov models (Islam et al., 2013). The framework proposed by Islam
and Chowdhury (2010) for binary responses from repeated measures data links the con-
ditional process and obtains predictive outcome based on the whole process through all
possible trajectories to obtain the joint model (Islam et al., 2013, 2012; Islam and Chowd-
hury, 2010). They also proposed modified deviance, extended Hosmer-Lemeshow test
and the ROC curve for repeated measures for binary outcomes to test the goodness-of-fit
and discriminative power.

Most of the available measures to check the model performance are for a single binary
outcome and are not directly applicable to test the goodness of fit of the joint model for
multinomial outcomes. At this drop back, we proposed a test to check the goodness-of-
fit for a joint model for multinomial outcomes from repeated measures. The proposed
model takes account interdependence in the outcomes variables which applies to each
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subject. Also, we showed a test of independence to check the association among repeated
outcomes along with bootstrap simulation.

4.2 Regressive multinomial logistic models

Figure 4.1 displays the transitions between categories of three outcomes Y1, Y2 and Y3

from three follow-ups. Outcome levels (0,1,2) are denoted inside the rectangles. Here,
first column shows marginal probabilities and second onward are conditional probabili-
ties. Marginal and conditional probabilities are estimated using marginal and regressive
models.

t1 t2 t3
Follow-up 1

P(Y1 = y1 | xxx)
Follow-up 2

P(Y2 = y2 | y1,xxx)
Follow-up 3

P(Y3 = s | y2,y1,xxx)

0 = no event 0 = no event 0 = no event

1 = event 1 1 = event 1 1 = event 1

2 = event 2 2 = event 2 2 = event 2

FIGURE 4.1: Transitions between states for regressive models.

4.2.1 Notations

Let Yi1,Yi2, ...,YiJi are the responses from i-th subject at j-th follow-up where (i= 1,2, ...,n)
and ( j = 1,2, ...,Ji), Ji is the number of follow-ups for subject i. For simplicity, subscript
i is omitted henceforth unless explicitly specified. Assume, Yj = s follows multinomial
distribution where (s = 0,1,2, ...,S) with S + 1 outcome categories and denoting non-
event by category 0. For simplicity, consider outcomes with three categories (s = 0,1,2).
The risk of a sequence of events is estimated from the joint probability mass function of
Y1,Y2, ...,YJ with covariates vector XXX = xxx as follows:

P(Y1 = y1,Y2 = y2, ...,YJ = yJ | XXX = xxx)

= P(Y1 = y1 | XXX = xxx)×P(Y2 = y2 | Y1 = y1;XXX = xxx)

× ...×P(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;XXX = xxx)

= Py1(xxx)×Py2.y1(xxx)× ...×Ps.y j−1,...,y1(xxx),

(4.1)
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where XXX ′ = [1,x1, ...,xp] is vector of covariates for a subject at first follow-up and XXX = xxx
can be time dependent. We have used YJ = s as the observed outcome for the last follow-
up to specify the category of a specified outcome at the endpoint.
P(Y1 = s | XXX = xxx) = Ps(xxx) is the marginal probability function of Y1 conditional on xxx;
P(YJ = s | Yj−1 = y j−1;XXX = xxx) = Ps.y j−1(xxx) is the probability function of Y j conditional
on y j−1 and xxx of order one;
P(YJ = s |Yj−1 = y j−1,Yj−2 = y j−2;XXX = xxx) = Ps.y j−1,y j−2(XXX = xxx) is the probability func-
tion for Yj conditional on y j−1,y j−2 and xxx of order two;
P(YJ = s | Y j−1 = y j−1,Yj−2 = y j−2, ...,Y1 = y1;XXX = xxx) = Ps.y j−1,y j−2,...,y1(xxx) is the proba-
bility function of Y j conditional on y j−1, ...,y1 and xxx of order k = j−1.
The joint probabilitiy is defined as:
P(Y1 = y1,Y2 = y2, ...,YJ = yJ | XXX = xxx) = Py1,y2,...,y j(xxx).
The log-likelihood function of the joint mass function can be obtamed as:

l(θθθ ) =
n

∑
i=1

lnP(Yi1 = yi1,Yi2 = yi2, ...,YiJ = yiJ | XXX = xxx)

=
n

∑
i=1

[
lnP(Yi1 = yi1 | XXX = xxx)+ lnP(Yi2 = yi2 | Yi1 = yi1;XXX = xxx)

+ ...+ lnP(YiJ = s | Yi( j−1) = yi( j−1), ...,Yi1 = yi1;XXX = xxx)
]

.

Here, YiJ = s is used as the observed outcome for the last follow-up to specify the category
of a specified outcome at the endpoint.

4.2.2 Marginal model

Multinomial logistic regression is a natural choice to model a nominal outcome Y1 as a
function of covariates vector XXX = xxx. This model, for the outcome Y1 with three categories
(0,1,2) will produce two sets of parameter vector (Y1 = 1 vs. Y1 = 0 and Y1 = 2 vs.
Y1 = 0). The marginal model P(Y1 = y1 | ZZZ) can be shown as:

Ps(ZZZ) = P(Y1 = s | ZZZ) = e(ZZZ
′
βββ s)

2
∑

s=0
e(ZZZ

′
βββ s)

=
egs(ZZZ)

2
∑

s=0
egs(ZZZ′)

, s = 0,1,2, (4.2)

where gs(ZZZ) =

{
0 if s = 0

ln
[

P(Y1=s|ZZZ)
P(Y1=0|ZZZ)

]
if s = 1,2,

here gs(ZZZ) is the first logit of s-th component of y1 conditional on ZZZ and

gs(ZZZ) = βs0 +βs1Z1 + ...+βspZp, s = 1,2,
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where ZZZ′′′= [1,Z1, ...,Zp] = XXX ′= [1,X1, ...,Xp] and βββ
′
sss = [βs0,βs1, ...,βsp] are the parameter

vectors of the s-th component for outcome Y1 where βββ
′
111 = [β10,β11, ...,β1p] and βββ

′
222 =

[β20,β21, ...,β2p], βββ
′
111 and βββ

′
222 are 1× (p + 1) vectors totalling a [(p + 1)2] regression

coefficients.

4.2.3 First order regressive model

The first order regressive model P(Y2 = y2 | Y1 = y1,ZZZ) can be shown as:

Ps.y1(ZZZ) = P(Y2 = s | Y1 = y1,ZZZ) =
egs.y1 (ZZZ)

2
∑

s=0
egs.y1 (ZZZ

′)
, s,y1 = 0,1,2, (4.3)

where gs.y1(ZZZ) =

{
0 if s = 0

ln
[

P(Y2=s|ZZZ)
P(Y2=0|ZZZ)

]
if s = 1,2,

here gs.y1(ZZZ) is the second logit of s-th component of y2 conditional on previous outcome
y1, ZZZ and

gs.y1(ZZZ) =βs.y10 +βs.y11Z1 + ...+βs.y1 pZp +βs.y1(p+1)Zp+1

+βs.y1(p+2)Zp+2, s = 1,2,

where ZZZ′′′ = [1,Z1, ...,Zp,Zp+1,Zp+2] = [XXX ′′′,DDD′′′] = [1,X1, ...,Xp,D11,D12]. Here D11 and
D12 are the dummy variables for categories 1 and 2 of outcome Y1 with 0 as the reference
category. Here XXX ′′′ is a 1× (p+1) and DDD′′′ is a 1×2 vector producing a total of [(p+1)+
2]2 regression coefficients.

4.2.4 Second order regressive model

The second order regressive model P(Y3 = y3 | Y1 = y1,Y2 = y2,ZZZ) is

Ps.y2,y1(ZZZ) = P(Y3 = s | Y1 = y1,Y2 = y2,ZZZ) =
egs.y2 (ZZZ)

2
∑

s=0
egs.y2 (ZZZ

′)
, s = 0,1,2, (4.4)

where gs.y2(ZZZ) =

{
0 if s = 0

ln
[

P(Y3=s|ZZZ)
P(Y3=0|ZZZ)

]
if s = 1,2,

here gs.y2(ZZZ) is the third logit of s-th component of y3 conditional on previous two out-
comes y1, y2, ZZZ and

gs.y2(ZZZ) =βs.y20 +βs.y21Z1 + ...+βs.y2 pZp +βs.y2(p+1)Zp+1

+βs.y2(p+2)Zp+2 +βs.y2(p+3)Zp+3,+βs.y2(p+4)Zp+4 s = 1,2,
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where ZZZ′′′ = [1,Z1, ...,Zp,Zp+1,Zp+2,Zp+3,Zp+4]

=
[
XXX ′′′,DDD′′′

]
= [1,X1, ...,Xp,D11,D12,D21,D22] .

Here D11 and D12 are the dummy variables for categories 1 and 2 of outcome variable Y1

and D21 and D22 are the dummy variables for categories 1 and 2 of outcome variable Y2

with 0 as the reference category. XXX ′′′ is a 1× (p+ 1) and DDD′′′ is a 1× 4 vector producing
[(p+1)+4] regression coefficients with a total of [(p+1)+4]2 regression coefficients.

4.2.5 Higher order multistate regressive model

Above regressive model could be generalized for k-th order (k = j− 1) for S outcome
levels is shown as:

Ps.y j−1,...,y1(ZZZ) = P(Yj = s | Y1 = y1, ...,Yj−1 = y j−1,ZZZ) =
egs.y j−1 (ZZZ)

S
∑

s=0
egs.y j−1 (ZZZ

′)
,

s = 0,1,2, ...,S, (4.5)

where gs.y j−1(ZZZ) =

{
0 if s = 0

ln
[

P(Y j=s|ZZZ)
P(Y j=0|ZZZ)

]
if s = 1,2, ...,S,

is the j-th logit of the s-th component of y j conditional on previous j− 1 outcomes
y1,y2, ...,y j−1, ZZZ and

gs.y j−1(ZZZ) =βs.y j−10 +βs.y j−11Z1 + ...+βs.y j−1 pZp +βs.y j−1(p+1)Zp+1

+ ...+βs.y j−1(p+S)Zp+S +βs.y j−1(p+S+1)Zp+S+1 + ...

+βs.y j−1(p+2S)Zp+2S + ...+βs.y j−1[p+( j−1)S+1]Z[p+( j−1)S+1]

+ ...+βs.y j−1[p+( j−1)S+S]Z[p+( j−1)S+S], s = 1,2, ...,S, j > 1

where

ZZZ′′′ =[1,Z1, ...,Zp,Zp+1, ...,Zp+S,

Zp+S+1, ...,Zp+2S, ...,Z[p+( j−1)S+1], ...,Z[p+( j−1)S+S]

]
=
[
XXX ′′′,DDD′′′

]
=
[
1,X1, ...,Xp,D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S

]
.

Here, D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S are the dummy variables for cate-
gories 1,2, ...,S of outcomes y1,y2, ...,y j−1 with 0 as the reference category, respectively.
XXX ′′′ is a 1× (p + 1) vector of covariates and DDD′′′ is a 1× [( j− 1)S] vector of dummy
variables for previous y j−1, ...,y1 outcomes with S+1 categories considering 0 as the ref-
erence category. There are [(p+1)+( j−1)S] regression coefficients for s-th component
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of the model and with a total of [(p+1)+ ( j−1)S]S regression coefficients. Number of
parameters in various models are shown in Table 4.1.

TABLE 4.1: Number of parameters for different models.

Models Constant only s-th component Full

Marginal S [p+ 1] [p+ 1]S
First order regressive S [p+ 1+ S] [p+ 1+ S]S
Second order regressive S [p+ 1+ 2S] [p+ 1+ 2S]S
· · · · · · · · · · · ·
j−1 th order regressive S [(p+ 1+( j−1)S)] [(p+ 1+( j−1)S)]S

It may be noted that first and all higher order regressive models are equivalent to that of
the marginal multinomial logistic regression models shown in equation (4.2). Regressive
models for any order shown in equation (4.5) can be estimated using appropriate data
structure and usual SAS, STATA or R-package or other software capable of fitting multi-
nomial logistic regression. We used R software to do all the computations and ’multinom’
function of R package "nnet" is used to fit all the marginal and regressive multinomial
models.

4.2.6 Predictive models and joint probabilities

The predicted joint probabilities of P̂(Y1 = y1,Y2 = y2, ...,Yj = y j | xxx) can be obtained as:

P̂(Y1 = y1,Y2 = y2, ...,YJ = yJ | xxx) = P̂(Y1 = y1 | xxx)×, ...,×
P̂(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;xxx)× P̂(Y2 = y2 | Y1 = y1;xxx)

= P̂y1(xxx)× P̂y2.y1(xxx)× ...× P̂s.y j−1,...,y1(xxx). (4.6)

Based on the equation (4.6) the predicted joint probabilities for Y1 and Y2 is

P̂y1,y2(xxx) = P̂(Y1 = y1,Y2 = y2 | xxx),

the conditional probability for Y2 = s given Y1 and xxx is

P̂s.y1(xxx) = P̂(Y2 = s, | Y1 = y1;xxx),

and the marginal probability for Y1 given xxx is

P̂y1(xxx) = P(Y1 = y1 | xxx).

The joint probabilities can be predicted using marginal and conditional probabilities as:

P̂(Y1 = y1,Y2 = y2 | xxx) = P̂(Y1 = y1 | xxx)× P̂(Y2 = s, | Y1 = y1;xxx)

=⇒ P̂y1,y2(xxx) = P̂y1(xxx)× P̂s.y1(xxx).
(4.7)
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Then for outcomes y1, y2 with categories 0,1 and 2 and using equation (4.7) we can predict
joint probabilities from conditional and marginal probabilities as follows:

P̂(Y1 = y1,Y2 = s | xxx) = P̂(Y1 = y1;xxx)× P̂(Y2 = s | Y1 = y1;xxx),

s = 0,1,2; y1 = 0,1,2; j = 1,2.

Similarly, for j-th outcomes y1,y2, ...,y j we can predict joint probabilities using marginal
and conditional probabilities as:

P̂(Y1 = y1,Y2 = y2, ...,YJ = s | xxx) = P̂(Y1 = y1;xxx)× P̂(Y2 = y2 | Y1 = y1;xxx)

× ...× P̂(YJ = s | Yj−1 = y j−1, ...,Y1 = y1;xxx), s = 0,1,2;

y1, ...y j−1 = 0,1,2; j = 1,2, ...,J.

4.3 Tests

The prediction of the joint probability of events is based on the joint model, hence, we
need to check the goodness-of-fit of the joint model. It is also of interests to check the
association (independence) of repeated outcomes.

4.3.1 Independence of outcomes Y1 and Y2

The observed counts of Y1 and Y2 from two follow-ups each with 3 categories (s = 0,1,2)
as defined in Section (4.2.1) will produce 9(= 3.3) possible outcomes which can be shown
as a 3× 3 cross-classification table using Y1 as row and Y2 as column variables. Let,
nab and eab are observed and expected cell frequencies. The subscripts a (a = 0,1,2)
and b (b = 0,1,2) denotes the categories of Y1 and Y2 and na+, n+b, ea+ and e+b are
the marginal totals of observed and expected frequencies corresponding to Y1 and Y2.
Assuming cell counts follow a multinomial sampling and joint probability pab of (Y1,Y2)
with the restriction ∑

a
∑
b

eab = n, the null hypothesis (H0 :) is the statistical independence

(Agresti, 2013) of Y1 and Y2. Under the null hypothesis H0 :

pab = pa+p+b, for all a and b, (4.8)

where pa+ = na+/n and p+b = n+b/n are the marginal probabilities corresponding to Y1

and Y2.

Under the null hypothesis (H0 :); eab = E(nab) = npa+p+b. The estimates of the unknown
marginal probability can be obtained from the marginal model shown in equation (4.2).
Those are p̂a+ = P̂y1(zzz) and p̂+b = P̂y2(zzz). Then êab = np̂a+ p̂+b.
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In the presence of independent variables in the model there will be covariate patterns.
Long (1997) proposed to use the mean predicted probability for each count after control-
ling for independent variables empirically. Islam and Chowdhury (2017) showed model
based marginal probabilities can be estimated directly from multinomial distribution. As-
suming cell counts follow the Poisson distribution they used the connection between Pois-
son and multinomial distribution to obtain the predicted probabilities for categories of Y1

or Y2 (Islam and Chowdhury, 2017).

4.3.2 Pearson X2 statistic

Using the observed and expected frequencies the Pearson X2 statistic to test the null hy-
pothesis of independence (H0) is:

X2 = ∑
a

∑
b

(nab− êab)
2

êab
, (4.9)

4.3.3 Likelihood-ratio chi-squared statistic

The deviance G2 can be used to test the above hypothesis. The deviance can be shown as:

G2 = 2∑
a

∑
b

nablog
(

nab

êab

)
, (4.10)

both the statistics X2 and G2 using model based estimates are asymptotically distributed as
χ2 with (3−1)(3−1) = 4 degrees of freedom assuming total n fixed for each marginal.

Both the statistics X2 and G2 readily generalizes for more than two outcomes. For out-
comes Y1, Y2 and Y3 the estimates of joint probability pabc can be obtained from marginal
probabilities of Y1, Y2 and Y3 as p̂abc = P̂y1(zzz)P̂y2(zzz)P̂y3(zzz). Then êabc = np̂abc. Using ob-
served frequency nabc and expected frequency êabc both the test statistics can be calculated
as usual manner.

4.3.4 Tests for goodness-of-fit of the joint model of Y1 and Y2

In equation (4.1) the joint model shown is based on marginal and conditional models as a
function of covariates to predict the sequence of events. A goodness-of-fit test is needed
to assess the suitability of such models. The null hypothesis is, H0 : the fitted model is
correct. The observed (nab) and expected (eab) frequencies of joint outcome of Y1 and Y2

is same as defined previously. The joint probability pab can be obtain using the marginal
and conditional probabilities as

pab = pa+pb|a, for all a and b (4.11)



Chapter 4. Goodness-of-fit Test of Joint Model for a Sequence of Multinomial Outcomes from
Repeated Measures

66

where, pb|a is the conditional probability, i.e., the probability of classification in column
b of Y2 given that a subject is classified in row a of Y1 and pa+ is marginal probabilities
of Y1. The quantities eab = npab are expected frequencies, where

∑
a

∑
b

pab = 1, ∑
a

∑
b

eab = n.

Islam and Chowdhury (2017) proposed a goodness-of-fit test for repeated measures by
estimating the joint probabilities using model based marginal and conditional probabili-
ties. They showed that both the marginal probabilities of Y1 and conditional probabilities
of Y2 for any given value of Y1 follow multinomial distribution.

The estimated joint probability is p̂ab = P̂y1(zzz)P̂y2.y1(zzz), where P̂y1(xxx) is estimated from
marginal model and y1 = s in equation (4.2). P̂y2.y1(xxx) is estimated from first order re-
gressive model in equation (4.3). It may be noted that y2 = s in equation (4.3). Then the
estimated expected frequency is, êab = np̂ab. The Pearson X2 and likelihood ratio G2 can
be calculated similarly shown in equations (4.9) and (4.10). Both the statistics X2 and G2

are asymptotically distributed as χ2 with (3− 1)(3− 1) = 4 degrees of freedom as we
are using the restriction for both the marginal and conditional models as ∑a p̂a+ = n and
∑b p̂b|a = n for all a.

In the presence of covariates pattern one can use the predicted empirical means proposed
by Long (1997). Alternatively, we can used the predicted probabilities shown by Islam
and Chowdhury (2017) using the connection between the Poisson and multinomial.

4.3.5 Goodness-of-fit test of joint model for Y1, Y2 and Y3

The proposed method of goodness-of-fit in previous section readily generalizes for more
than two outcomes. For example, three repeated outcomes Y1, Y2 and Y3 each with cate-
gories s = 0,1,2, the expected frequencies pabc can be estimated as:

p̂abc = P̂y1,y2,y3(xxx) = P̂y1(xxx)P̂y2.y1(xxx)P̂y3.y2,y1(xxx).

The estimated marginal probabilities for Y1 can be obtained from the fitted marginal mod-
els shown in equation (4.2) and the estimated conditional probabilities from the fitted first
and second order regressive models shown in equations (4.3) and (4.4), respectively. The
estimated expected frequencies is then êabc = npabc and the Pearson X2 statistic is:

X2 = ∑
a

∑
b

∑
c

(nabc− êabc)
2

êabc
, (4.12)
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and the deviance G2 can be shown as:

G2 = 2∑
a

∑
b

∑
c

nabclog
(

nabc

êabc

)
, (4.13)

both the statistics X2 and G2 using model based estimates are asymptotically distributed
as χ2 with (3− 1)(3− 1)(3− 1) = 8 degrees of freedom due to single restriction on
marginal and conditional models as shown previously.

4.3.6 Significance of the joint model

The significance of the joint model can be tested using likelihood ratio test between joint
constant only model (Reduced) and joint full model (Full) as follows:

−2
[
lnLReduced(β̂ββ 000)− lnLFull(β̂ββ )

]
(4.14)

which is distributed asymptotically as χ2 with [{(p+ 1)S}+ {(p+ 1+ S)S}+ {(p+
1+2S)S}+ ...+{p+1+( j−1)S}S]− jS degrees of freedom. Here β̂ββ

′′′
000 includes all the

regression parameters from the constant only joint model and β̂ββ
′′′
111 includes all the param-

eters from the full joint model. The above test can be extended to test the significance
of a set of covariates which is important especially for the case where there is a group of
covariates to choose from.

4.4 Application

For the application we used data from wave (follow-ups) six to eight from the Health and
Retirement Study (HRS, 2014). At wave six minimum age of the respondents was 60.
In wave one, a total of 12652 subjects were interviewed in the HRS cohort out of which
9762 were age eligible (those with birth years 1931-1941). After removal of cases with
missing values for outcome variable at wave six, the number of subjects is 7130. The
outcome variables are Activity of Daily Living Index (ADL) from wave six to wave eight
(Y1,Y2,Y3). This index is the sum of five tasks (yes/no) ranging from 0 to 5: whether re-
spondents faced difficulties in walking, dressing, bathing, eating and getting in/out of bed.
Due to small frequencies 3 and higher values were coded as 2. The explanatory variables
considered are: age (in years), marital status (married/partnered=1, single/separated=0),
whether drink (yes=1, no=0), sex (male=1, female=0), number of conditions ever had
(N.cond) ranges from 0 to 8, White (yes=1, no=0), Black (yes=1, no=0) with others as
reference category, education (in years) and veteran status (1=yes, 0= no). The variable
drink indicates whether the respondent drinks alcoholic beverages. Table 4.2 displays the
frequency distribution of the outcomes for different waves.
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TABLE 4.2: Distribution of Activity of Daily Living Index.

Outcomes
Outcome Y1 Y2 Y3

Value N % N % N %
0 6210 87.1 5906 86.7 5459 84.9
1 477 6.7 462 6.8 503 7.8
2 443 6.2 445 6.5 467 7.3

Total 7130 100.0 6813 100.0 6429 100.0

We assumed outcomes as nominal variables for application purpose. Parameter estimates
along with standard error and significance level for marginal and regressive models are
shown in Table 4.3. Various predictors are found to be significantly associated with out-
come variables for different models. All dummy indicators for previous outcomes are
significantly and positively associated with the current outcomes. Likelihood ratio test
for the joint model is statistically significant (p < 0.001) as shown in Table 4.4. The pre-
diction accuracy based on confusion matrix for full data and training (70% sample) data
and test (30% sample) data varies between 0.86 to 0.89 which is reasonably high (Table
4.4). Parameters estimated from training data set were applied to test data set to predict
the outcome. Also, accuracy from full, training and test data are very close, which shows
the absence of over(under)fitting for all the models.

4.4.1 Tests for independence of outcomes

Both the statistics X2 and G2 showed highly significant (p < 0.001) association between
Y1 and Y2 (Table 4.5). The association between Y1, Y2 and Y3 are also found to by highly
significant (p < 0.001) as shown by both the statistics X2 and G2 (Table 4.6) implying
dependence in outcome variables.

4.4.2 Tests for goodness-of-fit for joint model

For joint model P(Y1,Y2 | XXX) both the X2 and G2 statistics showed a good-fit (p = 0.357)
as shown in Table 4.7. The accuracy of joint model is also found to be high (0.866).
However, for the joint model P(Y1,Y2,Y3 | XXX) the null hypothesis of the good-fit were
found to be rejected (p < 0.001) by both the statistics X2 and G2 (Table 4.8). The joint
model accuracy for prediction is computed up to the last follow-up which is shown at the
end of Table 4.8. The overall accuracy of the joint model for outcomes Y1, Y2 and Y3 is
0.79 but appears to be higher (0.89) for Y2 and Y3 if Y1 = 0. The accuracies between Y2

and Y3 are relatively lower for Y1 = 1 and Y1 = 2. The high accuracy for Y1 = 0 may be
attributed to the subjects starting without any ADL difficulties. This better prediction is
a meaningful finding, because if someone starts without any ADL difficulties, then it is
expected that the prediction would be affected less as compared to those who start initially
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with minor or severe ADL difficulties at the beginning that might be subject to carryover
effect.

4.5 Bootstrapping

To measure the accuracy of sample estimates and proposed test statistics, bootstrapping
is used. We performed 10,000 bootstraps and computed bias, standard error, and mean
squared error for estimates. Bias is estimated as B(θ̂ ) = E(θ̂ )−θ where θ̂ is an estimator
of parameter θ and mean squared error is estimated as MSE(θ̂ ) = E(θ̂ −θ )2. Estimates
from Table 4.3 are considered as population parameters while bias, standard error and
mean squared error are computed. Bias is very small generally (less than 1 percent) for
the estimators of parameters of all models. Standard error and mean squared errors are
also found to be very small (Table 4.9-4.10). For both marginal and regressive models,
convergence are achieved for all 10,000 bootstrap samples. Density plot for all bootstrap
estimates of parameters for all models are shown in Figure 4.2 to Figure 4.6.

For the test for independence of Y1 and Y2 and goodness-of-fit of joint model P(Y1,Y2 |
XXX), 9976 bootstrap samples showed valid computation of tests statistic. For remaining
24 bootstrap samples some cells frequencies were empty hence test statistics could not
be computed. Test of independence were significant (p < 0.05) for all 9976 bootstrap
samples. The bias for X2 was 11.77 with estimated standard error 140.6 and the bias
for G2 was 6.65 with estimated standard error 84.2. For goodness-of-fit statistic (X2)
only 38 bootstrap samples (0.38%) rejected the hypothesis of goodness-of-fit with 0.216
estimated bias and 1.582 estimated standard error. For (G2) only 70 bootstrap samples
(0.70%) rejected the hypothesis of goodness-of-fit with 0.230 estimated bias and 1.664
estimated standard error.

For three outcomes (Y1,Y2,Y3), 9976 and 9973 bootstrap samples produced valid test
statistics for test of independence, X2 and G2, respectively. All 9976 bootstrap sam-
ples for X2 and 9973 bootstrap samples for G2 showed significant (p < 0.05) association
between outcomes Y1,Y2,Y3. The estimated bias and standard error of X2 are 136.9 and
1241.1. For G2 these are 23.46 and 143.42. For goodness-of-fit-test, out of 10000 boot-
strap samples 9949 valid X2 and 9947 valid G2 were produced. For X2 among 9949
bootstrap samples 9944 (99.95%) rejected the hypothesis of goodness-of-fit and for G2

among 9947 bootstrap samples 9944 (99.97%) rejected the hypothesis of goodness-of-fit.
The estimated bias and standard error of X2 are 8.241 and 8.680. For G2 these are 9.085
and 9.385.
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TABLE 4.4: Model statistics for marginal and regressive models.

Out- Constant only model Full model L.R.T
comes Log L. Dev. AIC Log L. Dev. AIC p.v. (d.f.)

Y1 -3378.9 6757.7 6761.7 -2921.5 5842.9 5882.9 0.000 (18)
Y2 -3195.9 6391.7 6395.7 -2309.0 4618.0 4666.0 0.000 (22)
Y3 -3283.0 6566.0 6570.0 -2244.9 4489.8 4545.8 0.000 (26)

Joint
model -19300.8 38601.4 38625.4 -13518.2 27036.3 27396.3 0.000 (72)

Accuracy
Model All Train Test

P(Y1 | XXX) 0.873 0.871 0.878
P(Y2 | Y1;XXX) 0.887 0.887 0.881

P(Y3 | Y2,Y1;XXX) 0.878 0.878 0.875

TABLE 4.5: Observed and expected frequencies for independence test of Y1 and
Y2.

Y2
0 1 2 Total

Y1 nab êab nab êab nab êab nab êab

0 5412 4997 268 390 121 373 5801 5761
1 247 384 108 30 88 29 443 443
2 79 357 72 28 220 27 371 411

Total 5738 5739 448 448 429 429 6615 6615
X2 2305.92 (d.f=4, p<0.001) G2 1471.81 (d.f=4, p<0.001)

Note: Expected frequencies are rounded to zero decimal place

TABLE 4.6: Observed and expected frequencies for independence test of Y1, Y2
and Y3.

Y3
0 1 2 Total

Y1 Y2 nabc êabc nabc êabc nabc êabc nabc êabc

0 0 4728 4624 231 234 100 98 5059 4956
1 137 156 59 55 38 34 234 245
2 35 37 21 25 36 50 92 111

1 0 161 168 43 40 21 20 225 228
1 38 33 38 41 24 26 100 100
2 10 11 22 24 44 46 76 81

2 0 42 50 16 14 14 17 72 81
1 21 16 17 23 27 35 65 74
2 9 17 27 35 140 173 176 224

Total 6099 6099
X2 14357.2 (d.f=8, p<0.001) G2 3046.5 (d.f=8, p<0.001)

Note: Expected frequencies are rounded to zero decimal place



Chapter 4. Goodness-of-fit Test of Joint Model for a Sequence of Multinomial Outcomes from
Repeated Measures

72

TABLE 4.7: Goodness-of-fit test for joint model P(Y1,Y2 | XXX).

Y2
0 1 2 Total

Y1 nab êab nab êab nab êab nab êab

0 5412 5375 268 266 121 120 5801 5761
1 247 247 108 108 88 88 443 443
2 79 88 72 80 220 243 371 411

Total 5738 5710 448 454 429 452 6615 6615

X2 4.24 (d.f=4, p<0.357) G2 (4.38 d.f=4, p<0.357)

Accuracy 0.8657
Note: Expected frequencies are rounded to zero decimal place

TABLE 4.8: Goodness-of-fit test for joint model P(Y1,Y2,Y3 | XXX).

Y3
0 1 2 Total

Y1 Y2 nabc êabc nabc êabc nabc êabc nabc êabc

0 0 4728 4624 231 234 100 98 5059 4956
1 137 156 59 55 38 34 234 245
2 35 37 21 25 36 50 92 111

1 0 161 168 43 40 21 20 225 228
1 38 33 38 41 24 26 100 100
2 10 11 22 24 44 46 76 81

2 0 42 50 16 14 14 17 72 81
1 21 16 17 23 27 35 65 74
2 9 17 27 35 140 173 176 224

Total 6099 6099
X2 30.6 (d.f=8, p<0.001) G2 (32.6 d.f=8, p<0.001)

Overall Accuracy 0.7932
Accuracy between Y2 and Y3 for Y1 = 0 0.8901
Accuracy between Y2 and Y3 for Y1 = 1 0.6235
Accuracy between Y2 and Y3 for Y1 = 2 0.6674
Note: Expected frequencies are rounded to zero decimal place
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4.6 Conclusions

Use of multinomial outcomes from repeated measures data to predict the risk of a se-
quence of events are growing in recent years. Markov chain is used to link the marginal
and conditional probabilities for estimating joint probability of a sequence of events. Con-
ditional probabilities can be obtained using conditional models or regressive models. The
goodness-of-fit of the joint model need to be checked for model performance. In this pa-
per, we proposed a goodness-of-fit test for joint model obtained by linking marginal and
conditional models. Tests for the independence of repeated outcomes are also shown.
Application of the proposed tests are shown using the HRS data from the USA. Ac-
tivity of Daily Living Index (ADL) from follow-up six to eight (Y1,Y2,Y3) are used as
multinomial outcome variables. Test of independence of outcomes showed significant
departure from null hypothesis for both bi-variate and tri-variate outcomes. The hypoth-
esis of goodness-of-fit is not rejected for the joint model P̂(Y1,Y2 | XXX). However, for the
joint model P̂(Y1,Y2,Y3 | XXX) for the selected covariates the hypothesis for goodness-of-
fit is rejected. The acceptance of the hypothesis of goodness-of-fit for the joint model
P̂(Y1,Y2 | XXX) and rejection for the joint model P̂(Y1,Y2,Y3 | XXX) are also confirmed by the
bootstrap simulation results.

To measure the performance of the test statistics and regression parameters 10000 boot-
strap simulation is performed. Bootstrap estimates of the most of the regression param-
eters showed less than 1 percent bias along with the low estimated standard errors. Both
the test statistics (X2 and G2) from all bootstrap sample for independence showed sig-
nificance association for two and three outcomes. This is in line with the significant
result found from full sample (Table 4.5 and Table 4.6). Bootstrap estimates of both the
goodness-of-fit statistics (X2 and G2) were in agreement to those from Table 4.7 and Table
4.8). The proposed tests readily generalize for more than three outcomes and can easily
be performed using existing software.
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TABLE 4.10: Bootstrap parameter estimates for second order regressive model.

P̂(Y3 | Y1,Y2;XXX)
Variables Category 1 Category 2

B̂ias Ŝ.E. M̂SE B̂ias Ŝ.E. M̂SE
Constant -0.071 1.270 1.617 -0.067 1.615 2.614
Age 0.000 0.017 0.000 0.000 0.022 0.001
Mstat 0.003 0.118 0.014 -0.002 0.152 0.023
N.cond 0.002 0.038 0.001 0.003 0.048 0.002
Drink -0.002 0.112 0.013 -0.006 0.148 0.022
Gender -0.004 0.141 0.020 -0.004 0.184 0.034
White 0.039 0.338 0.116 0.026 0.337 0.114
Black 0.036 0.352 0.125 0.026 0.350 0.124
Education 0.000 0.018 0.000 -0.001 0.022 0.001
Veteran 0.000 0.161 0.026 -0.001 0.225 0.051
D61 0.004 0.162 0.026 0.001 0.193 0.037
D62 -0.000 0.230 0.053 0.013 0.219 0.048
D71 0.006 0.155 0.024 0.008 0.190 0.036
D72 0.013 0.221 0.049 0.032 0.210 0.045
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FIGURE 4.2: Density plot of bootstrap estimates for marginal model P(Y1 | XXX).
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FIGURE 4.3: Density plot of bootstrap estimates for regressive model P(Y2 = 1 | Y1;XXX).
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FIGURE 4.4: Density plot of bootstrap estimates for regressive model P(Y2 = 2 | Y1;XXX).
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FIGURE 4.5: Density plot of bootstrap estimates for regressive model P(Y3 = 1 | Y1,Y2;XXX).



Chapter 4. Goodness-of-fit Test of Joint Model for a Sequence of Multinomial Outcomes from
Repeated Measures

77

Level 2: Constant

D
en

si
ty

−10 −8 −6 −4 −2 0

0.
00

0.
25

Level 2: Age
D

en
si

ty
−0.05 0.00 0.05 0.10

0
10

Level 2: Mstat

D
en

si
ty

−0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

2.
0

Level 2: N.cond

D
en

si
ty

0.3 0.4 0.5 0.6

0
4

8

Level 2: Drink

D
en

si
ty

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0.
0

2.
0

Level 2: Gender

D
en

si
ty

−0.5 0.0 0.5

0.
0

1.
5

Level 2: White

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

1.
0

Level 2: Black

D
en

si
ty

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
8

Level 2: Educ.

D
en

si
ty

−0.15 −0.10 −0.05 0.00

0
10

Level 2: Veteran

D
en

si
ty

−1.0 −0.5 0.0 0.5

0.
0

1.
5

Level 2: D11

D
en

si
ty

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.
0

1.
5

Level 2: D12

D
en

si
ty

3.0 3.5 4.0

0.
0

1.
5

Level 2: D21

D
en

si
ty

0.5 1.0 1.5

0.
0

1.
5

Level 2: D22

D
en

si
ty

1.5 2.0 2.5 3.0

0.
0

1.
5

FIGURE 4.6: Density plot of bootstrap estimates for regressive model P(Y3 = 2 | Y1,Y2;XXX).
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FIGURE 4.7: Density plot of bootstrap estimates for the test statistics.
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Chapter 5

Regressive Models for Risk Prediction
of a Sequence of Ordinal Outcomes
from Repeated Measures

5.1 Introduction

The ordinal outcomes from longitudinal studies are repeatedly observed over time and
increasingly uses in many fields of studies such as epidemiology, public health, genet-
ics, reliability, environmental studies, ecology. The outcomes may represent disease sta-
tus at different stages which can be viewed as a long sequences of discrete events over
time. The interest is to model an outcome at specific follow-up with risk factors and
status at previous outcomes recorded before that follow-up to understand the disease pro-
gression over time and risk of outcome prediction (Bodilsen et al., 2016; Barnes et al.,
2013; Wallace et al., 2014; Gundersen et al., 2009; Fox et al., 2016; Bovelstad et al.,
2009). Another growing area of interest is to predict the joint probability of a sequence
of events based on specified covariates vector (Wen et al., 2016; Islam and Chowdhury,
2010; Lee and Daniels, 2007; Miller et al., 2001; Liski and Nummi, 1996; Yu, 2003).
For example, physical activity may prospectively relate to the progression of functional
limitations and disability among elderly (Beddoes-Ley et al., 2016) and may increase the
utilization of health care services. Modeling these sequences, allow us to predict likely
future outcomes. The estimation and prediction resulting from a sequence of ordinal
outcomes based on specified covariates from repeated measures data is a challenge to
the researchers. To predict the joint probability of a sequence of outcomes we need to
examine the sequence of events during subsequent follow-ups using a joint model (multi-
variate) for ordinal outcomes. From an application point of view, a multivariate approach
is often complicated and would be difficult to develop for a large number of follow-ups
(Gottschau, 1994).

The multistate higher order Markov model (conditional model) can be used to study the
underlying dependence in consecutive follow-ups (Islam et al., 2009). Using this model
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one can investigate the relationship between recent outcomes and predictors including
previous outcomes status and risk could be calculated for a sequence of events (Islam
and Chowdhury, 2010; Islam et al., 2012). However, for a large number of repeated
outcomes, this approach involves fitting many conditional models which appear to be
restricted due to over-parameterization (Gottschau, 1994; Islam et al., 2013). Figure
5.1 displays three repeated outcomes each with three categories and twenty-seven pos-
sible trajectories (paths). To obtain the joint model, one needs to fit thirteen models,
one marginal model for the outcome at follow-up one or baseline, three first order and
nine-second order Markov models which could be computationally cumbersome and ex-
plodes for a large number of repeated outcomes (Gottschau, 1994; Islam et al., 2013).
Another choice is the regressive logistic models under the Markovian assumption which
include both binary outcomes in previous times in addition to covariates in the conditional
models proposed by various authors (Muenz and Rubinstein, 1985; Bonney, 1986, 1987;
Azzalini, 1994; Islam et al., 2004; Islam and Chowdhury, 2006, 2010; Islam et al., 2013;
Tripepi et al., 2013; Islam et al., 2014). Islam and Chowdhury (2010) proposed a regres-
sive logistic model to predict the joint probability of a sequence of binary outcomes based
on specified covariates which reduce the fitting of conditional models significantly.

Several types of regression models were proposed considering the ordinal nature of the
outcome, for example, mixed models or probit models (Walters et al., 2001; Lall et al.,
2002). The ordinal logistic regression models with different variants is a popular approach
to model ordinal response (McCullagh, 1980; McCullagh and Nelder, 1983; Anderson,
1984; Brant, 1990; Ananth and Kleinbaum, 1997; Hosmer and Lemeshow, 2000). For
example, proportional odds, partial proportional odds, continuation ratio, stereotype, ad-
jacent category, baseline category and multinomial regression models. However, these
are univariate models only for the single ordinal outcome.

At this backdrop, we proposed three regressive models for repeated ordinal outcomes and
joint model (multivariate) model is shown which are new developments. The proposed
model includes covariates, as well as the ordinal responses from previous follow-ups, and
a re-parameterization is suggested that reduces the number of parameter sets need to be
estimated. First, we propose proportional odds regressive model for repeated ordinal out-
comes by extending the POM model for a single outcome. For POM the proportional
odds assumption needs to be tested (Brant, 1990). Second, in the case of violations of
proportional odds assumption for some covariates, we proposed partial proportional odds
regressive model for repeated ordinal outcomes. Finally, the multinomial logistic regres-
sive model is shown for repeated ordinal outcomes by ignoring the ordinal nature of the
response variables. The risk for a sequence of events for specified covariates value is
estimated by linking marginal and conditional probabilities. Marginal probability is ob-
tained using proportional odds, partial proportional odds and multinomial models for the
outcome from the first follow-up or baseline. The conditional probabilities are estimated
from the proposed regressive models and the prediction of a sequence of outcomes is
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shown. A Goodness-of-fit test for the joint model is also proposed. Using data parti-
tioning (training and tests data) prediction accuracy is shown to check over(under)fitting.
Finally, an application is shown using follow-up data from the Health and Retirement
Study (HRS), in the USA.

5.2 Repeated Outcomes and Trajectories

Consider three repeated ordinal outcomes (Y1,Y2 and Y3) from a longitudinal study with
three categories (0,1,2). Figure 5.1 displays the possible transitions between three out-
come categories from three follow-ups. A total of twenty-seven distinct trajectories (paths)
are possible. Outcome categories are shown inside the rectangles. Here, first column
shows marginal probabilities and second onward are conditional probabilities.To model
such outcomes natural choice is proportional odds model (ordinal logistic regression) as-
suming proportional odds assumption holds. When this assumption violates partial pro-
portional odds, and multinomial logistic regression models are alternative choices among
others.

t1 t2 t3
Follow-up 1

P(Y1 = y1 | xxx)
Follow-up 2

P(Y2 = y2 | y1,xxx)
Follow-up 3

P(Y3 = s | y2,y1,xxx)

0 = no event 0 = no event 0 = no event

1 = event 1 1 = event 1 1 = event 1

2 = event 2 2 = event 2 2 = event 2

FIGURE 5.1: Transitions between states for regressive models.

5.2.1 Notations

Let Yi1,Yi2, ...,YiJi represent the past and present responses for i-th subject at j-th follow-
up where (i = 1,2, ...,n) and ( j = 1,2, ...,Ji), Ji is the number of follow-ups for subject i.
For simplicity, subscript i is omitted what follows next unless explicitly specified. Define,
Yj = s where (s = 0,1,2, ...,S) with S+1 outcome categories. The category 0 may denote
non-event.
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The joint probability mass function of Y1,Y2, ...,YJ with covariate vector XXX = xxx can be
expressed as:

P(Y1 = y1,Y2 = y2, · · · ,YJ = yJ | xxx) = P(Y1 = y1 | xxx)×P(Y2 = y2 | y1;xxx)

×·· ·×P(YJ = s | y1, · · · ,y j−1;xxx) = Py1(xxx)×Py2.y1(xxx)

×·· ·×Ps.y1 , · · · ,y j−1(xxx), (5.1)

where XXX ′ = [1,x1, ...,xp] is vector of covariates for a subject at first follow-up. It should
be noted that XXX = xxx can be time dependent. Where

P(Y1 = s | xxx) = Ps(xxx) is the marginal probability function of Y1 conditional on xxx;

P(YJ = s | y j−1;xxx) = Ps.y j−1(xxx) is the probability function of Yj conditional on y j−1 and xxx
of order one;

P(YJ = s | y j−2,y j−1;xxx) = Ps.y j−2,y j−1(xxx) is the probability function for Yj conditional on
y j−2,y j−1 and xxx of order two;

P(YJ = s | y1, ...,y j−2,y j−1;xxx) = Ps.y1,··· ,y j−2,y j−1(xxx) is the probability function of Yj condi-
tional on y1, ...,y j−1 and xxx of order k = j−1.

The unconditional probability of the left hand side of equation (5.1) is defined as:

P(Y1 = y1,Y2 = y2, ...,YJ = yJ | xxx) = Py1,y2,...,yJ (xxx).

The log-likelihood function of the joint mass function in (5.1) can be obtained as:

l(βββ ) =
n

∑
i=1

J

∑
j=1

lnP(Yi1 = yi1,Yi2 = yi2, · · · ,YiJ = yiJ | xxx)

=
n

∑
i=1

J

∑
j=1

[
lnP(Yi1 = yi1 | xxx)+ lnP(Yi2 = yi2 | yi1;xxx)

+ · · ·+ lnP(YiJ = s | yi1, · · · ,yi( j−1);xxx)
]

. (5.2)

5.2.2 Models

To obtain the joint model in Equation (5.1), we need to fit marginal and a series of con-
ditional models depending on the order of the joint model. Then we can estimate the
marginal and conditional probability from the marginal and conditional models and pre-
dict the joint probability with a specified covariates vector. In this Section, the alternative
marginal and conditional models as displayed in Equation (5.1) are proposed and the pre-
dictive and joint models are proposed later. With increasing number of follow-ups, a large
number of conditional models are required to fit which may be impractical or intractable.
A better choice is to use the regressive model from which conditional probability can be
estimated (Islam and Chowdhury, 2010). This approach requires to fit only one model for
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each repeated outcomes by incorporating previous outcomes as covariates along with the
risk factors. Following subsection details the proposed proportional odds regressive, par-
tial proportional odds regressive and regressive multinomial logistic models for repeated
ordinal outcomes.

5.2.3 Proportional odds model (POM)

Proportional odds model was proposed by McCullagh (1980) to analyze ordinal outcomes
as a function of covariates. The proportional odds model (POM), also known as the cumu-
lative odds or cumulative logit model is the most commonly used ordinal logistic model
which is based on cumulative probabilities. POM assumes that the coefficients that de-
scribe the relationship between the lowest versus all higher categories of the outcomes
are the same as those that describe the relationship between the next lowest category and
all higher categories (proportional odds assumption or the parallel regression assump-
tion). The proportional odds assumption needs to be tested (Brant, 1990). Fitting of POM
using baseline outcome as a function of covariates will provide a marginal model and
hence marginal probability. Let, the outcome Y1 having s categories (s = 0,1, · · · ,S)
with associated probabilities π0 +π1 + · · ·+πS and P(Y1 ≤ s) = π0 + · · ·+ πs where
P(Y1 ≤ 0) ≤ P(Y1 ≤ 1) ≤ ·· · ≤ P(Y1 ≤ S). Then the proportional odds model can be
shown as:

P(Y1 ≤ s | xxx) =
exp(α j−βββ

′′′
111XXX)

1+ exp(α j−βββ
′′′
111XXX)

, s = 1,2, · · · ,S (5.3)

or equivalently can be expressed in logit form as

logit[P(Y1 ≤ s | xxx)] = ln
[

π0 + · · ·+πs

πs+1 + · · ·+πS

]
= αs− (β1X1 + · · ·+βpXp)

= αs−βββ
′′′
111XXX (5.4)

where αs’s are the threshold parameters (cut points) and βββ 111 = [β1,β2, · · · ,βp]′ is the vec-
tor of regression coefficients corresponding to the covariate vectors XXX = [X1,X2, · · · ,Xp]′.
This model assumes that the effects of the covariates are same for all categories (propor-
tional odds). Then the marginal probability of s-th category is

Ps(xxx) = P(Y1 = s | xxx) = P(Y1 ≤ s+ 1 | xxx)−P(Y1 ≤ s | xxx), s = 0,1, · · · ,S. (5.5)

5.2.4 Proposed first order proportional odds regressive model

For first order conditional model, we need to fit three proportional odds models for Y2 as a
function of xxx by stratifying on Y1. However, as in regressive model (Islam and Chowdhury,
2010), we can fit single proportional odds model for Y2 as a function of xxx and Y1. Then
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from the fitted model, we can estimate the conditional probabilities for different categories
of Y2 given Y1 and xxx. Consider two repeated outcomes Y1 and Y2 each having s categories
(s = 0,1, · · · ,S). Then following Islam and Chowdhury (2010) the first order proportional
odds regressive model can be shown as:

logit[P(Y2 ≤ s | zzz)] = αs.y1− (β2.y11Z1 + · · ·+β2.y1 pZp +β2.y1(p+1)Z11

+ · · ·+β2.y1(p+S)Z1S) = αs.y1−βββ
′′′
2.y1

ZZZ, s = 1,2, · · · ,S (5.6)

above logit is conditional on the previous outcome Y1 and xxx where αs.y1’s are the threshold
parameters and

βββ 2.y1
= [β2.y11, · · · ,β2.y1 p,β2.y1(p+1), · · · ,β2.y1(p+S)]

′ (5.7)

is the vector of regression coefficients corresponding to the covariate vectors

ZZZ = [Z1, · · · ,Zp,Zp+1, · · · ,Zp+S]
′ = [XXX ′′′,DDD′′′] = [X1,X2, · · · ,Xp,D11, · · · ,D1S]

′. (5.8)

Here, D11,D12, · · · ,D1S are the dummy variables for categories 1,2, · · · ,S for Y1 with 0 as
the reference category. The conditional probability of s-th category is

Ps.y1(zzz) = P(Y2 = s | y1;xxx) = P(Y2 ≤ s+ 1 | y1;xxx)−P(Y2 ≤ s | y1;xxx),

s,y1 = 0,1, · · · ,S. (5.9)

5.2.5 Proposed second order proportional odds regressive model

Similarly the second order proportional odds regressive model for outcomes Y1, Y2 and Y3

can be shown as:

logit[P(Y3 ≤ s | zzz)] = αs.y2− (β3.y21Z1 + · · ·+β3.y2 pZp +β3.y2(p+1)Zp+1

+ · · ·+β3.y2(p+S)Zp+S +β3.y2(p+S+1)Zp+S+1 + · · ·+

β3.y2(p+2S)Zp+2S) = αs.y2−βββ
′′′
3.y2

ZZZ, s = 1,2, · · · ,S (5.10)

logit in equation (5.10) is conditional on previous two outcomes Y1 and Y2 and xxx where
αs.y2’s are the threshold parameters and

βββ 3.y2
= [β3.y21, · · · ,β3.y2 p,β3.y2(p+1), · · · ,β3.y2(p+S),β3.y2(p+S+1)

, · · · ,β3.y2(p+2S)]
′ (5.11)

is the vector of regression coefficients corresponding to the covariate vectors

ZZZ = [Z1, · · · ,Zp,Zp+1, · · · ,Zp+S,Zp+S+1, · · · ,Zp+2S]
′

= [XXX ′′′,DDD′′′] = [X1,X2, · · · ,Xp,D11, · · · ,D1S,D21, · · · ,D2S]
′.

(5.12)
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Here, D11,D12, · · · ,D1S,D21, · · · ,D2S are the dummy variables for categories 1,2, · · · ,S
for Y1 and Y2 with 0 as the reference category. Then the conditional probability of s-th
category is

Ps.y1y2(zzz) = P(Y3 = s | y1,y2;xxx) = P(Y3 ≤ s+ 1 | y1,y2;xxx)

−P(Y3 ≤ s | y1,y2;xxx), s,y1,y2 = 0,1, · · · ,S. (5.13)

5.2.6 Proposed higher order proportional odds regressive model

Above regressive model readily generalizes for outcomes Y1,Y2, · · · ,Y j as:

logit[P(Yj ≤ s | zzz)] = αs.y j−1− (β j.y j−11Z1 + · · ·+β j.y j−1 pZp +β j.y j−1(p+1)Zp+1

+ · · ·+β j.y j−1(p+S)Zp+S +β j.y j−1(p+S+1)Zp+S+1 + · · ·+β j.y j−1(p+2S)Zp+2S

+ · · ·+β j.y j−1[p+( j−2)S+1]Zp+( j−2)S+1 + · · ·+β j.y j−1[p+( j−1)S]Zp+( j−1)S)

= αs.y j−1−βββ
′′′
j.y j−1

ZZZ, s = 1,2, · · · ,S (5.14)

where αs’s are the threshold parameters and

βββ j.y j−1
= [β j.y j−1 , · · · ,β j.y j−1 p,β j.y j−1(p+1) · · · ,βp+S,β j.y j−1(p+S+1), · · · ,βp+2S,

· · · ,β j.y j−1(p+2S), · · · ,β j.y j−1[p+( j−2)S+1], · · · ,β j.y j−1[p+( j−1)S]]
′ (5.15)

is the vector of regression coefficients corresponding to the covariate vectors

ZZZ = [Z1, · · · ,Zp,Zp+1, · · · ,Zp+S,Zp+S+1, · · · ,Zp+2S, · · · ,Zp+( j−2)S+1,

· · · ,Zp+( j−1)S]
′ = [XXX ′′′,DDD′′′] = [X1,X2, · · · ,Xp,D11, · · · ,D1S,D21, · · · ,

D2S,D( j−1)1, · · · ,D( j−1)S]
′. (5.16)

Here, D11, · · · ,D1S,D21, · · · ,D2S, · · · ,D( j−1)1, · · · ,D( j−1)S are the dummy variables for
categories 1,2, · · · ,S for Y1, · · ·Y j−1 with 0 as the reference category. Then the conditional
probability of s-th category is

Ps.y1y2,...,y j−1(zzz) = P(Y3 = s | y1,y2, ...,y j−1;xxx)

= P(Y3 ≤ s+ 1 | y1,y2, ...,y j−1;xxx)−P(Y3 ≤ s | y1,y2, ...,y j−1;xxx),

s,y1, · · · ,y j−1 = 0,1, · · · ,S. (5.17)

5.2.7 Partial proportional odds model (PPOM)

If the proportional odds assumption violates for some predictors then alternative models
are unconstrained or constrained partial proportional odds (Peterson and Harrell, 1990)
or multinomial logistic regression models among others (Agresti, 2013; Hosmer and
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Lemeshow, 2013). The unconstrained partial proportional odds model (Peterson and Har-
rell, 1990) allows non-proportional odds for a subset of q predictors (q<p, p is the total
number of predictors in the model) for those proportional odds assumption violates. Then
the marginal model using baseline outcome can be shown as:

P(Y1 ≤ s | xxx) =
exp(α j−βββ

′′′
111XXX− γγγ ′sTTT )

1+ exp(α j−βββ
′′′
111XXX− γγγ ′sTTT )

, s = 1,2, · · · ,S. (5.18)

or equivalently can be expressed in logit form as

logit[P(Y1 ≤ s | xxx)] = αs−βββ
′′′
111XXX− γγγ

′
sTTT (5.19)

where αs are the cut points, TTT is the subset of covariates vector for which the proportional
odds assumption is violated and γs is a vector of regression coefficients corresponding to
the q covariates in TTT , βββ

′′′
111 is the vector of the regression coefficients of covariates those are

not in q. Then the marginal probability of s-th category can be obtained using equation
(5.5).

5.2.8 Proposed first order regressive PPOM

First order partial proportional odds regressive models for two repeated outcomes Y1 and
Y2 can be shown as

logit[P(Y2 ≤ s | zzz)] = α2.s−βββ
′′′
2.y1

ZZZ− γγγ
′
2.sTTT (5.20)

where α2.s are the cut points, TTT , γ2.s, βββ
′′′
2.y1

are equivalent as explained in equation (5.19)
and ZZZ is a covariates vector as defined in equation (5.8). The conditional probability of
s-th category of Y2 for given Y1 and xxx can be estimated using equation (5.9).

5.2.9 Proposed second order regressive PPOM

Similarly, for outcomes Y1, Y2 and Y3 the second order regressive PPOM can be shown as

logit[P(Y3 ≤ s | zzz)] = α3.s−βββ
′′′
3.y2

ZZZ− γγγ
′
3.sTTT (5.21)

where α3.s are the cut points, TTT , γ3.s, βββ
′′′
3.y2

are equivalent as explained in equation (5.19)
and ZZZ is a covariates vector as defined in equation (5.11). The conditional probability of
s-th category can be estimated using equation (5.13).
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5.2.10 Proposed higher order regressive PPOM

Higher order regressive PPOM for Y1, · · · ,Yj can be shown as

logit[P(Yj ≤ s | zzz)] = α j.s−βββ
′′′
j.y j−1

ZZZ− γγγ
′
j.sTTT (5.22)

where α j.s are the cut points, TTT , γ j.s, βββ
′′′
j.y j−1

are equivalent as explained in equation (5.19)
and ZZZ is a covariates vector as defined in equation (5.15). The conditional probability of
s-th category can be estimated using equation (5.17).

5.2.11 Multinomial logistic regression model (MNOM)

Multinomial logistic regression disregards the ordering of the outcome categories (Agresti,
2013; Hosmer and Lemeshow, 2013). For baseline outcome Y1 with categories (s =
0, · · · ,S) the marginal multinomial logistic regression model P(Y1 = y1 | xxx) as a function
of covariates xxx can be shown as

Ps(xxx) = P(Y1 = s | xxx) = e(βββ
′′′
sXXX)

S
∑

s=0
e(βββ

′′′
sXXX)

=
egs(XXX)

S
∑

s=0
egs(XXX)

, s = 0,1, · · · ,S, (5.23)

where gs(XXX) = βs0 +βs1X1 + ...+βspXp, s = 1, · · · ,S,

and XXX ′ = [1,X1, ...,Xp] is a covariates vector and βββ
′
sss = [βs0,βs1, ...,βsp] are the parameter

vectors of the s-th component for outcome Y1 totaling a [(p+1)S] regression coefficients.

5.2.12 Proposed first order regressive multinomial logistic model

For outcomes Y1 and Y2 the first order regressive multinomial logistic model P(Y2 | y1;zzz)
can be shown as:

Ps.y1(zzz) = P(Y2 = s | y1;zzz) =
egs.y1 (ZZZ)

S
∑

s=0
egs.y1 (ZZZ)

, s,y1 = 0,1, · · · ,S, (5.24)

where

gs.y1(ZZZ) =βs.y10 +βs.y11Z1 + ...+βs.y1 pZp +βs.y1(p+1)Zp+1 + · · ·

+βs.y1(p+S)Zp+S, s = 1,2, · · · ,S and

ZZZ′′′= [1,Z1, ...,Zp,Zp+1, · · · ,Zp+S] = [XXX ′′′,DDD′′′] = [1,X1, ...,Xp,D11, · · · ,D1S]. Here D11, · · · ,D12

are the dummy variables for categories 1, · · · ,2 of outcome Y1 with 0 as the reference cat-
egory and producing a total of [(p+ 1)+ S]S regression coefficients.
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5.2.13 Proposed second order regressive multinomial logistic model

The second order regressive multinomial logistic model P(Y3 | y1,y2;zzz) can be shown as:

Ps.y1,y2(zzz) = P(Y3 = s | y1,y2;zzz) =
egs.y2 (ZZZ)

S
∑

s=0
egs.y2 (ZZZ)

, s = 0,1, · · · ,S, (5.25)

where

gs.y2(ZZZ) = βs.y20 +βs.y21Z1 + ...+βs.y2 pZp +βs.y2(p+1)Zp+1 + · · ·

+βs.y2(p+S)Zp+S +βs.y2(p+S+1)Zp+S+1 + · · ·+βs.y2(p+2S)Zp+2S,

s = 1, · · · ,S, and

ZZZ′′′ = [1,Z1, ...,Zp,Zp+1, · · · ,Zp+S,Zp+S+1, · · · ,Zp+2S]

=
[
XXX ′′′,DDD′′′

]
= [1,X1, ...,Xp,D11, · · · ,D1S,D21, · · · ,D2S] . (5.26)

Here D11, · · · ,D1S are the dummy variables for categories 1, · · · ,S of outcome Y1 and
D21, · · · ,D2S are the dummy variables for categories 1, · · · ,S of outcome Y2 with 0 as the
reference category and producing a total of [(p+ 1)+ 2S]S regression coefficients.

5.2.14 Proposed higher order regressive multinomial logistic model

For outcomes Y1, · · · ,Yj higher order regressive multinomial logistic model can be shown
as

Ps.y1,...,y j−1(zzz) = P(Y j = s | y1, · · · ,y j−1;zzz) =
egs.y j−1 (ZZZ)

S
∑

s=0
egs.y j−1 (ZZZ)

,

s = 0,1,2, ...,S, (5.27)

where

gs.y j−1(ZZZ) = βs.y j−10 +βs.y j−11Z1 + ...+βs.y j−1 pZp +βs.y j−1(p+1)Zp+1

+ ...+βs.y j−1(p+S)Zp+S +βs.y j−1(p+S+1)Zp+S+1 + ...+

βs.y j−1(p+2S)Zp+2S + ...+βs.y j−1[p+( j−1)S+1]Z[p+( j−1)S+1]+ ...+

βs.y j−1[p+( j−1)S+S]Z[p+( j−1)S+S], s = 1,2, ...,S, j > 1 (5.28)
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and

ZZZ′′′ =
[
1,Z1, ...,Zp,Zp+1, ...,Zp+S,Zp+S+1, ...,Zp+2S, ...,Z[p+( j−1)S+1], ...,

Z[p+( j−1)S+S]

]
=
[
XXX ′′′,DDD′′′

]
=[

1,X1, ...,Xp,D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S

]
.

Here, D11, ...,D1S,D21, ...,D2S, ...,D( j−1)1, ...,D( j−1)S are the dummy variables for cate-
gories 1,2, ...,S of outcomes Y1,Y2, ...,Yj−1 with 0 as the reference category, respectively.
There are [(p+ 1) + ( j− 1)S] regression coefficients for s-th component of the model
and with a total of [(p+ 1)+ ( j−1)S]S regression coefficients.

It may be noted that first and all higher order regressive models for POM, PPOM and
MNOM are equivalent to the corresponding marginal models shown in equations (5.3,
5.17 and 5.22). Regressive models for marginal or higher order can be estimated using
appropriate data structure and usual SAS, STATA or R-package or other software capable
of fitting all these model. It should be noted that the regressive model for binary outcomes
proposed earlier (Islam and Chowdhury, 2010; Bonney, 1986, 1987) are special case for
s=0,1.

5.2.15 Predictive models and joint probabilities

We can predict the risks of a sequence events from repeated measures for a subject with
specified covariates vector XXX∗ = xxx∗ for a particular trajectory as shown in the Figure 5.1.
The predicted joint probabilities of P̂(Y1 = y1,Y2 = y2, ...,Yj = y j | xxx∗) can be obtained
using predictive models as:

P̂(Y1 = y1,Y2 = y2, · · · ,YJ = yJ | xxx∗) = P̂(Y1 = y1 | xxx∗)× P̂(Y2 = y2 | y1;xxx∗)

×, · · · ,×P̂(YJ = s | y1, · · · ,y j−1;xxx∗) = P̂y1(xxx
∗)× P̂y2.y1(xxx

∗)×·· ·×
P̂s.y1,··· ,y j−1(xxx

∗). (5.29)

For simplicity, let the repeated outcomes have categories s = 0,1,2. Then using equation
(5.29) the predicted joint probabilities P(Y1 = y1,Y2 = y2 | xxx∗) is

P̂y1,y2(xxx
∗) = P̂(Y1 = y1,Y2 = y2 | xxx∗) = P̂(Y1 = y1 | xxx∗)× P̂(Y2 = s, | y1;xxx∗)

= P̂y1(xxx
∗)× P̂s.y1(xxx

∗), y1,y2 = 0,1,2. (5.30)

For POM model the predicted marginal probabilities P̂0(xxx∗); P̂1(xxx∗); P̂2(xxx∗) can be es-
timated from the fitted model shown in equation (5.4) and in equation (5.5). The first
order conditional probabilities P̂s.y1(xxx

∗) can be estimated from the fitted first order re-
gressive POM shown in equation (5.6) and equation (5.8) using covariates vector ZZZ =

[xxx∗,D11,D12]′ where D11,D12 = 0,1. For example, P̂1.0(xxx∗) and P̂2.0(xxx∗) are estimated
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using ZZZ = [xxx∗,0,0]′; P̂1.1(xxx∗) and P̂2.1(xxx∗) are estimated using ZZZ = [xxx∗,1,0]′; P̂1.2(xxx∗) and
P̂2.2(xxx∗) are estimated using ZZZ = [xxx∗,0,1]′ and so on. Then the joint probabilities for two
outcomes P̂00 = P̂0× P̂0.0; P̂01 = P̂0× P̂1.0 and P̂02 = P̂0× P̂2.0 and so on.

To estimate the joint probabilities P̂y1y2y3(xxx
∗), the required second order conditional prob-

abilities can be estimated using fitted POM model in (5.9) and equation in (5.13). For
example, P̂1.00(xxx∗) and P̂2.00(xxx∗) is estimated using ZZZ = [xxx∗,0,0,0,0]′; P̂1.10(xxx∗) and
P̂2.10(xxx∗) is estimated using ZZZ = [xxx∗,1,0,0,0]′ and P̂1.11(xxx∗) and P̂2.11(xxx∗) is estimated
using ZZZ = [xxx∗,1,0,1,0]′ and so on. Then the joint probabilities for three outcomes P̂000 =

P̂0× P̂0.0× P̂0.00; P̂001(xxx∗) = P̂0(xxx∗)× P̂0.0(xxx∗)× P̂1.00(xxx∗) and P̂002 = P̂0× P̂0.0× P̂2.00 and
so on.

Similarly, we can estimate the joint probabilities of a sequence of events by estimating
the marginal and conditional probabilities from partial proportional odds and multinomial
models, respectively.

5.3 Tests

5.3.1 Significance of the joint model

The significance of the joint model can be tested using likelihood ratio test between joint
constant only model (Reduced) and joint full model (Full) as follows:

= −2
[
lnLReduced(β̂ββ 000)− lnLFull(β̂ββ )

]
(5.31)

which is distributed asymptotically as χ2
(d).

The degrees of freedom (d) for three models are as follows:

dPOM =[{(p+ S)}+ {(p+ S+ S)}+ {(p+ 2S+ S)}+ ...+

{p+( j−1)S}+ S]− jS.

dPPOM = [{(p′+ S)}+ {(p′+ S+ S)}+ {(p′+ 2S+ S)}+ ...+

{p′+( j−1)S}+ S]− jS.

dMNOM = [{(p+ 1)S}+ {(p+ 1+ S)S}+ {(p+ 1+ 2S)S}+ ...+

{p+ 1+( j−1)S}S]− jS.

Here β̂ββ
′′′
000 includes all the regression parameters from the constant only joint model and β̂ββ

′′′

includes all the parameters from the full joint model. The degrees of freedom for different
models are shown in the following table.
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Number of parameters for different models.

Models Constant only s-th component Full
Proportional odds models
Marginal S [p+ S]
First order S [p+ S+ S]
Second order S [p+ 2S+ S]
... ... ... ...
j−1 th order S [(p+( j−1)S)+ S]
Partial proportional odds models
Marginal S [p′+ S]
First order S [p′+ S+ S]
Second order S [p′+ 2S+ S]
... ... ... ...
j−1 th order S [(p′+( j−1)S)+ S]
Multinomial logistic regression models
Marginal S [p+ 1] [p+ 1]S
First order S [p+ 1+ S] [p+ 1+ S]S
Second order S [p+ 1+ 2S] [p+ 1+ 2S]S
... ... ... ...
j−1 th order S [(p+ 1+( j−1)S)] [(p+ 1+( j−1)S)]S
Note: p′ will depends on the scale and number of covariates in TTT

5.3.2 Test for proportional odds assumption

One of the important assumptions of POM is proportional odds assumption which should
be tested. In this model, the regression coefficients for models from different cut points
are same, only threshold parameters varies. Likelihood ratio test (Peterson and Harrell,
1990) and Brant test (Brant, 1990) can be used to test the proportional odds assumption.
However, these tests have been criticized for having a tendency to reject the null hypoth-
esis (Harrell, 2001).

5.3.3 Goodness of fit

It is important to check the goodness of fit for all models to have a more precise esti-
mate and refined predictions. As all marginal and regressive models boil down to the
univariate case, we used available tests for goodness-of-fit. Lipsitz et al. (1996) pro-
posed a goodness-of fit test for ordinal response regression model. Fagerland et al. (2008)
proposed a goodness-of-fit test for multinomial logistic regression. Fagerland and Hos-
mer (2013) proposed another goodness-of-fit test for proportional odds regression model.
Also, the goodness-of-fit test for ordinal regression is applied to test the fit of the partial
proportional odds model.
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5.3.4 Proposed tests for goodness-of-fit of the joint model

All the above tests for goodness-of-fit are for a single outcome. Islam and Chowdhury
(2010) proposed a test for goodness of fit of the joint model for repeated binary outcomes.
They estimated the transition probabilities from the outcome status from previous time
point to the current time point and the current time point is considered as the end point.
The goodness of fit is tested at the endpoint of the joint model. Here we proposed a
test for repeated ordinal outcomes. The null hypothesis is, H0 : the fitted joint model is
correct. Both the Pearson and Likelihood-ratio χ2 statistics using observed and expected
frequencies from the joint model can be shown as

X2 =
S

∑
s=0

S

∑
s′=0

(nss′− êss′)
2

êss′
, s,s′ = 0,1, · · · ,S and (5.32)

G2 = 2
S

∑
s=0

S

∑
s′=0

nss′log
(

nss′

êss′

)
, s,s′ = 0,1, · · · ,S, (5.33)

where nss′ and êss′ are observed and expected transition counts at the end points, ∑nss′ = n,
êss′ = np̂ss′ . The joint probability p̂ss′ = P̂y1(xxx)P̂y2.y1(xxx), where P̂y1(xxx) and P̂y2.y1(xxx) are
estimated from fitted marginal and first order regressive models for POM or PPOM or
MNOM. We imposed a single restriction on total sample size n fixed summing total joint
probability to 1. Both the statistics X2 and G2 are asymptotically distributed as χ2 with
s j − 1 degrees of freedom where s j is the total number of end points (s = 0,1, · · · ,S;
j = 2, · · · ,J). Some instances there might not be any observed counts for a trajectory.
Then we can merge those end points with another trajectory. This test readily generalizes
for any number of repeated outcomes.

In the presence of covariates pattern one can use the predicted empirical means proposed
by Long (1997). Alternatively, we can used the predicted probabilities shown by Islam
and Chowdhury (2017) using the connection between the Poisson and multinomial. They
showed that both the marginal probabilities of Y1 and conditional probabilities of Y2 for
any given value of Y1 follow a multinomial distribution.

5.3.5 Proposed tests for order

We extended a test for binary outcomes proposed by Islam et al. (2009) to test the or-
der of the Markov model for ordinal outcomes. For k-th (k = j− 1) order regressive
model, dummy variables for each category except for reference level from previous j-1
outcomes are incorporated as the covariates to test the order of the model. For higher
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order regressive POM the null hypothesis is

H0 : β j.y j−1(p+1) = · · ·= βp+S = β j.y j−1(p+S+1) = · · ·= βp+2S = · · ·=

β j.y j−1(p+2S) = · · ·= β j.y j−1[p+( j−2)S+1]

= · · ·= β
′
j.y j−1[p+( j−1)S] = 0 (5.34)

which can be tested using following statistic:

−2
[
lnL(β̂ββ 111)− lnL(β̂ββ )

]
, (5.35)

is distributed asymptotically as χ2 with [p+( j−1)S+ S]−{( j−1)S}] degrees of free-
dom, [p+ ( j− 1)S+ S] is the total number of parameters of ( j− 1)th order regressive
model and ( j− 1)S are the number of previous outcomes y1, ...,y j−1 multiplied by the
number of dummy variables (S) for each outcome. Similarly, we can test the order for
PPOM and MNOM. Then the test can be performed as follows:

(i) The likelihood ratio test can be used to test the significance of the overall model at the
first stage.

(ii) The Wald test can be used to test the significance of the parameter(s) corresponding
to the previous outcomes as shown below:

5.3.6 Overfitting, underfitting and predictive accuracy

Good fit models with the better discriminative ability and predictive power are expected to
provide higher prediction accuracy. Predictive accuracy of models is estimated from con-
fusion matrix and over(under)fitting is evaluated using training and test data sets approach
(James et al., 2013, p. 21, 29).

5.4 Application

The panel data from the Health and Retirement Study (HRS), sponsored by the National
Institute of Aging (grant number NIA U01AG09740), conducted by the University of
Michigan (HRS, 2014) is used for the application. In wave one (first follow-up), a total
of 12652 subjects were interviewed in the HRS cohort. A total of six waves (follow-ups)
of the RAND version of the data from wave six (2002) to wave 11 (2012) is used for
this application. At the wave six minimum age of subjects were 60 years. The outcome
variables considered are Activity of Daily Living Index (ADL) based on Wallace and
Herzog (1995) from wave six to wave eleven (Y1, ...,Y6). This index is the sum of three
tasks (yes/no) ranging from 0 to 3: whether respondents faced difficulties in bathing,
dressing and eating. Due to small frequencies 3 was coded as 2. The explanatory variables
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considered are: age (in years), marital status (married/partnered=1, single/separated=0),
whether drink (yes=1, no=0), gender (male=1, female=0), number of conditions ever had
(N.cond) ranges from 0 to 8, White (yes=1, no=0), Black (yes=1, no=0) with others as
reference category, education (in years) and veteran status (1=yes, 0= no). The variable
drink indicates whether the respondent drinks alcoholic beverages. After removal of cases
with missing values for outcome variable at wave six, the number of subjects is 7130.
Table 5.1 displays the frequency distribution of the outcomes for different waves.

TABLE 5.1: Distribution of Activity of Daily Living Index, Waves 6-11.

Outcomes
Yj Y1 Y2 Y3 Y4 Y5 Y6
levels N % N % N % N % N % N %
0 6424 90.1 5934 89.7 5437 87.8 5125 87.2 4567 84.7 4252 84.7
1 439 6.2 416 6.3 482 7.8 436 7.4 455 8.4 449 8.9
2 267 3.7 265 4.0 273 4.4 317 5.4 370 6.9 317 6.4
Total 7130 100 6615 100 6192 100 5878 100 5392 100 5018 100

Parameter estimates, significance level, standard errors and Brant p-value to test propor-
tional odds assumption from POM for marginal and regressive models are shown in Table
5.2. Various predictors are found to be significantly associated with outcome variables
for different models. All dummy indicators for previous outcomes are significantly and
positively associated with the current outcomes except for fifth-order model. For fifth
order model D12, D21 and D32 were not statistically significant. The overall test for pro-
portional odds assumption was violated for all models. Specifically, for marginal model
proportional odds assumption were violated for marital status, drink habit and black sub-
jects. For other models, different variables violated this assumption. Parameter estimates,
standard errors and significance level from PPOM for marginal and regressive models are
shown in Table 5.3 and Table 5.4. The PPOM models were fitted to tackle the variables
those violated the proportional odds assumption in POM. Finally, we considered ordi-
nal outcomes as nominal and used multinomial logistic regression. Parameter estimates,
significance level, standard errors from MNOM for marginal and regressive models are
shown in Table 5.5 and Table 5.6. Various predictors are found to be significantly associ-
ated with outcome variables for different models. For all three fifth order models (POM,
PPOM, MNOM) dummy variables from the previous outcome (Y5) were statistically sig-
nificant justifies fifth order model. AIC for marginal and all higher order models were
lowest for PPOM followed by MNOM and POM.

Model statistics are shown in Table 5.7. Log-likelihood value for the constant only model
and full model for marginal and all higher order are shown for POM, PPOM, MNOM.
Likelihood ratio test between joint constant only and full models are statistically signifi-
cant (p < 0.001) for POM, PPOM, MNOM. The prediction accuracy based on confusion
matrix for full data and test and training data varies between 0.87 to 0.90 which is rea-
sonably high. Prediction accuracy for POM, PPOM and MNOM are overly similar. Also,
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TABLE 5.2: Parameter estimates of proportional odds models (POM) for different order.

Models
P(Y1 | XXX) P(Y2 | Y1;XXX) P(Y3 | Y1,Y2;XXX)

Variables
(XXX)

β̂1 Ŝ.E. Brant
p.v.

β̂2.1 Ŝ.E. Brant
p.v.

β̂3.12 Ŝ.E. Brant
p.v.

Age 0.008 0.013 0.22 0.007 0.015 0.32 0.031* 0.015 0.12
Mstat −0.380** 0.091 0.02 −0.336** 0.102 0.20 −0.203* 0.102 0.04
N.Cond 0.568** 0.029 0.19 0.398** 0.032 0.51 0.342** 0.032 0.19
Drink −0.578** 0.096 0.00 −0.354** 0.106 0.50 −0.263** 0.101 0.01
Gender 0.125 0.109 0.78 0.278* 0.120 0.25 0.163 0.122 0.76
White −0.401* 0.194 0.34 −0.155 0.224 0.17 −0.138 0.241 0.11
Black −0.085 0.205 0.04 0.028 0.238 0.35 0.197 0.254 0.55
Educ. −0.073** 0.013 0.33 −0.016 0.014 0.89 −0.070** 0.015 0.65
Veteran −0.207 0.134 0.22 −0.274 0.147 0.82 −0.115 0.146 0.56
D11 2.132** 0.118 0.01 1.093** 0.135 0.01
D12 3.725** 0.164 0.04 1.715** 0.195 0.87
D21 1.984** 0.127 0.17
D22 3.324** 0.186 0.86
Intercepts
0|1 2.426** 0.912 3.591** 1.054 4.591** 1.093
1|2 3.580** 0.913 5.017** 1.056 6.326** 1.097
Brant Overall 0.00 0.03 0.00

Models
P(Y4 | Y1,Y2,Y3;XXX) P(Y5 | Y1,Y2,Y3,Y4;XXX) P(Y6 | Y1,Y2,Y3,Y4,Y5;XXX)

Variables
(XXX)

β̂4.123 Ŝ.E. Brant
p.v.

β̂5.1234 Ŝ.E. Brant
p.v.

β̂6.12345 Ŝ.E. Brant
p.v.

Age 0.054** 0.016 0.71 0.065** 0.015 0.48 0.067** 0.016 0.41
Mstat −0.254* 0.106 0.00 −0.422** 0.101 0.31 −0.237* 0.109 0.98
N.Cond 0.310** 0.034 0.05 0.288** 0.033 0.77 0.332** 0.035 0.84
Drink −0.236* 0.108 0.00 −0.220* 0.101 0.06 −0.190 0.109 0.47
Gender 0.138 0.127 0.77 0.261* 0.124 0.27 0.303* 0.131 0.57
White 0.300 0.271 0.10 −0.188 0.239 0.29 −0.021 0.262 0.14
Black 0.429 0.286 0.14 −0.089 0.256 0.07 0.156 0.283 0.71
Educ. −0.059** 0.015 0.76 −0.058** 0.015 0.15 −0.047** 0.016 0.80
Veteran −0.079 0.151 0.08 0.105 0.140 0.02 −0.163 0.151 0.04
D11 0.747** 0.150 0.00 0.674** 0.157 0.03 0.568** 0.176 0.70
D12 1.076** 0.229 0.82 0.565* 0.269 0.21 0.373 0.302 0.60
D21 0.701** 0.153 0.12 0.475** 0.163 0.04 0.288 0.185 0.41
D22 1.691** 0.227 0.43 0.620* 0.291 0.31 0.740* 0.319 0.64
D31 1.745** 0.127 0.01 1.196** 0.139 0.00 0.382* 0.163 0.40
D32 3.147** 0.203 0.84 1.094** 0.253 0.31 0.230 0.285 0.30
D41 1.526** 0.132 0.07 0.861** 0.152 0.02
D42 3.051** 0.200 0.92 1.764** 0.233 0.20
D51 1.839** 0.132 0.08
D52 2.743** 0.180 0.01
Intercepts
0|1 6.825** 1.170 7.033** 1.161 8.027** 1.286
1|2 8.397** 1.174 8.455** 1.165 9.711** 1.291 0.00
Brant overall 0.00 0.00
* Signi�cant at 5% level; ** Signi�cant at 1% level.
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TABLE 5.3: Parameter estimates of partial proportional odds models (PPOM) for different order.

Models
P(Y1 | XXX) P(Y2 | Y1;XXX) P(Y3 | Y1,Y2;XXX)

Variables (XXX) β̂1 Ŝ.E. p.value β̂2.1 Ŝ.E. p.value β̂3.12 Ŝ.E. p.value

Threshold coefficients

0|1.Intercept 2.432 0.911 0.008 3.530 1.056 0.001 4.678 1.099 0.000
1|2.Intercept 3.438 0.914 0.000 4.920 1.060 0.000 5.919 1.103 0.000
0|1.Mstat 0.355 0.092 0.000 0.146 0.106 0.167
1|2.Mstat 0.619 0.133 0.000 0.524 0.161 0.001
0|1.Drink 0.560 0.097 0.000 0.194 0.103 0.061
1|2.Drink 1.002 0.173 0.000 0.710 0.179 0.000
0|1.Black 0.125 0.205 0.544
1|2.Black -0.203 0.226 0.369
0|1.D11 -2.216 0.122 0.000 -1.271 0.143 0.000
1|2.D11 -1.799 0.189 0.000 -0.603 0.205 0.003
0|1.D12 -3.392 0.181 0.000 -1.611 0.229 0.000
1|2.D12 -3.823 0.184 0.000 -1.634 0.229 0.000

Coefficients

Age 0.008 0.013 0.553 0.006 0.015 0.669 0.031 0.015 0.039
Mstat -0.339 0.102 0.001
N.Cond 0.563 0.029 0.000 0.401 0.032 0.000 0.341 0.032 0.000
Drink -0.351 0.106 0.001
Gender 0.126 0.109 0.246 0.287 0.120 0.017 0.162 0.122 0.187
White -0.399 0.194 0.039 -0.163 0.225 0.467 -0.162 0.243 0.503
Black 0.016 0.239 0.946 0.177 0.255 0.489
Educ. -0.073 0.013 0.000 -0.018 0.014 0.225 -0.071 0.015 0.000
Vateran -0.208 0.134 0.121 -0.280 0.147 0.057 -0.114 0.146 0.438
D11
D12
D21 1.986 0.127 0.000
D22 3.339 0.188 0.000
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TABLE 5.4: Parameter estimates of partial proportional odds models.

P(Y4 | Y1,Y2,Y3;XXX) P(Y5 | Y1,Y2,Y3,Y4;XXX) P(Y6 | Y1,Y2,Y3,Y4,Y5;XXX)

Variables (XXX) β̂4.123 Ŝ.E. p.value β̂5.1234 Ŝ.E. p.value β̂6.12345 Ŝ.E. p.value
Threshold coe�cients
0|1.Intercept 6.993 1.179 0.000 7.186 1.170 0.000 8.167 1.293 0.000
1|2.Intercept 7.599 1.190 0.000 8.334 1.173 0.000 9.561 1.299 0.000
0|1.Mstat 0.182 0.109 0.097
1|2.Mstat 0.633 0.159 0.000
0|1.N.Cond -0.328 0.035 0.000
1|2.N.Cond -0.226 0.050 0.000
0|1.Drink 0.184 0.110 0.095
1|2.Drink 0.620 0.185 0.001
0|1.Vateran -0.156 0.143 0.275 0.084 0.154 0.583
1|2.Vateran 0.068 0.193 0.725 0.647 0.236 0.006
0|1.D11 -0.974 0.161 0.000
1|2.D11 -0.219 0.220 0.318
0|1.D12 -1.052 0.269 0.000
1|2.D12 -0.928 0.268 0.001
0|1.D21 -0.743 0.178 0.000
1|2.D21 -0.089 0.221 0.689
0|1.D22 -0.498 0.348 0.153
1|2.D22 -0.606 0.319 0.058
0|1.D31 -1.850 0.131 0.000 -1.460 0.151 0.000
1|2.D31 -1.356 0.197 0.000 -0.727 0.192 0.000
0|1.D32 -2.906 0.251 0.000 -0.790 0.300 0.008
1|2.D32 -3.066 0.226 0.000 -1.050 0.279 0.000
0|1.D41 -1.028 0.164 0.000
1|2.D41 -0.450 0.211 0.033
0|1.D42 -2.024 0.306 0.000
1|2.D42 -1.468 0.262 0.000
0|1.D51 -1.948 0.138 0.000
1|2.D51 -1.549 0.207 0.000
0|1.D52 -2.366 0.197 0.000
1|2.D52 -2.946 0.214 0.000
Coe�cients
Age 0.055 0.016 0.001 0.067 0.015 0.000 0.069 0.016 0.000
Mstat -0.431 0.102 0.000 -0.243 0.110 0.027
N.Cond 0.285 0.033 0.000 0.329 0.036 0.000
Drink -0.217 0.102 0.033 -0.190 0.110 0.085
Gender 0.136 0.128 0.289 0.259 0.125 0.038 0.293 0.132 0.027
White 0.271 0.273 0.321 -0.223 0.238 0.349 -0.061 0.263 0.816
Black 0.408 0.288 0.157 -0.124 0.256 0.628 0.114 0.284 0.687
Educ. -0.059 0.015 0.000 -0.058 0.015 0.000 -0.046 0.016 0.004
Vateran -0.081 0.152 0.594
D11 0.709 0.157 0.000 0.577 0.179 0.001
D12 0.578 0.272 0.033 0.375 0.304 0.217
D21 0.711 0.155 0.000 0.305 0.187 0.103
D22 1.753 0.231 0.000 0.757 0.322 0.019
D31 0.414 0.164 0.012
D32 0.204 0.287 0.477
D41 1.550 0.133 0.000
D42 3.075 0.198 0.000
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accuracy from full, training and test data are very close for POM, PPOM, MNOM., which
shows the absence of over(under)fitting for all models.

Table 5.8 displays the goodness-of-fit test results of joint models based on proposed Pear-
son χ2 and Likelihood ratio χ2. None of the joint models using POM showed good fit.
However, for PPOM fifth order joint model and for MNOM fourth order joint models
showed a good fit based on Pearson χ2. Many variables were not included in the model to
keep the application simple which may be the reason for lack of good fit. More than thirty
33 percent of the expected frequencies are less than 5 or zeros for Joint models of sixth
order. Goodness-of-fit results are in line with the high prediction accuracy as shown in the
Table 5.7. As our objective is to develop a modeling framework for risk prediction of a
sequence of events we did not do further modeling exercise to obtain good fitted models.

TABLE 5.7: Proportional odds, partial proportional odds and multinomial models statistics.

Model Constant
only
model

Full Model Likelihood ratio test Accuracy

Log L. AIC Log L. χ2 d.f. p.value All Train Test

POM

P(Y1 | XXX) -2770.6 4859.8 -2418.9 703.5 9 0.000 0.902 0.902 0.902
P(Y2 | Y1;XXX) -2648.1 3969.9 -1972.0 1352.3 11 0.000 0.906 0.907 0.906
P(Y3 | Y1,Y2;XXX) -2789.7 3866.4 -1918.2 1743.1 13 0.000 0.895 0.893 0.898
P(Y4 | Y1,Y2,Y3;XXX) -2762.4 3636.7 -1801.4 1922.1 15 0.000 0.895 0.896 0.897
P(Y5 | Y1,Y2,Y3,Y4;XXX) -2874.6 3887.6 -1924.8 1899.6 17 0.000 0.872 0.874 0.871
P(Y6 | Y1,Y2,Y3,Y4,Y5;XXX) -2663.6 3346.1 -1652.1 2023.1 19 0.000 0.875 0.877 0.867
Joint model -16509.1 -11687.2 9643.7 84 0.000

PPOM

P(Y1 | XXX) -2770.6 4836.9 -2404.5 732.3 12 0.000 0.902 0.902 0.901
P(Y2 | Y1;XXX) -2648.1 3956.8 -1963.4 1369.4 13 0.000 0.906 0.905 0.908
P(Y3 | Y1,Y2;XXX) -2789.7 3843.7 -1902.9 1773.8 17 0.000 0.896 0.895 0.898
P(Y4 | Y1,Y2,Y3;XXX) -2762.4 3598.3 -1775.1 1974.6 22 0.000 0.900 0.899 0.898
P(Y5 | Y1,Y2,Y3,Y4;XXX) -2874.6 3854.6 -1903.3 1942.7 22 0.000 0.877 0.876 0.875
P(Y6 | Y1,Y2,Y3,Y4,Y5;XXX) -2663.6 3320.0 -1634.0 2059.2 24 0.000 0.875 0.879 0.866
Joint model -16509.1 -11583.1 9851.9 110 0.000

MNOM

P(Y1 | XXX) -2770.6 4841.3 -2400.7 739.9 18 0.000 0.902 0.901 0.902
P(Y2 | Y1;XXX) -2648.1 3967.2 -1959.6 1377.0 22 0.000 0.906 0.910 0.907
P(Y3 | Y1,Y2;XXX) -2789.7 3844.6 -1894.3 1790.9 26 0.000 0.896 0.899 0.893
P(Y4 | Y1,Y2,Y3;XXX) -2762.4 3585.2 -1760.6 2003.6 30 0.000 0.902 0.898 0.903
P(Y5 | Y1,Y2,Y3,Y4;XXX) -2874.6 3841.6 -1884.8 1979.7 34 0.000 0.879 0.876 0.880
P(Y6 | Y1,Y2,Y3,Y4,Y5;XXX) -2663.6 3332.0 -1626.0 2075.3 38 0.000 0.878 0.864 0.883
Joint model -16509.1 -11526.0 9966.3 168 0.000
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TABLE 5.8: Goodness-of-fit test results of joint models for POPM, PPOM and MNOM.

Models POM PPOM MNOM

χ2 d.f. p.value χ2 d.f. p.value χ2 d.f. p.value

Goodness-of-�t of joint models (Pearson χ2)

P(Y1,Y2 | XXX) 20.07 8 0.010 4.96 8 0.762 4.36 8 0.823
P(Y1,Y2,Y3 | XXX) 63.82 26 0.000 35.08 126 0.110 26.97 26 0.411
P(Y1,Y2,Y3,Y4 | XXX) 182.66 77 0.000 122.25 77 0.001 98.34 77 0.051
P(Y1,Y2,Y3,Y4,Y5 | XXX) 439.80 160 0.000 172.22 160 0.241 299.55 160 0.000
P(Y1,Y2,Y3,Y4,Y5,Y6 | XXX) 958.56 254 0.000 301.23 254 0.022 768.16 254 0.000

Goodness-of-�t of joint models (Likelihood ratio χ2)

P(Y1,Y2 | XXX) 21.41 8 0.006 5.20 8 0.736 4.55 8 0.804
P(Y1,Y2,Y3 | XXX) 69.06 26 0.000 37.27 26 0.071 29.23 26 0.301
P(Y1,Y2,Y3,Y4 | XXX) 200.70 77 0.000 133.76 77 0.000 111.55 77 0.006
P(Y1,Y2,Y3,Y4,Y5 | XXX) 492.54 160 0.000 431.00 160 0.000 364.39 160 0.000
P(Y1,Y2,Y3,Y4,Y5,Y6 | XXX) 850.42 254 0.000 633.49 254 0.000 717.16 254 0.000

5.4.1 Predicted joint probabilities

First, marginal and conditional probabilities were predicted using various specified co-
variate vector and then the joint probability of outcomes are predicted for three selected
trajectories. Those trajectories are: (i) P̂(Y1 = 0,Y2 = 0,Y3 = 0,Y4 = 0,Y5 = 0,Y6 = 0 | xxx∗)
remains functional limitations free from wave six to eleven. (ii) P̂(Y1 = 1,Y2 = 1,Y3 =

1,Y4 = 1,Y5 = 1,Y6 = 1 |= xxx∗) one functional limitations among all six waves. (iii)
P̂(Y1 = 2,Y2 = 2,Y3 = 2,Y4 = 2,Y5 = 2,Y6 = 2 | xxx∗) two or more functional limitations
from wave six to eleven. Figure 5.2-5.7 displays three joint predicted risks. The predicted
risk at wave six in the graphs are marginal probability while from wave seven onward are
joint probability.

Figure 5.2 displays the predicted joint risks of events free using POM, PPOM and MNOM
by the number of previous conditions (0,2,4,6, and 8) and for a male subject. The
value of other predictors were, mstat=0, Age=65 years, whether drink=1, white=1, Educ.
=12 years, and veteran status=1. The predicted joint risk of functional limitations free
P000000(xxx∗) from all three models for varying number of previous conditions was overly
similar. This probability was very high during early waves and gradually decreased at
later waves. For P111111(xxx∗) and P222222(xxx∗) predicted risks of events differs noticeably
for a subject with 8 previous conditions at later waves. Later waves predicted risks of joint
events are much lower compared to early waves. The highest predicted risks were based
on MNOM followed by PPOM and POM, respectively. A similar pattern was found for
the female sample (Figure 5.3).

The predicted joint risks from all three models by varying age (60, 65, 70, 75 and 80)
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FIGURE 5.2: Predicted joint probability for male from three models.

for a male subject by setting mstat=0, mean(N.cond), whether drink=1, white=1, Educ.
=12 years, and veteran status=1 is shown in Figure 5.4. The predicted risks were very
close for P000000(xxx∗) and P111111(xxx∗) for all ages. For P222222(xxx∗) were very similar up
to age 70 years while a noticeable difference was observed for age 75 and 80 years. In
this case, the highest probabilities were estimated using POM followed by MNOM and
PPOM, respectively. Similar trends are observed for female sample (Figure 5.5).

Predicted joint risks for three trajectories using three models for a veteran subject is
presented in Figure 5.6 by setting age=65 years, mstat=0, N.cond =2, whether drink=1,
white=1, Educ. =12 years, gender=1. For P000000(xxx∗) trajectory there is no differences
between the predicted risks of event free from all three models. Slight differences were
observed at early waves between the predicted risks of joint events from MNOM and
POM or PPOM for P111111(xxx∗) and P222222(xxx∗) paths. The difference disappears at later
waves. A similar trend is observed for the non-veteran subject (Figure 5.7).

5.5 Conclusions

Ordinal repeated outcomes are collected from longitudinal studies in many disciplines.
There is a great demand for the prediction of the joint probability of a sequence of or-
dinal events. Usually, marginal and sequence of conditional models such as the Markov
models are employed and marginal and conditional probabilities are estimated from those
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FIGURE 5.3: Predicted joint probability for female from three models.
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FIGURE 5.4: Predicted joint probability by age from three models.



Chapter 5. Regressive Models for Risk Prediction of a Sequence of Ordinal Outcomes from
Repeated Measures

103

60 65 70 75 80
P000000(x)

P111111(x)
P222222(x)

6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11 6 7 8 9 10 11

0.6

0.7

0.8

0.9

0.00

0.02

0.04

0.00

0.01

0.02

Wave

Pr
ob

ab
ilit

y

Model MUNOM POM PPOM

Age of female samples

H

FIGURE 5.5: Predicted joint probability by age from three models.
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FIGURE 5.6: Predicted joint probability vateran from three models.



Chapter 5. Regressive Models for Risk Prediction of a Sequence of Ordinal Outcomes from
Repeated Measures

104

P000000(x)
P111111(x)

P222222(x)

6 7 8 9 10 11

0.75

0.80

0.85

0.90

0.00

0.02

0.04

0.06

0.000

0.005

0.010

0.015

0.020

0.025

Wave

Pr
ob

ab
ilit

y

Model MUNOM POM PPOM

Non−veteran samples

H

FIGURE 5.7: Predicted joint probability non-vateran from three models.

models. Then Markov chain is used to link the marginal and conditional probabilities
to obtain the joint probabilities of a sequence of events with a specified covariate vector.
However, the number of conditional models need to fit increases with the increased num-
ber of follow-ups which is restricted due to over-parameterization and small sample size.
In this paper, we propose three regressive models for ordinal outcomes from repeated
measures (i) regressive proportional odds model, (ii) regressive partial proportional odds
model and (iii) regressive multinomial logistic model. Also, we have shown multivariate
model (joint model) for ordinal outcomes. Then a framework is shown to predict joint
probabilities for a sequence of ordinal outcomes. The proposed model and the risk pre-
diction framework is a new development. The major improvement of the proposed model
is that only one model is needed for each repeated outcome compared to the sequence of
conditional models such as Markov models. The proposed models provide the estimates
for each stage in the process conditionally and using Equation (5.1) the joint model is
obtained for any order to predict the risk of a sequence of events. The outcome variable at
the baseline is used to estimates the parameters of the marginal model and the regressive
models at the subsequent follow-ups provide the estimates of the parameters of the con-
ditional models. The proposed framework links the marginal and conditional process and
obtains predictive outcome based on the whole process through all possible trajectories.

In the proposed modeling approach interaction among previous outcomes and predictors
can easily be incorporated. The interaction terms may provide a better understanding
of the underlying process and the relationships between outcomes and risk factors. The



Chapter 5. Regressive Models for Risk Prediction of a Sequence of Ordinal Outcomes from
Repeated Measures

105

likelihood ratio test for the goodness of fit and AIC for the marginal and regressive models
are shown in this paper. The prediction accuracy of POM, PPOM and MNOM for all
marginal and first-order regressive models was around 0.90 which is reasonably high.
This accuracy reduces with the increased order of the regressive models which was around
0.87. Also, two goodness-of-fit statistics (Pearson χ2 and Likelihood ratio χ2) for the
proposed joint models are shown. Partial proportional odds model showed good fit for
fifth order joint model whereas for MNOM fourth order joint model showed a good fit.
One can easily fit proposed regressive models and predict the risk of a sequence of events
using the available statistical software.

Predicted risks of a sequence of events for three selected trajectories for specified covari-
ates vector are presented in graphs as an example. The predicted risk of outcomes from all
six waves remaining in category one P111111(xxx) and remaining in category two P222222(xxx)
for female by the number of previous conditions were noticeably different for a higher
number of previous conditions. Similar patterns are found for a male subject. It may be
noted that the number of previous conditions were significant for marginal and most of the
first and higher order regressive PPOM and MNOM, but not for POM. The proposed tests
for the joint model also suggested good fit for PPOM and MNOM for fifth and fourth or-
der joint models, respectively. Partial proportional odds followed by multinomial logistic
regression showed better prediction results in the case of violation of proportional odds
assumption. Other available models for the ordinal outcome can easily be used in the pro-
posed modeling framework. The proposed methods can be applied for analyzing and risk
prediction for a sequence of events in many fields of studies such as epidemiology, pub-
lic health, survival analysis, genetics, reliability, environmental studies, etc. This model
would be very useful for analyzing big data where a large number of repeated outcomes
are observed.
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Chapter 6

Conclusions and future research
directions

The first objective of this dissertation has been to simplify the models for risk prediction
of a sequence of events by proposing multistage modeling approach for continuous time
data those are observed from longitudinal studies. Proposing new regressive models for
multinomial and ordinal outcomes and a framework for prediction of the joint probability
of a sequence of events for longitudinally measured discrete time data has been the second
objective. In addition, proposing a test for goodness-of-fit of the joint model and a test for
independence of repeated outcomes was under consideration. The study objectives also
included a simulation to investigate the model performance as well as use of real-life data
to demonstrate the usefulness of the proposed models and risk prediction framework.

Klein et al. (1994) first showed existing methods of risk prediction of a sequence of events
for continuous time data in terms of hazards for the transition from the multi-state model
based on the work of Arjas and Eerola (1993). Later, Putter et al. (2006) and Putter
et al. (2007) presented a comprehensive illustration of prediction of the probability of
a sequence of events using the multi-state model. According to Aalen et al. (2008) this
predicted probability is a reasonable estimate of the risk of a sequence of events. However,
existing theories were demonstrated on the basis of specific problems and had several
drawbacks. In the previous attempts, the events were not considered in the multistage
framework. Hence the underlying theory remained complex. The main challenge is the
simplification, and generalization of the existing method for a large sequence of events
occurring at different stages. Also, the existing framework involves deriving multiple
complex integrals for a specific problem and special computer skills are required to use
these methods. Because of the complexity of existing methods their applications remain
limited.

In predicting the sequence of events, we need to link the likely transitions at different
stages of the process through potential trajectories (paths). The proposed alternative mul-
tistage approach simplifies the transition model for the underlying paths for risk prediction
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and provides the estimates for each stage in the process conditionally. Then the condi-
tional estimates are linked based on marginal-conditional models that provide the joint
probabilities required for predicting the risk of a sequence of events based on the poten-
tial risk factors. The proposed method for risk prediction is a simple approach, compared
to the existing ones, and this approach readily generalizes to any number of events in the
process from the beginning to the endpoints. The same integral derived for a trajectory
can be used for other trajectories. Predicted risk of a sequence of events for different
trajectories using the real-life data set from the proposed approach produced very simi-
lar results to that from the existing method. The proposed approach can be used for risk
prediction for the different disease process.

In many studies, multinomial responses are observed longitudinally during an interval
or the exact time of events are unknown which produces discrete time data. One needs
to deal with transitions to a number of states over time generating a large number of
trajectories from beginning to the end of the study. Most of the available methods of risk
prediction are for a single outcome (Yu, 2003). One approach is to use the Markov chain,
where marginal and conditional models of different order are linked to obtaining the joint
model required for risk prediction of a sequence of events (Islam and Chowdhury, 2010).
However, this approach is restricted due to over-parameterization. Also, for repeated
outcomes from a large number of follow-ups, required number of conditional models
such as the Markov models needed to be fitted grows rapidly. Fitting a large number
of conditional models would make the existing method inflexible and computationally
infeasible (Wen et al., 2016).

To overcome the problem of over-parameterization and to develop an efficient and simple
method of risk prediction, following the work of Islam and Chowdhury (2010) we have
proposed the regressive models for multinomial outcomes from repeated measures. The
motivation for this model comes from the need for generalization of competing risks mod-
els at different stages for discrete time data and prediction of a sequence of events. The
Markov chain is used to link the marginal and conditional probabilities to estimate the
joint probabilities for a sequence of events. The marginal probability is estimated using
a marginal model based on the outcome of the first follow-up, and conditional probabil-
ities are estimated from the proposed regressive model for subsequent follow-ups. The
main improvement made in the newly proposed method is that one needs to fit only a
single model for first or higher order conditional models. This formulation can easily
handle a large number of states emerging from different follow-ups from longitudinal
data. This model allows to include interaction between previous outcomes and covariates
in the model. The real data application shows the advantage of the model while the sim-
ulation study reveals minimal estimation bias associated with the model. These, together
indicate the decent performance of the proposed regressive model. Results from training
and test data showed no indication of overfitting or underfitting and showed impressive
prediction accuracy.
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For a robust and accurate risk prediction model, it is necessary to measure the model
performance which needs to be rigorously validated (Calster et al., 2017; Wehberg and
Schumacher, 2004). Also, test for independence among the repeated measures is impor-
tant. If the outcomes are independent, simpler models, such as marginal models for each
repeated outcomes can be used instead of conditional models for risk prediction of a se-
quence of events. Most of the available tests for the goodness-of-fit are for a single binary
or multinomial outcome and are not directly appropriate for the multinomial outcomes
from repeated measures.

We proposed tests to evaluate the goodness-of-fit for a joint model for multinomial out-
comes from repeated measures. One is based on Pearson chi-square, and another one
is based on likelihood ratio. We used the marginal and regressive models to obtain the
estimates of marginal and conditional probabilities. Then the joint probabilities are esti-
mated linking the marginal and conditional probabilities which are used to estimate the
expected frequencies. Using observed and expected frequencies Pearson chi-square test
is shown. For the test of independence marginal probabilities are used similarly. Findings
from the real data application and simulation study demonstrated better performance of
the proposed tests.

In various discipline, ordinal outcomes are observed longitudinally producing a sequence
of events over discrete time. Proportional odds model is a popular choice to model a
single ordinal outcome as a function of risk factors provided that the required propor-
tional odds assumption is fulfilled. In the violation of this assumption, partial propor-
tional odds model is used although other alternatives are available. For predicting the risk
of a sequence of ordinal outcomes, it is necessary to examine the events during subse-
quent follow-ups using a multivariate model. However, a multivariate approach is often
complicated and would be difficult to develop for a large number of repeated ordinal out-
comes. One approach for risk prediction of a sequence of events is to use marginal and
conditional models to obtain a joint model for risk prediction which is limited due to
over-parameterization.

Proportional odds regressive model and partial proportional odds regressive models are
proposed for repeated ordinal outcomes. Then the estimates of the conditional probabil-
ities are obtained from the proposed regressive models for ordinal outcomes. Estimates
of marginal probability and conditional probability are linked to obtain the joint proba-
bility which is the risk of a sequence of events based on specified covariate vector. It
poses all the advantages as in the regressive models for multinomial outcomes. Suggested
re-parameterization in the proposed regressive models reduces the number of parameter
sets needs to be estimated. Ordinal outcomes along with selected risk factors from HRS
data are used for the application. Estimates from the proposed approach and simulation
confirm the utility of the proposed models. The prediction accuracy is also reasonably
high along with the absence of overfitting and underfitting.
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Some important implications of the proposed methods for risk prediction of a sequence
of events from the repeated measures data are:

Proposed method for continuous time data is a simple one.

The use of marginal and conditional models reduces the multivariate problem into a
univariate problem. Each marginal, conditional and proposed regressive models are
a univariate case.

Proposed approach allows to include interaction among previous outcomes and pre-
dictors which may provide a better understanding of the underlying disease.

The predicted risk would allow health care providers to screen individuals that
would help them to suggest necessary therapy and prevention

The proposed method allows generalization to any number of stages without making
the process complex.

Using existing statistical software one can predict the risk of a sequence of events
with minimal programming knowledge.

This research suggests some future development for risk prediction for continuous time
data where the Markov models are used. It may be possible to use regressive models to re-
duce the over-parameterization for continuous time data for risk prediction of a sequence
of events. For ordinal outcomes, there are other alternative models (e.g., continuation
ratio model, stereotype model, etc.) in the case of the violation of the proportional odds
assumption. These models could easily be adopted in the proposed framework for risk
prediction which will allow comparing the results from various models for ordinal out-
comes.
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