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Abstract

This research involves a numerical exploration e tharacteristics of fully developed,
steady, viscous, incompressible flow within a cdnauct with square and rectangular
cross-sections. The study considers both isotheamdl non-isothermal conditions, while
also accounting for the influence of magnetic feldall currents, and lon-slip currents. In
this investigation, the dimensions of the crosdiseare defined as having a height &f 2
and a width of @. The analysis covers curved ducts with both sqaaderectangular cross-
sections for both isothermal and non-isothermal fkcenarios. In both cases, the aspect
ratio is taken a$ = 1 or 2 or 3, whereas the curvature of the danges from 0.01 to 5.
Also, the behaviour of the flow characteristic vestigated for non-isothermal flow
through the straight duct in the presence of Hadl bon-slip currents. A pressure gradient
force, known as Dean Forces, is applied in thectior of the curved duct's centreline. This
flow is further influenced by a combination of fes; including gravitational force, Lorentz
force, centrifugal force, and Coriolis force. Thengtational force exerts its effect on the
fluid. Additionally, the Lorentz force results frothe interaction of electric and magnetic
forces, while centrifugal and Coriolis forces stBom the duct's rotation and curvature. To
model this complex system, governing equationsdarévzed from the Navier—Stokes and
Energy equations using cylindrical coordinates. SEhequations are then converted into
their non-dimensional forms through the customary-dimensional analysis. The spectral
approach is used as the main instrument to perfibren calculations. Additionally, as
auxiliary tools, the Newton-Raphson, CollocatiorheByshev polynomial, and arc-length
procedures are employed. The arc-length methotdws used to avoid the difficulties near
the point of inflection and calculate the resultsttas point. The flow depends on the

2 2 2
Taylor numberT, =2d§— V20 Q, (Rotation parameter), Magnetic parameﬁeﬂ:—d opeBy
v PO
d®BoAT .
Grashof Numberg, = === ammeter Hall parametg@n), and lon-slip parameteér) .
U

The study examines the impact ©f G;and D,on flow characteristics to compare and
validate the findings with prior research. The m@rgnobjective of this investigation is to
elucidate howM, m, anda influence flow characteristics within both rotatad square and
rectangular curved ducts, as well as in straigheg| ducts. Both co-rotating and counter-
rotating flow patterns are investigated here. Fynal general discussion and conclusions on
the solutions to the problems considered in theaieh study for different values of the
magnetic, Hall, and lon-slip parameters on the flmaperties in some particular cases of
Dean Number and different duct curvature are diesdri
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The structure of the current dissertation is as fdbws:

Chapter 1: Available information on square and rectangularved duct, bifurcation
phenomena, rotating curved duct, Heat transfeuiaex! duct, Hall current and lon-slip and
various parameter effects are summarized and disdusom both analytical and numerical
points of view.Chapter 2: The usual governing equations and relevant tgtbblems are
discussed. In addition, several basic conceptsralationships are addressed in depth in
order to put the governing equations in their staddform for numerical solutions.
Chapter 3: the methods of solution for resolving the fundatakrequations were
introduced in Chapter Zhapter 4: A specific problem of curved duct flow in a rotating
isothermal with Hall and lon-slip current is exaetnfor the aspect ratios of 1, 2, and 3.
Chapter 5: The same problem for a non-isothermal system efdirved duct has been
extended for the aspect ratios of 1, 2, and 3 ansideredChapter 6: The problem of a
non-isothermal steady flow through a rotating squstraight duct with Hall and lon-slip
currents has been investigated in this sectiorallyingeneral discussions and conclusions
on all the problems dealt are givenGhapter 7.
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Chapter 1

Literature Review

1.1 Introduction

One of the most challenging research domains wittenelectromagnetic field pertains to
understanding the fluid flow mechanisms in ductthimia rotating system. These systems
have been used in technical applications such sgughine fluid transportation, Heating,
Ventilation, and Air Conditioning (HVAC) Systemsurbo-machinery, Automotive
Industry, refrigeration, electric generators, heathangers, medical ventilators, centrifugal
pumps, internal combustion engines, blood Flow Modg blade-to-blade passages for
modern gas turbines, etc. The dynamic behaviot@lumfs within rotating curved ducts has
captivated the attention of numerous scientistglyEgesearch on duct fluid flow by
Williams et al.(1902), Eustice (1910, 1911, 192&)d Dean(1927, 1928) served as its
foundation. As a pioneer author, Dean (1927) wasftfst to analytically articulate the
problem of curved duct fluid flow and demonstrate txistence of a pair of counter-
rotating vortices flowing in this duct under fullieveloped flow. This flow phenomenon is
commonly referred to as Dean Flow, and it is alsmvwn as Dean Hydrodynamic
Instability, with the associated vortices termedaé&/ortices. Over the ensuing decades,
researchers delved into the theoretical, mathealatend empirical exploration of fluid
flow within both straight and curved ducts. Hereg wrovide a brief reference to the
scientific contributions of other renowned researshn this field.

Miyazaki (1973 )examined the phenomenon where ductature enhances the Coriolis
force, causing rotation to align with the directiohfluid flow, referred to as co-rotation.
The term 'counter-rotation' denotes a rotationadadion opposing the fluid flow. Berger et
al. (1983) extensively investigated fully developkedv in curved pipes, encompassing both
stable and unstable states, exploring the influerfcgiverse geometries, wall properties,
and fluid characteristics. Nandakumar and Masligg®82, 1986) delved into bifurcation
within steady laminar flow in curved pipes, alomgsiheat-transferable vortex flow in
coiled and curved tubes. Chandratilleke et al. 820012, 2013) focused on secondary
vortex structures within fluid flow through curvethannels, considering laminar flow
behaviour and thermal parameters. They also urd/eigerimental results on secondary
flow for varying aspect ratios. Winters (1987) meted a comprehensive framework that
incorporated both symmetric and asymmetric solgtidm investigate the laminar
bifurcation flow within a curved tube featuring ectangular cross-section. Ishigaki (1996)
conducted a study focusing on the flow characiesstnd friction factors in curved circular



ducts, considering both co-rotating and countestiog configurations. Wang and Yang
(2003, 2004) carried out experimental and numerioadstigations of fully developed free
and forced convection flow within a rotating curvelct featuring a square cross-section.
Yamamoto et al. (1999, 2000, 2006) observed visaoe@mpressible constant flow within
a rotating system, examining square curved dualscanular cross-sectional helical pipes.
They also visualized the Taylor-Dean flow withicwved duct with a square cross-section,
and their work included dual solutions derived gsihme spectral method. Yanase et
al.(1989, 2002) scrutinized flow stability in slityh curved circular ducts. Their research
also encompassed the study of laminar incompresgibid flow within a rectangular
curved duct, spanning a wide range of aspect ratdh particular attention to a detailed
investigation of the traveling-wave solution. Imare recent study, Lima and Alam (2019)
explored the impact of Hall current on flow throughstraight pipe in a rotating system,
focusing on flow patterns in cases involving laagect ratios.

Apart from the work of Lima and Alam (2019), no easch on fluid flow through curved
ducts in the presence of a magnetic field with Haldl lon-slip currents was found on the
websites or any archive. Therefore our intereghas, how to use Hall and lon-slip current
on the mechanical devise. From this angle of viewv,goal is to investigate the impact of
Hall and lon-slip currents on steady fluid flow dbgh a square, rectangular straight and
curved duct with a magnetic field for the isothelmranon-isothermal state of the duct in a
rotating system. From this perspective, the gotd explore the following titles:

1. Hall and Ton-slip current effects on steady fluid flow through a rotating curved
square duct with magnetic field.

2. Steady MHD Fluid Flow in a Rotating Curved Rectangular Duct with Hall and
Ion-slip Current.

3. Hall and Ion-slip effects on MHD fluid flow in a rotating curved duct with
aspect ratio 3.

4. Non-Isothermal MHD Fluid Flow along the Centre Lme in a Rotating Curved
Square Duct with Hall and Ton-slip Current.

5. Hall and Ion-slip Current Effects on Non-Isothermal Steady Fluid Flow Passes
through a Rotating Curved Rectangular Duct with Aspect Ratio 2

6. Non-Isothermal Fluid Flow through a Rotating Curved Duct with Aspect Ratio
of 3 1n the Presence of Magnetic Field, Hall, and Ion-slip Currents.

7. Non-Isothermal Steady Flow through a Rotating Square Straight Duct with Hall
and Ion-slip Currents



1.2 Bifurcation Phenomena in Curved Duct

After the experiments on water flow in curved pigms Williams et al (1902), Eustice
(1910, 1911, 1925), as a pioneer author Dean (19239 formulated the problem
mathematically. He has been shown a pair of countating vortices of a Newtonian fluid
flow exists in a curved pipe under the fully deyad flow. Dean chose Poiseuille pipe flow
as the leading term and used a perturbation teghrtig solve the problem. He estimated
that the radius of curvature of the pipe was maehdr than the hydraulic diameter of the
cross-section. This assumption is known as theel@osling approximation. Dean showed
that the flow is characterized by a single non-disienal parameter, now known as the
Dean number.

Typically the Dean number is defined Bs=Re,/d, /2R, whered;, is the hydraulic

diameter of the pipeR. is the radius of the curvature aRdis the Reynolds number. A
perturbation analysis was used for flow in a curdedt with a square cross-section until
the 1950s. Also, Ito (1951) and Cuming (1952) iredefently used the perturbation analysis
and showed the existence of a 2-cell solution usire perturbation analysis. Manton
(1971), Hall (1974), Murata et al. (1976), and d@¢#l977, 1987) studied the steady laminar
motion of the fluid theoretically through a pipe @fcular cross-section while centreline of
the tube varies locally. Todd’s used three kindsw¥ed pipes for his experiment. Usually,
in perturbation analysis, obtain a series of sohgiwhere the solution is only valid for
relatively low flow rates. But for higher Dean nuemb, a full Numerical simulation is
required to solve the governing equations. In thetsl with rectangular cross-sections, 4-
cell flows have been predicted by Joseph et al7§)9Ghia and Sokhey (1977), and De
Vriend (1981). For rectangular cross-sections, @lost al. (1975), Sugiyama et al. (1983),
Hille et al. (1985), and Masliyah (1980) providepexsmental confirmation of these 4-cell
solutions. For semi-circular ducts with a flat outall, Masliyah (1980) provides empirical
proof and demonstrates the existence of a duatiso]wr the presence of both 2-cell and
4-cell flows at the same Dean number by experinhemz numerical evidence.

Collins and Dennis(1975) showed a 2-cell flow irciaved pipe by solving the Navier-
Stokes equation. Their results have compared watlerX1934) experiment, and they found
a good agreement. Berger et al.(1983) discussedbahadary layer analysis for a large
Dean number in detail. Cheng and Akiyama (1970) @hdng et al. (1975) used a finite-
difference formulation to show the 2-cell solutiora square duct. They also announced the
existence of a new 4-vortex solution for the firste. Dennis (1980) applied a new finite
difference method on the work of Baylis (1971) ittdfthe steady solution of viscous fluid
through a slight curve tube. He showed a secondteouotating pair of vortices generated,
which is smaller than the initial pair and shiftegar the centre of the outer wall. Cheng et
al. (1976) thought that due to a centrifugal ingitgb the second pair of vortices formed,



which are smaller than the vortices formed in floetween parallel curved plates Dean
(1928). Masliyah (1980) investigated the flow incarved duct of semi-circular cross-
section with a flat outer wall. He showed a ranfjlaw rates exist where 2-cell and 4-cell
structure flows consist, and this range is theated dual solution region. Both Dennis and
Ng (1982), Nandakumar and Masliyah (1982) exhibitib@ 4-cell flow structure
numerically in a curved pipe and dual solution oegiThereafter, Yanase et al. (1988,
1989) studied the stability of the dual solutiohey discovered the 2-cel flow to be stable
and the 4-cell flow to be unstable to asymmetrstudbances.

It is established that the initial pair of vorticessinduced by the pressure gradient force
along the top and bottom walls. The additional eompair is indeed formed by centrifugal

instability. Large vortices introduced by the sidells are called Ekman vortices, and

vortices formed by centrifugal instability are eallDean or Taylor vortices, depending on
the geometry.

The existence of multiple solutions is not surmgsdue to the non-linear nature of the
Navier Stokes equation. The solution structure @iflly developed or axially irreversible
flow is usually present in a bifurcation diagrarhpwing a characteristic quantity of flow,
such as a fractional factor, a function of a cdnparameter, such as flow rate. Connecting
different possible ways, a bifurcation curve orusioin curve can consist of several lines
(branches). These branches can split and showpieuliblutions at the limit point. The
concept and mathematical tools of this field hamdargone significant development since
the original work by Benjamin (1978a).

Yang and Keller (1986); Winters (1987); Daskopouéosl Lenhoff (1989) investigated
several studies focusing on the solution structdireurved duct flow and showed that dual
solution regions exist both in curved pipes anctumved square ducts. For curved pipe
flow, the bifurcation diagram consists of a priménanch of 2-cell flows, starting at flow
rate zero and continuing up to high flow rates.rAneh of 4-cell solutions begins at a finite
flow rate. It appears to be connected to the pynwmponent through a pair of folds,
although the upper boundary point is sensitive ta gefining and not accurately
determined (Yang and Keller 1986; Daskopoulos aedhboff, 1989 ). Yang and Keller
(1986) discovered unstable duct flow on severalenwanches, including 6-cell and 8-cell
flows. Dennis and Riley (1991) studied the 2-ckif for the limit Dp—oo. Their results
suggest an asymptomatic solution consisting oframsible core viscous boundary layer
along the pipe wall. Shanthini and Nandakumar (128@ Winters (1987) investigated the
solution structure for the flow in a curved squdtet. They showed the primary solution
has a 2-cell flow in the branch whePg= 131 is confined to the point where the branch
folds for a loosely coiled duct. After a seconddfakD,=113 the primary branch consists of
4-cell flows. There is a dual solution region betwd,=131 andD,=113. A separate



secondary branch of 2-cell and 4-cell flows exaéisve a Dean number of 191. There is a
slight change in the position of the limit points the curvature ratio above 10, but the limit
point of the small curvature ratio moves to an éasingly higher dean number. Winter
determined the stability of the solutions and fotimat 2-cell solutions on both branches are
stable. In contrast, the 4-cell flow on the primdmanch is unstable concerning the
symmetric perturbations. The solutions connecting two limit points of the primary
branch are unstable. Yanase and Nishiyama (1988iest the bifurcation of a laminar flow
at respect ratio equal to 3.02. They found dualtgwis, one of which was a 2-cell solution
and the other 4-cell solution for the aspect rgteater than 3.02. Daskopoulos and Lenhoff
(1989) extended their study of fully developed ffoin a loosely coiled curved square tube
up to Dean Numbers about 530. Starting with thdegerflow problem in an infinitely
curved channel, they added stickiness to the @elhbary to turn each pair of cells into a
curved duct of the rectangular cross-section. Dasllms and Lenhoff applied symmetry
around the centre plane. They calculated 4 limihgsoin the secondary 2-cell branch and
found three different states, including six vorsicdhe strength of the two additional
rotations in each half of the domain is differé@he of these 6-cell states was predicted to
be stable for symmetrical disturbances.

Jayanti and Hewitt (1992) investigated the bifurastructure of laminar flow in a curved
tube with a square cross-section. They conductadiest on the effects of numerical
accuracy on solutions. This studies have shownabkdahe Reynolds number of the flows
increases, two vortex structures are re-establishlettg a path, involving strongly
asymmetric secondary flow patterns. Bara et alZl9®etermined the solutions on the
primary branch, including the dual solution regexperimentally. He inserted a pin in the
radial direction along the line of symmetry at thiet of the curved section to observe the
4-cell flows in the dual solution region. Thougteyhare unstable concerning asymmetric
perturbations, which indicates that growth ratesuwth asymmetric modes are small and
asymmetric disturbances in his apparatus were sittadl 4-cell flows can also be observed
experimentally. Kao (1992) investigated the bifti@a structure of flow in curved ducts
with super circular cross-sections to explain trengition of bifurcation structure with

. . . . " \" y n .
changing cross-sections. A super circular is ddflhﬁ(;) + (Z) = 1 and by baring the

exponent, cross-section range between a cirde?) and a squaraé{>«). Kao could not
locate the limit point accurately by using the téndifference method because he defined
the Dean number in terms of pressure gradientr#gtlh@ mean velocity by which the result
cannot be compared directly. The two limit pointghe primary branch move to a higher
Dean number as the cross-section changes fromaestiu a circle. The first limit point,
above which no stable 2-cell solution exists, movesvery high flow rates. Kao
investigated that the limit point is out of the Vilorates range far< 25. Kao further



observed that the four solutions are establishétiancase of asymmetric perturbations by
inserting a splitter plane into the stream neaothier wall.

Philip et al.(1996a) conducted a comprehensive siiyation, they examined the steady
development of incompressible Newtonian fluid flewthin a curved duct featuring a

square cross-section. This study involved both emyntal and numerical approaches, it
builds upon the previous research by Bara et &Z)L9 The numerical simulations, based
on the steady three-dimensional Navier-Stokes emuatprovided insights into the

emergence of a 6-cell secondary flow pattern. Ngtathis 6-cell flow pattern was

determined to be unconditionally unstable througimerical stability analysis, setting a
critical threshold at a Dean number of 350. Notahlnumerical stability analysis revealed
that this 6-cell flow state was inherently unstabBuilding upon their foundational

research, Philip et al.(1996b) extended their itigasons in various directions. In one such
extension, they explored the concept of a trawgllimave state for incompressible
Newtonian currents within the cross-sectional gdoynef the curved square duct. In a
separate extension, Philip et al.(1996¢) delved tihe realm of steady spatial oscillations
occurring within a square cross-sectional curved.dlihese efforts significantly advanced
our comprehension of complex fluid flow phenomernhw such geometries.

Collins and Dennis (1976a, 1976b) analyzed the thbwa viscous fluid in a region bounded
by a right-angled isosceles triangle. The presasfceortices was first observed in the
secondary flow at 45angles of the cross-section. Subsequently madetailed study by
modifying the grid size of the numerical schemeaktthe corner regions. Thus it was
possible to observe thirteen vortices al dérners and six pairs of vortices af @@rners.
Nandakumar et al.(1993) expressed the availableenaah study on curved triangular ducts
only. Takami and Sudou (1984), Topakoglu and Elada985, 1987), and Kotorynski
(1986) investigated the flow in a curved pipe ofedliptical cross-section. Topakoglu and
Ebadain used elliptical coordinates and followeel tinprepared formulation of Topakoglu
(1967). The results obtained were systematicatiyt@dl against the curvature of the curved
pipe's centreline for different Reynolds number.

1.3 Developed Flow in Curved Channels

A few decades ago, many researchers studied oredwlkiannel flows. Kelleher et al.
(1980) experimented with the airflow in an 1800vad channel with a curvature ratio of
47.5 and an aspect ratio of 40. To measure vedscittd=135’, they used both a hot wire
Anemometer and flow visualization with aerosol. THeveloping flow periodically
oscillates with counter-rotating vortices at deaimbers between 78.8 and 112.8 over the
entire width of the channels. Dean vortices resafiésobtained from centrifugal instability;
these are similar to the mechanism that creatas p&iDean Vortices in a square tube.
They noted that time-dependent flows combined vegtteam-based periodic travelling



waves imposed on Dean Vortices for higher flowgaiéhe results are helpful to explain the
phenomenon of travelling waves in a curved channel.

Guo and Finlay (1991) analyzed the two-dimensidd@an vortices stability concerning
spanwise perturbations in a curved channel usitegrgoral formulation. If the number of
spanwise waves is greater than the stable redientwo vortex pairs will merge; whereas
this number is smaller than the stable regionytiréex pair will split into two vortices. All
spanwise numbers of waves are unstable to span peigarbations foR>1.59R.. The
nonlinear flow simulations confirmed their result€learly, span wise secondary
fluctuations are of fundamental importance in ttev@&number selection process. Finlay et
al.(1988) carried out a numerical investigationtrafzelling waves in a curved duct flow.
They employed a three-dimensional time-dependergudmspectral technique with
spanwise and streamwise periodicity. They idertifizyo varieties of travelling waves:
long-wavelength undulating waves and short-wavdlenwisting waves. Finlay et al.
(1988) hypothesized that Kelleher et al. (1980) $aisting vortices by contrasting the
characteristics of the wavy flow phases. After tHato and Finlay (1994) used three-
dimensional simulations and spatial stability tlyedo study the spanwise secondary
instability theory of Dean and Gortler vortices.eThlentical versions of the parabolised
Navier-Stokes equations are solved by them usiag.gendre spectral method that was
also used by Bara et al. (1992). It is easier tomare the results obtained from the spatial
formulation with spatiality developing experimentadservations. Spanwise was imposed
on a few vortices periodically, allowing vortex isjthg and aggregation to occur naturally.

Bottaro et al. (1991) studied the developing fldvaio in a curved channel numerically and
experimentally. The experimental setup has & 2uéved channel with a ratio of 29 and a
simple inlet section which ensures a fully devetbpelet flow. They used a hot wire
Anemometer to measure the secondary velocity iasesections and define a perturbation
velocity subtracting the secondary of the curveanciel Poiseuille flow from the secondary
velocity of vortex flow. The shape of Dean vortiaas be seen clearly in Contour plots of
the perturbation velocity and compared with a thimeensional time-dependent
simulation. However, the vortices develof 4@rther downstream in the simulation. For the
natural development of the computational domainaspect ratio of 9, the spin-wise
perturbation velocity initially increases linearlifter reaching a maximum state, it settles
at a steady value; the vortices seem to have géué/aleveloped form.

Matsson and Alfredson (1992) used the same equipasBottaro et al. (1991), and they
investigated more experimental results on devetppinsteady and steady curved channel
flow. They analyzed the flow evolution B, = 73,88,116 and showed that the length of
development of Dean vortices decreases with incrgdbow rate. Flow velocity spanwise



profiles show minima in the flow region between tfmetex pairs, which is consistent with
Sugiyama et al. (1988) and Bara et al.(1992).

Bottaro (1993) investigated a full three-dimenslatrae-dependent elliptic simulation of
developing vortices in a curve channel. He useddstdean Vortices in the early linear
stage as inlet flow and showed vortex splitting amefging events within the channel of
curvature ratio of 38 and an aspect ratio of 9. kVbscillating disturbances are present,
dean vortices do not appear in their position, ansteady interactions can occur between
neighbouring vortex pairs. By imposing periodic bdary conditions the disturbances
constantly return to the creek of the domain, dgstg the convective nature of the flow.

The results of linear stability show that the numbewaves selected at the linear growth
rates is determined by the rate of increase ofrtitial instability. Several wavelengths can
grow independently. Once the dominant wave numbaches the non-linear phase, it
becomes unstable to span-wise secondary instalitlisther down, the energy of the other
wave numbers is transferred to this span-wise skrgninstability. Finally, those wave
number with the lowest span-wise secondary instgbgrowth rate will be observed.
Three-dimensional simulations show that span-wesmisdary instability leads to vortex
splitting and merging.

1.4 Developing Flow in Curved Pipes

A lot of work on flow development has been focusedcurved pipes. As mentioned in
Section 1.2(Bifurcation Phenomena), the dual swmtutregion of the curved pipe is
displayed at a very high flow rate so that the W{ftew in a curved pipe does not develop
spontaneously. Three different approaches have ta&en to the numerical investigation of
developing flow in a curved pipe. Singh (1974) fdua solution to perturbation the
development of flow in a simple tube, which is dadnly very close to the creek of a loose
coiled pipe. The boundary layer method assumestlieatiow consists of an inviscid core
surrounded by a secondary flow boundary layer.h&sflow rate increases, the secondary
flow layer becomes thinner near the outer bend ticker near the inner bend. The
boundary layer near the inner bend eventually sepsiand interacts with the inviscid core.

Barua (1963), Ito (1969, 1970), Fargie and Marfi@71l), Yao and Berger (1975, 1988),
Smith(1976a, 1976b), Stewartson et al. (1980, 1,98a8) Yeung (1980) used boundary
layer methods and they agreed with the frictiondaprediction based on boundary layer
models reasonably well with experimental data. maaet al. (1974), Humphrest al.
(1978, 7985), Soh and Berger(1984), and Snyder Lanvély (1990) performed a fully
numerical solution of curved pipe flow; Adler (1934Austin and Seader (1973), and
Agarwall et al. (1978) presented these type of fewperimentally. These studies mainly
concerned the boundary layer development and @ullisear the inner bend. Berger et al.



(1983) and Bara (1992) reviewed the developmertuofe pipe flow until 1990.Pratap and
Spalding (1975), Ghia and Sokhey (1977) numericailyestigated developing flow in a
rectangular curved duct using an ADI finite diffiece method. They used aspect ratios of
0.5, 1.0, and 2.0 and curvature ratios of 3, 14, Hd)0. Notably, a transition from 2-cell to
4-cell flow atD,=143 has been observed in a square duct.

Lyne (1970) investigated the study of unsteady floweurved tubes has generated a lot of
interest due to their engineering applications @athexchangers and chemical reactors as
well as their applicability to hydro-dynamical iesu(Pedley, 1980) or problems relating to
blood flow in human arterial systems. Studies oriogéc unstable flow in curved tubes
have been conducted both theoretically and expetaiig during the past few decades.
Humphrey et al. (1977) studied the developing flava 90 bend with a curvature ratio of
2.3 atD, = 520 both experimentally and numerically. The fullgveloped creek flow was
strongly influenced by the elliptical effect of tdewnstream curved duct flow. As a result,
a 2-cell secondary flow was already presented eniritet plane. Secondary vortices in the
inlet were up to 15% of the average stream wisec#gi and about half the strength of the
secondary flow velocity a=6(. Only two vortex flows were observed in both
experimental and numerical simulations. Experimgntadaylor et al. (1982) extended the
work of Humphrey et al. (1977). They studied baminar and turbulent flows at Dean
Nos. 520 and 26000, respectively. Bt = 520 the highest secondary flow velocities were
observed a® = 60° with values of the order of 0% . They also observed a two vortex

flow.

Yee et al. (1980) also investigated the develofimg of 90° bend with a curvature ratio of
2.3 by using a fully elliptic and a parabolic forlation. Heat transfer was included in this
study, and they decided that a fully elliptic fodation is necessary to describe the flow
accurately in this curved channel. Sugiyama €t18i83) observed the 4-cell flow pattern in
a square duct experimentally. They studied the ldpueent of flow in curved rectangular
ducts with aspect ratios ranging from 0.5 to 2.8 arradius of curvature between 5 and
8.Photographs of the visualization of smoke flowtHe air were taken at the exit of £80
ducts. They observed a 2-cell stateDat 93, a developing 4-cell state Bt=193, and a
fully developed 4-cell state @,=183 in the square duct. They investigated the smoke
visualization pictures that were hard to inter@ehigher flow rates, but it was looked like
2-cell states have developed for Dean Numbers 38B 527. Sugiyama et al. (1983)
observed the development of two pairs of Dean VYestialong the other wall of the duct,
leading to 6 cell flow states at aspects of 2.02a5d

Hille et al. (1985) used the laser-Doppler anememtd study the flow in an 18®end
with a curvature ratio of 6.45. They found a 4-citiw structure for Dean Numbers
between 150 and 300. The second pairs of vorti@e symmetrical and smaller than those



observed by Sugiyama et al. (1983). The additionaiices are formed betweén= 108
and 0 = 17P, and the flow still develops at the end of 1@®nd. Hille et al. (1985)
observed a smooth transition between 2-cell andll4iows without dual solution regions.
Ohba et al. (1986), and Tsuda and Ohba (1984) exahthe flow development in an 1800-
degree curved square duct. They found that at Ddéambers 217 and 435, where the
irregular oscillations with a frequency of aroundd3 occurred near the span wise centre
line, almost midway between the centre and lateedls, instantaneous velocity doublings
and halving were present. Despite the physical ssidity of such instantaneous velocity
doublings, Tsuda and Ohba (1984) could not accifmurthe observed events.

Soh (1988) used a fully elliptic formulation of tiseeady Navier Stoke equations on the
work of Hille et al.(1985) and showed the flow dieygnent in geometry. They found that
the flow for 116.5< D<130.2 evolved into one of two solutions that depelb the inlet
condition. Inlet flow evolved into a 4-cell statathva strong vortex pair for a free vortex
pair, much like the 4-cell state calculated by Wiat(1987). A much weaker second vortex
pair develops with a 4-cell state with a fully deyped one-dimensional, fully developed
inlet flow. Both 4-cell flows appeared to be futheveloped. The weak 4-cell has not been
observed by any other researcher and may be aafa@nk artefact of the thick grid used by
Soh (1988).

Sankar et al. (1988) used Patankar's method (Ratab980) to solve a parabolised version
of the steady three-dimensional Navier-Stokes egustand investigated the flow

development in a curved square duct. They also stiotlie flow developed into the

familiar 2-cell solution for a curvature ratio 0@ and Dean number up to 128. Initially, a
4-cell state was formed for 128,<200, but periodic spatial oscillations between R-ce
and 4-cell states were developed farther downstréapair of Dean vortices is periodically

formed and destroyed during these spatial osaHhati Sankar et al. (1988) related the
development of oscillations with flow asymmetry.

Sugiyama et al. (1988) studied another, more rigerflow development in a 27@urved
rectangular duct with an aspect ratio of 2.0 arirzature ratio of 8.0. They used smoke
visualization in the air and a component laser-Dep@mnemometer to measure three
velocity components in this study. Both the flowsualization and the velocity
measurement show the development of two pairs ahDertices. The onset of this vortex
pair is around = 135. Profiles of the streamwise velocity in the spaencentre plane
show two regions of low streamwise velocity, copasding to the two in flow regions of
the vortex pair. These flow zones transport flUidsn the outer wall to the centre of the
channel with a low flow velocity.As the strength tife two additional vortex pairs
increases, they move toward the upper and lowarecsralong the outer wall. The Dean
vortex pairs have folded up into the large Ekmartives at¥=27F: as a result, it exhibited
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a 2-cell flow. Due to the inherent difficulty interpreting smoke visualization, there seems
to be some discrepancy between flow visualizatiod BDA at§ = 225 and = 270.
Miykae et al. (1988) and Kajishima et al. (1989lved the elliptic Navier-Stokes equation
using a finite difference method for the relataeddgt Though the calculated patterns do not
show the four Dean vortices, their simulation ¢ tteveloping flow in a curved duct with
an aspect ratio of 2 shows the development of tans@f Dean vortices.

Finlay et al. (1993) has numerically investigatbd tnterpretation of flow visualization.
They compared simulated numerically smoke or dyd#epss with spatially evolving
secondary flow patterns calculated in curved chithme, Gortler flow, and twisted square
tube flow. They observed that if the stream wisgat@mn of the secondary flow is small,
smoke or dye visualization can represent the bayrfttav patterns correctly. However, the
secondary flow changes quickly with a stream wissitppn and it can be miss represented
by smoke or dye.

Bara (1992) conducted a comprehensive investigatitondeveloping flow within a curved
square duct, specifically focusing on Dean Numiogrso 150. His study centred on a 2700
curved square duct with a curvature ratio of 1&tilizing both numerical simulations and
experimental techniques. The experimental apprioaabived the use of a Laser-Doppler
anemometer and die-flow visualization in water. @héhe key findings in Bara's research
was the transition of flow states as Dean Numbaried. At a Dean Number of 150, a fully
developed 4-cell flow state was observed. Howeteis flow transitioned to a fully
developed 2-cell state at Dean Number 125. Integggt an intermediate flow rate (Dean
Number 137) caused the flow to develop toward aléstate, which continued to evolve as
the flow progressed along the 2700 duct. A notde&ure of the 4-cell flow was the
relatively low stream-wise velocity in the inflovegion, particularly in the centre of the
outer wall. Bara's investigations revealed thatl&mgth required to reach a fully developed
4-cell state decreased as the flow rate increasdatend observed both in his numerical
simulations and experimental findings.

Yanase (1991) succinctly noted that when examitivegDean number, in cases where a
permanent steady solution is absent, the solutighib#s oscillations between the
symmetric two-vortex and four-vortex solutions viitithe context of flow in a curved
square duct. However, Yanase et al. (2002) condwcteumerical analysis to delve into the
time-dependent behaviour of flow within a curvedtamgular duct characterized by high
aspect ratios. Their investigation involved caltinlg the temporal evolution of unstable
solutions while considering both symmetry and aswtnyn conditions. Their findings
indicated that under symmetry conditions, periaicillations were achievable, but even in
the absence of such symmetry conditions, periadie tevolutions were possible. Bara
(1992) also observed for the first time the dudltson region, which was predicted by
Winters (1987). A 4-cell flow state was induced Ban Numbers between 114 and 131 by
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inserting a pin along the symmetry line@&°. The two-cell flow was observed in this

region without pins. The pin reduces the develognemgth of the 4-cell flow at a higher

flow rate. Although 4-cells are unstable in theecatasymmetrical perturbations, they can
be observed when asymmetrically small in the imsamt. Sankar et al. (1988) used the
developing flow code and calculated the numeric&djtion, which agreed with the

experimental results. And they have created a fidlyeloped flow code by Shanthini and
Nandakumar (1986). The results were consistent thighpredictions of Winters (1987).

Bara (1992) used the experimental apparatus thatati extend far enough to confirm the
spatial oscillations predicted by Sankar et al. 889 They considered that no

unconditionally stable solution exists in a rangeweD,, =131. And Sankara's code did not
include time dependence. Bara speculates thatdependent solutions may develop for
higher flow rates.

The developing flow in an 18Ccurved square tube with a curvature ratio of 386
studied by Arnal et al. (1992). They measured tnetbpment of stream wise velocity in
the line of symmetry for the dean number of 764e Tihite difference elliptic calculations
were compared well with the measure profiles. Theetbpment of two pairs of Dean
Vortices at)=135" near the outer wall is shown by this model. Wanyahg (2004, 2005a)
investigated fully developed periodic oscillationa curved square duct numerically and
experimentally. In their experiment, flow visualiwen was done in the Dean number range
of 50 to 500. They demonstrated, mathematically experimentally, that there are no
stable, steady flows and that the temporal oshaibccurs between symmetric and
asymmetric 2-cell and 4-cell flows. Additionallyiely demonstrated how the flow stability
could alter along a solution branch without passhrgugh the limit or bifurcation points.
Wang and Yang (2005a) demonstrated through nunhesicaulation that physically
feasible fully developed flows can evolve from abd¢, steady symmetric 2-cell flow at
lower Dean Numbers to a temporal periodic oscdlatian intermittent temporal oscillation,
another fully developed flow, and more. Wang anch¢/é$2004) and Wang et al. (2005,
2006) carried out a numerical investigation inte gtability of flow in a curved duct with a
square cross-section and a fully developed bifiooastructure. Only 2-cell flows on the
primary symmetric branch and a portion of the aasymmetric branch were linearly
stable, according to their thorough investigatiatoithe solutions' linear stability. Even
without reaching any bifurcation or limit pointd, was found that the linear stability
changed along with several of the solution branches

1.5 Fully Developed Flows in Rectangular Curved Ducts

The aspect ratio of the duct is defined as th® matiheight and width of its cross-section.
The aspect ratio of the square cross-sectional ducne. Rectangular curved duct is
defined by the choice of aspect ratios greater a@ and it may be more effective in
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explaining the flow characteristics than in squeweved ducts. Most numerical work was
done for infinite aspect ratio curved channels énd walls).This hypothesis simplifies the
numerical approach by allowing spanwise periodigriaiary conditions. Experimental work
cannot be done without end wall effects, but thpaot of the wall can be minimized by
using a channel with a large aspect ratio and glmgethe flow away from the end walls.
Some studies specifically look at the recurrendevéen the Ekman vortex and the internal

d

vortices on the last wall. The geometry of Dean bems defined aReRZT, whered is

the width of the duct an|®, andR, are radius of the inner and outer walls respectiVil is

defined asjeﬂ, where ' is the average streamwise velocity. The flow betweurved
U

plates at a low rate is one-dimensional and sgrattleamwise similar to plane channel flow.
The streamwise velocity profile moves closer to plagabolic and towards the inner wall,
and this flow is referred to as curved channel &ole flow.In critical Dean numbers, the
curved channel Poiseuille flow becomes centraliuedtable, which leads to streamwise
oriented counter-rotating Dean vortices. Dean () 928 the first to determine the onset of
such two-dimensional vortices and calculated thécal Dean number. Reid (1958)
extended Dean’s work. Brewster et al. (1959) oleiwean vortices experimentally in a
channel with an aspect ratio of 35 and a curvatate of 12.5. Recently Finley (1989)
determined the nonlinear equation of two-dimendionéices in a curved channel with an
infinite aspect ratio using weakly nonlinear pdoatron analysis. The vortex flow was
expanded as a perturbation of one dimensional ducheannel Poiseuille flow. Thangam
and Hur (1990) employed a finite volume method heirtt research. Their study was
dedicated to the examination of fully developedvfleithin a rectangular duct, considering
various aspect ratios, includingvalues of 1, 2, 4, and 8. They reported 2-cell 4rall
solutions for aspect ratios of 1, 2, and 4, an@I8fow for a duct with an aspect ratio of 8;
but did not investigate the range of possible smhstin these geometries and their stability
characteristics. The main focus is that the frictfactor correlation is defined in terms of
the modified dean numbé&/ y, which is valid for 1&D,<1000 and %y<8.

Cunff and Bottaro(1993) looked at the nature of thenges from twinsing waves to

undulating waves in curved channel flow. The omaatisional streamwise velocity profiles

were subjected to linear stability analysis, arel dantcomes of the three-dimensional flow
conditions were extrapolated. The stability of atnevise and spanwise profiles derived
from a complete numerical simulation of steadilgreasing Dean vortices was investigated
by Cunff and Bottaro. The findings demonstrated gteear instability of the streamwise

velocity's spanwise profiles causes twisting war@say and Nandakumar (1990) analyzed
the onset of Dean vortices in curved rectangulanobkls with an aspect ratio ranging from
20 to 30. They used the finite difference methodhow that the vortex pair appears first in
the centre of the channel. As the flow rate inaesasore vortices are formed towards the
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end walls. The largest Ekman vortices near the mppd lower walls appear to have a
damp effect on the inner cells resulting in a daseein vortex amplitude away from the
centre of the channel. In contrast, amplitude besomore uniform with the increase of
flow rate. Finley and Nandakumar attempted to aeavnodel of the vortex amplitude and
spacing in the channel by using a Ginzburg-Landadehdeveloped for Taylor-Couette
flow. This model correctly describes the vortex éitnde as a function of the flow rate in
the centre of the duct. However the model faildescribe the decreasing vortex amplitude
near the end walls, mainly due to the effects ahkk vortices. They point out that the fluid
in the Taylor-Couette flow is driven equally oveetentire span by the inner cylinder, and
the last vortices derive the interior Taylor vogsc The streamwise pressure gradient in the
curved channel flow does not effectively drain tlued near the end wall, resulting in much
larger boundary layers. These are just a weakadtien between the Dean vortices and
Ekman vortices.

1.6 Rotating Duct

When a curved pipe rotates at a constant angulacitye about its axis of cylindrical
symmetry, fluid flows through the ducts under bétke Coriolis and a centrifugal force.
Such rotating passages are used in cooling systenesnductors of electric generators and
for cooling systems for generator motors of pungregie stations. Ishigaki (1994) studied
the fluid flow through a straight duct in a rotatisystem; in this case, the system is
gualitatively similar to a centrifugal process asuhnilar to the secondary flow of a
stationary curved system. Barua (1955) and Bentwh Baltimore (1956) performed the
earliest flow work in a rotating straight pipe thie asymptomatic limit of weak and strong
rotation. They used perturbation expansion in thageh-Poissuel flow. Mori and
Nakayama (1965), Ito and Nanbu (1971), and Wanget ¥elkoff(1972) showed
anincrease in friction factor with rotational spefdhey found a good agreement with
experiments for low rotational speed and high ayetssure gradient. Duck (1983)
numerically studied the flow passes through a gittapipe rotated with circular cross-
sections Mansour (1985) and Lei and Hsu (1990) bt reveal multiplicity features,
although they recognized a substantial similariggwieen flows in curved pipes and on
rotating tubes. Sharma and Nandakumar (1995) redetle multiplicity feature in the
numerical study on rotating straight pipes. Khesdrgl Scriven (1985), Nandakumar et al.
(1991), Speziale (1982), Speziale and Thangam(168B)ucted an analysis of laminar
flow within a straight pipe undergoing constant w@lag rotation around an axis
perpendicular to its own. This study explored bsdgimare and rectangular cross-sectional
geometries. Speziale (1982) presented a numengakiigation of flow within a rotating
rectangular duct. Also Speziale and Thangam (19B8yved a transition from a two-cell to
a four-cell structure occurs as the Rossby nundehanged. Since pipelines have more or
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less curved sections, it is interesting to invedégthe combined effects of curvature and
rotation, which is relevant to flow in a rotatingreed duct.

Many experts on duct flow investigated the combimdficts of curvature and system
rotation on curved ducts. Hocking (1967) establishesolution based on the Momentum
Integral method. Miyazaki (1971, 1973) defined twaen the pressure-driven flow and the
sensation of rotation are in the same directiocalied co-rotation. In contrast, the rotation
is in the opposite direction of the pressure-driftew is called the counter-rotation. Hoover
et al. (1984); Wang and Cheng (1995); Daskopoulus$ leenhoff (1990) performed a

reduction in the strength of the secondary flow awdn a rotating curved duct. They
showed the first and most comprehensive bifurcastrdy of the combined effects of
curvature and rotation, and they have considemedlar geometry. Selmi et al. (1994) used
the Rossby number as a control parameter to préiserifurcation diagrams. They fixed

the Ekman number at 0.01 and considered only asgquass-section in their study.

1.7 Heat Transfer in Curved Duct

In many engineering applications, the heat transfféine fluid flow through curved ducts is
crucial. Therefore, many scientists have attractatsiderable attention to the heat transfer
in curved duct fluid flow.These kinds of works haween done by the researchers such as
Akiyama and Cheng (1974), Dravid et al. (1971),Band Bonilla (1950), Janssen and
Hoogendroorn (7978), Hausen (1943), Kalb and Se@d#£2,1974), Kubair and Kuloor
(1966), Mori and Nakayama (1965, 1967), Oliver &sghar (1976), Owhadi et al. (1968),
Patankar et al. (1974), Schimdt (1967), Simon e{1&77), Singh and Bell (1974), Tarbell
and Samuels (1973), Zapryanov et al. (1980). Theghanism has found application in
various engineering fields, including heat exchasgehemical reactors, gas turbines, and
more. The characteristic of flow in curved ductshe development of secondary flow,
which increases the rate of heat and mass traredpgcially in the case of laminar flow.
Due to their practical application in heat exchasgextensive research has been conducted
on conductive heat transfer in coiled pipes andefielbows. The numerical method has
been used to predict heat transfer rates on flodetso

Conductive heat transfer within curved pipes exhil@ distinctive characteristic — the
average heat transfer rate surpasses that of igh$tigipe at the same flow rate. This
enhanced heat transfer is primarily attributed twittonal mixing facilitated by the
secondary flow. The total Nusselt number, a kepp@ter in heat transfer analysis, reaches
its maximum at the outer bend due to localized retagn-like flow patterns and also
achieves its maximum at the inner bend due to tesemce of reverse stagnation-like flow.
In a significant study by Yao and Berger (1978kegies solution was derived for fully
developed flow, particularly for cases with a snidélan number and the productRf R,
whereR. is the Rayleigh number. For a horizontally orienteirved pipe, the interplay of
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centrifugal and buoyancy forces results in the ftion of two skewed vortices. These
vortices can be conceptualized as the combinafitwvahorizontal vortices induced by the
centrifugal force and two vertical vortices genedaby the buoyancy force. This complex
flow pattern further contributes to the unique he&ainsfer characteristics observed in
curved pipe systems. The effects of buoyancy orldeing heat transfer on laminar flow
in a curved square channel were initially studigddmilukuri and Humphrey in (1981). In

particular, Nusselt numbers and secondary flows wireamwise development differed
notably in steady numerical projections made witloyant forces in the primary and
opposite directions.

McCormack et al. (1969) have shown that a signifioaffect of curved ducts might be
enhancing heat exchange between two differentlytekdeavertical sidewalls, which
stimulates fluid mixing and heat transfer betweecosdary fluids. Prusa and Yao (1982)
used a finite difference method to obtain a solufior a large Dean number, aiRd R..
They conducted a comparison between the mass #twvithin a heated curved pipe and
that within a straight pipe, subject to the sam@alagressure gradient. Their findings
revealed that substantial overheating could infgnsie secondary flow, increase flow
resistance, and ultimately reduce the flow ratengequently, it was determined that, under
identical axial pressure gradients, a heated cupipd might be less effective as a heat
transfer device when compared to a straight pipdditfonally, Ganzarolli and Milanez
(1995) and Calcagni et al.(2005) undertook both enical and experimental investigations
to explore transient and steady natural convegtitenomena in a two-dimensional cavity
symmetrically heated from both sides. MeanwhilesBd al. (2002) delved into the
examination of transient and steady natural comwegbhenomena in enclosures heated
from below and symmetrically cooled from the sidé&miyama (1984) provided
computational methods to forecast fully developegd¢lt numbers and secondary flows in
steady curved channel flow without buoyancy impaBundary conditions with a steady
heat flux were imposed, and channel aspect ratiaged from 0.8 to 5. Anderson and
Lauriat (1986) and November and Nansteel (1987 hagependently conducted research
on the phenomenon of natural convection withinaegtilar enclosures. In their studies,
these researchers investigated situations whereertsosures were heated from below
while being cooled from one side. Regarding tramtsgteady-state natural convection in
differential side heated cavities, several expenit@eand computational research have been
published in the literature by Fusegi et al.(19914d Schladow (1990).

Bejan (1995) demonstrated that natural convectimenpmena could be divided into two
general categories based on the geometry and atiemiof the enclosures: bottom heated
enclosures, which lead to the well-studied classiohject of Bernard flow, and side heated
enclosures, which have attracted a lot of attentionecent years. Cheng and Akiyama
(1970) and Mori et al. (1971) conducted numerigadictions for steady, fully developed
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laminar forced convection in channels with unifoneat flux boundary conditions. Their
numerical simulations successfully predicted stalbldly developed laminar forced
conduction in channels with uniform heat flow boandconditions. Notably, both of these
investigations provided clear evidence of secondby patterns in both velocity and
temperature profiles. Laminar flow in a rectangutéyannel with concave heating was
explored statistically by Chung and Hyun (1992)eyldemonstrated that hydrodynamics
start to affect heat transmission beyond a cenpaimt downstream of the initial curve.
Ligrani et al.(1996) experimentally investigatecah&ransfer in transitional curved channel
flow over a range of Dean numbers less than 300 avithannel aspect ratio of 0.979. They
showed that secondary vortex formation is morectgfit by external heat than the inner
wall of the passage. Yang and Chang (1994) invatstitnumerically combined free and
forced convection for a flow developed in a heatedsed pipe with an arbitrary curvature,
mainly for «'> 02, and demonstrated the existence of a dominant fleelt due to
increased Buoyancy force and curvature.

In a rectangular enclosure that was heated frommbahd cooled from the top, Aydin et al
(1999) addressed the convection of air numericdlhey looked into the effects of aspect
ratio and Rayleigh number on flow patterns and gnéansport. They discovered that the
aspect ratio substantially influences the enclosgight, and the Rayleigh number is high.
The effect of the Rayleigh number on heat tranisfenainly significant if the enclosure is
shallow. Sturgis and Mudawar (1999) studied an ewpntal investigation to ensure
single-phase heat transfer for flow in a rectangolarved channel under concave heat.
They showed that the heat transfer in the curvedimdl increases with increasing velocity,
but the fully developed thermal condition cannot dshieved when the heated curved
section is left. Chandratilleke (2001) studied flowa curved rectangular duct with external
heat on the exterior wall experimentally. He dent@ted that secondary flow improves
convective heat transfer significantly, especiailgjen the Dean vortex emerges on the
outside wall. Later, Chandratilleke and Nursubyal@003) conducted numerical research
aimed at characterizing conductive heat transfeh@context of fully developed laminar
flow through curved rectangular ducts with aspeatios ranging from 1 to 8. The
experimental data and numerical findings were fotande in good agreement.

Yanase et al.(2005a, 2005b) conducted numericaliestuon both isothermal and non-
isothermal flows through a curved rectangular diittey discussed how secondary flow
affected conductive heat transfer for heated \artgidewalls. Mondal et al. (2006)
analyzed non-isothermal flows through a curved sgdact with a heated outside wall and
a cooled inner wall numerically. The governing doures for curvature up to 0.5 and Dean
Number up to 6000 were solved using the spectrahade The transition to a periodic or
chaotic state is delayed in this study by incregasmrvature. The Nusslet numbers are used
to compute the horizontal heat transfer index. Ttisgovered that convection caused by
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secondary flow, which is aided by centrifugal fqrcensiderably boosts heat transmission
from the heated wall to the fluid.

1.8 Hall Current and lon-slip

Magnetic fields have an impact on electrical cuse@urrent encounters resistance when a
magnetic field is applied perpendicular to the clian of flow. The Hall Effect is a good
indicator of how the Lorentz force operates in #itaation. Hall Effect was given its name
in 1879 by American physicist Edwin Hall. Hall Efteis the creation of voltage
(sometimes referred to as Hall voltage) acrossmalwctor that is perpendicular to both an
applied magnetic field and an electric current.sTHall voltage difference in the conductor
is referred to as Hall current, and the electramd rotons shifting sensations within the
metallic conductor are called lon-slip. The problefmagneto-hydrodynamic generators,
Hall accelerators, and in-flight magneto aerodymasmare all essential engineering
applications of Hall current with ion slip. Duettte fact that a large portion of the universe
is filled with widely spaced charged particles apermeated by magnetic fields, the
continuum assumption becomes applicable, and th® Midd flow regime with Hall and
lon-slip current is crucial in geophysics, astrogihy, and many engineering and industrial
processes. Lima and Alam (2019) conducted a stugjoeng the flow characteristics
within a straight duct with a significantly largspeect ratio, all within a rotating system.
Their research specifically focused on examining dififects of Hall current on the flow
dynamics.

1.9 Relevant Parameters Information and Their Sigrficance

(a) Grashof number

Franz Grashof established the Grashof number asnadimensional quantity in fluid
mechanics and heat convection. The ratio of bugyand viscous force that acts on a fluid
flow within the boundary layer is defined as thismdnsionless parameter. It plays a similar
role in natural convection as the Reynolds numbesdn the forced convection.

According to the Grashof number's definitisrdenoted and defined by
_ Inertiaforcesx Buoyancyforces
(Viscousforces)’

_ ,O\/ZLZ ><,ogL3,8AT
(v)°

3
0 G = gLquT (1.1)

Where: p is the density of fluid,B is the coefficient of expansiom\T is the temperature
difference, i is the dynamic viscosity and is the kinematic viscosity.

r
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Significance of Grashof Number

By calculating the Grashof number for a fluid ic@&ved duct, it can assess the relative
importance of natural convection within that paré geometry. A high Grashof number

indicates that natural convection effects are damtinwhereas a low Grashof number
suggests that forced convection or other factong meamore significant for heat transfer.

(b) Dean Number

The curvature-induced secondary flow in a curvedepor duct is described by a
dimensionless number called the Dean number, sorestknown as Dean's coefficient. It
is employed to explain how centrifugal forces anespure gradient forces affect fluid flow
in curved layouts. In general, higher Dean Numbesd to a greater pressure drop through
the curved duct.

Since our purpose is to seek the emergence of Deices so we begin with the oldest
definition of Dean number. The earliest definitmiDean Numbek is defined as

K:2\/3_RE= %(ZCZI_VOJ 1.2

where, w, is the mean axial velocity in the pipe andis the radius of the duct curvature,

while, the Dean number's original form was spedifig Dean (1928) as

K = 2(%} (d‘l’j‘)jz (1.3)

where w, is only considered as a constant with a velocityeshsion. If we takey, = W,

thenx andK are related byx =+ 2K .

For fully developed flow, in terms of dimensionari of the axial pressure gradient
' 2
%3—% =-G is constant. It can be then defined a non-dimemioonstantC = Gd

rewrite (1.3) as

and

HW,

22 )

If we specifyw, as the maximum velocity, ., in a straight pipe of the same radius and
pressure gradient as Dean (1928), it has been take#, and then equation (1.4) becomes

3 2?2 247
K = 2(3 Gd” | _ sz2 (1.5)
oL\ 4u 8uv L
However, if we just se€ = 1, it becomes
3 22
UL U

Most investigators have utilized not only all okthbove forms of the Dean number since
Dean's original work, but they have also usddn&tead ofd, or vice versa, in curvature of
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the ducﬁ=%and the definition of Reynolds number, or they hasedx? or K? instead of

k or K. This certainly causes a lot of uncertainty wheading and comprehending the
literature. Van Dyke (1978) provides an excellamhmary of the relationships between the
various versions used in some of the most frequeatérenced studies.

For experimental purposes, it's common for Deanbeismbased on A, which represents the
mean axial velocity, to be the preferred choice mgneesearchers. This is becausg,

being easily observable, offers a more straighthodvwvay to characterize the flow, as
opposed to the more challenging measurement ospregradients. The choice between
using a Dean number based @y or any of its variations rooted (B, such as equation (3),

doesn't significantly impact the analysis of fultieveloped flow due to the constant

factor,C. Starting with McConalogue and Srivastava (196&) &lunge and Lin (1973)
most theoretical and numerical investigators haexuhe square root of (5) and designated

it by D for this flow.
3 2 3
\ u’L 7] o VL

Significance of Dean Number
The Dean number ([p also known as Dean's coefficient, is a dimerisgsnumber that
describes the curvature-induced secondary flow curaed pipe or duct. It is used to

describe how fluid flow in curved designs is impatby centrifugal forces and pressure
gradient forces. Generally there is a greater presdrop through the curved duct with
higher Dean Numbers.

(c) Taylor Number (T,):

The Taylor number T;) is a dimensionless number that characterizes rdiative
importance of inertial forces to viscous forcesairrotating or curved fluid flow. It is
particularly significant in the study of fluid dymeécs involving curved ducts or pipes with
rotation. Geoffrey Ingram Taylor created a dimenkes variable in 1923 that quantifies
the relevance of centrifugal forces, also knownnastial forces, caused by fluid rotation
around an axis. This number measures the influehoatation on a convicting system. The
scale of the conductive cell, the rate of rotatiang the kinematic viscosity all affect the
Taylor number. It is denoted and defined by

2
T =200 \F (1.8)
v o)

whereQ is a characteristic angular velocitd,is the curvature of the duct ands the
kinematic viscosity.
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Significance of Taylor Number

The effects of Taylor Number on the curve duct flowans that the rotational affects on
the flow. According to the properties of rotatioarpmetel, ; positiveT, refers to the
rotational direction of the system is similar witlhe direction of the fluid flow; this is
called co-rotation. Whereas for negative , the rotal direction is opposite to the
direction of the flow, this is called counter-radat

(d) Prandtl Number

The Prandtl number affects how quickly heat mowesugh a curved duct. When compared
to its momentum diffusivity, a low Prandtl numbeuid (like air) has a high thermal
diffusivity, which means that heat is transmittedreneffectively than momentum. A high
Prandtl number fluid, on the other hand, has rediubermal diffusivity and less effective
heat transmission because of this. The Prandtl rumsla dimensionless number defined as
the ratio of momentum diffusivity (kinematic visaygand thermal diffusivity and is named
after the German scientist Ludwig Prandtl. It isoked and defined as follows:

_ Momentum diffusivity

"~ Thermal diffusivity
_v__ v
a ki(ec,)
puc,
k
wherepis the momentum diffusivity (or kinematic viscogity
a is the thermal diffusivityk is the thermal conductivity,

C,is the specific heat anglis the fluid density.

0 P = (1.9)

The impact of the fluid's viscosity is observedtby values ofv = ; .When the value ob

is small, it results in a narrower viscosity-affstizone, which is referred to as the boundary
layer region for small.The thermal diffusivity due to heat conductiomapresented by the

k o .
value— .The narrower region impacted by heat conductios eéerred to as the thermal
FCp

boundary layer region for smaclj(— .The value oP, eventually differs from fluid to fluid.
PCp

Significance of Prandtl Number

The following table shows typical Fanges for common fluids.

Fluid P

Liquid metals 0.004-0.03
Gases 0.7-1.0
Water 1.7-13.7
Light organic fluid 5-50

Oils 50-100000
Glycerine 2000-100000:
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Particularly for air at 2, P. =0.71 (approx.), for water at 2D, P, =7.0 (approx.), for
mercury at 28C, P, =0.044 (approx.) but for viscous fluid it may bewéarge, e.g. for
glycerine at 28C, P. =7250.0 (approx.).

(e) Magnetic Parameter

The magnetic parameter is a dimensionless varthbledescribes the effects of a magnetic
field on a conducting fluid flow through a curvediatl or pipe in fluid dynamics,
particularly in magneto-hydrodynamics (MHD). Théatve relevance of magnetic forces
compared to fluid dynamic forces is quantified. Thagnetic parameter is defined as the
ratio of electromagnetic force to inertia forceshieh provides an approximation of a
magnetic field's proportional impact on a flowdtdenoted and defined by

_ Magneticforces_ do'u, B}

" Inertiaforces oJ,

Where: Uy is the characteristic values of velocityis the characteristic values
of density of fluid,d is the characteristic values of lengi, is the magnetic
induction, o' is the conductivity of the material and is the coefficient of
Viscosity.

(1.10)

But in our current research the non-dimensiondioam velocity is defined by | :di

2 2
Therefore equation (10) modified gs- 39 #Bo. (1.11)
oU

Significance of Magnetic parameter

In fluid dynamics, particularly in magneto-hydrodynics (MHD), the magnetic
parameter is a dimensionless quantity that expldiaseffects of a magnetic field on a
conducting fluid flow via a curved duct or pipe.€lmain characteristic of the magnetic
parameter is to measure the relative importancthefmagnetic force compared to the
fluid dynamic force.

() Nusselt Number Nu)

A solid body and a fluid can transfer heat throwgimvection, one of the fundamental

mechanisms by which the convective heat transfefficeent can be measured. The
convective to conductive heat transfer ratio atuad fboundary is defined as the Nusselt
number Nu). The Nusselt number is regulated by both thed®uphysical characteristics

and the geometry of the heat transfer system. dt dgmensionless quantity that compares
the actual heat transfer from a surface to the traasfer that would be observed if only
conduction could happen. It is frequently employedjauge how much heat transport is
aided by convection.

22



The Nusselt number is defined\y = hk'- (1.12)

where,his the convection heat transfer coefficiehtis the characteristic
length, and s the thermal conductivity of the fluid.

Another way to think of the Nusselt number is adiraensionless temperature gradient at
the surfaceNu >o0denotes enhanced heat transmission from a solig tooa fluid, whereas

Nu < odenotes enhanced heat transfer in the reversdidirec

(g) Hall Parameter (m)

The Hall parameter is a dimensionless number thatacterizes the relative importance of
the magnetic field to the fluid velocity in a magméydrodynamic (MHD) flow. It is
particularly relevant in situations where the magnéeld influences the behaviour of a
conducting fluid. The Hall parameter is defined as:

Hall Parameter = BXL
pxV
Where,B is the magnetic field strength.
L is a characteristic length scale of the flow
p is the fluid density.
v is the fluid velocity.

The Hall parameter relates the fluid velocity alnel inagnetic field strength, indicating how
effectively the fluid motion induces a magnetiddieThis can be relevant in applications
such as plasma confinement, where the Hall effectributes to magnetic field generation
and containment. The Hall parameter is often usedetermine the dominance of Hall
effects in a magneto-hydrodynamic flow. Hall eftearise due to the interaction between
the fluid's motion and the magnetic field. When thall parameter is significant, these
effects can play a crucial role in the behaviouthef flow.

Significance of Hall Parameter

The Hall parameter is a dimensionless number thetacterizes the relative importance of
the magnetic field to the fluid velocity in a magméydrodynamic (MHD) flow. It is
particularly relevant in situations where the magnéeld influences the behaviour of a
conducting fluid.

(h) lon-Slip Parameter (a)
The lon-slip parameter (also known as the longlilocity) is a dimensionless quantity that
characterizes the relative velocity between iors meutrals in a plasma or ionized gas. It
guantifies the degree to which ions, which are gbdparticles, slip or move independently
of the neutrals, which are uncharged particles. Tareslip parameter is particularly
significant in situations involving charged partidlows, such as in plasma dynamics or
ionized gases. It is defined as:

Vn

lon-Slip Parameteg = Vi ~Vn.
\%
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where,y, is the ion velocity (mean drift velocity).
v, is the neutral velocity.
v is the characteristic flow velocity

The lon-slip parameter affects the momentum trarisféveen ions and neutrals. When the
lon-slip parameter is significant, ions can hawkstinct velocity from the neutrals, leading
to differences in momentum exchange and flow behavi

In regions with strong lon-slip effects, electrielfls can develop due to the separation of
charges. These electric fields, in turn, influertbe overall flow behaviour and the
distribution of charged particles.

In summary, the lon-slip parameter is a key fathat influences the behaviour of ionized
gases and plasmas. It affects momentum transtav, dtability, electric fields, and various
transport phenomena. Understanding the lon-sliparpater is crucial for accurately
modelling and predicting the behaviour of chargexdtiple flows in a wide range of

scientific and engineering contexts.

Significance of lon-slip parameter

The lon-slip parameter (also known as tba-slip velocity) is a dimensionless quantity
that characterizes the relative velocity betweers iand neutrals in a plasma or ionized
gas. It quantifies the degree to which ions, which charged patrticles, slip or move
independently of the neutrals, which are uncharggedicles. Thelon-slip parameter is
particularly significant in situations involving atged particle flows, such as in plasma
dynamics or ionized gases.
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Chapter 2

Basic Definitions and Governing Equations

2.1 Basic Definitions

2.1.1 Curvilinear Coordinates

Consider the Cartesian coordinate system (Figurei2.a space an®(x,y,z) be any point
on it, which is the function of three independemtgke valued functions ofy ,u, U,

defined by
X=X, ,U,,U,)
yzy(ul!u21u3) 2:()
z=2(u;,u,,U;)
Also assume that it's corresponding the Jaco%%éﬁ% # 0so that the transformation
U, Uy, Ug

(2.1) be invertible.

X
Figure 2.1: Cartesian with Curvilinear Coordinate system

Therefore the variabled, , U, U, can be expressed as in termsxafy, z ; thatis

u =u,(x,y,2)

U, =U,(%,Y,2) (2.2)

U; =U; (X1 \Z Z)
Therefore for each point d?(x,y, ), a unique set of new coordinatés ,u,,U,) has been
found. This coordinate is called curvilinear cooate ofP.

If at each poinP, the tangent®T, , PT, and PT, are mutually perpendicular and parallel
to the Cartesian coordinate axes, th@m,u,,u;) is called orthogonal curvilinear
coordinate oP.
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The curvey, =C,, u, =C, andu, =C; are called the coordinate curves and the surfaces
, S, andS;are generated by the pair of curves=C,& U, =C;, u;,=C;&u, =C, and
u, =C,&u, =C, respectively.

The line elementsin Cartesian coordinates is given by

ds=1/(c)? + (dy)? +(d2)® .
Now by using (2.1), it is found that

dx :ﬁdu1 +ﬂdu2 +ﬁdu3

u, ou, ou,

oy oy oy
dy = —du, + —du, + —du
Y ou, - du, - du, °
dzzzdu1 +£du2 +£du3

ou, ou, ou,

Substituting these values in (2.3), and using thtbogonal property of the curvilinear
coordinate system, the coefficient ofdu,du, , du,du, , du,du, are zero. Therefore, it

follows that

ds =+/h?(du,)? +hZ(du,)? +hZ(du,)? (2.4)

2 2 2
h1 = % + ﬂ + E
ou, ou, ou,
2 2 2
where,p, = OX | L[ 9Y | 1[92 | | are knownas the scale factor.
ou, ou, ou,

SRR
ou, ou, ou,
Deduction (): Rectangular Cartesian coordinate sys{eqmy, z)
Herg, Y, 2) =(u,U,,Us)
The line elementis = \/(dx)z + (dy)? + (dz)? = \/hf (du,)? +hZ(du,)? + hZ(du,)? .

Or, h=h,=h,=1 and (u,u,,u;)=(XYV, 2.
Deduction (i): Cylindrical coordinate systerR(r, 6, z )

Cylindrical coordinaté, 6, z i9 defined b ‘4
y er_ 9 y _—
X=rcosf ; y=rsind ; z=z N [
r>0, 0[0,2n] and zO(-% , ©) ; P(.6.2
Now dx = ox du, + ox du, + ox du,
ou, ou, ou,
Heréu,,u,,u,)=(r, 6, Z ] >
eré;l 2 3; ( ] ) >
0 dx=2dr + 2 dg+ X dz x
or 06 0z
Or,dx =cos@dr —rsinddé Figure 2.2: Cylindrical Coordinate System
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Similarly, dy =sin@dr +r cosgdé
anddz = dz
0 (d9* =(dX)* +(dy)* +(d2)*
=(cogdr —rsinddd)* + (sinddr +r coFdé)® +(d2)*
=cog 9(dr)* - 2r co¥sinddr d8 +r ? sin® 8(d8)®
+sin® 8(dr)? + 2r cofsinddr dg +r? cog 8(d8)* + (dz)*

=[cog G+sirt g)(dr)? +r?[sir? 8+ cos g](db)* + (d2)®
=(dr)® +(r d§)* +(d2)®
= 2 (du)? +h2(dw,)? + h2 (du,)?

Orh, =1 h,=r, h,=1 and (u,u,,u;)=(r, 6, 2

2.1.2 Gradient, Divergence Curl and Laplacian in Othogonal Curvilinear
Coordinates System

If ¢ is a scalar function anddA =€ A +&,A +&Aa vector function in a curvilinear

coordinatesy, ,U, ,U, it has been found the following results:

10g,,10¢, , 10g,

1. D(p:gractozﬁa—uleﬁhzau %+h36u €
a1
2. D'A_d'VA_hlhzm[a (h h3Ai)+ (h h1A2)+ (h ths)}

hé hg h3e3
1 0 0 0

h,h,h,|0u; du, du,

3. OUOA=curlA=

hA  hA hA
4. [%p=Laplaciarnf ¢ = L {i(%% +i£ﬂ%}i[ﬂ%ﬂ
hhhou\ h ow) ou\ h ou,) ou{ hy oy,

These reduces to the usual expression in rectangotadinates if we replacé, ,u, ,Us)

by (x,Y,z), in which caseg,,& andé, are replace by, jandk and h =h,=h, =1.

2.1.3 Hall and lon-slip current

A magnetic field applied to a conductor that aatspendicular to the current produces a
voltage difference across the electrical conductbis Hall voltage difference in the
conductor is referred to as Hall current. It wascdvered in 1879 by Edwin Hall.

=qvBsing

m|_

Magnetic forceF, =q(vxB) = F_ = ||:

where is the angle between v and B. Sirge 90° thereforeF, = qvB

Again, electrical force~. =gE , BUtE = Vd—H
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d

Negative charge
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S

Magnetic
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Direction
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Figure 2.3aFleming’s Left Hand Rules Figure 2.3 Hall effects and lon-slip

In equilibrium situation of these forc&s, = F, = |F,| =|F¢|

V

vB =g+
=q qd
OV, =vBd

This is the Hall voltage; this phenomenon is called Hall current effect, and lon-slip
refers to the changing sensations of electrongamtdns within the metallic conductor.

2.2 Basic Governing Equations [Curved Duct]
The continuity equation for a viscous compressdiloiiel in vector form is given as follows:
op
—+0 =0
a (0 a)
For incompressible fluid, this equation can betentas follows
0.g=0 (2.5)

The Navier-Stokes equation for viscous compresdibié with constant viscosity in vector
form as follows
dg 1 o U
—=F-—0Op+ud?%q+=0(C.
m i p a+3 (0.q)
Of,g—?+(q DD)q=F—EDp+uD2q+%D(D-q) (2.6)
Yo,

Where,q = (u,v,w) is the fluid velocity vectorF = (F,,F,,F,)is the body forceo is the
fluid density, P is the fluid pressure and is the kinematics viscosity.

It is known that from the vector formuldZ (O 0A) = O(C.A) - (0.0)A
0 00O(00q) =0(0.q) - 0%
Or, 0%q = 0(0.q)-00(0 0q)
Then equation (2.6) becomes

9, q.0)q=F - Lop+u[0@.q) -0 0@ 0 +L0@O.q)
ot Yo, 3
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or, g—?+(q,D)q - F—%Dp+UD(D.q)—UD 0(0 0g) + Z0(0.0)

ot
For incompressible fluid, density is constant. In that case, the equation of corynui
becomed.q = 0. Then equation (2.7) reduces to

0 a—q+(q.D)q=F—%Dp+%UD(D.q)—UD 0(0 Oq) ®.7

) 1
a—?+(q.D)q:F—;Dp—UD 0(0 Oq) (2.8)

Again from vector formulad(A B) = (AD)B+(B.0)A+ AO(IOB)+BO(U UA)

0 0(@.9)=@.0)g+(.0)a+qgL(0Cg)+qgL(HLCQq)
Or, 0(g.9)=2(q.0)g+29gCL(OLCQ)

Or, %qu = (9.0)g +qx (Oxq)

1
Or (-0 =500 -~ax(Exq)

Or, (q.0)q =%Dq2 +(0 0q)Oq

Then equation (2.8) becomes

a—q+%Dq2 -qQO(Od Dq)=F—le—UD 0@ Oa)
0

ot
Jq 1 1

Or, X -qO0(@0Oq)=F-=0p-=0qg*-v00(00
o qU@da) P p 5 q”-vbd(@Ua)

Or, ‘Lq+(m 0q)dq = F—D(l p—lqzj—uﬂ t(@da)
ot Yo, 2

O %?+$DQ=F—D(I%|D+%QZJ—UD 0¢  where, ¢ =00q (2.9)

This is the Lambs/invariant form of the Navier-Stekequation (or Momentum equation)
for viscous incompressible fluid with constant asity.

If the fluid moves through the electromagnetic digh a rotating system, then the
Momentum equation (2.9) for a viscous incompresstain be written as follows:

Z—q+§Dq=F—D(1 p+3qzj—u (O Dg)+i(3 0B)-2(Q 0q) (2.10)
t 0 2 0

where, the termJCB is the force acting on the fluid per unit volumeoguced by
interaction of the electric and magnetic forcedje] L q andQ L q are the forces acting on
the fluid per unit volume due to the action of c#augal and Coriolis force on the system.

The energy equation for viscous incompressibletedadly conducting fluid is defined by

LIS SE
dt  oC,
oT k
Or, +(qm)T = 02T (2.11)
o Hamyr <.

Where, k is the thermal conductivityp is the density of the fluid andl is the temperature.
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The momentum equation can be expressed in thenolpform due to the influence of
gravitational force on the fluid:

g_q+gqup—m[ip+1q2]—u (008 += (3 0B)-2(Q 0g) + AT (2.12)
t 0 2 Yo

whereJ=(J,,J,,J,) is the current densityB=(B,,B,,B) is the magnetic field vectog? is
the angular velocity vector angl= (0, 0, g) is the gravitational force.

According to thedDhm’s Lawthe current density is defined by
J=0(E+qLB) (2.13)

Due to the action of Hall and ion slip current be fluid, Ohm's law is generalized as

J=0p,(qOB) - ée(J 0B)+ %9 30B) 0B
0 0
or, J=ou,(q0B)-—(JOB)+ 2 (3 0B) OB (2.14)
BO BO

Here,m=c¢.T,., where, and7, are cyclotron frequency and electron collisiongim

Also o,m, @ and Bjare the conductivity of the fluid, the Hall factand lon-Slip

parameter and the magnetic inductiorBofrespectively.

2.2.1 Continuity Equation in Cylindrical Curvilinear Coordinate System

Divergence in curvilinear coordinate is given by

1
+——(hgh +—(h;h
hahoh, {6 (hhsyay) au (hshyqy) au ( 2q3)}

In cylindrical curvilinear coordinate system, itaéssential to replacg, ,u, ,u;) by (¢ .,6,z);

0.g=

velocity component@®,,d,,9;) by (u,v,w) and scale factoh, =1, h, =r & h; =1, these
yields

. q :l[i(ru) ﬂ+ra_w:|

r|o 00 0z
1[ ou ov 6W}

=Zlu+r—+ +r—
r r o 0z
u ou 1lov ow

Thus the continuity equation for incompressiblédia. g = 0 becomes
a_u+16v+6w+g_o (2.15)
o rof 9z r

This is the continuity equation in cylindrical ciliwear coordinate system.
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2.2.2 Momentum Equation with Hall and lon-slip Currents in terms of
Cylindrical Coordinate (r,é,z) through a Rotating Curved Duct.

Consider a two-dimensional, incompressible, MHCcoiss fluid flow through the curved
duct in a rotating coordinate system. In this systan angular velocity d2 causes rotation
about the vertical y-axis, with the and z-axes positioned perpendicular to it. Given the
presence of curved duct flow, the governing equatiare formulated using cylindrical
coordinates r({ 0, z). Here, r represents the radial variablé, corresponds to the
circumferential angle, and is utilized as the vertical variable. Let=(q,q,,%) be the
velocity, which directed along the directions af, y and z respectively. The cylindrical
coordinate systenvith curved duct is shown in Fig. 2.4:

>y

Figure 2.4 Cylindrical coordinate system with curved ¢

Suppose the curved duct rotates about its vettiaals, then, Q= (0, 0, Q,)

But [0.Q=0 which givesa;)—zz =0 = Q, =constant=Q, (say)

Hence =0, 0, Q)

Since the direction of the magnetic force is tramsg to the direction of the centreline of

the curved duct, thereford = (0, 0, BZ)

0B,
z

Similarly(D. B=0= =0= B, =constant= B, (say)

HenceB =(0, 0,B,)

The current density k= (JX,Jy,JZ).

The direction of propagation of the current is eédesed along, y-axis and does not have
any variation along-axis.

a;; =0= J, =constant 0(say) and thereforel = (JX , Jy ,O)

ltgivesg=6.0+8&,.0+8&,9 ,q=q, =60, +8&,q, +6&,q, and § = €&, +&,¢&, +&,¢,

Thusd.J=0=>

D>
SD>

Now, q 0B = Q@ G :él(qZBO)_éZ(qlBO) =0,B,& —0,B&,

o fL M
o
o
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& & &
0

0 (qOB)OB=|0,B, -qB, 0|=(-0,82)8 —(0,B2)6, +0=-0,8%8 ~,B%,

O 0 B
& & §&

g0a=l8, & & =8(6,0,-6,0,)+6,(6.a, - £,0,) + (5,0, - £,a,)
& 9 O

We know that g= 60¢ .8 0¢ & 0¢
habh h, du, h36L13

p,1.)_[§0[p,1 &0 p,1 &P Ll o,

O D[p qu naul{ H{CRT: qg)} a { Sl qg)} Mus{p+2(0a+qz+oe)H
hg hg hg
110 o 9
hh,h, |0u; 0Ou, du,
hé, h, h,

_ & [0 _ & [0 _ & _
= hh, (a (hds) (hzfz)J hoh, [a (hy) (hsfg)j hlhz( (<) (hlfl)]

O0g=

Body forceF =& F, +e2F2 +6,F,
& & §&
QlUg=0 O Q0 = él(O_QZQo) +é2(quo -0) +é3(0_0) = _équQO +é2Q1Qo
0 4 Qs
Generalized Ohm's law is referred to as the follgamequation because of the influence of
Hall and lon-slip currents on the flow.

J= J,ue(qDB)——(JDB)+—(JDB)DB (2.16)
0 0
& & §
NowJOB=[J, J, 0 |=8(3,B)-&(3,B)+&x0=8J,8,-8J,5
0 0 B,
& & &
(00B)DB=|3,B, -3,B, 0 |=§(-3,B)+&(-9,8)=-69,82-63,B;
0 0 B

Thus the generalized Ohm'’s law (2.16) becomes

ma
J&+J3,8+31,8 =014, (0,88 —q,B8,) - (qJ B, -&,J,B)) +— = - (-8 J,B; -&,J,B7)

O 0
0 J, =01, q,B,-mJ, -maJ,
J, =-0u,q,B, +mJ, —-mad,

J,=0
(1+ ma)‘]x + rnJy = O—ﬂe qZBO
Oor,  (@+ma)d,-ml, = -0y, qB, (2.17)
J,=0
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Multiply 1% equation of (2.17) byMand 2° equation of (2.17) by(1+ ma ) then adding, it
gives

m(l+ rm)‘]x + rnz‘]y +(1+ rna')z‘Jy - m(l+ rm)‘Jx = U,L[e qZBOm_a-ﬂe qlBO (l+ rm)

Or, [m* +(1+ma)*]J, =0, B,[ g,m-gq, L+ ma)]

or, 3, =L&m=0,@+ma)
[m® + (L+ ma)?]

e—0
1 _ 1
[m* +@+ma)’]  [m*+A]]
ThenJ y — A (g,m-A.q,)ou B,
Again multiply ' equation of (2.17) by (1+ma 3nd 29 equation of (2.17) bynthen
subtracting, it gives
(1+ma)*J, +m(1+ma)d, -[ml+ma)d, —-m’J,] = gy, q,B, (1+ ma) + mo'y, q,B,

PutA, = 1+ ma)?and A =

Or’ (1+ma)2‘]x+m2‘Jx :a;uquBO(l-'-ma)-'-ma;ueqlBO
Or, [(1+ma)*+m?®]J, =0u.q,B,(1+ma)+mau,q,B,
or, [(1+ma)®+m?]J, =[q,(1+ma) +mq,]oy, B

1+ma)+mq,]
Or’ J :[qZ( 1 B
X [(1+ma)2 +m2] JIUe 0

or, 3, =[Pl + M)
[AS +m?]
Or, J, = A(AQ, + ma,) g, B,

Hence g, =IM* %M o) g ang 5 - [%Mm=6,A* ma)]
[m? + (1+ ma)?] O —

Jlue BO

e=0

Finally,
& & §&
JOoB=|J J 0 :él U/'leBOZ qzm_(l"'ma)ql _~ OH, BO2 mq1+(1+ma)q2
7 0 m® + (1 +ma)? Yo, (1+ma)® +m?
0 0 B

Putting these obtained values in the momentum emué.12)

0 (. N A A « "
E(elql +e,q, + e3q3)+e1({2Q3 _{3q2)+ eZ(EBql _{1q3)+ e3({1q2 _Equ)

- 1 & 9
=elF1+ezF2+eeF3-i—{—p+5(q12+QS+Q§)} A {p (q1+q2+q3)}

hau, o h, du,
_Ei P, 2 ) B

N { D lra qs)} zhs( (hs) (h@}
LB (0 ey O L,

hlhs[aus ()5, (h@} o [a (&)~ Z(hlfoJ

. . . ou,BZ | g,m-(@1+ma)q
_2(_61%Qo+ezq1Qo)+el ° [ 2 -

0 m? + (L+ ma)?
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_g OH.BS {mql + (1+ ma)q,

" 5 L+ ma)? + }ﬁ(el 0+6,.0+&9)T

By equating the components of the unit vecdpré, and é,, it gives

o _ _1ojp.1 2 1 P -
a HEBER)=R M{p 2(q+oa+°e)} ,m(mz(hfa) %mj (2.18a)
oUR | gm—(L+ma)qg,

+20,Q, + 0 |:mZ+(1+m)2}

L L e ( ; ]

3 51 _F2 + T+ fl 3

x e da)=R - @) o () (h;) . 180)
_ _U,%Bb mq+(1+ma)02
2quo ,0 |: (1+I’TU)2+|T|2 j|

ot hyou, |p 2 h,h,
In cylindrical curvilinear coordinate system, it essential to replacdu,,u,,u;) by

(r,6,z); velocity component®,,q,,9;) by (u,v,w) and scale factor
h, =1 h,=r & h,=1into the equations (2.18a)-(2.18c). These gives,

a“+(<‘2w—<‘3v)=F1—a{p sz +vv2)} (653 9 52)]+2on LB { mv-(+mau | (2 19a)
ot o |lp 2 06 oz p | M ++ma)® |

&+(51q2 _fqu): F3 1 a{p 1(ql +q2 )} v [a ( 252) (hlfl)J-'-ﬁgT (218C)

‘;" (fu-aw)=F,-12 {p e +v2+vv°-} L{az(f) (53)} m—a@?[m“*(“m)"_ (2.19b)

ro6lp 2 (1+ma)?+nt |
a\N"’(flv—fzu):Fg—a{p+1(u2+v2+wz)} [ (ré&,) - ({1J+,BgT (2.19¢)
oz|lp 2
hé hg hel (& g &
Again we know, [Jq= 1/0 o o0|_ 10 0 0
hhh,|du, 0Ou, Ou,| rior 00 0z
ha, hg, hgl |4 vV W
s TS
Or, =Jddg==|— — —
¢ a rjor 068 0z
u rv w
a5 Yoo
r\o8 oz 0z oOr r\or 08

kS

_ (aw avj A(au awj Q( ov auj
== —=-r— [+&| ——— |+ 2| V+tr———
r\o@ oz 0z or r or 06
€(ow dv) . (0u ow) & ov du
Or, +e,4,+e — = |+ ——— [+~ | V+I———
AL (ae azj 2(62 arj r(v or aej
By equating theg th, €,th and é,th component, it gives

ow 0 ow ov
" [ae Pl )Hae raJ
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ou ow

“%% o
&= vV, ov_1ldu
= or Yos

To use these in various terms of equations (2.{Bagc) gives
e s 2200
oot (1252
51\,_@:(E"_V"_@)\,_(%ﬁ_"")u:X"_W_Vﬂ_u@w"_"" (2.20c)

rog oz 0z or roé o0z 09z or

9 _p+é(u2+v2+vv2) :£@+u@+va—v+wa\—l\l (2.21a)
or|lp 2 por or or or
10 (p 1(, 16pu6uv6vw6w
ol VAW e e T T T T T T 2.21b
rae{p 2( )} rood rof rof rab ( )
9 £+}(u2+v2+vvz) 16p+u@+va_v wa\—N (2.21c)
oz|p 2 poz 0z 0z 0z

0(0& 0 o)) u[2 p) 2
?E_ aZ(r£2)] r|:ae(€t3) aZ(r£2):|

08
zg[a (v+6v 1auJ a(a_u_a_wﬂ
r|oe or rof 0z\ dz or
{10\/ 9%V 1au_r02u+r02w}
“r|rae oa6or roe  9z2  oazor

1ov 10 o« 0% 9w
——— = |+ +r
rogd ro%e @ 9z2 009r  0zor
Now differentiating continuity equatiogE +lﬂ + ow +Y-0 both side w.r.tor
or rof@ o0z r
. 0 [au 1 ov aw u]
e —| —t+t-—+—+—|= 0
or\or r 66? 0z r

Or 0%u 1av lav 0%w 1au _U_g
or? raraH 66 araz ror r2

2
Or,r6u+av 16v r<3W+a_u_g

or? 9rd@ ral ordz or r
0% 0°w _ odu u o4 Llov
+r —+— -7
oroé or 0z or

2 2 2 2
Thusﬂ%__(gz) lov_ ldu_r0u+ 0v+rdw
r\ o6 rog r 926 9z? 08 or dzor

__[10v lazu_razu_0u+u 0°u 10v}

=0

r ar? r 06

rof ro0 9z2 or r  or: raf
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_v[20v_10%_ 9% ou u_ 0%
rirod ro®6 0z> ar r  or?
“ul2dv u d%u Llou 1 0°u  0%u
=|—-——+t—-7 _
rirog r or? rar r2o°g 0z°
:g Eﬂ.{-g rDZU:|
rerog@ r
:_,{Dzu u_ 2 "V} (2.22a)
r’ r?of
; 0 0 (low_ov v, ov_1du
Again, y| — - 2
g U(az(‘i) (53j {a r o8 azj ar( or raen
:Ulaw 9°v _1ov, v _0°v 10°u 10u
rozo@ 9z ror r2 or2 rordd r? ao
_ 1L 62W+62u RY 16via_2v_ia_u
r\0z08 ora@) az2 ror r? or® r? 00
Now differentiating continuity equati u,lov, ow u_ 0 both side w.r.tw
or rofé o0z r
o S u 0 10 )
T 060\r or raof oz
Or 1au d%u 16v 62W:
' 100 a8ar r o8 a60z
0°u  0°w _ 1du 19%
"06or 060z raf r 06
Thus (9 (sy-9 ]: 1f_10u_10%)_ 0% _1dv l_‘L 10u
U(az(fl) ar(‘%) “I7 T oe rog*) oz ror r? or? r?a8
. 1ou_ 1av ﬂ 1avlﬂia_
| 200 206 02 ror r? o’ r? 0@
__l 200 (3% lov, 1o%v o
r? 296 \or2 ror r66?2 P
(v 2 du
:U_r_z__za_e_gzv} (2.22b)

}62W_ 0%v
rog* o0tz

Again, Y9 9 (O_U_a_w) 0 (16w avj
’ r£6r (rea)” (gl)J {ar{r 9z or)] 06\rag oz
_v [au 6Wj : 0°u _0°w)| _
r{|\oz or gz or?
_v ou_ow razu_rGZW_162W+ a2%v
rjoz or drdz or® raf* o6z
=g_ r62u+62v ou 0w r62W_E62w
ri\ droz o6z 0z or o’ 106
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Now differentiating continuity equati - +lg—; + Z—W +Y=0 Dboth side w.r.toz
r r Z r

e — ——t—
dz\r or rof oz

. 16u d%u 1 0%v 62
r 0z azar r 6266’ 0z°

or ou r6u+6v+rawzo
9z 0z 0200 972

0°u, 0 _ ou_ 0

r ="
0z0r 0z08 0z
0 0 U ou 2w ou ow 0°w 10°w
Thus g1 o r - =—||-=—- | — 7 -=
r(ar( ¢2) ou, (‘(l)j r[[ 9z z [az a  ar? rae?
U 0°w ow _90°w 10°w
az> or r2 roof?
v | 0°w 1ow 0°w 1 d°w
- +>—+ +—=
0z> ror odr? r?06°
~ {azw 10w 1 9°w 9 W:|
=-U|—+ + +

a(u ou 10dv awj
+—+ 0

o’ ror r2a8° o9z
=-u0*w (2.22c)

2 2 2
Wherer?=9_ 419,10 ,0

a2 ror rﬁ 02*

Now using equations (2.20a), (2.21a) and (2.22ayumation (2.19a), it gives that

(@) u,-component of momentum equation:

2 —
W (ew-6)=F -2 P eyt o) -2 22 - L g, |+ v, + B | MV
ot o |\p 2 r\ o8 oz p | m+1+ma)
OB (v O S0 1 N G Y20 O e
a \oz o r o rod pax a o o rlrod r nt +(@+ma)’?
Or By 0 B0 7S Lo B0 S0 (2000 o G
&azarrarraﬁlparararar 296 r Nt +(L+nma)?
2 —
Or, 9u Wau v? Vi, vou_ F, - 1dp uau+u(Dzu—u—26Vj+2on+a'ueB° mv— (L+ma)u
ot 0z r rod por or r2 r?aé o | m?+@+ma)?
Or, au+ au+vau+ au V2 o, ( 0

2 -
_u2_2‘2v] aq, + THeBs { mv - (1+ma)u }

1
o “or ro6 ez r ' por r2 06

o | m*+(@+ma)?

at ar rog oz r por G o | nt+1+ma)?

In cylindrical curvilinear coordinate system
1

0 0 0
O=——h,h +h,h,g, — + h,h,g, —
q hhhs { 30— au, 5 a; o, 1N,0; OUJ
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1[ 0, 0 a}
== ru—+v—+rw—
6

r or 0 0z
0 vao 0
—U—+——+W—
or rof 0z
ou v au au
O 0 i rw=
@Ou=us e e
du au au au vV ou ou
—+(g.Du = — T tW—
dt ot at ar roé 0z
Thus we write the equation (2.25a) in the followfogn:
2 2 _
v F1—1@+u(mzu—%—%ﬂj+2vgo 4 OBy | V= (L mau
dat r 0 or r’ r*oé o | m+(@0+ma)

where d =£+q.D
dt ot
Again using equations (2.20b), (2.21b) and (2.2@@quation (2.19b), it gives

(b) u, -component of momentum equation:

o, (V Lo 1 (1dN N\, | 10 udi vov wiw {V_Zdj_m}m_a/ﬁ mu (L+na)v
a \r a rag) \ro8 oz) ? |rpoe rae rae rog| |r* r’o@ (A+ma)* +nt

Or, %, w, & udu wow & _ 110 udu vov_wow_ v_Zw_m}_m_a/élﬁ{mm(hm)v}

e - - -
2 1290 (L+ma)® +nf

r o rof raf oz ° prog raod rob rob

, _
or, 6v+uv ov av_F ~110p vav_u[v2 gai 0 v} 2qu_cT,ueBO {mu+(1+ma)v

a T Vat E_ZE?ﬁ rod |r? r2o@ p | (1+ma)?+m? |

) -
Or, ov ,0v vov  ov w_. 110p_ [L_%iu Dzv}_ZUQo_aueBO {mu+(1+ma)v

ot or raé oz r ° praod re 206 7 (1+ma)?+m? |

, .
or, (a\/ gLy Wa\/]+u\/:F _116p_U{v zau—mzv}—quO—U”eBo {mu+(1+ma)v

+77 — —
ot o rod 9z) r ? prad r2 r296 o [@+ma)’+m’ |

D(av v, Vv, av) Lo 110 [V Zw_DZ\/}_m_aﬁéaf{mm(hm)v}

a Vo e Va) T T prod |’ r’o o | @+me)?+nf

2
or, dv_uv_ F, 21 1ap+U[D2V—V+26u}—2uQO _Ol4,By | mu+(1+ma)v (2.23b)
? p | (1+ma)?+m’

Again using equations (2.20c), (2.21c) and (2.22@quation (2.19c), it gives

(c) u;-component of Momentum equation:

ow, vow_,ov_,ou, a—W=F3 [1@+ Wy a—v+w3—vzvj+umzw+ﬁg'r

— u—+u
ot raé? 0z 0z oOr poz 0z 0z

or, ow, vow_ ov_ ou ow__ _10p ua“_\,@_wa_w+uD2w+ﬁgT

u =
ot ro6 9z o0z o ° poz 9z 0z oz

Or, 6_vv+xd_vv+u6_vv= F —i@—wa—W+UD2W+,@gT

ot rod o ° poz oz
or, 6w+vaw+u6lv+ ow -F,- 1ap_‘_uD 2w+ BT

ot roe Vo ez ° poaz
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Or, a_W a_VV+X0_VV+ a_VV_ 3-1%+UD2W+,BQT
ot or rodé 0z p o
| w_ F3—1@+1)[|2W + 49T (2.23c)
dt p 0z

0 0 vo 0

—+tU—+—+w—

ot or roé 0z

Finally it has been found the following three coments of Momentum equations in
cylindrical coordinate form:

2 —
du_v* Fl_10p+U(D2u_U_2av]+2VQO+UﬂeBo mv —u(l+ma)
dt v por r’ r?a6 o | @+ma)®+m?
2
g+ﬂ_|:2 —1lap—U|:v—2m'j_Dzv:l_quo_UlueBO mU+(1+ma)V
dat r prag [r* r?o Yo, (A+ma)? +m?
Mg 1P e gt
dt 0 0z
(2.24)
2 2 2
Where,£=£+ui+Xi+wiand DZ=6_+}£ 10 ,0°
dt ot oar rafd oz a2 ror r?a6 o0z’
These equations also can be written as
@uguy@ auvZquoU@laulazua%uza/ LB | mv-u(l+ma)
& & rad o r  pa o ro r?od aZ r* r?o@ (+mo)? +nt
Y, 00 P AN B 100,10 By 200 ) %E% mur ey | (2:25)
& o rod az ro? pr69 a* ror r’of r’og r? o | +ma)? +nf
gv.pugv.yygv.ngv:lzs 1(‘*) @2 16N 102\N aZ\N &T
& o rod ,oazarrarraé’?(?z2

2.2.3 Energy Equation in Cylindrical Curvilinear Coordinate System

Now energy equation for viscous incompressibletaetadly conducting fluid is

dar _ kK op (2.26)
dt  pC,

where, k is the thermal conductivityp is the density of the fluid.

Since in cylindrical curvilinear coordinate system
d_o 0 0 vo 0
+ +——+

gO=—+u— W—
dt ot ot o rofd 0z
9? 1 6 1 0° 62

and[?’=—+=—+—
or? rar r’ 06° 62
Then d_T:a_T+( D)T 0_T+u6_T+v6T aT
dt ot ot or rod az
2: 2: 2:
ancyer =0T 19T 10°T 0°T

or® ror r?a9* oz
Equation (2.26) gives
oT  OT voT  oT _ kK [aZT 10T | 16T+62TJ 2.27)
r

U—+——+w—= =
ot or rab 0z pC,\or* r or 06> 0z°
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2.3 Simplifications of Governing Equations for theCurved Duct
Regarding to the Current Study

2.3.1 Transforming Coordinate Variables in Governirg Equations

Consider a thermally fully developed, incompressibivo-dimensional, MHD viscous fluid
flow passes through the curved duct of its height @&hd width & . The cross-sectional
aspect ratio of this duct is denoted Hsvherel = h/d. To facilitate a comparison of our
findings with previously published results concaghicurved duct flow, it is necessary to
interchange the coordinate axes, converting them the rectangular Cartesian coordinate
system. In this redefined context, the duct systemtated about its vertical y-axis with an
angular velocityQ. We introduce a new cylindrical coordinate syst@mé, y), where r
represents the radial variabtesignifies the circumferential angle, apdorresponds to the
vertical variable. This coordinate system can frthe transformed into a non-dimensional
rectangular coordinate system, z', y') through the following variable transformation.

r=L+dx , y=hy andLg=dz

The modified geometrical model is shown in Fig.2.5.

Figure 2.5: Modified Geometrical Configuration of the curveakctl

To get the modified governing equations, it is iegpito interchange the variablgs& z
and the velocity component & w each other in the equations (2.15), (2.25) and7§2.2
Thus the modified continuity equation for incomibte fluid is

ar raéd oy r

ou l1low ov u
+ = — 4+ + ==

The modified Momentum equations are

2, 2, 2, 2
ou, ou wou ou W __ 10 (6u+10u+16u+6u_u_20w]+ +0,L€3){rrw—u(1+rm)}

N . AN 1

& o rod oy r por
oW ow wow ow uw__ 11dp [
+ + + +—=F— +u

at ror r2of oF r* r’od p | @+ma)?+nt

2 2 2 2

oOw_ low 10w 0w, 20du_w —ZUQO—J’%B" mu+ (1+ma)w
o0 | (L+ma)?+nt

4+ y —— —— I

vi
o rod oy r prod \o® ror r’o& o r?a6 r?

a
Q/.Fué/q_!vﬂq_ Q/:F3_E@+U iv.;.}@.;.i@.yiv +@T
ot o’ ror r’ad oy
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And the modified Energy equation is

or, T, 0T ,vaT  oT _ k (0°T 19T 19T o°T
"o Yo e Moz o, \ar? o i og o

Now it is assumed that the body force is absentadintthe variables are independentéf

excepl.i.e (F,,F,,F,) = (0,0,0) , ‘2—?_0& aAaf =0 butgg;tO

where, A =fluid properties andaA, =fluid variables. Therefore
Continuity equation

(2.28)

Momentum equations

Radiabirection
2 2 2

o, W 10p, (U 10 Fu_u) . OB mwulima)
o> ror oy r A+ma)® +nt

\V =
ot o oy r por
Verticaldirection

M 10, (0V 10V &Y
(ar ror ay"'}'ajr

(2.29)

a o ay p oy
Axialdirection

2 2
w,_ ow ow uww__11dp ﬁN+1a\N o’w_w aJQO—J'%Eb mu+ (1+ma)w
o4 o oy r proéd o | (+ma)’+nt
Energy equations

oT , OT, o _ ﬁ 19T 0T (2.30)
at or ay pC

o’ ror oy r?

ror oy

2.3.2 Non-dimensional Analysis

To make dimensionless form of the governing equati@.30)-(2.32), use respective length
d and the kinematic viscosity, the non-dimensional uniform velocity is defineg b

U, = d_ It has been introduced some dimensionless qiemntit
, X ,_d , d N
x=X go¥. goz.o oy=8y v=S8y; wWV20 . oYy
d d d v v v d?
2
o' = d p: and T'—L
pu?

where x',y andzare the non-dimensional horizontal, vertical andalaxcoordinates
respectively; u’,v',w’ are the non-dimensional velocity components in direction of
x', ¥ andz' respectively;t' is the non-dimensional time]’ is the non-dimensional

temperature,s is the non-dimensional curvature of curve duct Wwhi defined byaz%

and p'is also the dimensionless pressure.
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And it has also been used the transformation empumtr=L+dxX and L&=dz
[i.er=L+xandLd=z] to transform the above equations in to the rectemgmordinate
system. The remaining transformatign=hy' will be use later after simplification of the

equations.

Now we calculate necessary terms which are invoindde equations (2.28)-(2.30).

1 1. 1
x=dx'; y=dy; z=dZ aX:aaX'; ay:aay; aZ:aaZ'
d2 d2
L=z t=—t' 68——62 at-—at
U
r:L+X:L+d)(:9+d)(:M or =dox’'
o 0
v, v, U v ., v v
u=—u'; v==vVv'; =~ ou=—au; ov=—10V; ow=———0ow
d a’ Ve d d 20

2 2
p:f(’j”2 p; T=ATT ap=2_ap'; 9T =aTOT
ou _ v au u_0(vauwy_v o
ot d° ot or? oar\d? ox d® ox'?
ov_v*ov 0°v_0 (v ov')_ v 0%V
ot d° ot orz ar\d?ox) dfox?

2
a—W=U—ﬂ o°'w_d( v ow)_ v oW
at ds\/2_5 at _2__ ' 12
ou v U orc  or\d?yJ20 ox d3yJ20 0x
o  d?ox Q:LZ"’_‘L'
v_vov oy a0y
or  d2 ox’ dp _ pv* op'
w_ v o o d® ox
o d*y25 ox dp _ pU* op'
ow v ow AT 13 A
w___ Y W d
oy d?29 dy gy 5 %
oT v _aT P %
a o oo

2: 2011

oT _ AT 3T’ aT:i(a_T) O(AT"TJ AT 0T
o d ox or2 orlor) orl d ox d? ox'?
oT _AT JT’ 0°T _ 0 (0T \_ 0 (AT OT')_AT 0°T’
oy d oy oy2 dylay) dyl d dy ) d? dy?

Putting these terms in equations (2.28)-(2.30):

From continuity equation(2.28)

a_u+ﬂ+2:0

or oy r

v ou v o o

—_—— +

d? ox'

or, v[ou v s
d2 ox'’ ay 1+x'0

u'J=O

I —

7 a0 —,ZU—
d2dy d@+x9) d
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From 1% equation ofMomentum equation(2.29)

2 —
ou uau Vau ﬂ 1ap ‘0 au }@ E u +2WQO+U'UEBO mw-u(l+ ma)
9 o oy r p or o2 ror dy’ r? P @A+ ma)® +m’
Or Uiau’_'_uu,u u+UV,U6u o v? W,Zz_l,ouzap’
"d®at’ d d’ox d d2dy d@+x9d) d’25 o d® ox
v U 0 vou v ou v, 0° 2v
+U| — + —_ -—u + wQ,
P ox'? d@+xo)d?ox d®ay? d d*@+x90)?) d20
1
+

o, B2 mu v,

— w-—u'(l+ma

o @+ma)®+m’ \ dy20 d ( )

Or o' ,6u’+\/67u’_ w? o) ? ap 262u’+ o o @_ o u
d3 a Vo Vo 20x0)) & oX dPlox? XS K o7 @Koy

v U ou.B’ m
F——_WQ + e 0 W —(@L+ma)u’
dv26 ° pd (1+ma)2+m2(\/25 ( ) j
or, 6u'+u,au'+v,0u’_ w'? __9p", azu’+ 5 ou 0%u’ o
at’ ox' y 21+0x) ax' (ox'? 1+0x ox' 9y*? (@1+0X)?
3 3 2
+d—x 2 _wa +d—2><i J'Uefo > m w =@+ ma)u’
v dJ23 v pd @+ma)’ +m’ (Y25
or Ou, .ou  ou VA 'o B O KV J ou o o
, +Uu +V - =- + + + -
A oX oy 20+35X) K |oxZ @+IX) X Oy? (L+0X)?
2 2 2
+_1>< 2d \/Z_JQOV\Hd ou,B; 12 : m W — L+ ma)u’
2 U v (@A+ma)?+m? 20
ou ,ou ,ou w? %’ 5 ou o« oA
O +u +V —- =- + + + -
A Xy 20+0X) X |2 (1+OX) Xy  (1+OX)?

T M
+—w+
2

@+ma)? +m? (ﬁ - (1+ma)uj

2 2
where, T - */_5 - 2d7Q, \/Z is the Taylor number andy = d*ou.Bs is the
ov v o pU

Magnetic parameter.

From 2" equationof Momentum equation(2.29)

2 2
6v uaV aV 1@+U a_\2I+£@+a_\2/ +,89T
o or 6y p oy or= ror oy
Or,Usz v v, 0N _ 1pU dp iazv 5 v uai/ _—
d? (?t'-'-du d? ax dV d? 6§/ o d? ' d?® ox'? d(1+xé) d2 ox d3 ay° A
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2 ] 2 ] 2 ]

Or, U_36_V+U_3u,ﬂ+U_3V,ﬂ_: U_ga_p 0*v 2+ o GV 6 +,8gATT’

d>ot" d° ox d° oy d® oy d®| ax2 1+x0 ax ay°

’ 2 2

Or, ﬂ+ ’ﬂ+v’ﬂ:—a_p+ a\/ 4 6\/’ oV +d3ﬁgAT T

ot’ oxX ay oy ox'? 1+x56x 6)72 v?

o' oV oV 0p 0%V o o 9V
0 —+u—+V—=—"+ =+ —+— |+GT'

ot’ ox’ oy oy oxX* 1+x0 ox ody
whereg, = d’ ,BgAT is the Grashof Number.

v?

Again 3¢ equation of Momentum equatio(2.29)
ow, ow,  ow uw_ 110p 0°w 1ow 0°w w ou.BZ | mu+ (1+ma)w
—+U—+V—F—=—=" +-—+ -— |—2uQ, -
o4 o dy r prae or? ror S & Yo, (1+ma)? +m?
OUZO\AIU,UGV\/U v ow o wv, v , 1 0 ap
r, —+—u —+—V —+ —u =—= L

dJ20 o' d d2J20 & d d?J29 Oy d(@+xJ) d dy2o p d+x9) oz

v 02W+ 1 v 6V\/+ v 0w 1 v ] 2—uQ
d°V25 ox? d(0 +X)d%20 oX  d25 9y d*(3t+X)? 1V25
_ ou,B? mu ., u(d+ma)
p|(1+ma)2+m2|[d RN Wj

2
or, Y (aw+u,a\/\/+v,aw+ 1 u’V\/J=—L 5 9p

V2ol ot X dy (0+X) od (L+X9) oz

L v 0°w 1 ow ow_ 1
d*v2o

2
_ U, ouB (mu’+l+maWJ

do (1+ma)?+m? V20

3
Or, oW , .ow ,%v;Jr O yo_9W20 oL 1 o

+U —+V =
ot' ox' 1+x9 v? ,od 1+x9 0z

+
ox? (0t'+X) oxX  ady* (0'+X)?

2 2 3
+[aw+ 1w ow_ 1 w] qu

aXIZ (5—1+XI) 6X' ayZ (5—1+XI)2
3 2
v dW20  ouB oy e LTma
do  0v?  (1+ma)*+m? V20
1 2
or, W W oW &L, diLaV28 op 1
at’ ox’ 0y 1+x9 Yo lk 0z 1+ X0

d

d

20

-—uQ,

d

u'Q,

2
2d\/2_59

(oW, 5 oW ow 1 )
ox'? 1+x5 X ay (6‘1+x')2

U

2 2
_ dPouB} V26 (mu’ 1+ mawj

V20

oU (1+ma)® +m?

!

’ ' 2
or, W, oW ow & .. d'ay20 op 1
at’' ox' 0y 1+x0 pU*? 0z 1+x'9
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2 2 2 2
.\ a\g+ J aw’+a_v2v_ i ZW_520| Jz_JQO
oxX° 1+x0d oxX dy° @L+X0) ov
_ dPouBy 1 (

oU (1+ma)? +nv

25U + 1+ ma)w)

ow ow ,ow, 6 o D,
0 —+u —+V —+——uw=
ot' ox' o0y 1+xd 1+X'd

2 2 2 [
LW, 6w w0 W_JTru,_M{\/Z_Jmu+(1+ma)V\/J

x> 1+x0 ox 0y (+0X)? (A+ma)*+m?

2 2
where, Dn:—M@ ( apjd L5ﬁ p ﬁ_ﬂ j is the Dean
pU° 0z 0z ) puu pUU HU

Number, p = _gp Is the pressure gradient add= % is the curvature of the duct.
z

From energy equatior{2.30)

oT uaT VaT k |a°%T 1aT 02T
ot or dy pC, ar? rar ay

or Y ar0T' U ATOT' v ATOT'_ k (AT T’ 0 AT OT' AT 0°T'
y S AT —+ U ———+ V' ———= ——+ , +—
d o d dox d d ady pC,ld°ox? d@I+x0) d ox d? ay?
I ] 21 211
or, u2 ATOT, 7ATU 6T' %ATV,aT _ k %AT aT2 L0 or aT2
d ot d ox' d dy pC, d X% 1+xX3 ox  dy

Or oT'  ,0T'  ,0T' _ k d* AT|o°T o odT' o°T
) +u +Vv =— — + +
ot' ox' dy pC,uvAT d? | ox? 1+xd ox 0y’

or, ', ,OT', ,oT'_ k [oT', & or 9T
"ot X dy ueC, | ox? T1i %0 ox ayz

oT' 0T 0T _ {OZT o T GZT}
+u +V P

0
o X dy X2 1+X3 oX 0y’

upC
where, P, :% is the Prandtl Number.

Now dropping the primes on the variables, the niomedsional forms of the above
equations are as follows:

Continuity equation

u ov. & -0 (2.34a)

ox ody 1+ xJ
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Momentum equation

1
—— mw~ (L+maju
@+uiu+v@— w =— Op+@+75 gj+@ 752[1 +T—’W+M V25 (2.31b)
& ox dy Al+xd) O oK 1+xdox oy ( 2 (L+ma)? +nf
ov_ ov. oV op  0°v 0 ov 0%
Ko ROV, O N OV T (2.31c)
o ox ay dy ox> 1+xJ dx oy’
ow ow ow J 1 °w O ow 0’'w _ 0°
—+U—+V —+ uw = D, + + w
ot ox 9y 1+xJ 1+x0 X2 1+Xx0 0x ay @+ x9)° (2.31d)
~5Tu-M @mu+(1+ma)w
1+ma)® +m’
Energy equation
or , 0T, 9T_1 02T o aT 02T (2.31¢)
ot ox ay P |ox2 T1rxs ox 0y
Gd® /Zd .
where, D, = — is the Dean Number,
MU\ L
2
T, =2d5*/2_5 Q, is the Taylor number,
M = _ d*0UB i the Magnetic parameter
Yol
3
G, = d ,BngT is the Grashof number and
U
upC
P.= ’Ok ® is the Prandtl Number.
Now let us consider the sectional stream function
_ 1 Y gng y=-_L ¥ (2.32)
1+ xd 9y 1+ X0 0Ox
Clearly these stream functions are satisfies thewing continuity equation
a_u+a_V+Lu=o Puti+ xs = z then
ox dy 1+xo0 a( 1 \_o0(1\oz
To verify ax(1+ xdj_ az[ )ax
10
LH.S. = 1 al// (_ 1 awj o 1 0740 = ?&(1 X0)
a 1+x56y ay 1+Xx0 0x ) 1+xJ \1+x0 oy 15
=-=—(0x
1 %y, 5 oy 1 Py, & x>
T1+x0 03y (L+x3)% dy 1+ x3 0ydx | (L+xd)% dy =-L2
@+ x0)
=0
= R.H.S.
Hence u = 1 0¥ andy = __1 oy are the appropriate stream function for
1+x0 oy 1+ x0 0x

governing equations (2.31b)-(2.31e). Now by ushesé stream functions, these give that
From equation (2.31b)
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1

— mw- (+ma)u
u, 0u ou_ W _ 0p du S ou du_ Su T 425 ()
ot ax 637 20+x0)  ox ox? 1+xd 0x dy* (1+xd)? 2 A+ma)? +m?
Or,0(_1 oy ), 1 opof 1 0y +(_13‘/’j3 1 op ) w
ot\1+ xJd 9y 1+ xJ 0y ox\1+ xJ 0y 1+xJ 0x Joy\1+ xo dy 21+ x9)
__ @, ®( 10y, 5 o 1 ay), F 1 o) 1 ay), 1
0x2 1+x0 dy 1+x56x 1+x0 oy af 1+x9dy ) U+x0)° | 1+x0 dy 2r

L, M L ot
(+mo)? +nf (V25 1+x0 oy

or. 1 o), 1 oy 1 ow o Ay ) 1 oygoy __ w
1+xc)'0t ay 1+x5 0y \1+x0 0xdy (L+x0)? a0y | (1+xJ)* ox dy> 2(L+ xJ)

_op, 0 1 0y 561//51621/1_56_40
X Ox \1+xJ oxdy ([L+x0)* 0y ) 1+x0 \1+xJ oxdy (1+xJ)* dy

1 0y o o, M 1
+ — 3 T,w+ > mw- I+ ma) ————
1+xJ 0y°  (L+x9) ay 2 A+ma)?+m?\ 25 1+xJ 0y

o, L 0%, 1 opdy 5 (oy) 1 ogdy _w
1+ X0 0tdy  (1+ xJ)? 0y axdy (L+ xJ)° @+ x9)? ax 9y> 2L+ xJ)

: @Jri 1 oy 0 o 61,1/ o oy
0x 0x{ 1+ X0 oxdy ax (1+x0)* dy (1+ x0)? 0xdy

o? oy, 1 oy 0° oy, _TW
(1+x5) oy 1+x56y3 A+x0)°* oy 2

+ M 1 mw-— (1+ma')—1 oy
A+ ma)? +m* /25 1+ xJ 0y

By puttingl+ OX = S , then

| : |
B S ) Sy TR L S
: x| (1+x0)? ds\s* Joax  s® ax s® 0x :

o1 W, 1 aypdy o Y 1 gy w
1+ xdatay (L+ x5)? dy axdy (L+x0d)* L+ x9)? ax dy> 2(1+ xJ)

W, o 1 Fw) o 5 ), & o

ox Ox\1+x00xdy ) ox\ (L+xJ)* oy 1+ x0)* xdy

0° oy, 1 oy o az//+_1TW
(1+x5)3 oy 1+x56373 A+x0)® oy 2"

+ M ! mw— (L+ma) L oy
1+ ma)? +m? (25 1+ xJ dy

47



2

or L 9w 1 dwow 5 (o) _ 1 owdw __w
"1+ x3 0ty (L+xd)2 dy axdy (L+xJ)° | ay @+ x9)* ax ay> 2(1+ x9)
__ O, 1 Oy & oy| | J oy 25 oy
X | 1+x0 0x°0y (L+x0)? 0xdy | | L+ x5)? axdy (1+xd)* dy
2 3
L, 0 oy 28 oy, 1 ¥y, 1
(L+x0)? oxdy (L+ x9)® ay 1+x0 dy° 2 '
M 1 1 oy
+ mw- (1+ma —
a+maf+nf[455 ( )1+x56y}
1 0w, 1 opdw_ 5 (o) _ 1 oydy_ w
1+x9 6t6y @1+ x9)* dy axdy (1+xJ)* @1+ x9)* ax ay* 2(1+xJ)
_op, 1 p o Yy o 0y N 20° oy
X 1+x00x0y (L+x0)* oxdy (L+XxJ)? oxdy (L+x0)° dy
o 0y 20 oy, 1 0’y _TW
1+ x0)* oxdy ([L+x9)® dy 1+x0dy° 2 '
M 1 1 Jdy
+ mw- (L+ma =
(1+ma)2+m2{ V25 ( )1+x5 ay }

1y, 1 iy o Y 1 awdy W
) (xf ox O 2L+xJ)

2

Or,

1+x3ady  (U+x3) &y By (L+xJ)’

__op 1 oy o oy 1y, 1 M m 1+ma oy
=== + +—Tw+ wW-— —
ox 1+x56x20y A+x0) dxdy 1+xddy° 2 (@A+ma)*+nf\J20 1+xJ dy
From equation (2.31c)
ov, ov  ov_ 9dp, 9°%v 5 ov 0%
—+Uu—+vV L+ + —+ +G T
ot ox dy dy ax 1+x0 0x oy*>
o Sl o) s oy ol s o) s oy i o)
" ot\ 1+x0 ox ) 1+x5 dy ox\ 1+ xJ ox 1+x0 0x )Joy\ 1+ xJ ox
_op, 6_2(_ 1 az//j o i(_ 1 61//) (_ 1 az//j +GT
0y ox*\ 1+x0 0x ) 1+xd ox\ 1+xJ dx ) 0y’ 1+xJ ox '
or 1 (awj 1 oyo ( 1 az//) 1 oy o ( 1 awj
' 1+xd ol ox ) 1+x0 dy ox\1+x0 ox ) 1+xJ 0x dy\ 1+x0 ox
_ @_62( 1 awj_ o) i( 1 6(//]_ 62( 1 a¢/j+GT
0y 0x*\1+xJ 0x ) 1+xJ ax\1+xd 0x ) ay* 1+xJ 0x '

1 0% 1 oyl 1 3w 9 o), 1 oy %y
" 1+x0 0tox 1+x3 9y (1+xJ x> (L+x0)* X (1+x5)2 ax ayox

Op 9 1 oW o dy) o 1 0% o0 oy

0y ox(1+xJ 0x* (1+x0)* 0x ) 1+x0 (1+xJ 0x* (1+xJ)* 0x

3
-1 [9Y LT
1+ x0 | ay*0x
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or,_ 1 Py 1 oydy, o dyoy, 1 oy dy
" 1+x3 0tdx  (L+x0)2 9y ax’  (L+x3)° 0x dy (L+XxJ)? OX dydx

__0p_ 1 0w & oyl _ o 9  250° oy
9y | |1+x0 ox® (1+x9)* ox @A+x0)* x> (L+x0)° ox

o oy o oy 1 oy +GT
(1+x0)* ox> (L+xJ)° ox T 1+x0 oy°0x

or 1 %y 1 awaw J oyoy, 1 oy 0y

C1+%3 00x  (L+xJ)2 dy 0x2 (1+ x0)° dx dy (1+ x3)2 0x 0yox
op 1 o% o)

__0p_ N v, J oy _ 20" oy
0y 1+x00x> @1+x9)°x* ([1L+xJ)* ox> (@1L+x09)° ox
o 074 Y, oF Ay 1 oY 4G T
(1+ xJ)? x> (1+ xd)® ax 1+xJ 0y°ox

1 oy 1 6_1//62(//+ 5 oyoy 1

ay oy ay %y
1+ x3 0tox @1+ x9)? dy ax* (1+xJ)® 0x 9y

L+ x0)?® ox ayox
__op_ 1 az// o %y o oy 1 oy +G T
0y 1+x0J ox® (1+ x0)? ox> (1+x9)® 0x 1+xJ dy’ox
From equation (2.31d)
ow ow _ow O 1 0°w & ow  0d%*w o2
—HU—+V — uw = D, + + —+ - w
ot ox 9y 1+x0 1+ x0 x> 1+x0 ox 0dy° (1+x0)?
_5Tu-M [\/ﬁmu+(l+ ma)wJ

(1+ma)® +m?

cow, 1 dpow 1 dydw dw 1 dy_ D

ot

n aw o ow
1+x0 dy 0x 1+xJ ox dy 1+x51+x56y 1+x5 ox*

1+x5&
2 2
JOW_ OW__grf L 0¥ M J26m W\ demam
0y~ (1+x0) 1+x0 dy | (I+ma)?+m 1+x5 oy
2
or, (1+xé)a\_N+_‘/ja‘_N Y ow, ow oy_ =D, + (L+X 5)a—+56\—N+(1 5)6—\2/
* dyox X dy 1+x3 dy Fvadee 5
2
_ow _JTrazf/_ (1+x52M 2 J2om al’f/+(1+ma)w
1+xo0 oy (+ma)’+m’| 1+xd oy
Or, (1+X5)0\N:_{6‘PO\N_6¢/6\NJ ow al’[/+D +(1+x5)(aw+awj oW
ot oy ox 0x dy) 1+xJ oy 2 ay> ax
2
o _5T oY _ M

oy
- W-0T ——-—————— /20 m == + 1+ xJ)(1+ma)w
1+ X0 "oy (1+ma)2+m2( oy ( X )j

Or, (l+x5)aW:_(waw_awawj 5%_,_[) +(1+X5)(0W 0WJ o? R
o dy ox ox dy 0x oy® ) 1+x0
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w oy O,Ta_w_ M
T1+xd ay "oy  (L+ma)’+ny
0 (1+X6)6w=_(6¢/6w_6¢/ awj 5% +D, +(1+X6)|:[az asz— o2 W:|
ot dy ox Ox dy ox ox>  ay’ @A+x9)*

_ v oy oy M
+ X0 0y "9y (1+ma)?+m?

[\/Z_Jm ‘Z—‘Y//’ + (L+ xO)(1+ ma)wJ

[ﬁm + (L+ x0)(1+ ma)wj

From equation (2.31e)
oT 0T oT _1(0’T 3 oT o1
— +y—+vV—=—
ot ox dy P (ox? TTexa ox ay?

or 0T, 1 opoT 1 oyoT _1 (aZT o oT aZTJ

ot 1+x567y& 1+x5&67y Plox2 1+xJ ox oy

or, 0T, 1 (0yoT oyar|_1 02T o T 62T
' ot 1+xd\ dy ox  ox dy o 1+x3 ox | ay?

or 0T, 1 (0goT owoT|_1(o*T & oT 0°T
' ot 1exo\ dy ox ox dy P lox? T1ex0 ox ay

OY 0T _ 0y 9T | _ (1+x9) 02T o adT 02T
dy ox ox dy P 0x 1+ X0 OX ay

r

Or, @1+xJ) %—[+(

O (1+x5)— (G_WG_T OLIJGTJ

wexg)f(o® 02}, & or
ot dy ox 0x oy

P x>  ay° 1+xd 0x

r

Momentum equation

Tangential u -component

1 @y, 1 ey o (awz 1wy W

L+x30y (+x07 dy ddy (L+x3f | &y ) (@+xdf ox &y 21+x0)
M (m _1+mﬂa¥fj (2.32a)

__op, 1 oy 9o 024(/+ 1 w
A+ma)>+nt\20 1+xJ dy

oY
X 1+x00X0y (L+x0)*axdy 1+xddy’
Vertical v -component
L oW 1 gy, 5 Aoy, 1 3y 3y
1+ x3 0tox L+ x0)® dy ax*> (@+xJ)® 0x dy (1+xJ)* 9x 0ydx
3 2 2 3
_G_E_ 1 6w+ o 0y O oy 1 aww+G,T (2.32h)
9y 1+xJ ox® (L+x9)” ox® (@1+x9)® 0x 1+xJ dy°ox
Axial w -component
_ (0gow oy ow ow * 0 o
1+ X0)— =—| L— -2 = [+J— +D,+(1+ -
(+X6)at (ayax axayj ax+ v Xé){(axz ay M (1+x5)2W

.
1+xJ dy oy (1+ma) +m?

1
2

(F m = + 1+ x3)(1+ma )wJ

(2.32c)
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Energy equation
2 2
@+ x 5)6T Y oT oy oT|_(1+XxJ) 6_+6_ + g _or (2.32d)
dy 0x ox dy P x>  oy? 1+x0 0x

To find the unique equation for streamlines of #ezondary velocity, it is required to
combine the tangential and vertical component ofmetum equations. To do this
differentiate the equation (2.32a) with respecy amd equation (2.32b) with respect®o

and then subtract them.

By differentiating equation (2.31a), with respexygives
a[ 10y, 1 opdy_ S (awjz 1 oy WZ]

dy| Trxo a0y (Lrxd) Oy 00y a+xd) | y) (rxd) ox oy 20+x0)

_a{ap 1 oy o oy, 1 oy 1. . M (m _1+r‘maz/lﬂ

dy

X 1+x3040y (L+x3) Oy 1+x56y3 i (A+ma)? +n?f @W 1+xJ0 dy

or, 1 aw 1 0%y o’y Loy 3’y
1+ xJ otay? (1+ x0)? | 0y? oxdy dy axdy>
0 Zaw iy 1 awa3w+azw iy 1 2Wa_vv
A+x0)° 9y 0y (L+x0)*\ ox dy® 0dyox dy* ) 2(1+xJ) 0y
_i(apj 1 o 9 a3w+ 1 aw T, ow
aylox) 1+&ox2y2 (L+x0)2 oxdy> 1+x3dy* 2 dy
M m ow_1+ma 0%y
@+ma)’+m? | 25 0y 1+xJ oy
or, 1 aw 1 0%y 621//+6¢/ o’ \_ 0 zaw 0%y
1+ xJ 0tdy? (1+x5)2 0y2 oxdy 0y oxdy? ) (1+xd)® ~ ay ay?
3 2 2
1 [awanrawawj_ 10w

T+ x0)2| ax ay°  oyax 9y ) (L+xd)  dy
_ i(apj 1 3y 5 ¥y, 1 oy, T ow
ay\ox) 1+x00x%0y? (L+xd)2 xdy? 1+xd ay* 2 dy
b M ( m a_w_maz_w}
A+ma)®+m? (20 dy 1+ X oy?

1 0y L1 0%y 0y L1 oy %y

1+xJ 0tdy>  (1+x9)* dy” oxdy (L+x0)* dy oxdy”
20 ooy 1 oywdyw 1 dwoy 1 Wa_w
A+x0)® oy 0y® (@L+x9)* ox dy° (L+XxJ)” dyox 0y (1+xJ0) 0y

_62p+ 1 9w 0o a3¢/+ 1 aw T. ow
dydx 1+ xJ ax?0y° (L+xJ)2 oxdy? 1+xd ay* 2 oy
+ M m 67W_1+m0’021// (2.33a)
A+ma)®> +m?\J256 oy 1+XxJ oy?

Again by differentiating equation (2.32b), with pest toX gives
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o[ 1 o _ 1 oydy, & oyoy, 1 3y 3%y
x| 1+x3 otox L+ x9)? 0y ax> (@L+x9)® 0x 0y (L+xJ)* 0x 0ydx

3 2 2
_6{_0p_ 1 0%, o oy & oy _ 1 aw+GT}

T x| 9y 1+x3 0  (1+x3)2 ax®  (L+xJ)° I 1+x5 dy20x

or, (.1 oy &6 o) ( 1 oywdy, 1 dyoy__ 20 oydy
1+ X3 otox® (@L+x9)% atox ) | (@+x9)* dy ax® (L+xJ)* 0xdy ox*> (L+xJ)° dy ox*
N o az//az// d 0oy 3 dyoy
1+ x0)* ox axay 1+ x0)® ox*> dy (1L+xd)* ox 9y
N 1 oy aw 1 oW oy _ 20 oy %y
@A+ xJ)® 0x Ayox (1+ x0)* 0x* dyox (1+x9)® ox 0dyox
__0p | 1 oy 5 Yy . o 0%  20° 3y
0xdy | 1+x0 ox* (1+x9)* ox® @+x0)? ax® (1+x9)* ox?

o 9w 3 ody| | 1 3w 9o Oy |,g O
(1+x5) x> (L+x9)* ox | |1+xd dy%ox®> (@L+x9)®> dy’ox| ' ox

oy 1 62411621//+ 20 oy oy

1 631//+ o Yy 1
A+ x9)® dy ox*

1+X0 00X (L+x3)2 00X (L+xJ)2 dy 0x°  (L+ xJ)? Oxdy 0x°
.0 6(//6(// o 0oy 3% dyoy
@A+ x0)* ax axay @+x0)® ox* dy (L+x9)* ox dy
L1 oy aw 1 W oy 20 oy oy
@A+ xJ)* ax oyox (1+ x0)? 9x® 0yox (1+x9)° oax ayox
__9%p 1 o'W, o W, o W  2° W 5 W
X0y 1+xJ ox* (@+x0)* ox> (L+x9)* 9x® (@1+x0)® 9x® (1+XxJ)° ox®
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Or, -

Now subtracting equation (2.86from (2.3@) gives
o Fy 1 wdy 1 0241162411 20 61//6241/ 5 oYy

1 aia
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By writing this in order wise

1 o’y aw o oy
C1+x0 6t ox? ay 1+ X0 0tox
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Hence the central line (axial) direction of Momentun equation

(1+x5)§tN:—(awaW—aw awj 53XN+D +(1+x6){[az azJ _Z W}

dy ox Ox % x> ) @(+x0)°
e 2.34
1+x3 0y o o ay (1+ma) Ml (\/?m +(1+X5)(1+ma)wJ (2.34a)

Stream line for the secondary velocity of Momentunequation
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W Tow_ 35 o, M m w| _ a 2.34b
+[ 0)7+(1 0 20y (L+x9)° ox (1+ma')2+m2 \/ﬁ(lﬂ@ ay} G'(1+X6)ax ( )

And the Energy equation
2 2
s 5)_ O oT oy aT|_(+x9)((o* o>} . 5 oT
ot dy ox Ox oy P x> oy? 1+x9 0x

(2.34c)

It is now looking forward to putting the remainitrgnsformatiory = hy'.

Since the non-dimensional transformatipa dl = y=dy

Thereforedy=hy = y:Ey’ O y=ly,

where,| =h/d is the aspect ratio of this duddence, by usingy =ly" in to the equations
(2.34a)-(2.34c), and thereafter remove prime omvhriable for the sake simplicity, it yield

The central line (axial) direction of Momentum equaion
2 2 2
arxo 2= 22 M), 52 s xa)[(a 16] 5 W}

dy ax O0x oy oK 120y ) (A+xd)?
_ W 10y d_ody_ M 1oy 2.35
oG 3y ITr TP (ﬁm o +(1+x5)(1+ma)w) ( a)

Combined radial and tangential direction of Momentum equation
g[aszriazz//]_ 5 oy

at{ x> 1% ay® ) 1+ x0 0tox

_{ 1 loydy, 1 1loydy 1 lowdy, 1 1oy oy 230y 10y, a“w}

A+x0)1° dy ddy (1+xI) 1> x oy (A+x)| dy o (1+x6)|0xayax2 layzax2 l“ay o
J 36 lewew 5 lwdy, 26 1w dy_ 25 Py 25 1 dy
A+x9)2 1 oy ax* (@1+x0)* | 0x Oyx (1+x0)21° dy oy?> (L+xJ) ox® (1+Xc5)|26>«3y
+[_ ¥ loyoy, 3 oW _ M@E+rma) 1 azw}

A+x9)° | ax oy (1+x6) o’ @+ma)’+m’ 17 oy”

[l ' 2 "oy @exd) ox  Qrmapent y25 | ay} ~G A+ xd) (2.35b)

And the Energy equation
2 2
Gl ;(6wa_T_a_wa_T]:_<l+xé>K6_+ia_ R a_j (2.350)

1+X0) =
( 6) dy 0x Ox oy P x> 1% ay® 1+xJd 0x

For steady flow, the fluid properties are independ# time, therefore these equations can
be written as follows:

Central line (axial) flow of Momentum equation

owow_ay aw) s ow LAWY
(aydx Oxayj O Dt l* X(S)Kaxz |ay2J (1+x6)2w}
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1+x5IWay I "oy (I+ma)®+nt

_ 0 1 0y o 0y _ M [«fld m%;l/+(1+x5)(1+m)w] (2.36a)

Stream line for the secondary velocity of Momentunequation
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Oy oT _ oy aT _1@+x9)|f 0* iﬁ L 0 o7 (2.36¢)
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x> 12 ay? 1+X5 0X
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Chapter 3

Calculation Techniques

3.1 Numerical Methods of Solution

To solve coupled-partial differential equations&&-(c), Gottlieb and Orszag (1977) was
adopted Spectral method to solve these kinds cditeans numerically. The main goal of
this method is to make use of the expansion of mootyial functions. That is the axial
velocity componeniv(x,y), Stream function for the secondary flow(x,y)and the

temperaturg(x, y) are expanded in a series in terms of functionsistng in the Chebyshev
polynomials, which are defined as follows:

WX, Y) = D D W@ 00 @, ()

‘//(X’ y) = Z Zwmnwm(x)wn(y) (31)

m=0 n=0

<
z

Ty =Y ST, ()0, (y) + X

m=0 n=0

<

Expansion function®, (x) and ¢, (X)are defined as follows:

®,(9) = @1-x*)C,(¥) }

(3.2)
W,(¥) = 1-x°)’C,(¥)

where, C_ (x) = cos(ncos™ x)is the Chebyshev polynomial of ordey which is defined
within the ranges froml to +1.Since the duct cross-section are defined withenrangesl
to +1 for bothx-andy-directions, therefore these solution domains amragmated by
Chebyshev polynomial. Heréd and Nare the numbers of truncation xrand y-directions

respectively. y
A

y ek

9]

(x1y)

\

(@) (b)

Figure 3.1: Discretization of the (a) square duct cross-sedtiymectangular duct cross-section
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The collocation method is applied to discretize theet cross-sectional solution domain.
The collocation points are as follows:

X =cos{n(l—Mi+2)}' i=1 .., M +1 63
yizcos{n(l—NLZ)}, i=1 ., N+1

Clearly its domain is bounded byl < x <land-1<y<1.

To obtain the steady solutianx,y), ¢ (x,y) and T(xy), the expansion series (3.1) is then
substituted in to the simplified governing equasiof2.36a-c). Thereafter equating the

expansion coefficient,., ¢, andl from these equations, the nonlinear algebraic

equations in terms ofY,,, ¢, andT_,are obtained as follows:

fii (Wogs oeereenm oo Wogs v v Wain s Togr weeeeeeen T )=0
9 (Wogs <eenerenem My Wogs e Wi r Toor coeereenm Tox )=0 (3-3)
By (Wogy <eenenenem YWy Wogs veeenennn Wi s Togs eeveeneen Tun ) =0

wherel<i<M +landi< j < N +1. The above obtained equations (3.3) may exprezsed

FawWH+Tw+T W=A W, & Top)
I_21W+ r22W + I_23W = A2(Wmn Y/, Trm) (3'4)
CaW+ T W+ T Ww=A(W,,, & To)

where [, are form a square matrix with dimensi@v +1) x (N +1) and A s'are nonlinear

operators. The required steady solutions have detammined by solving equations of (3.4)
with the help of the following Newton-Raphson itewa method provided that all of the
coefficients are time-independent.

wo =AW @ T)

Y =0, T (35)

TV =0,(we . Tod)
wherer denotes the number of iterations. To avoid theidaliffies near the point of
inflection for steady solution the arc-length meth{eller-1987) has been used, which can

also help detect the bifurcation points. The argths plays a vital role in this method.

: M N dw ) (de ) (dT Y

The equation of arc-length is m |4 m o) T =g 3.6

| ) %gﬁmj(mj(mJ 3
This equation is solved simultaneously with the atiquns of (3.4) by using the Newton-

Raphson iteration method. An initial approximatiafithe equations is regarded &g AS

from point s as follows:

W, (s+As) =w_ (9) +%AS

ds

dy,., As (3.7)
ds

Y (S+D) = 1, (5) +

daT
Tn(s+As) =T, (s)+ d"‘” As
S
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Taking error tolerancg, <10° guarantees the convergence of the steady solutioere

subscript? indicates the iteration number and the error toleea, is defined as
o T+ 2 T+ 2 T+ T 2
e, =3 5w —w, o —un -1 Y] (3.8)
m=0 n

3.2 Nusselt Number Nu)

To see the temperature distribution of the flu@] it is required to determine the Nusselt
Number. The Nusselt number is significant in headfer analysis and engineering design
because it helps determine the rate of heat trafsfiem a surface to a fluid. The Nusselt
number describes the efficiency of convective hgahsport. It expresses how much
convective heat transfer improves overall heatsmrassion as compared to conduction
alone.

Mz\

1l
o

For the steady case, the Nusselt nuniMignas been determined by

Nu:—i<"_T > (3.9)
AT \ 0X |,

Here, ( )refers to the average value of the heat transden the duct surface to the fluid;

indicates the distance between facing walls &1d difference of the temperature. To see
the temperature distribution of the duct flow itaiso required to calculate the heat transfer
at cooled and heated walls. For steady solution,

Nusselt number at the cooling wall is denotedNay= —%f <Z—T >dy (3.10)
-1 X x=-1
And at the heating wall is denoted fay = —%J‘l <‘;—T >dy (3.11)
-1 X x=1

3.3 Flux and Mean Axial velocity through the Duct

FORTRAN (Developer Studio) code has been used éndfuations (2.36a)-(2.36¢) to
calculate numerical simulation using the spectruethod as a key instrument and the
Chebyshev polynomial, Newton-Raphson, Collocatand Arc-length methods are used as
auxiliary tools. The curvature of the ddeanges from 0.01 to 0.5 and the aspect ratio of
the duct is taken 1, 2, and 3 for both isothermal mon-isothermal fluid flow as well as for
the straight duct flow, wheré=0.

The dimensional fluX3 through the duct is defined by

h pd
Q= j_h j_d waxdy, (3.10)
But the non-dimensional flux is defined by
Q= [waxdy (3.11)
The mean axial velocity is defined by
W= 3.12
W 4hd ( )
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Chapter 4

Magneto-hydrodynamic Isothermal Fluid Flow through a
Rotating Curved Duct with Magnetic Field

This study conducts a numerical investigation talye the influence of Hall and lon-slip
currents on a fully developed, two-dimensional,adte incompressible flow within a
rotating curved duct, featuring both square andaregular cross-sections while being
subjected to a magnetic field. The governing eguatiare derived from the Navier-Stokes
equations, expressed in cylindrical coordinate®,(y) to account for the curved nature of
the duct. A pressure gradient force, known as tharDNumber, is applied as an external
force along the centreline of the curved duct. Tlweentz force is generated by the
interaction of electric and magnetic fields, ang thorentz force is further modified by the
presence of Hall and lon-slip currents. As a resh# flow is influenced by the combined
forces of the pressure gradient and Lorentz for&dditionally, the flow is accelerated due
to the combined effects of Coriolis and Centrifufgates, which are a consequence of the
system's rotation and the duct's curvature. Inlig fleveloped flow, most variables are
independent of the circumferential angle exceppfessure. The study considers a range of
curvatures from 0.01 to 0.5. Numerical calculati@me primarily carried out using the
spectral method. Complementary techniques, inctudite Newton-Raphson, Chebyshev
polynomial, Collocation, and arc-length procedurase also employed. The arc-length
method is particularly useful for calculating reésutear points of inflection in the solution
curve. The primary objective of this paper is tondastrate how the magnetic, Hall, and
ion-slip parameters impact the flow characteristigthin a rotational curved duct. The
study investigates the flow characteristics foriouas values of these parameters in
conjunction with specific Dean Numbers and varyishgct curvatures. It includes the
presentation and brief explanation of the reveatiedamlines of the secondary flow and
contour lines of axial flow.

4.1 Introduction

The study of fully developed fluid flow within cued ducts holds significant importance in
engineering applications. A particularly challerggiarea in the field of electromagnetic
involves understanding fluid flow in rotating syst® Consequently, scientists have
dedicated their efforts to the analysis of curvedtdlow within rotating systems. These
rotating systems find extensive use in engineeaipygjications, including turbo-machinery,
air conditioning systems, refrigeration units, &lecgenerators, ventilators, centrifugal
pumps, heat exchangers, internal combustion enggassturbine fluid transport, and blade-
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to-blade passages in modern gas turbines, amorggsotRioneering this research, the
esteemed mathematician Dean (1927, 1928) providathamatical evidence for the
existence of a pair of counter-rotating vorticeshwi a curved pipe, known as Dean's
vortices, in fully developed curved duct flow. Istigating the flow condition within the

duct, often referred to as Dean's hydro-dynamigstlability, became a central focus. Over
the following decades, numerous researchers déhtedhe analysis of fluid flow through

both straight and curved ducts using analyticainacal, and experimental methods,
keeping Dean's vortices and their associated flbaracteristics in mind. As a valuable
reference, the following section briefly describé® research contributions of some
scholars in the field of duct flow.

Berger et al. (1983) conducted a comprehensive ewdion of fully developed curved duct
flow within tubes and pipes, encompassing bothlstabd unstable flow conditions. They
scrutinized a range of factors, including variousometries, fluid properties, wall
properties, and Dean Numbers, to assess theiremtki on the behaviour of curved duct
flow. Furthermore, Nandakumar and Masliyah (198986) delved into the study of
bifurcation in steady laminar flow within curvedpps and the heat-transferable vortex flow
within coiled and curved tubes. Winters (1987) awmtdd two-dimensional bifurcation
research on the flow within a square curved dueealing a complex structure
characterized by multiple asymmetric and symmedoicitions for the square cross-section
duct. Ishigaki (1996) performed a numerical analysi flow structure and friction factors
within both counter-rotating and co-rotating cimupipes with slight curvature. Wang and
Yang (2003, 2004) in their studies, utilized a bomation of numerical simulations and
experimental data to investigate fully developertdéd and free convection flow within a
rotating square curve. Yamamoto et al.(1999, 2@@mined the characteristics of steady
viscous incompressible flow within a rotating systeonsidering both square curved ducts
and circular cross-sectional helical pipes. Yanetsal. (2005a) investigated heat transfer
within a curved rectangular duct, utilizing numaticalculations to analyze the unsteady
non-isothermal flow characteristics associated wihvection flow. In a system featuring
both rotation and curvature, Zhang and collabosa{@001) delved into the combined
effects of centrifugal and Coriolis forces on isathal flows within curved rectangular
ducts. Selmi et al. (1994, 1999) investigated theact of Coriolis and centrifugal forces on
the bifurcation structure of pressure-driven tworeinsional flows within a rotating curved
duct with a square cross-section. They employedemgiad computations, utilizing the
spectral method to determine dual solutions. Yaresal. (1989, 2002) ) explored flow
stability within a slightly curved circular ductFurthermore, they conducted a study on
laminar incompressible fluid flow within a rectahgucurved duct, exploring a wide aspect
ratio range from 1 to 12. Yamamoto et al. (2006hpwyed a visualization technique to
investigate the characteristics of secondary flothiw a curved tube featuring a square
cross-section. Humphrey et al. (1977) examined namwater flow within a square duct
with a cross-section of 40x40 mm, revealing sigaifit curvature effects. Within a curved
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duct with a square cross-section, Wang and Liu {20@delved into the fully developed
bifurcation structure of forced convection flow$éel also considered initial conditions, the
influence of instability and stability, and a cutwe ratio of 5E-06. Wang and Liu (2007)
revisited the study of the fully developed bifuroatstructure of forced convection within a
tightly wound square cross-section duct, charaagdrby a curvature ratio of 0.5 in regions
with high Dean numbers. Yanase et al. (2008) etlizpectral methods to investigate the
intricacies of travelling-wave solutions and congmshthem to numerical 2D analyses and
experimental studies of flow within a curved pigaturing a square cross-section. Norouzi
et al. (2009) focused on the complex interplay wipary and secondary normal pressure
variations in forced convective heat transfer isceelastic fluid flow within curved ducts.
Their study also explored how elastic propertiepant the average Nusselt number and
secondary flow intensity. Liu and Wang (2009) dssmd the bifurcation and stability of
fully developed forced convection within curved teergular ducts. They also delved into
the physical mechanisms responsible for creatimguwsa flow structures.

Fellouah et al. (2010) conducted a comprehensiv@ysinvolving both experimental and
computational research, to determine the influesfadneological fluid behaviour on power
law Dean Instability and Bingham fluid flow withim rectangular cross-section of a curved
duct. Chandratilleke et al.(2012) utilized numericaestigations to explore the behaviour
of laminar flow and associated thermal parameteruid flow through curved channels,
with a specific focus on the secondary vortex $tmec Wu et al. (2013) delved into the
study of streamline secondary flow in a curved digetturing a square cross-section,
employing spectral methods for their research. Kual. (2014) utilized ultrasonic Doppler
velocimetry and microphones to investigate bothit@amand turbulent flow of pseudo-
plastic fluids within a square duct characterizad significant curvature. Razavi et al.
(2015) conducted a study to examine the effecseobnd law analysis, Dean number, and
dimensionless heat flux at the wall on the entrgmneration resulting from forced
convection laminar flow in a rotating curved dueaturing a square cross-section. Li et al.
(2016) conducted both experimental and numericadstigations on fully developed three-
dimensional flow within a curved rectangular dwzinsidering various curvature profiles,
including spiral, double circular, and linear cuwas. Their study also explored the
influence of Reynolds number, aspect ratio, antediht curvatures on Dean instability,
with a specific focus on precisely identifying tbentre of secondary base vortices. Lima
and Alam (2019) delved into the impact of Hall emntr on flow through a straight pipe
within a rotating system, in the presence of a mé#gnfield. Their research in a
straightforward duct with a high aspect ratio rdedafeatures of secondary flow
streamlines and an axial flow contour map.

There is currently no available research on fllbavfin a curved duct in the presence of a
magnetic field with Hall and ion-slip currents imlime sources or archives. This is a
significant research gap, considering that muckhefuniverse consists of highly charged
particles and is enveloped by a magnetic field. Mfiagneto-hydrodynamics) fluid flow,
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which encompasses Hall and lon-slip currents, haldscial relevance in numerous
engineering and industrial processes. This unde¥scthe importance of exploring and
applying Hall and ion-slip current principles withithis particular research domain.
Therefore, the aim is to numerically examine the

1. Hall and Ion-slip Current Effects on Steady Fluid Flow through a Rotating Curve
Square Duct with Magnetic Field.

2. 2. Steady MHD Fluid Flow in a Rotating Curved Rectangular Duct with Hall and
Ton-slip Current

3. Hall and Ion-slip Effects on MHD Fluid Flow in a Rotating Curved Duct with
Aspect Ratio 3

4.2 Mathematical Formulation

It has been considered a scenario involving incesgble viscous two-dimensional fluid
flow that is fully developed and passes throughueved duct. This duct is subjected to
rotation with an angular velocity?, around its verticay-axis. Thez-axis is aligned along
the centreline direction of the duct, and x&xis is perpendicular to both tgeandz-axes.
Within this configuration, letC represent the centre of the duct's cross-sectdaod,L
denotes the radius of curvature. The duct's cresses has a height othzand a width of
2d. In this context, an external force in the form afpressure gradient, denoted as
G :—%, has been applied along the centreline directibthe duct. Furthermore, the
application of electric and magnetic fields genesad Lorentz force. This Lorentz force
undergoes modification due to the presence of Hiatl lon-slip currents, resulting in a
combination of forces that influence the flow. Amloinally, the flow is accelerated due to
the collective effect of Coriolis forces and Ceintgal forces, both of which arise as
consequences of the system's rotation and the tawevaf the duct. The coordinate system
with the relevant notation is shown in Fig. 4.1:

»
|

(@) (b) ©
Figure 4.1: Coordinate system of Curved duct with

(a) Aspect ratio 1 [square cross-section]
(b) Aspect ratio 2 an¢c) Aspect ratio 3 [rectangular cross-section]
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Electrically conducting fluids are indeed affectedHall and lon-slip currents. As a result
of these currents, Ohm's law is generalized asvi@li

J=0u,(q0B) - ~-(J OB) + 2 (J0B) UB
B, B

wherep, 7, =m 7. @, are electron callstime and cyclotron frequency.

In the absence of body forces and considering Ssimaptions mentioned above, the
governing equations are derived from the Naviek&oequation, expressed in terms of
cylindrical coordinatesr( 4, y). These equations are as follows:

Continuity Equation

ou,ov u_, (4.2.1)
o ody r
Momentum Equations
2 2 2 -

G W 10D, (00U Lo 0 U)o 9HE | mwou(lt ma) (4.2.2)
a oy r por o ror oy r? o | @+ma)®+nt

2 2
gV _1op  (0v 1lov, 0% (4.2.3)
o dy poy or? ror oy’

2 2 2
O, oW w110 (0w 10w ow_w) o ouBl [mut(rma)w] (45 g
a oy r prob a? ror oy* r? 0 (1+ma)® +n?
where, r =L+x is the radial variablke, is the circumfei@nangle andy is the vertical
variable; And the symbols,y amd are the velocity congmts in the directions of v,

and z-axes respectively, alsp and refer to the density kenematic viscosity. The
coordinate (r,8,y) has been changed to the dimensionlesngrilar coordinate
(x',Z,y") under the following transform of variables

r=L+xd, y=hy' andLg=zd
The characteristic lengtd  and the kinematic vidgosi are used to make dimensionless form of

the velocityU, , which is defined b},g . The other divsinless variables are introduced by using

the following transformation:

2
V:X; Z':E; u':gu; V':d_v; W':d\/gwandp': dz
d d 0 v 0 pu

p

Thus the transform equatioms=L+Xd amgl=zd (ier=L+xandLé=z) are used into

the above equations to transform its rectangulardipate form, where<, y ardl are the
non-dimensional radial, vertical and axial coortirsa respectively ands is the

. : L . d
dimensionless curvature of curve duct which is refi byézt . Hereu’,v',w' are the

dimensionless velocity components in the directioh x, yandz' , als@' is the
dimensionless pressure. Using the above dimensi®gleantities into the equations (4.2.1)-
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(4.2.4) and removing the prime over the variabiles,following equations are obtained as
follows:

Continuity Equation

u=0 (62

1

— mw- (L+naju
u§1+vau LA 6p 62u+ o @ ou +£W+M\/% (4.2.6)
X A+x) ®< ¢ (1+X5)@< & @+x)) 2 @+m)? +nf
x ay | o 1rxoox oy (4.2.7)
aw P D, Fw,_ o w dw_ &P _(Vasmu+ @ +mw
oV oM e o o ox o e M( Lrmaf J (4.2.8)

3 /
wherep, = Gd / refers to the Dean number _2d Q, refers to the Taylor
1) L ov

d’ou B?
PO

o refers to the lon-slip parameter. Again, intrddgcthe sectional stream function

which is related to the velocity componeuntsndv by the relations:

1 9y and V:—La—w

1+ X0 0y 1+ xJ 0x
The continuity equation (4.2.5) is satisfied bystliectional stream function, therefore, it
can be used in the other governing equations. Amaihe transformatiory = hy’ has been

used, which gives a unique variaple such thatly’ revheh/d is the aspect ratioof
the duct. Thereafter remove prime over the vargafidethe sake simplicity, it yields

number ;M = refers to the Magnetic parametarefers to the Hall parameter and

Central line (axial) flow of Momentum equation

2 2 2
22 W5 M ap v [ 2 1ajw_<f q

dy ox Ox o o 1Poy’)  @+x9)°
_ 0 1 oy s oy M V2o 4.2.9
1+x51  dy | T oy (1+ ma)z_'_mz( I ay +(1+ X0)(1+ ma)w] ( )

Stream line for the secondary velocity of Momentunequation

Loy oy  1oydy wdy oy Oy .., o 2.2 00 10y
I26y0>@y2I0xay3 dy o  Ox Ay 2oy 14 oy

30 oyoy o oydw, 20 1oy dy 0% 20
1+x5 0y ox* 1+xJ0 0x oydx 1+xJ 12 dy ody? x> | oxdy?
30° awaz// 307 0%  M(@L+ma) (1+x9) az//
(1+x5) ox oy 1+x5 x> (@L+ma)*+m® |

+(1+ x5)w—
oy
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@+a)* _ow_ 33 oy M m 2 OW_ 4.2.10
T2 Ty @y ax | @rmayent V25 4 oy ° ( )

Boundary conditions fokw andy are used as

wEly) =wx, =) =¢/#1,y) =¢(x,+ :ég)/: *1,y) :(3?[;[// (x,+1)=0 (4.2.11)
4.3 Validation Test of the Present Numerical Results

First, it is required to verify the present numaticesults. These results are verified by
comparing it with the previously published expenmad result. Comparisons have been
shown by using the visualization method:

Y (b) ©
Figure 4.2(i): Experimental result (top) at the fixed values of
(a) Negative rotation, D, =32 (b) I, =150, D, =114(c) I, =150 D, =176
Our present numerical result (bottom) at the fixed values of
(a) Negative rotation?, =—120 D, =500, § =0.03(b) 7, =150, D, =76, § =0.03
(c) T.=150. D, =415 §=0.03

Figure 4.2(ii): Experimental results (left) of (a) at K=262 and (b) atK =321
Our present numerical results (right) of (a) at D, = 240 and () at D, = 500

A. The experimental results have been presented byaikato et al. (2006) as the
first investigators for both positive and negatiagation, where Taylor number
T,=150 and curvaturé=0.03. They have transferred water from an overftank
through the curved, square duct. The comparisohselea the present numerical
results (bottom) and experimental results (top)stu@vn in Fig.4.2id)-(c).

B. Chandratilleke (2001) have established the experah@esults for different aspect
ratios of 2. The comparison of experimental dagft pf (@) and )] versus present
numerical results [right ofa] and p)] is shown in Fig.4.2(ii) in order to validate the
numerical results presented.

To validate our numerical results, it is shown thsgentially identical flow patterns appear
at other points of parameterization while in ourreat experiment the magnetic, Hall, and
ion-slip parameters are taken as zero. It is nttatithere is a strong correlation between

66



our numerical findings and the outcomes of the erpent, both qualitatively and
guantitatively. It can therefore draw the conclusibat there is a good correlation between
our numerical results and the experimental data.

4.4 Curved Square Duct for Isothermal Fluid Flow:

Hall and Ion-slip Current Effects on Steady Flow through a Rotating Curved
Square Duct with Magnetic Field

This study deals with the numerical prediction wbidimensional fully developed steady
viscous incompressible flow through a curved dud@hva square cross-section in the
presence of magnetic fields, Hall, and ion-sliprents. Due to the square cross-section of
the duct, the aspect ratio of the duct is takeh=b&l=1 The spectral method is the main
instrument used to perform the calculations nunadlyicOn the other hand, auxiliary tools
such as the Chebyshev polynomial, Newton-Raphsailocation, and arc-length
approaches are employed. A pressure gradient fiean Number) is applied to the
centreline direction of duct. The experiment hasrnbdone for both positive and negative
rotations within the ranges of Taylor number -5800 < 5000 at Dean Numbéb, =500.
Also the Dean Number effects have been investigatest wide ranges & D, < 6000,
while Taylor number is fixed al;,=10. The behaviour of the exposed secondary flow
streamlines and axial flow contour lines for vagatalues of the magnetic, Hall, and lon-
slip parameters on the flow characteristics for pagticular cases of Dean number, Case-l:
D, =500 and Case-lID, = 1000 with the different choice of duct curvatuamges from
0.01 to 0.5, is briefly explained. Only one paragneif D, T;, M, m anda are varied with
others are fixed at a significant value of the paeters.

4.4.1 Grid Spaces Accuracy

Before executing the FORTRAN program; it is reqdir® discuss about grid space
accuracy. Due to the square cross-section of tiag dus preferable to use similar values

for M and N to obtain reasonable accuracy. To findoist grid space accuracy, the flQx
has been calculated for several pairs of truncatiombers ¥ N ) such as (16, 16), (18,
18), (20, 20) and (22, 22). These are displayerhivie-1.

M | N Q

16 | 16 | 197.0759190059835
18 | 18 | 197.0754422863984
20 | 20 | 197.0755267907014
22 | 22 | 197.07556066407046

Table-1: FluxesQ at several pairs of truncation numbbts  Wnébr
fixed 0=0.1,T,=10,D,=500,M =0, m=0 anda = 0.

From this table, it can be determined that the migakoutcomes are accurate enough at
M =20and N =20 .
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4.4.2 Results and Discussion

Fully developed steady flow of incompressible vissdluid through the square cross-
sectioned curve duct that rotates with an anguwtwoity Q around its verticaf-axis. The
Dean Number (pressure gradient force), when presentnagnetic field with Hall and lon-
slip current along the central line of the ducfeefs the main flow. Aspect ratib =1
should always be taken due to square curved dudlysis. The increments
Aw =4 and Ay = 0.3re used to visualise well and clear to displayflive structures. The
shape of the flow pattern becomes almost symmb#@ause the Coriolis force balances
with the centrifugal force as the rotation incredsés required to discuss about the square
box in each figure of the flow pattern. The squaog is the duct cross-section at a certain
point on the solution curve. The outside of thevedrduct is indicated by the right side of
the box in the illustration. The dotted lines arehe clockwise or negative directed flow for
the velocity distribution, whereas the solid linese in the anti-clockwise or positive
directed flow.

First, it has been investigated the effects of dagumber . ) for the three cases; Case-l:

0=0.1,D,=500 Case-119=0.01,D,=500 Case-Ill9=0.5,D,=500 and the Dean Numbéd

for the curvaturé=0.1on the velocity distribution. These are showrigures from Fig.4.3
to Fig.4.6. As the new findings of this study, @féects of the magnetic parametdf)(,
Hall parameterr() , and lon-slip parametes on the velocity have been shown in figures
from Fig.4.7 to Fig.4.12, and its correspondingMlbehaviour are investigated for the two
cases of Dean Numbers such @ase-I:.D,, =500 andCase-II:D, = 1000 with different
choice of the curvaturé

A. Effects of Taylor Number(T,)

Case-l:6=0.01,D,=500

The rotational effects on the curve duct flow fbe tfixed values dd =0 m =0 |,
a =0 with Dean Number &b,=500 andhe duct curvaturé=0.01are shown in Figs.4a3e.
The flux Q against Taylor numbel,  solution curve is showrdrig. 4.4. It is bounded

within the range of Taylor number4ges.8< T, <4770.4 . Several bifti@a curves;

almost 19 branches of solution curves have beawased within this range. Figures 4.3b
and 4.3c are the enlarging areas indicated byettamgular boxes)(and (i) in Figure 4.3a
are plotted.

Figure 4.8 shows the corresponding vortex structures of ling pattern. The streamlines
{ of the secondary flow (top) and contours of theabfflow W (bottom) at several distinct

points T =-450q - 2500, -350, -172 21, 100, 1500, 2500 ,and 4500 on the solution
curve of Fig. 4.a.
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Figure 4.3a: Solution curve: FIwQ versus Taylor Numbler
with the fixed values a=0.01,D,=500,M=0, m=0 and«=0.
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Figure 4.3-c: Magnifying figures marked by the dashed box ig.&#i3a

Five branches of the solution curve are shown exas$T, = —4500 . Branches 12 and 15
exhibited similar behaviour, but close to the duictterior wall, two strong counter-rotating
symmetric vortices with two weaker vortices in doli to the streamline are generated.
The behaviour of branches 13 and 14 is also theshuat it branch 1 exhibits the structure
of two cells of symmetric vortices, and the contplot of the axial flowv is displaced
close to the duct's inner wall. On the oppositee sl T = 4500, it is discovered that
branches 3, 8, and 19 shares the same patternth@lssame pattern are shown in the
branches 4 and 7, but in this case additional twakwortices form close to the outer wall
of duct. Whereas, the axial flow's contour is shéd to the outside wall of the curved duct.
Two, four, or six vortices have been discoverethatother remaining points for streamline.
But for the axial flow, the highest amount of flagvalso moved near the duct's boundary

wall for large values of T,| .
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Figure 4.3d: Streamlinesy (upper) and axial contour flow
(lower) in accordance with the solution curve ig.BiZ

The secondary flow's Taylor number versus vortiwesber plane is depicted in Fig.¢.4
by a bar diagram that corresponds to the solutiomecin Fig.4.4. The many bifurcation
curves, where two-, four-, and six-vortex flow patis are discovered using this diagram.
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Figure 4.3e: Taylor numberT, versus vortex number of secondary flows
with § =001, D, =500, M =0 , m=0 and a=0 .

Case-ll: 0=0.1,D,=500

The rotational effects on the curve duct flow fbe tfixed values dd =0 m =0 |

a =0 over a wide range of Taylor numbers000 < T, < 5000 with the daatvature

J0 =0.1 are shown in Figs.4a3c.Figure 4.4 depicts the solution curve for the flQx
versus Taylor number. . This solution curve is didida to three section such ag (
section (a) to (b),il) section (b) to (c),i(i) section (c) to (d). In the curve segment (b)-(c),
the flows represent more intricate features, ittams a bifurcation solution curves in a

narrow range of Taylor numbers. In all the sectib flux gradually decreases with the
increase of Taylor numbers in both positive andatigg direction.
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Figure 4.4a: Solution curve: FIuxQ versus Taylor Number
with the fixed values 0§=0.1,D,=500,M=0, m=0 anda=0.
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Figure 4.4b: Streamlinesy/ (upper) and axial contour flom
(lower) in accordance with the solution curve ig.Bida

Figure 4. displayed the streamlingg  of the secondary flap)(tand contours of the

axial flow w (bottom) at several distinct points dmetsolution curve of Fig. 484 The
secondary flows are discovered to be symmetrical faur, or six vortex flow patterns. At
T, =0 (i.e. no rotation on the duct), it has been disceu that the flow pattern inside the
duct has a two-vortex structure. The two strongiees flow formed in the middle of the
duct are visible in the velocity structures at DayhumberT =-100 , together with four
weak vortices close to the four corners. This pa@rdalled the critical point for the Taylor
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number. The two-cell vortex flow structure of trecendary flow has been observed in the
curve segment (a)-(b), where the maximum quanfitifosv is shifted toward the vertical
boundary and its trends weaken over time with gisialues of T, . Another curve segment

(b)-(c); especially atT, =-17598, -17637, -176 .85 andi75.74 , there are six vortex
structures has been found. Almost the peak valubeoflux Q =26839 has been found at
T, =-17199. Whereas, the curve section (c)-(d) displays tletex structure of the

secondary flow flowing in the opposite directiororfr the main flow. The maximum
amount of flow for the radial velocity has been Ipe close to the upper and lower
boundary as the increase §f . The strength of fiattern gradually becomes weak with

the increase ofT, in both positive and negativedtion. In contrast, the axial flow's

contour has been relocated to the duct's centdeitsitrends are likewise becoming steadily
weaker asT, values rise. Similarly, in curve secfiop(d) on this figure, the velocity's

contour has been pushed to the duct's centre tsautremd are also dropped graduallymas

values rise in negative direction.
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Figure 4.4c : Taylor numberT, versus vortex number of secondary flows
with 6 = 0.1 , D, =500, M =0 , m=0 and a=0

To better understand the radial flow vortex struetuFig. 4.4 illustrated the bar diagram
for the Taylor number vs vortex number plane. mbenber of branches is indicated at the
top of each bar in the diagram. This graphic shtves as the Taylor number rises, the
vortices become progressively weaker.

The rotational effects on the curve duct flow fbe tfixed values ol =0 m =0 |,
a =0 over a wide range of Taylor numbers000 < T, < 5000 with the daaetvature

J = 0.1 are shown in Figs.4a3c.

Case-lll: 6=0.5,D,=500

The rotational effects on the curve duct flow fbe tfixed values oM =0 m =0 |
a =0 with Dean Number ab,=500 andthe duct curvaturé=0.5 are shown in Figs.4a5
c.The flux Q against Taylor numbef,  solution curve is showrFig. 4.5. As can be

observed from the illustration, a single branchusoh curve appears here, and as values of
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T, increase in both positive and negative directiting,trend of the flow pattern quickly

adopts a weak form.

The streamlines of the secondary flaw (top) andtmar plots of the axial floww
(bottom) are shown in Fig.45at various Taylor number locations. In the tinyge,
symmetric four vortices have been discovered, andbthis range, two vortices structures
are found for the secondary velocity. In contrastising values of, , the max amount of
axial flow is pushed toward the duct's inner wBl. using a bar diagram that corresponds
to the solution curve, Fig. £%hows the Taylor number vs vortices number planghe
streamlines among the ranggo00< T, < 3000

(b

2501 Curvature o = 05

- . . P R . . P . . I . . .
-5000 -2500 o 2500 5000

— T
Figure 4.5a: Solution curve: FIwQ versus Taylor Numbler

with the fixed values 0§=0.5,D,= 500,M = 0, m= 0 and«=0.
— >

i |-

T, - -3000 -2000 -1000 -175.8 -154.4 100 1000 2000 @00
Figure 4.5%0: Streamlinesy/ (upper) and axial contour flom

(lower) in accordance with the solution curve ig.Bi5a

Now, the solution curves are examined in termshef ftux Q against Taylor number,
with respect to the curvature of dusts 0.1 & = 001 ard0.5 , whach plotted in
Figs. 4.3, 4.4a, and 4.5, respectively.

Bar diagrams Fig.4@3 Fig.4.4 and Fig.4.6 make it abundantly clear that the vortex
tendency declines with increasing curvattiri is observed that the sharp peak value of
flux 268.38 has been found Tat= -172.21 , 266.82 at —-170 .11 , and B4

T, = =154 47 when curvature of the dugt 001 ¢ = 0.1 anil= 05 respectively. As
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opposed to many bifurcation curves e 001, weak lodition curves fow = 0.1 and no
bifurcation for 6 = 0.5 have been discovered. It meand thben curvature values
increase, the pick value of the flux and the nundédaranches gradually decrease.
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Figure 4.5c: Taylor numberT, versus vortex number of secondary flows
with 6 = 05 , D, =500, M =0 , m=0 and a =0 .

B. Effects of Dean NumbeKD,) :

The Dean number effects on the curve duct flowtlierfixed values of, =10 M =0

m = 0, o =0 are shown in Figs.4aéc. The solution curve of the fluQ against Dean
Number D, with the duct curvaturé=0.1is shown in Fig. 4.8 Fig. 4.@& (ii) displays the

enlarged figure of the portion marked by rectarsylmbol on solution curve in Fig. 4.6a().
It provided three steady state solution branchesfitst of which is indicated by the colour
red from (a) to (b), the second by the colour gr]em (b) to (c), and the third by the
colour blue from (c) to (d).A pair of counter-ratej vortices have been exist for the
secondary flow in all branches of the steady-staikition curve, and also the fluxes
increase with the increase oD, Figure 4.® exhibits the axial flow's contours and
secondary flow's structures at various location®e&n Numbers to the solution curve in
Fig.4.6a. From these graphs, it can be seen that symntetoig four-, or six-vortices have

been discovered for the streamline. With an ina@eis Dean Number, vortices grow in

300

(d)

t (i) Enlarge Figure

1200} (i) Main Figure 290k

1000 260 ®)  (d)
i 270
260
250

240 F

—» O

230F

220F

070002000 3000 400050006000 a0role— e
—’ DI"I —> Dn
Figure 4.6a: Solution curve: FluxQ versus Taylor Number
with the fixed values 0#=0.1,T, =10,M=0, m=0 anda=0.
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Fig.4.60: Streamlinegy (upper) and axial contour flow  (lower)
in accordance with the solution curve in Figad.6

number. WhernD, >700 (approximately) in the first branaldiional vortices have begun

to form. In contrast to this, for the axial flowrfiarge Dean Numbers, several contours have
been observed and the number of contours grew agilgcis D, increased.

For all values ofD, , a most portion of the axialidlinas flowed close to the duct's outer

wall.In the curve section from point (a) to poir),(the vortices increase; they then
diminish from point (b) to point (c), Again it gr@anonce more from point (c) to point (d)
with the increase @, . At every location witlti#2 94 < D, <77398 rdh separate
vortex structures of secondary flow have been dm@a. Two strong vortices flow
symmetrically in the first branch, and two strorgytices flow symmetrically in the second
branch with two weak vortices near the outer wadlditionally, the third branch features
two vortices that are stronger than the two orsimond branch. In contrast, it is discovered
that the contour structure for axial flow has wmillf been simple in the first and second

branches before gradually becoming complex.\s srie contours increase in the first

branch, decrease in the second branch, and thesageonce more in the third branch.
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Figure 4.6c: Dean NumberD,, versus vortex number of secondary flows
with 4 =01, M =00, m=00 andag=00
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The Dean number vs vortex number plane for secgnittaw is depicted in Fig.46by a
bar diagram with a curvature of= 0.1 in the rangedef D, < 6000 It is clear from the

bar diagram that as the Dean number rises, thexprbpensity also gradually rises.

The main objective is to look at how magnetid),( Hall parametersnf) and ion-slip
parameters o) affect the flow characteristics in the curve dweith rotation. The
investigation is performed under the various vakfdd, m anda for the two cases of Dean
Numbers;Case-I:D , = 500 andCase-ll: D, =1000, while the Taylor number is fixed
atT, =10 .In Case-l, the flow pattern has been examinedttioee different values of
curvaturep = 001, 0.1 and 0.5 . But in Case-ll, the research has omgnbdone for

J = 0.1due to the conditions are the same as in Case-l.

C. Effects of Magnetic Paramete(M )
Case-l: D, = 500

The effects of Magnetic parameter on the curve dimw for the fixed values of
D,=500 T, =10, m =0, g =0 with duct curvatures at= 001, 0.1 and 0.5 are

shown in Figs.4.@b. The solution curve of the fluQ against Magnetic Parametielr for
the different choices of the duct curvatdre®.01, 0.1, and 0.5 is illustrated in Fig. &.A
single branch of the steady-state solution is foun@gach case of the curvature values.
These solution curves are all the decreasing fanstiAs a result, it may indicate that the
flux reduces as the magnetic parameter increasesidihg the magnetic parameter with a
large value can bring the velocity closer to zero.

200 e 200 (i) A zoom portion of ()
175 f_(|) Main Figure s=o001 5= 001
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Figure 4.7a: Solution curve: FIuxQ versus Magnetic paramédewrith the fixed values

of §=0.1,D,= 500,T, =10,m=0 anda=0. for curvaturesd = 001, 0.1 and0.5

Fig. 4. depicts vortex structure of the stream functign d #e contour of the axial flow

w at various locations alonil corresponding to the solution curve in Fig.ad.At each
value ofM, symmetric two vortex structures have been disaa/éor the secondary flow,
whereas this trend gradually weakens Msincreases. The secondary flow is slightly
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impacted by the increasing valuessofin contrast, for an axial flow, the highest dudlow
occurs close to the outside wall at low valued/iodnd it shifts to the duct's centre at low
curvatures with higher values bf. The flows are shifted to the duct's interior wadle due
to the larger values of the curvature. With raisthg values ofM, its strength is also
steadily losing strength.

(i) For curvature 6=001 (ii) For curvature =01

:

|

Figure 4.70: Stream lines (upper) and axial contour flow
(lower) corresponding to the solution curve in Eiga

Case-ll: D, =1000

Fig.4.8 demonstrates the solution curve of flgx Mdor the fixed values oD, =1000 ,
T, =10, m=0, a =0 at the duct's curvatures =0.1 . A small range of nsig
parameter2103< M < 3736 exist, where three branches of solutioveduave been found.
The green colour in the curve section (b) - (c)idgates that the solution curve was
discovered in the reverse direction frowh = 3.73644919 il = 21030904 ,eafthat it

reversed once more. This solution curves in alh&inas are clearly a decreasing functions.
As a result, it may indicate that the flux decreas®the magnetic parameter increases.
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Fig.4.8: Solution curveof the fluxQ versus Magnetic paramefdr at the fixed
valuesofs =01 T, =10, D, =1000 ,m=0 and a =0 .
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Figure 4.80: Stream linedy/ of the secondary flow (upper) and contduhe
axial flow W (lower) corresponding to the solution eeiFig.4.&

Fig.4.& exhibits the vortex structure of the stream ligesnd contour plot of the axiad
flow at some distinct points &l corresponding to the solution curve in Fig.ae4T®ere is
one pair of counter-rotating vortices with addiabrtwo vortices developed for the
secondary flow of streamlines in the curve secften(b), whereas, more than one contour
has been identified for the axial flow. The grettesal flow is relocated close to the duct's
outer wall. Additional vortices are eliminated frgmintm = 2.1030904 for the secondary
flow, and it then displays a symmetric two-cellusture for rising values d¥l, whilst the
axial flow gradually loses strength, takes on apdéncontour, and shifts its centre toward
the centre of the duct.

D. Effects of Hall Parameter(m)
Case-l: D, =500

Figs.4.%-b exhibits the effects of Hall parameter on the cutuet flow for the fixed values
of D, =500 T, =10, M =10, m =0, a =0 with duct curvatures @-=0.01, 0.1,

and 0.5.For all values of the curvature, a singlenbh of steady solutions has been
discovered and also all the curves are increasingtion.The fluxQ increases rapidlywith
the increase of Hall parameter in a certain rangen0< 5 approximately, and then it has a
minor increasing effect. It has steady state smhugifter a certain values afi in all the
cases of the curvature.

— o o— 5
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—  pm

Figure 4.%: Solution curveof the fluxg versus Hall parameterat the fixed values
of T.=10,D, =500 , M =10 anda =0 forcurvature$ = 001,0.1 and0.5
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(i) For curvature 6=001

m- 05 1 5 10 20 30 40

Figure 4.%: Stream linegy of the secondary flow (upper) and cantdthe
axial flow W (lower) corresponding to the solutiomes Fig.4.%

Fig.4.9 shows the vortex structure of the stream liies  camdour plot of the axial flow

w at some distinct points ofi corresponding to the solution curve in Fig.a4.9The figure
demonstrates how symmetric two-cell vortices areegated for the secondary flow's
streamline. For each value wf the majority of the axial flow is located closethe duct's
outer wall. The alteration of the Hall paramateled to slight changes in the layout of the
axial and secondary flow. Furthermore, it is naotiegt the highest amounts of fl@ has
been found 202.15, 197.04, and 183.31 at theatun®so=0.01, 0.1, and 0.5 respectively.
The steady-state solution is discovereehat40 (approx

Case-ll: D, =1000

Fig.4.1G& demonstrates the solution curve of flax vs Hallgmeterm for the fixed
values of D, =1000,T, =10 ,M =10 ,a =0 at the duct’s curvaturés= 0.1  .In this

case, only one branch of steady-state solutionsbkas identified. Clearly this solution
curve is an increasing functions, therefore thex i@ rises with the rise in the Hall
parametem, however, it rises quickly inside< m<5 and then risesdgally with the rise

in m. A stable solution has been discovered after eitpgalue ofm.
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Figure 4.1(a: Solution curve: Fluxy versus Hall parameter  with filed
values of T. =10 ,D, =1000 ,M =10 anda =0

Fig.4.1® depicts the vortex structure of the stream liglesand contour plot of the axial
flow w at some distinct points ofi corresponding to the solution curve in Fig. 41@Vhile
axial flow was found to have numerous contoursantrast, streamline®/  were found to
have symmetrical two vortices with an additionabtwortex structures close to the outside
wall.For each value ai, the majority of the axial flow is located closethe duct's outer
wall. Variations in the Hall parameten cause a little change in the axial and secondary
flow layouts. Steady state solution is found wher> 40 ppraximately.

Figure 4.1M: Stream linegy of the secondary flow (upper) and cantdihe
axial flow w (lower) corresponding to the solution eeiFig.4.1@

E. Effects of lon-slip Parameter(a)
Case-l: D, = 500

Figures.4.1a-b exhibits the effects of Hall parameter on the eudwuct flow for the fixed
values of D, =500 ,T =10,M =1.0 ,m = 5.0 with duct curvaturesd0.01,

0.1, and 0.5.A single branch of steady solutiors &ao been discovered for all values of
the curvature. The flwQ initially rapidly decreases within the rangeca <08 ,rthe

quickly increases withino.8 < a <10 , and finally has justimytgrowing influence as

grows ofa. Furthermore, it is also noted that the max amowhtflux Q has been found
202.15, 197.04, and 183.31 at the curvatu§ef.01, 0.1, and 0.5 respectively and
approximate steady-state situation has been foumehav> 40 .
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Figure 4.11a: Solution curveof the fluxg versus lon-slip parameter at the fixedues of
T,=10,D, =500 , M =1.0and m =5 for curvaturesd = 001, 0.1 and 0.5

(i) For curvature J0=001

Figure 4.11b: Stream linegy of the secondary flow (upper) and cantdthe
axial floww (lower) corresponding to the solutiomes Fig.4.%

Figure.4.1b displays the vortex structure of the stream ligesand contour plot of the

axial flow w at some distinct points ef corresponding to the solution curve in Fig. 411

For each value a& with small curvature), two-cell symmetric vortices have been created
for the streamline, whereas, the majority of thalatows pass close to the duct's outer
wall. The axial flows are moved to the square dumntre, whereas, the contours lose their
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strength and complexity for large valuesofAs the value of the ion-slip parameter
changes, the structure of the axial and secondtamgfis observed to remain unchanged.

Case-ll: D, =1000

Figure.4.12 demonstrates the solution curve of flax vs ldp-garametero for the
fixed values ofD, =1000 T, =10 M =10 m=50 atthe duct’s curvatu®s 0.1

325.5

325
324.5

324

—» O

323.5

. )
o 10 20 30 40

—»a

323 -

Fig.4.12a: Solution curve of the fluy versus lon-slip paraemnet with the
fixed values of T, =10 ,D, =1000 M =1.0 andn = 5.0

i

Figure 4.1: Stream linegy of the secondary flow (upper) and cantdihe
axial flow W (lower) corresponding to the solution eeifFig.4.12

And the vortex structure of the secondary flgev ~ @odtour of axial floww at various

points ofa are illustrated in Fig.4.12corresponding to the solution curve in Fig. 418
single branch of steady solutions has also beerowised. The fluxQ initially rapidly
decreases within the ran@g a <08 , then quickly increasthgn 08<a <5 , and finally
has just a tiny growing influence as grows cof There are symmetric two-cell vortex
structures with four strong vortices found to stnéae of the secondary flow; on the other
hand, the majority of axial flows pass close to the duct's outer wall for any value. @n
increase in the lon-slip parametehas very little impact on the axial and secondbow
structures. From this observation, it can be shahthe flow structure does not change for
any increasing values afafter a particular value of.
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4.5 Curved Rectangular Duct for Isothermal Fluid Flow (Aspect Ratio 2):

Steady MHD Fluid Flow in a Rotating Curved Rectangular Duct with Hall and
Ion-slip Current

Numerical analysis is used to explore the steadydimnensional viscous incompressible
fluid flow through a rotating curved rectangularctwith a curvature ranging from 0.1 to
0.5 in the presence of a magnetic field with Halll gon-slip current. Due to the rectangular
cross-section of the duct, the aspect ratio isrtae! =h/d =2 . The spectral method is
the main instrument used to perform the calculatiommerically. On the other hand,
auxiliary tools such as the Chebyshev polynomiawbbn-Raphson, collocation, and arc-
length approaches are employed. A pressure graidierd (Dean Number) is applied to the
centreline direction of duct. A pressure gradiemicé (Dean Number) is applied to the
centreline direction of duct. On such flow, the aopof the parameters magnetic, Hall, lon-
slip, rotation, and Dean Number are explored. Timngstigation's goal is to demonstrate
how the magnetic, Hall, and ion-slip parametersdffthe flow characteristics in the
rectangular duct with a rotational curve. The béhavof the exposed secondary flow
streamlines and axial flow contour lines for vasowalues of the magnetic, Hall, and lon-
slip parameters on the flow characteristics fore¢hparticular cases such as Case-l:
0=01,D,=500, Case-ll:0=05,D,=500and Case-llb=01,D,=800 , while the
rotational parameters keep fixed®gt=20 . Only oneapater of D, 7. M ,m andr

are varied with others are fixed at a significagie of the parameters.

4.5.1 Grid Spaces Accuracy

It is required to discuss about grid space accuiaefpre executing the FORTRAN
program. The equations are numerically solved fofous pairs of truncation numbers in
order to obtain the requisite grid space precidizure to the rectangular cross-section of the
duct with aspect ratio of 2, it is preferable t@ uke values fod is twice off to obtain
reasonable accuracy. To find the best grid spaceracy, the fluxQ has been calculated
for several pairs of truncation numbefd (N , ) sucko8s 16), (09, 18), (10, 20) and (11,
22). These are displayed in Table-2.

M | N Q

08 | 16 | 77.0517397874795
09 | 18 | 77.0519746682169
10 | 20 | 77.0524172067357
11 | 22 | 77.0523288535399
12 | 24 | 77.0522732121143

~NWW = OO

Table-2: Fluxes O at several pairs of truncation numbers Mand N
at fixed values of 6=0.1, 7, =20, D, =500, A =0, m =0 and a=0

From this table, it can be determined that the migakoutcomes are accurate enough at
M =10andN =20 .

84



4.5.2 Results and Discussion

To study the characteristics of the flow, a fullgvdloped steady flow of incompressible
viscous fluid is considered. This flow occurs thghua rectangular cross-section curved
duct that rotates with an angular velodi2yaround its verticay-axis. The curvature of the
duct is set to two different values, 0.1 and Ody, the purpose of investigation. The
rectangular cross-section of the duct has an agpéct of 2. For visualizing the flow
structure, incremental values v = 4 andAy = 0.3 are employed. The initial investigation
focuses on the impact of the Taylor numb&) @nd Dean NumberD{) on the velocity
distribution, and these findings are presentedguarés from Fig. 4.13 to Fig. 4.15. In this
study, new insights are revealed regarding thectsffef the magnetic parametéad)( Hall
parameter ), and lon-slip parameten) on the velocity, which are illustrated in figures
from Fig. 4.16 to Fig. 4.18. The flow charactedstare elucidated through solution curves,
and their corresponding vortex structures are degifor three distinct cases:

Case-l ©¥=0.1,D,=500

Case-ll 0=0.5, D,=500

Case-lll :0 = 0.1, D,= 800
It's important to note that the rotational paramsetemain fixed af, = 20, while only one
of the parameterd), (Dean Number)T; (Taylor Number),M (Magnetic Parameterjn
(Hall Parameter), ow (lon-slip Parameter), is varied. The other paransetare held
constant at significant values during the invesitga

A. Effects of Taylor Number(T,) on the Velocity

In Figure 4.13a, the solution curve illustrates takationship between the fluQ and the
Taylor NumberT,. This curve is presented for the case where tloé @uvatures is set at
0.1. The values of other parameters are kept fiwgth, D, = 500, M=0, m=0, anda=0. Over
an extensive selection of Taylor numbe6es00<T, <6000 , the iaat effects on
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Figure 4.13a: Solution curve: FluxQ versus Taylor Numberfor

D,=500,M =0, m= 0 anda=0 with the curvature=0.1.
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the curve duct flow are explained. Within a certaange indicated by the dashed
rectangular box in Fig. 4.13a, nine bifurcationvas have been discovered; their magnified
representations are displayed in Fig. #.1Bo identify these branches, different colours
have been used on the solution curve. Addition&igures 4.18f have shown enlarged
portions of the areas designated in FigbiBarked by dashes boxes (ii), (iii), (iv), and (v).
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Figure 4.13-f: Magnifying figures marked by the dashed box on4&iga.
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Figure 4.18 depicted two key elements: the streamligabustrating the secondary flow in
the upper part, and the contours of axial flow dedoas w in the lower part. These
visualizations were observed at distinct pointgesponding to the solution curve detailed
in Figure 4.13. As the absolute value dF,| increases, it has been observed a significant
shift in a majority of the streamlines toward thgpar and lower boundaries, while the
central point of the axial flow contour migrateswtrd the duct's midsection.
Simultaneously, the axial flow redistributes, shidttowards both the inner and outer walls
of the duct. With higher T, | values, there is a gradual deterioration in dk&l flow
contour and the secondary flow vortex. At= -232.76, we identify the maximum value of
flux Q, nearly reaching 403.29363. The bifurcation sectieveals the secondary flow
streamlinesy and axial flow contours w at select points:= -232.76, -160, -80, 20, 200,
440, and 685. Among these points,= -232.76, -160, and 685 exhibits three branclies o
the solution curve, whild, = -80, 200, and 440 display five branches.TAt= 20, we
observe seven branches, whereas the other poines dvdy a single branch. At these
specific locations, the secondary flow manifestselft through symmetric solutions,
including two, four, six, and eight vortices. A®tlalues of T; | increase, the strength of
the vortices diminishes. Additional vortices emergear the outer boundary of the duct,
with one, two, or more contours present in the latkoav. It's worth noting that the axial
velocity of the flow within the curved duct sigréintly influences the strength of the

secondary vortices.

2 vortex ¢ 2 vortex ¢ 2 vortex ¢ Max vortex No.06 of ¥ Max vortex No.06 of W
Br-[1] Br-[1] Br-[1] Br-[1] 4] (5] Br-(1] [4 5l
r‘_/% r_/% - - - —

Max.vortex no.6 of ¢ Max.vortex no. 6 of ¢
Br-[1] [4] [5] (6] [71 Br-[1] [2] (3l [4] [5] [6] [7]
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Figure 4.13y: Streamlinesy (upper) and axial contour floow  (lower)
in accordance with the solution curve in Fig.4.13
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Figure 4.1%: Taylor numberT, versus vortex number of secondary flows with ctured = 0.1
and for fixed values of the paramelgy= 500,M=0, m=0, anda=0

To further better understand, a bar chart plottirggTaylor number against the vortex count
for the secondary flow within the range of -60006@00 is presented in Figure 43 he
numerical values positioned at the top of eachabarindicative of the corresponding curve
branch numbers. An examination of the bar grapgfigare 4.13h, as well as Figures 413

f, reveals the following: The first branch encongeasflow structures characterized by two,
four, and six vortices. This branch exists withire tTaylor number range of -6000 to
391.57. The second branch is exclusively compridfetlow configurations featuring six
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vortices. This occurs within the Taylor number ramgf 397.57 to 54.97. The third branch
consists of flow configurations with six and eigiurtices, encapsulated within the Taylor
number range of 54.97 to 836.26. The fourth brastabwcases a flow structure with four
and six vortices, occupying the Taylor number ranfje836.26 to -243.52. In the fifth
branch, flow structures exhibit two and four vogsg occurring in the Taylor number range
of -243.52 to 107.97. The sixth branch is charadr by flow structures featuring six
vortices, within the Taylor number range of 107t8791.85. The seventh branch features
flow structures with four and six vortices, fallimgthin the Taylor number range of -91.85
to 470.86. The eighth branch comprises flow stmestwith four vortices, found within the
Taylor number range of 470.86 to 319.35. The niatid final branch is exclusively
composed of flow structures with two vortices, desy in the Taylor number range of
319.35 to 6000.

Figure 4.14 presents the solution curve illustrating the relahip between the flu® and
the Taylor Numbefl,, with the duct curvature set &t= 0.5. This curve is generated under
specific fixed conditionsD, = 500, M=0, m=0, and a=0. Figures 4.14 to 4.14l are
presented solely for the purpose of comparing #tauctures to those observed with a duct
curvature ofd = 0.1. Given the succinct nature of this comparisodetailed discussion is
not necessary.
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Figure 4.14: @) Solution curve: FluxQ versus Taylor Numbgrfor D,=500,M =0, m= 0 anda=0
with the curvaturé=0.5. (b) Magnifying figure marked by the dashed box on &itfa.
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Figure 4.14: Streamlinesy (upper) and axial contour flowv (lower)
in accordance with the solution curve in Fig.4.14a
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Figure 4.14d: Taylor numberT, versus vortex number of secondary flows with ctuxad = 05
and fixed values of the parameter=500 M,=0 mz0  anco0

In brief, the solution curve with = 0.5 is characterized by a simpler flow structwteen
contrasted with the solution curve fér= 0.1. Notably, only three separation curves are
identified in this case. The secondary flow exlsilbewer and more straightforward outlines
and contains fewer vortices compared to dhe 0.1 scenario. It's evident that the flow's
quality degrades rapidly as the absolute valueTef||increases. This succinct description
highlights the key differences between the two ades.

B. Effects of Dean NumbeKD,) on the Velocity

In Figure 4.1%, it can observe a solution curve that relatedltheQ to the Dean Number
Dn. This particular curve is relevant to the caserehibe duct curvature is set@at 0.1.
Meanwhile, other parameters, such as the Taylor idur(T,), which is fixed at 20, as well
as the magnetic parameteM)( Hall parameter nf), and ion-slip parametera), all
maintained at 0, remain consistent during this y@imal The solution curve is depicted in
various colours, highlighting seven distinct bifation curves that have been identified
within this particular region. The bifurcation sect of the analysis displays secondary flow
streamlines represented asand axial flow contours denoted &s which shows in
Fig.4.1%. This visualization is presented at specific paigbrresponding to various values
of the Dean NumbeiY,), including 100, 240, 400, 500, 700, 1000 and 1100
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Figure 4.15: Solution curve: FluxQ versus Dean Numbgy
for T, =20,M =0, m= 0 anda=0 with the curvatur&=0.1.
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(lower) in accordance with the solution curve ig.Bil5s.
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There exists a critical range between Dean NumBeds5 and 738.26 where multiple
branches converge at a single point. In this regionotable trend emerges: as the branch
transitions, the contours of axial flow and theas®lary flow vortices steadily increase in
complexity. This trend suggests that with an inseemn the Dean Number, the fluid flow
undergoes a continuous enhancement. The maximunberuof vortices also gradually
rises in response to the rising Dean Number, wpdertain critical value dd,. Beyond this
point, the number of vortices starts to decreaseitlstill maintains a robust and significant
structure. Additionally, it's observed that for lhigpean Numbers, multiple contours are
found in the axial flow.

Significantly, all of the additional secondary flovortices and axial flow contours are
generated in the proximity of the duct's outer walbnsequently, as the Dean Number
continues to rise, the flux becomes progressiviebnger, further underscoring the dynamic
relationship between the Dean Number and the ctaarstics of the flow.

The principal objective of this study is to analyhew the flow characteristics are
influenced by three key parameters: magnddg, Hall (m), and ion-slip ¢), within the
context of a rotational curved rectangular ducisThvestigation explores a range of values
for M, m, anda across three distinct cases, which are as follows:

Case-l ©$=0.1,D,=500
Case-ll :6=0.5, D,=500
Case-lll :6 = 0.1, D,= 800

while the Taylor number is fixed d=20. These cases allow us to examine and compare
the effects of these parameters on the flow charatts in different scenarios within the
rotational curved rectangular duct.

C. Effects of Magnetic ParametefM) on the Velocity

Figure 4.1@ displays the solution curve depicting the relaglip between the fluQ and
the Magnetic ParameteM] for the above-mentioned three distinct casess@luases are
examined under fixed conditions, with=20, D, = 500, m=0, anda=0. The corresponding
secondary flow structures, denotedyasnd contour plots of the axial flow, represerdsd
w, are provided at specific points along the magnparameter in Figure 4.6 This
comprehensive analysis allows for a detailed egpion of the impact of the Magnetic
ParameterNl) on the fluxQ and associated flow structures in the contextheké three
cases.

Across all three cases, the solution curves exahilgibnsistent decreasing trend. This leads
to the conclusion that as the magnetic parametegrckases, the fluQ experiences a rapid
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decrease. For Cases-l and Il, a common observaidhe presence of symmetric two-
vortex streamline structures. However, it's notelythat the contours of the axial flow in
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Figure 4.16a: Solution curve: FluxQ) versus magnetic

parameteM for T, =20, m= 0 anda=0.

Casqi) : Curvatuteoftheduct 6=0.1 Casefli ) : Curvatuteoftheduct 0=0.5
D,=500; T,=20; m=00 ; a=00 D,=500; T,=20;m=00 ; a=00
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Figure 4.1 (i)- (iii) : Streamlineg (upper) and axial contour flow
w (lower) in accordance with the solution curve ig.£.16.

Case-ll are more extensive than those in Case<doitrast, the vortices in the secondary
flow of Case-ll are weaker compared to Case-l. Addally, as the duct's curvature
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increases, a noticeable shift of the majority ef éixial flow is observed, moving it closer to
the inner wall. This highlights the impact of dwctrvature on the flow distribution within
the system.

In Case-lll, specifically ab = 0.1,D, = 800, a distinctive behaviour is observed. Within
limited range of < M < 1.898169638, multiple axial flow contours and symtmc six-
vortex structures are identified. However, beydmd tange, the solution curve experiences
a discontinuity. ForM > 0.9505067255, simple axial flow contours are pmgse
accompanied by a pair of counter-rotating vortesucttires in the secondary flow.
Generally speaking, it can be asserted that tleagtin of both flow structures undergoes a
discernible deterioration a®! increases. Notably, for high values of the magneti
parameter, a steady-state solution has been idghtifhis distinct behaviour in Case-lll
highlights the sensitivity of the flow characteigstto variations in the magnetic parameter.

D. Effects of Hall Parameter (M) on the Velocity

Figure 4.1 presents the solution curve depicting the relatigm between the flugQ and
the Hall parameternf) for the three previously mentioned cases. Thesses are
consistently evaluated under fixed conditions, with=20, D, = 500, M=1, and o=0.
Corresponding secondary flow structures, repredese, and contour plots of axial flow,
denoted asw, are featured in Figure 41A.7Across all three cases, a common trend is
observed: the solution curves exhibit an increasumgtion. This suggests that the flGQx
experiences rapid growth as the Hall parameter incieased. Beyond a certain value of m,
a steady solution is identified. Cases-lI and limsyetric two-vortex solutions for the
secondary flow are detected. Interestingly, itaged that changes in the curvatdrdo not
significantly impact either the secondary flow stures or the shape of the axial flow in
Cases-I and Il. However, it's worth noting thattfas curvature increases, the axial flow
displays a greater number of contours. This undeescthe influence of curvature on the
axial flow configuration while highlighting the rabt impact of the Hall parameter on the
flux Q.

In Case-lll, specifically ab = 0.1,D, = 800, a distinctive behavior is observed. Over a
range of the Hall parameter m, symmetric six-voelutions for the secondary flow are
identified, along with numerous contours in theahXlow. Interestingly, as m increases
within this range, there is only a minor alterationthe secondary flow and axial flow
structures. It's also worth noting that the stestdye flux values for Cases-I, II, and Il have
been determined as 297.67, 271.78, and 373.1Zatsgly. This information underscores
the differences in flux levels across these casekdemonstrates the impact of varying
parameters on the steady-state characteristitedyistem.
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Figure 4.1 (i)- (iii) : Streamlineg (upper) and axial contour flow
w (lower) in accordance with the solution curve ig.E.17a
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E. Effects of lon-slip Parameter @) on the Velocity

Figure 4.1& decorates the solution curve depicting the ratatigp between the flu®Q and
the lon-slip parametera) for the three previously mentioned cases. Thesses are
consistently evaluated under fixed conditions, with=20, D, = 500, M=1, and m=5.
Corresponding secondary flow structures, repredesse, and contour plots of axial flow,
denoted asv, are featured in Figure 4.4.8

The behaviour of the fluxQ in response to variations in the ion-slip parameteis
interesting. Initially, the fluxQ experiences a decrease within a narrow rangewalues,
but after this initial drop, it begins to increasgidly with further increments in. Beyond

a specific threshold value of a steady solution for the flux is identified.dases-I and II,
symmetric two-vortex solutions for the secondaowflare observed. Interestingly, changes
in the curvaturep, have a minor impact on both the shape of thel dloaw and the
characteristics of the secondary flow vortices sTiehaviour suggests that the curvature, in
these cases, does not lead to significant altexatiothe flow structures.
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Figure 4.18&: Solution curve: FluxQ versus lon-slip parametéor T, = 20,M = 1 andm=5.

Casqi) : Curvatute of the duct 5=0.1 Casdgii) : Curvatuteoftheduct 6=0.5
D,=500; T,=20;M =10 ; m=50 D,=500; T,=20;M =10 ; m=50
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Casqiii) : Curvatute of the duct =0.1
D,=800; T,=20;M=10; m=50

Figure 4.1& (i)- (iii) : Streamlines (upper) and axial contour flow
(lower) in accordance with the solution curve ig.Bil&

In case-lll, specifically ab = 0.1, D, = 800, distinct behaviour is observed. Symmetric
eight-vortex solutions are discovered for the shigzes, and multiple contours of the axial
flow are present over a broad range of the ion-plpametera. Surprisingly, with an
increase in the ion-slip parameterthe secondary flow and axial flow exhibit nedbigi
change. Furthermore, it's noted that the flux gadlglubecomes less powerful as the
curvature §) decreases. This suggests that a more curvedcdofiguration has a stronger
influence on the flux in this case. Additionalljpe figure demonstrates that flux values
tend to rise with increasing Dean NumbBx,)( This finding highlights the impact of the
Dean Number on the overall flow characteristicsttipalarly in the context of flux
variations.
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4.6 Curved Rectangular Duct for Isothermal Fluid Flow (Aspect Ratio 3):

Hall and Ion-slip Effects on MHD Fluid Flow in a Rotating Curved Duct with
Aspect Ratio 3

In this research, a fully developed, laminar, syeadscous, incompressible magneto-
hydrodynamic fluid flow through a rotating, curvddct with a relatively high aspect ratio
is investigated numerically. Due to the rectangalass-section of the duct with a large
aspect ratio, aspect ratie3  is considered in thidystThe values of the duct's curvature
0=0.01, 0.1 and 0.5 are used to compute the reSyltessure gradient force (namely, Dean
Forces) affects the flow's velocity in the axiatedtion of the curved duct. Due to the
rotation of the system and curvature of the duw, combined effect of the Coriolis and
centrifugal forces also accelerates the flow. Asghimary tool for numerical calculations,
the spectral method approach has been utilized. &bdength, Collocation, Newton-
Raphson methods, and Chebyshev polynomials areuatsib as auxiliary tools. The effects
of the Dean number, rotation, magnetic, Hall, amdslip parameters are examined on that
flow. The principal goal is to examine the impaéttioe magnetic parameteMjy, Hall
parameter ), and ion-slip parameter) on the flow characteristics in the rotationally
curved rectangular duct with a large aspect ratithis study. For the five cases such as
Case [:[0=001,D,=500, Case I¥b=01,D,=500 , Case Ik=05,D,=500 , Case IV:

6=01, D, =800, and Case VJ=05,D, =800 , the investigation is performed with

different values oM, m and whereas the Taylor numbéresl atT, =20 .

4.6.1 Grid Spaces Accuracy

It is necessary to discuss grid space accuracy fwiounning the FORTRAN application.

To achieve good accuracy, it is assumed that thee et N is three times that & . The
flux Q has been calculated for several pairs of truncationbers ¥ N ) such as (06, 18),
(08, 24), (10, 30) and (12, 36). These are showiralrle-3.

M N Q

06 | 18 91.49935102513669
08 | 24 91.50519829891833
10 | 30 91.50511704308377
12 | 36 91.50507322128173

Table-3: FluxesQ at several pairs of truncation numblsts d Bn
at fixed values of0=01 D,=500,T,=20,M =0, m=0 anda=0

From this table, it can be decided that the obthmemerical results can be accurate enough
by the choice of pairy N )=(10, 30)
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4.6.2 Results and Discussion

This study investigates a fully developed steadyimar flow of incompressible viscous
fluid through a rectangular cross-section curvedt duth an aspect ratio of 3. The duct
rotates with an angular velocify around its vertical y-axis, and different curvatwalues
(0 = 0.01, 0.1, and 0.5) are considered to analyeeadhults. The large rectangular cross-
section of the duct maintains an aspect ratio diddvisualize the flow structure, distance of
two path-lines incrementaw = 4 andAy = 0.3 are employed. The study begins by
exploring the effects of the Taylor numbdr)(and Dean NumberD) on the velocity
distribution, as presented in figures from Fig.%4td Fig. 4.20. Following these findings,
the study delves into the effects of the magnetiameter M), Hall parametern(), and
ion-slip parameterd) on the velocity, which are displayed in figuresm Fig. 4.21 to Fig.
4.23. To provide insight into the behaviour of flev characteristics, solution curves and
their corresponding vortex structures are presefatefive distinct cases:

Case-l ¥ =0.01,D,=500

Case-ll .0 =0.1, D, =500

Case-lll:0 = 0.5, D, =500

Case-IV:0 = 0.1, D, =800

Case-V 6 =0.5, D,=800
Each figure includes a square box representinglticé cross-section at a specific point on
the solution curve. The right side of each duct lboxresponds to the outer wall of the
curved duct. Solid lines indicate the anti-clockevdirection of the flow, representing the
positive directed flow, while dotted lines depikbetclockwise or negative directed flow for
the velocity distribution. These visualizations athlyses provide valuable insights into
the flow characteristics within the considered psters and conditions.

A. Effects of the Taylor Number(T;) on the Fluid Flow

Figure 4.19 presents the solution curve of the fl@xas a function of the Taylor Number
T,. The analysis is conducted under fixed conditmith 6 = 0.1,D,, = 500,M=0, m=0 and
0=0, spanning a broad range of Taylor numbers, -500P < 5000. Multiple bifurcation
curves are observed within this Taylor number ragginguished by the use of different
coloured lines.

Figure 4.19 provides a magnified view of the region fromt0 (v) in Figure 4.14. This
closer inspection includes several selected pailatsg the solution curve, allowing for the
observation of trends in the secondary flow stré@aeshy and the contour plot of the axial
flow w. Notably, for larger values ofT} |, it's evident that the contours of the axiahfland
the vortices in the secondary flow gradually weal&nT, = -271.93, the peak value of the
flux Q is approximately 439.43986259. This observatioggssts that the axial velocity
within the curved duct has a significant influeracethe strength of the secondary velocity
vortices. These visualizations and measurementyidarovaluable insights into the
behaviour of the system under varying conditionthefTaylor Number.
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Figure 4.1%: Magnifying figures marked by the dashed box frayq (v) on Fig. 4.19.

-4000, -2500,1500,

-1365, -900, -500, -271.93, 20, 840, 1160, 1500028nd400Q the secondary flow's solution
structure and the contour plot of the axial flove abserved. The solution curve exhibits
interesting behaviour, intersecting approximatahgé branches at the locatiohs= -1365,
-271.93, 840, and 1160, and five branchedJ,at 500 At T, = -900, it intersects seven
branches, while at other locations, only a singtanbh is observed. Regarding the
secondary flow, it's observed that the stefidyw comprises symmetric two-, four-, six-,
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Figure 4.1 Streamlinesy (upper) and axial contour flow (lower)
in accordance with the solution curve in Fig.419

eight-, and ten-vortex solutions. Simultaneoushg tentreline flow exhibits numerous
contours. Additional vortices and multiple contoars generated near the inner side of the
duct for negativerl, values and the outer side of the duct for posilivealues. As [T, |
increases, both the vortices and the shape ofdhestructures gradually lose their strength.
This information provides a detailed insight intwe tcomplex flow characteristics and the
impact of the Taylor Number on these behaviours.
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B. Effects of the Dean Number D)) on the Fluid Flow

Figure 4.2@ illustrates the solution curve, depicting the tielaship between the Dean
NumberD, and the dimensionless fl@ This analysis is carried out with a duct curvatur
of 6 = 0.1 and under fixed conditions ®&f =20, M=0, m=0 anda=0. The study covers a
wide range of Dean Numbers, specificalky,<1500, to explore the influence of the Dean
Number on the flow characteristics. Multiple bifation curves are observed within various
ranges of Dean Numbers, highlighted by dotted regtkar boxes in Figure 4.20These
regions are further examined in magnified viewsspreed in Figure 4.20 A notable
observation is that all branches of the solutionves exhibit an increasing trend.
Consequently, as the Dean Number increases, thendionless fluxQ also experiences
growth. This behaviour underscores the impact ef Brean Number on the flow and
highlights how changes D, affect the overall flow characteristics.
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Figure 4.20a: Solution curve: FluxQ versus Dean Numidey
for T, = 20,M = 0, m= 0 andae=0 with the curvatur&=0.1.
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Figure 4.2C: Streamlines (upper) and axial contour flow (lower)

in accordance with the solution curve in Fig.420

In Figure 4.2, the streamlineg of the secondary flow (top) and contours of thialaflow

w (bottom) are presented at various randomly setepbints, such a3, = 100, 200, 500,
700, 800, 850, 1000, 1418 and 1500. These poimtssmmond to the solution curve depicted
in Figure 4.2@. Among these points, it's noteworthy that the DBammbers at 200, 700,
850, and 1418 contain more than one branch ofdhgien curve. Figure 4.20reveals that
the secondary flow structure consists of symmetwo-, four-, and multiple-vortex
streamlines, and multiple contour plots are presenthe axial flow. When the Dean
Number D, exceeds 200 and falls on the third branch of thlatisn curve, additional
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vortices in the secondary flow and contours indk&l flow begin to form. Moreover, as
the Dean Number increases, more vortices and cansva generated. This is indicative of
the positive correlation between the Dean Numbed #me strength of both flow
components, highlighting how the Dean Number inftes the flow characteristics.

The primary aim of this study is to explore how fleev characteristics are influenced by
variations in the magnetic paramet®)( Hall parametern(), and ion-slip paramete)
within a rotational system featuring a curved dwdth an aspect ratio of 3. The
investigation considers different valuesMf m, anda, while keeping the Taylor number
fixed atT, = 20. This analysis is carried out across fiveimis cases: Case-l 0 =
0.01,D, = 500, Case-ll o = 0.1,D, = 500, Case-llls = 0.5,D, = 500, Case-IVs = 0.1,
D, = 800 and Case-Vi = 0.5,D,, = 800. To observe the physical behaviour of tloevfl
patterns, only one parameter at a time ambhgm, and a is varied, while the other
parameters are held at fixed and significant val(éss approach allows for a detailed
examination of the influence of each parameter lom ftow characteristics within the
specified cases.

C. Effects of Magnetic parameter M) on the Fluid Flow

Figure 4.2Aa presents solution curves showing the relationdbepveen the magnetic
parameterNl) and the dimensionless flu®Q). The purpose of this analysis is to investigate
the effects of the magnetic parameter on the flomfife distinct cases. Among these cases:
The first three cases involve fixed valuesTpt=20, m=0 anda=0; the last two cases are
conducted withT, =20, m=0 and a=1. The corresponding structures of both flow
components are displayed in Figure 4.2This visual representation and analysis provide
insights into how changes in the magnetic paramatkrence the flow characteristics in
these specific cases.

Case-l:0 = 0.01,D, = 500

In Figure 4.2& (Case-l), the solution curve depicts the relatigmbetween the magnetic
parameterNl) and the dimensionless fluQ) within the range of @ M < 7.85. Notably, the
solution curve, in this case, is a decreasing fancfThis indicates that the flux gradually
decreases as the magnetic parameter's valuesnriggms of the flow structures, multiple
contours are observed for the axial flow. On tHeephand, the secondary flow's structure
in Case-l consists of symmetric four- and six-veortgreamlines, as depicted in Figure
4.21b (Case-l). As the magnetic parameter is ise@athe flow's strength steadily
diminishes. This behaviour is a characteristic iobjgd the magnetic parameter on the flow
characteristics.
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Figure 4.21a: Solution curve: Flux) versus magnetic parametdr

Case-ll: 0 = 0.1,D, = 500

In Figure 4.24 (Case-ll), the solution curve displays the relaginp between the magnetic
parameter NI) and the dimensionless fluxQ) within the entire range of the magnetic
parameter N1 > 0), but it exhibits two distinct branches. Bothatches of the solution
curves are decreasing functions, indicating thatflix gradually decreases as the magnetic
parameter values increase. Notably, after reachingertain value oM, a steady-state
solution is observed. In terms of flow structuré® secondary flow comprises symmetric
two-, four-, and six-vortices, while the axial flaexhibits multiple contours, as depicted in
Figure 4.2b (Case-Il). With an increase in the magnetic patamehe strength of both
flow components declines gradually and quickly.sThehaviour illustrates the impact of
the magnetic parameter on the flow characterigtitis specific case.

Case-lll: 6 =0.5,D, =500

In Figure 4.2& (Case-lll), the solution curve presents the refeghip between the magnetic
parameter NI) and the dimensionless flux), covering the entire rangd(> 0) of the
magnetic parameter. However, it exhibits a singknbh of the solution curve. Similar to
the previous cases, this solution curve is a dsorgafunction, indicating that the flux
gradually decreases as the magnetic parametersvaluagease. After reaching a specific
value ofM, a steady-state solution is observed. In ternfkof structures, the axial flow in
Case-lll exhibits simple contours, while the seargdlow structure consists of symmetric
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two-vortex streamlines, as depicted in Figure B.@Zase-IIl). With increasing magnetic

parameters, the strength of both flow componeradwgally declines and eventually tends to
disappear. The flow structure in this case is olezkito be weaker than the structures in
Case-l and Case-Il. This behaviour demonstratesntpact of the magnetic parameter on
the flow characteristics in this specific case.

Casel: 6=0.01,D,=500 Case-ll: 0=0.1,D,=500
and|=3; T,=20;m=0; a=0 andl=3; T, 120;m=0; a=0
N

Caselll : 6=0.5,D,=500
andl=3; T, =20;n~0; a=0

=) =)

30 40
Case-IV: 9=0.1, D,=800 Case-V: J=0.5, D,=800
and|=3; T,=20;m=05; a=1 and|=3; T,=20;m=05; a=1

M1 3 5 7
Figure 4.21b: Streamlines (upper) and axial contour flow (lower)
in accordance with the solution curve in Fig.421
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Case-IV:0 =0.1,D, = 800

In Figure 4.2a (Case-1V), the solution curve represents the iglahip between the
magnetic parameter (M) and the dimensionless 1@)x ¢overing the range 1.26159M <
5.88738402. As the magnetic parameter increasdsinwihis range, the flux steadily
decreases. The flow structures in this case atenclise. The secondary flow's solution
structure is characterized by asymmetric ten-vorggseamlines, as opposed to the
symmetric vortices observed in the previous caseslitionally, the axial flow exhibits
numerous contours, as shown in Figure B.@ase-1V). With the increase in the magnetic
parameter, the strength of both flow componentadste declines. The behaviour observed
in this case underscores the substantial influericte magnetic parameter on the flow
characteristics, with the emergence of complex #trwctures.

Case-V:6 =0.5,D, = 800

In Figure 4.24 (Case-V), the solution curve depicts the relatigmbetween the magnetic
parameter N) and the dimensionless fluQ) within the range & M < 7.92. Consistent
with the previous cases, the flux steadily decreasethe magnetic parameter increases.
Regarding the flow structures, the axial flow isacterized by simple contours. In
contrast, the secondary flow's solution structuansests of symmetric four-vortex
streamlines, as shown in Figure hqCase-V). As the magnetic parameter increaseh, bot
flow strengths eventually experience modest deslinhis behaviour illustrates the
influence of the magnetic parameter on the flowatizristics in this specific case, and it is
noteworthy that the flow structures, in this cames comparatively simpler than those in
some of the previous cases.

D. Effects of Hall parameter (m) on the Fluid Flow

Figure 4.22 presents solution curves depicting the relatigngietween the Hall parameter
(m) and the dimensionless fluQ). This analysis aims to explore the effects of itadl
parameter on the flow for five distinct cases: Ting three cases involve fixed valuesTof
=20, M=5 anda=0;. The last two cases are conducted Wit=20, M=5 anda=1. The
corresponding structures of both flow componengsdesplayed in Figure 4.B2This visual
representation and analysis provide insights indav tvariations in the Hall parameter
influence the flow characteristics in the specifieges.

Case-1:0 =0.01,D, =500

In Figure 4.22 (Case-l), the solution curve illustrates the relaghip between the Hall
parameterrf) and the dimensionless fluQ) within the entire range of the Hall parameter
(m = 0). In this case, it exhibits a single branch @& #olution curve. Notably, the solution
curve is an increasing function, meaning that the ihcreases rapidly within the range0
m < 5, after which it increases more gradually. A djesolution is observed after a specific
value ofm. The flow structures in this case are charactdriae symmetric four-, six-, and
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eight-vortex streamlines in the secondary flow. iliddally, multiple contours are observed
for the axial flow, as shown in Figure 4t22Case-1). As the Hall parameter increases
within the interval 0< m < 5, the strength of both flow components experiencenor
increases. The flux reaches an approximate congsdue of 328.5, reflecting the effect of
the Hall parameter on the flow characteristicdhis specific case.

Case-l: 9=0.01, D,=500 Case-ll :  5=0.1,D,=500 Case-lll:  =0.5, D,=500
and|=3; T;=20;M=5; a=0 andl=3; T, =20;M =5; a=0 and|=3; T,=20;M=5; a=0
\
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Figure 4.22a; Solution curve: Flux) versus Hall parameten.

Case-ll: 0 = 0.1,D, = 500

In Figure 4.22 (Case-ll), the solution curve presents the retatiip between the Hall
parameter ) and the dimensionless fluxQ), covering the entire range of the Hall
parameterrf > 0). The flow's structures and behaviours in tlaisecclosely resemble those
in Case-Il. Notably, the flux in Case-Il also reaheuniform value, which is approximately
329.8, as the steady solution. This behaviour atd that the Hall parameter has a similar
effect on the flow characteristics as observedasezl.

Case-lll: 6 =0.5,D, =500

In Figure 4.22 (Case-lIl), the solution curve illustrates theateEinship between the Hall
parameter ) and the dimensionless fluxQ), covering the entire range of the Hall
parameterrf = 0). This solution curve exhibits behaviour thasimilar to that observed in
Cases | and Il. However, it's worth noting that tlogv structure in this case appears to be
weaker compared to the structures identified ine€dsand Il. Throughout the entire range
of Hall parameters, only symmetric two-vortex stndaes of the secondary flow and
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simple contours of the axial flow are observeddegicted in Figure 4.22(Case-Ill). As
the Hall parameter increases, the strength of Iflothh components experiences slight
variations. The flux exhibits an approximate constalue of 327.7, reflecting the effect of
the Hall parameter on the flow characteristicdis specific case.

Case-l: 0=0.01,D,=500 Case-ll :  0=0.1, D,=500
andl=3; T,=20;M=5; a=0 andl=3; T,=20;M=5; a=0

Case-lll : 6=0.5, D,,=500
andl=3; T,=20;M=5; a=0

Case-IV: 0=0.1, D,=800 Case-V: 0=0.5, D,=800
and|=3; T,=20;M=5; a=1 and|=3; T,=20;M=5; a=1
NS

Figure 4.22:; Streamlinesy (upper) and axial contour flow (lower)
in accordance with the solution curve in Fig.422
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Case-IV:0 =0.1,D, = 800

In Figure 4.22 (Case-1V), the solution curve presents the retstigp between the Hall
parameterrf) and the dimensionless fluQ). Interestingly, this case includes two distinct
ranges of the Hall parameter; the ranges are 2/mx 4.23 and 4.25 m< 19.99. Both
solution curves within these ranges are increasurgtions, signifying that the flux
increases as the Hall parameta) (ises. The flow structures in this case are attarezed
by symmetric four-, six-, and eight-vortex strearael in the secondary flow, while multiple
contours are observed for the axial flow, as showhigure 4.2p (Case-IV). As the Hall
parameter increases within these ranges, both ifitensities experience slight variations.
The approximate steady value of the flux in thisecas 439.6, indicating the influence of
the Hall parameter on the flow characteristics.

Case-V:6 = 0.5,D, = 800

In Figure 4.22 (Case-V), the solution curve illustrates the releghip between the Hall
parameter (m) and the dimensionless I within two different ranges: These ranges are
0<m< 1 andm > 3.08. Within both of these ranges, the solutiorves are increasing
functions, indicating that the flux increases &s itall parametemf) rises. It's noteworthy
that, in the second range of the Hall parametsteady solution is observed after a specific
value of m. The flow structures, in this case, show that d@kél flow exhibits simple
contours in both ranges, while the secondary flas $ymmetric four-vortex streamlines as
its solution structure, as depicted in Figure B.82ase-V). As the Hall parameter increases
within the range @ m< 1, the strength of both flow components steadiéakens, while it
remains relatively stable in the other regions. Tlog reaches an approximate constant
value of 461.25, indicating the impact of the Hadlrameter on the flow characteristics in
this specific case.

E. Effects of lon-slip parameter @) on the Fluid Flow

Figure 4.23a displays the solution curves representing thetiogiship between the lon-slip
parameterd) and the dimensionless flu®) for five distinct cases. In each case, the values
of T, = 20,M =5, andm = 5 are held constant. The corresponding flowcstines for both
secondary flow and axial flow are presented in Fegu2d for each of these cases, helping
to illustrate the effects of the lon-slip parameterthe flow characteristics.

Case-l:6 =0.01,D, =500

In Figure 4.238 (Case-I), the solution curve depicts the relatigmdbetween the lon-slip
parameterd) and the dimensionless fluQ). This case covers the entire range of the lon-
slip parameterd > 0) and features a single branch of the solutiorveceuNotably, the
behaviour of the flux with respect tois quite interesting in this case. The flux iflia
experiences a rapid decrease within the rangex@ 0.7. Subsequently, it begins to grow
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rapidly within the range of 0.2 a < 4. After this, the flux exhibits a slower increage
steady solution is observed after a specific valie. The flow structures in this case
indicate that the axial flow is characterized by ltiple contours, while the solution
structure of the secondary flow consists of symimetight-vortex streamlines, as shown in
Figure 4.2B (Case-l). The flux in the steady-state solutionajgproximately 328.4,
reflecting the influence of the lon-slip parameterthe flow characteristics in this specific
case.

Case-ll: 0 = 0.1,D, = 500

In Figure 4.23a (Case-lIl), the solution curve illustrates the tielaship between the lon-slip
parameter ) and the dimensionless fluxQ) across the entire range of the lon-slip
parameterq > 0). The behaviour of the flux with respectitin this case is consistent with
Case-l of E. The flow structures and charactegsticCase-1l resemble those observed in
Case-l of E. The steady-state value of the fluxthis case is approximately 329.5,
indicating the steadiness of the flux in the presenf the lon-slip parameter

Casel: 06=0.01,D,=500 Case-ll : 6=0.1,D,=500 Casedlll :  0=0.5,D,,=500
andl=3; T, =20;M =5; m=5 andl=3; T, =20;M=5; m=5 and =3; T, =20;M =5; m=5
-\ -\ ~ -\
330
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Figure 4.23; Solution curve: FluxQ versus lon-slip parameter

Case-lll: 6 =0.5,D, =500

In Figure 4.23 (Case-lll), the solution curve presents the reteghip between the lon-slip

parameter ) and the dimensionless fluXQQ), covering the entire range of the lon-slip
parameterd > 0). The behaviour of the solution curve in thise# similar to what was
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observed in Cases | and Il of E. Notably, withihrahges of the lon-slip parameter, Case-
Il shows that only symmetric two-vortex streamBnare observed in the secondary flow,
and the axial flow exhibits simple contours, asvaman Figure 4.2B (Case-lll). The
increase in the lon-slip parameter has minimal ichpa the strength of both flows, and the
flux remains at an approximate steady value of 32 7ndicating the stability of the flux in
response to variations in the lon-slip parametir this specific case.

Case-IV:0=0.1,D, =800

In Figure 4.2a (Case-1V), the solution curve illustrates the rielaship between the lon-
slip parameterd) and the dimensionless flu), and it is confined to the range<Qu <
8.03 of the lon-slip parameter. This case feataresngle branch of the solution curve.
Within the range o# from 0 to 8, the flux experiences a rapid decrefdlewed by a

Case-l: 0=0.01, D,=500 Case-ll : 0=0.1, D,=500
and|=3; T,=20;M=5; m=5 and|=3; T, =20 ;M =5; m=5

Case-lll : 0=0.5, D,=500
and|=3; T,=20;M=5; m=5
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Case-lV: 0=0.1, D,=800 Case-V: 6=0.1,D,=800
andl=3; T,=20;M=5; m=5 and|=3; T,=20;M=5; m=5

Figure 4.2%: Streamlinesy (upper) and axial contour flow w (lower)
in accordance with the solution curve in Fig.423

quick increase. Importantly, there is no steadjessalution for the flow within this range
of the lon-slip parameter. The axial flow exhibitailtiple contours, and the secondary
flow's solution structure consists of asymmetrio-vertex streamlines, as depicted in
Figure 4.28 (Case-IV). The strength of both flows remains ¢stesit for all values of the
lon-slip parametew. after a specific range of the lon-slip parameter.

Case-V:6 = 0.5,D,=800

In Figure 4.238 (Case-V), the solution curve of the lon-slip paeden () vs. the
dimensionless flux@) spans the entire range @f(a > 0). The behaviour of the solution
curve is characterized by an initial rapid decrems@ux within the range & a < 0.8,
followed by a rapid increase within the range 8.8 < 10, and finally a slow increase. A
steady solution is observed after a specific vatie. In this case, the secondary flow's
solution structure consists of symmetric four-vertgtreamlines, while the axial flow
exhibits single contours (Fig. 4123Case-V). Interestingly, very little variation ebserved
in the strength of both flows for all values of tlo@-slip parameter within this range.
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Chapter 5

Magneto-hydrodynamic Non-Isothermal Fluid Flow
through a Rotating Curved Duct with Magnetic Field

The study examines fully developed, steady, nothemal, viscous, incompressible fluid
flow. This flow occurs within a rotating curved dughile being subjected to a magnetic
field, with Hall and lon-slip currents taken intecaunt. The duct configuration includes
outer walls subject to heating, inner walls subgectooling, and upper and lower walls
treated as adiabatic boundaries. This arrangeneads|to the generation of a non-
isothermal flow within the curved duct. A pressgradient force (Dean Force) is applied
along centreline of the duct. The Centrifugal arati@is forces have been created due to
the duct's curvature and system's rotation. Adiimges over the fluid flow are gravitational
force, pressure gradient, Centrifugal, Coriolisi] gnavitational force. The combined effect
of these forces provides to accelerate the flove Jjpectral method is used numerically to
carry out the solution of the governing equationtlas primary tool. Additionally, as
auxiliary tools, the Chebyshev polynomial, NewtoapRson, Collocation methods, and
Arc-length techniques are employed. The result® HBmen calculated using the arc-length
approach at any location along the solution cureetgal zonelnvestigating the impact of
the magnetic, Hall, and ion-slip parameters onvilecity and temperature distribution of a
non-isothermal fluid flow that flows through a cedssquare or rectangular duct with a two-
aspect ratio in a rotating system is the main gb#his study.

5.1 Introduction

In an engineering application, the study of flumf through a non-isothermal curved duct
has the utmost importance. The magnetic system®tafing mechanisms also have a
significant impact in the electromagnetic field.the presence of a magnetic field, Hall and
ion-slip currents also have an impact on the etadty conducting fluid. Regarding fully
developed fluid flow in a curved duct, a pile ofidies has been conducted throughout the
long span of time.

Great Mathematician Dean (1927, 1928), a pioneeainyor, demonstrated how a pair of
counter-rotating vortices flow in a curved pipe.eTtow of a viscous incompressible fluid

3
under a constant pressure gradient force is depémaea parameteb, = Gd 1/% , also
uo

known as the Dean Number according to his name.flélae condition within the curved
duct is commonly referred to as Dean's hydro-dysamnstability. The additional vortices
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that manifest within this flow are often termed D'savortices. This type of flow is also
recognized as Dean Flow.

Throughout the subsequent decades, a substantigl dforesearch was dedicated to the
theoretical and experimental exploration of fluldw through both curved and straight
ducts, with some studies incorporating systemsufesg rotation. Notable researchers in
this field include Berger et al. (1983), Nandakurmad Masliyah (1982, 1986), Winters
(1987), Yanase et al. (1989, 2002, 2005), Ishiga®P6), Yamamoto et al. (1999, 2000,
2006), Chandratilleke et al. (2001, 2003, 2012,30Wang and Yang (2003, 2004), and
numerous others who have contributed significatdlypur understanding of fluid flow in
ducts. The source provides a concise overview wéraé studies focused on curved duct
flow. In the context of curved pipes, Berger et @l983) conducted research on fully
developed flow, exploring both stable and unstabtnditions. This investigation
encompassed different geometries, wall charadtsjdtuid properties, and Dean numbers
to assess their respective importance in the cowtfegurved duct flow. Nandakumar and
Masliyah (1982, 1986) delved into the study of Hemtsferable vortex flow within coiled
and curved pipes, considering both whirling flondasteady laminar flow in ducts with
square cross-sections. Winters (1987) employedngplax structure featuring a multitude
of symmetric and asymmetric solutions to exploreitar bifurcation flow in a curved tube
characterized by a rectangular cross-section. ag&hi(1996) delved into the study of flow
patterns and frictional forces in small-curvatuiecudar pipes, both in co-rotating and
counter-rotating configurations. Selmi et al. (1998999) conducted research to investigate
the impact of Coriolis and centrifugal forces oregsure-driven two-dimensional flow
within a rotating curved duct featuring a rectamagutross-section. Yanase et al. (1989)
guantitatively examined the stability of dual sauas, namely the 2-vortex and 4-vortex
solutions, within a slightly curved tube featuriagircular cross-section. This investigation
spanned a wide range of Dean Numbers. Yamamotol. ef1899, 2000) conducted
observations of flow within a rotating system, felrig on both a square-curved duct and a
circular pipe with a helical cross-section. Thewfldhey investigated was viscous,
incompressible, and continuous. Zhang et al. (26lored the combined effects of
Coriolis and centrifugal forces on isothermal flow$eir study was conducted in a curved
duct with a rectangular cross-section that exhibrt®ational characteristics. Yanase et al.
(2002) delved into the examination of viscous inpoessible laminar flow within a
rectangular curved duct, covering a wide rangehefdxtended aspect ratio from 1 to 12.
Wang and Yang (2003, 2004) carried out a compraenexamination, combining
numerical simulations and experimental investigetjoon fully developed free and forced
convection flows within a rotating curved duct cuaerized by a square cross-section.

Yamamoto et al. (2006) employed a visualizationhtégue in their experimental
assessment to study the characteristics of secpfidar within a curved pipe featuring a
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square cross-section. Yanase et al. (2008) condlactemprehensive analysis of traveling-
wave solutions, comparing the spectral approaclm wie two-dimensional analysis of
experimental studies focusing on the flow withirc@ved square duct. Wang and Liu
(2007) embarked on an investigation that delved ithite effects of curvature, initial
conditions, stability, instability, and the struetuof the fully developed bifurcation of
forced convection flow. This study was carried awithin a curved square duct
characterized by a micro-channel and a small curgatatio of 5E-06. Subsequently, they
conducted a numerical investigation of the fullweleped forced convection bifurcation
structure in a tightly coiling square cross-sectioigt with a curvature ratio of 0.5, focusing
on the high Dean Number region. Norouzi et al. @Gfbncentrated on understanding how
primary and secondary normal stress differencesaatgol forced convection heat transfer
in the context of viscoelastic fluid flow within ored ducts. Liu and Wang (2009) delved
into the physical factors that give rise to var@aBtructure flow within fully developed
forced convection curved ducts characterized bgcgangular cross-section. Fellouah et al.
(2010) employed both experimental and numericahoud to investigate the influence of
fluid rheology on Dean instability in power-law aBthgham fluids. They conducted these
studies within a curved rectangular duct. Chanleké& et al. (2003, 2012, 2013) explored
laminar flow behaviour and related thermal factéos understand the formation of
secondary vortices within fluid flow along curvedigsageways. Their research also
included examinations of the results of seconddoy fexperiments conducted under
different aspect ratios. Wu et al. (2013) usedsieectral method to examine the secondary
flow of streamlines within a curved square duct.nKet al.(2014) employed ultrasonic
Doppler velocimetry and microphones to investigad¢h laminar and turbulent flows of
pseudoplastic fluids within a curved square dudrabterized by significant curvature.
Razavi et al. (2015) conducted research in a rgaturved duct featuring a square cross-
section. They explored the effects of the forceorddean Number, and dimensionless heat
flux at the wall on the generation of entropy. ThWis achieved by applying the second law
analysis to forced convection laminar flow. Li &t@016) explored fully developed three-
dimensional flow, both numerically and physicalyithin a curved rectangular duct. This
duct featured a configuration with spiral, doullewar, and involutes line curvatures.

In addition, the researchers briefly examined thiguénce of Reynolds number, aspect
ratio, and various curvatures on Dean Instabilitisis investigation aimed to precisely
identify the centre of the secondary base vortidesa separate study, Li et al. (2017)
conducted a numerical investigation of pressureedr fully developed turbulent viscous
incompressible fluid flow within curved rectanguthrcts.

It's worth noting that, to the best of our knowledgo research on non-isothermal magneto-
hydrodynamic (MHD) fluid flow in curved ducts witHall and ion-slip currents has been
identified in available sources online. Given thaich of the universe consists of highly
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charged particles and is enveloped by a magnesld,fithe innovative concept of
incorporating Hall and ion-slip currents into MHDW within a rotating curved duct in the
presence of a magnetic field holds significant inignace and potential applications in
various engineering and industrial processes. #esalt, our goal is to examine the

1. Non-Isothermal MHD Fluid Flow along the Centre Line in a Rotating Curved Square

Duct with Hall and Ion-slip Current.

2. Hall and Ion-slip Current Effects on Non-Isothermal Steady Flow through a Rotating
Curved Rectangular Duct with Aspect Ratio of 2.

3. Non-Isothermal Fluid Flow through a Rotating Curved Duct with Aspect Ratio of 3 in the
Presence of Magnetic Field, Hall, and Ion-slip Currents

The numerical solution is computed by using thegpkapproach as the primary tool, and
the Chebyshev polynomial, Collocation method, anéwidn-Raphson method as

supplemental tools. Any point in the crucial zometloe solution curve has been calculated
using the arc-length method.

5.2 Mathematical Formulation

This study has been thinking about the two-dimeraiflow of a fully developed, viscous,
incompressible fluid through a curved duct thaates around its verticgtaxis. It has been
made the assumption that the radial and centrdlneetions of the duct represent theand
y-axes respectively. L&t be the duct's curvature's radius &hthe cross-sectional centre of
the duct. The width and height of the duct crosdise have been takerdand . It is
assumed that the inner wall of the duct is cooletitae outer wall is heated so that the duct
flow becomes to be a non-isothermal state. Therouddl temperature is taken dg+AT
and the inner wall i35-AT whereAT >0.

-~ & A ¥y . v g
¢ o Qf) 7 Coolwall ¥ 8
- 7 Q ¢ Hot wall
Hot wall
Cool wall ==
L. Inner wall 7 i
ALy O o \
> 3 : > xu,r e 17—~ | - A
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Figure 5.1: Coordinate system of Curved duct with non-isotterilow with
(a) Aspect ratio 1 (square cross-section)

(b) Aspect ratio 2 (rectangular cross-section) and
(c) Aspect ratio 3 (rectangular cross-section)
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A pressure gradient forog:—‘;p has been applied as an external force along theetiee
Z

direction of the duct. The Lorentz force arisesrfrthe interaction of the electric field and
the magnetic field. This Lorentz force is furthefluienced and modified by the presence of
Hall and ion-slip currents. Consequently, the fleithin the duct experiences the combined
effects of the pressure gradient force and the ritardéorce. Additionally, the flow is
accelerated due to the collective influence of @wriolis forces and Centrifugal forces.
These forces are a result of the system's rotaiind the curvature of the duct.
Simultaneously, a gravitational force, denotedjag0, g, 0), acts on the fluid flow within
the duct, contributing to the overall dynamicsloé system. The coordinate system with the
relevant notation is shown in Fig. 5.1.

Due to the application of hall and lon-slip curreiie generalized Ohm’s law is described
as follows:

J=op,(q0B) - L (J OB) + 1= (3 0B) OB
B, B

Here, o,r, = m whereo, . r, are cyclotron frequency and electron collision time.

Under these considerations, the above governingtems are simplified in terms of
cylindrical coordinatesr( 6, y) as follows:

Continuity Equation

u, ov u_g, (5.2.1)
or a9y r

Momentum Equations
2 2 2 -
u@ﬂ/@_ﬁ__i@ﬂ} (6u+16u au_uj_'_mo_'_a,%B{mw u(1+ma)}

o oy r por o? ror oy r? o | @+ma)®+n?
(5.2.2)
2 2
u@+vg=—1@+u ﬂ.{.}y.{.ﬂ +15'gT (523)
ar oy poy ar® ror oay?

ar® ror oy’ r?

2 2 2
ow Oow  uw 110dp (0W+10W 0W_WJ_ZUQO_UIUQBO [mu+(1+ma)w} (5.2.4)

UuU—+v—+—=-=—"=""F+yp
a ay r prog Yo, (1+ma)*+n?

Energy Equation
oT T _ Kk {aZT L1 +02T} (5.25)

U—+V — —
ar® r or oy?

or E - pC,
where, r =L+x 1s the radial variable, & is the circumferential angle, and y is the vertical
variable, u. v. and w are the corresponding velocity components, pis the dimensional
pressure. And the symbols p v .. k. C, and g refer to the density. Kinematic viscosity.

coefficient of thermal expansion, thermal conductivity, specific heat at constant pressure
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and gravity respectivelyThe coordinatgr , 6, y) has been changed to the non-dimensional
rectangular coordinatex , Z, y') under the following transform of variables

r=L+x'd, y=hy andLe=2d
Here, the non-dimensional variables are introduced by using the characteristic length J and

the kinematic viscosity © so that the non-dimensional form of the velocity U/, 1s defined by

g . The other non-dimensional variables are assumed as

2
T
T gu’ V’Ziv, W’:d@W, p,:d72p and TI:7
v v pU AT

Thus the transform equations r=L+x'dand 1.6 - 7'd (ie.r=L+x and LO=z)are used into

. ~ . . ~ — r
the above equations to transform its rectangular coordinate form. where x’, y and z" are the

non-dimensional radial, vertical and axial coordinates respectively and §1s the

. . . S . d
dimensionless curvature of curve duct which 1s defined by d =— . Here »',v', w'are the

dimensionless velocity components in the directioh x, yandz' , als@' is the

dimensionless pressure. Using the above dimensi®leantities into the equations (5.2.1)-
(5.2.5) and removing the prime over the variabilles,following equations are obtained as
follows:

Continuity Equation

a_u+6_v+ 0 u=0 (RR.

1

u W (Fu o w Fu_ )T L

U 4V— — ==y =4 - +TwrM = (5.2.7)
X & A+x) K | &R Q+x) a< & Q+x9?) 2 (L+m)? +nt
ua_v+va_\_/=_a_?+(a_zv+ 9 OV azvj GrT (528)
x oy 0y | oxX 1+x5dx oy

W ow e D azw b 5W62W & V25 mu+ (L+m)w

— oTu—-M 5.2.9
Yy 1+x6 o 0 o o a7 aear O @emend (52.9)
Energy Equation

NCARANCLY :1{62T 5 oT OZT} (5.2.10)
ax dy P |ox> 1+xJd ox ay°

3
wherep, = Gd /2 refers to the Dean number, = 2d ‘/_ Q, refers to the Taylor
) L e

_d%ou B’

number ; M= refers to the Magnetic parametgr = is the Grashof
PO

d®BgAT
U2

Number,
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U,
P = ,0ka is the Prandtl Numberm refers to the Hall parameter anrdrefers to the lon-

slip parameter

dv=-————" and
1+ x0 dy 1+ X0 0x

using the other one transformation= hy’ which gives a unique variabjesuch that
y =1ly' , wherel =h/d is the aspect ratio of the duct. Thereafter remmvme on this
variable for the sake simplicity, it has been fotmel following equations:

Again by using the sectional stream functian= ! a—"[/an = L oy

Central line (axial) direction of Momentum equation:

O ow_ 0y ow) - ow o i‘i ¢ _ 9 low oL oy
(ay x o ay}ré O +(1+X5)Hax2 12 3y (1+x5) W} o Ty 1" oy
- M 11/ ¥ +(1+ X)L+ ma)w|= (5.2.11)
(1+mo)? + m?

Secondary direction of Momentum equation:

1oy Oy  Lowdy owdy oy oy |(1+5>9(64‘/j 2 oy 1a4z/zj ¥ Yoy

IzayW Izaxaf dy o axaﬁx2 120y%a¢ |4 dy* | 1+oxdy o
) a_wazw 1 25 oy oy Zéla?’w_@ o’y 3° a_wa_w+352| 0%y

"1+ 0% ox dyax 121+0x dy ody> x> | oxdy® ([L+0x)* 0x oy 1+0x ox°
3
~ M@+ox)@+m) 1 oy (1+5x)wa\—N+ (14 0%)2 L Tow_ % 6(//
L+ma)’+nt | 9y oy 20y (L+0X)?
M

m
+ 1+ X09)? ——IG 1+ 2—=O 5.2.12
L me)? 7 75( X5) oy (Ax9)* = ( )

Energy equation
dwaT AwaT _ |(1+>«s){a’4‘r 19T, o GT} (5.2.13)

FY% |Zay2 A+x9) O

dyox xoy P
Boundary conditions fow andy are used as
wEL y)=wx,t1)=w(FlLy)=w(x.+1)= aaw(-l-l_,y) = aaw(x,-lr 1)=0 (5.2.14a)
X y
and temperaturé at the wall is considered constant
Il,y»=1, T(-1,y)=-1, T(x.t)=x (5.2.145)
5.3 Validation Test of the Numerical Results

In Chapter-4, Section 4.4, the validations of thespnt numerical simulations are verified
by comparing it with the previously published expemtal result for the secondary flow of
the velocity. Additionally, another two comparisomase displayed in Fig.5.2(a) and
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Fig.5.2(b) by the solution curves of the Dean Numiesus Nusselt number for the square
and rectangular duct respectively. These figurgscti¢he behaviour of the Nusselt number
for the dean number increases from zero. R. N. Mia(®D06 ) showed in his PhD thesis
that the solution curve of the Dean Number versussilt Number for the square cross-
section of the duct with the curvature @at= 0.1, which is shown in Fig.5.2a(i) and
Fig.5.2b(i) illustrates the solution curve done Ysgnase et al. (2006) for the rectangular
duct cross-section. The present numerical solstibig.5.2a(ii) and Fig.5.2b(ii) are
compared with the solution curve in Fig.5.2a(i) dakig.5.2b(i) for the square and
rectangular cross-section of the duct respectivetiie absence of Hall and lon-slip current.
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absence of Hall and lon-dlip current)

Figure 5.2: Comparison of the present numerical results with
previous published results by the solution curehe temperature

On the basis of both quantitative and qualitativmparisons, it can be seen in Fig. 8)2(

(b) that the present findings are remarkably sinttathose of the published experiment. It
follows that our numerical results have a respdetetrrelation with the experimental data.
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5.4 Curved Square Duct for Non-Isothermal Flow:

Non-Isothermal Magneto-hydrodynamic Fluid Flow along the Centreline in a
Rotating Curved Square Duct with Hall and Ion-slip Current

This research is regarded as an investigationfofiyadeveloped, non-isothermal, viscous,
incompressible laminar fluid flow that passes tiglouhe centreline of a rotating square
curved duct in the presence of a magnetic fieldhwiall and lon-slip current. This non-
isothermal duct is produced by keeping the innelt e@ol and the outside wall hot; the
upper and lower walls are assumed to be adiabatie. to the duct's aspect ratio being
assumed to bk=1, the cross-section of the duct appears perfsdtliare. In addition to the
pressure gradient force (specifically Dean numiffeces) that has been applied along the
duct's centreline, the gravitational force operate®rnally on the flow. Centrifugal force
and Coriolis force are affected on the fluid floasaresult of the system's rotation and the
duct's curvature. The spectral method is utilizeg@erform the calculations as a main tool,
whereas the Chebyshev polynomial, Newton-Raphsotihade Collocation method, and
Arc-length method serve as auxiliary tools. Thepbra presentation describes the
relationship between the flux with the Grashof nem{s,), Taylor numberT;), and Dean
number D,). Also, their related structures of the tempemtand velocity distribution at
various cross-sections of the curved duct are exaaniShowing the impact of the Hall
parameter rf), magnetic parameterM) and lon-slip parametera) on the flow
characteristics of this rotationally curved squduet is the main goal of this study. The new
results have been presented for the three cadeeasf Number such as Casdd}; =1000,
Case-ll: D, =3000, and Case-llID, =5000 with varying curvature, while the rotational
parameter is set & =20. In this case, it is assumed t@atD,, T,, M, m, anda are varied
while the duct's curvature varies fr@m0.01 to 0.5.

5.4.1 Grid Spaces Accuracy

Grid space accuracy needs to be discussed bef@enmanting the FORTRAN program.
The equations are solved for many combinationdefttuncation numbers. It is presumed
that in order to make the calculations simple dreldolutions reasonably accurate for the

choice of M and N are equal, due to the square cross-section of tbe d The fluxQ,
mean Nusselt number at the heating wsll, and cooling wallNu, have been calculated
for several pairs of truncation numbers such Ms { =(16,16), (18 , 18), (20,20) and
(22,22), which is shown in Table-4. From this tabtecan be decided that the sufficient
accuracy of the numerical solutions has occurrddatN ) = (20, 20).

M| N Q Nu, Nu,

16 | 16 | 338.8427092101321 3.976475019009116 7.262095071416873
18 | 18 | 338.8161925588088 4.107726384434951 7.312240346344643
20 | 20 | 338.8164840696670 4.150574491500325 7.253072293037905
22 | 22 | 338.816968013514(0 4.099858655172923 7.235930319328718

Table-4: Fluxes and mean Nusselt number for several pairsincation numbers
and N at fixed values 0fd=01 D,=1000,G, =100, T,=20,M =0, m=0 anda=0.
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5.4.2 Results and Discussion

The study involves the investigation of fully demeéd flow in a rotating curve square duct.
The effects of various parameters such as Grasimabar G;), rotation parameteiT{) and
Dean Number @,) were examined, and the primary focus of the mebeavas on how
parameters like the Hall parametel),(magnetic parameteM], and lon-slip parametes)
affect fluid velocity and temperature. The studynsidered three different cases with
varying Dean Number<®() and a duct curvature of= 0.1, along with a Prandtl number
(Py) of 7.0. The findings were presented in the formsolution curves, which were
indicated by arrows-{-» ) or«(-- ), depending on theirediion. Each square box
represented the cross-section of the duct at afgppaoint on the solution curve, with the
right side indicating the outer boundary of thetd$olid lines denoted anti-clockwise flow
(positive direction), while dotted lines indicateldckwise flow (negative direction) for the
secondary flow. For temperature distribution, sdilnés represented the temperature at the
heated wall, while dotted lines represented thepaature at the cooling wall. The
calculations were performed using a FORTRAN prognaiiin specified increments for
various parameters. This research aimed to promgights into the behaviour of fluid flow
and temperature distribution in a rotating curvegtdunder the influence of different
parameters, helping to understand the impact atiost, Dean Number, and other variables
on the flow patterns and thermal characteristics.

A. Effects of Grashof Number G;) on the Fluid Flow and Temperature

The increase in rotation leads to a balance betwmerCoriolis force and the centrifugal
force, resulting in approximately symmetrical flgpatterns. In this experiment, the flow of
the fluid is influenced by the external gravita@bmorce, which causes the flow pattern to
become asymmetric.

The impact of the Grashof number on the secondelqgcities (radial and axial flows) and
temperature is demonstrated in Fig. 5.3a-b. In 5i8a, the solution curve for the Grashof
Number G;) versus (i) the flux @) and (ii) the mean Nusselt Numbé¥uj at both the
heated and cooled walls is displayed. This is dondéixed parameters, including,=500,

T, =20,P; = 7.0,M=0, m=0 anda=0, with the duct's curvature setsat0.1.

In Figure 5.3 (i), a single-branch solution curve is identifiedthin all Grashof number
ranges G; > 0). It is evidently characterized as an increasurgtion, signifying a gradual
increase in flux with higher Grashof number valudsanwhile, concerning temperature, it
is observed that the Nusselt number values at ¢laéet wall consistently exceed those at
the cooled wall. The temperature deviation graguaiduces as the Grashof number
increases. Fig. 5B presents the flow structures corresponding to dbkition curves
outlined in Fig. 5.8. Under the influence of gravity, the initially symetrical scenario
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gradually transitions into an asymmetric one. Whitreasing Grashof number, the positive
flow predominates over the negative rotationalabfiow.
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Figure 5.3a: Solution curve: Grashof numbé& versus i) flux Q (ii) Mean Nusselt numb&u at
the heating and cooling wall for fixe&0.1,D,,= 500, T, =20,P, =7,M =0, m= 0 anda=0

Single branchof solution

G, - 50 100 500 1000 2000 300

Figure 5.30: Streamlines (upper), axial contour flowv (lower) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.3a

B. Effects of Taylor Number(T,) on the Fluid Flow and Temperature

For the given fixed parameters, whé&g=1000,G; =100, P, = 7.0,M=0, m=0, anda=0,
Figure 5.4 illustrates the relationship between the Taylonier () and () fluid flux (Q)

for velocity and i) the average Nusselt numb&tuj at the heated and cooled walls in a
duct with a curvature af=0.1. In Figure 5., the corresponding velocity and temperature
distribution patterns at differefit values are presented. Within the valid range ofldra
numbers, a single-branch solution curve is ideadifiThis curve can be subdivided into two
distinct regions: one spanning -274.66T, < -261.20, where the flux increases &s
increases, and the other féy > -261.20, where the flux decreasesTasncreases. The
solution curve is constrained by Tr = -274.66 fegative rotation, where the flux achieves
its peak value of 427.8 at = -261.2, coinciding with the emergence of upikosecondary
flow vortices. Concerning temperature distributitme Nusselt numbers at the heating wall
are consistently lower than those at the cooling Yaa -274.66 <T, < -261.20. This
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temperature deviation gradually diminishes withr@asing Tr within this range but exhibits
a reverse trend beyond it. Wh&n= 0 (indicating a non-rotating system), the seeond
flow streamlines exhibit asymmetric, two-solutioortices. AsT, increases in the positive
direction, the strength of the flow patterns grdlyuaveakens. In contrast, negativie
values create a critical zone, giving rise to synametric vortex structures. In all cases, as
T, increases, the asymmetric conditions graduallynsiteon to a more symmetric
configuration, signifying a decrease in asymmetrithwincreasing T,. Notably, the
temperature at the cooling wall becomes increagingluenced by the heating wall ds
increases.

(i) . (i)

450;— Curvature o = 0.1

400F Max flux= 427.8atT, =-2612 sk

350
300F
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0 2500 5000 0 2000 4000 6000
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Figure 5.4a: Solution curve: Taylor numbdr, versus i) flux Q (ii) Mean Nusselt numbe\u at
the heating and cooling wall for fixe&0.1,D,,= 1000,G, = 100,P, =7, M =0, m= 0 anda=0

Single branchof solution

T, — -274.66 -261.2 0 02 500 1000 2000 3000 4000 5000

Figure 5.4b: Streamliness (upper), axial contour flow (lower) and Temperature
profile T (bottom) in accordance with the solution curvéig. 5.4a

C. Effect of Dean Number D,) on the Fluid Flow and Temperature

At fixed values ofG, =100, T, =20, P, = 7.0,M=0, m=0, anda=0, Figure 5.8 portrays the
solution curve of the Dean Numbd,j concerning two vital aspects) luid flux (Q) for
velocity and (i) the average Nusselt number at the heated anddedalls within a curved
duct characterized by=0.1. Figure 5.b is divided into three subplots, providing an
enlarged view of specific segments of the soluttarve highlighted in Figure 526) by
rectangular boxes.
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This analysis reveals the presence of five disthreinches in the steady-state solution
curves. These branches are represented by disttmirs: black, red, purple, green, and
blue, designating the first, second, third, fourtimd fifth branches of the steady-state
solution curve, respectively. In each branch, thees increase in tandem wiih,. Notably,
asD, increases, the Nusselt number values at the lgeatitl surpass those at the cooling
wall whenD, is greater than zero. This deviation becomes rposaounced with higher
Dean Number values.

In Figure 5.%, the corresponding flow structures of temperaturd velocity distributions
at various positions alon§ are presented. Each branch of the steady-statéasokurve
exhibits secondary flows characterized by a paicafnter-rotating vortices. For lowex,
values, positive rotational flow dominates over atege rotational flow, but this situation
reverses for higheD, values. AsD, increases for both velocity and temperature
distributions, the flow pattern's intensity gradgyatrengthens. Importantly, all branches of
the steady-state solution exhibit an asymmetrie fdructure. The flow tends to peak near
the duct's outer wall for axial flow. At higher DedNumber values, the temperature
distribution takes on a chaotic appearance, aduirthe complexity of the observed flow
patterns.
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Figure 5.5¢c: Streamlineg (upper), axial contour flowv (lower) and Temperature
profile T (bottom) in accordance with the solution curvéig. 5.5a

D. Effects of Magnetic Paramete( M) on the Fluid Flow and Temperature

At prescribed values db, =100,T, =20,P, = 7.0,m=0, anda=0, Figure 5.4 illustrates the
solution curve for the Magnetic paramet®f) (in relation to (i) fluid flux Q) for velocity
and (ii) the average Nusselt number at the heatddcaoled walls within a curved duct with
0=0.1. Notably, this analysis is carried out forehrdistinct Dean NumbeD{) values,
specificallyD, =1000, 3000, and 5000.

Across all cases of Dean Number, these solutiomesuexhibit a consistent trend of decline
as the magnetic parametbt, increases. This suggests that there is a drépithflux as the
magnetic parameters become more prominent. In [Maseecifically atD,, =5000, a unique
finding emerges where two distinct solution curaes identified. The first solution curve is
confined within 0< M < 29.2722 and displays an increase in flux as Deamiér rises.
Additionally, in the temperature context, the Nuisseimber values at the heating wall
surpass those at the cooling wall. A noteworthyeoltion is that the temperature deviation
gradually approaches zero beyond a certain thrdstadlie of\.

Figure 5.®(i)-(iv) complements this analysis by presenting the wgloprofile and
temperature distribution structures at various netigrparameter values. A8 increases in
the context of velocity distribution, the flow path's strength gradually weakens. Negative
flow predominates over the positively directed setayy flow, and the axial flow contour
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Figure 5.6b : Streamlines (upper), axial contour flowv (lower) and Temperature
profile T (bottom) in accordance with the solution curvéig. 5.6a
shifts closer to the duct's centre. Comparing #mesdy of the velocity structure, it is noted
that for D, =1000, it is weaker than fdp,=3000 within a specific range aroum=60.
Concerning temperature, the cooling wall tempeeatxerts a dominant influence over the
heating wall temperature, and this dominance dshies with increasiny! for all Dean
Number cases. However, a unique observation is raaBg =5000 in the first branch of
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Case lll, where the asymmetry condition transfoms a more symmetric form with the
increase oM. Furthermore, the initially asymmetric two-vortBaw evolves into a nearly
symmetric four-vortex flow as the magnetic parametereases. Notably, additional Dean
vortices are not generated lsexceeds 29.273. Within the range ™ < 29.2722, up to
four counter-rotating vortices are observed for fseondary flow. Meanwhile, in the
second branch, the effects ™ on velocity and temperature distribution exhildie t
expected behaviour & whenM exceeds 0.91.

E. Effects of Hall Parameter(m) on the Fluid Flow and Temperature

At fixed parameters, includin®@, =100, T, =20, P, = 7.0,M=1.0, anda=0, Figure 5.7a
illustrates the solution curve of the Hall paramédts) in relation to i) fluid flux (Q) for
velocity and i) the average Nusselt numb&uj at the heated and cooled walls within a
curved duct witho=0.1. The analysis is conducted for three distbein Number @)
values:D, =1000, 3000, and 5000.

For all cases of Dean Number, it is observed thafltix experiences an increase with a rise
in the Hall parameter, specifically within a centaange, approximately ¥m < 3. Beyond
this range, the increase in the Hall parameteahaatively minor effect on flux. A steady-
state solution is achieved after surpassing a Bpdtireshold value of m in all Dean
Number cases. Notably, the maximum flux is foundewhm exceeds approximately 6.
Numerically, this peak flux value is determined 38.80, 780.07, and 1135.90 at Dean
Numbers of 1000, 3000, and 5000, respectively. Timding confirms that the flux
increases as the Dean Number rises. In the coofetémperature [Figure 5afii)], the
Nusselt number values at the heating wall are stergily higher than those at the cooling
wall. Importantly, the temperature deviation rensairelatively constant, showing no
significant change with increasing Hall parameter,
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Figure 5.7a: Solution curve: Hall parameten versus ij) flux Q (ii) Mean Nusselt
numberNu at the heating and cooling wall for fixéd0.1,G, = 100,T,= 20,P, =7,

M =1 anda=0 whereasD, = 1000, 3000 and 5000
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In Figure 5.1, the solution curve for the Hall parameten) (vs. flux is presented for a
constant set of parameters, includiig100Q G;=100, T,=20, P,=7.0, M=1.0, anda =0. This
curve is depicted for different values of duct @aiare, specifically=0.01, 0.1, and 0.5. An
interesting observation is made, indicating thathes duct's curvature increases, the flux
decreases. This trend suggests a correlation betshes curvature and the resulting flux.

(i) DeanNumberD,, =1000 ; Curvatute § = 0.1 (if) DeanNumberD,, = 3000 ; Curvatute 6 = 0.1
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Figure 5.7c: Streamlines (upper), axial contour flowv (lower) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.7a-b
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Figure 5.7(i)-(iii) complements the analysis by showcasing the temtyrer and velocity
distribution structures at various points along ittel parameterr) corresponding to the
solution curve in Figure 5a7 It is noted that the strength and structuresefflow pattern
remain consistent, showing no significant changéhwimncreasing Hall parametem).
Regarding temperature distribution, the dominatimjluence of the cooling wall
temperature over the heating wall temperature nesnanchanged with variations in the
Hall parameterr() for all Dean Number cases. Furthermore, upon @mg the figures in
Figure 5.7(i) with Figure 5.%(iv), it becomes evident that the structures of tHeciy and
temperature distribution with a larger duct curvataté=0.5 appear weaker compared to
those with a smaller duct curvaturesad.1. This observation highlights the impact oftduc
curvature on the resulting flow patterns and temjpee distribution, indicating that a
higher curvature results in less pronounced flowcstires.

F. Effects of lon-slip parameter(a) on the Fluid Flow and Temperature

In Figure 5.8, the solution curve for the lon-slip parameter iq relation to () fluid flux

(Q) for velocity and if) the average Nusselt numbé&uj at the heated and cooled walls is
presented. This is based on fixed parameters,dmd\G, =100, T, =20, P, = 7.0,M=1.0,
and m=5.0, while the duct's curvature 450.1. The analysis covers three different Dean
Number cased, =1000, 3000, and 5000.
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Figure 5.8a: Solution curve: lon-slip parameterversus fluxQ for the velocity
at the Dean Number)(D,, =1000 (ii) D,=3000 (iii) D, =5000
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An interesting trend is observed where the fluxezignces a decrease in a limited range for
0<0.8, followed by a rapid increase @increases further. Beyond a certain thresholdevalu
of o, a steady-state solution is reached for all tidean Number cases. The maximum
fluxes are identified at Dean Numbers of 5000, 3G0@ 1000, with values of 1135.83,
780.01, and 338.76, respectively. This finding fieat the relationship between an
increase in Dean Number and an increase in fluxac€ming the Nusselt number, it
remains higher at the heating wall compared to toeling wall for temperature
distribution. The deviation of the temperature doeschange significantly with variations
in a.

Figure 5.8 extends the analysis by illustrating the lon-gh@rameter ) vs. flux @)
solution curve for fixed parameters, similar togdon Figure 5.8 but with different duct
curvaturesy=0.01, 0.1, and 0.5. It is observed that as th&<laarvature increases, the flux
tends to decrease. Figures diB(iii) display the velocity and temperature disttion
structures at various points along the lon-slipap@eter &) that correspond to the solution
curves in Figure 5&8 It is worth noting that the strength and struesuof the flow pattern
show negligible changes with increasiag In terms of temperature distribution, the
dominance of the cooling wall temperature over ligating wall temperature remains
consistent, and this effect doesn't vary with clegng o for all Dean Number cases.
Similarly, the strength and structures of the flpattern do not show significant alterations
with an increase in duct curvature. Comparing #gun Figure 5.&i) with Figure 5.8(iv),

it becomes evident that the velocity and tempeeatistribution structures with a larger
duct curvature av=0.5 appear weaker than those with a smaller cureaat=0.1,
reinforcing the influence of duct curvature on flpatterns.
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Figure 5.8 Solution curve: lon-slip parameterversus fluxQ for fixed D,,=1000,
G, =100,T,=20,P, =7,M =1 andm=5 whered= 001 0l1and 05
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(i) DeanNumberD =1000; Curvatute o = 0.1 (ii) DeanNumberD = 3000 ; Curvatute d =
Gr =100;Tr =20;M =10; m=50 Gr =100;Tr =20;M =10;m=
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(iv) DeanNumberD , =1000; Curvatute d = 0.5
G, =100;T, =20;M =10;m=50

(iii) DeanNumberD  =5000; Curvatute = 0.1
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Figure 5.8c: Streamlineg (upper), axial contour flowv (lower) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.8a-b
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5.5 Curved Rectangular Duct for Non-lsothermal Fluid Flow (Aspect
Ratio 2):

Hall and Ion-slip Current Effects on Non-Isothermal Steady Flow through a
Rotating Curved Rectangular Duct with Aspect Ratio 2

A fully developed non-isothermal, viscous, stealbwfpasses through a rotating curving
duct with a rectangular cross-section that has legpiored in this study in the presence of
a magnetic field with Hall and lon-slip current. eltduct has been formed as a non-
isothermal by keeping the outer heating wall, inc@oling wall, and upper and lower walls
adiabatic. The aspect ratio of the duct is takem so that the duct cross-section is viewed
as rectangular. Along the duct's midline, a presgadient force (Dean Force) has been
applied. As an external force, the gravitationabydntz, centrifugal, and Coriolis forces
influence on the fluid flow. The Centrifugal andri@is forces have been created due to the
system's rotation and duct's curvature. The numlesclutions are carried out using the
spectral method as the primary tool. In additidme Chebyshev polynomial, Newton-
Raphson, Collocation, and Arc-length methods aeel @s secondary tools. The main focus
is on investigating the effects of the magneticapseter ¥ ), Hall parametern(), and lon-
slip parameterd) on the velocity and temperature distribution leé hon-isothermal fluid
flow passing through the curved rectangular du¢hwein aspect ratio of two in a rotating
system. This investigation has been carried authf® four cases of curvatu(é)and Dean

Number (D,) such as Cased.= 001, D, =500 Case-ll: o = 0.1, D, =500, Case-lll:
0 =05, D,=500and Case-IV:s=05, D,=1000. It is considered here thax ,G,, T,,
M, manda are varied, while curvature of the decanges from 0.01 to 0.5.

5.5.1 Grid Spaces Accuracy

For several pairs of truncation numbers, the eqoatiare solved to find the grid space
accuracy. It is presumed that in order to makeddleulations simple and the solutions

reasonably accurate, it is assumed that the vdll¢ is twice of M. The values of the flux

Q, mean Nusselt number at the heating whllh, and cooling wall Ny, have been

furnished for several pairs of truncation numbershsas M N ) =(7,14), (8 , 16), (9,18),
(10,20), and (11,22), which is shown in Tabletthds been seen from this table that the

numerical solutions can be found sufficient accyr@to(M N ) = (10, 20).

MIN Q Nu Nu,

07 | 14 | 296.9929324335965 3.194661434357543 5.382577053844398
08 | 16 | 296.1440867269804 3.634386655368639 5.507305127743999
09 | 18 | 297.5147703732567 3.578849034794546 5.670558453687153
10 | 20 | 297.6505647639801 3.334674372681358 5.842032867239069
11 | 22 | 297.5520924528217 3.598868974689484 5.7113899521522272

Table-5: FluxesQ and mean Nusselt numteu for distinct pairs of truncation numberxs
and N for fixed 6=0.1,D, = 500,G, = 100, T, = 20,P,= 7,M = 0, m = 0 anda=0.
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5.5.2 Results and Discussion

The study of flow characteristics in curved duas involved a comprehensive analysis of
the Grashof numbel), Taylor numberT;), and Dean numbebD() at a curvature factor
of 0.1. This investigation aimed to gain insightgoi the physical implications of the
curvature. Furthermore, these findings were cressrenced with results from prior studies.
In an extension of this research, we delved int® ithpact of additional parameters,
specifically the magnetic parametdt)( Hall parametern(), and lon-slip parametes), on
both fluid flow and temperature. Utilizing solutiaurves, we illustrated the corresponding
flow vortex structures for four distinct cases aeinature, each associated with different
Dean Numbers: Case4=0.01,D, = 500, Case-119=0.1, D, = 500, Case-ll19=0.5,D, =
500, and Case-I\i=0.5,D, = 1000.

A. Effects of Grashof Number(G,) on the fluid flow and Tenperature

The curved duct's rotation leads to a balance kaiwlee Centrifugal force and the Coriolis
force, resulting in an approximately symmetric fleteucture. However, the presence of an
external gravitational force exerts an additiomdience on the fluid flow, causing the flow

pattern to become asymmetric.

(i) 7 (ii)
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Figure 5.9a: Solution Curve: Grashof numb& versusi) Flux Q
(if) Mean Nusselt numbetu at the heating and cooling wall for fixed
9=0.1,D,,=500,T,= 20,P, = 7,M = 0, m=0 anda = 0
Figure 5.@-b illustrates the effects of the Grashof number oth lvadial and axial flows, as
well as temperature, with fixed valuesé@ef.1,D, =500,T,=20, P,=7,M=0,m=0 and
0=0. Figure 5.9a provides solution curves for thasBof Number@,) with respect toi}
Flux (Q) and (i) Mean Nusselt numbeN() at both the cooling and heating walls.

In Figure 5.9a, multiple branches of curves aréiador flux, yet all these branches remain
within the range -1188.%&6G, <1190.17 along the same path. Only the 1st and Parithes
are activated in Figure a9Notably, the solution curves for flux and tempera exhibit a
symmetric pattern around the vertical lineGat=0. The peak flux value is observedGt
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=0, and it gradually decreases with an increaspGp|. In Figure 5.8 (ii), temperature
deviations on both walls concerning the Grashof Ibemare displayed. It is noteworthy that
the Nusselt numbers at the cooling wall are lowemgared to the heating wall. The
temperature deviation, or mean Nusselt number,ugitbddecreases with a slow increment
in G.

All branches have found the following steady state solution

)| &)

1190.17

Sl Bl ES

G, - -1188.76

-1000 -500 -250 100 0 100 250 500 1000

Figure 5.%: Streamlinesy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig. 5.9

Figure 5.® illustrates the corresponding velocity and tempgeaflow patterns at various
distinct Grashof number points. AB,=0, two symmetric vortex flows are observed in the
secondary flow, while a straightforward contouséen in the axial flow. The majority of
the flow is concentrated near the top and bottonthfe secondary velocity and closer to the
outer wall for the axial velocity. The temperatuhstribution is not present &,=0 but
becomes active with increasing Grashof numbersogscall G, values, the cooling wall
temperature flow dominates over the heating wabbwelver, asymmetrical temperature
structures gradually intensify as positi@& values increase. In contrast, these structures
become asymmetrical but in the opposite direct®@,anoves in a negative direction. This
asymmetry is a result of the gravitational influermn the system.

B. Effects of Taylor Number (T;) on the fluid flow and Temperature

Regarding the impact of rotation parametérd 6n the flow, it's important to note that a
positive T, indicates the rotational direction of the systemincides with the directions of
the duct flow, which is termed co-rotation. On titeer hand, for negativg, the rotational
direction of the system opposes the directionwefduct flow, known as counter-rotation.
Figure 5.1@ illustrates the solution curve of the Taylor Numpg) concerningij Flux (Q)
and (i) Mean Nusselt numbeN() at both the cooling and heating walls. Theseltesue
presented for fixed values 6#0.1,D,, = 500,G; =100, P,=7,M =0, m=0 ando=0.
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Fig. 5.1Qx: Solution Curve: Taylor numbér versusi) Flux Q (ii) Mean
Nusselt numbeNu at the heating and cooling wall for fixé€0.1, D, =500,
G, =100, P, =7,M =0, m=0 andz = 0.
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Figure 5.1: Magnifying figure marked by the dashed box on Big(a

I
600

Figure 5.10 provides an enlarged view of a specific portiomghlighted by dotted
rectangular boxes in Figure 54.Q). In Figure 5.16, the flow structure of velocity and
temperature distribution is presented at variogsmit points of the Taylor NumbeF§. At
the peak point on the solution curve, where the #u385.97, six vortices with asymmetric
structures in the secondary flow are observed. hpvn the positive direction, five
bifurcation solution curves are evident, creatirfgifarcation zone within the range -4032
T,<430.43. All these curves exhibit a decreasing tramdicating a gradual decrease in flux
with increasing Tr. However, in the negative dir@ct a critical zone is reached, and the
Taylor number cannot exceed, =-237.44. In these flow patterns, the primary
characteristics include the concentration of floeanthe top and bottom for secondary
velocity and near the outer wall for axial velo¢ityith the centre of contours positioned in
the middle of the duct. The axial flow contours main a simple shape. Positive-directed
secondary flow predominates over the negative floaviicularly evident near the 2nd and
3rd branches of the solution curve. The strengtih@flow patterns gradually weakens with
increasingT;. Across all cases, the initial asymmetrical canddg transform into a more
symmetric form asT, increases, signifying a reduction in asymmetry. &emg
temperature, the Nusselt number values at thertgeatall are initially lower than those at
the cooling wall within a limited range, after whicdhis effect reverses. On average,
temperature deviations gradually decrease witreamingT..

137



1st branchof solution 2ndbranch  3rd branchof solution 4th branch 5th branchof solution
| 4

o
(@)
O
O
O
o

Tr — -237.44 -202.81 20 02 20 200 038 380 380 1000 3000 5000
Figure 5.1Q: Streamlines (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.1&

C. Effect of Dean Number(D,) on the fluid flow and Temperature

Figures 5.14& (i)-(iii) depict the solution curve of Dean NumbBy, | concerning velocity
flux (Q) and Figures 5.Hl (iv)-(vi) display the solution curve @, with respect to the
mean Nusselt numbeN() at both the heated and cooled walls for tempegadistribution.
These illustrations are provided for three differearvatures$=0.01, 6=0.1, ando=0.5.
The parameters = 20,G,=100,P,=7,M=0, m=0, anda=0 are kept constant.

(1) curvature : & = 0.01 (i1) curvature : 5 = 0.1 (iii) Curvature : 3 =05
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Figure 5.11a: Solution Curve:ij-(iii) Dean Numbeb, versus FluxQ
(iv)-(vi) Dean Numbeb,, versus Mean Nusselt numkeu at the heating and
cooling wall for fixedo=0.1, G, =100, P, =7,M =0 ,m=0 andx = 0.
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Figure 5.11b: Magnifying figure marked by the dashed box on Bigla(iii)

In Figure 5.1b, It has been seen the enlarged figures of a sp@aftion marked by dotted
rectangular boxes in Figure 5d.1iii). When examining the velocity distribution, two
bifurcation branches of the solution curve are idied for /=0.01 andy=0.1, while three
branches of the solution curve are observed def.5. Bifurcation branches are
distinguished by different colors. The solutionvas cover a wide range of Dean Numbers,
specifically & D, < 529.25 for6=0.01, & D, < 616.69 foro=0.1, and € D, < 2656.19 for
6=0.5. It's notable from Figure 5.41i), (ii), and (ii) that the maximum flux occurs at Dn
=529.25 for=0.01 (320.4), aD, =616.69 foro=0.1 (351.83), and dD, =2656.19 for
0=0.5 (978.41). This suggests that the flux increas® the duct's curvature increases. In
general, across all cases, fluxes increase withehigalues oD,. Figure 5.1t showcases
the flow structure of velocity and temperature ritdsttion at varioud,, points. In all cases,
asymmetric vortex solutions are observed in rafl@av, axial flow exhibits a simple
contour, and temperature distribution maintaingpactl pattern a®, increases. Positive
rotational flow dominates over negative rotatiofialv, particularly near the duct's outer
wall for radial velocity. The temperature distrilmut becomes chaotic with larger Dean
Numbers and greater curvature. The density of teéocity distribution gradually
strengthens at higher Dean Numbers.

1st branchof solution 2nd branch 3rd branch

Dn — 100 300 500 529.25 500 356.75 050 529.25

(i) : Solution structures fow = 001, G, =100, T, =20, R=7, Mm=0, m=0 anda=0
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1st branchof solution 2nd branch 3rd branch

Dn — 100 300 500 616.69 500 399.2 050 616.69
(ii) : Solution structures fol3 =01, 6, =100, 1 =20, R=7% M=0, m=0anda=0

1st branchof solution 2nd branch 1st branchof solution

Dn — 100 300 500 1000 1079.4 1000 870.27 1000 2000 2656.19

(iii’) : Solution structures fors =05, G, =100, T.=2C, P=7, M=0, m=0 anda=0

Figure 5.11c (i)-(iii): Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.11a

D. Effects of Magnetic ParametdrM ) on the fluid flow and Temperature

Figure 5.12 illustrates the solution curve of the magneticapagter i) with respect toif
velocity flux (Q) and (i) mean Nusselt numbeNy() at the heated and cooled walls for
temperature distribution. This is examined acrbsse cases: as Case’+0.01,D, = 500,
Case-11:0=0.1, D, = 500, and Case-l11b=0.5,D, = 1000., with fixed values of, =20, G,
=100,P; =7, m=1 anda=0 . In all three cases, the solution curves lakwo branches:
one branch where the steady solution remains sthdsleall values of the magnetic
parameterNl), and another branch featuring a stable steadyisolwithin the approximate
range of @M<5.7, ®M<4.63, and 8M<5.45 for Cases |, I, and lll, respectively.
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Figure 5.12a; Solution Curve: Magnetic parametdrversus i) Flux Q
(ii) Mean Nusselt numbeéiu at the heating and cooling wall for the Casé<0.01,
D,=500; Case-ll :0=0.1,D,=500; Case-lll :6=0.5,D,, =1000;
with fixed G, =100, T, = 20, P, =7, m=0 anda = 0.

The behaviour of the flux is notable in relationthe magnetic parametévl). It exhibits a
rapid decrease adl increases, and after reaching a specific criticdle, the solution
stabilizes into a steady state. From Figure 5.{ipat§s evident that the non-isothermal flow
gradually transitions towards an isothermal stated significant value of the magnetic
parameter. Figures 5.2 representing Case-l to Case-lll, show the flowctires of
velocity and temperature distribution correspondmthe solution curve in Figure 54 at

Case | : (1stbranch) 6 = 001 D, =500 Case I(2ndbranch) : 6 = 001D, =500
(Stable for all M) (Stablein 0 < M < 57)
G =100;T, = 20:R =7 m=0;a =0 G, =100; T, =20;P =7,;m=0;a =0
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Case- Il : (1st branch) J = 0.1, D, =500 Case Il (2ndbranch) : = 01, D, =500

( Stable for all M) (Stablein 0< M < 46345
G, =100;T, =20;P =7, m=0;a =0 G, =100; T. =20; P =7,m=0;a=0

=

=

M - O 1 3 4 46345

Case- Il : (1stbranch) & = 05, D, = 1000 Case Il :(2nd branch) J = 05, D =1000
( Stable for all M) (Stable in 0< M < 545)

r

Gr =100;T :20;pr =7, m=0;a=0 G =100;Tr =20; P =7,m=0; a=0

M \ 0 ) 1 ) 10 ] 30 60 M - 0 1 2 . 5.4
Figure 5.1%: Streamlines (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig. 5.12a

various distinct points of the magnetic paramekan. all cases in the first branch, two
streamline vortices in radial flow are observedd dhe axial flow contours gradually
weaken adM increases. The positive-directed secondary flavlidsstreamline) dominates
over the negative flow with increasing. The centre of the axial flow contour shifts
towards the centre of the duct for Case-l and Cladait in Case-lll, this centre shifts
toward the inner wall. In the second branch, a Wwydex structure of radial flow is initially
observed, and it generates two additional vortivear the outer wall of the duct &%
increases within the respective rangedlab.7, M<4.6345, and<5.45345 for Cases |, I,
and Ill. However, the contours of the axial flowm&n simple, and the temperature
distribution maintains its typical patternsincreases.
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E. Effects of Hall Parameter(m) on the fluid flow and Temperature

Figure 5.13 displays the solution curve of the Hall parametay ¢oncerning i velocity
flux (Q) and (i) mean Nusselt numbe¥d) at the heated and cooled walls for temperature
distribution in four cases such as Casé=D.01,D, = 500, Case-116=0.1,D, = 500, Case-
lll: 6=0.5,D, = 500 and Case-I\i=0.5,D, = 1000. Fixed values include =20, G, =100,

P, =7,M=4, anda=0. In each of these cases, there is a single branthe solution curve,
and the steady solution remains stable for all emlaf the Hall parametemf. The flux
experiences a rapid increase as the Hall paranfefeincreases, and after reaching a
significant value, a steady-state solution is adtdein all instances. As indicated in Figure
5.13a (i), the non-isothermal flow does not transform iatoisothermal state for any value
of the Hall parameter. Additionally, it's worth maj that the numerical results show that the
maximum flux gradually decreases with an increaseurvature. This underscores that the
flux increases with an increase in the Dean Number.

(I ) (i)
500 or
oF Nu, at cooledwall {
I Singlebranch:4 =0.01, D, =500 sk _—
400 Singlebranch :6=0.1, D, =500 r Nu, at heatedwall |~ — — ~
Singlebranch :0=0.5, D, =500 r.- T
Singlebranch:d = 0.5, D,, =1000 U S,
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Figure 5.13a; Solution Curve: Hall parameterversus i) Flux Q
(ii) Mean Nusselt numbétu at the heating and cooling wall for the
Case-l :0=0.01,D,=500; Case-ll :0=0.1,D,=500; Case-lll :6=0.5,
D, =1000; with fixedG, =100, T,= 20, P, =7,M=4 anda = 0.

Figures 5.1B ( represents Case-l to Case-lll) depict the fldmctures of velocity and
temperature distribution corresponding to the sotuturve presented in Figure 5alat
various distinct points of the Hall parameter. éiddent that the structures of velocity and
temperature distribution undergo minor changefadHall parameter increases. In Cases |
and I1l, the negative-directed secondary flow (ddské&reamline) dominates over the
positive flow as the Hall parametam)(increases. Conversely, in Cases Ill and IV, it is
observed that the positive-directed secondary fldetted streamline) dominates over the
negative flow. The strength of the flow patternsthbin velocity and temperature, becomes
notably stronger within a specific range of Haltgraeters, approximately within the range
of 0<m<8. Afterward, there is a slight change in the patteith further increases in the
Hall parameter.
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Case- | : = 001 D =500 ( Stablefor all m) Case- Il : 6 = 01, D =500 ( Stablefor all m)
G, =100;T =20;P =7; M =4; @ =0 G, =100;T, =20;P =7, M =4, a=0

m=0.1 1 T30 60 100 m=o.1 1 20 60 00

Case- lll : 6 = 05, D = 500 ( Stable for all m) Case- IV :J = 05, Dn = 1000 ( Stablefor all m)
G, =100;T =20;P =7, M =4, a =0 G, =100;T, =20;P =7; M =4, a=0

Figure 5.13: Streamlines (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.13

F. Effects of lon-slip Parameter( @) on the fluid flow and Temperature

Figure 5.14 presents the solution curve of the lon-slip patamé:) in relation to i)
velocity flux (Q) and (i) mean Nusselt numbeNy() at the heated and cooled walls for
temperature distribution. This analysis is conddidte four distinct scenarios: as Case-I:
0=0.01,D, = 500, Case-116=0.1,D, = 500, Case-lll5=0.5,D, = 500 and Case-I\4i=0.5,

D, = 1000. Fixed values for this investigation irguar, =20, G, =100,P, =7, M=4, and
m=1. In each of these scenarios, there is a sirmglech in the solution curve, and the steady
solution remains stable for all values of the Itip-parameter ). The flux experiences a
rapid increase within a short range of the lon-ppameter, and after reaching a specific
critical value ofa, a steady-state solution is achieved.
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Figure 5.14a: Solution Curve: lon-slip parameterversus i) Flux Q
(ii) Mean Nusselt numbétu at the heating and cooling wall for the
Case-l :6=0.01,D,=500; Case-ll :0=0.1,D,=500; Case-lll :6=0.5,
D, =1000; with fixedG,=100,T,= 20, P, =7, M=4 andm= 1.

Figure 5.14 (ii) clearly indicates that the non-isothermal flonedaot transition into an
isothermal state for any value of the lon-slip pagger. In addition, the numerical results
demonstrate that the maximum flux gradually de@sasgith an increase in the curvature.
Furthermore, it confirms that the flux increaseshwhigher values of the Dean Number.
Figures 5.18, denoted as Case-l to Case-IV, depict the flowcstires of velocity and
temperature distribution corresponding to the smtuturve presented in Figure 5alat
various distinct points along the lon-slip parameidese figures reveal that the structures
of velocity and temperature distributions exhibihor changes with an increase in the lon-
slip parameter. The effects of the lon-slip par&neain the velocity and temperature

distributions mirror the effects of the Hall paraereas previously described.

Case Il :0 =01, D =500(Stableor alla)
G :lOO;Tr :ZO;Pr =7 M =4 m=1

Case | : 0 = 001, D =500( Stablefor all )
Gr =1OO;Tr =20;Pr =7 M =4 m=1
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Case Ill : & = 05, D_ = 500( Stablefor all @) Case IV : 9 = 05 D =1000( Stablefor all o)
G =100;T =20;P =7; M =4; m=1 Gr :100;Tr =20;Pr =7: M =4 m=1

Figure 5.14: Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig. 5.14a
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5.6 Curved Rectangular Duct for Non-lsothermal Fluid Flow (Aspect
Ratio 3):

Non-Isothermal Fluid Flow through a Rotating Curved Duct with Aspect Ratio of
3 in the Presence of Magnetic Field, Hall, and lon-slip Currents

In this study, the effects of Hall and ion-slip @nts on the flow are investigated, when a
fully developed non-isothermal, steady viscous,ompressible fluid flows through the
centreline of a curved duct of a relatively largpect ratio (3) in the presence of a magnetic
field with rotation. This duct is generated nontieymal by keeping the heated outer wall
and cooled inner wall; the lower and upper walle taken adiabatic. The gravitational
force, pressure gradient force, Lorentz force, @wriforce, and centrifugal force act on the
flow as an external force. These forces are pratdlircehat order by the effects of gravity,
pressure exerted on the flow, magnetic field withllFnd lon-slip current, rotation, and
duct curvature. The pressure gradient forces (@nCieorces) are applied along the duct's
centreline. Therefore, due to the combined actibthese forces, the flow is accelerated
along the centreline direction of the curved diitte spectral approach is used as the main
tool to carry out the numerical solutions. In castr the Newton-Raphson, Chebyshev
polynomial, Arc-length and Collocation methods ased as supporting tools. The solution
curve for the flux versus above-mentioned paramistaesed to investigate the effects of the
parameters Grashof numbe@;), Taylor number T;), Dean Number §,), magnetic
parameteil), Hall parametern(), and lon-slip parameter) on the flow of the velocity
and temperature profiles, and their correspondiogy Structures are examined at various
cross-sections on the curved duct. The results haee presented under several values of
M, m, and at Dean Numbdd, =300 curvature of the du& =0.1, and with the Taylor
number is afl, =20.

5.6.1 Grid Spaces Accuracy

Prior to execute the FORTRAN program, it is reqdiite discuss grid space accuracy. To
achieve good accuracy, it is assumed that the \aflé is three times that dff . Several

pairs of the truncation number®!( N, ) such as (08, @®, 27), (10, 30) and (11, 33) are
used to solve the equations. The flix , mean Nusseitber at the heating wall, and

cooling wall Nu, have been calculated for the above mentioned péirsincation number

(M ,N) in Table-6. The reasonable accuracy of the migalesolutions can be found at
(M ,N)=(10,30).

M | N Q Nu Nu

08 | 24 | 357.2666413022294 3.582898511659145 5.274281332623154
09 | 27 | 357.434473099683Q 3.475725455807831 5.361503057468419
10 | 30 | 357.9893487357052 3.465119587366944 5.662430447047709
11 | 33 | 359.009510810372(0 3.496575983295057 5.435040381200298

Table-6: FluxesQ and mean Nusselt numbiu, andNuy, for distinct pairs of truncation numbers

M and N for fixed 6=0.1,D, = 1000,G, = 100,T, = 20,P,=7,M = 0, m= 0 anda=0.
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5.6.2 Results and Discussion

The characteristics of the flow patterns were atlifistudied while maintaining fixed values
for the magnetic parametdvl], Hall parameternf), and lon-slip parametec) at zero, in
order to investigate the effects of the Grashof pemnG;), Taylor numberT;), and Dean
number D,) on the flow. This examination was conducted wath aspect ratid=3.
Additionally, these findings have been comparedwhiat had already been published. The
solution curve has demonstrated the impact of s¢y@Erameters the magnetic, Hall, and
lon-slip on fluid flow. Their respective flow striuzes at various places are shown when
Taylor number is at, =20, Prandtl number is 8 =7, the duct's curvature is@t=0.1, and
Dean number is dD, =300. The direction of the solution curve is dedoty the dashed
arrow notation {--» ) above the flow structures. In flgures, the external side of the
curved duct is indicated by the right side of edadlet box. In the context of the velocity
profile, the solid lines represent the anti-clockevdirection of the flow, which corresponds
to positive-directed flow ¢y>0). Conversely, the dotted lines represent thekelse or
negative-directed flow y<0) for the velocity distribution. Regarding the teenature
profile, solid lines indicate regions where the pemature ) is greater than zero, typically
corresponding to the temperature at the heateck fédmnversely, the dotted lines represent
regions where the temperature is less than zeten associated with the temperature at the
cooled fence. To create these profiles, incremeintsv=10 for velocity,Ay=0.8 for stream
function, andAT=0.1 for temperature were employed in the program.

A. Effects of Grashof Number G;)on the Fluid Velocity and Temperature

The influence of the Grashof numbég; on secondary velocity (radial and axial) and
temperature is illustrated in Figure 5aiB. Figure 5.15a presents the solution curve of the
Grashof Number@;) in relation to () velocity flux Q) and (i) mean Nusselt NumbeN()

at the heated and cooled walls. These results rasemed with fixed values ofF 0.1 ,
D,=300, T; =20, P, = 7.0,M=0, m=0 anda=0. In the context of velocity flux, a single
branch of the solution curve is identified, boundethin the range of -1170.7Z5G, <1166.
Figure 5.15 displays the flow structures of temperature ankborg profiles at various
Grashof number points. For secondary flow, two swtmim vortex flows are observed @t

=0, but no temperature distribution is generatetthiatpoint. In contrast, a simple contour is
found for the axial flow. Most of the flow is conteated near the top and bottom of the
duct. The structure of the solution is influencedtloe increasing Grashof number, causing
both positive and negative flows to grow, resultingasymmetric flow structures. This
asymmetry is attributed to the force of gravity.ditcbnally, it's noteworthy that the Nusselt
number at the heating wall is higher than thahatdooling wall. The temperature deviation
undergoes gradual changes with an increa&.in
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Figure 5.15: Solution curve: Grashof Numb&; versus i) flux Q (i) Mean Nusselt numbau
at the heating and cooling wall for fixé€d0.1, T,= 20, D, = 300,P, =7, M =0, m= 0 ande=0.
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Figure 5.1%: Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig.5.1%.

B. Effects of Taylor Number (T,) on the Fluid Velocity and Temperature

The impact of the Taylor numbef, ] on secondary velocity (radial and axial flowsyan
temperature is presented in Figure a-b6 Figure 5.1@ displays the solution curve of the
Taylor Number ;) with respect toif velocity flux Q) and (i) mean Nusselt NumbeN()

at the heated and cooled walls. These results rasemed with fixed values ofF 0.1 ,
D,=300,G; =100,P, = 7.0,M=0, m=0 anda=0

It is observed that the solution curve is boundedhe negative direction of Tr, and for
positive T;, it represents a decreasing function, indicathmag the flux gradually decreases

with increasingT,. In Figure 5.18, the flow structures of temperature and velocityfifes
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are depicted at various points along the Taylor memFor secondary flow, both two-
vortex and four-vortex structures have been idieatif The strength of the flow pattern
gradually weakens with an increase in posifiveHowever, in the negative direction of Tr,
a critical zone is observed. Within this criticalne (approximately -174.62 & < -120),
four asymmetric vortex structures are generatethersolution curve. For the axial flow,
simple contours are found. The structure of thepenature distribution is presented in the
third row of Figure 5.16b. Notably, for positivg, the values of the Nusselt number at the
heating wall are lower than those at the coolindl.wihe cooling wall's temperature
dominates over the heating wall Bsncreases in the positive direction. The streraftthe

flow pattern gradually weakens with an increaspasitiveT,.

(1) ‘ (i)

o . Ny, at cooling wall
=r - N, at heating wall
R : 8

5 sl \ [ N

[ .
1m0 F 2+ —
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Figure 5.16: Solution curve: Taylor Number, versus i) flux Q (ii) Mean Nusselt numbétu
at the heating and cooling wall for fixéd0.1, G, = 100,D, = 300,P, =7,M =0, m = 0 anda=0.

Single branchof steadystatesolution
N

T _-17462 1623 13593 100 0 20 100 500

Figure 5.16: Streamlinesy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig.5.16.
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C. Effect of Dean Number D,) on the Fluid Velocity and Temperature
The influence of the Dean Numbé,j on secondary velocity (radial and axial flowsgan
temperature is depicted in Figure 5d¥ Figure 5.1@ displays the solution curve of the
Dean Number@,) concerning (i) velocity flux@) and (i) mean Nusselt NumbeNq() at
the heated and cooled walls. These results areqexs with fixed values a@= 0.1 ,T,=20,
G; =100,P; = 7.0,M=0, m=0 anda=0.

(i) (ii)

20—

Nu, atcoolingwall
N& atheatin(wall

1000 [~

500 -

_>'O

0

L L L L 1 L L L L 1 L L L L L L L L 1 L L L n 1 n n L L
0 1000 2000 3000 [¢] 1000 2000 3000

— D, — D,
Figure 5.17a: Solution curve: Dean Numbeéx, versus i flux Q (ii) Mean Nusselt numbéiu
at the heating and cooling wall for fixée0.1,T,= 20,G, =100,P, =7,M =0, m=0 anda=0.

Single branchof steadystatesolution

Dn — 100 300 500 750 o00a 1500 2000 2500 2635.5
Figure 5.1%h: Streamlinesy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig.5.1 .
A single branch of the solution curve is obsensghnning a wide range of Dean Numbers.
This curve represents an increasing function, gigrg that the flux gradually increases
with an increase iD,. However, the steady solution ceases to exist vehbigh-pressure
gradient force is exerted on the flow, approximatglD,> 2645.53. The maximum flux is
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found atD,=2645.527, reaching a value of 1282.12. Figure Ib.4flowcases the flow
structures of velocity and temperature profilesvatious points along the Dean number
corresponding to the solution curve in Figure &.1As the Dean Number increases,
asymmetric vortex solutions become evident. Thengfth of velocity progressively
intensifies. In terms of temperature, it's obsertieat the Nusselt number values at the
heating wall exceed those at the cooling wall. Tasgiation becomes more pronounced for
large values oD,, and at such magnitudes, the temperature disoibbecomes chaotic.

D. Effects of Magnetic Paramete(M) on the Fluid Velocityand Temperature

The effects of the magnetic parameter on the secgr{dadial and axial flows) velocity and
on the temperature are illustrated in Fig. &:-b8 The solution curve of the magnetic
parameterNl) versus i) the flux @) and (ii) mean Nusselt NumbeXy ) at the heated wall
and at the cooled wall are shown in Fig.a i& fixed valued ob= 0.1 ,T,=20,D,=300,G;
=100,P,; = 7.0,m=0 anda=0. These solution curves are the decreasing funttierefore, it
can be concluded that flux decreases with the asereof magnetic parameter and after a
specific value ofM; it has a steady-state solution. For the tempezratiistribution, the
values of the Nusselt number at the heating wallnégher than with the cooling wall until

a certain value oM, and thereafter it has a reversed effect. Thetstres of vortex flow,
contours of axial flow and temperature distributiveve been demonstrated in Fig. 118
corresponding to the solution curve of Fig.a1B-(ii) at several points of the magnetic
parameter. In this case, two vortices streamlimesttcondary flow, and simple axial flow
contours have been present for all valuesMof As M increases, these flows rapidly
degenerate into weak patterns. The positive dideséeondary flow (solid line) dominates
the negative directed secondary flow (dotted liagy this tendency grows Bkincreases.
The centre of the axial flow contour has moved e&tds the duct's centre. It has been noted
from the solution curve shown in Fig. 5dlB) and the temperature structure in the third
row of Fig. 5.1® that the non-isothermal flow gradually transfortoghe isothermal state
for a particularly large value of the magnetic paeter.

250 (i) (ii)

Nu, at coolingwall
Nu, at heating wall

25 50 75100
—> M > M

Figure 5.18&: Solution curve: Magnetic parametdrversus i) flux Q (ii) Mean Nusselt numbeu
at the heating and cooling wall for fixéd0.1,D,, = 300, T, = 20, G, = 100,P, = 7, m= 0 anda=0.
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Single branchof steadystatesolution

Figure 5.1&: Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.5.1&.

E. Effects of Hall Parameter {n) on the Fluid Velocity and Temperature

The effects of the Hall parameten)(on secondary velocity (radial and axial flows@an
temperature are depicted in Figure %10 Figure 5.18 presents the solution curve of the
Hall parameterr() in relation to (i) velocity flux Q) and (ii) mean Nusselt Numbéxy) at
the heated and cooled walls. These results aremexswith fixed values @i= 0.1 ,T,=20,
D,=300,G, =100,P; = 7.0,M=5 anda=0.

For all values of the Hall parameten)( the solution curve consists of a single braridte
flux experiences rapid increases within a shorgearspecifically within & m< 5. After a
specific value ofm is reached, a steady-state solution is establishedhe velocity
distribution. Figure 5.1®displays the structures of vortex flow, contoursuaal flow, and
temperature distribution at various points along Hhell parameter corresponding to the
solution curve in Figure 5.89(i)-(ii). For secondary flow, two vortices are consistentl
observed, and the axial flow maintains simple corgdor all values of m. The flow pattern
experiences slight changes as m increases. Thraughe range of & m < 5, the Hall
parameter leads to a gradual increase in the flsteength, after which the flow pattern
remains constant. In terms of temperature, it'swotthy that the cooling wall temperature
consistently dominates over the heating wall tempee, and this dominating effect
remains constant with changes in m for all caseBe#n Number. Nevertheless, gravity's
influence contributes to an asymmetrical shapaeéntémperature distribution.
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Figure 5.1%: Solution curve: Hall parameter versus i{) flux Q (ii) Mean Nusselt numbeu
at the heating and cooling wall for fixéd0.1,D, = 300, T, = 20, G, = 100,P, =7, M = 5 anda=0.

Single branchof steady state solution

Figure 5.1%: Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.5.1%.

F. Effects of lon-slip Parameter @)on the Fluid Velocity and Temperature

The effects of the lon-slip paramete) on secondary velocity (radial and axial flowsfian
temperature are illustrated in Figure 529 Figure 5.2@ presents the solution curve of the
lon-slip parameterd) concerning (i) velocity flux@) and (i) mean Nusselt NumbeN()

at the heated and cooled walls. These results rasemed with fixed values ofF 0.1 ,
T,=20,D,=300,G; =100,P, = 7.0,M=5 andm=1.

The solution curve exhibits a single branch fovalues of the lon-slip parameter. Within a
relatively narrow range of the lon-slip parametapproximately O< o < 25, the flux
experiences a sharp increase. Afterward, the iserb@comes gradual, and eventually, a
steady state is reached after a specific value &igure 5.20 showcases the structures of
vortex flow, contours of axial flow, and temperautistribution at various points along the
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lon-slip parameter corresponding to the solutiomveuin Figure 5.28 (i)-(ii). Simple
contours are consistently found for the axial flamgd two vortex streamlines of secondary
flow are present for all values af The increase in leads to slight alterations in the flow
patterns. The positive flow dominates over the tiegalirected secondary flow (solid
streamline) for all values af. Within the range of & a < 5, the flow strength gradually
intensifies, and afterward, it remains constanis livorth noting from the solution curve in
Figure 5.2@ (ii) and the temperature structure in the third rowFigfure 5.20 that an
increase in the lon-slip parameter does not r@salttransition from non-isothermal flow to
an isothermal state. However, the influence of igyasontributes to an asymmetrical shape
in the temperature distribution.
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Figure 5.20a: Solution curve: lon-slip parameterversus i flux Q (i) Mean Nusselt numbéiu
at the heating and cooling wall for fixéd0.1,D,, = 300, T, = 20,G; = 100,P, =7, M =5 andme=1.

Single branclof steadystatesolution

30.0100.0

Figure 5.2(: Streamlineg (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.5.2G.

155



Chapter 6

Straight Duct Flow

6.1 Basic Governing Equation:

Continuity equation:
0.q=0 (6.2)
Momentum equation:

Z_q+(q.D)q :F—le—U 0%q +£(J 0B)-2(Q0q) + 9T
t p P

(6.2)
Energy equation

aT __K 6.3
at+(qD]])T pCpDT (6.3)

Ohm’s Law:
J=0(E+qB)
Due to the action of Hall and ion slip current be fluid, Ohm's law is generalized

J=ou (q DB)—BE(J [B)+%(J 0B) OB (6.4)

0 0

6.1.1 Momentum Equation with Hall and lor-slip Currents through a Rotating
Square Duct.

Let us consider viscous, laminar, incompressibleo-dimensional, MHD fluid flow
through the straight duct has been placed in dingt@oordinate system, whids rotated
with an angular velocitg around its verticalz-axis and, y-axes are perpendicular to

Due to square duct flow, the governing equatiomscansidered as in ter of Cartesian
coordinate system. Lgtvelocity whose components eU,Vandw, which directed alon

the directions of x, y anc z respectively andy= (0, 0, g )s the gravitaonal vector. The
geometrical configuration with curved duct is shawifrig. 6.1:

& i y
I\

Fig.6.1 Geometrical model of straight duct
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Suppose the straight duct rotates about its véttiaais,

zZ —

But [1. Q=0 gives thata;2
z

Or, Q, =constant Q, (say)
0 Q=0 0, Q,)=kQ,

Consider the centreline direction of the duct ketaas along-axis, and the direction of the
magnetic force is transverse yaxis, which is along-axis. Therefore the magnetic field

vector is defined a8 = (O ,0, B, )
0B

Similarly 0. B=0 Or, —==0
Z
Or, B, =constant= B, (say)
0 B=(0,0,B,)

Again the current density vector Js= (Jx, Jy,JZ) :

Consider the direction of propagation is consideakhgx- andy-axis and does not have
any variation along-axis.
622 =
0z
Or, J, = constant= 0(say)

0 J=(j, J,,0)

Now, g =iu+ jv+kw

O q.Dz(iAu+jAv+I2W).iAiﬂfin2 —ud vl
ox "dy o0z ox oy o0z
O (q.0)g=| 0l vl . (fu+ jv+kw)
ox oy oz
A O0u ou.  oOu) + OV Ov _oOv) o Ow Ow Ow
SHU—+V—+W— [+ ]lU—+V—+W— [+K U—+V—+W—
ox oy 0z ox ody 0z ox oy 0z
2 00, 07 0%
x> oy* o7
2 2 2 .
00% = a—z+a—2+a—2 (Tu+ jv+kw)
ox~ oy° o0z
_~(0%  0°u 0% ), -(0W 0%V 0V, ~(0°w, d°w 0w
S| —St+—+— [t]j| —S5+—+— |[tKk| —+—5+—
x> oy* o7 x> ay* 07 x> oy’ o7

Pk
Again @xq=|0 0 Q,|=-QM +Q.uj
u Vv W

Also F=iF, + jF, + Kk,
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F] ok
NowqOB=|u v w |=vB,i-uBj
0 0 B,
7K
JoB=|J, J, 0 |=i(3,B,)-(3,Bs)=3,Bsi —3J,B,]
0 0 B,
] j k
(VoB)OB=|J,B, -J,B, 0 |=(-3,B,°)-(9,B,3)i=-9,B,57~3,B,%]
0 0 B

0

Thus generalized Ohm'’s law =gy, (q UB) —Bm(\] [0B) +%(J [OB) B becomes

0 0
~ 2 ~ ~ 2 m ~ o ma ~ o
Ji+3, 0+ JZKZO'/Je(VBOI —UBOJ)—B—(JyBOI —JXBOJ)+?(— J,B,* 1 =J,B,? j)
0 0
Therefore
‘Jx = J/'[eVBO _rnJy _ma‘Jx (1+ ma)‘]x +rnJy :UIUe VBO
J, =-ouuB, +mJ, -mad, t  Or, (1+ma)d, -mJ, = -0y, uB, (6.5)
J,=0 J,=0

To find the value ofJ,and J , multiply I equation of (6.5) bym and multiply 3¢
equation of (6.5) by(1+ma) and then adding them, it becomes
m(1+ma)J, +nJ, +@+me)?J, -ml+ma)d, =gy, VBm-oyy, U, (L+ma)

or, [ +(+ma)*1J, =gy B[ vm-u(l+ma)]

or j = [mv—(@1+ma)u]

ou.B
YT ma)? +me] e

e

Again multiply T equation of (6.5) by (1+ma)and 2¢ equation of (6.5) byithen
subtracting, it becomes

Q+ma)?J, +m(1+ma)d, —[md+ma)d, -, 1= oy VB (1+ma) +mol, ug,

Or, @+ma)*J3, +m?), =ou VvB,(1+ma)+mou uB,

Or, (1+ma)*+m?]J, =0u VvB,(1+ma)+mou_ uB,

Or,[(1+ma)?+m?]J, =[v(l+ ma)+mu]ou B,

mu + (1+ ma)v
(1+ma)? + m?

O ‘]x = a;ue BO
Therefore JCB =J B, - J,B,]
Or, l(‘] xB):%f— Byl i
p p p
_o,B | mv—(1+ma)u iA_J,ueBg v(l+ma)+mu |-
p | [+ma) +m? o | A+ma)® +m?
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Now,
—(|u+jv+kw)+| u@+v@+w +v—+W Izua—w+va—w+wa—W
ot 0X ox oy

0z
=(iF, +JF, +kF,) - = (@ jap kapj
P

ox "oy 0z
~ (0%u 0°u 0°u ), » (0% 0°v 0°v ). -~ (0°w 0°w 0°w
tiv|—+—+— |+ jUu|—+—+— |[+ku + +
x> oy* 0z’ x> oy* 0z ox> oy* o0z’
( QM +0Q UJ)

2 _ . 2 . N
, OBS | mv (1+2ma)u - _ OleB; mu+(1:ma)v S BTk
p | [+ma) +m? P | [+ma) +m?

And equating thé th, jth and kth component, it becomes
2 2 2 2 _
@+ u@+V@+W@ =F - 16p d l:+6 l;+al: +Z20v+a’ueBO mv (1+2ma)u
pax ox* dy* o0z o | [+ma) +n?
2 2 2 BZ
6_v+ uiv+va—v+ Ul FZ—lalo 0\2/+6\2/+0;/ —2QOu—U’ue 2 mu+(142-ma')v
poy (o oy oz P | (1+ma) +n?
2 2 2
ow ud_N+V6\_N+W6\_N “F,- 16p 0 W+6 W+6 w + BT
Ioaz aXZ ay2 aZZ

Again for the Energy equation,

2 2 2
(q.O)T = ua—T+ 6l+ ull and DZT:0T+0T+0T
ox oy 0z ox> ady® 0z°

Hence the governing equations in terms of Cartessandinate system are as follows:

Continuity Equation:
ou v, ow_ (6.6a)
X oy 0z

Momentum Equation

2 2 2 2 —
du (au du au] - _1lop, [(9u d°u du j+mov+%8° {mv (1+mﬂ)u} (6.6b)

—+ U—+v—+w— —+Y —+—+—
ot oz pox | ax ay s P | (1+ma) +n?

Q/{ua\/w@ W@j F2—16—p+ @ a_zv i} ZQOU—U’%BO L+ may (6.6¢)
ot y oz pdy \a¢ o o7 p | (1+ma)* +nt

2 2 2
LN TAVCURWE 3_10_p+ oW, oW, OW + 59T (6.6d)
ot oy oz poz o Oy 022
Energy Equation
a_T+ua_T+Va_T Wa_T: k OZT +62T +62T (666)
ot ox  ody 0z pC,\ox*> oay* oz
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6.2 Governing Equations for Straight Duct Regardingto Current
Study

6.2.1 Transforming Coordinate Variables in Governirg Equations:

Consider a thermally fully developed, viscous, mgoessible, tw-dimensional, MHD
fluid flow through a curved duct of heig2h and width2d so that the aspect ratio of tl
duct id =h/d . To compar our obtained results with the previously publismesults or
the curved duct flow, it is required to intercharthe coordinate axy andz from each
other of the rectangular Cartesian coordinate syshe this @se, the duct system is rota
around its verticaly-axis with an angular velociQ .

1
i A

Fig.6.2: Geometrical model of the present straight squact

To get the modified governing equatiolt is required tanterchange the variabliy and z,
and the velocity componev andw each other in the equations from (6.6a) to (6.

Thus the modified governing equation for incomgible fluid is

Continuity Equation:
ou aw ov

hATLA A o (6.7a)
ax 0z oy

Momentum Equation

u fou, ou au) [ 10, [0%u 0 %) o OUBS [ mw-(Lrmalu | g 7y

a \ox az oy pox (o % oy p | (@+ma)’ +n?

ow [ aw, ow.  ow 10, (0w 0w, o°w OB | mu{1+mojw

—HUu—+Ww—+v— |=F ——+Yy —+—+— u- 6.7C

a | o azayj2 axzazzafmo p | (1+ma) +nt (6.7
2 2 2

Q/+ UQ/+W§/+ ul F3_£6_p+ 6_\2/ 6_;/_'_6_ + 9T (6.7d)

a (ox oz oy pdy \ox* o' o

Energy Equation

o7 9T 40T 0T _ K 62T L0 ot
ot ox 0z ay pC 622 6y
Now it is assumed that the body force is absentadinthe variables are independent z

exceptp due to the fully developed flov

(6.7€)
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i.e (F,F,,F;)=(0,0,00 & — aAl =0 but gp #0 where, A =fluid variables. Therefore the

above equations are reduces to the following form:
Continuity Equation:

ou @_o (6.8a)
ox oy
Momentum Equation
2 —

u, o, B 10D, 0% O%) o, OB [ mu—(l+malu (6.8b)
ot ox dy pox \ox p | [@+ma) +m?

2 2
é/+uﬂ/+vé/: Ea_p U a—\zl a—\zl +ﬁgT (6.8¢)
o ox dy poy (ox Oy

2 2 2
w, ow ow__1op, (0w 0| ) OWE[ mur(lrma oo

x dy poz |\ p | @+ma) +nt

Energy Equation
aT A aT aT kK (0°T N 0°T
ot ax ay pC ox> oy’

(6.8e)

Non-Dimensional Analysis:

To make dimensionless form of the governing equat{6r8a)-(6.8¢e), use respective length
d and the kinematic viscosity, the non-dimensional uniform velocity is defineg b

U, = d_ . And it has been introduced some dimensionlesatijigs
X
X'== y:l; 7= % u'zgu; v':gv;
d d d v v
2
W,:EW; t’:Lt, py: d p’ and T’:L
v d? Y ik AT

where x',y and z'are the non-dimensional horizontal, vertical andalaxoordinates
respectively; u’,v',w’ are the non-dimensional velocity components in direction of
x', y andz' respectively; t is the non-dimensional timeT' is the non-dimensional
temperature angy’ is also the dimensionless pressure.

Now we calculate necessary terms which are invoingde equations (6.8a)-(6.8e).

x=dx'; y=dy; z=dZ ox=dox; dy=ddy, 0z=doZ
=9 at—d—zat

v
u:%u', v:%v’, W:%V\/ auzgau’; avzga\/; awzgav\l
p= ’;U; p; T=ATT op = ‘(’j": op'; 9T =ATaT'
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ou U2 ou’ ov _ v ov'

o d ot ay d? oy

v _uvlov 9 _pu” op'

ot d? ot dy d® dy

a_VV U 6\/\/’ ap_pUZ ap,

ot d° ot 0z d° o7

ow _ v ow 5 z )
oy a7 oy 6T:i[6Tj a[ATaTj AT 9°T'
T U aT or2  or\ or orl d ox d? ox'?
a o ﬁ:i(ﬂJzi(EﬂJzﬁﬂ
a_Tzﬂa_T' dy> odyloay) oyl d ay ) d? ay?
ox d ox

oT _AT oT’

dy d dy

Put these terms into the equations (6.8a)-(6.8e).

From continuity equation(6.8a), yields
v, v
d?ox  d? oy

u- Momentum equation(6.8b), yields
v*ou' v ,uvou v ,uv U _ 1puap v v’ v o
e e | L SV et +u| = +—
d*at" d d?aox d d? ay p d® ox d?® ox'? d*® oy®
L1 o, B?
p A+ ma)® +m?

+2Y wQ, (muw'—(l+ma)uu’j
d d d

Or,U: 6u’+u,6u'+\/6u’ __ Y o, v 62'+627u’ +2£WQO+£ ol B [ mw — L+ ma)u
Fo Flo? o) d d (L+ma)? +n?
or, o, 6u’+\/y o, azu'+62' +dj QQ W d? ECT/{,BS mw — (L+ma)u
aH K oy X ) A d Zd p | @rmai+nt
Or, 0u ou, ou __op AR ﬂZQ W+ d? gy B (mw - 1+ ma)u'
ot' 6)( dy ox |(ox* oy*) v v op @A+ ma)® +nt

' ' ’ ’ 2, 2! 2 2 !
Or,_, Ou, ou _ du __6p+(au+6 ]ZdQW da,ueBb(mA/—(1+ma)uj

ot X ay X | oxX? oy pu | @+ma) +n?
o ,ou  ,ou _ op ou o M
+U—+V—=——"+ + FTWH————
A oX ay X P o L+ma)’ +n?

2d2

0 (mw - @+ ma)u)

, Is the Taylor number angl = %5 the Magnetic parameter.
pU

where,T =

v-Momentum equation(6.8c), gives

v oV LY Ua\/+UV,U6\/ 1,0tf6p uaZ\/ v oV
Fo d dw d Py pd dy \F o & oy

JﬁATT
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2 ! 2 ! 2 2 ’ 2 24, 2y,
U_a_V_{_U_u,ﬂ_'_U_ a_V —U_a_li+u_ oV + a_V + ,BgATT'
d®at’ d® ox d* dy d® ay d*| ox® oay®

] 2 3 AT
or Xy O = B[ T O ), SHGAT

ot' o0X ox' U

] ] ] 2.,

Dav,+u,av, vﬂ _op 6\/2 aV+GT
ot ox dy ay ox' 6y
whereg, = d* ,BgAT is the Grashof Number.

v?
w- Momentum equatior(6.8d) gives
v? ow R ow uv,iyz_lp_cﬂa_gwiamriazw
d3 ot d d? x d d? ody p d® oz d® ox'* d*® oy?
2
'Q _ a-lueBO (ﬂur_'_u(l-'- ma) Vv!j
p[(1+ ma)® + mZJ d

w W an _1pvtop (a?w azwj
d3

o d® oz x? oy’
—ZZU'Q 9By [mu +(1+ ma)V\/]
d ,o[(1+ma) +mJ d
or (W, ow . ow)__op (9w 9w
| — U —+V — |[=—— + +
ot' ox' ay 07 x> oy®
_w d? o1,B?

d T p[(1+ma) +m] d v? [mu+(1+ma)V\/]

ow 0w, 0w _ op (azw a?wj
+vV - + +

t’ ox’ dy 07 ox'?  ay®
2 2
—ﬁQou' d"gp,B, [mu +(1+ ma)V\/]
v pu[(1+ ma )? +m]
2
0 M,+u %,+ %—Dn 49 vx2/+ a_V;/ —TU - [mu'+(L+ma)w]
ot 0X oy ox' oy (I+ma)°+m
D __9p or - d* ap or d°G is the Dean Number Wherepz_@ is the
" 0z' pu? 0z pu° 0z

pressure gradient

Again from Energy equatior(G 8e)
oT oT oT _ 2T OZT
—+u—+v
ot 0x ay pC

or, YA 6T'+u AT oT' Ny O'II'

AT 0°T' + AT 0°T'

_ k
2 o dt dax d y  £C, (dz ox?  d? asz
2 27
or, L atdU Y ary U YUpry T o K 1 50T, 0T
d o' d ox' d N , d ox'c  ay
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or. OT', .oT' o7 _ k d’ AT[&ZT' aZT'}
, + +v +

u = - |4+
ot' ox’ dy pC, vAT d? |ox'? dy?
or oT', .oT" o7 _ k 9’1" 9T’

) +u +V = +

ot’ ox' oy upC, |ax?  ay’

' ' ' 21 21 uoC )
AT ARV AR A B ,  Where,P. = and) is the Prandtl Number.

ot’ ox’ oy P |ox?* oy’ k
Now dropping the primes on the variables, it cambiten as the above equations into its

non-dimensional form as follows:
Continuity equation

ULy (6.9a)
X ay
Momentum Equation

ou, au ou_ dp (0u. odu
oty —= = —+ — [+T w+ mw— (1+ma)u 6.9b
Vo ax(axz j (1+ma)+mz( (L+ ma)u) (6.9b)
2 2
a_v+uﬂ/+vﬂz—@+ a—V+ﬂ +GT (6.9¢)
at ax ay W 2 2
2 2
ﬂv_'_u%_'_ @:Dn +(%V+ %vj—tu—m [mu+(1+m)V\d (69d)
Energy equation
2 2
a_T+ua_T Va-[:i 0'I2'+6_'£ (696)
ot 0X oy P \ox® oy

Now let us consider the stream functioe ‘;—‘f/ and v=- %_lﬂ , These are the secondary
y X

velocity in terms of stream functiay which satisfies the continuity equation (6.9a).
2 2
To verify L.H.S.= 9 6_1{/ +i_(— 6_1//j=6_¢1_6_¢1 =0 = R.H.S.
ox\ dy ) dy\ o0x /) oxdy oxady
Now by using these stream functions in to (7.2(8)2.4), it becomes

From equation (6.9b)
du du du_ dp (azu’ 0%
+ -+ +

& Cox oy ox 3y (= @ ma))

]+Tw+'\/I

x> ) " @rma)*+nt

or, _(aw] a_wi(a_w] ( aw] [ wJ
ot\ ady dy ox\ 9y ox

ap o (oy oY

= axz( J ( J (1+rm) +rrf( (1+W)Wj

L Pv sy s o (o ma®
0@7 o ody ox oy O oy
T (6.9¢)

N v ov_ dp 0% a
tUy—+v—=—T 1% +

& ox ay oy ox

Ly, M
oy @rmay e
Gr
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From equation (6.9c):

ov u6v+ 6_\_/_ @ av 6 + 6T
o ox oy ay a ay

o S EE A3 L2 S
ot ox ) dy ox ox ay ox*\ ox) oay*\ ox
O 0wty oy iy __dp o'y _ oy P

otox ady ox? ax dyox  dy ox3 6y26x
From equation (6.9d):

2
W W W W W M [mu+ (1+ma)w
& ox Toc oy (1+ma)? +m
Or, QW OV _0¥ ou_ 0w 0w _r(oy) W Mm% & 1+ ma)w
oy ox ox oy o oy '\oy) (1+ma)?+m?
ow_OWow_ W aw_  0°w 0w __ 0V M ow
=Dt T T M (L ma)w
ot 9y ox ox oy ox* oy* "oy (+ma)’+m* | Oy

From equation (6.9e):
oT oT  oT _ 1 (0°T 0°T
+tU—+V—=— | —+
ot ox dy P (ox? oay?
or, 9T 0@ dT _oyaoT _1(0°T o°T
ot dy ox ox dy P ox? oy
o OT ,(0@dT owoT)_1(0°T 0°T
ot dy ox 0x oy 2 ay
Momentum equation
Radial u -component

Py oy wwFy__ » Fy My, . M (”M’“a*m")%@ (6.10a)

Xy o ady XOF  ox ooy o " @rmapnt
Vertical v -component
0% 0wty oy o'y __op oW _ o . (61

30x 0y ox®  ox oyox  dy ox°  oyiax
Axial w -component
w oyow_oyow_ dw Pw oy M {m oy +(1+rm)w} (6.100)
ot dy ox 6x6y o oy oy (I+ma)’+nt oy
To find the unique equation for streamlines of skeondary velocity, it needs to combine
the tangential and vertical component of momentgomegons. To do this differentiate the
equation (6.9a) with respect yand equation (6.9b) with respectxtpand then subtract
them.
Now by differentiating equation (6.9a), with resp&xdy gives

Y Y oY, oY _%, 63w 63‘// +Tw+ M [mvv— (1+nn)?§jﬂ

W 5@ oy oy Ox oy’ 39 OXGXZW o (@+ma)*+nt

O’y LYY oy By 'y oy oy oy
oy’ ay’ oxdy Oy oxdy’ 0yox dy>  Ox oy’
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__0%p p, 0y oY, s MW, M (maw A+ma) wj (6.11a)
0yox Oxzf?? o' Ty +ma)?+m oy oy*
Again by differentiating equation (6.9b), with resptox gives
3{_ Oy oy 'y, oy aﬂ :a{_ap_a%a_ oY +GT}
ox| otox dy ox>  ox dyox ox| dy o dyox
Y Yoy wdy Fydy oy Fy __Fp a“w Y LG (6.11b)
% oy o dy oK axch/ax a><d§/ax2 gy X' oyox OX
Now subtracting equation (6.4)from (6.11]) gives
0%y Yy oy Oy 0% oy oy oy
otoy* dy* oxdy Oy oxdy* Oyox dy* Ox dy’
O’y Yoy oyoy Oy oy oy oy
ot ox* axay ax2 dy ox*> ox* dyox Ox dyox”
__op, oy aAerT ow M [maw_ (1+ma)32¢,j

dy oy*

Hox Oy (L+ma)+nt
LOp Loy, oy oT

My X R X
By writing this in order wise
a (a%aZwJ:a% Oy | Ay _dwdy dy dw oWy _dydy
atl ox> ay® ) ox* oay*ox® ody* Ody® oxdy Ody oxdy® O0yox dy°  Ox ody°
Yy oydy oy oy oy oy , oy
oxdy ox> dy ox> ax 6y6x Ox dyox® ox*dy”
+Tra—\iv+—'vI (ma—w—(1+ma)an Gra—T
0y (@+ma)>+m’| dy ay? ox
Or_(at// 0 wj 0y, 0w 0y oy 0%y _oydy
otl ox> ay* ) ox*  ox*ay’ ay“ 0y oxay> ox oy®
2
0y oy oy T W, |v|2 2(maw (1+ma)al/jj Gra_T
dy ox® ox 0yox® dy (@A+ma) +m ay 0X
Hence the central line (axial) direction of Momentun equation
W, oy ow_oy w_ o oW 0w oy M {maw

e s +(1+ 6.12a
& oy ox oxdy ' oc o oy (Lrmayem ay(ma)w} (6422
Stream line for the secondary velocity of Momentunequation
APy Y\ 'y, , o'y | o'W _dy O’y oydy
otl ox> oy* ) ox* oxPdy> oy* 9y oxdy® Ox ody°
3 3
Yoy oY Y pow, MWy @) 6 0T (6.2b)
dy ox> 0x dyox® 0y @+ma)’+m? Ay ay° ox
And the Energy equation
2 2

IT (9% oT _opor)_ 1107, 0T (6.12¢)
at dy ox 0Ox 0y ox° ady
It is now looking forward to put the transformatipe hy'.

Since the non-dimensional transformatipa dl = y=dy
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Thereforedy=hy = y:Ey O y=ly,

wherd =h/d is the aspect ratio of this duddience, by usingy=ly' in to the equations

(6.12a)-( 6.12c), and thereafter remove prime as tariable for the sake simplicity, it
becomes

The central line (axial) direction of Momentum equaion
ow, logow_loy ow_ 0w, 10w 1T oy M {1ma¢/

—+-——--——=D + Y +(1+ma)w}

atlayaxlaxay ”?layz|5(1+ma)+m2
ow 62w 162w 1oy ow dwow ) 1_ oy M 1 oy
0 —=D,+ T +(1+
a " oo |ay2 |{axay ayaxJ | "oy (L+ma)?+nt | My HArmaw
Stream line for the secondary velocity of Momentunequation
gaszria?w aw 2 3y 1a¢/ _loy &y 1oy oy
ot ox® 12 9y? ) ox* |Zaxay N ay* 1° ay oxdy? 1° ox ay°
Loy 1oy oy liow, M (1 ow (+ma) ) . oT
| oy ox® | ox dyox® | | dy 12 oay? " 0x

"oy (L+ma)?+m?
g(azw+iazwj W, 2 'y 1oy _ 1oy Y _1oywdy 13y dy
ot

x> 1% oy® ox* Izaxay |4 ay* 1° dy oxay? |3 ox ay® | dy ox®
L0 Oy Tow, M1 ow  M@+ma) 10w o
| ox ayox®> | ay (@+ma)>+m?l dy @+ma)®>+m?l12 ay> ' ox

Energy equation
aT 1(61// oT oy OTJ 1 {OZT +iﬂ}
ot |1 {dy ox 0x dy x> 1% ay?
For steady flow, the fluid properties are independ# time, therefore these equations can
be written as follows:
Finally the central line (axial) direction of Momentum equation

w 1w, 1[a¢//am awamj Ty M 1 0y M(l+m)
D+ —_— ——— M
Y |Zay2 Xy dyox) | dy @+rma)P+ntl oy (L+ma)’+n?
Stream line for the secondary velocity of Momentunequation

[a“w L20y 1 a“wJ [61// 1 anaz/x 1[61// 16341/]641/

w=0 (6.13a)

X' 1Zox%y’ 1* oyt o 120xdy oy 1\dyad 12 oy
I ay (1+ma)2+m 1 ay (1+mcr)2+m2I2 dy? Tox
And the Energy equation
2 2
1 CLT+1<LT _1(o¢goT _oyoar)_, (6.13c)
x> 12 oy? dy 0x Ox oy

The boundary conditions are as follows :

W1 y) = wix£l) =(+1y) =

(%—fj(il)_/)zéﬂ(x,ﬂ):(%j(x,ﬂ):o (6.130)
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6.3 Straight Square Duct for Non-Isothermal Fluid Flow:

Non-Isothermal Steady Flow through a Rotating Square Straight Duct with Hall
and lon-slip Currents

This study investigated the fully developed visgousn-isothermal, steady, laminar,
incompressible, fluid flow through the centreliffeacstraight square duct in the presence of
the magnetic field; Hall and lon-slip currents. hake the non-isothermal state of the flow,
the right hand wall of the duct is considered astéet whereas left hand wall is cooled; the
lower and upper walls are considered as adiabAticonstant pressure gradient forces
(namely Dean Forces) are applied through the dergréirection of the duct. Also, the
external forces such as the gravitational forcetehtz force, pressure gradient force,
centrifugal force , and Coriolis force act on tteM. The Lorentz force is also modified by
applying the Hall and lon-slip currents. The Gaoweg equations are obtained from
Continuity equation, Navier-Stokes equation anergy equation. The spectral method are
applied to find the numerical solutions as the ntawl, whereas Chebyshev polynomial,
Newton-Raphson, Collocation, and Arc-length methads used as secondary tools. The
effects of the parameters, namely Grashof numBgr Taylor numberT;), Dean Number
(Dr), Magnetic parametév(), Hall parametern(), and lon-slip parametet) on the flow of
the velocity and temperature distributions are stigated by the solution curve of the flux
versus above mentioned parameters and their comdspy structures of the flow pattern
are studied at several distinct point of the straiguct. As the new findings, the results are
shown under the various distinct valueshdf m and o at Dean Numbeb,=500, 5000,
10000 with Taylor number is fixed &=20.

6.3.1 Grid Spaces Accuracy

Prior to execute the FORTRAN program; it is necgsda discuss about grid space
accuracy. To achieve reasonable accuracy, it isineto select the equal values fist
and N, because of the duct's square cross-section.fllireQ has been calculated for
several pairs of truncation numbefd (N , ) such asi@§ (18, 18), (20, 20) and (22, 22).
These are displayed in Table-7.

M | N Q

16 | 16 | 221.0305027708467
18 | 18 | 221.0309667187638

20 | 20 | 221.0309062038524
22 | 22 | 221.0308693799025

Table-7: FluxesQ at distinct pairs of truncation numbeké and Nfor
fixed G, =0, T, = 20,D,=500,P,=7,M =0, m=0 anda = 0.

This table shows that the numerical results arficerfit accurate at\l N )=(20, 20).
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6.3.2 Results and Discussion

The study initially focused on understanding theaat of Grashof numbelG(), Taylor
number T;), and Dean NumbebDg) on flow patterns under the following fixed conalits:
magnetic parameteM = 0), Hall parametemg = 0), and lon-slip parametes € 0). This
investigation allowed for a deeper understandinthefinherent flow characteristics.

Following this initial analysis, a subsequent irtigestion explored the influence of
additional parameters: the magnetic parameter, pgathmeter, and the lon-slip parameter,
on fluid flow. These results were presented in latem curve, along with corresponding
flow structures. The simulations were conductedeuritked values of the Prandtl number
Pr =7 and Taylor number Tr = 20, with three digigr Dean Number®,, = 500, 5000, and
10000. The program employed increments=50, Ay=0.5 andAT=0.1to execute these
analyses.

A. Effects of Grashof Number G;) on the Fluid Velocity and Temperature

In Fig. 6.3, the solution curve illustrates the relationshgtvwieen the Grashof Numbés,|

and () velocity flux and (i) mean Nusselt number, representing temperaturatioens with
respect to the Grashof number, at the cooling aadiing walls. These results are presented
with fixed values oD,=500,P,=7,M =0, m=0 anda = 0.

For the flux, a single branch of a symmetric solutcurve is evident, bounded within the
rangeG, < 2547. This curve demonstrates that the flux irsedor positives, values but
decreases for negativ® values. Regarding temperature, it's noteworthy tha Nusselt
number values at the heating wall consistently edcéhose at the cooling wall.
Additionally, the temperature deviation graduallgcteases, albeit at a slow rate, as the
absolute value ofj| increases.

0) (ii)

240 8
I 7F Nu, atcoolingwall ——
2351 - Nu, atheatiniwall ——
! G_M/
Q230p Nu sf
i ar
225 N
i 3
2287\\\\l\\\\l\\\\l\\\\l\ ) R NN R S I
%6000  -4000  -2000 0 2000 6000  -4000  -2000 0 2000
— G — G

Figure 6.3a; Solution curve: Grashof Numb&:; versus if flux Q (ii) Mean Nusselt number
Nu at the heating and cooling wall for fix&g, = 500, T, =20,P, =7,M =0, m=0 anda=0.

In Fig. 6.3, corresponding flow and temperature structuresdbus points are depicted.
Two vortex asymmetric flows have been identifiecthie secondary flow. Meanwhile, in
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the axial flow, a simple contour is evident. Théuion structure is notably influenced by

the increase in the Grashof number. As the Grashofiber increases, the asymmetric
structures gradually become more prominent in Ipotitive and negative directions. This
asymmetry is primarily attributed to the influenmfegravity. With the increase in rotation,

the Coriolis force is counterbalanced by the Cargal force, pressure gradient force, and
Lorentz force. This equilibrium results in the flogtructure becoming approximately
symmetric. However, the gravitational force actorgthe fluid flow as an additional force

introduces asymmetry into the flow pattern.

Dp=50Q T,=20;M=0 ; m=0; a=0
with increment&y=05; Aw=10, AT=01

G, — -5000 -3000 -2000 -1000 -200 200 800 1600 250

Figure 6.30: Streamlinegy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.6.3.

B. Effects of Taylor Number(T,) on the Fluid Velocity andTemperature

Figure 6.4 presents the solution curve of Taylor NumbBj) gersus i) velocity flux @)
and (i) mean Nusselt numbeNg), which represents temperature variations, attwing
and heating walls. These results are obtained fixéd values ofD,=1000,G,=200, P,=7,
M=0, m=0, anda=0 Fig. 6.4 displays the corresponding flow structures atowggipoints of
Tr on these solution curves for velocity and terapge distribution. AsT; | increases, the
strength of the secondary flow pattern becomes mooaounced, while the axial flow
weakens. A critical zone is reached when the Taywnber reachesl} |=672. WherT; >0,
an increase i, results in the dominance of positive directed flaisthe top of the duct,
with it prevailing over the negative directed flaw terms of streamlines. However, the
center of the axial flow contour gradually shifteser to the cooling wall of the duct. In
terms of temperature, the heating fluid dominatesy ¢he cooling fluid. Conversely, when
T, <0, the opposite effect occurs as comparen td).

The solution curve is bound within the range 6712 <672 and is symmetric about the
vertical line atT,=0. For the flux, it decreases for positiVebut increases for negativer.

In terms of temperature, for positiVe, the Nusselt number values at the heating wall are
greater than those at the cooling wall, while tippasite holds true for negativie. No
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temperature deviation is observedTat=0. Initially, the temperature deviation increases
with the absolute value dff; until a certainT, value is reached, after which it gradually
decreases with further increasesTi |

i (ii)
6000 (I ) 5 _.
F 14 ST TN
5500 F i , \
F I : \
5000 F 12F 7 |
4500 10; \\ """ - Nu_at coplingwall; T, <0
000E I A Nu_at coolingwall; T, >0
b 8 i = - Nu, atheating wall ;
Q 3500F Nu ". ar e i T<0
E Nu, atheatingwall ; T. >0
3000F 6F '
F - TN
T 2500 T af -
2000 I
E 2r
1500 o [
1000 L L 1 L L L L | - ! ! L 1 L L | 0 L L 1 L L L L 1 L L L L 1 L L I
-500 0 500 -500 0 500
—» T — T

Figure 6.4a: Solution curve: Taylor Numbdr, versus i) flux Q (ii) Mean Nusselt numbédu
at the heating and cooling wall for fix&j, = 10000,G, = 200,P, =7,M =0, m= 0 andae=0.

D, =10000G =200M =0; m=0;a=0
with incrementsAy =1; Aw =10Q AT = 01

T - 00 20 50 100 300 500 726

Figure 6.4o: Streamlinesy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig.6.4a.

C. Effect of Dean Number D,) on the Fluid Velocity and Temperature

In Figure 6.3, you can see the solution curve of Dean Numbg)) {ersus i) velocity flux
and (i) mean Nusselt numbeN), which represents temperature variations, attuding
and heating walls. These results are obtained fm#d values ofG,=200, T,=20, P,=7,
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M=0, m=0, anda=0. The solution curve is found for all positivelues of the Dean
Number. Three bifurcation solution curves are olegrn a small range 25957<8D, <

2722.7 (approximately). In all the solution curvidse flux increases with the increase of
Dean Number. However, for the temperature, the emlof the Nusselt number at the
heating wall are higher than at the cooling walgept atD, =0. This difference gradually

increases with the increasel®f.
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Figure 6.5a:;Solution curve: Dean Numbé&, versus i|) flux Q (ii) Mean Nusselt number
Nu at the heating and cooling wall for fixéd= 20, G, = 200,P, =7,M =0, m=0 anda=0.
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Figure 6.50: Streamlinegy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.6.5.
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In Figure 6.B, It is observed that the corresponding flow sties, including vortex
structures of streamlines, contour distributionsyaél flow, and temperature patterns. In all
branches of the steady-state solution curve, agdatounter-rotating vortices is observed
for the secondary flow. The dominance between mnegand positive rotational flow is
reversed a®, increases. The strength of the flow patterns gayluncreases with the
increase irD,, both for velocity and temperature distributiorsyfametrical flow structures
are found in the 1st and 3rd branches of the stetdg solution curves. For the
temperature distribution, the heated flow is dorteday the cooling flow.

D. Effects of Magnetic Paramete(M) on the Fluid Velocityand Temperature

Figure 6.@& shows the solution curve representing the relatignbetween the Magnetic
parameter 1) with (i) the velocity flux Q) and {i) the mean Nusselt numbeMy) for the
cooling and heating walls in the context of tempera distribution. These findings are
presented with consistent parameters, includ@weR00, T,=20, P,=7, m=0, anda=0. This
investigation explores the influence Mif across three different scenarios characterized by
varying Dean Numbers such g =500, 5000and10000Q
(1) .
(ii)

F Nu,atcooledwall for D, =500
- Nu, atcooledwall for D, =5000
E Nu_ atcooledwall for D, = 1000
F\ Nu,, atheatedwall for D, = 500
E\ ‘Nu, atheatedwall for D, =5000

D,=500 ——
D,=5000 —
D, =10000 Nu

e — ———— —— i
250 500 750 1000

— M

750

Figure 6.6a: Solution curve: Magnetic parametdrversus i{) flux Q (ii)
Mean Nusselt numbétu at the heating and cooling wall for fixdd= 20,
G =200,P, =7, m=0 anda=0 where D, =500,5000,10000

In all scenarios, the solution curves exhibit ardasing trend, leading to a reduction in flux
asM increases. For high valuesMf fluxes tend to approach zero. It's worth notimaf the
fluxes increase with higher Dean Numbers. Regarténgperature, the Nusselt numbers at
the heating wall consistently surpass those atctiwding wall. The temperature deviation
slowly approaches zero after a certain threshdligevaf M.

In Figure 6.8, it has been seen the vortex structures, contstnlaitions for velocity, and
patterns of temperature flow. Ad becomes larger, the strength of velocity distidout
gradually weakens. Concerning temperature, theragpelall's temperature dominates over
the heating wall's temperature, and this dominaffget diminishes aM increases across
all the Dean Number scenarios.
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(i) D, =500 G, =200;T =20;m=0;a=0 (i) D, =5000G, =200;T =20;m=0;a=0
with incrementsAy = 02; Aw = 50; AT = 01 withincrementsAg = 05; Aw = 500; AT = 01

(i) D, =10000G, =200;T =20,m=0;a =0
with increments Ay = 10; Aw = 1000; AT = 01

M- o 1 10 30 40 50 70

Figure 6.60: Streamlinegy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.6.6.

E. Effects of Hall Parameter(m) on the Fluid Velocity andTemperature

Figure 6.@ presents the solution curve for the Hall paramg@t®iversus i) the flux Q) for
velocity and (i) the mean Nusselt numbeNY) at the cooling and heating walls for
temperature. The fixed parameters @re200, T,=20, P,=7, M=13, anda=0 whereas three
different Dean NumberS,, = 500, 5000, and 10000 are considered.

(i) (ii)
3500F 10p
F oF Nu, at cooled wall { ———————
3000 oo
j (1stbranch) D, =500 —— | I €
u - 7; 7
2500 (2ndbranch)D, = 5000 F Ny, at heatedvall
(3rdbranch)D, =10000 6F
Q 2000 Nu 5_3/
1500 F 7
T 1000 T 3E
; 2F
500:— 1E
Y P E R TR S ob v v v
n 25 3} 75 100 25 50 75 100
— » m —3p» m

Figure 6.7a: Solution curve: Hall parametenversus i|) flux Q (ii) Mean
Nusselt numbekNu at the heating and cooling wall for fixd¢= 20,
G =200,P, =7, M= 13 andz=0 where D, =500,5000,10000
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In all Dean Number scenarios, the solution curvdshit an increasing trend for the Hall
parameter ). The flux increases rapidly with a growing within a specific range,
approximately 0< m < 5. After this initial rapid increase, it exhibigssminor increase and
eventually reaches a steady-state solution beyomeériin threshold value ah. The
maximum flux is achieved an values exceeding 200 (approximately). The numkrica
results show maximum flux values of 221, 1728.18] 8150.84 for Dean Numbers 500,
5000, and 10000, respectively. It's worth notingt ttihe flux increases with higher Dean
Numbers. Regarding temperature, the Nusselt numétietbe heating wall consistently
surpass those at the cooling wall acrossmallalues. However, the temperature deviations
remain unchanged asincreases.

(i) Dn = 50Q Gr = zoo;Tr =200M =13:a =0 (i) D, = 5000 Gr = ZOO;Tr =20;M =13;a =0
with increments Ay = 05; Aw = 100; AT = 0.1 with increments Ay = 08; Aw = 500; AT = 01

m- o 1 10 30 50 m- o 1 10 30 50

(i) D, =1000Q G, =200;T =20;M =13;a =0
And increments: Ay = 08; Aw = 70; AT = 0.1

M- o0 0.1 1.0 01 30 50 70

Figure 6.70: Streamlinegy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvé&ig.6.7a.

Figure 6.D provides a visualization of the vortex structunespcity distribution contours,
and temperature flow patterns. These corresporitietsolution curve depicted in Figure
6.7a at specific Hall parameter values. The strengththa velocity and temperature
distribution exhibits an increase in pattern intgnwithin the range & m< 10. After this
range, the structures remain consistent and dochange with further increases in m.
Notably, for Dean Numbebd,=10000, a pair of vortices is created in the seconfiiaw.
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Regarding temperature, it's observed that theirdgeatall temperature consistently
dominates over the cooling wall temperature acuagsous m values. This effect remains
unchanged with increasing m for all Dean Numbenades.

F. Effects of lon-slip Parameter(a) on the fluid flow andTemperature

Figure 6.@ presents the solution curve for the lon-slip paemne) versus i) the flux Q)
for velocity and if) the mean Nusselt numbeXy) at the cooling and heating walls for
temperature. The fixed parameters &e200, T,=20, P,=7, M=13, andm=0.1, whereas
three different Dean Numbels, = 500, 5000, and 10000 are considered.

For all cases of Dean Number, the solution curxésb@ an increasing trend as the lon-slip
parameter ) varies. There is a rapid increase in flux witlsincertain range, typically
between & a < 200, followed by a gradual increase in flux, andrgually, a steady-state
solution is reached after a specific valuexofThe maximum flux is achieved whenis
greater than or equal to 750 (approximately). Thmerical results show maximum flux
values of 217.7, 1710.4, and 3134.8 for Dean Numligr =500, 5000, and 10000
respectively. It is also confirmed that the flugri@ases with an increase in Dean Number.

i ..
3500 () 10f (i)
g o
3000 4000 ——
[ (Istbranch) D, =500 E Nu, at cooled wall { — = =~
2500F (2ndbranch)D, =5000 7F
Q 2000 (3rdbranch)D, =10000——— Nu 6F (——
F - ] 5E Nu, at heatedwall ﬁ -
1500 :-K af
1000 % 3F i
F 2F
500 E
r 3
Owwwwlwwwwlwwwwlwwww o:\\\\|\\\\|\\\\|\\\\
0 250 500 750 1000 0 250 500 750 1000
a >

Figure 6.8a: Solution curve: lon-slip parametewersus i) flux Q (ii)
Mean Nusselt numbétu at the heating and cooling wall for fixdd= 20,
G =200,P, =7, M= 13 andm=0.1where D, =500,5000,10000

Concerning temperature, the Nusselt number valu#gsaheating wall consistently exceed
those at the cooling wall across various values. dinportantly, the temperature deviation
remains constant after reaching a certain value of

In Fig. 6.&, the vortex structures, velocity distribution cmmts, and temperature flow

patterns corresponding to the solution curve of Bi§a are presented at specific points
along the lon-slip parameter. Within the range afd< 10, both velocity and temperature
distributions exhibit robust patterns. However, di&y this range, the structures remain
relatively consistent and do not significantly charwith further increases in
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(i) b, =500 G, =200;T =20;M =13;m= 01 (i) D, =5000 G, =200;T =20;M =13;m= 01
withincrements: Ay¢ = 03; Aw = 60; AT = 0.1 with increments Ay = 08; Aw = 500; AT = 01

a - 00 1.0 10 30 50

(i) D, =10000 G, = 200;T =20;M =13;m= 01
withincrements Ay¢ = 08; Aw = 100 AT = 0.1

a - 0.0 0.1 1.0 10 50 100 200 500 700 1000

Figure 6.80: Streamlinesy (top), axial Contour flowv (middle) and Temperature
profile T (bottom) in accordance with the solution curvéig.6.8.

Notably, in the case of Dean NumbBy = 10000, a pair of vortices emerges in the
secondary flow. Additionally, in terms of temperatuthe heating wall temperature
consistently dominates the cooling wall temperathreughout the evaluated range of lon-
slip parameterd).
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Chapter 7

General Discussion and Conclusions

7.1 General Discussion

This research has numerically simulated the fulyedoped two-dimensional flow of a
viscous incompressible fluid through the straighid acurved ducts with square and
rectangular cross-sections for various curvatureghe duct. Flow characteristics are

studied on various aspect ratios of the curved éwrcboth the isothermal@, =0) and
non-isothermal G, > 0) flows over a wide range of the Taylor Numb&r)( Dean Number
(D,) and curvature of the ducé . The steady solution have been obtained by utsiag

spectral method as a primary tool and collocatidhebyshev polynomial and arc length
methods have been used as secondary tools. Thenoesg of the isothermal and non-
isothermal curved and straight duct flows have b&enoughly discussed in chapters 4, 5
and 6. A direct comparison of our results for igothal flows could not be made because
few experimental results are available for nonkeanal flows. In that case, the

comparisons have been performed by the choiceeoGifashof numbe6, =0and in the

absence of an energy equation. But for non-isothefiows have been compared with the
experimental results that are available [Yamamatal.e(2006) and Chandratilleke et al.

(2001)]. Since no experimental results for the flitnough a rectangular curved duct with
an aspect ratio of 3 are available, so a compan$@ur results could not be made with the
experimental data in that case. Overall, the detnatesl comparisons show good
agreement with the experimental results both cptalély and quantitatively. Considering

the method of analysis and the trends of the daisrecommended that the current study
be expanded to incorporate additional research wned duct flows. Comparing the

experimental findings to those of the current stiglglso fascinating. The conclusions of
our present studies are briefly summarized in secti2 below.

7.2 Conclusions

The present numerical results are accurately affecisatly compared to the previously
published experimental results. Therefore, it imomivable that the study's findings are
valid. The findings, which are based on the tholoegamination of the relevant parameters
discussed above, can be summarized as follows:
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7.2.1 Curved Square Ductfor Isothermal Fluid Flow

1. As the curvatured) increases, the peak value of fllQ) (gradually decreases.

2. Due to the duct's rotation, a larger proportiontlsd flow is directed toward the
boundary, and this trend intensifies with an inseea the magnitude of the Taylor
numberT;|.

3. The strength of the fluid velocity gradually weakemith increasingT}|.

4. The vorticity of the secondary flow increases, @adendencies become stronger as
Dean Number increases.

5. A pair of counter-rotating vortex structures isgaet in the streamlines, and simply
closed contours define the axial velocity for ahsidered parameter effects.

6. Symmetric two-cell vortex structures are createcemB, exceeds approximately
640.

7. Symmetric two-vortex solutions are observed forvalues of the parameteld m,
or o when Dean Number is fixed &, = 500. However, aD, = 1000, solutions
include two and four-vortex patterns.

8. All the solution curves exhibit a decreasing fuowtifor positive values of the
magnetic parameteM). Consequently, the flu®Q decreases with an increaseMn
eventually approaching zero velocity after a specifalue of the magnetic
parameter.

9. With a small curvature and increasiMy a higher quantity of axial flow tends to
pass closer to the outer wall before transitioniogyards the centre of the duct.
Conversely, in the case of significant curvatutew$ are redirected toward the
duct's interior side.

10.The flux increases rapidly within the limited rangfed < m< 5 and then rises slowly
as m increases. After a certain valuenpfa steady-state solution is achieved. The
flow structures exhibit minor changes with incregsn.

11.The flux experiences a sharp reduction within trege 0< « < 0.8, followed by a
rapid increase within the range & < 10. Beyond this range, there is a slight
increase in flux with further increases én A steady solution is found after a
specific value ofa, and the flow structures undergo negligible changeth
increased.

12.The flux undergoes reduction within the rang&a @ < 0.8, followed by a sharp
increase within the range (k& < 10. Beyond this range, there is a slight increase i
flux with increasing. A steady solution is found after a specified eaddio.
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7.2.2 Curved Rectangular Duct for Isothermal Fluid Flow (Aspect Ratio 2)

1.

o

© o N ©

Positive Taylor NumberTg) is associated with co-rotation, whereas negafjvis
associated with counter-rotation.

. As the Dean NumberD,) increases, symmetric solutions with two, foux, Sr

even eight vortices are obtained for the secondlamy. In contrast, axial flow
exhibits contour plots with one, two, three, or mmehapes.

The maximum number of vortices gradually increaséid rising Dean Number
until reaching a specific value &,. Beyond this point, the number of vortices
decreases, creating a strong and critical structure

The flux Q steadily rises with increasing Dean Number.

The solution curve of) versusT, exhibits a simpler structure for larger valueshaf
curvature §) compared to smaller values.

The maximum flux decreases as the curvature ineseas
An increase in the magnetic parameMj [eads to a rapid decreaseQn
As M increases, both axial and secondary flow strustdeteriorate progressively.

With an increase in the Hall paramete),(the flux Q increases rapidly. A steady
solution is reached after a certain valuenof

10.Secondary flow patterns and axial flow shapes wgaeregligible changes as m

increases.

11.The flux Q initially drops within a narrow range before rdygidncreasing with

rising a. A steady-state solution emerges after a spedlfice ofo.

12. An increase i leads to minimal alterations in the secondary fkivactures and

axial flow contours.

7.2.3 CurvedRectangular Duct for Isothermal Fluid Flow (AspectRatio 3)

1.

Positive and negative values of the Taylor Num@dey ¢orrespond to co-rotation
and counter-rotation of the flow, respectively.

Flow patterns for positivé, are simpler compared to those for negafive

Increasing the rotation paramet®r leads to a gradual decrease in the flow's
strength.

An admissible flow pattern is observed over a walegge of Dean Numbers<D, <
800.

The flux Q gradually increases with the rising value of Damber D).

The flux Q consistently increases with the increase of DeamiberD,,.

180



7.

8.
9.

Small curvature, as opposed to larger curvaturgylti® in more complex flow
patterns. Small curvature combined with a high @atfi Dean Number leads to
asymmetric solutions for the secondary flow andoum¢able contour plots for the
axial flow.

All cases demonstrate a similar unrestricted appba with a curvature af = 0.1.

Increasing the magnetic parametdr results in a gradual deterioration in the
strength of the flow. Unlike axial flow, which eXiis multiple contours, the
solution structure for the secondary flow consgftsymmetric four- and six-vortex
streamlines.

10.An increase in the Hall parameten)(has negligible effects on the secondary flow

vortices and axial flow contours. The flux rapidlgcreases within the range 0k0
m < 0.7, then quickly rises within the range of &7m < 4, before gradually
increasing. A steady-state value is achieved aftsgecific value of.

11.As the lon-slip parameter increases, there are minimal effects on the seagnd

flow vortices and axial flow contours. The strengfttboth flows remains consistent
for all values of the lon-slip parameter.

7.2.4 CurvedSquare Ductfor Non-Isothermal Fluid Flow

Velocity Profile

1.

The symmetrical flow gradually becomes asymmetidcad to the influence of
gravity.

The degree of asymmetry increases with higher gabfi€, andD,.
Asymmetrical condition decreases with the incresHdsk

At T, =-261.2, the flux exhibits a peak with six secanydflow vortices.

In the case of a lard®,, most of the flow is pushed towards the duct'sniolaiy
wall.

The flux increases with higher values@f D,, andm but decreases with higher
values ofT;, M, andJ.

Steady-state flux is achieved after specific largleies ofM, m, ando.

The fluid velocity's intensity increases with almegD, but weakens with higher
values ofM, T,, andJ.

The strength of fluid velocity remains relativelyahanged with variations i@G;, m,
anda.
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Temperature Profile

1.

The temperature distribution becomes chaotic laittpe values obD,.

2. Temperature deviation gradually increases with éigialues oD,

3. Temperature deviation gradually decreases withdrighlues of5, andM.
4.
5

The temperature deviation remains consistent wiinges irm anda.

. Temperature deviation initially decreases with leigh within the range -274.66 <

T, < -261.20, but then reverses this effect.

7.2.5 CurvedRectangular Duct for Non-Isothermal Fluid Flow (Aspect Ratio 2)

Velocity Profile

1.

The influence of gravity on fluid flow leads to eansition from a symmetrical
pattern to an asymmetrical one. The solution cufeethe flow are confined within
the range -1188.76 G, < 1190.17, and they exhibit symmetry about the gakiine
atG, = 0.

For all positive values dD,, the solution curves are increasing functionsyltisy
in an increase in flux as this parameter rises.

Conversely, the solution curves are decreasingtifumg for positive values o0&,
T,, andM. Therefore, an increase in these parameters teaddecrease in flux.

In the positive direction, the flux gradually demses ad, increases, while in the
negative direction, a critical zone is reachedat -237.44, and further progression
in this direction ceases.

Both the strength of vortices and contours progvelsdiminish with increasing;
and M. However, there are minor changes in these aspettisvariations in Hall
and lon-slip parameters.

The flux experiences a rapid drop in one branchnvmagnetic parameters are
increased. In another branch, radial flow initiatlynsists of two vortices, with two
additional vortices forming near the duct's outaflw

An increase in the Hall and lon-slip parametersiltesn a swift increase in flux.
After reaching specific values of Hall and lon-slgarameters, a steady-state
solution is attained.

Temperature Profile

1.
2.
3.

With a large value dD,, the temperature distribution exhibits chaoticdxabur.
The temperature deviation gradually decreasds mreases.

Both the Hall parameters and lon-slip parametenge hainimal effects on the
temperature profiles. In both cases, the coolimgperature dominates the heating
temperature.
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7.2.6 CurvedRectangular Duct for Non-Isothermal Fluid Flow (Aspect Ratio 3)

Velocity Profile

1.
2.

Due to gravity, the initially symmetrical situatigmadually becomes asymmetrical.

With an increase s, in the positive direction, positive rotational i@dlow
dominates over negative flow, while the oppositeuss in the negative direction.

IncreasingD,, results in a maximum of two vortex structureshie tadial flow and
simple contour shapes in the axial flow. For lafggralues, the majority of the
flow is pushed toward the duct's outer wall.

The solution curves increase when influenced bgpaters likeD,,, m, anda, while
they decrease when affected by parametersdiké;, andM. This leads to an
increase in flux with increasing,, m, anda, while it decreases with increasiGg
T;, andM.

After reaching particular values bf, m, anda, steady solutions are discovered.

The fluid velocity strengthens with increasing but weakens with increasimg
andT,.

The fluid velocity undergoes slight change<$sasm, anda increase. After a specific
value ofD,, the temperature distribution becomes chaotic.

Temperature Profile

1.

The Nusselt number values at the heating wall ansistently higher than at the
cooling wall for positive values of all parametstgh ass,, T;, Dn, m, anda, except
for M.

. The heating flow is consistently dominated by theling flow across variations in

parameters lik&;, T, Dn, M, m, anda.

The temperature deviation remains constant afsahiag specific values of
parameters m and

7.2.7 Straight Square Duct for Non-Isothermal Fluid Flow

Velocity Profile

1.

The solution curves exhibit an increasing trenddarameters lik&, (G, > 0), T,
(Tr <0),D, On > 0), m(m> 0), anda (« > 0). Consequently, the flux increases
within these parameter ranges.

Conversely, the solution curves demonstrate a deurg trend for parameters like
G (G <0), T, (T, >0), andM (M > 0). Consequently, the flux decreases within these
parameter ranges.

The fluid velocity structure is initially symmetriat G; = 0, but this symmetry
gradually becomes asymmetric &% | increases.
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The solution curve remains symmetric about theicedrtine atT, = O.

Steady-state solution branches exhibit a pair afnter-rotating vortices for the
secondary flow in all cases.

The fluid velocity's strength increases with highatues ofD, andT,, while it
weakens with higher values bf.

The strength of both velocity and temperature ithistions becomes strong within a
certain parameter range, and beyond this range, dtractures remain unchanged
with increasing values oh anda.

Temperature Profile

1.

5.
6.

At various parameter variations, includi@g T, D,, M, m, anda, the Nusselt
number values at the heating wall are consisténgliyer than those at the cooling
wall.

. The heating flow consistently dominates over thaliog flow across different

parameter variations, includirg@}, T;, D,, M, m, ando.

No temperature deviation is observedat 0. The temperature deviation gradually
increases with the absolute valuelptintil a certairil, value, after which it
decreases slowly as the absolute valug abntinues to rise.

The temperature deviation gradually increases thighincrease iD,,.
The temperature deviation decreasellascreases.

The temperature deviation remains constant beyertdin values ofm anda.

Incorporating Hall and lon-slip currents in thedstwof curved duct flow has considerable

significance not only in improving the efficiencyf onechanical devices but also in
advancing our understanding of fluid dynamics inoaus engineering applications. Given
that the universe consists of highly charged pagiand is influenced by magnetic fields,
these considerations provide a more accurate framke¥or analyzing the behaviour of

fluid flow in curved ducts. Based on the insightscdssed above, the utilization of Hall
current and lon-slip in the context of curved dilioiv represents a promising and valuable
avenue for research in the field of magneto-hydnadyics (MHD) and engineering

applications.
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