
i

A NOVEL BUG TRIAGING STRATEGY USING DEVELOPER

RECOMMENDATION AND LOAD BALANCING MODEL

K. M. Aslam Uddin

Registration Number: 100

Session: 2018-2019

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Philosophy (MPhil)

MASTER OF PHILOSOPHY (MPHIL)

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

Ⓧc K. M. Aslam Uddin, 2024

ii

A NOVEL BUG TRIAGING STRATEGY USING DEVELOPER

RECOMMENDATION AND LOAD BALANCING MODEL

K. M. Aslam Uddin

 Approved:

 Signature Date

 Supervisor: Dr. Kazi Muheymin-Us-Sakib

 Signature Date

 Co-supervisor: Dr. Ahmedul Kabir

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

iii

Abstract

Bug triage is essential in efficiently assigning bugs to developers by leveraging past

experiences. Without this crucial process, experienced developers may be inundated with

assignments, while newer developers may be underutilized. Furthermore, improper bug

distribution among different developer types can lead to various issues, including delays,

errors, decreased capacity, and diminished job satisfaction. Previous bug triaging methods

often do not account for newly joined developers, making them ineffective in recommending

these developers for bug assignments. Consequently, these methods lead to improper task

allocation, denying new team members valuable learning opportunities during bug resolution.

Furthermore, prior research tends to overlook workload distribution among different

developer categories, neglecting the need to balance bug assignments among experienced

developers, newcomers, and those with varying skill levels. To address these issues, there is a

need for an automated bug triaging technique that not only includes new developers but also

prioritizes workload distribution among different developer categories. Therefore, this study

introduces a novel bug triaging strategy that combines two pivotal models: Bug Solving

Developer Recommendation Model (BSDRM) and Developer Scheduler (DevSched).

 The first model, known as the BSDRM, forms the core of automated bug triaging.

BSDRM harnesses the power of Machine Learning (ML) algorithms and historical bug

reports to intelligently suggest developers for specific bug resolution tasks. To achieve this,

Eclipse, Mozilla, and NetBeans datasets are aggregated and split into training and testing sets.

Subsequently, a sentence-embedded model is crafted from the training set, generating a

developer-specific word repository. In contrast, the test set is transformed into a vocabulary

list using an embedded model. BSDRM identifies eligible developers by matching their

developer-specific word repository with the bug report vocabulary list via K-Nearest

Neighbour (KNN) analysis. These developers are then categorized into three groups:

experienced, newly experienced, and fresh graduate developers, utilizing a classification

model comprising various ML algorithms Decision Tree (DT), Extra Tree (ET), AdaBoost

(AdC), Bagging Classifier (BC), Gradient Boosting (GB), KNN, Nearest Centroid (NC),

Bernoulli Na¨ıve Bayes (BNB), Multinomial Na¨ıve Bayes (MNB), Complement Na¨ıve

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

iv

Bayes (CoNB), Gaussian Na¨ıve Bayes (GNB), Logistic Regression (LR), Perceptron (Pr),

and Multi-Layer Perceptron (MLP). Remarkably, the Bagging Classifier exhibits outstanding

performance, achieving 96.59% accuracy in classifying developers with varying experience

levels.

 In tandem with BSDRM, this study introduces the second model, DevSched, which

assumes a critical role in balancing developer workloads. DevSched factors in workload

distribution, developer proficiency, and bug characteristics. It generates multiple developer

profiles based on historical bug reports and assigns bugs to developers by assessing the

highest similarity between bug vectors and developer corpora. DevSched also dynamically

adjusts developer workloads and refines their ratings based on performance. The study

utilizes bug reports from Eclipse, Mozilla, and NetBeans to evaluate developer performance

in the bug-triaging process. DevSched efficiently assigns and balances bugs among various

developer categories, resulting in significantly reduced standard deviations for Eclipse,

NetBeans, and Mozilla datasets compared to conventional bug distribution processes. This

meticulous process is reiterated for each bug, ensuring optimal resource allocation and timely

resolution of critical issues.

 The proposed study will collectively enhance bug resolution efficiency, optimize

developer workloads, and ensure that both experienced and newer developers are judiciously

utilized in the bug triaging process.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

v

Acknowledgements

I begin by expressing my profound gratitude to Allah, the Most Merciful and Most

Compassionate, for guiding me throughout this academic journey and granting me the

strength and wisdom to undertake this research.

 I am indebted to my supervisor, Dr. Kazi Muheymin-Us-Sakib, whose unwavering

support, valuable insights, and expert guidance have been instrumental in shaping this thesis.

Your mentorship and dedication to my academic growth have left an indelible mark on my

journey.

 I extend my sincere appreciation to my co-supervisor, Dr. Ahmedul Kabir, for your

valuable input, constructive feedback, and encouragement throughout this research. Your

expertise has greatly enriched my work.

 I would like to acknowledge the support and encouragement of my colleagues and

friends who stood by me during the ups and downs of this academic endeavor. Your

camaraderie has been a source of strength and inspiration.

 I am grateful to my family for their unwavering support, love, and understanding.

Your sacrifices and encouragement have been my driving force.

 Last but not least, I would like to express my gratitude to the faculty and staff of

Institute of Information Technology, University of Dhaka for providing the resources and

friendly environment necessary for conducting this research.

 Thank you, everyone, for being a part of this journey and for contributing to the

successful completion of my MPhil degree thesis.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

vi

List of Publications

1. Uddin, K.A., Kowsher, M. and Sakib, K., 2022, September. BSDRM: A Machine

Learning Based Bug Triaging Model to Recommend Developer Team. In International

Conference on Machine Intelligence and Emerging Technologies (pp. 256-270). Cham:

Springer Nature Switzerland.

2. Uddin, K.A., Satu, M.S., Riyad, M.M.H. and Sakib, K., 2023. DevSched: an efficient

bug-triaging model for allocating and balancing developer tasks. Iran Journal of

Computer Science, pp.1-11.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

vii

Contents

Approval ii

Abstract iii

Acknowledgements v

List of Publications vi

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1
 1.1 Motivation……………………………………………………………………………… 2

 1.2 Research Question……………………………………………………………………… 5

 1.3 Contribution of the Research…………………………………………………………… 8

 1.4 Scope of the Research…………………………………………………………………… 9

 1.4 Structure of the Thesis………………………………………………………………….. 9

2 Background Study 11

 2.1 Software Bug………………………………………………………………………… 12

 2.1.1 Causes of Software Bugs…………………………………………………… 12

 2.1.2 Life Cycle of Software Bug………………………………………………... 14

 2.1.3 Stages of Software Bug…………………………………………………….. 17

 2.1.4 Classification of Software Bug…………………………………………….. 19

 2.1.4.1 Severity of Bugs………………………………………………….. 19

 2.1.4.2 Nature of the Bug………………………………………………… 21

 2.1.4.3 Platform…………………………………………………………... 23

 2.1.4.4 Version…………………………………………………………… 24

 2.1.4.5 Components………………………………………………………. 25

 2.1.4.6 Metadata Tagging………………………………………………… 27

 2.1.5 Software Bugs Handling Process…………………………………………... 29

 2.2 Bug Reports…………………………………………………………………………. 33

 2.2.1 Bug Features Description…………………………………………………... 33

 2.2.2 Bug Report History………………………………………………………… 35

 2.3 Bug Triaging for Developer Recommendation……………………………………… 38

 2.3.1 Bug Submission…………………………………………………………….. 38

 2.3.2 Data Collection and Pre-processing………………………………………... 40

 2.3.2.1 Stemming…………………………………………………………. 41

 2.3.2.2 Stop Word Removal……………………………………………… 43

 2.3.3 Indexing…………………………………………………………………….. 43

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

viii

 2.3.4 Graph Construction………………………………………………………… 46

 2.3.5 Categorization………………………………………………………………. 47

 2.3.6 Prioritization………………………………………………………………… 47

 2.3.7 Assignment and Notification……………………………………………….. 48

 2.3.8 Update Developer and Bug Profile…………………………………………. 49

 2.4 Load Balancing in Bug Triggering…………………………………………………... 49

 2.5 Summary……………………………………………………………………………… 52

3 Literature Review 53

 3.1 Existing Research Work……………………………………………………………… 54

 3.2 Topic Model Based Approach………………………………………………………... 54

 3.2.1 DRETOM……………………………………………………………………. 54

 3.2.2 BUTTER…………………………………………………………………….. 55

 3.2.3 Developer Ranking Algorithm………………………………………………. 56

 3.2.4 BAHA……………………………………………………………………….. 57

 3.3 Information Retrieval Based Approach………………………………………………. 58

 3.3.1 Mining Software Repositories………………………………………………. 58

 3.3.2 Leveraging Latent Semantic Indexing………………………………………. 59

 3.3.3 Modeling Developer Expertise……………………………………………… 59

 3.3.4 Enhanced LDA Methods……………………………………………………. 60

 3.3.5 Entropy-Based Optimization………………………………………………... 60

 3.3.6 Expertise Scoring and Ranking……………………………………………… 60

 3.4 Social Network Analysis-Based Approach…………………………………………... 61

 3.4.1 Social Network Analysis-Based Approach………………………………….. 61

 3.4.2 Social Network Analysis with Machine Learning…………………………... 61

 3.4.3 Information Retrieval for Bug Similarity…………………………………… 61

 3.4.4 Bug-Fixing Expertise and Association-Based………………………………. 62

 3.4.5 Concept Profile and Social Network………………………………………... 62

 3.5 Dependency Based Approach………………………………………………………… 64

 3.5.1 Bug Dependency-Based Mathematical Model……………………………… 64

 3.5.2 Scheduling-Driven Task Assignment……………………………………….. 64

 3.5.3 Automated Bug Triage with Dependency…………………………………... 64

 3.5.4 Dependency-Aware with NLP and Integer Programming…………………... 65

 3.6 Machine Learning-Based Bug Triage Systems………………………………………. 65

 3.6.1 Conventional Machine Learning-Based…………………………………….. 66

 3.6.1.1 Bug Triage Using Selected Fields……………………………….. 66

 3.6.1.2 Fuzzy Set Features for Bug Triage………………………………. 66

 3.6.1.3 Generalized Recommendations for Developers…………………. 66

 3.6.1.4 Developer Prioritization with TF-IDF…………………………… 66

 3.6.1.5 Bug Triage with Metadata Consideration……………………….. 67

 3.6.1.6 Automatic Developer Assignment with Discriminatory Terms…. 67

 3.6.1.7 Data Reduction for Improved Accuracy…………………………. 67

 3.6.1.8 Ensemble Classifier for Enhanced Bug Triage………………….. 67

 3.6.1.9 SVM-Based Bug Recommender System………………………… 67

 3.6.1.10 Incorporating Categorical Features and Metadata………………. 68

 3.6.1.11 High-Confidence Bug Triage……………………………………. 68

 3.6.1.12 Semi-Automated with Skill-Based Developer…………………... 68

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

ix

 3.6.1.13 Enhanced Bug Triage through Integrated Models………………. 69

 3.6.1.14 Activity-Based Bug Triage Strategy…………………………….. 69

 3.6.1.15 BugFixer…………………………………………………………. 70

 3.6.1.16 Search-Based Bug Triage with Apache Lucene…………………. 71

 3.6.1.17 Common Vocabulary-Based Bug Triage Algorithm…………….. 71

 3.6.2 Deep Learning-Based……………………………………………………….. 72

 3.6.2.1 CNN-Based Bug Triage with Word2Vec……………………….. 72

 3.6.2.2 Multilabel Deep Neural Network for Bug Triage……………….. 72

 3.6.2.3 Deep Bidirectional RNN with Attention for Bug Triage………... 72

 3.6.2.4 Activity-Based Bug Triage with CNN…………………………... 72

 3.6.2.5 CNN-Based Bug Fixer Recommendation System……………….. 73

 3.6.2.6 Heterogeneous Graph-Based Bug Triage………………………... 73

 3.6.2.7 Multitriage Model for Developer Assignment………………….. 73

 3.6.2.8 Bug Triage with Graph Neural Network………………………… 73

 3.7 Reassignment-Based Approaches……………………………………………………. 74

 3.7.1 Tossing Graph-Based Approaches………………………………………….. 74

 2.7.1.1 Bug Tossing Graphs……………………………………………... 74

 2.7.1.2 Enhanced Tossing Graphs………………………………………. 75

 3.7.2 Multi-Feature Incremental Learning……………………………………….. 75

 3.8 Text Categorization Based Approaches……………………………………………… 76

 3.8.1 Bug Report Meta Data………………………………………………………. 76

 3.8.2 Developer Preference Elicitation……………………………………………. 76

 3.8.3 Code Authorship…………………………………………………………….. 77

 3.9 Bug Data Reduction Approaches…………………………………………………….. 78

 3.9.1 Source-Based Bug Assignment Approaches………………………………... 78

 3.9.2 Developer Vocabulary-Based Approach……………………………………. 79

 3.9.3 Commit Time-Based Approach…………………………………………….. 79

 3.10 Cost Aware Based Approaches………………………………………………………. 80

 3.11 Industry-Oriented Approaches……………………………………………………….. 81

 3.11.1 Research-Industry Cooperation…………………………………………….. 81

 3.11.2 Team Assignment………………………………………………………….. 81

 3.12 Summary……………………………………………………………………………… 82

4 Recommend Developer Team Efficiently 84

 4.1 Overview of BSDRM………………………………………………………………… 85

 4.1.1 Dataset Description………………………………………………………….. 85

 4.1.1.1 Eclipse……………………………………………………………. 87

 4.1.1.2 Mozilla…………………………………………………………… 88

 4.1.1.3 NetBeans………………………………………………………… 88

 4.1.2 Generating Developer Matrix……………………………………………….. 88

 4.1.2.1 ED Profile………………………………………………………... 88

 4.1.2.2 NED Profile……………………………………………………… 89

 4.1.2.3 FG Profile……………………………………………………….. 89

 4.1.3 Training Stage………………………………………………………………. 90

 4.1.3.1 Sentence Embedding…………………………………………….. 90

 4.1.3.2 Balancing Data…………………………………………………… 91

 4.1.3.3 Employing Different classifiers………………………………….. 92

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

x

 4.1.4 New Task……………………………………………………………………. 102

 4.1.5 Exploring Eligible Developer……………………………………………….. 102

 4.1.6 Classifying Developers……………………………………………………… 103

 4.1.6.1 Evaluation Metrics……………………………………………….. 103

 4.1.7 Forming Developer Team…………………………………………………… 106

 4.2 Result Analysis……………………………………………………………………….. 106

 4.2.1 Classification Results of BSDRM…………………………………………... 107

 4.2.2 Comparisons with Existing Works………………………………………….. 109

 4.3 Summary……………………………………………………………………………… 111

5 Task Allocation and Load Balancing 112

 5.1 Overview of DevSched……………………………………………………………….. 113

 5.1.1 Data Pre-processing…………………………………………………………. 114

 5.1.2 Developer Profile Rating Calculation ..…………………………………….. 114

 5.1.3 Load Creation……………………………………………………………….. 115

 5.1.3.1 Data Transformation……………………………………………... 115

 5.1.3.2 Bug Distribution…………………………………………………. 116

 5.1.4 Load Balancing……………………………………………………………… 116

 5.1.5 Update Developer Profile…………………………………………………… 119

 5.2 Experimental Setting…………………………………………………………………. 120

 5.2.1 Data Description…………………………………………………………….. 120

 5.2.2 Environment Setup………………………………………………………….. 120

 5.3 Result Analysis………………………………………………………………………. 121

 5.3.1 Results of Eclipse Dataset…………………………………………………… 122

 5.3.2 Results of Mozilla Dataset…………………………………………………... 124

 5.3.3 Results of NetBeans Dataset……………………………………………….. 126

 5.3.4 Comparative Analysis among Datasets……………………………………... 127

 5.3.5 Comparisons with Existing Works………………………………………….. 128

 5.4 Summary………………………………………………………………………………. 129

6 Discussion and Conclusion 131

 6.1 Summary of Results………………………………………………………………….. 132

 6.1.1 Recommend Developer Team Efficiently…………………………………… 132

 6.1.2 Task Allocation and Load Balancing………………………………………... 134

 6.2 Impact on Software Companies………………………………………………………. 135

 6.3 Limitations of the Study………………………………………………………………. 137

 6.4 Future Research………………………………………………………………………. 137

Bibliography 139

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

xi

List of Tables

2.1 Causes of software bugs………………………………………………………………. 13

2.2 Classification of bugs based on severity……………………………………………… 20

2.3 Classification of bugs based on the nature of the bug……………………………….. 22

2.4 Bug classification based on platform…………………………………………………. 24

2.5 Bug classification based on version………………………………………………….. 25

2.6 Bug classification based on components…………………………………………….. 26

2.7 Bug categorization based on metadata tagging……………………………………….. 28

2.8 Example of stemming…………………………………………………………………. 41

2.9 Algorithms of stemming………………………………………………………………. 42

2.10 Different indexing process……………………………………………………………. 44

4.1 Dataset description…………………………………………………………………….. 87

4.2 Developer classification result………………………………………………………… 108

4.3 Comparison of BSDRM with traditional models……………………………………... 110

5.1 Date ranging…………………………………………………………………………… 120

5.2 Load thresholds of different types of developer………………………………………. 122

5.3 The distribution of developer by implementing DevSched…………………………… 124

5.4 Comparative Analysis in terms of standard deviation………………………………… 128

5.5 Comparisons with existing works 129

xii

List of Figures

2.1 Life cycle of a bug [23]……………………………………………………………….. 15

2.2 Stages of bug [24]……………………………………………………………………... 18

2.3 Overview of software bug classification……………………………………………… 20

2.4 Software bug handling process……………………………………………………….. 31

2.5 Automated bug assignment process [27]…………………………………………….. 32

2.6 Bug tracking system of TFS [27]……………………………………………………… 32

2.7 Sample bug reporting form of Bugzilla [28]………………………………………….. 34

2.8 Bug report history [29]………………………………………………………………... 36

2.9 Bug history creation process…………………………………………………………. 37

2.10 Bug triaging process for developer recommendation………………………………… 39

2.11 Sample Developer-Component-Bug network [46]…………………………………… 46

2.12 Load balancing in bug triaging……………………………………………………….. 50

3.1 Overview of BUTTER model [48]…………………………………………………… 56

3.2 Overall framework of Developer Ranking Algorithm [49]…………………………… 57

3.3 Overall framework of BAHA [50]……………………………………………………. 58

3.4 Bug concept with the topic terms, where θ=0.05 [65]………………………………… 63

3.5 An example of social network [65]…………………………………………………… 63

3.6 Structure of hybrid bug triaging [55]…………………………………………………. 70

3.7 Overall structure of BugFixer…………………………………………………………. 71

4.1 The workflow diagram of BSDRM………………………………………………….. 86

5.1 DevSched: Task allocation and load balancing model………………………………. 113

5.2 The standard deviation curve for Eclipse dataset…………………………………….. 123

5.3 The standard deviation curve for Mozilla dataset……………………………………. 125

5.4 The standard deviation curve for NetBeans dataset………………………………….. 126

1

Chapter 1

Introduction

In the world of software development, dealing with software bugs is a big challenge. These

bugs can range from small annoyances to causing major system failures [1]. They pose a

constant threat to both software application reliability and user satisfaction. The onus of

promptly and effectively resolving these bugs falls squarely upon software development

teams, with the efficiency of this process rooted in the intricate practice of bug triaging. This

complex procedure determines how bugs are efficiently assigned to developer teams or

individuals based on factors such as severity, frequency, and risk [2]. It is a crucial part of the

software development process, helping decide which bugs are most important and how to use

resources to fix them.

 When a new bug is discovered, it usually involves many skilled developers to solve it

quickly. However, this can lead to an uneven distribution of bug-fixing tasks. Experienced

developers may end up with lots of bugs to fix, while newer and mid-level developers

struggle to find opportunities to learn and help. Sometimes, developers with expertise in

different areas are brought in to fix bugs, which make it even harder to balance the workload

and decide who should work on what. To make sure tasks are distributed fairly and that

developers can share their knowledge and experience, we need a system that smartly assigns

bugs to different types of developers based on their skills and bug-solving expertise.

 Numerous methods have been proposed in previous works to gauge the impact of bug

triaging [3-5]. However, these past reports often lack any record of newly joined developers,

rendering these techniques ineffective in including them in the final bug assignment

recommendations. Consequently, existing methods often result in improper task allocation

among developers, leaving new team members without opportunities to gain and share

knowledge through the bug resolution process. Furthermore, it is worth noting that prior

2

research has typically overlooked the crucial aspect of workload distribution among various

categories of developers. This omission is a significant limitation as it neglects the need to

balance the assignment of bugs among experienced developers, new joiners, and developers

with varying skill levels. In light of these issues, there is a pressing need for an automatic bug

triaging technique that not only considers the inclusion of new developers but also prioritizes

workload distribution among different developer categories. Such an approach can contribute

to more effective bug resolution processes, fostering knowledge sharing and skill

development among all team members, regardless of their experience level.

 This study presents a novel bug-triaging strategy using developer recommendation

and load balancing model where an ML-based bug-triaging approach known as the Bug

Solving Developer Recommendation Model is proposed to tackle the challenge of assigning

efficient developers to bug resolution processes. Additionally, the study introduces the

Developer Scheduler, a task allocation and load balancing model, designed to optimize the

distribution of unassigned bugs among developers of varying expertise levels.

 In this chapter, the motivation for this thesis is briefly presented, accompanied by an

introduction to the research questions. Subsequently, the contribution of this research is

succinctly discussed. Finally, the scope and organization of the thesis are outlined.

1.1 Motivation

Due to the growing complexity of software systems, an inevitable consequence is the

emergence of a substantial number of bugs in software projects. Statistical reports indicate

that addressing these bugs consumes a significant portion, approximately 45%, of the total

development time for software companies [6]. In response to this challenge, bug tracking

systems, such as Bugzilla [7] and Jira [8], have assumed an increasingly pivotal role in the

management of software bugs. When a bug report is submitted to the bug tracking system,

the behind-the-scenes management necessitates the manual assignment of the bug report to

the most suitable developer based on its description. This process, known as bug triaging, is a

labor-intensive and time-consuming endeavor, further complicated by two primary challenges

[9]. Firstly, the sheer volume of bug reports can be staggering, particularly in the case of

sizable projects, where bug tracking systems routinely receive a deluge of bug reports daily.

For instance, the Eclipse project alone encounters approximately 91 bug reports every day

[6]. Secondly, the multitude of developers involved in bug resolution poses another obstacle.

Backstage managers often find it impractical to be intimately acquainted with the skill levels

3

of all developers, leading to manual bug triaging that may not effectively allocate bug reports

to the most suitable individuals. In light of these challenges, the adoption of automatic bug

report triaging methods has become imperative within the realm of software testing. These

methods offer a solution to the aforementioned problems, streamlining the bug management

process and enhancing its efficiency.

 In addressing the challenge of bug triaging, one must acknowledge its inherent

complexities. Bug reports, pivotal in resolving software issues, encompass diverse types,

including usability concerns, intricate functionality issues, and critical security matters.

Effective triaging requires a deep understanding of each report's unique characteristics and

the expertise required for resolution. The bug's severity also plays a crucial role, ranging from

minor inconveniences to critical system failures, demanding precise allocation to skilled

developers [10]. Bug complexity adds to the challenge, with some requiring extensive

domain knowledge and others a nuanced understanding. Developer availability, workloads,

commitments, and expertise must be considered. Matching developers' skills with the right

bugs and understanding their preferences ensures efficient resolution. Navigating this

complexity is vital for timely and effective bug resolution, enhancing software quality and the

user experience.

 Automated bug triaging techniques rely on developers' bug-fixing profiles, usually

derived from their source code commits or bug-fixing histories [11]. Upon receiving a new

bug report, a thorough process unfolds, wherein the report's keywords are meticulously

examined in relation to the source code and previous bug reports. Developers with the closest

match to the report are considered potential candidates to resolve the bug [12]. However,

these methods have limitations, notably the lack of consideration for collaboration among

developers. This means they might miss opportunities for teamwork in tackling complex

issues. There are also issues like suggesting inexperienced or inactive developers, struggling

with changing project dynamics, and challenges in accommodating developers' varying

expertise in different domains [13]. These limitations highlight the need for more

comprehensive bug assignment solutions to address these challenges thoroughly.

 To build effective developer teams in bug triaging, it's crucial to consider how

developers collaborate. Many team-based assignment techniques rely on historical bug

reports to assess developer expertise and communication [14, 15]. However, this approach

has a limitation: it doesn't account for newly onboarded developers. This oversight can result

in these developers being excluded from bug resolution tasks. It's essential to address this

issue because new developers frequently join software development teams, each bringing

4

unique skills and knowledge. Integrating these newcomers enriches the collective knowledge

base and promotes knowledge sharing and skill development, enhancing the efficiency of the

software development cycle. New developers also bring fresh perspectives, innovative

solutions, and renewed energy, which are valuable for adapting to evolving project

requirements and industry trends. Embracing newcomers not only leverages fresh talent but

also fosters a culture of continuous learning and growth, leading to more robust and

innovative software solutions.

 The significance of load balancing in the allocation of tasks among developers in bug

triaging cannot be emphasized enough. Surprisingly, no previous studies have delved into this

crucial aspect of bug management. Load balancing stands as a fundamental pillar in ensuring

the efficiency, effectiveness, and overall health of the bug triaging process. It plays a pivotal

role in allowing software development teams to distribute bug-fixing tasks equitably among

developers. This balanced workload allocation maximizes the efficient utilization of available

resources, thus avoiding overburdening some developers and underutilizing others, which, in

turn, fosters a more productive and harmonious work environment. Additionally, it serves as

a proactive measure to mitigate the risk of bottlenecks within the bug triaging process.

Without proper load distribution, there is a real danger of some developers becoming

overwhelmed by an excessive number of tasks. This, in turn, may lead to delays in bug

resolution and potentially disrupt the overall project timeline. Balanced task allocation

effectively minimizes these bottlenecks, ensuring that bug reports are addressed promptly and

that the project's progress remains consistent. It's crucial to acknowledge that different bugs

may necessitate varying levels of expertise and domain knowledge for resolution. Load

balancing comes to the rescue by facilitating the assignment of bugs to developers with the

most appropriate skill sets. This optimization of expertise utilization results in quicker and

more effective bug resolution. Furthermore, a well-balanced workload doesn't merely

enhance individual efficiency; it fosters collaboration among developers. When team

members are not overwhelmed by their individual tasks, they have more opportunities to

share insights, discuss solutions, and collaborate on particularly challenging bug reports. This

collaborative synergy often leads to the development of more innovative and robust

resolutions. Another compelling aspect is the impact of task allocation on the well-being of

developers. Overloading them with excessive work can lead to burnout and reduced morale.

Conversely, balanced task allocation helps maintain a healthy work-life balance, preventing

developer fatigue and preserving their motivation and enthusiasm. A content and motivated

team is more likely to produce high-quality results. Recognizing the importance of load

5

balancing in task allocation within bug triaging not only optimizes efficiency but also

safeguards the well-being of the development team, resulting in a win-win situation for both

developers and the software development process.

 Motivated by the ever-increasing complexities inherent in modern software

development, significant research challenges emerge on the horizon of bug triaging. The

imperative need for an automatic expert and recent team allocation technique that seamlessly

integrates both existing and new developers remains a pressing concern. As software projects

progress, incorporating new talent and efficiently utilizing experienced professionals

becomes crucial for improving bug resolution processes. Furthermore, there is an interesting

research gap that deserves our focus: no previous study has explored the use of load

balancing techniques among different developer types in bug triaging. These challenges arise

from real-world complexities and the needs of agile software development, emphasizing the

necessity of addressing them thoroughly to optimize bug triaging methods. In doing so, we

aim to not only elevate software quality but also streamline project efficiency, thereby

contributing to the continued advancement of software engineering practices.

1.2 Research Question

The main objective of this research is to enhance the efficiency and effectiveness of bug

triaging and developer assignment processes within the software development domain. This

is accomplished through the development and application of innovative Machine Learning-

based bug triaging models, the Bug Solving Developer Recommendation Model, aimed at

recommending developers for bug resolution tasks in a balanced and efficient manner,

considering factors like expertise, workload, and bug severity. Additionally, the research

introduces the Developer Scheduler model to optimize bug distribution among developers,

avoiding overloading experienced developers and ensuring opportunities for newer team

members to gain experience. An essential goal is the inclusion of newly joined developers in

the bug resolution process while balancing the workload among the developers, thereby

enhancing software quality assurance within the software development pipeline. This leads to

the following questions of this research:

6

R1: How can BSDRM enhance proper developer assignment in bug resolution processes?

In the dynamic landscape of software development, efficient bug triage and developer

assignment are critical components for enhancing productivity and software quality

assurance. To tackle the challenges of unbalanced developer assignments and diverse

expertise levels, we introduce the BSDRM. This innovative ML-based approach is tailored to

recommend developers for specific bug resolution tasks, considering their experience,

workload, and expertise. This research question divides the inquiry into several sub-questions

to comprehensively address the challenges. These sub-questions determine bug-solving

preferences in different types of developers, classify developers, and recommend an accurate

developer team.

a) How does BSDRM determine the initial bug-solving preference of experienced

and new developers?

BSDRM determines the initial bug-solving preference of experienced developers by

creating developer profiles from existing bug reports. From the existing bug report,

the sentence-embedded model generates the bag of developer's words. On the other

hand, the new developers or fresh graduates do not have enough working experience

in these circumstances. So, their histories are not available in the existing bug

repository. The authority can give a predefined form to assess new developers' skills

such as academic knowledge, technical expertise, interests, developed projects, etc.

b) How does BSDRM classify developers into different experience levels?

BSDRM classifies developers into three categories: experienced, newly experienced,

and fresh graduate developers. It achieves this through a developer classification

model consisting of various classifiers like Decision Tree, Extra Tree, AdaBoost,

Bagging Classifier, Gradient Boosting, KNN, Nearest Centroid, Bernoulli Naïve

Bayes, Multinomial Naïve Bayes, Complement Naïve Bayes, Gaussian Naïve Bayes,

Logistic Regression, Perceptron, and Multi-Layer Perceptron.

c) How does BSDRM recommend a developer team to solve testing/new bugs?

On arrival of a new bug report, BSDRM applies the pre-trained sentence embedding

model and extracts a vocabulary list for developers. An unsupervised KNN finder

matches the vocabulary list of testing reports with the existing bag of developer's

words. It identifies K's nearest developers who are eligible to resolve this bug. Using

the developer classifier, identify developers with different experience levels, enabling

the formation of balanced teams capable of efficiently addressing bug reports. Based

7

on the developer classification model results, BSDRM recommends a developer team

to solve testing/new bugs.

R2: How does the DevSched model optimize the distribution of unassigned bugs among

developers with varying expertise levels and ensure the balancing of developer tasks?

The DevSched is introduced as a pivotal model in this research, designed to address the

challenges posed by unassigned bugs and varying expertise levels among developers.

DevSched plays a central role in optimizing bug distribution, ensuring equitable workload

among different types of developers, and enhancing knowledge sharing. This research

question unfolds into several sub-questions to comprehensively explore its role in optimizing

bug distribution among developers with varying expertise and updating their profile ratings.

These sub-questions investigate the determination of the effective allocation of bugs among

new and experienced developers and the balancing of developer workload.

a) How does DevSched rating different types of developer and update their

profiles?

DevSched updates different types of developer profiles based on the priority (Pt) and

severity of the solved bugs. Generally, five types of priority (P1 −P5) and seven types

of severity (Enhancement (Eh), Trivial (Tr), Minor (Mn), Normal (Nl), Major (MJ),

Critical (Cr), Blocker (Bl)) used in the bug report. DevSched divides the seven types

of severity into low (trivial, enhancement), medium (major, normal, minor), and high

(blocker, critical) severity. DevSched calculate the rating using the following

equations:

Pt = P1 × 5 + P2 × 4 + P3 × 3 + P4 × 2 + P5 × 1 ……………..(1)

Sv = (Eh + Tr) × 1 + (Mn + Nl + MJ) × 2 + (Cr + Bl) × 3 ………(2)

From Eq. 1 and 2, Rt = Pt + Sv

After achieving a minimum number of points, the developer profile will be updated.
b) How does DevSched ensure the balancing of the developer workload?

DevSched ensures the balancing of the developer workload by using the load-

balancing strategy. Initially, we calculate the developer's current workload and overall

average threshold. New bugs are assigned to the developers based on their current

workload and bug severity. If the developer's workload is less than the average

threshold, a new task is given to the top-scoring developers to balance the current

workload. Otherwise, the bug is assigned to the next top-scoring developer whose

workload is less than the average threshold.

8

1.3 Contribution of this Research

The contributions of this study are encapsulated in two innovative models, each addressing

crucial challenges within the software development domain. The first model, Bug Solving

Developer Recommendation Model, harnesses the power of machine learning to

revolutionize the bug triaging process. BSDRM achieves this by meticulously collecting and

processing diverse datasets, enabling the creation of a robust developer recommendation

framework. Through advanced techniques such as sentence embedding, vocabulary

generation, and developer categorization, BSDRM offers precise bug-to-developer

assignment, effectively optimizing bug triaging. This model empowers software teams by

recommending developers of varying expertise levels, fostering an environment of efficient

bug resolution.

 In tandem, the second model, DevSched, focuses on the critical aspects of task

allocation and load balancing in the bug triaging landscape. DevSched enhances developer

profiles, transforms bug reports into vector representations, and dynamically adapts

workloads based on bug resolution performance. By minimizing standard deviations in bug

distributions, DevSched promotes workload balance, resource allocation, and bug resolution

efficiency.

 This study extends its reach to evaluate the practicality and effectiveness of these

models across various software development projects, considering the adaptability and

scalability factors. Real-world bug reports from prominent software projects serve as the

testing ground to measure the impact of these models on developer performance and overall

bug resolution efficiency. Furthermore, the research explores the implications of workload

distribution, job satisfaction, and resource allocation in the software development landscape.

By emphasizing the inclusion of new developers and the proper management of task

assignments, this research aims to contribute significantly to the optimization of bug

resolution processes, fostering a collaborative and efficient environment for developers,

regardless of their experience level. In summary, this study provides valuable insights and

solutions to the persistently challenging realm of bug triaging in software development,

ultimately advancing the field and benefiting the software development industry as a whole.

9

1.4 Scope of the Research

This comprehensive research endeavors to address critical challenges within the domain of

software development, specifically focusing on the intricate process of bug triaging. It utilizes

a diverse dataset extracted from Eclipse, Mozilla, and NetBeans projects, spanning years of

bug reports. The research delves into the creation of sentence-embedded models, generation

of vocabulary lists, and developer classification to categorize developers into three distinct

groups: experienced, newly experienced, and fresh graduates. This study is also designed to

facilitate efficient task allocation and load balancing among developers, thereby reducing

delays, minimizing errors, and enhancing job satisfaction. The proposed system collectively

contributes to streamlining bug triaging processes, reducing delays, and enhancing job

satisfaction among developers, ultimately propelling the software development industry

toward higher efficiency and effectiveness.

1.5 Thesis Structure

This thesis is organized into several logically structured chapters, each serving a distinct

purpose in presenting and analyzing the research findings on bug triaging and developer

recommendation models. The following section outlines the contents of each chapter,

providing a roadmap for readers to navigate through the study's comprehensive exploration of

bug resolution efficiency and developer workload management.

 Chapter 2: Background Study

 In this chapter, the foundational concepts necessary for comprehending the proposed

technique are elucidated. An in-depth exploration of software bugs, including their

classification, is presented to establish a solid conceptual foundation. Furthermore, this

chapter unveils the overarching architecture underpinning automated bug triaging for

developer recommendation and load balancing, laying the groundwork for the subsequent

chapters' detailed discussions and empirical findings.

 Chapter 3: Literature Review

 This chapter delves into a comprehensive examination of existing bug triaging

techniques. It not only highlights the strengths and weaknesses of these methods but also

elucidates the associated research gaps and unresolved issues, fostering a deeper

comprehension of the current state of bug triaging practices.

10

 Chapter 4: Recommend Developer Team Efficiently

 This chapter is dedicated to a detailed exploration of the Bug Solving Developer

Recommendation Model, a pivotal component of this research. BSDRM is the cornerstone of

our approach, and this chapter delves into its inner workings, methodologies, and outcomes.

It encompasses a comprehensive analysis of the model's functionality and performance in

recommending developer teams efficiently for bug resolution tasks. We will explore the

model's architecture, the datasets it utilizes, the machine learning techniques employed, and

the evaluation metrics used to gauge its effectiveness. This chapter serves as a vital bridge

between the theoretical framework and the practical application of our proposed bug triaging

system.

 Chapter 5: Task Allocation and Load Balancing

 This chapter delves into the intricacies of the Developer Scheduler, a core component

of our research focused on load balancing in bug triaging. DevSched plays a crucial role in

optimizing the allocation of unassigned bugs among developers with varying expertise levels.

This chapter provides an in-depth examination of DevSched's underlying principles,

methodologies, and practical implementation. It encompasses an analysis of how DevSched

creates developer profiles, assigns bugs to developers, and dynamically balances their

workloads. We explore its impact on bug resolution efficiency and developer job satisfaction.

This chapter serves as a bridge between theory and practical application, shedding light on

the practical aspects of our bug triaging system's load balancing capabilities.

 Chapter 6: Discussion and Conclusions

 In this concluding chapter, we synthesize the key findings and insights garnered from

our research endeavors. We engage in a comprehensive discussion, dissecting the

implications of our BSDRM and DevSched in the realm of bug triaging. We evaluate the

practical utility and effectiveness of these models in enhancing bug resolution processes.

Additionally, we reflect on the contributions of this study to the field of software

development and bug triaging methodologies. Furthermore, we explore avenues for future

research and development, offering valuable suggestions for extending and refining the

proposed techniques. This chapter culminates our research journey, underscoring the

significance of our work in advancing bug triaging practices and paving the way for

continued innovation in software development.

11

Chapter 2

Background Study

In the realm of software development, the critical practice of bug triage stands as an integral

process where each reported bug is meticulously prioritized, considering factors such as

severity, frequency, and risk, among others. This systematic classification is essential for

rationalizing resource allocation and ensuring the efficient enhancement of software quality.

However, the constant influx of bug reports from various software companies poses a

significant challenge. When a new bug report surfaces, it often requires the expertise of

several developers for a prompt resolution. Yet, this practice unintentionally burdens

experienced developers with numerous bug assignments, leaving newer and mid-skilled

developers struggling to find their place in bug-solving tasks. At times, experienced

developers from unrelated domains are brought in to address bugs, further complicating the

challenges of load balancing and developer allocation in bug triage. A system is needed to

ensure a balanced distribution of tasks, promote knowledge sharing, and facilitate skill

development among developers. This system should intelligently assign bugs to different

categories of developers based on their bug-solving skills and expertise.

 Efforts to address this problem have witnessed the emergence of several

methodologies focusing on understanding the ramifications of bug assignments. Previous

models have contributed significantly to the domain of bug triage [18-20]. However, these

approaches often lacked the inclusion of new developers in their bug assignment

recommendations, inadvertently perpetuating improper task allocation among developers.

Bug Solving Developer Recommendation Model emerged as a solution to bridge the existing

gaps. BSDRM leverages machine learning to recommend an adept developer team,

comprising seasoned experts, medium-level fixers, and fresh graduates, for addressing newly

arrived bugs. Merging multiple datasets (Eclipse, Mozilla, and NetBeans) and employing a

12

range of ML classifiers, BSDRM uses ML to suggest a proficient developer team, including

experienced professionals, mid-level fixers, and fresh graduates, for handling newly reported

bugs. By amalgamating these developer groups, BSDRM creates a bug-fixing dream team,

ensuring that developers of varying experience levels receive opportunities to participate in

the resolution of recently reported bugs. This collaborative approach lightens the load on

experienced developers and imparts valuable bug-solving knowledge to newcomers.

Meanwhile, to address the issue of workload distribution among different types of

developers, the Developer Scheduler enters the fray. DevSched systematically allocates bugs

based on predefined thresholds, competencies, and workloads, fostering a more balanced bug

resolution process. In this chapter, we delve into the intricacies of these models, exploring

their underlying mechanisms and evaluating their contributions to the realm of bug triage.

2.1 Software Bugs

Software bugs are inevitable and pervasive in the software development lifecycle [21]. These

glitches, errors, or defects can manifest in various forms, ranging from minor annoyances to

critical system failures. Understanding the nature of software bugs and the processes for

handling them is crucial for maintaining the reliability and quality of software applications.

2.1.1 Causes of Software Bugs

Software will always have bugs. Software bugs can arise from mistakes and oversights while

gathering and analyzing user prerequisites, preparing a program, assembling its source code,

and interacting with hardware and software. Even if the code runs strictly as mandated by the

distinct circumstances, we still need help if the planned outcome has to be more satisfactorily

specified. Software bugs can arise from various factors and can be categorized into several

common causes, as shown in Table 2.1. Identifying and addressing these multiple causes of

software bugs requires a combination of best practices, code reviews, thorough testing, and

adherence to coding standards. An effective software development process includes bug

prevention and early detection strategies to minimize defects' impact on software quality and

user satisfaction.

13

Table 2.1: Causes of software bugs

Cause Description

Coding Errors Programming mistakes made by developers are a primary source

of software bugs. These errors can include syntax errors, logic

errors, and incorrect use of programming constructs. Simple

mistakes, such as typos or inaccurate variable assignments, can

lead to unexpected behavior in the software.

Algorithmic Issues Errors in the design or implementation of algorithms can result in

software bugs. Algorithms are the fundamental building blocks of

software, and mistakes in their logic can lead to incorrect results

or unexpected behaviors.

Inadequate Testing Only complete or sufficient testing can uncover existing bugs in

the software. Test cases may only cover some possible scenarios

or may not be executed rigorously enough to expose defects.

Integration Problems Software is often composed of multiple components or modules

that must interact seamlessly. Integration issues, such as

incompatible interfaces, communication problems between

modules, or data mismatches, can introduce bugs.

Environmental

Variability

Software can behave differently in various environments, such as

operating systems, hardware configurations, or network

conditions. Bugs related to environmental factors can be

challenging to reproduce and diagnose.

Concurrency and

Multithreading

In multi-threaded or concurrent software, race conditions and

synchronization issues can lead to bugs. These problems occur

when multiple threads or processes access shared resources

simultaneously, causing unpredictable behavior.

Memory

Management

Memory-related bugs, such as memory leaks and buffer

overflows, can lead to crashes, instability, or security

vulnerabilities. These issues occur when software fails to allocate

or release memory correctly.

 Continue on next page

14

Table 2.1 – continued from previous page

Cause Description

Platform

Dependencies

Bugs can arise due to dependencies on specific libraries,

frameworks, or software versions. Changes in external

dependencies can introduce compatibility issues.

External Factors Software may interact with external services, APIs, or data

sources. Bugs can occur when these external components change

behavior or become unavailable.

Misunderstood

Requirements

Bugs can result from a misunderstanding of user or system

requirements. When developers misinterpret what the software is

supposed to do, it can lead to functionality that does not meet

expectations.

Unforeseen

Interactions

 Complex software systems may have many components that

interact in intricate ways. Bugs can emerge when developers fail

to anticipate or test all interactions between these components.

Legacy Code Inheritances from legacy codebases can introduce bugs into

modern software. Outdated or poorly documented code can be

challenging to understand and modify without introducing

defects.

Human Error Human factors, including typos, oversight, and

miscommunication among team members, can contribute to

software bugs. Collaboration and communication are crucial in

preventing such errors.

External Attacks Security vulnerabilities often result from deliberate efforts to

exploit software weaknesses. These vulnerabilities can lead to

severe bugs when attackers gain unauthorized access or cause the

software to behave maliciously.

2.1.2 Life Cycle of Software Bug

At the SLDC level, any software development team member can create an error. This error

may be produced in the requirement, design, or coding phases [22]. If an error is made in the

requirement phase and not solved in the same phase, an error is produced in the design phase.

15

Again, if an error is not solved in the design phase and passes in the coding phase, it creates a

bug. This way, mistakes, and bugs attended and traveled at several phases of SDLC, as

shown in Figure 2.1. The life cycle of a software bug can be classified into two stages.

(i). Bugs-in phase

(ii). Bugs-out phase

Figure 2.1: Life cycle of a bug [23]

i) Bugs-In Phase

This step introduces bugs in the software life cycle. When we make a mistake, it creates an

error in a specific place of the software, and consequently, when this error goes unnoticed, it

causes a bug in the software. These bugs are carried into the next stage of SDLC if not

marked. If the verification is not performed earlier, these bugs cannot be identified. This

phase encompasses several critical steps, each with its potential for introducing bugs.

a) Requirement Gathering and Specification

The first type of bug is present at the requirements collection and specification stage. Most

bugs are present at this stage. Even though it is appropriately written, only some can be done

if there are any requirements, no matter the software code. If these bugs are not detected, they

can spread to later stages. It is challenging to convert the requirements collected from the

end-user into the required specifications. The conditions may not be what the end user wants.

Specification issues lead to wrong or missing features.

b) Design

In this stage, the software's architecture and high-level design are planned. This includes

defining the system's structure, components, and interfaces. Design flaws or

16

misunderstandings can lead to bugs. If the design does not align with the specified

requirements or if there are logical errors, they can manifest as bugs in the later stages.

c) Coding

This is where the actual implementation of the software takes place. Developers write the

source code based on the design specifications. This stage is notorious for introducing bugs.

Common coding-related issues include syntax errors, logic errors, and issues related to

variables, loops, and conditional statements. Inadequate testing during coding can also result

in undiscovered bugs.

ii) Bugs-Out Phase

The "bugs-out" phase of the software development life cycle (SDLC) involves the

identification, classification, isolation, and resolution of bugs that were introduced during the

"bugs-in" phase. This phase is essential for ensuring that the software is of high quality and

free from defects. Here's an overview of the key steps in the "bugs-out" phase.

a) Bug Classification

Once a bug is identified, it must be classified or categorized based on various attributes, such

as severity, priority, and type. Classification helps in prioritizing which bugs should be

addressed first. Bugs are typically classified into different categories, such as:

Severity: Determining how critical the bug is to the system's functionality. Bugs are often

classified as critical, major, minor, or trivial.

Priority: Establishing the order in which bugs should be fixed based on factors like business

impact and customer requirements.

Type: Categorizing bugs based on their nature, such as functional, performance-related,

security, or usability issues.

b) Bug Isolation

After classification, the next step is to isolate the bug, which involves identifying the specific

area or component of the software where the bug resides. This step helps developers narrow

down the source of the problem. Developers and testers work together to reproduce the bug in

a controlled environment. This often involves replicating the conditions or actions that trigger

the bug to understand its root cause. Debugging tools and logs may be used to pinpoint the

exact location of the bug in the code.

c) Bug Resolution

Developers resolve the issue once the bug is isolated and its root cause is identified. Bug

resolution involves making the necessary code changes to fix the bug and ensure it no longer

17

affects the software. Developers modify the source code to correct the identified issue. After

making the changes, the code is retested to ensure the bug has been successfully fixed.

Additional testing, such as regression testing, may be performed to verify that the fix has yet

to introduce new bugs.

2.1.3 Stages of Software Bug

The life cycle of a software bug typically involves several states or statuses, as shown in

Figure 2.2, through which the bug progresses as it is identified, addressed, and resolved. Each

state represents a specific phase in the bug's life cycle, and developers, testers, and quality

assurance teams use these states to track and manage the bug. Here's a description of each of

these bug states:

a) New: The bug is newly identified and reported in this initial state. It means that someone,

often a tester or user, has noticed a problem or anomaly in the software's behavior and has

reported it as a potential bug. The bug still needs to be reviewed or assigned to anyone.

b) Open: After a bug is reported and reviewed, it is typically marked as "open." This status

indicates that the reported issue has been acknowledged and is being investigated or worked

on by the development or quality assurance team. The responsible team member may analyze

the bug to determine its root cause.

c) Assign: Once the bug has been investigated and its root cause is identified, it is assigned to

a specific developer or team member responsible for fixing it. The "assign" status signifies

that the bug has been allocated to someone for resolution.

d) Deferred: Sometimes, a bug may be deemed less critical or lower in priority, and the

decision is made to postpone its resolution to a future release or iteration. In such situations,

the bug may be marked as "deferred." Deferred bugs are not addressed immediately but are

tracked for future attention.

18

Figure 2.2: Stages of bug [24]

e) Rejected: Occasionally, a reported issue is found not to be a bug, or it may be a duplicate

of an existing bug report. In such cases, the bug report may be "rejected." It means that the

issue does not require any action, and it is closed without any changes made to the software.

f) Test: After a developer has made code changes to address the bug, the software enters the

"test" phase. Testers or quality assurance professionals verify that the bug fix is effective and

does not introduce new issues. This phase includes testing the affected functionality to ensure

the issue no longer exists.

g) Verified/Fixed: Once the testing phase is complete and the bug fix is confirmed to be

effective, the bug is marked as "verified" or "fixed." This status indicates that the reported

issue has been successfully resolved, and the code changes are ready for deployment.

h) Reopened: Sometimes, after a bug is marked as "verified" or "closed," it may resurface or

reoccur. If the issue reappears, it is reopened, and the development team reevaluates the

problem to determine its root cause and resolve it again.

19

i) Closed: The final stage in the bug life cycle is "closed." A bug is marked as "closed" when

it has been successfully fixed, verified, and confirmed as resolved. This status signifies that

the bug is considered closed, and no further action is required.

 These bug states provide a structured way to manage and track the progress of bug

reports throughout the software development life cycle. Effective bug tracking helps ensure

that software releases are high quality and free from known defects.

2.1.4 Classification of Software Bug

Software bugs can manifest in various forms, each with unique characteristics and impact on

software functionality. Understanding the different types of software bugs is crucial for

developers, testers, and quality assurance teams to identify, address, and prevent issues

effectively. Bugs are categorized based on various criteria, including:

➢ Severity

➢ Nature of the bug

➢ Platform

➢ Version

➢ Component

➢ Metadata Tagging

Figure 2.3 represents the overall bug classification based on these criteria.

2.1.4.1 Severity of Bugs

The severity of bugs in software development is a critical aspect that categorizes and

prioritizes issues based on their potential impact and urgency for resolution. The severity

level helps software development teams, testers, and stakeholders assess the importance of

addressing a particular bug. The severity of a bug is typically categorized into several groups,

each representing a different degree of impact. Table 2.2 represents an overview of expected

bug severity levels.

20

Figure 2.3: Overview of software bug classification

Table 2.2: Classification of bugs based on severity

Bug Severity Description

Critical Critical bugs are the most severe and significantly impact the software's

functionality. They often result in complete system failure, data loss,

security breaches, or other catastrophic consequences. Critical bugs

require immediate attention and are typically considered showstoppers

that prevent the software from being released or used.

 Continued from next page

21

 Table 2.2– continued from previous page

Bug Severity Description

High High-severity bugs substantially impact the software's functionality, but

they do not cause system crashes or data loss. They may lead to serious

issues, such as incorrect calculations, missing features, or usability

problems. High-severity bugs are prioritized for quick resolution but may

not require immediate action.

Medium Bugs categorized as medium severity have a noticeable but moderate

impact on the software. They typically involve minor functionality issues

or inconveniences that do not critically affect the core operation of the

application. These bugs are addressed in the normal development cycle,

usually in the next planned release.

Low Low-severity bugs have minimal impact on the software's functionality

and often represent cosmetic or minor issues. They may include typos,

minor layout problems, or faulty non-essential features. Low-severity

bugs are usually addressed during routine maintenance or included in

future releases based on lower priority.

Enhancement This category does not represent a bug but rather a request for new

features or enhancements to existing functionality. These requests are

typically not considered defects but are valuable input for future software

development efforts. They are prioritized based on their potential

benefits and alignment with the product roadmap.

2.1.4.2 Nature of the Bug

Bug classification is an essential aspect of software development and quality assurance,

helping teams understand, prioritize, and address issues systematically. Bugs can be classified

based on various criteria, including their nature. Table 2.3 illustrates the breakdown of bug

classification based on the nature of bugs. Bug classification based on the nature of bugs

helps development and QA teams prioritize their efforts, allocate resources effectively, and

improve the overall quality of the software. Teams can streamline their bug tracking and

resolution processes by categorizing bugs, leading to more reliable and user-friendly software

products.

22

Table 2.3: Classification of bugs based on the nature of the bug

Nature of the Bug Description

Functional Bugs These are among the most common types of bugs. Functional bugs

occur when the software does not perform as intended according to

its functional requirements. This can include incorrect calculations,

malfunctioning features, or components that do not work as expected.

Performance

Bugs

Performance issues impact the program's speed, effectiveness, and

use of resources. These flaws may result in memory leaks, sluggish

response times, high CPU consumption, or other problems with

performance. Performance issues frequently impact user experience,

particularly in resource-intensive apps.

Compatibility

Bugs

Compatibility bugs arise when the software does not work correctly

with specific hardware, operating systems, browsers, or third-party

software. These bugs are crucial to address as they can limit the

software's usability across different environments.

Usability Bugs

(UI/UX Bugs)

Usability bugs pertain to issues related to the software's user interface

(UI) and user experience (UX). These bugs include layout problems,

confusing navigation, unclear error messages, and other issues that

affect how users interact with the software.

Security Bugs Security bugs are the most critical type of bug. These vulnerabilities

can lead to data breaches, unauthorized access, or other security

threats. Common security bugs include code injection vulnerabilities,

authentication issues, and data leakage.

Concurrency

Bugs

Concurrency bugs occur in multi-threaded or multi-process

applications. These bugs result from improper synchronization or

race conditions, leading to unpredictable and hard-to-reproduce

issues.

Data Bugs Data bugs involve problems related to data handling and

management. These bugs can lead to data corruption, loss, or

inaccurate data processing. Data bugs are especially critical in

applications that deal with sensitive or mission-critical data.

 Continued from next page

23

Table 2.3– continued from previous page

Documentation

Bugs

Documentation bugs are issues related to the software's

documentation, such as user manuals, help files, or API

documentation. These bugs can lead to misunderstandings,

confusion, and difficulties for users and developers trying to

understand and use the software.

Regression Bugs Regression bugs occur when a previously working feature or

functionality stops working as expected after code changes are

introduced. These bugs often result from code modifications that

unintentionally break existing functionality.

Environmental

Bugs

Environmental bugs are specific to the conditions in which the

software operates. These conditions can include variations in network

connectivity, system configurations, or external dependencies.

Environmental bugs may not always be reproducible in all

environments.

Intermittent Bugs Intermittent bugs are particularly challenging to diagnose and

reproduce because they occur sporadically and inconsistently. These

bugs can be elusive and require extensive testing and debugging

efforts to pinpoint and resolve.

Edge Case Bugs Edge case bugs surface under unusual or uncommon scenarios that

may not be encountered during typical usage. Identifying and

addressing edge case bugs is essential to ensure the software's

robustness.

2.1.4.3 Platform

Bug categorization based on platforms involves classifying reported software bugs into

different groups or categories depending on the specific platforms or environments where

they occur. This process helps software development teams prioritize and address platform-

specific issues effectively. Bugs can be categorized as Table 2.4 based on the platform.

Categorizing bugs based on platforms allows development teams to allocate resources more

efficiently, as experts with knowledge of the specific platform can focus on resolving the

issues. It also helps track the prevalence of bugs on different platforms and make informed

decisions about which platforms to prioritize in testing and support. Additionally, platform-

24

based categorization aids in improving user experience by ensuring that software functions

smoothly across various environments, which is particularly important in today's diverse

computing landscape.

Table 2.4: Bug classification based on platform

Platform Description

Operation

System

Bugs that manifest only on specific operating systems, such as

Windows, macOS, Linux, or mobile OS like Android or iOS. This

categorization ensures that the right experts focus on OS-specific

problems.

Web Browsers Bugs specific to particular web browsers like Chrome, Firefox, Safari,

or Edge. Given the variations in browser behavior, categorizing bugs

by browsers helps in targeted testing and debugging.

Hardware Bugs related to specific hardware configurations, like graphics cards,

processors, or peripherals. Hardware-related categorization is crucial

for addressing compatibility issues.

Web Servers Bugs occur due to differences in web server configurations or software,

such as Apache, Nginx, or IIS.

Database

Systems

Issues related to database platforms like MySQL, PostgreSQL, or

Oracle. Categorizing bugs by database systems is vital for database-

driven applications.

Network

Environment

Bugs that can occur in specific network environments, such as

LAN/WAN, VPN, or proxy configurations.

Cross-platform

Compatibility

Bugs that affect multiple platforms and require special attention to

ensure cross-platform compatibility.

2.1.4.4 Version

Bug categorization based on software version involves classifying reported software bugs

into different groups or categories depending on the specific versions of the software where

they are identified. This process aids in managing and prioritizing bug fixes, particularly in

software that undergoes frequent updates and releases. Table 2.5 depicts the breakdown of

bug categorization by software version. Categorizing bugs by software version helps

development teams prioritize their efforts, allocate resources effectively, and communicate

with users about the status of reported issues. It ensures that critical problems in the current

25

stable version receive immediate attention while allowing for the orderly resolution of bugs

in older versions. Additionally, it aids in tracking the history of bugs across different software

releases, which can provide insights into the software's overall quality and stability over time.

Table 2.5: Bug Classification based on version

Version Description

Current Stable Version Bugs are specific to the current stable release of the

software. These are typically considered high-priority issues

as they affect the most users.

Previous Stable Versions Bugs that are found in the previous stable versions of the

software. These may still require attention, mainly if many

users use the previous version.

Beta Candidate Versions Bugs that occur in pre-release versions of the software, such

as beta or release candidate builds. These issues are critical

for developers to resolve before the final release.

Specific Version Ranges Categorizing bugs based on specific version ranges, such as

from version 2.0 to 2.5. This allows developers to address

issues affecting a particular set of releases.

Older Legacy Versions Bugs that affect older legacy versions of the software. While

these versions may have fewer users, critical bugs in legacy

software can still impact a dedicated user base.

Upcoming Versions Issues discovered in the software's development versions are

being prepared for future releases. These bugs are essential to

resolve before the next release cycle.

Version-Independent

Bugs

Bugs that are not tied to a specific version but are inherent in

the software's architecture or design. These are often long-

term issues that require extensive redevelopment.

2.1.4.5 Components

Bug categorization based on specific modules or components of software is a crucial aspect

of bug management and triaging. It involves classifying reported bugs into categories that

correspond to the particular parts or functionalities of the software where they occur. This

categorization helps development teams efficiently allocate resources, prioritize bug fixes,

and maintain software quality. The detailed breakdown of bug categorization by software

26

module or component is presented in Table 2.6. Categorizing bugs by a software module or

component streamlines bug triaging, allowing development teams to assign bugs to the most

relevant experts or teams. It also facilitates tracking and reporting on the status of bugs within

different parts of the software, helping ensure that critical issues are addressed promptly

while maintaining overall software quality and stability.

Table 2.6: Bug classification based on components

Components Description

User Interface

(UI)

Bugs related to the graphical user interface, including layout, design,

responsiveness, and user interaction issues. These can affect the overall

usability and user experience of the software.

Backend Bugs that occur in the backend or server-side components of the

software. These may involve data processing, server communication,

database interactions, and performance.

Database Bugs specific to the database layer of the software, such as data

corruption, schema issues, query errors, or data retrieval problems.

Authentication Issues related to user authentication, authorization, access control, and

security permissions. These bugs can have significant security

implications.

Networking Bugs affecting network connectivity, data transmission, API

integration, or communication protocols. These issues can impact data

exchange between software components.

Functionality Bugs tied to specific software features or functionalities, such as

calculations, algorithms, data processing, or specific operations. These

can affect core software capabilities.

Compatibility Bugs related to software compatibility with different platforms,

devices, operating systems, browsers, or third-party software. Ensuring

compatibility is crucial for a broad user base.

 Continued on next page

27

Table 2.6 – continued from previous page

Performance Issues that degrade software performance, including slow execution,

resource-intensive operations, memory leaks, or bottlenecks.

Performance bugs can affect user satisfaction and efficiency.

Security Bugs with security implications include as vulnerabilities, exploits,

code injection, or data breaches. Security-related bugs require

immediate attention to protect user data and system integrity.

Localization Bugs tied to software localization (adapting the software for different

languages) and internationalization (making the software globally

accessible). These issues involve translations, date formats, and

cultural adaptations.

Documentation Bugs related to user documentation, help files, tooltips, or in-app

guidance. Ensuring accurate and helpful documentation is essential for

user support.

Quality

Assurance

Bugs found in the testing and quality assurance processes, including

test case failures, test environment issues, or testing tool problems.

Third-Party

Libraries

Bugs stemming from the use of third-party libraries, APIs, or

dependencies. Keeping these components up to date and resolving

compatibility issues is crucial.

Customization Issues related to software customization, configuration settings, or user

preferences. These can affect how users tailor the software to their

needs.

Legacy Code Bugs associated with older or legacy code sections that may not adhere

to current coding standards or practices. Legacy code may require

refactoring or updates.

2.1.4.6 Metadata Tagging

Bug categorization based on metadata tagging is a systematic approach to classifying and

organizing reported software bugs using metadata attributes. This method enhances bug

tracking, management, and prioritization by providing additional context and information

about each bug. Table 2.7 depicts an in-depth look at bug categorization through metadata

tagging. Software development teams gain a structured and detailed view of reported issues

by categorizing bugs with metadata tags. This categorization aids in efficient bug triaging,

28

assignment, and resolution. It also enables teams to generate reports and dashboards to track

bug-related metrics, monitor progress, and make informed decisions about bug fixes and

software improvements. Metadata tagging enhances bug management processes and

contributes to software quality assurance.

Table 2.7: Bug categorization based on metadata tagging

Metadata Tagging Description

Bug Severity Metadata tags can indicate the severity or impact of a bug, such as

"Critical," "Major," "Minor," or "Trivial." This helps prioritize bug

fixes based on their potential impact on the software and users.

Bug Priority Tags like "High Priority," "Medium Priority," or "Low Priority" are

assigned to indicate the urgency of fixing a bug, considering factors

beyond just severity, such as user impact or project deadlines.

Bug Status Metadata tags denote the current state of a bug in the bug-tracking

system. Common statuses include "Open," "Assigned," "In

Progress," "Resolved," "Reopened," and "Closed." These tags help

track the bug's lifecycle.

Bug Type Tags specify the type of bug, such as "Functional," "Performance,"

"Security," "UI/UX," "Compatibility," or "Documentation."

Understanding the bug type aids in allocating the right expertise for

resolution.

Bug Component Metadata tags identify the specific software component or module

where the bug resides. For instance, "Database," "UI,"

"Networking," "Authentication," or other relevant component

names.

Operating System Tags indicate the operating system(s) affected by the bug, such as

"Windows," "Linux," "macOS," "iOS," or "Android." This

information is crucial for understanding platform-specific issues.

Browser If the bug is related to web applications, tags can specify the

affected browsers, such as "Chrome," "Firefox," "Safari," or "Edge."

It helps address cross-browser compatibility problems.

 Continued on next page

29

Table 2.7 – continued from previous page

Version Metadata tags include the software version(s) in which the bug is

observed. This assists in version-specific bug tracking and ensures

fixes are applied to the appropriate releases.

User Feedback Tags like "User Reported" or "User Feedback" highlight bugs

identified through user reports or feedback channels. These bugs

may require additional user testing or verification.

Regression A "Regression" tag indicates a previously resolved bug reappeared

in a newer software version. Recognizing regressions is vital to

maintaining software quality.

Environment Tags describe the specific environmental conditions under which the

bug occurs, such as "Production," "Staging," "Development," or

"Test." This information aids in reproducing and diagnosing the bug.

Assigned

Developer

Tags indicate the developer or team responsible for addressing the

bug. This helps distribute bug-fixing tasks among team members.

Creation Date Tags record the date when the bug report was created. It assists in

identifying older, unresolved bugs that may require attention.

Custom Tags Custom metadata tags can be created to address project-specific

attributes or criteria for bug categorization. These tags offer

flexibility in organizing bugs based on unique project needs.

Tag Dependencies Some metadata tags may depend on others. For example, if a bug is

tagged as "Security," it may automatically receive a "High Priority"

tag.

Tag Descriptions Tags may include descriptions or guidelines to ensure consistent

usage and understanding among team members.

2.1.5 Software Bugs Handling Process

The bug-handling process is crucial to software development and quality assurance, ensuring

that identified issues are effectively managed, tracked, and resolved. Figure 2.4 represents an

overview of the typical bug-handling process.

i) Bug Identification

The bug-handling process begins with the identification of a potential issue. Bugs can be

discovered through various means, including user reports, automated testing, manual testing,

30

code reviews, or monitoring tools [25].

ii) Bug Reporting

Once a bug is identified, it needs to be reported. A bug report is created, providing essential

details about the issue [26]. This report typically includes information such as:

➢ Bug description: A clear and concise description of the problem.

➢ Steps to reproduce: Detailed instructions on how to recreate the bug.

➢ Expected behavior: What should happen when the software is functioning correctly?

➢ Actual behavior: What is observed when the bug occurs.

➢ Environment details: Information about the software environment where the bug

was encountered (e.g., operating system, browser, hardware).

➢ Severity and priority: An assessment of how critical the bug is and how urgently it

needs to be addressed.

iii) Bug Triaging

Bug triaging is the process of evaluating and prioritizing reported bugs. Bugs are categorized

based on severity, impact, and urgency during triage. Each bug is also assigned a priority,

indicating how soon it should be addressed. High-priority bugs require immediate attention,

while lower-priority bugs may be scheduled for future releases.

iv) Bug Assignment

Once a bug is triaged, it is assigned to a developer or a development team responsible for

resolving it. Assigning the bug ensures clear ownership and accountability for its resolution.

Figure 2.5 depicts the automated bug assignment process using ensemble-based machine

learning models.

v) Bug Tracking

Bug tracking involves using a dedicated bug tracking system or software (e.g., Bugzilla, Jira,

or GitHub Issues) to manage and monitor the progress of each bug. Figure 2.6 depicts the bug

tracking system of the Team Foundation Server (TFS) on Microsoft Visual Studio. Bug

tracking systems allow stakeholders to:

➢ Track the bug's status (e.g., open, in progress, resolved).

➢ Record comments, discussions, and updates related to the bug.

➢ Attach relevant files or screenshots.

➢ Link the bug to related code changes and development tasks.

➢ Generate reports and metrics on bug resolution and software quality.

31

Figure 2.4: Software bug handling process

vi) Bug Resolution

Developers work on resolving the bug based on the information provided in the bug report.

This involves analyzing the code, identifying the root cause, making necessary code changes,

and thoroughly testing the fix. Once a resolution is implemented, it undergoes a review

process to ensure its correctness and effectiveness.

vii) Bug Verification

After a bug is marked as resolved, a verification process is conducted to confirm the issue has

been successfully addressed. Testers or QA engineers follow the steps in the bug report to

verify that the bug no longer exists in the software.

32

Figure 2.5: Automated bug assignment process [27]

viii) Bug Closure

Once a bug has been verified and confirmed as resolved, it can be marked as closed. Closed

bugs are considered officially resolved, and no further action is required unless the issue

reoccurs.

ix) Bug Documentation

Proper documentation of bug reports, resolutions, and additional information is essential.

Documentation helps in knowledge sharing, future reference, and ensuring transparency in

the development process.

Figure 2.6: Bug tracking system of TFS [27]

x) Bug Lifecycle Management

The bug-handling process continues throughout the software development lifecycle, ensuring that

newly identified bugs are addressed and resolved bugs do not reappear in subsequent releases.

33

xi) Continuous Improvement

The bug-handling process should be subject to continuous improvement. Teams should

analyze the root causes of recurring issues, identify patterns, and implement preventive

measures to reduce the likelihood of similar bugs in the future.

 Effective bug handling is critical for maintaining software quality, meeting user

expectations, and delivering reliable software products. Following a structured bug-handling

process, development teams can efficiently manage and resolve issues, improving software

reliability and user satisfaction.

2.2 Bug Reports

A software bug report is a concise and structured document that formally records a detected

issue or problem within a software application. It typically includes essential details such as a

clear description of the bug, steps to reproduce the issue, the expected and actual behavior,

information about the software environment in which the bug was encountered (e.g.,

operating system, browser), and any relevant attachments, such as screenshots or log files.

Bug reports also often assign a severity level and priority to the issue, indicating its impact

and urgency. These reports are crucial for developers and quality assurance teams as they

provide a foundation for identifying, tracking, prioritizing, and ultimately resolving software

defects, contributing to improving software quality and user experience.

2.2.1 Bug Features Description

A bug report is an official document that contains all the essential information about a bug.

To report a bug, the tester/QA must complete several features. The team members get a

guideline from the bug report to solve the bug. A sample bug report is shown in Figure 2.7.

Here are the key features of a bug report in detail:

• Title/Summary: The bug report should have a concise and descriptive title or

summary that provides a quick overview of the issue. It should be clear and specific,

allowing anyone to understand the problem at a glance.

• Description: This section provides a detailed account of the bug. It includes

information on what the user was doing when the issue occurred, the steps to

reproduce the problem, and any error messages or unexpected behaviors observed.

The description should be comprehensive and precise.

34

Figure 2.7: Sample bug reporting form of Bugzilla [28]

• Environment Details: Bug reports often include information about the environment

in which the bug was encountered. This can encompass details such as the operating

system, hardware specifications, software version or build number, web browser (if

applicable), and other relevant configurations.

• Attachments: Bug reports may include attachments like screenshots, videos, or log

files that visually or contextually illustrate the issue. These files help developers better

understand the problem and can be crucial for debugging.

• Severity Level: Bugs are typically categorized by severity, ranging from critical to

minor. This classification indicates the issue's impact on the software's functionality

and users. Common severity levels include "critical," "major," "minor," and

"cosmetic."

35

• Priority: Priority indicates the bug's urgency in terms of fixing. It helps project

managers and developers prioritize which issues should be addressed first. Priorities

often include "high," "medium," "low," and "deferred."

• Assigned To: In a team or organization, bug reports include a field that designates the

developer or team responsible for fixing the issue. This ensures clear accountability.

• Status: The status of a bug report tracks its progress through the resolution process.

Common statuses include "new," "open," "in progress," "resolved," "verified,"

"closed," and more. Developers update the status as they work on and complete the

bug fixes.

• Comments/History: Bug reports maintain a history of comments and changes,

documenting all interactions related to the issue. This can include conversations

between the reporter, developer, and testers, as well as updates on the bug's status.

• Additional Information: Depending on the specific project or organization, bug

reports may include additional fields or custom attributes tailored to their needs.

These could cover aspects like the component affected, the date reported, or any

related issues or dependencies.

• User Information: If a user or customer submits the bug report, it may include

contact information or details about the user's account, which can be helpful for

follow-up or clarification.

 A well-structured bug report is a comprehensive document providing all the necessary

information for efficiently identifying, reproducing, tracking, and resolving software issues. It

is critical in maintaining software quality and ensuring a smooth development process.

2.2.2 Bug Report History

Bug report history is a critical component of software development's bug tracking and

management process. It represents a chronological record of all activities, changes, and

discussions related to a specific bug or issue reported within a software project. Figure 2.8

illustrates the history information of Bug #456798. The detailed explanation of bug report

history is illustrated in Figure 2.9:

36

Figure 2.8: Bug report history [29]

• Creation: The bug report history typically begins with the creation of the report. This

marks when a user or tester identifies a problem within the software and submits a

formal bug report. The initial details provided, including the bug's title, description,

and any attached files, are captured as part of the report's history.

• Assignment: Once the bug report is created, it is usually assigned to a developer or a

development team responsible for addressing the issue. This assignment is recorded in

the bug report history and indicates who is accountable for resolving the bug.

• Status Changes: As the developer starts working on the bug, the bug report's status

changes. Common status transitions include "new," "open," "in progress," "resolved,"

"verified," and "closed." Each status change is recorded in the bug report's history,

providing a clear timeline of the bug's progress.

• Comments and Discussions: Bug reports often facilitate communication between

team members and stakeholders. Comments and discussions related to the bug are

recorded in the history, allowing team members to collaborate, share insights, and

exchange information about the issue. These comments may contain technical details,

proposed solutions, or additional context.

• Attachments: If additional files, such as screenshots, log files, or test cases, are

attached during the discussion or investigation of the bug, these attachments become

part of the bug report's history. They serve as visual or contextual aids for

understanding and resolving the issue.

• Changes in Severity or Priority: In some cases, the severity or priority of a bug may

change as more information becomes available or the team gains a deeper

37

understanding of its impact. Such changes are documented in the bug report's history,

and reasons for these alterations may be provided.

Figure 2.9: Bug history creation process

• Resolution and Verification: When developers believe the bug is fixed, they mark it

as "resolved." The bug is then verified by testers or quality assurance personnel to

confirm that the issue is indeed resolved. Both the resolution and verification statuses,

along with their respective dates, are recorded in the history.

• Reopening: If the bug persists or reoccurs after being marked as "resolved" and

subsequently "verified," it may be reopened. This action is documented in the bug

report's history and the process of addressing the bug restarts.

• Closure: Finally, when the bug is successfully resolved and verified, it is marked as

"closed." The closure date and any additional notes regarding the resolution are

38

documented in the history.

• Audit Trail: Bug report histories serve as audit trails, providing a transparent and

comprehensive account of all activities related to a particular bug. This audit trail is

invaluable for tracking changes, identifying bottlenecks, and ensuring accountability

throughout the bug resolution process.

2.3 Bug Triaging for Developer Recommendation

Bug triaging is a critical process in software development and bug management that involves

the assessment, classification, and prioritization of bug reports or issues submitted by users,

testers, or automated testing tools. This process is essential for effectively managing the

influx of bug reports and ensuring that development teams can efficiently allocate resources

to address the most critical issues. The detail of the bug triaging process is described in

Figure 2.10.

2.3.1 Bug Submission

Bug submission, or bug reporting or issue reporting, is the first and crucial step in the bug

triaging process. It involves users, testers, or stakeholders reporting identified software

defects or issues to the development team for resolution. The bug submission process

commences when a user, tester, or any individual engaged with the software encounters an

issue or abnormal behavior while using the application. This issue could range from

functional errors, crashes, performance issues, usability concerns, or security vulnerabilities.

The person encountering the problem identifies and acknowledges the issue. They recognize

that the observed behavior is unintended, undesirable, or contrary to the expected

functionality of the software. The person documenting the bug compiles detailed information

about the issue they have encountered. This documentation aims to provide developers with a

comprehensive understanding of the problem, ensuring efficient resolution. The information

typically includes:

• Bug Description: A clear and concise description of the issue, highlighting the problem's

nature and impact on the software's functionality or user experience.

• Steps to Reproduce: A step-by-step account of the actions taken before and during the

bug occurrence. This is crucial for developers to recreate the issue in their testing

environment.

• Environment Details: Information about the user's configuration, including the operating

39

system, hardware specifications, software versions, and any relevant settings or

configurations.

• Attachments: Visual aids, if applicable, such as screenshots, videos, or log files that

provide additional context or evidence of the bug.

• Expected vs. Actual Behavior: A clear comparison between what the user expected to

happen and what occurred. This helps developers understand the deviation from the

intended functionality.

Figure 2.10: Bug triaging process for developer recommendation

 The documented bug report is typically submitted through a dedicated bug tracking

system or issue management tool, such as Bugzilla, Jira, GitHub Issues, or similar platforms.

These systems provide structured forms for bug submission and ensure that relevant

information is captured. Users or testers access the bug tracking system and fill out a bug

40

submission form. This form prompts them to enter the essential details mentioned earlier,

ensuring the bug report is well-documented. Once the bug report is submitted, the system

generates a unique identifier or bug report number. This identifier is used to track the bug's

progress throughout the triaging and resolution process. After submission, the bug report goes

through an initial review process. A bug triage team or a designated triager typically conducts

this review. This review aims to ensure that the bug report is complete, clear, and contains all

necessary information for further assessment.

2.3.2 Data Collection and Pre-processing

The data collection process in bug triaging serves as the cornerstone for the entire bug

resolution workflow. It encompasses a series of well-defined steps to assemble a

comprehensive and structured dataset of bug reports. Initially, bug report sources are

identified, typically including bug tracking systems like Bugzilla, GitHub Issues, or Jira.

These sources are repositories of reported software issues and are accessed using various

methods such as web scraping, APIs, or data exports. Once the data is retrieved, it undergoes

careful filtering to isolate relevant bug reports based on criteria like project, software version,

date range, or specific keywords. Subsequently, an essential phase of data preprocessing is

executed, which involves cleaning the text to eliminate irrelevant or sensitive information,

thus ensuring data integrity. The bug reports are then structured and organized into a database

or structured file format, ensuring that each report includes critical details such as a unique

identifier, bug description, status, severity, priority, assigned developer, and timestamps. For

enhanced context and analysis, bug reports may be enriched with supplementary information,

such as developer profiles or commit history. Data indexing is also imperative for swift

access to relevant bug reports during the bug-triaging process. Sometimes, a graph structure

is used to show how bug reports, developers, and other things are connected. A versioning

system monitors bug report changes over time, facilitating historical data referencing and

maintaining data accuracy. Finally, regular updates to the dataset are essential to keep it

current and reflective of the evolving software environment.

 The integrity and comprehensiveness of the bug report dataset are paramount to the

success of bug-triaging systems. A meticulously designed and executed data collection

pipeline ensures that bug reports are systematically gathered, structured, and maintained. This

foundational process empowers bug-triaging systems to function effectively by providing

developers with the necessary information to accurately assign and prioritize bug resolution

41

tasks. Additionally, it supports more advanced bug-triaging tasks like developer

recommendation and load balancing by offering valuable insights into bug characteristics,

historical trends, and developer expertise. Consequently, a well-documented and robust data

collection strategy is instrumental in enhancing the efficiency and accuracy of bug resolution

efforts in software development projects.

 The commit logs and bug reports consist of narrative text formats. Additionally, the

source entities are constructed by merging keywords. Therefore, it becomes necessary to

perform preprocessing on all these sources of information to eliminate duplicate and

irrelevant terms. Below, we outline some frequently employed preprocessing procedures in

the automated bug assignment process.

2.3.2.1 Stemming

Stemming is a linguistic normalization technique used in text processing to reduce words to

their root or base form. It involves removing suffixes from words to convert them into their

core form [30, 31]. This can be particularly helpful in text analysis when you want to group

words that share a common root. For instance, after stemming, words like "jumping,"

"jumps," and "jumped" would all be reduced to the common root "jump." Table 2.8

represents the example of stemming.

Table 2.8: Example of stemming

Original Words After Stemming

Jumping Jump

Jumps Jump

Jumped Jump

 In this example, the words have stemmed from their base form, "jump," making it

easier to analyze and categorize them based on their shared root. Stemming is often used in

natural language processing tasks like text classification, information retrieval, and sentiment

analysis to reduce text data's dimensionality and improve text-based algorithms' efficiency.

Researchers develop various stemming algorithms to convert the inflectional form of

keywords towards their root form. A brief description of these algorithms is described in

Table 2.9.

42

Table 2.9: Algorithms of stemming

Algorithms Description Example

Porter Stemmer

[32]

The stemming method, created by

Martin Porter in 1980, is among the

most popular and established.

Uses a series of rules and

transformations to reduce words to

their base or root form.

"Jumping," "Jumps,"

"Jumped" becomes "Jump."

Snowball

Stemmer

(Porter2) [33]

An improvement over the original

Porter Stemmer.

Designed for multiple languages and

offers more accurate stemming for

them.

"Running," "Runs," "Run"

becomes "Run."

Lancaster

Stemmer [34]

Developed by Chris Paice in 1990.

Known for its aggressive stemming,

often resulting in very short stems

"Maximum," "Maximize,"

"Maximization" becomes

"Maxim."

Lovins Stemmer

[35]

Developed by J. P. Lovins in 1968.

Focuses on maintaining word

readability while stemming.

"Flights," "Flight's,"

"Flights'" becomes "Flight."

Paice/Husk

Stemmer [36]

Developed by Chris Paice, also

known as the Husk stemmer.

Balances aggressiveness with

maintaining readability.

"Dogs," "Dog's," "Dogs'"

becomes "Dog."

Krovetz Stemmer

[37]

Developed by Robert Krovetz.

Known for its stemming of complex

words.

"Easily," "Ease," "Eases"

becomes "Easili."

 These stemming algorithms are used to reduce words to their root forms, which can

help in various natural language processing tasks like text classification, information

retrieval, and text analysis. The choice of algorithm depends on your specific language and

application requirements.

43

2.3.2.2 Stop Word Removal

In natural language processing and text analysis, stop-word removal is crucial in refining

textual data for subsequent analysis and machine learning tasks. Stop words encompass

common, non-content-bearing words such as "the," "and," "in," "of," and many others that

appear frequently in natural language text but do not carry substantial semantic meaning. The

primary objective of stop word removal is to cleanse text data by eliminating these ubiquitous

and often superfluous terms, thus enhancing the quality and relevance of the remaining

content.

 Eliminating stop words makes the text more concise and emphasizes the importance

of keywords and phrases. This streamlining process not only aids in reducing computational

complexity but also contributes significantly to the accuracy and efficiency of downstream

NLP algorithms. It allows subsequent tasks like text classification, sentiment analysis,

information retrieval, and topic modeling to operate on more salient and informative text,

enabling them to discern meaningful patterns, relationships, and insights.

 Stop word removal finds widespread application across various domains, from

information retrieval systems, where it helps optimize search queries and document retrieval,

to sentiment analysis, ensuring that sentiment-bearing words are prominent in sentiment

scoring. Moreover, in topic modeling, eliminating stop words contributes to identifying

coherent themes and topics within textual corpora. Overall, stop word removal is a

fundamental pre-processing step in NLP, ultimately improving NLP applications' quality,

efficiency, and interpretability.

2.3.3 Indexing

In bug triaging, indexing refers to creating a structured and organized database or index of

bug reports and related information. This index is essential for efficient bug management and

allocation. During indexing, various attributes and metadata associated with each bug report

are extracted, parsed, and stored in a way that allows for quick and effective retrieval and

analysis.

44

Table 2.10: Different indexing process

Indexing Description Usage

Keyword-Based

Indexing [38]

This approach indexes bug reports

based on specific keywords, terms,

or phrases within the report's textual

content.

It allows users to search for bug

reports by entering relevant

keywords or terms, making it a

simple and effective way to find

relevant reports.

Metadata-Based

Indexing [39]

Bug reports often contain metadata

such as bug IDs, timestamps,

severity levels, and assignees.

Metadata-based indexing focuses on

indexing bug reports using these

metadata attributes.

It allows users to search for bug

reports by entering relevant

keywords or terms, making it a

simple and effective way to find

relevant reports.

Full-Text

Indexing [40]

Full-text indexing involves creating

an index of the entire textual content

of bug reports, including

descriptions, summaries, and

comments.

This approach enables

comprehensive searching,

allowing users to perform text-

based queries across all bug

report content.

Concept-Based

Indexing [41]

Concept-based indexing relies on

natural language processing and

semantic analysis to identify and

index the concepts or topics

discussed within bug reports.

Users can search for bug reports

based on the underlying

concepts, making it effective for

identifying reports related to

specific issues or topics.

Vector Space

Model (VSM)

[42]

VSM indexing represents bug

reports and related documents as

vectors in a multidimensional space.

Terms and keywords are assigned

weights, and the similarity between

bug reports and queries is measured

based on vector angles.

VSM indexing allows for

ranked retrieval of bug reports,

helping users find the most

relevant reports based on query

relevance.

 Continue on the next page

45

Table 2.10– continued from previous page

Term

Frequency-

Inverse

Document

Frequency (TF-

IDF) [43]

TF-IDF indexing calculates the

importance of terms within bug

reports relative to their frequency

across the entire dataset. Terms with

higher TF-IDF scores are considered

more relevant.

It is used for ranking bug reports

based on the importance of

terms, helping users identify

reports that contain significant

keywords.

Graph-Based

Indexing [44]

Graph-based indexing represents

bug reports and their relationships as

nodes and edges in a graph. Nodes

can represent bug reports, while

edges denote relationships, such as

duplicates or dependencies.

This approach is valuable for

visualizing and exploring

relationships between bug

reports, aiding in identifying

dependencies or duplicate

issues.

Time-Based

Indexing [45]

Time-based indexing focuses on

indexing bug reports based on

timestamps or historical data. It

allows users to track the evolution of

bugs over time.

This approach is useful for

analyzing trends, identifying

recurring issues, and assessing

the progress of bug resolution

efforts.

 Bug reports contain a wealth of information, including bug descriptions, summaries,

comments, severity levels, timestamps, and more. During indexing, these pieces of

information are extracted and separated into distinct fields for systematic storage and

retrieval. Bug data may come in various formats and styles, so normalizing the data into a

consistent structure is essential. This step ensures that data is uniform and can be easily

compared and analyzed. The textual content within bug reports is divided into individual

tokens or words. Tokenization helps in creating an organized representation of the textual

data. Commonly occurring stop words, such as "the," "and," and "is," may be removed during

indexing to reduce noise and improve the relevance of the indexed data. Stemming

algorithms may be applied to reduce words to their root form. For example, "running," "ran,"

and "runner" may all be stemmed from "run." This simplifies the indexing process and allows

for more flexible searching. An index is created once the bug report data is prepared and

structured. This database index maps keywords, terms, or tokens to the bug reports containing

them. It enables efficient searching and retrieval of relevant bug reports based on specific

46

criteria. Necessary metadata such as bug IDs, timestamps, assignees, and bug statuses are

also indexed along with textual data. This metadata is crucial for sorting, filtering, and

prioritizing bug reports. The indexing system should provide query capabilities, allowing

users to search for bug reports based on keywords, attributes, or criteria. This is a

fundamental feature of bug-triaging systems. Several indexing techniques and approaches are

used in bug-triaging systems. Table 2.10 represents some different indexing processes

commonly employed.

2.3.4 Graph Construction

During the process of resolving bug reports, numerous developers often engage in

communication and collaboration. Developers possess expertise in addressing various types

of bugs, and some software components may contain a larger number of bugs compared to

others. To make the most of this information when suggesting ultimate bug fixers, different

methodologies are employed to create graphs based on source code and bug history. For

instance, Figure 2.11 illustrates a Developer-Component-Bug (DCB) sample, utilized in [46]

to extract developer expertise details.

Figure 2.11: Sample Developer-Component-Bug network [46]

 The directed DCB network in Figure 2.11 is constructed using three distinct node

types: Developer, Component, and Bug. The Developer nodes represent the actual bug fixers

involved in resolving the reports. Component nodes signify sets of source files developers

modify, while Bug nodes represent fixed bugs. The edges within the graph depict the

relationships between developers and the source code components they have collaborated on.

47

Additionally, the connections between components and their associated bugs indicate which

files were modified during bug resolution. These graph structures identify past collaborations

among developers, and these relationships can be harnessed in bug assignment processes to

identify suitable bug-fixing teams.

2.3.5 Categorization

Bugs are categorized based on various criteria, including:

• Severity: The degree of impact of the bug on the software. Common severity levels

include critical, major, minor, and trivial.

• Type: The category or nature of the bug (e.g., functional, usability, performance,

security).

• Platform: The specific operating system, device, or environment where the bug

occurs.

• Version: The software version in which the bug is reported.

• Component: The specific module or component of the software affected by the bug.

• Metadata Tagging: Metadata can be included in each bug report for future searches

and analysis.

A detailed description of bug classification is described in Section 2.1.3.

2.3.6 Prioritization

Bug triagers prioritize bugs to determine the order in which they should be fixed. Priority is

based on factors such as:

Severity Assessment: One of the primary factors considered when assigning priority is the

bug's severity. Severity indicates the impact of the bug on the software and its users.

Typically, bugs are categorized into several severity levels, such as Critical, Major, Minor,

and Trivial. Critical issues, which can cause system failures, data loss, or security

vulnerabilities, are assigned the highest priority. In contrast, trivial issues, which may result

in cosmetic or non-essential problems, are given prioritized less.

Impact Evaluation: Bug triagers assess the overall impact of the bug on the software

system. Bugs that affect a significant portion of the user base or impact critical functionalities

are prioritized higher. These bugs have the potential to disrupt the user experience or business

operations and require immediate attention.

48

Customer Impact: Bugs reported by key customers, stakeholders, or clients who

significantly influence the development process may receive special consideration. Customer-

reported issues are often prioritized to ensure customer satisfaction and maintain a positive

relationship.

Project Milestones: Bug triagers take into account project milestones and release schedules.

Bugs that block upcoming releases or critical project milestones are assigned a higher

priority. Addressing these bugs becomes a top priority to ensure the project stays on track and

meets its deadlines.

Documentation of Decisions: To maintain transparency and provide a clear rationale for

priority assignments, bug triagers document their decisions. They create records that outline

the criteria used for prioritization, the specific factors influencing the decision, and any

supporting evidence. This documentation helps development teams understand why certain

bugs were prioritized and facilitate effective communication among team members.

2.3.7 Assignment and Notification

In some bug-triaging systems, predefined assignment rules or algorithms may be used to

automate the assignment process. These rules can be based on bug type, component,

developer workload, and historical assignment patterns. For example, a law might specify

that all critical security bugs are automatically assigned to a designated security expert. The

availability of developers also plays a role in assignment. Triagers consider the workload of

potential assignees. Developers who are already overloaded with tasks may not be the best

choice for a new assignment. Balancing workload is essential to prevent burnout and ensure

timely bug resolution. The bug triaging team may review developers' past performance and

track records when assigning bugs. Developers with a history of successfully resolving

similar issues or a strong track record of bug fixes may be preferred. Collaboration and

communication among developers are vital in resolving complex bugs. Bug triagers may

assign bugs to teams or individuals with a history of effective collaboration, ensuring that

communication channels are established. Once the bug is assigned to a developer or team, all

relevant bug report details are provided to them. This includes the bug description, steps to

reproduce, any attached files or screenshots, and any additional context or information

gathered during triaging. Comprehensive bug report details are essential to ensure that the

developer has a clear understanding of the issue.

49

Developers are informed about the bug's priority and severity. This information helps

them understand the task's urgency and whether it requires immediate attention. Developers

receive context about why they were chosen for the assignment. This may include

information about their expertise in the relevant area, their past bug-fixing history, or their

team's specialization. Assignee notification is often integrated with the bug-tracking system

used by the development team. This integration ensures developers can access the bug report

directly from the tracking system, update its status, and communicate with other team

members. Developers are made aware of their responsibilities regarding the assigned bug.

This may include setting a target resolution date, communicating progress, and collaborating

with other team members or stakeholders. Assignee notification also establishes a feedback

loop. Developers can acknowledge the assignment, seek clarification, and report when the

bug is resolved or requires further attention.

2.3.8 Update Developer and Bug Profile

Developer profiles are continuously updated based on the developer's performance in

resolving bugs. When a developer successfully fixes bugs, their profile may be updated to

reflect their proficiency in handling specific types of bugs. However, weaknesses may be

identified in their profile if a developer consistently struggles with certain bug types. These

updates can help improve bug allocation and developer recommendations.

 Bug profiles are also updated over time. As more information becomes available

about a bug, such as its severity, priority, and resolution status, its profile may change. For

example, if a bug is initially categorized as low severity but later identified as critical, its

profile will be updated to reflect this change. These updates ensure the bug triaging process

considers the most current information when making bug assignments.

2.4 Load Balancing in Bug Triggering

Load balancing in the context of bug triggering refers to the distribution of bug-triaging tasks

among developers or development teams in a way that optimizes resource utilization,

maximizes efficiency, and ensures that bugs are addressed promptly. Effective load balancing

can significantly impact the bug-triaging process by preventing bottlenecks, reducing

response times, and improving software quality. Figure 2.12 explores the details of load

balancing in bug triggering:

50

i) Task Allocation: Load balancing starts with the allocation of bug triaging tasks to

developers or teams. This allocation should consider several factors, including:

• Developer Expertise: Assign bugs to developers with the relevant expertise and

domain knowledge. Experienced developers may handle complex issues, while more

straightforward bugs can be allocated to junior developers.

• Workload: Assess the existing workload of developers. Avoid overloading a single

developer with too many tasks, as it can lead to burnout and delays.

• Bug Severity: High-priority bugs should be assigned promptly, while lower-priority

bugs can be scheduled accordingly.

• Developer Availability: Consider developers' availability and working hours to ensure

that assigned tasks can be addressed in a timely manner.

Figure 2.12: Load balancing in bug triaging

ii) Prioritization: Bugs should be prioritized based on their severity, user impact, and project

milestones. Load balancing should take into account the priority of bugs when allocating

51

tasks. Critical bugs may need immediate attention, while less severe issues can be scheduled

for later.

iii) Dynamic Task Redistribution: Load balancing is not a one-time activity but an ongoing

process. As bug triaging progresses, new bugs arrive, developer’s complete tasks, and

priorities may change. Load balancing mechanisms should be dynamic and adaptable to

redistribute tasks as needed.

iv) Monitoring and Metrics: To achieve effective load balancing, bug-tracking systems

should provide monitoring and metrics capabilities. Key metrics to consider include:

• Task Completion Time: Measure the time developers take to resolve bugs. Identify

bottlenecks and delays in the triaging process.

• Developer Workload: Track the number of tasks assigned to each developer. Ensure a

balanced distribution of tasks.

• Bug Aging: Monitor how long bugs remain open. Older bugs may require

reassignment or escalated priority.

• Resource Utilization: Assess how efficiently resources (developers) are utilized.

Avoid situations where some developers are idle while others are overloaded.

v) Load Balancing Algorithms: Various load balancing algorithms can be employed,

including round-robin assignment, least busy developer assignment, or algorithms

considering both the developer's expertise and workload. The choice of algorithm should

align with the bug-tracking system's requirements and goals.

vi) Collaboration and Communication: Load balancing should encourage collaboration

among developers. Developers should be able to communicate with each other to seek

assistance, share insights, and discuss solutions. Collaboration can lead to more efficient bug

resolution.

vii) Escalation Mechanisms: In cases where a bug cannot be resolved within a reasonable

timeframe or by the assigned developer, load balancing should include escalation

mechanisms. This involves reassigning the bug to a more qualified developer or team.

viii) Automation: Some bug-tracking systems incorporate automation for load balancing.

For example, machine learning models can predict task completion times and suggest optimal

task assignments.

ix) User Feedback: User feedback and bug reports can play a role in load balancing. If a

particular bug affects a large user base, it may receive higher priority and be assigned to a

team with the necessary resources to address it promptly.

52

 Effective load balancing in bug triggering ensures that bugs are triaged and resolved

efficiently, reducing software downtime, improving user satisfaction, and enhancing overall

software quality. It requires continuous monitoring, careful task allocation, and collaboration

among developers to achieve optimal results.

2.5 Summary

In today's software development landscape, the effective management of software bugs has

emerged as a pivotal endeavor to ensure software systems' sustained quality and reliability.

Automatic bug triaging, a vital component of this management process, has assumed a central

role in allocating bug-fixing tasks to the right developers. Within this chapter, we embark on

a journey to lay the robust conceptual foundation required for a comprehensive understanding

of the proposed bug-triaging technique. Our exploration begins with an exhaustive

examination of software bugs, unraveling the intricate web of factors contributing to their

occurrence and delving into their life cycle. We explore their origins, understanding why they

surface and how they evolve through different phases, from their initial detection to final

resolution. This comprehension is crucial in navigating the intricate bug-triaging landscape.

Additionally, we delve into the multifaceted realm of bug classification, where we decipher

the diverse nature of software bugs. Understanding the taxonomy of bugs based on their

characteristics and impact is pivotal in ensuring that the right experts are assigned to resolve

them. As we traverse further into the bug-handling process, we unveil the intricate steps in

identifying, reporting, and managing software bugs. This process, rife with challenges and

intricacies, is a linchpin in the bug resolution journey. Furthermore, we provide a

comprehensive overview of the bug reporting process, shedding light on bug reports' various

features and facets. Bug reports, the vital vessels of bug-related information, are meticulously

dissected to reveal their essential components, which include severity assessments,

prioritization, and detailed descriptions of the issues encountered. To cap this foundational

chapter, we introduce the overarching architecture that underpins automated bug triaging,

explicitly focusing on developer recommendation and load balancing. This architectural

blueprint sets the stage for the subsequent chapters, where we delve into detailed discussions

and present empirical findings illuminating the practical aspects of our bug-triaging approach.

By establishing this solid conceptual groundwork, we pave the way for a more

comprehensive and insightful exploration of the bug-triaging landscape.

53

Chapter 3

Literature Review

Automatic bug triaging for developer recommendation and load balancing is crucial in

modern software development for several reasons: It significantly improves the efficiency of

bug resolution by rapidly and accurately assigning bugs to developers with the right skills and

expertise, thereby reducing the time and resources required to maintain software quality.

Furthermore, it ensures optimal resource allocation by preventing experienced developers

from overloading with excessive bug assignments while providing opportunities for less

experienced developers to learn and contribute effectively. Automatic bug triaging also aids

in prioritization, identifying critical issues that require immediate attention, and mitigating

their impact on software functionality. Additionally, it promotes knowledge sharing among

team members, as it encourages less experienced developers to learn from their more

experienced peers, ultimately elevating the team's overall skill level. By reducing delays,

errors, and bottlenecks in the bug resolution process, automatic bug triaging streamlines the

software development cycle, leading to enhanced job satisfaction among developers and a

more productive and collaborative work environment.

 Having delved into the foundational concepts of software bug management and the

framework underpinning automated bug triaging in the preceding chapters, we now focus on the

broader landscape of existing research and practices. This Literature Review section explores

prior works, methodologies, and techniques that have contributed to the evolution of bug-triaging

processes. By scrutinizing the literature, we seek insights into the prevailing challenges,

innovative solutions, and emerging trends in bug triaging. Our aim is to leverage the knowledge

and experiences gleaned from the past to inform and enhance the bug-triaging approach presented

in this study. Through an in-depth analysis of relevant studies and methodologies, we endeavor to

build upon the solid foundation established in the introductory chapters and contribute to

advancing bug management practices.

54

3.1 Existing Research Works

Many research endeavors have suggested suitable developers for resolving recently reported

bugs in this domain. Most existing techniques rely on the developers' past bug-fixing track

record to make these recommendations. In this section, we emphasized the various bug-

triaging methods that have significantly impacted shaping our approach. To facilitate

understanding, we have classified prior investigations into eleven distinct areas, each aligning

with specific aspects of our approach. These categories are denoted as follows:

➢ Topic model-based approach

➢ Information retrieval-based approach

➢ Social network analysis-based approach

➢ Dependency-based approach

➢ Machine learning-based approach

➢ Reassignment-based approach

➢ Text categorization-based approach

➢ Data reduction-based approach

➢ Cost aware-based approach

➢ Industry oriented-based approach

In the following sections, each of these approaches is described in detail.

3.2 Topic Model-Based Approach

Topic model-based approaches in bug triaging involve using probabilistic models to identify

latent topics or themes within a collection of bug reports. These approaches aim to discover

the underlying topics that can help understand the content and characteristics of bug reports

more effectively.

3.2.1 DRETOM

Xie et al. [47] introduced a topic model-based approach called DRETOM (Developer

Recommendation based on Topic Models). DRETOM recommends developers based on their

bug-fixing history. The approach comprises multiple steps:

 In Step 1, the authors employ the Topic Modeling Toolbox (TMT) with Latent

Dirichlet Allocation (LDA) to create topics from existing bug reports. Each bug is associated

with the topic with the highest probability in its related bug report. In Step 2, relationships

55

between developers and bug topics are established using a probabilistic model that calculates

a developer's bug-solving probability based on their interest and expertise. Step 3 involves

recommending that developers address new bug reports. When a new bug report arrives, it is

assigned a topic based on previously built topic models. The probability of each developer

being a candidate to fix the bug is expressed as a conditional probability, P(dev | bug).

Developers are then ranked based on this probability, and the top K developers are

recommended. However, it's important to note that DRETOM has limitations, as it cannot

recommend new developers.

3.2.2 BUTTER

Zhang et al. [48] proposed BUTTER, a bug triage approach that utilizes topic modeling and

heterogeneous network analysis to automate bug assignments. BUTTER aims to assign bugs

to developers capable of solving them. Figure 3.1 shows the overall procedure of BUTTER.

The approach leverages both textual and structural information from bug reports. The process

begins with applying the LDA algorithm to categorize textual data from previously resolved

bugs into various topics. Bug reports contain both textual and structural data, and

heterogeneous networks are used to gather structural data about developers. The RankClass

model is trained based on the topic model and structural data derived from bug reports. Upon

the arrival of a new bug report, it is submitted to the LDA and RankClass models to classify

its final topic distribution. The final topic distribution and developer skills in the relevant

topic determine the list of developers suitable for addressing the bug. Despite its efficiency

gains compared to methods relying solely on textual content, BUTTER shares the limitation

of not being able to recommend new developers.

56

Figure 3.1: Overview of BUTTER model [48]

3.2.3 Developer Ranking Algorithm

Zhang et al. [49] presented a developer ranking algorithm for bug triage that utilizes topic

models and developer relations. This approach involves several key steps. Bug reports are

extracted and pre-processed, removing unnecessary information. Pre-processed data is input

into the Topic Modeling Toolbox (TMT), which employs Latent Dirichlet Allocation (LDA)

to generate topics and their associated terms. Candidate developers are derived from existing

bug reports. The interaction between candidates and relevant topics is measured using metrics

such as the number of assignments and comments. An "active reporter" is identified as the

bug reporter with the most comments on their bug reports. Relations between candidates and

the active reporter are calculated based on the number of fixed bug reports and related

comments submitted by the diligent reporter. An algorithm is developed to rank candidate

developers by combining Step 3 and Step 4 results. This approach is evaluated using three

open-source projects (Eclipse, Mozilla Firefox, and NetBeans) and demonstrates superior

performance in terms of F-score. However, it relies on historical bug fixing history and does

not recommend new developers. Figure 3.2 shows the overall procedure of this approach.

57

Figure 3.2: Overall framework of Developer Ranking Algorithm [49]

3.2.4 BAHA

Zhang et al. [50] introduced an automatic bug assignment technique called BAHA (Bug

Assignment Approach with Topic Modeling and Heterogeneous Network Analysis). The bug

triaging procedure of BAHA involves some steps. Textual contents (summaries and

descriptions) are extracted from previous fixed bug reports and preprocessed. The LDA

model is applied to the textual contents from existing bug reports to calculate topic

distributions. A RankClass model is trained based on the outputs of the LDA topic models

and textual contents from previous fixed bug reports. Upon the arrival of a new bug report, a

heterogeneous network is created. The LDA model and the heterogeneous network are used

together with the RankClass algorithm to estimate the topic distribution of the new bug

report. Developers are selected based on the topic distribution and expertise scores. The top N

developers are recommended for the bug. Tests conducted on the Eclipse JDT project

demonstrate that BAHA outperforms other sophisticated automated bug assignment methods.

However, like the previous approaches, BAHA relies on the history of bug fixing and does

not recommend new developers. The proposed bug-triaging procedure of BAHA is shown in

Figure 3.3.

58

Figure 3.3: Overall framework of BAHA [50]

3.3 Information Retrieval-Based Approach

Information retrieval-based bug triage systems leverage historical data stored in software

repositories. These repositories contain a wealth of information about the development and

maintenance of software systems, including source code changes, commit messages, and

version control records. Researchers use this data to make informed decisions about bug

triaging. Information retrieval-based bug triage systems continue evolving, leveraging

innovative techniques to recommend developers with the right expertise for resolving specific

bug reports. These approaches draw upon the rich historical data stored in software

repositories to streamline the bug-triaging process, ensuring that critical issues are addressed

promptly and efficiently. Effective bug triage is essential for maintaining software quality

and optimizing development resources, ultimately improving software reliability and user

satisfaction.

3.3.1 Mining Software Repositories

Kagdi et al. [51] introduced a method that involves creating a corpus for each source code file

using data from bug reports, such as descriptions, commits, source code snippets, and class or

method identifiers. They employed latent semantic indexing to index this corpus, enabling

them to quantify the similarity between bug report descriptions and the predicted source files.

Developers were recommended based on their activities associated with these predicted files.

59

Shokripour et al. [52] proposed an automatic bug assignment approach that relied on

extracting information from version control repositories. Their method utilized a phrase

composition technique derived from commits and descriptions. This system recommended

developers examine the activity histories in files with similar phrase compositions.

 Additional studies [53] have explored noun extraction methods to identify bug

locations by analyzing various information sources such as commit messages, comments, and

source code. These methods calculate term-weighting schemes to predict the files relevant to

a new bug report, and then developers are recommended based on their expertise with these

predicted files.

3.3.2 Leveraging Latent Semantic Indexing

Latent semantic indexing is a popular information retrieval technique used in bug triage. It

helps organize and understand textual data by uncovering the latent semantic structure in a

large corpus of text documents. Linares-Vásquez et al. [54] adopted LSI by collecting

identifiers, comments, and author information from source code files to create a corpus. This

corpus was indexed using latent semantic indexing, and the similarity between files and bug

report descriptions was computed. This approach recommended the authors of files with the

highest similarity to the bug report.

3.3.3 Modeling Developer Expertise

Beyond textual data, some techniques focus on modeling developer expertise based on their

interactions with various elements in the software development process. Naguib et al. [55]

introduced a technique incorporating topic modeling and developer activities, including

fixing, reviewing, and assigning bug reports. Developers are recommended based on their

association scores within topics determined by their activities.

 Yang et al. [56] presented approaches that utilize topic modeling and multiple features

to identify candidate developers who have participated in bug reports with similar topics and

features. These developers are then ranked based on their activities and contributions. S.

Wang et al. [57] developed an unsupervised method that caches developers based on their

activities at the component level. This approach calculates activeness scores for specific

periods within the cache, assisting in recommending the most suitable developer for a bug

report.

60

3.3.4 Enhanced LDA Methods

Some studies have explored the enhanced LDA methods to analyze the relationship between

developers and bug reports. Xia et al. [58] extended the latent Dirichlet allocation (LDA)

topic modeling algorithm by introducing a multi-feature LDA approach incorporating

components and products. Within this enhanced paradigm, developers are suggested based on

their affinity scores. Lee and Seo [59] devised a method to enhance triage performance by

improving existing LDA topic sets. They introduced two adjunct topic sets constructed using

multiple LDA-based topic sets, resulting in improved accuracy compared to conventional

LDA-based methods.

3.3.5 Entropy-Based Optimization

Zhang et al. [60] introduced an entropy-based optimized LDA approach for building topic

models for automatic bug report assignments. This approach utilized the Stanford topic

modeling toolbox to train topic models using optimized LDA. Developer comments played a

crucial role in modeling developer expertise and interest in specific topics, resulting in a

ranked list of recommended developers.

3.3.6 Expertise Scoring and Ranking

Yadav et al. [61] proposed an approach that reduces bug tossing length and ranks developers

based on their expertise in bug triaging. Developer profiles were generated based on their

contribution performance, and expertise scores were calculated using various factors,

including average fixing time, priority-weighted fixed issues, and index metrics. The

approach considered feature-based, cosine, and Jaccard similarities to compute these

expertise scores, ultimately providing a ranked list of developers for handling incoming bug

reports.

 Information retrieval-based bug triage systems continue evolving, leveraging

innovative techniques to recommend developers with the right expertise for resolving specific

bug reports. These approaches draw upon the rich historical data stored in software

repositories to streamline the bug-triaging process, ensuring that critical issues are addressed

promptly and efficiently. Effective bug triage is essential for maintaining software quality

and optimizing development resources, ultimately improving reliability and user satisfaction.

61

3.4 Social Network Analysis-Based Approach

Social network analysis is one method that some researchers use to tackle the bug triage

problem. In the software sector, developers work together closely to resolve bugs. The

complex ties between developers and bug reports are considered by social network analysis

approaches as a crucial component in identifying the best developer for a given task.

Developers are viewed as nodes in this complicated problem model, and their collaborations

are viewed as edges in a network.

3.4.1 Developer Social Network Construction

In the Developers Communities in Bug Assignment (DECOBA) approach by Banitaan and

Alenezi, they focus on constructing a social network of developers [62]. This network is built

based on the interactions and collaborations observed in the comments section of bug reports.

By analyzing these interactions, DECOBA identifies groups or communities of developers

who often work together or share expertise. These communities are valuable for

recommending developers for new bug reports. The system ranks these developer

communities to facilitate efficient bug assignment. This approach is beneficial for identifying

patterns of collaboration within development teams.

3.4.2 Social Network Analysis with Machine Learning

In the approach that combines social network analysis with machine learning, as proposed by

Zhang et al., the goal is to leverage both the social network characteristics of developers and

their contributions to the bug resolution process [63]. Metrics such as the number of bug

fixes, comments, and reports are considered to calculate a developer's contribution score.

This score is integrated with a classifier score derived from machine learning algorithms. By

combining these two scores, the approach determines the most suitable developer for a given

bug report. This hybrid approach enhances bug assignment accuracy by considering social

interactions and individual developer performance.

3.4.3 Information Retrieval for Bug Similarity

Zhang and Lee's approach revolves around information retrieval techniques to find bugs

similar to the triaged ones [64]. By identifying similar bugs, the system can recommend a

developer with experience or expertise in addressing issues of a similar nature. The fixing

62

probability, which indicates the likelihood of a developer successfully resolving a particular

bug, is determined using social network analysis. The fixing experience score is also

calculated based on the developer's history of fixing and assigning bugs. Combining these

factors, the approach provides a recommendation for bug assignment that is informed by the

developer's social network connections and experience in handling similar issues.

3.4.4 Bug-Fixing Expertise and Association-Based

Hu et al.'s bug-fixing technique focuses on assessing the expertise of developers in bug

resolution. It calculates the similarity between the target bug and other bug reports in the

repository. Developers are recommended based on their associations with specific

components and bugs. This approach emphasizes the developer's familiarity with the details

and issues of the bug being triaged. Considering these associations, the system optimizes the

bug assignment process by suggesting well-suited developers to address the particular

problem, thereby increasing the chances of efficient bug resolution [46].

3.4.5 Concept Profile and Social Network

In their study, Zhang et al. [65] introduced a bug triage process that combines concept

profiles and developer social networks to rank suitable developers based on their bug-solving

experience and cost-effectiveness. This method involves three main steps:

i) Concept Profile Creation

To establish concept profiles, the authors undertake two procedures. They utilize the K-

means clustering algorithm to categorize bug reports in the training dataset. Subsequently,

they gauge the textual similarity between bug reports by employing the cosine measure,

which considers both the title and description of bug reports. Bug concepts are identified after

clustering existing bug reports in the training dataset. They extract topic terms frequently

appearing in bug reports associated with the same concept. Figure 3.4 shows an example of a

topic term. Normalization is applied to convert term frequency into weight values.

Determining topic terms involves setting a threshold value (θ1), which is surpassed by the

weight value of terms.

63

Figure 3.4: Bug concept with the topic terms, where θ=0.05 [65]

ii) Retrieving Candidate Developers Using Social Network

When a new bug report emerges, it assesses its relevance to existing bug concepts. In a social

network with five nodes (Figure 3.5), the "concept" node represents a group of developers

derived from the concept profiles, with links indicating their relationships.

Figure 3.5: An example of social network [65]

iii) Ranking Candidate Developers

The authors develop a ranking algorithm to select the most suitable developers from a list of

candidates for fixing a given bug. This algorithm recommends that the top k developers

address the new bug report. It's essential to note that this method relies solely on previous

bug-fixing records and does not provide recommendations for newly-appointed developers.

 These sub-sections showcase various social network analysis-based bug triage systems

aspects, including network construction, machine learning integration, information retrieval,

and expertise assessment. Researchers and practitioners can explore these approaches to tailor

bug-triaging strategies to their needs and development environments.

64

3.5 Dependency Based Approach

Dependency-based bug Triage Systems are a bug triaging approach that considers the

dependencies between software components when assigning bug reports to developers. These

systems aim to improve the accuracy and efficiency of bug assignment by considering the

relationships and dependencies among different parts of a software project.

 In traditional bug triage systems, bug reports are often assigned based on factors such

as developer expertise or historical bug-fixing patterns. However, these systems may need to

consider the interdependencies between software components and modules. Dependency-

Based Bug Triage Systems fill this gap by analyzing the structure and identifying which

components are affected by a bug.

3.5.1 Bug Dependency-Based Mathematical Model

Kumari et al. [66] tackled the bug triage problem by introducing a bug dependency-based

mathematical model. This approach recognizes that bugs often depend on coding errors,

architectural flaws, or misunderstandings between users and developers. To determine

developer assignments, the model utilizes information from the bug report, such as the

summary, description, and comments, to calculate entropy. Developers are assigned based on

the entropy measurement. By considering bug dependencies, this approach aims to optimize

bug assignment by matching developers' expertise with the nature of the bug's dependencies.

3.5.2 Scheduling-Driven Task Assignment

Etemadi et al. [67] proposed a scheduling-driven approach for efficient bug-fixing task

assignments. Their method employs a task dependency graph where each task corresponds to

a node. Tasks are associated with both a starting time and an ending time. The approach

utilizes an embedded greedy search algorithm that operates on schedules to effectively

explore different parts of the search space. This strategy enhances accuracy in bug

assignment and reduces the time required for bug resolution. By scheduling tasks and

managing dependencies, developers can work on bugs more efficiently.

3.5.3 Automated Bug Triage with Dependency

Almhana and Kessentini [68] introduced an automated bug triage method that considers

dependencies among bug reports. Their approach involves localizing the specific files that

65

need inspection for each open bug report. It employs multi objective search techniques to

rank bug reports for programmers based on dependencies with other reports and their

associated priorities. This method demonstrates significant time savings, with over a 30%

reduction in the time required for localizing bugs concurrently compared to traditional bug

prioritization techniques. This approach streamlines the bug triage process by addressing bug

dependencies and optimizes developer efforts.

3.5.4 Dependency-Aware with NLP and Integer Programming

Jahanshahi et al. [69] proposed a dependency-aware bug triage method that combines natural

language processing and integer programming. Unlike previous dependency-based

approaches, this method integrates textual information, the relationships between bugs, and

the cost associated with each bug. By considering these factors, it aims to assign bugs to

developers to minimize overdue bug reports and improve bug-fixing time. However, it should

be noted that this approach assumes each developer can work on only one report at a time,

which may only sometimes align with the practical realities of development processes.

 These sub-sections highlight various aspects of dependency-based bug triage systems,

encompassing mathematical modeling, scheduling-driven approaches, automation with

dependency consideration, and integrating NLP and integer programming. These techniques

offer valuable insights into optimizing bug assignment by considering dependencies and

associated factors. Researchers and practitioners can explore these approaches to enhance

their bug-triaging strategies in real-world software development scenarios.

3.6 Machine Learning-Based Approach

Over the past decade, many bug triage methods based on machine and deep learning have

been introduced. These methods treat bug reports as learning instances and frame bug triage

as a classification problem. To categorize these approaches, we classify them into two main

groups:

• Conventional machine learning-based bug triage systems

• Deep learning-based bug triage systems

This classification helps effectively organize the diverse range of techniques used to address

bug triage challenges.

66

3.6.1 Conventional Machine Learning-Based

Conventional Machine Learning-Based Bug Triage Systems rely on various feature

extraction methods, including TF-IDF, chi-square for identifying discriminative terms, term

selection, and mutual information. These techniques are critical in transforming textual bug

report data into numerical features that machine learning algorithms can work with

effectively.

3.6.1.1 Bug Triage Using Selected Fields

Researchers like Bhattacharya and Neamtiu [70] focus on specific fields within bug reports,

such as titles, summaries, descriptions, and additional attributes. They extract relevant

features from these fields using techniques like TF-IDF and the bag-of-words (BOW) model.

Subsequently, machine learning classifiers, such as Naïve Bayes, assign the most suitable

developer to the reported bug.

3.6.1.2 Fuzzy Set Features for Bug Triage

Tamrawi et al. [71] introduce a distinctive approach to bug triage by incorporating fuzzy set

features. This technique analyzes bug report titles and descriptions and extracts critical terms

as features. Fuzzy set features provide a way to represent the imprecise or uncertain nature of

bug descriptions, contributing to more nuanced bug assignments.

3.6.1.3 Generalized Recommendations for Developers

Anvik and Murphy [72] expand their bug triage strategy beyond individual bug fixer

assignments. They employ normalized TF-IDF for feature extraction from titles and

descriptions and experiment with various machine learning algorithms, including Naïve

Bayes, expectation-maximization, SVM, Decision Trees (C4.5), K-Nearest Neighbor, and

conjunctive rules. Their approach goes beyond assigning a single bug fixer by recommending

components and suitable developers.

3.6.1.4 Developer Prioritization with TF-IDF

Xuan et al. [73] prioritize developers in their bug triage process using TF-IDF for feature

extraction from titles and descriptions. This prioritization helps ensure that the most

appropriate developer is assigned to address a particular bug. Naïve Bayes and SVMs are

leveraged as classifiers to facilitate bug assignment.

67

3.6.1.5 Bug Triage with Metadata Consideration

Banitaan and Alenezi [74] take bug report metadata into account to enhance triage accuracy.

They utilize feature extraction methods like TF-IDF and chi-squared techniques. The Naïve

Bayes classifier is employed for the bug assignment task. This approach aims to improve

prediction accuracy by considering additional information associated with bug reports.

3.6.1.6 Automatic Developer Assignment with Discriminatory Terms

Alenezi et al. [75] introduce an automated approach for assigning developers with relevant

experience to new bug reports. Their method employs a five-term selection method, which

includes the chi-square method, log odds ratio, term frequency relevance frequency, mutual

information, and distinguishing feature selector. The Naïve Bayes classifier is used to select

bug fixers for new bug reports, with the chi-squared term selection method proving

particularly effective.

3.6.1.7 Data Reduction for Improved Accuracy

Xuan et al. [76] employ a data reduction technique to select instances and features,

contributing to higher accuracy in bug triage. This technique, in conjunction with the Naïve

Bayes classifier, helps enhance the accuracy of bug assignment by reducing noise and

irrelevant information.

3.6.1.8 Ensemble Classifier for Enhanced Bug Triage

Jonsson et al. [77] employ ensemble learning techniques to improve bug triage results. They

extract features using TF-IDF from titles and descriptions and create a stacked generalizer

classifier. This classifier combines various base classifiers, including the Bayes net, Naïve

Bayes, SVM, KNN, and decision tree classifiers. Ensemble learning enhances the robustness

and overall performance of the bug triage system.

3.6.1.9 SVM-Based Bug Recommender System

Florea et al. [78] propose a bug recommender system based on Support Vector Machines and

feature extraction techniques like TF-IDF and chi-squared. Their model is tested on multiple

datasets and focuses on preserving nouns from text attributes (such as summaries and

descriptions). The use of SVM enhances the accuracy of bug recommendations.

68

3.6.1.10 Incorporating Categorical Features and Metadata

Alenezi et al. [79] explore the integration of categorical features and metadata alongside

textual data for bug triage. They utilize the gain ratio to identify essential features,

specifically emphasizing operating systems and priority determination from metadata.

Combining textual data with categorical features shows promise in improving bug triage

outcomes.

3.6.1.11 High-Confidence Bug Triage

Sarkar et al. [80] introduce a bug triage system incorporating high-confidence prediction

levels. They utilize alarms and crash dumps in addition to textual and categorical attributes.

Feature extraction methods like normalized TF-IDF and line-IDF are applied to textual data

and alarm/crash dumps. Classification tasks are performed using logistic regression, SVM,

KNN, and Naïve Bayes classifiers, with logistic.

3.6.1.12 Semi-Automated with Skill-Based Developer Recommendation

Anvik et al. [81] introduced a semi-automated bug triaging approach designed to proficiently

assign newly reported bugs to developers based on their relevant skills. This method employs

a supervised machine learning algorithm to propose a concise list of developers frequently

engaging with similar issues. The process combines automation with human expertise, as a

trigger ultimately selects the most appropriate developer from the suggested set. The

methodology begins by characterizing bug reports, extracting pertinent features, and grouping

them based on similarity, primarily focusing on the summary and description of each report.

The text is transformed into a feature vector to facilitate the application of machine learning

algorithms to the free-form text in these reports. Standard preprocessing techniques are

initially applied, including removing stop words and non-alphabetic tokens. The resulting

words are then used to construct a feature vector that captures the term frequencies. Next,

each bug report is labeled with the developer's name who resolved it, providing valuable

training data. To enhance the dataset's quality, filters are employed to refine bug reports that

lack project-specific, useful labels. Additionally, developers who are no longer active on

projects or have resolved only a limited number of bugs are excluded from consideration. The

bug assignment process utilizes Support Vector Machines to propose a list of potential

developers, which is subsequently presented to a human trigger for final recommendation.

The human trigger selects the most suitable developers from this list based on their expertise

and availability. This approach was evaluated on two prominent open-source projects,

69

Eclipse and Firefox, achieving a precision rate of 57% for Eclipse and 64% for Firefox. The

semi-automated bug triaging method effectively combines machine learning capabilities with

human judgment to streamline the bug assignment process and enhance accuracy.

3.6.1.13 Enhanced Bug Triage through Integrated Models

Zhang et al. [64] introduced an integrated bug triage algorithm that combines probability and

experience models to enhance developer recommendation. Their approach involves

preprocessing new bug reports, retrieving similar historical bugs, extracting relevant features,

and considering factors like the fixer's name, the time required for fixes, and the number of

re-opened bugs. Candidate developers are identified, and a probability model analyzes their

potential for resolving new bugs. Simultaneously, the experience model evaluates the

historical performance of developers. These models are merged into a hybrid bug triage

algorithm to recommend suitable developers. Evaluation of open-source projects JBoss and

Eclipse demonstrates the effectiveness of this method in recommending appropriate

developers for bug resolution. Figure 3.6 represents the probability and experience models

used in this algorithm.

3.6.1.14 Activity-Based Bug Triage Strategy

Naguib et al. [55] proposed an activity-based bug-triaging strategy that creates activity

profiles for bug-tracking system developers. This approach leverages Latent Dirichlet

Allocation (LDA) to establish topic models for bug reports, categorizing words into topics

from report titles, descriptions, and system components. An activity profile is generated for

each developer using historical logs, encompassing their roles and topic associations. When a

new bug report arrives, it extracts its topic model and ranks developers based on their activity

profiles and topic relevance. This strategy achieves an average hit ratio of 88% across three

different projects, outperforming the LDA-SVM-based assignment recommendation

technique.

70

Figure 3.6: Structure of hybrid bug triaging [55]

3.6.1.15 BugFixer

Hu et al. [46] introduced BugFixer, a bug-triaging method that capitalizes on past bug-fixing

information. BugFixer creates a Developer-Component-Bug network, connecting developers

to components and components to bugs. The methodology involves two main parts: Bug

Report Similarity and The DCB Network. Bug Report Similarity employs a unique

tokenization algorithm to enhance bug report similarity calculations, using SVM to assess

matches. The DCB Network leverages historical bug-fix data to determine relationships

between new bug reports and developers. BugFixer excels in larger projects and performs

71

comparably well in smaller projects, as evidenced by evaluations on open-source and

industrial projects. Figure 3.7 shows the overall structure of BugFixer.

Figure 3.7: Overall structure of BugFixer

3.6.1.16 Search-Based Bug Triage with Apache Lucene

Peng et al. [82] propose a search-based bug triaging method using Apache Lucene to identify

relevant bug reports and corresponding developers. The approach involves creating an index

for bug reports and crafting queries based on product, component, summary, and description

from bug reports. The search results yield ranked developers, with the top N recommended

for resolving the bug. However, this method focuses exclusively on existing experienced

developers and does not incorporate new developers into the recommendation process.

3.6.1.17 Common Vocabulary-Based Bug Triage Algorithm

Nagwani et al. [83] introduced a bug triaging algorithm that identifies relevant developers for

new bug reports by creating common words set from existing bug reports. It compiles a

developer list from the bug archive, generates developer vocabulary lists from previous fixed

bug reports, and maps them with new bug report common words. This process generates a list

of developers for solving new bug reports. However, the algorithm primarily relies on known

developers and does not recommend new developers for bug resolution.

72

3.6.2 Deep Learning-Based

Recently, bug triage has witnessed significant advancements with the adoption of Natural

Language Processing and deep learning techniques. These cutting-edge approaches leverage

the power of NLP to handle word embedding and word representation, presenting innovative

solutions to bug triage challenges that have emerged over the past few years.

3.6.2.1 CNN-Based Bug Triage with Word2Vec

S. Lee et al. [84] introduced a bug triage approach that leverages Convolutional Neural

Networks and the word2vec model for word representation. This model utilizes bug report

summaries and descriptions as input data. They validated this technique across two open-

source and industrial projects, marking a significant step in adopting CNN for bug triage.

Before this, CNN was primarily employed for various other software engineering tasks,

including bug detection, severity classification, and identifying code smells.

3.6.2.2 Multilabel Deep Neural Network for Bug Triage

Choquette-Choo et al. [85] proposed a multilabel and dual-output deep neural network for

bug triage systems. The authors employed latent semantic analysis and introduced a two-

output deep neural network architecture to achieve latent space representation. This

architecture initially predicts team classes and developers based on the predicted team. Their

approach incorporates a heuristic process that considers bug fixer information and developer

contribution levels, providing a comprehensive method for bug triage.

3.6.2.3 Deep Bidirectional RNN with Attention for Bug Triage

An attention mechanism-equipped deep bidirectional Recurrent Neural Network (DBRNN-A)

was introduced by Mani et al. [86] to learn synthetic and semantic characteristics from bug

report summaries and descriptions. They utilized a representation based on DBRNN-A for

classifier training and vectorizing textual data using word2vec. The authors also shared their

data, creating benchmark datasets for future research. This approach enhances bug triage with

the ability to capture contextual information and semantic relationships.

3.6.2.4 Activity-Based Bug Triage with CNN

S. Guo et al. [87] proposed an activity-based bug triage technique that utilizes the CNN

model. Their approach involves sorting data based on the bug report creation time, using the

73

last 10% of the data for testing. The technique demonstrated promising results, mainly when

applied to large datasets. This method considers the temporal aspect of bug reports and

leverages CNN for effective triage.

3.6.2.5 CNN-Based Bug Fixer Recommendation System

Zaidi et al. [88] introduced a CNN-based bug fixer recommendation system that utilizes both

small and large datasets. They employed various word embedding techniques, including

word2vec, GloVe, and ELMo. Multiple convolutional kernels were used to extract diverse

features from bug reports. This approach showcased state-of-the-art performance in bug

triage, emphasizing the importance of word embeddings and convolutional neural networks

in recommendation systems.

3.6.2.6 Heterogeneous Graph-Based Bug Triage

A recent development in bug triage involves a heterogeneous graph-based method utilizing

Graph Convolutional Networks (GCN). This approach generates heterogeneous graphs from

triage history data, offering a quicker alternative to CNN and RNN methods while delivering

comparable results. Heterogeneous graphs encompass various relationships between data

entities, providing valuable context for bug triage [89].

3.6.2.7 Multitriage Model for Developer Assignment

Aung et al. [90] proposed a multitriage model capable of assigning developers and issue

types simultaneously. This innovative approach employs two different deep-learning models

for feature extraction. The text encoder module is based on the CNN model, while the

abstract syntax tree encoder module utilizes biLSTM. Features from both encoders are

concatenated, and two separate classifiers are trained—one for developer assignment and

another for bug issue type classification. While effective, this model requires additional

training time due to its dual-encoder and dual-model architecture.

3.6.2.8. Bug Triage with Graph Neural Network

Zaidi et al. [2] presented a bug triage system utilizing a Graph Neural Network (GCN) and a

heterogeneous graph. This approach constructs a heterogeneous graph that includes word-

word and word-bug document edges, with TF-IDF used for weighting word-bug document

edges. Different similarity metrics are employed to weight word-word edges. A simple two-

layer GCN trains the model, recommending ten developers for a given unseen bug report.

74

This method capitalizes on the power of graph-based representations and neural networks for

efficient bug triage.

 These advanced bug triage methods, incorporating NLP and deep learning techniques,

offer improved accuracy, semantic understanding of textual data, and the ability to handle

complex relationships, ultimately enhancing the bug triage process in software development.

Researchers continue to explore these methods to optimize bug assignment and developer

recommendations further.

3.7 Reassignment-Based Approaches

In the context of bug triage, reassignment occurs when the initially assigned developer is

either unable or unwilling to resolve a bug, prompting the transfer of the bug to another

developer for resolution. This process of bug reassignment has notable drawbacks for the

overall maintenance process. The primary reason behind bug reassignment lies in the manual

assignment of tasks, which can be error-prone. Consequently, bug reassignment introduces

additional costs and prolongs the time required to resolve bugs. Studies in this area have

revealed that a significant portion of bugs, ranging from 37% to 44%, undergo at least one

reassignment event. Furthermore, the average duration of a single reassignment event is

approximately 50 days. As such, reducing these instances of bug reassignment can enhance

the efficiency and effectiveness of bug-triaging systems.

3.7.1 Tossing Graph-Based Approaches

In the context of bug reassignment, researchers have employed tossing graphs, which are

essentially directed graphs where nodes represent system developers and directed edges

symbolize the transfer of a bug from one developer to another. These graphs visually

represent the bug passing history, where shorter paths indicate fewer reassignments. Several

bug triaging techniques have been developed based on these tossing graphs to minimize the

number of bug reassignments caused by incorrect developer assignments.

3.7.1.1 Bug Tossing Graphs

Jeong et al. [91] introduced bug-tossing graphs to enhance bug assignment techniques. These

graphs represent bug passing history among developers. Two models are employed: the

actual model and the goal-oriented model. The actual model captures all tosses, while the

goal-oriented model simplifies it. Inspired by Markov Chain properties, weighted edges

75

represent the probability of a toss between developers. When a new bug report arrives,

machine learning identifies similar bug reports, and developers with tossing solid

relationships are recommended. The approach improves prediction accuracy but may face

search failures.

3.7.1.2 Enhanced Tossing Graphs

Building on the previous work, Chen et al. optimized tossing graphs by pruning retired or

non-recent developers [92]. When a new bug report arrives, the Vector Space Model

identifies similar previous bugs, and the tossing graph is pruned based on these similarities.

Developers in the pruned sub-graph are recommended as potential developers. Evaluation

metrics, like Mean Length of Tossing Paths (MLTP) and Failure Rate (FR), indicate

successful bug fixer identification with fewer tossing events. These tossing graph-based

approaches tackle bug reassignment challenges by leveraging historical tossing patterns to

enhance developer recommendations.

3.7.2 Multi-Feature Incremental Learning

Bhattacharya and the team [93] proposed an advanced approach that enhances previous

techniques by incorporating multiple bug report features such as product and component

during graph construction. A significant contribution of their work is the introduction of

incremental learning, performed after recommending each new bug report. This incremental

learning approach continually updates the training set with each new instance, improving the

model's learning capability over time. Traditional tossing graphs are built solely from past

bug reports, which can limit recommendation accuracy as they rely exclusively on historical

data. One notable limitation of these approaches is their struggle to accommodate new

developers effectively. Since new developers lack bug-fixing histories, they need to be

integrated into the graph, making it challenging to ensure equal resource utilization and team

recommendation, which are vital in industrial settings. Bhattacharya, et al.'s method,

addresses these limitations by considering various bug report features and implementing

incremental learning to adapt and improve developer recommendations as new bug reports

emerge.

76

3.8 Text Categorization-Based Approaches

Text categorization-based approaches in bug triage involve the development of models

trained on historical bug reports. These models utilize text similarity algorithms to compare

new bug reports with the knowledge gained from past reports. The primary objective of such

approaches is to predict the most suitable developers by ranking them based on their previous

experience in resolving similar bugs. This methodology aims to recommend developers with

relevant expertise for efficient bug resolution.

3.8.1 Bug Report Meta Data

Bug report metadata is essential for bug assignment techniques, where bug reports are treated

as instances, textual descriptions as features, and developers as labels. However, noisy and

irrelevant terms in the textual content can hinder accuracy. Banitaan et al. [74] introduced

TRAM (Term-based Representation with Assignment Metadata) to overcome this. To

improve accuracy, TRAM utilizes metadata, including discriminating terms, bug

components, and reporters. It extracts features from the bug report metadata, like the title.

Preprocessing techniques are applied, and a weighted bug-term matrix is constructed.

Discriminating terms are selected using the Chi-Square method. The predictive model is built

using the Naive Bayes Classifier for its efficiency and accuracy. TRAM was tested on open-

source projects, achieving higher precision and recall than baseline approaches. However, it

has limitations, such as assuming a single expert developer for each report and not

considering recent developer activity, which can affect the assignment of new developers.

3.8.2 Developer Preference Elicitation

Developer preference plays a crucial role in efficient task assignment, as it taps into a

developer's expertise and aligns with their motivation. Research on the Eclipse project

indicates that a significant portion (24%) of bugs is reassigned to different developers before

resolution, underscoring the importance of considering developer preferences in the

assignment process. In addressing this concern, Baysal et al. [94] introduced a preference

elimination technique to enhance existing text categorization methods for bug assignment.

Their framework comprises three core components. The approach begins with the assumption

that developers are inclined to tackle bugs within their domain of expertise. The Expertise

Recommendation component employs the Vector Space Model to deduce developer expertise

77

from their prior bug fixes. To build a developer profile, it extracts keywords from various

textual sources, such as bug summaries, descriptions, and comments. The term vector is

weighted using the tf-Idf scheme to emphasize relevant terms. When a new bug report

surfaces, a comparison is made between the term vectors of developers and the incoming

report to recommend developers with relevant expertise. This component allows developers

to express their willingness to address specific bugs. A "Rating" field is introduced within

bug reports to collect and store preference levels through feedback. Developers categorize

bugs as "Preferred," "Neutral," or "Non-Preferred." The developer's preference is determined

by creating a whitelist of bugs they rated as preferred. This whitelist consists of a term vector

comprising terms from the preferred bug reports. When a new bug emerges, its similarity to

these whitelists is assessed to assign preference levels to developers. The Task Allocation

component combines developer preference and expertise to suggest suitable fixers. The

technique also factors developers' current workload and availability using a method proposed

by Weiss et al. However, the study needed to provide experimental validation for this

approach due to the complexity of model design and the unavailability of developer details.

Furthermore, it acknowledges potential limitations, such as the possibility of developers

manipulating their preference ratings and the challenge of new developers receiving no tasks

as they need a bug-fixing history.

3.8.3 Code Authorship

Traditional bug triage approaches often require extensive mining of software repositories,

typically focusing on either bug reports or source code commit histories. These processes

involve significant computational costs and resource-intensive data collection efforts. To

address these challenges, Hossen et al. [95] introduced an innovative triaging approach

centered on code authorship for incoming change requests, whether they involve bug fixes or

new features. This approach comprises two key steps. Initially, the project's source code

under consideration is indexed using Latent Semantic Indexing. This indexing process

specifically extracts identifiers and comments from the source files. Consequently, each

source file is associated with a vector within the constructed index. When a new change

request arrives, its lengthy description is extracted and matched against the indexed files

using LSI. This results in a ranked list of relevant source files. The subsequent step involves

recommending a list of developers based on the identified source files. The source code files

are transformed into a lightweight XML representation called "srcML." Header comments,

78

typically containing copyright, licensing, and authorship information, are extracted from this

XML representation. To obtain author information, regular expressions are devised and

applied to the textual header comments. The relevance of an author is determined by

calculating the frequency of their name appearing in the comments of the top-ranked source

files. In cases of tiebreakers, the rank of these source files is considered. The effectiveness of

this approach was demonstrated through its application to three open-source projects, where

it outperformed two benchmark systems in terms of precision and recall. However, the

approach's validity is contingent on the quality of comments provided by authors, which can

be inconsistent and may not adhere to standard coding conventions. Additionally, authors

may choose not to disclose their information in source file comments. Moreover, the method

needs to include consideration of developers' expertise, potentially leading to assignments to

inexperienced developers. Developers who have to comment on any source files may receive

no tasks and miss out on future change requests.

3.9 Bug Data Reduction Approaches

In bug triaging, some approaches that focus on data reduction to enhance effectiveness have

emerged [96]. These methods eliminate noisy and duplicate data from a system's bug

repository. However, data reduction approaches have their limitations. The reduced dataset

represents historical developer activity-based information, which can lead to reduced

prediction accuracy when dealing with inactive or retired developers. Furthermore, these

reduced datasets need to be updated when new developers join, resulting in new developers

being excluded from task assignments.

3.9.1 Source-Based Bug Assignment Approaches

In the domain of bug assignment, researchers have also explored source-based techniques.

These approaches are rooted in the idea that having an externalized model of a developer's

expertise, particularly in code commits, can enhance task assignment. Building on this

concept, developer vocabulary-based methods have been developed to capitalize on

developers' source code activities. These approaches prioritize leveraging developers' source

code contributions and expertise in the bug assignment process. One notable approach,

proposed by Xuan and colleagues [76], combines various data reduction techniques,

including instance selection (e.g., removing duplicate bug reports) and feature selection (e.g.,

identifying essential keywords). By applying feature and instance selection algorithms to an

79

existing bug repository, this technique reduces both the number of bug reports and the word

dimension within those reports. The resulting reduced bug data contains fewer bug reports

and a smaller vocabulary than the original dataset while conveying similar information.

3.9.2 Developer Vocabulary-Based Approach

To suggest developers for bug assignment, Matter et al. presented Develect, a vocabulary-

based expertise model [97]. This approach starts by parsing the source code and constructing

a model of the entire codebase. It employs the 'diff' command to capture word frequencies in

changes made between two versions of the same file. The words found in identifier names

and comments within the altered files are considered part of a developer's vocabulary. An

expertise model is then generated using existing vocabularies and stored in a matrix format

known as a term-author matrix. Develect compares the keywords in the reports with

developer vocabularies when new bug reports arrive, using lexical similarities. Developers

with the highest scores are identified as potential bug fixers. A threshold value is applied to

address the issue of recommending inactive developers. However, this approach disregards

experienced developers in the recommendation process, potentially leading to the suggestion

of novice or inexperienced developers. Additionally, source code comments can introduce

noisy information, as developers might include irrelevant comments that affect the accuracy

of the approach. Furthermore, Develect struggles to model new developers who have yet to

make any code commits, which can result in increased bug reassignments, longer resolution

times, and reduced recommendation accuracy.

3.9.3 Commit Time-Based Approach

Many existing bug assignment approaches overlook the temporal aspect of developer

commits, which can be a crucial indicator of their current activities. Considering the time

metadata associated with code commits can help reduce the recommendation of inactive

developers. One approach that incorporates time metadata into bug assignment is the ABA-

Time-tf-idf technique [98]. This method identifies recent developers for bug assignments

using time metadata as a key factor. It begins by parsing various source code entities, such as

class names, method names, method parameters, and class attributes, and associates these

entities with contributors to build a corpus. When new bug reports arrive, the technique

searches for keywords in the index and assigns weights based on their usage frequency and

associated time metadata. This means that developers who have used specific terms more

80

recently will receive greater emphasis in the recommendation process and will be listed at the

top of the recommended developers' list. However, ABA-Time-tf-idf lacks high accuracy

because it overlooks experienced developers and does not adequately support industrial

requirements, such as team recommendation and resource allocation, especially in the context

of new developers.

3.10 Cost Aware Based Approaches

Park and colleagues [99] introduced CosTriage, a developer ranking algorithm incorporating

cost considerations into the bug triage process. This approach transforms bug triaging into an

optimization problem, balancing accuracy and cost-effectiveness. It utilizes Content Boosted

Collaborative Filtering (CBCF) to rank developers, addressing the questions of "Who can fix

the bug?" and "Who can fix it faster or at a lower cost?"

 CosTriage consists of two main steps: constructing developer profiles and ranking

developers. Developer profiles are numeric vectors representing estimated costs for

developers to fix specific bugs. To determine bug types, Latent Dirichlet Allocation (LDA) is

applied to the bug repository. After identifying bug types, the approach computes the average

fix time for each bug type per developer to create developer profiles. If a developer lacks a

history of fixing a particular bug type, their profile contains missing values, which are filled

in using collaborative filtering. When a new bug report arrives, CosTriage first identifies the

bug type. It does so by extracting words from the report's title and description, then

calculating the word distribution for each topic and selecting the one with the highest score as

the bug type. Next, the approach assigns a score representing the bug-fixing cost for each

developer based on their developer profile. Simultaneously, it employs content-based

recommendation techniques on new and existing bug reports to assess developer experience.

Each developer receives an experience score based on the word similarity between the new

bug report and their previously fixed bug reports. Finally, these scores are combined and

ranked in descending order to generate a list of suitable developers.

 In cases where the bug type cannot be identified from the new bug report, CosTriage

uses source code snippets from bug reports to make the determination. It selects 100 bug

reports containing source code snippets and matches the import portions of source code

between the new and existing reports using the Jaccard similarity coefficient. The bug type of

the new report is then determined based on the type of the most similar existing bug report.

However, CosTriage has limitations. It may fail when a new bug report lacks a source code

81

snippet. Additionally, the approach needs to guide handling new developers, as it relies on

previous bug-fixing ratings that may not be available for newcomers. Therefore, it may not be

easily generalized in an industrial context.

3.11 Industry-Oriented Approaches

Open-source and industrial projects have distinct characteristics, including development

processes, requirements, and project sizes. While many bug-triaging approaches focus on

open-source systems, recent studies have emphasized the growing need for effective bug

assignment systems in industrial settings. Here, we explore key studies in this area.

3.11.1 Research-Industry Cooperation

To bridge the gap between academic research and industry requirements, Vaclav et al. [100]

conducted a study that explored bug assignment automation in collaboration with both an

industrial project (a Czech Republic-based software company) and an open-source project

(Firefox). This study tested six hypotheses to compare bug assignment trends in these two

domains, employing statistical methods like Chi-Square and t-tests. The findings indicated

that the data distribution in the two datasets was similar, and a classification model using

SVM + TF-IDF + stop word removal proved effective for both the industrial and Firefox

data. This study shed light on the need to consider the number of issues per developer and the

importance of supporting team recommendations in future research collaborations with

companies.

3.11.2 Team Assignment

In the industry, there's a demand for recommendations for individual developers and

developer teams to optimize resource utilization. Prior studies have highlighted the benefits

of considering heterogeneous features in training models to improve recommendation

accuracy. This approach involves constructing networks to represent relationships between

various entities, such as bug reports and developers, fostering collaboration.

 For team recommendations, Zhang et al. [101] introduced KSAP, a bug report

assignment technique that utilizes K Nearest Neighbor (KNN) search and heterogeneous

proximity. KSAP starts by building a heterogeneous network using existing bug reports

involving five types of entities: developer, bug, comment, component, and product. These

82

entities are interconnected through various relations, such as developers writing comments or

bugs containing comments. The study proposed nine meta-paths to identify developer

collaborations, categorized into three types: associations on common bugs, components, and

products. When a new bug report arrives, KSAP converts it into a document vector and

calculates cosine similarities with existing bug reports. The K most similar bug reports are

considered candidates, and the developers involved in activities related to these bugs are

added to the list. The approach extracts each developer in the candidate list's associated meta-

paths from the network. Finally, each developer's heterogeneous proximity score is computed

based on these meta-paths, reflecting their collaboration with other developers on common

bugs, components, and products. This score ranks the candidates, and the top Q developers

are recommended.

 However, KSAP faces challenges related to over-specialization, as it doesn't consider

the latest developer activities. This leads to experienced developers being inundated with

tasks while new developers need help to participate in bug resolution effectively.

3.12 Summary

The extensive exploration of existing bug-triggering techniques in the preceding discussion

reveals a comprehensive body of research dedicated to automating this task. The literature

describes ten distinct categories of work within automatic bug triggering, encompassing topic

model-based, information retrieval-based, social network analysis-based, dependency-based,

machine learning-based, reassignment-based, text categorization-based, data reduction-based,

cost-aware-based, source-based, and industry-oriented-based approaches. However, it is

notable that most of these approaches are tailored to address triaging requirements in open-

source systems. One key observation is that existing solutions typically recommend

developers based on either their prior bug history or recent source commits, often neglecting

the complementary information present in the other source. This limitation results in

imprecise recommendations and needs more collaboration among new developers.

Furthermore, a critical gap in the previous research is the need for load-balancing

considerations, which are paramount in ensuring the equitable distribution of tasks and

fostering collaboration among development teams. The oversight of these crucial factors

renders the existing approaches less applicable to industrial projects. Consequently, there is a

pressing need for further research to integrate and account for these vital aspects, thus

establishing a more versatile and robust bug-triggering framework.

83

In light of these research gaps and the significance of load balancing in bug assignment, this

study introduces two novel models. In Chapter 4, we present BSDRM to enhance developer

recommendations by effectively leveraging both bug history and source commits.

Subsequently, in Chapter 5, we introduce DevSched to address load-balancing concerns,

ensuring a more equitable distribution of tasks among developers. Collectively, these

innovations aim to resolve the identified issues and provide a comprehensive solution for bug

assignment in industrial projects.

84

Chapter 4

Recommend Developer Team Efficiently

Bug triage is a critical process involving the prioritization of bugs based on various factors

such as severity, frequency, and risk. This procedure is pivotal in justifying the allocation of

resources for resolving different bug severities, ultimately leading to improved software

quality within reduced timeframes. Many software companies grapple with the constant

influx of a substantial volume of bug reports. When a new bug report surfaces, it typically

necessitates the involvement of multiple adept developers for resolution. However, this often

results in experienced developers being inundated with excessive bug assignments while

newer and intermediate-skilled developers need help to secure opportunities for bug-fixing

tasks. Additionally, situations may arise where experienced developers transition from

different fields to undertake bug-fixing responsibilities. Therefore, a compelling need arises

to allocate bugs to diverse categories of developers where they can contribute their

knowledge and expertise effectively. To achieve this, we harness the available bug report

information, encompassing aspects such as severity, priority, source code details, and commit

logs, to identify suitable developers for addressing specific issues. Recent commits serve as

valuable indicators of developers' ongoing activities, while historical records offer insights

into a developer's proficiency in tackling particular bug types. However, it's essential to

acknowledge that many freshly graduated developers, lacking prior bug-fixing experience,

often join companies. In most cases, these newcomers may need to be better versed in such

tasks.

Conversely, some developers have garnered valuable experience in resolving various

bug types. Additionally, developers transitioning from other development projects are tasked

with addressing incoming bugs, and both groups are considered new, experienced developers.

Regrettably, they may not receive a sufficient volume of bugs to improve their skills.

85

Consequently, experienced developers become overwhelmed and need help to address

numerous bugs within stipulated timeframes.

 In response to these challenges, there is a need to create developer teams that

encompass a mix of experienced professionals, fresh graduates, and developers with diverse

backgrounds. This approach ensures that all categories of developers have the opportunity to

contribute to the resolution of newly reported bugs. Moreover, collaborative problem-solving

within such teams proves highly beneficial for addressing incoming bugs efficiently. Skilled

developers can oversee a more extensive array of bugs, while newer additions to the team can

learn and develop their bug-solving abilities. Despite prior research efforts focusing on bug-

triaging methods, a significant gap still needs to be addressed to accommodate newly

experienced developers adequately.

 Machine learning, a field dedicated to developing algorithms that autonomously learn

from past data to make informed decisions, is the foundation of our proposed solution. We

introduce the Bug Solving Developer Recommendation Model, a Machine Learning-based

approach designed to recommend developer teams consisting of experts, proficient

developers from other domains, and fresh graduates to address newly reported bugs

collaboratively.

4.1 Overview of BSDRM

In this section, we introduce an advanced Machine Learning-driven bug assignment method

named BSDRM, designed to suggest a team of developers comprising individuals with

varying expertise levels, including Expert Developers, Novice Expert Developers, and Fresh

Graduates. Figure 4.1 provides an illustrative overview of the operational stages of this

model, which will be briefly elaborated upon in the subsequent discussion.

4.1.1 Dataset Description

The datasets employed in various bug triage studies often use open-source projects such as

Eclipse, Mozilla, and Netbeans. These datasets encompass an array of data types, including

source code, commit logs, and bug reports sourced from Bugzilla. They encompass diverse

variables, such as severity, priority, fix status, platform or hardware details, assignee

information, details about a single developer, initial assignee, developer comments, summary

(or title), and descriptions of bugs. The utilization of bug reports from the Eclipse, Mozilla,

and NetBeans datasets in this study is substantiated by their widespread adoption as standard

86

benchmarks in the field. These datasets have been extensively employed in numerous prior

studies [58-60, 84-88], establishing them as representative and well-established sources for

bug-related research.

Figure 4.1: The workflow diagram of BSDRM, ML based developer recommendation model

for bug triage

 For our BSDRM investigation, we use this dataset to recommend suitable developers

for bug resolution. Specifically, we have gathered a substantial volume of bug reports,

amounting to 137,147 reports spanning from 2001 to 2020 for Eclipse, 132,261 reports

ranging from 1999 to 2020 for Mozilla, and 44,149 reports covering the period between 2001

and 2017 for NetBeans. The summary of data for our BSDRM is presented in Table 4.1. The

detailed descriptions of these datasets are described below:

87

4.1.1.1 Eclipse

Eclipse, one of the most renowned integrated development environments (IDEs), has

emerged as a cornerstone in bug-triaging endeavors. Its significance in the realm of open-

source projects lies in its extensive user base and its substantial contribution to bug reporting

and resolution. Eclipse's bug reports, meticulously collected and analyzed as part of our

BSDRM model, provide a comprehensive view of the challenges faced by developers and the

diverse range of issues encountered in software development. With over 13, 71,147 bug

reports gathered from Eclipse, our research delves deep into this treasure trove of data,

spanning nearly two decades from 2001 to 2020. These bug reports encapsulate valuable

insights into the software development process, including the severity and priority of issues,

the status of fixes, the specific hardware or platform involved, the developers responsible,

their comments, and concise summaries and descriptions of the reported problems.

Leveraging this extensive dataset, our BSDRM model excels in intelligently recommending

developer teams, comprising Experts in Development, Non-Experienced Developers, and

Fresh Graduates, for efficient bug resolution within Eclipse and beyond.

Table 4.1: Dataset description

Datasets Time Periods Number of Reports

Eclipse 2001 to 2020 137,147

Mozilla 1999 to 2020 132,261

NetBeans 2001 and 2017 44,149

4.1.1.2 Mozilla

Mozilla, a prominent player in the world of open-source software, stands as another

invaluable resource in the domain of bug-triaging research. Its bug reports have been

instrumental in shedding light on the intricacies of software development challenges and bug

resolution processes. Mozilla's bug repository, meticulously curated and scrutinized for our

BSDRM model, provides a rich tapestry of insights into the multifaceted world of open-

source development. With a staggering collection of over 13, 22,261 bug reports spanning the

period from 1999 to 2020, Mozilla's dataset offers a substantial historical perspective on

software issues. These bug reports encompass diverse attributes, including the criticality of

issues, priority levels, fix statuses, hardware and platform details, assignees, initial developers

assigned to the task, developer comments, concise yet informative summaries, and detailed

descriptions of reported problems. This comprehensive dataset not only fuels the BSDRM

88

model's recommendations but also aids in understanding the complex dynamics of bug

resolution within Mozilla's development ecosystem. Our model leverages this wealth of

information to intelligently recommend developer teams, consisting of Experts in

Development, Non-Experienced Developers, and Fresh Graduates, for efficient and effective

bug resolution, thereby contributing significantly to the overall improvement of the Mozilla

open-source project.

4.1.1.3 NetBeans

NetBeans, a renowned open-source integrated development environment (IDE), plays a

pivotal role in advancing the field of bug-triaging research. Our exploration into NetBeans'

bug repository has unearthed a treasure trove of valuable insights and data, which forms a

cornerstone for the BSDRM model. With an impressive collection of 44,149 bug reports

covering the period from 2001 to 2017, NetBeans' dataset enriches our understanding of

software development challenges and bug resolution processes. These bug reports encompass

many attributes, including severity levels, priority designations, fix status updates, hardware

and platform specifications, assignees, the first developers assigned to the issues, developer

comments, concise yet informative summaries, and comprehensive descriptions of the

reported problems. NetBeans' dataset not only fuels the BSDRM model's recommendations

but also serves as a lens through which we gain deeper insights into the nuanced world of

open-source software development. By harnessing this extensive dataset, our model provides

intelligent recommendations for developer teams consisting of Experts in Development, Non-

Experienced Developers, and Fresh Graduates. These recommendations significantly enhance

the bug resolution processes within the NetBeans open-source project, ultimately fostering its

growth and success in the software development landscape.

4.1.2 Generating Developer Matrix

Creating the Developer Matrix involves merging datasets from Eclipse, Mozilla, and

NetBeans, resulting in a comprehensive dataset comprising 56,621 instances, each

representing a developer. We introduce three distinct profiles to evaluate and categorize their

skills: Experts in Development, Non-Experienced Developers, and Fresh Graduates. In most

of the works, experienced developers who solved many problems were assigned to fix

different types of bugs. Thus, we scrutinized the literature [66, 68-70] and found some

limitations in the selection of developers. In previous works, they mainly mentioned

89

experienced developers and fresher. However, many developers can be categorized as mid-

category in the real industrial sector. In addition, some experts come from other technical

domains and have expertise in solving any kind of problem. Thus, these kinds of developers

can be employed to fix different bugs and mitigate the limitations of existing works.

4.1.2.1 ED Profile

Experts in Development are seasoned professionals in the realm of bug resolution. They are

known for their extensive experience and exceptional problem-solving skills. EDs are

characterized by their ability to single-handedly tackle a substantial volume of bugs single-

handedly, demonstrating a high level of independence in their work. They actively discuss

issues, offering valuable insights and solutions to complex problems. EDs are frequently

designated as the initial developers for many bugs, showcasing their reliability and expertise

in handling critical issues. These developers are the backbone of bug triage teams, often

setting the standard for bug resolution efficiency. Specifically, an ED is identified as

someone who has fixed a minimum of 200 bugs, engaged in discussions on 1000 or more

issues, and served as the first developer for around 500 bugs.

4.1.2.2 NED Profile

Non-experienced developers represent a diverse group with varying levels of expertise. These

developers typically fall into two categories. First, some are in the early stages of their bug-

fixing careers and, while still being experts, have moderate experience in resolving bugs.

They may have transitioned from other software domains, bringing valuable skills and

perspectives to bug triage. Second, NEDs include developers who, while experienced in other

areas, are temporarily working on bug-fixing tasks. This category acknowledges their

adaptability and the potential to contribute effectively to bug resolution efforts. NEDs

typically handle approximately 100-200 bug resolutions, comment on fewer than 1000 bug

reports, and are assigned as the first developer for fewer than 500 bugs.

4.1.2.3 FG Profile

Fresh Graduates are developers who have recently completed their academic studies and

embarked on their careers in bug resolution. They represent a unique category in the bug

triage ecosystem. Given their limited professional experience, their work history within

existing bug repositories may be minimal or nonexistent. Therefore, assessing the skills and

90

capabilities of FGs involves factors beyond traditional bug-fixing metrics. Authorities may

provide a predefined evaluation form to holistically evaluate FG skills, encompassing criteria

such as academic knowledge, technical expertise, interests, and any projects they may have

undertaken during their educational journey.

 Assigning weights to individual features based on their significance is a critical step

in determining each developer's expertise level, emphasizing qualitative evaluation over

purely quantitative methods. To ensure the accuracy of this labeled dataset, it undergoes a

review process by domain specialists. Subsequently, the dataset is divided into training and

testing sets, with the training set further segmented into two subsets: Subset-1 (S1) containing

summary and description attributes and Subset-2 (S2) comprising the remaining attributes

such as severity, priority, fix status, platform or hardware, assignee, single developer, first

assignee, commenter, and developers. A Subset-11 (S11) is also extracted from the test set,

focusing on summary and description attributes for comprehensive analysis and evaluation.

This meticulous process ensures the robustness and reliability of the BSDRM model's

developer categorization and recommendation capabilities.

4.1.3 Training Stage

During the training stage of the BSDRM, we consolidate Subset-1 and Subset-2 to facilitate

the training of sentence-embedded models employing diverse classifiers. This pivotal stage

involves various training procedures instrumental in forming an adept developer team. The

ensuing steps in this session are succinctly elucidated as follows:

4.1.3.1 Sentence Embedding

Initially, we initiate a fine-tuning procedure on Subset-1 using a pre-trained Bidirectional

Encoder Representations from Transformers (BERT) model to construct a sentence

embedding model [102, 103]. BERT is a state-of-the-art natural language processing model

developed by Google [104, 105]. It has revolutionized various NLP tasks by pre-training on a

massive corpus of text and then fine-tuning it for specific tasks. BERT belongs to a family of

models known as Transformers, which have demonstrated exceptional performance in

understanding the context and semantics of natural language. BERT is bidirectional, which

allows it to consider both the left and right context of a word in a sentence. This bidirectional

understanding is crucial for comprehending the meaning of a word in the context of a

sentence, as many words rely on their surrounding words for interpretation.

91

 The pre-training phase involves exposing BERT to a vast amount of text data, such as

books, articles, and websites, to learn the relationships between words, phrases, and

sentences. This process enables BERT to capture semantic nuances and contextual

information, making it a powerful tool for various NLP tasks, including text classification,

sentiment analysis, question answering, and, in this case, sentence embedding. In the context

of sentence embedding, BERT takes a sentence or a piece of text and transforms it into a

fixed-length vector representation. This representation encodes the meaning and context of

the text in a dense numerical format. These sentence embeddings can then be used for various

downstream tasks, such as developer team recommendation, by measuring the similarity

between sentences or texts.

Fine-tuning BERT on specific datasets or tasks allows it to adapt to the requirements

of those tasks. This fine-tuning process involves training the model on labeled data related to

the target task. For example, in the case of developer team recommendation, BERT can be

fine-tuned using data specific to bug triage and developer expertise. This model constructs a

collection of words associated with the developer within this framework by conserving the

contextual relevance of words from S1. In instances where unknown words are detected, they

are seamlessly integrated into the BERT.

4.1.3.2 Balancing Data

Within S2, the uneven distribution of different developer types has introduced a significant

imbalance in our dataset, which brings about a range of inherent disadvantages. This data

disproportionality poses notable challenges, particularly in machine learning applications.

Overfitting, a common issue when dealing with imbalanced data, becomes a concern as

models may need help to generalize effectively to underrepresented developer categories,

resulting in suboptimal predictive performance. Furthermore, imbalanced data can lead to

biased model outcomes, where the majority class tends to dominate predictions at the expense

of minority classes.

 To address these challenges, we have proactively taken steps to resample and equalize

this specific subset within our dataset. We create a balanced representation of the data using

resampling by ensuring that precisely 652 samples represent each developer type. This

rebalancing effort yields several key advantages. Firstly, it fosters improved model

performance, as the models can now learn from a more representative distribution of

developer types. This leads to more accurate and reliable recommendations for developers

92

across the expertise spectrum.

 Moreover, balancing the dataset mitigates the potential for bias and discrimination in

our models, ensuring that developers of all categories receive equitable opportunities and

recommendations. Additionally, it enhances the robustness of our models, allowing them to

handle real-world scenarios with varying proportions of developer types. This means that our

models can maintain their effectiveness even when faced with new and unseen data.

Addressing the data imbalance within S2 is a crucial step in ensuring the reliability and

fairness of our machine-learning models. By achieving a balanced representation, we overcome

challenges associated with imbalanced data, enhance model performance, reduce bias, and

promote equitable recommendations for developers with diverse expertise levels. This strategic

data handling approach strengthens the overall utility of our models in the context of bug

assignment and developer recommendation.

4.1.3.3 Employing Different classifiers

We proceed to train various classifiers on S2, including Decision Tree, Extra Tree, AdaBoost,

Bagging Classifier, Gradient Boosting, KNN, Nearest Centroid, Bernoulli Naïve Bayes,

Multinomial Naïve Bayes, Complement Naïve Bayes, Gaussian Naïve Bayes, Logistic

Regression, Perceptron, and Multi-Layer Perceptron. These classifiers collectively form a

developer classifier designed to categorize new records based on their experience level. This

section presents a detailed description of these classifiers.

a) Decision Tree

A Decision Tree is a popular and intuitive ML algorithm for classification and regression

tasks. It models decisions or predictions by recursively breaking down a complex problem

into a series of simpler decisions based on input features. The tree-like structure resembles a

flowchart where each internal node represents a decision or test on a feature, each branch

represents an outcome of that test, and each leaf node represents the final prediction or class

label. Constructing a decision tree involves selecting the most informative features and

splitting the data into subsets to make decisions. The process aims to maximize the data's

homogeneity (or purity) within each subset while minimizing impurity. Common impurity

measures for classification tasks include Gini impurity and entropy, while Mean Squared

Error is used for regression tasks.

 Decision Trees are easy to interpret and visualize, making them valuable for

understanding the logic behind a model's predictions. However, they are prone to overfitting

when the tree becomes too deep and complex. To mitigate this, techniques like pruning can

93

be applied to simplify the tree by removing nodes that do not contribute significantly to

predictive accuracy. Decision Trees find applications in various fields, including finance for

credit scoring, healthcare for disease prediction, and natural language processing for

sentiment analysis [106-108]. Their simplicity, interpretability, and effectiveness make them

a valuable tool in the machine learning toolkit.

b) Extra Tree

Extra Trees, short for Extremely Randomized Trees, is a powerful ensemble learning

technique rooted in decision tree algorithms. What sets Extra Trees apart from traditional

decision trees is its remarkable level of randomness during the tree-building process. Unlike

regular Decision Trees, which carefully evaluate features and thresholds to split nodes, Extra

Trees introduces even more randomness by selecting random subsets of features and

thresholds at each node. This randomness makes Extra Trees significantly less prone to

overfitting, enhancing its ability to generalize well to unseen data.

 One of the key advantages of Extra Trees is its robustness in noisy datasets and high-

dimensional spaces. Incorporating additional randomness makes it more resistant to outliers

and noisy data points, resulting in more reliable and accurate predictions. Extra Trees also

harnesses the power of ensemble learning through techniques like bagging, where multiple

decision trees are constructed on different subsets of the training data. The outputs of these

trees are combined to provide the final prediction, which is often achieved by averaging the

results for regression tasks and majority voting for classification tasks. Overall, Extra Trees is

a valuable tool in machine learning that strikes a balance between reducing overfitting and

improving model performance, making it a popular choice in various data-driven applications

[109].

c) AdaBoost

AdaBoost, short for Adaptive Boosting, is a popular ensemble learning algorithm that focuses

on improving the performance of weak learners to create a strong, accurate predictive model.

AdaBoost combines multiple weak learners, often simple decision trees or stump classifiers,

into a weighted ensemble. The key idea behind AdaBoost is to give more weight to those

training samples that the current weak learners misclassify during each iteration. By

emphasizing the mistakes, AdaBoost encourages the subsequent weak learners to focus on

the previously misclassified data points, progressively improving the model's accuracy.

 AdaBoost works iteratively, with each iteration introducing a new weak learner. The

algorithm assigns higher weights to the samples misclassified by the previous weak learners

and lower weights to those classified correctly. As a result, the subsequent weak learners

94

concentrate more on the challenging samples. AdaBoost calculates the performance of the

newly added weak learner and adjusts the weights accordingly. This process continues for a

predefined number of iterations or until the model reaches a desired level of accuracy. One of

the significant advantages of AdaBoost is its ability to adapt and excel in a wide range of

machine-learning tasks, including classification and regression. It is beneficial when dealing

with complex datasets, as it can reduce overfitting and provide robust generalization.

However, AdaBoost can be sensitive to noisy data and outliers, and its performance may

degrade in the presence of such anomalies. Overall, AdaBoost is a versatile ensemble

learning technique that has proven effective in various real-world applications thanks to its

ability to enhance the performance of weak learners and create strong predictive models

[110-112].

d) Bagging Classifier

The Bagging Classifier, short for Bootstrap Aggregating Classifier, is a powerful ensemble

learning technique that enhances the accuracy and robustness of machine learning models.

Bagging creates multiple subsets of the training data through bootstrap sampling, where data

points are randomly selected with replacement. Each subset trains an independent base

learner, typically a decision tree.

 By leveraging the collective knowledge of multiple base models, Bagging reduces the

risk of overfitting and increases the model's overall stability and predictive performance. It is

particularly effective when dealing with noisy or complex datasets, as it minimizes the

influence of individual outlier data points. Popular variations of Bagging include the Random

Forest algorithm, which introduces an additional layer of randomness by considering only a

random subset of features during each tree's construction, further enhancing model diversity

and robustness. In essence, Bagging Classifier harnesses the power of ensemble learning to

improve the accuracy and resilience of machine learning models by combining multiple base

learners into a unified, more reliable predictor. Its versatility and effectiveness make it a

valuable tool in various domains, including classification, regression, and feature selection

[112-114].

d) Gradient Boosting

Gradient Boosting is a powerful ensemble learning technique used in machine learning for

building predictive models. It is particularly effective in solving regression and classification

problems. Unlike Bagging, which creates multiple independent base models in parallel,

Gradient Boosting produces a sequence of models iteratively, with each new model aiming to

correct the errors made by the previous ones. It starts with an initial model, often a simple

95

one like a decision tree, which serves as the first base learner. A new base learner is added to

the ensemble in each subsequent iteration. This new learner is trained on the errors or

residuals of the previous models. The idea is to "boost" the performance by focusing on

previous models' challenging examples. The predictions of each base learner are weighted

and combined. These weights are determined during the training process, where the goal is to

minimize the overall error. Gradient Boosting uses a gradient descent optimization technique

to find the best weights and model parameters. It calculates the gradient of the loss function

concerning the ensemble's output and adjusts the weights and parameters accordingly. The

process continues for a specified number of iterations or until a stopping criterion is met, such

as reaching a minimum error or a maximum number of models.

 Gradient Boosting has several popular implementations, including Gradient Boosting

Machines (GBM), XGBoost, LightGBM, and CatBoost. These implementations optimize the

algorithm for efficiency and often include additional features like regularization to prevent

overfitting. The strength of Gradient Boosting lies in its ability to create highly accurate

predictive models by focusing on complex examples. However, it can be computationally

intensive and may require careful tuning of hyperparameters to achieve the best results. It's

widely used in various applications, including ranking, recommendation systems, and many

Kaggle competitions [116, 117].

e) K-Nearest Neighbors

A flexible machine-learning technique for classification and regression applications is K-

Nearest Neighbors. Its fundamental principle relies on proximity-based prediction: it predicts

the class or value of a data point based on the majority class or average value of its nearest

neighbors within the training dataset. K-NN is a straightforward algorithm, making it an

attractive choice for various applications. In K-NN, the process begins with a dataset

containing labeled data points, where each data point is represented as a vector of features

and is associated with a class label (for classification) or a target value (for regression). One

essential hyperparameter to set is "K," which represents the number of neighbors to consider

when making predictions. The choice of K can significantly impact the algorithm's

performance.

 The algorithm employs a distance metric, such as Euclidean or Manhattan distance, to

measure the similarity or dissimilarity between data points. The K-NN model identifies the

K-nearest neighbors in the training dataset based on the selected distance metric. For

classification tasks, it tallies the occurrences of each class among these neighbors and assigns

the class with the highest count as the predicted class for the new data point. In regression

96

tasks, K-NN computes the average (or weighted average) of the target values of the K-nearest

neighbors and assigns this average as the predicted value for the new data point.

 K-NN's simplicity and intuitive approach make it a popular choice for many

applications, including recommendation systems, image classification, and anomaly detection

[118-120]. However, it has some limitations, such as sensitivity to the choice of K and the

need for an extensive training dataset to provide reliable predictions. Additionally, it can be

computationally expensive for large datasets because it requires calculating distances

between the new data point and all points in the training set.

f) Nearest Centroid

Often employed for classification tasks, the Rocchio method, known as the Nearest Centroid

algorithm, is an easy-to-understand machine learning technique. It is useful when dealing

with text classification problems but can also be applied to other domains. In the Nearest

Centroid algorithm, each class or category is represented by a centroid, essentially the mean

vector of all the data points belonging to that class in the feature space. To build these

centroids, you start with a labeled dataset where each data point is associated with a class

label. For each class, you calculate the mean of the feature vectors of all data points, resulting

in a centroid vector representing the class. To make a prediction for a new, unlabeled data

point, the algorithm calculates the Euclidean distance (or another chosen distance metric)

between the new data point and each class's centroid. The class, whose centroid is closest to

the new data point, as determined by the distance calculation, is assigned as the predicted

class for that data point.

 The Nearest Centroid algorithm is relatively simple and computationally efficient, making it a

good choice for text classification tasks, especially when dealing with high-dimensional data such as

text documents. However, it may perform less well as more complex algorithms in scenarios where

the decision boundaries between classes are nonlinear or intricate. Despite its simplicity, the Nearest

Centroid algorithm can be surprisingly effective in various applications, including spam detection,

document categorization, and sentiment analysis [121-122].

g) Bernoulli Naïve Bayes

Bernoulli Naïve Bayes is a probabilistic machine learning algorithm and a variant of the

Naïve Bayes classifier. It is particularly suited for binary classification tasks, where the goal

is to categorize data into one of two classes, typically denoted as "positive" and "negative" or

"1" and "0." This algorithm is commonly used in text classification, sentiment analysis, and

spam detection, where the input features often represent the presence or absence of specific

binary attributes. The Bernoulli Naïve Bayes classifier is based on the principles of Bayes'

97

theorem and the assumption of feature independence within each class. It models the

conditional probability of a document belonging to a specific class (e.g., spam or not spam)

given the presence or absence of particular binary features (e.g., the occurrence of certain

words). To make predictions, Bernoulli Naïve Bayes calculates the likelihood of observing

each feature in both the positive and negative classes and combines this information with

prior probabilities to estimate the final class probabilities. It then assigns the class with the

highest probability as the predicted class for the input data point.

 One key characteristic of Bernoulli Naïve Bayes is that it treats input features as

binary variables, representing whether a particular attribute is present or not. This makes it

suitable for tasks where only the presence of features matters and ignores their frequencies or

numerical values. While it's less expressive than other Naïve Bayes variants like Multinomial

Naïve Bayes, it can be highly effective in scenarios with sparse binary data, such as text

documents. Bernoulli Naïve Bayes provides a simple yet robust way to perform binary

classification tasks, especially when dealing with text data and situations where feature

independence assumptions are reasonable [123, 124].

h) Multinomial Naïve Bayes

Multinomial Naïve Bayes is a popular machine learning algorithm used primarily for text

classification and natural language processing tasks. It's an extension of the Naïve Bayes

algorithm. It is particularly well-suited for situations where features represent discrete counts

or frequencies, such as word occurrences in documents or term frequencies in text data. The

Multinomial Naïve Bayes classifier is based on the principles of Bayes' theorem and the

assumption of feature independence within each class. It's commonly applied in tasks like

spam detection, sentiment analysis, document categorization, and topic classification.

 In text classification, documents are typically represented as vectors of term

frequencies or other similar representations where each feature corresponds to a unique word

or term in the entire corpus. The Multinomial Naïve Bayes model calculates the conditional

probability of a document belonging to a particular class given the frequencies of terms in

that document. To make predictions, Multinomial Naïve Bayes estimates the likelihood of

observing each term in both the positive and negative classes and combines this information

with prior probabilities to calculate the final class probabilities. It then assigns the class with

the highest probability as the predicted class for the input document. One key advantage of

Multinomial Naïve Bayes is its ability to handle features representing counts or frequencies.

This makes it suitable for text data where words are counted, and their occurrences matter.

It's effective in scenarios where feature independence assumptions are reasonable and

98

performs well even with relatively small training datasets. Multinomial Naïve Bayes is a

robust and widely used algorithm in text classification tasks, mainly when dealing with high-

dimensional feature spaces and discrete count-based representations of data [125-127].

i) Complement Naïve Bayes

Complement Naïve Bayes is a variation of the traditional Naïve Bayes classifier designed to

address imbalanced datasets, where one class significantly outnumbers the other(s). While the

standard Multinomial Naïve Bayes tends to favor the majority class, CNB is tailored to give

more accurate predictions in situations where class distribution is skewed. The key idea

behind Complement Naïve Bayes is to complement the standard MNB model by considering

the distribution of features in the minority class relative to the majority class. CNB starts by

calculating the probabilities of features within each class, just like MNB. However, instead of

focusing on the class of interest (the positive class), it computes probabilities for the

complementary class (the negative class). This means it estimates how likely features appear

in documents not belonging to the class of interest. CNB then selects the class with the lowest

complementary probability as the predicted class for a given document. In other words, it

looks for the class least likely to contain the observed features, making it useful for

imbalanced datasets where the minority class is of interest.

 CNB is particularly effective for text classification tasks, such as spam email detection, where

the spam class (the minority) is the focus [128]. It can help mitigate the class imbalance problem by

giving more importance to the underrepresented class during classification. CNB has been shown to

perform well in scenarios where traditional MNB or other classifiers may struggle due to skewed class

distributions. Complement Naïve Bayes is an extension of the Naïve Bayes algorithm that excels in

handling imbalanced datasets by considering feature probabilities in the complementary class and is

commonly used in text classification tasks where class imbalance is a challenge.

j) Gaussian Naïve Bayes

Gaussian Naïve Bayes (GNB) is a variant of the Naïve Bayes algorithm that is specifically

designed for continuous data or features that can be modeled using a Gaussian (normal)

distribution. Unlike the standard Naïve Bayes, suitable for discrete data like text, GNB

assumes that the features follow a Gaussian distribution within each class. GNB begins by

estimating the probability density function (PDF) for each feature within each class. It

assumes that the data for each feature in a given class follows a Gaussian distribution. This

means that it calculates the mean (average) and variance (spread) of the values of each

feature for each class. Like the standard Naïve Bayes, GNB also assumes that features are

conditionally independent within each class. This simplifying assumption allows GNB to

99

calculate the joint probability of observing a set of feature values for a given class. GNB

calculates each class's prior probability, representing the likelihood of encountering each

class in the dataset. To classify a new data point, GNB applies Bayes' theorem to calculate

the posterior probability of each class given the observed feature values. It then assigns the

class with the highest posterior probability as the predicted class for the data point.

 Gaussian Naïve Bayes is instrumental when dealing with continuous or real-valued

data, such as measurements, sensor data, or scientific data [129-131]. It assumes that the

features within each class are typically distributed and uses this assumption to estimate

probabilities and make predictions. One of the advantages of GNB is its simplicity and

efficiency in high-dimensional feature spaces. However, it may not perform well if the

Gaussian assumption does not hold for the data or if features are strongly correlated. Other

classifiers like Support Vector Machines or Decision Trees may be more appropriate in such

cases.

k) Logistic Regression

Logistic Regression is a popular and widely used statistical method for binary classification,

which means it's primarily used when you want to predict one of two possible outcomes (e.g.,

yes/no, spam/not spam, pass/fail). Despite its name, logistic Regression is a classification

algorithm rather than a regression algorithm used for continuous prediction. Using the

logistic function, it models the relationship between the binary dependent variable (the target

class) and independent variables (features). The logistic function maps any real-valued

number to a value between 0 and 1, which can be interpreted as a probability. The logistic

function equation is presented by Equation (4.1):

P(Y=1|X) =
1

1+ 𝑒−𝑧 (4.1)

Where:

P(Y=1|X) is the probability that the dependent variable Y is equal to 1 (the positive class)

given the values of the independent variable X.

e is the base of the natural logarithm (approximately equal to 2.71828).

z is the linear combination of the feature values and model coefficients: z = b0 + b1X1 + b2X2

+ ... + bnXn.

 Logistic Regression estimates the coefficients (b0, b1, b2, ..., bn) best fitting the data in the

training phase. This process involves using a method like Maximum Likelihood Estimation (MLE) to

find the values of the coefficients that maximize the likelihood of the observed outcomes given the

model. Once the model is trained, you can use it to make predictions. Logistic Regression calculates

the probability that a new data point belongs to the positive class (P(Y=1|X)). If this probability is

100

more significant than a certain threshold (typically 0.5), the model predicts the positive class;

otherwise, it predicts the negative class. Key characteristics and advantages of Logistic Regression

include its simplicity, interpretability, and the ability to model linear and nonlinear relationships

between features and the log-odds of the target class. It's a valuable tool for problems where you must

make binary decisions based on input features, such as credit scoring, medical diagnosis, and spam

detection [132, 133]. However, Logistic Regression has limitations, such as its inability to handle

more than two classes without modification (multinomial logistic Regression is used for that), and it

may not perform well when the relationship between features and the log-odds of the target class is

highly nonlinear. More complex models like decision trees or neural networks may be more

appropriate in such cases.

l) Perceptron

A Perceptron is one of the simplest forms of artificial neural networks, serving as the

foundational building block for more complex neural network architectures. Developed by

Frank Rosenblatt in the late 1950s, the perceptron is designed for binary classification tasks,

where it can determine whether an input belongs to one of two classes (e.g., yes/no,

true/false) [134]. The perceptron takes multiple binary or real-valued inputs (X1, X2, ..., Xn).

Each input is associated with a weight (W1, W2, ..., Wn), representing the connection's

importance or strength between the input and the perceptron. The inputs are multiplied by

their corresponding weights, and the weighted sum of these products is calculated by using

Equation (4.2):

Weighted Sum = (X1 * W1) + (X2 * W2) + ... + (Xn * Wn) (4.2)

 The weighted sum is then passed through an activation function (typically a step or

threshold function). The activation function determines the output of the perceptron. In the

case of a step function, if the weighted sum is greater than or equal to a certain threshold

(typically 0), the perceptron outputs 1 (representing one class); otherwise, it outputs 0

(representing the other class). Alternatively, a threshold function may be used, where the

perceptron outputs 1 if the weighted sum is greater than or equal to the threshold and 0

otherwise. In addition to the inputs and weights, a bias term (often denoted as b or W0) is

included. The bias allows the perceptron to adjust the output even when all inputs are zero.

Mathematically, it shifts the decision boundary and can be expressed using Equation (4.3).

Weighted Sum = (X1 * W1) + (X2 * W2) + ... + (Xn * Wn) + b (4.3)

 The Perceptron's learning process involves adjusting the weights and bias to minimize

classification errors. A training algorithm, like the perceptron learning rule, updates the weights and

bias based on the misclassification of data points. The goal is to find the optimal weights and bias that

allow the Perceptron to classify the training data correctly. While Perceptrons are powerful for simple

101

linearly separable problems, they have limitations. They can only solve linearly separable tasks,

which means they cannot handle problems where classes are not separated by a straight line or plane.

More complex neural network architectures, such as multilayer Perceptrons (Feed-Forward Neural

Networks), were developed to perform nonlinear classification tasks to address this limitation. These

networks consist of multiple layers of interconnected Perceptrons and can learn complex patterns

from data.

m) Multi-Layer Perceptron

A Multi-Layer Perceptron is an artificial neural network for solving complex machine-

learning problems, including classification and regression tasks. It is characterized by its

multilayered architecture, consisting of an input layer, one or more hidden layers, and an

output layer. MLPs are part of the broader family of Feed-Forward Neural Networks, where

information flows in one direction, from input to output.

 The input layer consists of neurons (also called nodes) corresponding to the features

of the input data. Each neuron represents an input feature, and the input values are fed

directly into these neurons. There is no computation within the input layer; it only passes the

data to the subsequent layers. There may be one or more hidden layers between the input and

output layers of an MLP. Neurons in these hidden layers process the input data through

calculations. After receiving inputs from the preceding layer, each neuron in a hidden layer

computes the weighted sum of these inputs and then an activation function. The number of

neurons in each hidden layer and the number of hidden layers are hyperparameters that can

be adjusted based on the complexity of the problem. Each connection between neurons

(synapse) has an associated weight, which determines the strength of the connection.

Additionally, each neuron in the hidden and output layers has a bias term, allowing the

network to adjust even when the inputs are zero. Weights and biases are learned during the

training process to optimize the network's performance. Activation functions introduce

nonlinearity into the network, enabling MLPs to model complex relationships in the data.

Common activation functions include the sigmoid (logistic) function, hyperbolic tangent

(tanh) function, and rectified linear unit (ReLU) function. These functions introduce

nonlinear transformations to the weighted sum of inputs, allowing the network to learn

nonlinear patterns. The output layer produces the network's predictions or classifications

based on the computations performed in the hidden layers. The number of neurons in the

output layer depends on the nature of the task. For binary classification, a single neuron with

a sigmoid activation function is often used, while for multiclass classification, there is

typically one neuron per class with softmax activation. During inference or prediction,

102

forward propagation is the process of passing input data through the network to compute an

output. This involves calculating the weighted sum of inputs, applying the activation

functions in each layer, and producing the final output. Training an MLP involves adjusting

the network's weights and biases to minimize a loss function that quantifies the error between

the predicted outputs and the true labels. Backpropagation is the process of propagating this

error backward through the network, layer by layer and updating the weights and biases using

optimization algorithms like gradient descent. Techniques like dropout, L1 and L2

regularization, and various optimization algorithms (e.g., Adam, RMSprop, stochastic

gradient descent) are commonly used to improve the generalization and training efficiency of

MLPs.

 MLPs are highly flexible and can approximate complex functions, making them

suitable for various applications, including image and speech recognition, natural language

processing, and predictive modeling [135-136]. However, their performance often depends

on factors such as architecture design, hyperparameter tuning, and the quantity and quality of

training data.

4.1.4 New Task

In this section, we focus on a critical task: assigning the most suitable developers to newly

submitted bug reports and building efficient developer teams to resolve these issues. To

commence this process, we direct our attention to S11, a selected subset that constitutes 20%

of the testing reports designated for this specific purpose. Leveraging the capabilities of S11,

we use a pre-trained sentence embedding model, a potent tool in natural language processing.

Our primary aim is twofold: firstly, to gain a clear and contextually aware comprehension of

the bug reports contained in S11, and secondly, to create a specialized vocabulary list tailored

for developers. This developer-oriented vocabulary list is a crucial asset in our mission to

adeptly match developers with bugs, ensuring that the language used aligns seamlessly with

the nuances of bug resolution. It plays a pivotal role in forming teams optimized for efficient

bug resolution.

4.1.5 Exploring Eligible Developer

To identify the most suitable developers for each bug report, we turn to the power of

unsupervised learning by employing a K-Nearest Neighbors finder. This sophisticated tool

acts as our guide in the developer assignment process. It compares the specialized vocabulary

103

list associated with the testing reports to the comprehensive bag of words compiled from

developers' past interactions and contributions. By leveraging this approach, we can pinpoint

the K nearest developers who exhibit the most pertinent expertise and experience to tackle the

intricacies of the bug in question. This precise matching mechanism ensures that the right

developers are selected for each bug report, thereby enhancing the overall efficiency and

effectiveness of the bug resolution process.

4.1.6 Classifying Developers

Once we've identified the pool of eligible developers, our next crucial step involves

categorizing them according to their experience levels. To accomplish this, we turn to the

trusty developer classifier model, a fundamental component of our bug assignment system.

The accuracy and reliability of this model depend on the collective performance of the

individual classifiers operating within it. To evaluate the effectiveness of our developer

classification, we subject it to rigorous scrutiny using a range of evaluation metrics. These

metrics serve as our yardstick for measuring the model's proficiency in accurately

categorizing developers based on their experience, ensuring that our bug resolution teams are

well-balanced and composed of developers with the right skill sets.

4.1.6.1 Evaluation Metrics

We employ a valuable tool known as the confusion matrix to evaluate the effectiveness of our

bug assignment system and developer classification model. This matrix offers a

comprehensive view of the results, distinguishing between correct assignments (true positives

- TP), misclassifications, which can be false positives (FP) or false negatives (FN), and cases

correctly unassigned (true negatives - TN). To thoroughly assess our model's performance,

we utilize diverse evaluation metrics, each providing unique insights into its effectiveness.

These metrics encompass Accuracy (Accu), Precision (Prec), Recall (Rec), F1-Score (FS1),

Hamming Loss (HL), Jaccard Score (JS), Matthews Correlation Coefficient (MCC), Area

Under the Curve (AUC), and Cohen's Kappa Score (CKS). This array of metrics ensures a

comprehensive evaluation of the classification results, guaranteeing that our system not only

assigns developers accurately but also maintains the desired balance within bug resolution

teams.

i) Accuracy: Accuracy is a straightforward metric that calculates the ratio of correctly

predicted instances to the total number of instances in the dataset. It provides a general

104

measure of how well the classifier performs in terms of overall correctness. It is suitable for

balanced datasets but can be misleading in imbalanced scenarios. It can be calculated using

Equation (4.4).

Accu =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4.4)

ii) Precision: The classifier's positive predictions are the main focus of precision. It is the

proportion of correctly predicted positive outcomes to all positive predictions (false positives

plus true positives). Because precision measures the accuracy of positive predictions, it is

especially crucial when the cost of false positives is significant. It can be expressed using

Equation (4.5).

Prec =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4.5)

iii) Recall: Recall evaluates the classifier's capacity to recognize every instance of a specific

class; it is sometimes referred to as sensitivity or true positive rate. It is the ratio (true

positives plus false negatives) of true positive predictions to that class's total number of real

instances. Remembering is essential since there are severe repercussions for missing any

favorable event. Equation (4.6) is the recall calculation formula.

Rec =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.6)

iv) F1-Score: The F1-Score is a balance between precision and recall, as shown in Equation

(4.7). It calculates the harmonic mean of these two metrics, providing a single value that

considers both false positives and false negatives. It is beneficial when there is an imbalance

between classes.

FS1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (4.7)

v) Hamming Loss: Hamming Loss is specific to multi-label classification problems. It

measures the fraction of incorrectly predicted labels across all instances, as illustrated in

Equation (4.8). It quantifies the extent to which the classifier deviates from the correct

labeling of instances.

HL =
∑ 𝑋𝑂𝑅 (𝐼𝑗−𝑃𝑗)𝑁

𝑗=1

𝑁
 (4.8)

Where:

N is the total number of samples or instances.

𝑋𝑂𝑅 (𝐼𝑗 − 𝑃𝑗) computes the element-wise exclusive OR (XOR) operation between the true

labels (𝐼𝑗) and the predicted labels (𝑃𝑗).

vi) Jaccard Score: The Jaccard Score, also known as the Jaccard Index, assesses the

similarity between two sets, as shown in Equation (4.9). In the context of multi-label

105

classification, it evaluates the agreement between the predicted set of labels and the actual set

of labels for each instance. It quantifies how well the classifier captures the true labels.

JS =
𝐴 ∩ 𝐵

𝐴 ∪𝐵
 (4.9)

vii) Matthews Correlation Coefficient: MCC is a correlation coefficient that considers all

four categories in the confusion matrix: true positives, true negatives, false positives, and

false negatives. It ranges from -1 to 1, where 1 indicates perfect agreement between

predictions and actuals, 0 suggests no agreement beyond chance, and -1 indicates complete

disagreement. It can be expressed using Equation (4.10).

MCC =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃 ×𝐹𝑁

√(𝑇𝑃+𝐹𝑃) (𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑃) (𝑇𝑁+𝐹𝑁)
 (4.10)

viii) Area Under the Curve: The AUC metric is frequently employed when performing

Receiver Operating Characteristic (ROC) analysis for binary classification. It measures how

well the classifier can discriminate between the positive and negative classifications. Higher

AUC values indicate better discrimination; values range from 0 to 1. It can be represented

with TP rate (TPR) and T N rate (TNR) by the Equation (4.11):

AUC =
𝑇𝑃𝑅+𝑇𝑁𝑅

2
 (4.11)

ix) Balanced Accuracy: Balanced accuracy is particularly useful in multi-class classification

scenarios with imbalanced class distributions. It calculates the average accuracy across all

classes, ensuring that each class contributes equally to the overall accuracy score. This metric

provides a more reliable assessment when classes are imbalanced. It can be represented by

Equation (4.12).

BA =
1

2
 ×

𝑇𝑃

𝑇𝑃+𝐹𝑁
 +

1

2
 ×

𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4.12)

x) Cohen’s Kappa Score: Cohen's Kappa is a statistic that evaluates the agreement between

predicted and actual classifications while accounting for the possibility of agreement

occurring by chance. It considers observed agreement and expected agreement, providing a

measure of agreement beyond what would be expected randomly. Equation (4.13) represents

the formula of calculating CKS.

CKS =
𝑃(𝐴)−𝑃(𝐸)

1−𝑃(𝐸)
 (4.13)

Where:

P(A) is the relative observed agreement among raters or classifiers.

P(E) is the expected agreement that would occur by chance.

 The formula calculates the Kappa Score by subtracting the expected agreement

(chance agreement) from the observed agreement and then normalizing the result. The

106

resulting value ranges from -1 to 1. A CKS of 1 indicates perfect agreement between the

raters or classifiers. A CKS of 0 suggests that the observed agreement is no better than what

would be expected by chance alone. A CKS less than 0 indicates agreement worse than what

would be expected by chance.

4.1.7 Forming Developer Team

In the bug-triaging process, the aim is to assemble a developer team with the most suitable

skills and expertise to tackle a variety of software bugs efficiently. To achieve this, we

employ a systematic approach wherein each type of developer is carefully selected based on

the outcomes generated by the best classifier for their respective skill sets and qualifications.

This strategic selection process ensures that we create a developer team composed of

individuals who are not only highly capable but also well-matched to the specific

characteristics and requirements of each bug. By categorizing developers according to their

skills and expertise, we can effectively distribute bug resolution tasks among different team

members. This approach optimizes the utilization of developer resources and ensures that

each bug report is assigned to the most qualified individuals who are best equipped to address

its unique challenges. As a result, our bug-triaging system promotes collaboration and

specialization within the developer team, leading to improved bug resolution times and

enhanced software quality. In essence, our approach goes beyond mere bug assignment; it

facilitates the formation of developer teams that are tailored to the diverse nature of software

bugs, ultimately leading to more effective bug resolution and a smoother development

process.

4.2 Result Analysis

The result analysis section of our study delves into the comprehensive evaluation of our Bug

Solving Developer Recommendation Model. In this phase, we take a meticulous approach to

assess the performance and effectiveness of BSDRM in the context of developer

recommendations for bug resolution. Our analysis begins by describing the key components

and methodologies employed in BSDRM, highlighting the utilization of pre-trained BERT

for sentence embedding and applying resampling techniques to balance the dataset. To

rigorously evaluate the model, we use an array of diverse classifiers, including Decision

Trees, Extra Trees, AdaBoost, Bagging Classifier, Gradient Boosting Classifier, Random

Forest, K-Nearest Neighbors, Nearest Centroid, Bernoulli Naïve Bayes, Multinomial Naïve

107

Bayes, Complement Naïve Bayes, Gaussian Naïve Bayes, Support Vector Machine,

Stochastic Gradient Descent, Logistic Regression, Perceptron, and Multi-Layer Perceptron.

These classifiers are meticulously selected to identify and categorize different types of

developers, forming the foundation of our developer recommendation system. Different

performance metrics serve as essential benchmarks for assessing the effectiveness of our

proposed BSDRM, which is also compared against traditional models to highlight its

advancements and contributions to the field of developer recommendation for bug resolution.

4.2.1 Classification Results of BSDRM

This study merges all datasets to create a developer matrix, which is subsequently divided

into training and testing sets. The training set undergoes further division into two parts: one

part is used to train a sentence embedding model for generating a bag of developers' words,

while the other part is dedicated to training a developer classifier comprising various

classifiers such as DT, ET, AdC, BC, GB, KNN, NC, BNB, MNB, CoNB, GNB, LR, Pr, and

MLP. The embedded model generates a vocabulary list when assessing new bug reports or

testing instances. Subsequently, an unsupervised KNN finder matches the bag of developers'

words with the testing vocabulary list to extract eligible developers. Using the developer

classifier, these developers are then categorized into Experienced Developers, New

Experienced Developers, and Fresh Graduates. These developer groups are subsequently

combined to form a bug-fixing team. To evaluate the performance of BSDRM, we conducted

a case study involving open-source projects, including Eclipse, Mozilla, and Netbeans. The

data matrix is manually labeled with the respective developer categories (ED, NED, and FG),

and individual classifiers are employed to classify developers accordingly. The

experimentation and evaluation occur within the Google Colaboratory environment using

Python, with the sci-kit learn library as a crucial tool. Table 4.2 provides a comprehensive

summary of the experiment results obtained from each classifier, focusing on key

performance metrics such as Accuracy, Precision, Recall, F1-Score, Hamming Loss, Jaccard

Score, Matthews Correlation Coefficient, Area Under the Curve, Balanced Accuracy, and

Cohen’s Kappa Score. This thorough evaluation offers insights into the effectiveness of

BSDRM in accurately classifying developers and forming well-balanced bug-fixing teams for

improved bug resolution outcomes.

 Upon analyzing the comprehensive dataset presented in Table 4.2, it is evident that

BC consistently demonstrates remarkable performance across various evaluation metrics,

108

showcasing its effectiveness as a reliable classifier for developer classification. However, it's

worth noting that AUC, an essential metric for assessing classifier performance, notably

excels by ET, signifying its proficiency in achieving a high area under the curve.

Furthermore, RF and GBC excel in accuracy, boasting an impressive rate of 96.42% for

accurately categorizing developers. Notably, DT, ET, and AdC consistently yield favorable

results, with most of their scores surpassing the 90% mark, indicating their robustness in

developer classification. Conversely, KNN, SGB, and MLP exhibit performance levels in the

80% range, indicating their moderate efficiency in this task. GNB and Pr, while not achieving

as high accuracy as some other classifiers, deliver respectable outcomes, hovering around the

70% mark. In contrast, several classifiers in the experiment need to be more accurate in

accurately identifying developers, emphasizing the importance of selecting the appropriate

classifier for such a nuanced task. As a result, the superior performance of BC in classifying

developer experience levels, as indicated by most evaluation metrics, establishes it as the

standout choice for this critical task, ensuring the reliability of developer classification within

the BSDRM model.

Table 4.2: Developer classification result

Classifier Acc

(%)

Prec

(%)

Rec

(%)

FS1

(%)

HL

(%)

JS

(%)

MC

(%)

AUC

(%)

BAC

(%)

CKS

(%)

DT 95.74 95.75 95.77 95.75 4.26 91.90 93.61 98.86 98.86 93.62

ET 94.89 94.95 94.96 94.95 5.12 90.49 92.34 99.23 94.96 92.34

AdC 68.82 74.42 69.81 67.17 31.18 53.59 56.81 95.35 69.80 53.52

BC 96.59 96.62 96.56 96.59 3.41 93.42 94.89 98.73 96.56 94.88

GB 96.42 96.45 96.41 96.43 3.58 93.15 94.63 98.85 96.41 94.63

RF 96.42 96.48 96.40 96.43 3.58 93.15 94.63 98.99 96.40 94.63

KNN 88.93 88.92 88.90 88.82 11.07 80.12 83.47 94.24 88.90 83.39

NC 35.96 35.97 36.52 34.03 64.04 20.75 5.62 48.80 36.52 4.98

BNB 47.02 55.79 47.88 42.45 52.98 27.60 27.20 66.25 47.89 21.40

MNB 45.51 47.51 47.28 38.80 53.49 26.32 26.12 68.34 47.28 20.54

CoNB 44.97 44.98 45.65 35.58 55.03 23.56 24.32 67.51 45.65 18.16

GNB 79.39 83.12 80.14 79.06 20.61 67.78 71.55 99.00 80.13 69.19

SVM 69.85 75.62 69.86 70.53 32.15 54.76 56.35 83.61 69.86 54.84

109

SGD 83.65 83.65 83.53 82.28 16.35 71.02 77.18 95.71 83.53 75.41

LR 56.86 60.65 54.77 56.95 46.14 40.26 34.53 65.70 54.77 32.62

Pr 78.02 79.83 77.53 77.45 22.99 64.76 68.02 86.78 77.52 66.97

MLP 87.56 88.08 87.46 87.09 33.44 78.86 82.97 92.71 88.46 81.35

4.2.2 Comparisons with Existing Works

Many previous studies have explored the domain of bug assignment, often focusing on

assessing developers' capabilities by examining their past bug-solving achievements [91, 137,

65]. Some research even introduced a fresh approach by incorporating New Experienced

Developers, a category encompassing individuals with intermediate expertise or diverse

backgrounds, as well as Fresh Graduates into their bug-solving initiatives [138]. In our

endeavor, we have adopted a notably comprehensive approach by including these developer

categories alongside Experienced Developers, forming teams well-equipped to address

emerging bug issues. This approach not only empowers NED and FG developers to

participate actively in the bug triage process but also fosters their learning through

engagement. Our innovative model, BSDRM, stands out by automatically assigning bug

reports to the most suitable developers, effectively reducing the likelihood of reassigning

identical bugs to the same developers. To evaluate BSDRM's superiority over established

methodologies, we subject it to scrutiny based on three critical criteria:

C1 - Bug Fixing History Estimation: When assigning a new task, does BSDRM assess a

developer's bug-fixing history?

 In its bug assignment process, BSDRM considers the bug-fixing history of

developers. It evaluates their past experiences and assigns them new tasks accordingly. This

ensures that developers with relevant bug-fixing expertise are given tasks that align with their

historical performance.

C2 - Developer Interest Consideration: Does BSDRM consider a developer's interest in

the task allocation scheme?

 BSDRM not only considers developers' historical bug-fixing records but also takes

into account their interests and preferences when allocating tasks. This approach ensures that

developers are assigned tasks that align with their skills and interests, increasing their

motivation and effectiveness in bug resolution.

C3 - Diverse Developer Team Formation: Does the assigned team consist of developers

from all experience levels?

110

 BSDRM creates bug-fixing teams that include developers from different experience

levels, namely Experienced Developers, Newly Experienced Developers, and Fresh

Graduates. This approach ensures that bug assignments are distributed across a diverse range

of developers, optimizing team composition and enabling knowledge transfer among team

members.

Table 4.3: Comparison of BSDRM with traditional models

 Core Concepts C1 C2 C3

BugFixer [46] Text exploration Yes No No

Jeong et al. [91] Tossing graph Yes No No

Yadav et al. [61] Tossing length Yes Yes No

CosTriage [99] Cost aware ranking Yes No No

DEVELECT [97] Source code-based

approach

Yes No No

Zhang et al. [48] Social network based Yes Yes No

DRETOM [47] Topic model based Yes Yes No

Shokripour et al.

[98]

Time based approach Yes No No

Khatun et al.

[137]

Time based approach Yes No No

TEAN [138] LDA Yes Yes No

BSDRM

(Proposed Model)

 Yes Yes Yes

We conduct a comprehensive comparison, presented in Table 4.3, to underpin our

analysis. Our evaluation reveals that BSDRM, like previous models, excels at identifying

experts based on their bug resolution track record (effectively addressing C1). Interestingly,

BSDRM aligns with models such as [138, 47, 99, 48], which take into account developers'

enthusiasm for tackling new bugs, thus efficiently handling C2. Notably, BSDRM, in

conjunction with TEAN, ensures the formation of diverse teams comprising various

developer profiles [11]. However, a significant limitation of TEAN is its inability to

effectively accommodate mid-level developers and experts from different domains across

multiple organizations (C3). In contrast, BSDRM adeptly accommodates three developer

categories (ED, NED, and FG), resulting in a robust and balanced team while considering

111

their levels of experience. Therefore, BSDRM effectively addresses C3, as supported by the

data in Table 4.3. It is essential to acknowledge that BSDRM may encounter challenges in

consistently and accurately assessing the proportions of ED, NED, and FG developers in all

cases.

4.3 Summary

Bug triage involves the allocation of bugs to developers based on their past experiences, a

crucial process for ensuring a balanced workload among developers. We introduce the Bug

Solving Developer Recommendation Model, a machine learning-based bug-triaging approach

to address this challenge. Our approach begins by collecting and combining various datasets,

which are then divided into training and testing sets. Subsequently, we construct a sentence-

embedded model using the training set, generating a collection of developer-related terms.

The test set is transformed into a vocabulary list using this embedded model. BSDRM

employs the K-Nearest Neighbor algorithm to suggest eligible developers by comparing the

developer term collection with the bug report vocabulary list. These recommended

developers are subsequently classified, including experienced, newly experienced, and fresh

graduate developers, using a diverse set of classifiers such as Decision Trees, Extra Trees,

AdaBoost, Bagging Classifier, Gradient Boosting Classifier, Random Forest, K-Nearest

Neighbors, Nearest Centroid, Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Complement

Naïve Bayes, Gaussian Naïve Bayes, Support Vector Machine, Stochastic Gradient Descent,

Logistic Regression, Perceptron, and Multi-Layer Perceptron. Notably, BC demonstrates

remarkable accuracy at 96.59% in classifying developers with varying experience levels.

Based on these outcomes, BSDRM recommends assembling developer teams to address

testing bugs.

112

Chapter 5

Task Allocation and Load Balancing

Bug triage is the structured process of prioritizing and resolving reported software bugs based

on factors like severity, urgency, and impact on functionality. It ensures that resources are

allocated efficiently and that critical issues receive immediate attention, ultimately leading to

the identification of underlying software problems. However, several challenges arise if bugs

are not appropriately distributed among developers. Experienced developers may become

overwhelmed with critical bugs, while mid-level developers from different fields and fresh

graduates may need suitable assignments to gain valuable experience. This situation can

hinder career progression, reduce job satisfaction and productivity, and delay bug-fixing.

Conversely, skilled developers' job satisfaction and productivity may suffer if skilled

developers are consistently overloaded. Sometimes, medium or newly experienced

developers might attempt to resolve bugs without proper investigation, leading to increased

costs and time to rectify the issues. Additionally, fresh graduates may need more

opportunities to learn bug-solving skills, potentially resulting in high professional turnover

rates. Assigning complex or critical bugs to inexperienced developers without proper

guidance can have detrimental effects on software performance and user confidence.

 Several previous works have aimed to identify and recommend developers for bug

resolution, but a common shortcoming is the lack of workload distribution considerations

among different developer types. We introduce a task allocation model called Developer

Scheduler to address this issue. DevSched assigns bugs to developers based on minimum

requirements, competencies, and workload considerations, ensuring that various bug types

are appropriately distributed among experienced, medium-experience, and fresh graduate

developers. The model follows a series of steps to perform task allocation activities.

113

5.1 Overview of DevSched

In this section, we present an innovative automated bug assignment solution named

Developer Scheduler (DevSched), meticulously designed to tackle bug-fixing challenges and

enhance the efficiency of developer workloads. As emphasized earlier, our approach places

considerable importance on assessing developer proficiency through their previous bug-

solving experiences [17]. Additionally, we recognize that factors like team changes and

participation in multiple projects can influence the success of bug assignments. DevSched

employs a sophisticated task-scheduling algorithm that distributes bugs to developers,

considering their levels of expertise and ongoing project commitments. The intricate details

of this task scheduling methodology are illustrated in Figure 5.1, providing a comprehensive

overview of its functionality and impact on bug assignment optimization.

Figure 5.1: DevSched: Task allocation and load balancing model

114

5.1.1 Data Pre-processing

To streamline the bug assignment procedure, DevSched begins by partitioning the

experimental datasets into three distinct segments, each serving a specific role. The initial

segment is dedicated to the creation of diverse developer profile ratings. The second portion

of the datasets is reserved for the preliminary bug assignment to individual developers before

any workload balancing measures are applied. Finally, the last segment of these datasets

plays a crucial role in workload equalization among developers and the continuous updating

of their statuses based on their evolving competencies. This structured approach ensures a

systematic and efficient bug assignment process.

5.1.2 Developer Profile Rating Calculation

The initial phase of bug report handling involves collecting and categorizing bug reports into

various tiers. This multifaceted process consists of two fundamental steps: tallying developer

names and constructing a word corpus. Firstly, the model eliminates common stop words

from each developer's bug summaries and descriptions. Employing regular expressions,

unique developer names are extracted from the "Assignee" and "Single Developer" fields.

Subsequently, each developer's record incorporates details regarding the priority (ranging

from P1 to P5) and severity (comprising Enhancement (Eh), Trivial (Tr), Minor (Mn), Normal

(Nl), Major (Mj), Critical (Cc), Blocker (Bl)) of the bugs they have addressed.

On the other hand, a word corpus is meticulously crafted from the bug descriptions and

summaries by applying lemmatization techniques. This corpus enables the sequential

identification of each developer instance. Furthermore, a rating procedure (Rt) is

implemented for each developer, taking into account the priority (Pt) and severity (Sv) of the

resolved bugs. These factors are computed using the following Equations (5.1) - (5.3):

Pt = P1 × 5 + P2 × 4 + P3 × 3 + P4 × 2 + P5 × 1 (5.1)

 Sv = (Eh + Tr) × 1 + (Mn + Nl + MJ) × 2 + (Cr + Bl) × 3 (5.2)

From Eq. 5.1 and 5.2:

Rt = Pt + Sv (5.3)

 Developer profiles are intricately constructed, focusing on their aptitude for resolving

bugs. Developers are systematically classified into three discernible categories: Experienced

Developers, New Experience Developers, and Fresh Graduates, contingent on an array of

diverse criteria. The formulation of these profiles hinges on the developer's rating (Rt),

meticulously computed through the utilization of Pt and Sv.

115

5.1.3 Load Creation

During the workload creation phase, the datasets' second segments assume a central role in

the generation of workloads tailored to different developer categories. This phase revolves

around allocating bugs to developers best suited for the task, achieved through thoroughly

analyzing bug attributes and their alignment with corresponding developer profiles. The

workload creation process unfolds through a sequence of discrete steps, each contributing to

the efficient assignment of tasks. Let's delve into these steps in more profound detail to gain a

comprehensive grasp of this process.

5.1.3.1 Data Transformation

In order to enable a comprehensive comparison of diverse bugs and evaluate their

similarities, each bug undergoes a rigorous transformation process, ultimately converting

them into sets of vectors. This transformation is a pivotal step that involves applying term

frequency (TF) and inverse document frequency (IDF) techniques, which play a crucial role

in fine-tuning the importance of specific feature words within the vector space model.

Delving deeper into these concepts will provide a more nuanced understanding of their

significance in this context:

i) Term Frequency: TF is a crucial metric that measures the frequency of a specific term or

word within a given bug report or document. It quantifies how often a particular term

appears, assigning a weight to each term based on its frequency within that document. The

number of occurrences ni,j of a particular word ti divided by the total number of words in the

dj document is defined as TF. The formula is expressed as Equation (5.4). This approach

ensures that terms occurring more frequently within a bug report carry higher weights,

thereby making them more influential when constructing the vector representation of the bug

report.

𝑡𝑓𝑖,𝑗=
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘
 (5.4)

Where, ∑ 𝑛𝑘,𝑗𝑘 , is the sum of the occurrences of all words in the dj .

ii) Inverse Document Frequency: IDF complements the TF metric by assessing the

significance of a term across the entire dataset or collection of bug reports. IDF considers the

rarity or uniqueness of a term within the corpus of bug reports. Terms prevalent across

numerous bug reports receive lower IDF scores as they are considered less distinctive.

Conversely, terms that appear in only a limited number of bug reports receive higher IDF

scores, signifying their potential importance in distinguishing and characterizing bugs

116

effectively. This combination of TF and IDF techniques is pivotal in crafting meaningful

vector representations of bug reports for similarity assessment and assignment purposes. The

logarithm of the total number of documents |D| divided by the number of documents

|{j : ti ∈ dj}| containing a specific word ti is defined as IDF. In cases where the word is not

prevalent in the corpus, it could lead to a division by zero. To avoid this, a common practice

is to add 1 to the denominator, resulting in the following formula Equation (5.5):

𝑖𝑑𝑓𝑖 = log
|𝐷|

|{𝑗∶ 𝑡𝑖∈ 𝑑𝑗|}
 (5.5)

This modified formula ensures that even rare terms have a non-zero IDF score.

 We generate a vector space model for bugs by utilizing the TF-IDF measure, which

involves considering both Term Frequency and Inverse Document Frequency to determine

word weights. Furthermore, we apply lemmatization techniques to derive a word corpus from

the developer profiles.

5.1.3.2 Bug Distribution

This section outlines a procedure for allocating bugs to developers by assessing the similarity

between bug properties and a word corpus extracted from developer profiles. To measure this

similarity, we employ cosine similarity, represented by Equation (5.6), to match and assign

developers to specific bugs.

cos 𝜃 =
𝐴.𝐵

‖𝐴‖ ‖𝐵‖
=

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2 √∑ 𝐵𝑖

2𝑛
𝑖=1

𝑛
𝑖=1

 (5.6)

5.1.4 Load Balancing

Following the load creation phase, the next critical step involves balancing developers'

workloads using our proposed load balancing method. Initially, we establish an average

threshold considering the total number of developers and their existing workloads. Bug

severity is crucial in determining the allocation of bugs among experienced developers,

newly experienced developers, and fresh graduates. The algorithm detailing load balancing is

presented in Algorithm 5.1.The three instances of the loadBalancer function in the DevSched

function handle bugs of different severity levels (high, medium, and low) and allocate them

to suitable developers of different types (ED, NED, FG) based on their current workloads and

the calculated average threshold. If the new bug severity is high, first assign the experienced

developer based on the average threshold. If all experienced developers are overloaded, then

give priority to new-experienced developers. If all new, experienced developers are

117

overloaded, they are given to fresh graduate developers. If the new bug severity is medium,

prioritize NED, FG, and ED, respectively. If the new bug severity is low, prioritize FG, NED,

and ED, respectively. This modular approach enhances the readability, maintainability, and

reusability of the code by encapsulating specific functionality within well-defined functions.

 Once we've determined the average threshold and assessed bug severity, we examine

each developer's current workload and allocate bugs to them according to their respective

categories (ED, NED, FG). For instance, if Hasan, an ED, has 9 bugs assigned to him, Rahim,

another ED, has 3 bugs, and Karim, an FG, has 2 bugs, the average threshold is calculated as

(9+3+2)/3 = 4.67. In cases where the average threshold surpasses a developer's current

workload, any incoming bugs are assigned to other developers in the same category who

possess the lightest workloads. If all EDs are occupied, the subsequent bugs are assigned to

NEDs or FGs following the same procedure. In the earlier example, Hasan's current workload

consists of 9 bugs, exceeding the average threshold of 4.67. Consequently, new bug reports

are assigned to Rahim or other available EDs with lower workloads. If no EDs are available,

the next set of bugs is assigned to developers in the subsequent category. For instance, if

there are no EDs or NEDs available, the bugs are allocated to FGs. As elucidated in the study,

the calculation of the average threshold involves an assessment of each developer's current

workload, thereby encapsulating the impact of newly assigned bugs. For example, if the

average threshold is initially determined as 4.67 and a new bug is subsequently assigned to

Rahim, the workload distribution is updated to include Rahim's additional assignment.

Consequently, the average threshold is recalculated, taking into account the revised workload

scenario, ensuring that it accurately represents the workload status among developers in the

same category. This adaptive mechanism ensures that the bug allocation system remains

responsive to changes in workload distribution, optimizing the efficiency of bug assignment

while considering the evolving circumstances of each developer's responsibilities.

 As developer profiles evolve over time, average threshold values are recalculated, and

bug assignments are adjusted accordingly. This iterative process is repeated for each category

until all bugs are resolved. In the final phase, we generate several graphs to visualize changes

in standard deviations of workloads across different developers. These graphs provide

insights into workload variations over time, both before and after implementing the

load- balancing method.

118

Algorithm 5.1 Load Balancer Algorithm

Input: D is a set of developers, LD is the current load of each developer in D, LA be the

average threshold value for ED, NED and FG, and Sv be the severity of the new

bug report. T1, T2 and T3 indicate different types of developers.

Output: Bug Assign and Balance Bugs among ED, NED, and FG.

def loadBalancer (Sv, T1, T2, T3):

 if Severity is Sv then

 for each T1 ∈ D do

 if LD(d) < LA then

 Assign the bug to suitable T1 break

 end

 if none is assigned then

 for each T2 ∈ D do

 if LD(d) < LA then

 Assign the bug to suitable T2 break

 end

 end

 for T3 ∈ D do

 if LD(d) < LA then

 Assign the bug to suitable T3 break

 end

 end

 end

 End

End

Function DevSched ():

 for each d ∈ D do

 LD(d) ← current load of developer d

 end

 LA ← ⌈
∑ 𝐿𝐷(𝑑)𝑑 𝜖𝐷

|𝐷|
⌉

 loadBalancer (high, ED, NED, FG)

 loadBalancer (medium, NED, FG, ED)

 loadBalancer (low, NED, FG, ED)

119

5.1.5 Update Developer Profile

The bug distribution outlined above serves as a basis for updating the profiles of Experienced

Developers, New Experienced Developers, and Fresh Graduates in several ways:

Experienced Developers: EDs' profiles are continuously updated based on their bug-

solving capabilities, mainly focusing on their efficiency in resolving bugs within a specified

timeframe. Additional points are awarded to EDs who successfully handle more complex and

critical bugs, reflecting their expertise in addressing challenging issues. Conversely, if EDs

encounter difficulties in resolving bugs within the expected timeframes, their profiles

undergo fewer updates. In some cases, it may be inferred that these developers are less

experienced in handling specific types of bugs.

New Experienced Developers: NED profiles are updated based on their success rate in

addressing medium-level bugs. NEDs, especially those transitioning from other domains,

often begin by tackling easier bugs to familiarize themselves with bug-fixing criteria. If

NEDs consistently demonstrate the ability to resolve critical and medium-level bugs over a

certain period successfully, they are promoted to the status of EDs. Similar to EDs, NED

profiles are not frequently updated when they face challenges in problem-solving. However,

persistent difficulties in fixing specific issues may lead to weaknesses being reflected in their

profiles.

Fresh Graduates: FG profiles evolve based on their performance in resolving low-level

bugs. Although FGs primarily work on low-level bugs, they may occasionally assist

NEDs/EDs in handling mid-level and critical problems under their guidance. Promotions

from FG to NED are contingent on their consistent proficiency in handling low-level bugs

over a specified timeframe. If FGs encounter difficulties resolving multiple low-level bugs,

their profiles receive fewer updates. Continuous struggles may result in their profiles

highlighting areas for improvement in addressing this particular task.

 In summary, updating developer profiles based on their performance serves as a

valuable mechanism for refining bug allocation and enhancing system efficiency. It ensures

that developers are assigned tasks commensurate with their skills and experience, optimizing

the bug resolution process.

120

5.2 Experimental Setting

In this section, we provide a concise overview of the essential materials required for the

upcoming procedures.

5.2.1 Data Description

We obtained datasets from Bugzilla, specifically from Eclipse, Mozilla, and NetBeans, which

collectively comprise extensive bug reports spanning multiple years. The Eclipse dataset

contains 1, 37,147 bug reports from 2001 to 2020, the Mozilla dataset includes 13, 2261 bug

reports ranging from 1999 to 2020, and the NetBeans dataset encompasses 44,149 bug

reports recorded between 2001 and 2017. These datasets encompass various aspects of

software projects, including source code, commit logs, and bug-related data. Notable features

within these datasets include bug severity, priority, fix status, platform or hardware details,

assignee, single developer involvement, first assignee, developer comments, bug summary

(title), and detailed bug descriptions. It's important to note that the developers in these

datasets have not been categorized or labeled based on their expertise. To facilitate our

research, we divided these datasets into three distinct segments, each serving a specific

purpose: profile creation, load assignment, and load balancing, as outlined in Table 5.1. This

division enables us to manipulate and analyze the data effectively to address the challenges of

bug assignment and workload optimization.

Table 5.1: Date ranging

Dataset Profile Creation Load Creation Load Balancing

Eclipse 09-02-2017 to 14-02-2018 15-02-2018 to 13-03-2019 15-03-2019 to 12-06-2020

Mozilla 24-07-2017 to 26-08-2018 27-08-2018 to 01-07-2019 02-07-2019 to 05-12-2020

NetBeans 17-02-2009 to 08-02-2011 09-02-2011 to 09-04-2013 10-04-2013 to 22-12-2017

5.2.2 Environment Setup

For the experimental implementation of DevSched, we conducted our research within the

Google Colab environment, leveraging the Python programming language. The

computational resources utilized for this experiment included a personal computer equipped

with 8 GB of RAM, a 3rd generation Intel Core i5 processor operating at 2.8 GHz, and the

Windows 10 operating system. Additionally, we employed the Natural Language Toolkit

(NLTK) as a critical tool for the implementation of DevSched, enabling us to carry out our

bug assignment and workload optimization tasks effectively.

121

5.3 Result Analysis

This section details our comprehensive approach to using DevSched to manage the

assignment of bugs to developers and optimize their workloads across three distinct datasets:

Eclipse, Mozilla, and NetBeans. Each dataset consists of 10,000 bugs in its initial part,

serving as the foundation for the developer profile creation process (as seen in Table 5.1).

Here, we elucidate the intricate steps involved in this multifaceted process, delineating how it

unfolds across the different segments of the datasets.

a) Profile Creation Phase

In the profile creation phase, we utilize the initial segments of the three datasets, each

containing 10,000 bugs. These bugs serve as the basis for creating developer profiles. We

commence by identifying the number of individual developers and subsequently establish a

primary threshold crucial for the selection of suitable developers within each dataset, as

delineated in Table 5.2. Additionally, we define distinct thresholds for Experienced

Developers, New Experience Developers, and Fresh Graduates in each dataset. Thus, the first

parts are instrumental in determining these thresholds for various developer categories across

datasets.

b) Load Creation Phase

Following the profile creation, the second part of these datasets are employed to generate new

workloads for EDs, NEDs, and FGs. Here, the bugs are transformed into vectors using the

TF-IDF method, while Lemmatization techniques are applied to convert developer profiles

into a corpus of words. The cosine similarity method plays a pivotal role in assigning the

most suitable developers to address different bug types. The second segments are pivotal in

creating initial workloads, taking into account the primary thresholds for EDs, NEDs, and

FGs in their respective datasets.

c) Load Balancing Phase

The last segments of these datasets are dedicated to assigning and balancing bugs among

developers using the load balancing algorithm (Algorithm 5.1). In this phase, the DevSched

method employs a common overall threshold to categorize bugs and assigns them to EDs,

NEDs, and FGs accordingly. The load-balancing process continues iteratively until all bugs

find suitable developers.

122

Table 5.2: Load thresholds of different types of developer

Data Number

of Bugs

Number

of Devs

Number

of

Selected

Devs.

Threshold

for Selected

Devs.

The Threshold for Devs. Class

 FG NED ED

Eclipse 10000 1097 553 >10 >

10

<75 >75 <150 >150

Mozilla 10000 2332 463 >80 >80 < 200 > 200 < 400 >400

Netbea

ns

10000 1879 492 >20 >20 < 200 > 200 < 400 >400

5.3.1 Results of Eclipse Dataset

Within the Eclipse dataset, DevSched is harnessed to harmonize the workloads of individual

developers. We meticulously assess the standard deviations of bugs both before and after the

integration of the load-balancing mechanism. Initially, in Figure 5.2a, the standard deviations

exhibit subtle fluctuations as different bugs are assigned by their predefined thresholds.

However, it becomes evident that this allocation needs more proper equilibrium.

 Upon the integration of the load-balancing methodology, a marked transformation

occurs in the appropriateness of developers' workloads. This transformation is discerned by

the conspicuous reduction in the standard deviation, as elucidated in Figure 5.2b. The

efficacy of this bug distribution is further substantiated by the structured representation of

bug allocation in Table 5.3. Following the creation of developer profiles, we identified 130

developers in the Experienced Developer category, 73 in the New Experience Developer

category, and 350 in the Fresh Graduate category. Subsequently, the load creation process

commences, culminating in the discovery of 162 EDs, 122 NEDs, and 269 FGs, respectively.

 It is noteworthy that during the load creation phase, we discern a relatively consistent

increment in the standard deviation, eventually reaching 2.07. However, with the judicious

application of the load-balancing methodology among diverse developers, we unearth 261

EDs, 177 NEDs, and 115 FGs. In this scenario, an incremental decrement is observed in the

standard deviation of developers' workloads, ultimately culminating in a remarkable

reduction to 0.48.

123

(a)

(b)

Figure 5.2: The standard deviation curve depicts how the workload of developers has varied

over time for Eclipse dataset

124

Table 5.3: The distribution of developer by implementing DevSched

Eclipse Dataset

 Profile Creation Assign Load Load Balancing

ED 130 162 261

NED 73 122 177

FG 350 269 115

Mozilla Dataset

 Profile Creation Assign Load Load Balancing

ED 167 178 263

NED 109 129 102

FG 187 156 98

NetBeans Dataset

 Profile Creation Assign Load Load Balancing

ED 98 116 166

NED 63 66 59

FG 331 310 267

5.3.2 Results of Mozilla Dataset

Devsched is put into action within the Mozilla dataset, facilitating the equitable distribution

of workloads among individual developers, as outlined in Table 5.3. In consonance with other

datasets, the initial segment of this dataset comprises 167 Experienced Developers, 109 New

Experience Developers, and 187 Fresh Graduates. This segment plays a pivotal role in

establishing the fundamental thresholds for both the primary selection process and the

categorization of developers. Subsequently, we meticulously orchestrate the allocation of

workloads among diverse developers, adhering to these categorical thresholds, resulting in

the emergence of 178 EDs, 129 NEDs, and 156 FGs.

 The standard deviations of the workload distribution are diligently computed and

presented in Figure 5.3a. In this context, the standard deviations exhibit fluctuations,

culminating in an overall value of 6.54. Upon the implementation of the proposed load

balancing mechanism, a discernible transformation is observed in the standard deviation

curve, as depicted in Figure 5.3b. This transformation is indicative of a reduction in the

standard deviation to a value of 0.49.

125

(a)

(b)

Figure 5.3: The standard deviation curve depicts how the workload of developers has varied

over time for Mozilla dataset

126

5.3.3 Results of NetBeans Dataset

Within the confines of the NetBeans dataset, DevSched takes center stage, orchestrating the

harmonization of workloads among diverse developers through the judicious implementation

of a load-balancing mechanism. In Figure 4a, a visual representation is presented, showcasing

the standard deviations of workloads, which exhibit fluctuations in the absence of the load

balancing method. However, with the strategic deployment of the load balancing approach,

illustrated in Figure 5.4b, a notable transformation unfolds. This transformation manifests as

a reduction in standard deviations, signifying the apt distribution of workloads among

developers.

 During the initial phase of profile creation, the NetBeans dataset reveals the presence

of 98 Experienced Developers, 63 New Experience Developers, and 331 Fresh Graduates, as

delineated in Table 5.3. Subsequently, as the primary workload is assigned in alignment with

predefined thresholds, 116 EDs, 66 NEDs, and 310 FGs are entrusted with resolving various

bugs. In this scenario, the overall standard deviation associated with the distribution of bugs

among developers stands at 5.66. Following this phase, the proposed load-balancing

methodology is activated, leading to the allocation of 166 EDs, 59 NEDs, and 267 FGs to

address an array of bug types. This transformation leads to substantial improvements in the

distribution of bugs among the various categories of developers, as evidenced by the

diminished standard deviation, which culminates at 0.52.

127

(a)

(b)

Figure 5.4: The standard deviation curve depicts how the workload of developers has varied

over time for the NetBeans dataset.

5.3.4 Comparative Analysis among Datasets

In the course of this research endeavor, a detailed examination of standard deviation values

was carried out across various datasets, which can be shown in Table 5.4. Notably, the

Eclipse dataset emerged with the lowest standard deviation, signifying a more balanced

distribution of workloads among developers. Conversely, the NetBeans dataset exhibited a

relatively higher standard deviation initially. However, the implementation of DevSched's

load-balancing mechanism swiftly and effectively mitigated this discrepancy, rendering the

workload distribution among individual developers more equitable. Conversely, the Mozilla

dataset presented the maximum standard deviation, highlighting a broader variability in

workload distribution among developers.

Nevertheless, DevSched, through its adept load-balancing strategies, substantially reduced

this standard deviation. This observation further indicates that developers within the Mozilla

dataset efficiently resolved bugs in a relatively shorter timeframe. Furthermore, it is worth

noting that the Eclipse dataset demonstrated a higher degree of compatibility with the

implementation of DevSched compared to the Mozilla and NetBeans datasets, underscoring

the suitability and efficacy of DevSched in diverse contexts.

128

Table 5.4 Comparative analysis in terms of standard deviation

Dataset Standard Deviation

 Before Load Balancing After Load Balancing

Eclipse 2.07 0.48

Mozilla 6.54 0.49

NetBeans 5.66 0.52

5.3.5 Comparisons with Existing Works

Numerous research efforts have delved into addressing the intricate challenges of bug triage.

A wide array of computational techniques, spanning text categorization, graph-based

approaches, cost-aware strategies, source-based methodologies, machine learning, deep

learning, and hybrid methods, have been harnessed to facilitate the effective allocation of

bugs to the most suitable developers. Historically, many prior studies predominantly leaned

toward designating experienced developers as the go-to candidates for bug resolution.

However, modern organizations have evolved, recognizing the importance of diverse talent

pools that encompass not only seasoned developers but also individuals with varying skill

levels, fresh graduates, and experts from different domains. Regrettably, these earlier

approaches often failed to provide equitable solutions for distributing tasks among this

heterogeneous workforce [46, 54]. The ramifications of neglecting to assign bugs to newly

experienced developers and fresh graduates are profound. Such oversight denies them the

opportunity to accumulate valuable experience, hindering their prospects for promotion to

roles as newly experienced developers or experienced developers. The consequence is a

palpable decline in job satisfaction and a loss of skilled personnel from the profession.

 Recent research endeavors have started to acknowledge the significance of newly

experienced developers, yet there remains a dearth of comprehensive characterizations for

this category of developers [77, 79, 85]. It is imperative to rectify this situation by instituting

a fair and efficient workload distribution system that accounts for developers of varying

experience levels. Unfortunately, prior research efforts have largely omitted load distribution

considerations, further underscoring the necessity for a novel approach [46, 78, 82, 88, 138].

 In response to these challenges, we introduce DevSched, a novel framework that

classifies developers into three distinct categories: Experienced Developers, Newly

129

Experienced Developers, and Fresh Graduates. DevSched employs a meticulously designed

threshold system to allocate a predetermined number of bugs to each of these categories

during the initial phase. Subsequently, it leverages a load-balancing methodology to ensure

that the workloads of developers are more equitably distributed. This process is validated

through empirical experimentation across different datasets, where DevSched consistently

demonstrates its efficacy in reducing standard deviations of workload distributions. Table 5.5

depicts the comparisons of our proposed DevSched model with existing works.

Table 5.5 Comparisons with existing works

Reference Differences

[77], [79], [85], [46],

[78], [82], [88]

They consider experienced developers but do not consider new

developers and load balancing.

[138] They include new developers but exclude load balancing from

consideration.

DevSched

(Proposed Model)

Consider both different types of developers and load

balancing.

 In summary, the findings underscore the value of DevSched as a powerful tool for

achieving a more balanced workload distribution among developers during bug allocation

processes. This approach not only enhances software development efficiency but also ensures

that developers of diverse backgrounds are assigned tasks within manageable workloads,

fostering a more inclusive and effective development ecosystem.

5.4 Summary

Bug triage is a crucial element in software development, involving categorizing and

prioritizing reported bugs. Effective bug triage ensures the efficient allocation of resources

and helps uncover underlying issues within the software. However, when bugs are not

appropriately distributed among different types of developers, it can lead to delays, errors,

reduced capabilities, and lower job satisfaction. While previous research has proposed

methods for recommending developers to fix bugs, they often need to pay more attention to

proper workload distribution and balancing among developers. This study aims to introduce a

task allocation and load balancing model, Developer Scheduler (DevSched), designed to

distribute unassigned bugs among different types of developers efficiently. DevSched creates

developer profiles based on existing bug reports and converts new bug reports into vectors.

130

Developer profiles are transformed into a corpus of words, and bugs are assigned to

developers by comparing the cosine similarity between bug vectors and developer corpora.

DevSched dynamically updates developer workloads and adjusts their ratings based on

performance. To assess its effectiveness, Eclipse, Mozilla, and NetBeans bug reports are used

to evaluate individual developers' performance in bug triaging.

 The results demonstrate that DevSched assigns and balances bugs among different

types of developers more efficiently. After applying the proposed load balancing model,

standard deviations decrease rapidly compared to normal bug distributions across different

datasets. This process is iterated for each bug, ensuring efficient resource allocation and

critical issue resolution. As a result, the lowest standard deviation is achieved at 0.48 for the

Eclipse dataset. The implications of DevSched's bug assignment based on defined thresholds,

skills, and workloads include improved efficiency, reduced delays, and enhanced job

satisfaction among developers.

131

Chapter 6

Discussion and Conclusion

The need for an automatic bug-triaging and load-balancing system in modern software

development environments cannot be overstated. The software industry is characterized by its

rapid pace, with frequent updates, numerous bug reports, and a diverse workforce of

developers with varying skill levels. In this dynamic landscape, it is imperative to streamline

the bug resolution process, ensure efficient resource allocation, and maintain developers'

morale and job satisfaction. Without automated systems, bug triaging becomes a time-

consuming and error-prone task, which may lead to delays in addressing critical issues,

assigning inappropriate bugs to developers, and overburdening experienced developers while

underutilizing junior ones. To address these challenges, our research has culminated in

creating a novel bug-triaging strategy, which combines two pivotal models. The first model,

known as the BSDRM, serves as the cornerstone for automated bug triaging. BSDRM

leverages machine learning algorithms and past bug reports to intelligently recommend

developers for specific bug resolution tasks. Analyzing bug properties and developer

expertise facilitates the efficient allocation of bugs to the most suitable developers, ensuring

that critical issues are promptly addressed, and junior developers receive opportunities for

skill enhancement.

 In conjunction with BSDRM, we introduce DevSched, which plays a crucial

role in balancing the workloads of developers. DevSched considers the workload distribution

among developers, their skill levels, and the nature of the bugs. Through a systematic load-

balancing algorithm, DevSched optimally allocates bugs among different categories of

developers, namely Experienced Developers, New Experience Developers, and Fresh

Graduates. This ensures that no developer is overburdened, critical bugs are appropriately

assigned to experienced developers, and junior developers are entrusted with tasks suitable

132

for their level of expertise. The contributions made in this thesis are rooted in the extensive

research conducted in chapters 4 and 5. This chapter serves as a platform to delineate the

significant outcomes attained in this study by developing and applying BSDRM and

DevSched. It elucidates how these models have effectively addressed the research question at

hand. Furthermore, this chapter provides a succinct overview of the primary limitations

inherent in the study. It offers insights into potential avenues for enhancing the reliability and

robustness of the automatic bug-triaging model in future developments.

6.1 Summary of Results

In this section, we present a comprehensive overview of the results and findings obtained

from two pivotal models: the Bug Solving Developer Recommendation Model and the

Developer Scheduler. These models represent significant contributions to the realm of

software development, addressing critical challenges in bug triage and developer workload

management. We delve into the outcomes of each model, elucidating their respective

methodologies, achievements, and implications. The findings outlined herein shed light on

how these models have redefined bug assignment strategies, improved efficiency, and

ensured a more equitable distribution of developer tasks, ultimately enhancing the software

development process.

6.1.1 Recommend Developer Team Efficiently

Automatic bug triaging is crucial in software development to allocate resources for bug

resolution efficiently and reduce software quality improvement time. Many software

companies face the challenge of managing a large volume of bug reports. Often, experienced

developers are overwhelmed by the sheer number of bug assignments, while newer and mid-

skilled developers do not have sufficient opportunities to gain experience in bug fixing. This

imbalance can lead to delays and decreased job satisfaction. Additionally, developers with

varying backgrounds and experience levels, including fresh graduates and those transitioning

from other domains, join the workforce, further complicating the bug assignment process. To

address these issues, a systematic bug triaging system is needed to distribute bug assignments

to different types of developers, allowing them to acquire knowledge and expertise in bug

solving. This can create a balanced developer team consisting of experienced developers,

newly experienced developers, fresh graduates, and developers from other domains. Such a

diverse team is well-equipped to collaboratively tackle newly reported bugs, resulting in

133

efficient bug resolution and skill development for all team members. An ML-based model

called the BSDRM is proposed in response to these challenges. BSDRM recommends

developer teams comprising experts, medium-level fixers, and fresh graduates to handle

newly reported bugs efficiently. By fostering collaboration and knowledge sharing among

developers of varying experience levels and backgrounds, BSDRM aims to improve bug

resolution efficiency and job satisfaction for all team members. A combined dataset

comprising 56,621 developer instances is created by merging Eclipse, Mozilla, and NetBeans

datasets. Their expertise does not initially categorize these developers, but three categories

are introduced: ED, NED, and FG, with the manual assignment of expertise weights based on

qualitative human inspection. The dataset is then split into 80% training and 20% testing sets.

In the training set, two subsets are formed: Subset-1 containing dataset summaries and

descriptions, and Subset-2 containing other attributes such as severity, priority, fix status, etc.

Additionally, a Subset-11 is extracted from the test set, which includes dataset summaries and

descriptions.

 The training stage involves creating sentence-embedded models using pre-trained

Bidirectional Encoder Representations from Transformers for S1 to generate a bag of

developer words. Data balancing is performed on S2 to address class imbalance issues.

Various classifiers (DT, ET, AdC, BC, GB, RF, KNN, NC, BNB, MNB, CoNB, GNB, SVM,

SGD, LR, Pr, MLP) are trained on S2 to build a developer classifier based on experience

levels. When a new bug report is received, S11 extracts a vocabulary list for developers using

the pre-trained sentence embedding model. An unsupervised KNN finder is used to identify

K nearest eligible developers based on the vocabulary list. Developers' experience levels are

predicted using the developer classifier, and a developer team is formed with eligible

individuals to address different bugs. This process ensures efficient bug assignment and

resolution among developers of varying experience levels. After conducting extensive

experimental analysis, it was determined that the Bagging Classifier emerged as the most

robust classifier for categorizing developers based on their experience levels. BC achieved

remarkable performance metrics, including the highest accuracy of 96.59%, precision of

96.62%, recall of 96.56%, F1-Score of 96.59%, a low Hamming Loss of 3.41%, a Jaccard

Score of 93.42%, a high Matthews Correlation Coefficient of 94.89%, a Balanced Accuracy

of 96.56%, and a Cohen's Kappa Score of 94.88%, respectively.

The Bagging Classifier has demonstrated superior performance in the bug triaging strategy

due to its inherent strengths as an ensemble learning method. Ensembles, such as the Bagging

Classifier, leverage the collective wisdom of multiple models to improve overall accuracy

134

and robustness. The technique's effectiveness is attributed to its ability to mitigate overfitting

by training each base model on random subsets of the training data. Additionally, Bagging

Classifier is known for its versatility, robustness to noisy data, and adaptability to different

base classifiers, making it suitable for diverse datasets. In bug triaging, where the goal is to

accurately classify developers based on varying experience levels, the aggregate decision-

making process of Bagging Classifier may have effectively handled the intricacies of the task,

resulting in outstanding accuracy of 96.59%. Additionally, Gradient Boosting and Random

Forest classifiers yielded results that were very close to BC in terms of performance. Various

criteria related to developer experience were thoroughly examined to evaluate the

effectiveness of the Bug Solving Developer Recommendation Model. As a result, BSDRM

demonstrated its ability to alleviate the heavy workload experienced by highly skilled

developers, offering newly experienced and fresh graduate developer’s valuable opportunities

to gain deeper insights into bug-solving processes and contribute effectively to the

development team.

6.1.2 Task Allocation and Load Balancing

Bug triaging ensures efficient resource allocation and timely resolution of critical issues

while identifying recurring bug patterns. However, problems arise when bugs are not

adequately distributed among developers. Experienced developers may become overloaded

with critical bugs, while others, like mid-level developers, fresh graduates, or those from

different fields, may not gain the necessary experience. This imbalance hinders promotions

and reduces job satisfaction, impacting bug-fixing efficiency. To address this issue, we

introduce Developer Scheduler, a task allocation model that assigns bugs to developers based

on their experience, competence, and workload. DevSched utilizes Eclipse, Mozilla, and

NetBeans datasets, split into three parts. It first creates developer profiles, analyzing their

skills and bug-solving experience. Then, it assigns bugs by converting bug properties into

vectors using TF-IDF and extracting a corpus of words from developer profiles. Bugs are

allocated based on cosine similarity and predefined thresholds. Finally, load balancing is

performed using a proposed algorithm, estimating developer workloads and dynamically

updating them based on performance.

 DevSched, applied to the Eclipse dataset, effectively balances individual

developer workloads, resulting in a reduction in the standard deviation of bug assignments.

The initial workload distribution exhibits some fluctuations, but the workloads become more

135

even after implementing the load balancing method. In the Eclipse dataset, the ED class

comprises 130 developers, the NED class has 73, and the FG class includes 350 developers.

Load creation initially leads to a standard deviation increase, peaking at 2.07. However, the

standard deviation significantly decreases to 0.48 upon applying the load balancing method.

The Mozilla dataset also benefits from DevSched, which balances developer workloads.

Similar to other datasets, the initial dataset segment consists of 167 EDs, 109 NEDs, and 187

FGs, establishing thresholds for primary selection and different developer classes. Workloads

are then distributed based on categorical thresholds, yielding 178 EDs, 129 NEDs, and 156

FGs. The standard deviations of these loads exhibit fluctuations, with an overall value of

6.54. However, the proposed load balancing method results in a reduced standard deviation,

reaching 0.49. In the NetBeans dataset, DevSched effectively balances developer workloads

using the load-balancing method. The profile creation stage involves 98 EDs, 63 NEDs, and

331 FGs. After the primary load creation based on initial thresholds, 116 EDs, 66 NEDs, and

310 FGs are assigned bugs, resulting in an overall standard deviation of 5.66 among

developers. Implementing the load balancing method assigns 166 EDs, 59 NEDs, and 267

FGs to solve different bug types, reducing the standard deviation to 0.52. The Eclipse dataset

exhibits the lowest standard deviation, making it well-suited for DevSched implementation.

In contrast, the NetBeans dataset initially has a relatively high standard deviation, which

DevSched significantly reduces with the load balancing method. The maximum standard

deviation is observed in the Mozilla dataset, indicating efficient bug resolution by developers

in a short time frame. The proposed DevSched enhances bug triaging by ensuring fair

workload distribution among developers, including newly experienced developers, and

dynamically updating their ratings based on performance.

6.2 Impact on Software Companies

The implications of the proposed method on software companies are multifaceted,

influencing various aspects of their bug-triaging and development processes. This section

delves into the potential impact, addressing how the newly introduced Bug Solving

Developer Recommendation Model and the Developer Scheduler model can revolutionize the

software development landscape.

i) Enhancing Efficiency in Developer Assignment

One of the primary impacts of these models lies in the realm of developer assignment.

BSDRM leverages machine learning techniques to recommend developers for bug resolution

136

tasks while considering their expertise, workload, and the severity of bugs. This process leads

to more efficient developer assignments, ensuring the proper developers are assigned the

appropriate bugs. Consequently, software companies expect to witness a reduction in the time

it takes to resolve bugs, contributing to more streamlined development pipelines and shorter

release cycles.

ii) Optimizing Workload Distribution and Knowledge Sharing

DevSched, on the other hand, plays a pivotal role in optimizing the distribution of unassigned

bugs among developers with varying expertise levels. By creating developer profiles,

assigning bugs based on developer-corpus similarity, and dynamically updating workloads,

DevSched fosters an environment of balanced workload distribution. This not only reduces

the burden on experienced developers but also facilitates knowledge sharing within

development teams. Fresh graduates and developers transitioning from other fields can

actively participate in bug resolution, gaining valuable experience. This balanced workload

distribution improves job satisfaction among developers and promotes a culture of

collaboration.

iii) Accommodating Newly Joined Developers

Incorporating newly joined developers into the bug assignment process is another significant

impact. Both BSDRM and DevSched ensure that newly joined developers are not

overwhelmed with assignments. BSDRM classifies developers into different experience

levels, ensuring that new developers are included in the recommendation process without

being inundated with tasks. DevSched, by preventing the overloading of experienced

developers, indirectly paves the way for new developers to engage actively in bug resolution

processes. This approach promotes the integration of fresh talent into the software

development team, fostering a dynamic and adaptable workforce.

iv) Enhancing Software Quality Assurance

The ultimate impact of these models is on software quality assurance. By reducing bug

resolution time and ensuring that critical issues are addressed promptly, both BSDRM and

DevSched contribute to enhanced software quality. In an industry inundated with bug reports

from diverse software companies, these models offer a systematic approach to triaging and

resolving bugs. This not only leads to higher-quality software but also enhances the

reputation of software companies by delivering more reliable products to customers.

Additionally, the efficiency gained through these models positively impacts the entire

software development pipeline, resulting in smoother bug resolution processes.

137

6.3 Limitations of the Study

While the Bug Solving Developer Recommendation Model and the Developer Scheduler

models offer significant advantages in bug triaging and developer assignment, they are not

without limitations. It's essential to recognize these limitations to understand the constraints

of their application.

Both BSDRM and DevSched heavily rely on the quality and availability of historical data.

Inaccurate or incomplete data can lead to incorrect developer recommendations and

suboptimal bug assignments. Ensuring high data quality and consistency is crucial for the

models to perform effectively.

 The performance of ML is highly sensitive to feature selection. Choosing relevant

features and fine-tuning model hyperparameters is a complex and time-consuming task. The

effectiveness of the models can be impacted if features are not selected or engineered

appropriately.

 Both models primarily focus on textual data, such as bug descriptions and developer

profiles. They may not effectively handle non-textual data, such as multimedia bug reports or

developer portfolios, limiting their applicability in scenarios involving diverse data types.

6.4 Future Research

As the field of software development continues to evolve, so must the methodologies and

tools employed to enhance bug triaging and developer assignment processes. The Bug

Solving Developer Recommendation Model and the Developer Scheduler have paved the

way for more efficient and effective bug resolution practices. However, there is still ample

room for growth and improvement. In this section, we delve into the future directions for

these models, exploring how they can adapt to meet the ever-changing demands of the

software development industry, address emerging challenges, and contribute to enhancing

software quality assurance.

 In the future, the Bug Solving Developer Recommendation Model will embrace a

broader scope, extending its impact beyond the confines of this study. It will explore and

integrate additional bug repositories, encompassing large-scale software projects, open-

source initiatives, and commercial applications. By doing so, BSDRM aims to evaluate its

task allocation capabilities in a more diverse and dynamic environment.

138

In the future, the Developer Scheduler will undergo continuous refinement and augmentation,

focusing on delivering real-time services for the bug triage process. This enhancement will

involve the integration of cutting-edge methodologies and technologies that enable DevSched

to adapt swiftly to the ever-evolving landscape of software development.

139

Bibliography

1. Lee, D.G. and Seo, Y.S., 2020. Improving bug report triage performance using artificial

intelligence based document generation model. Human-centric Computing and

Information Sciences, 10(1), p.26.

2. Aung, T.W.W., Wan, Y., Huo, H. and Sui, Y., 2022. Multi-triage: A multi-task learning

framework for bug triage. Journal of Systems and Software, 184, p.111133.

3. Kukkar, A., Kumar, Y., Sharma, A. and Sandhu, J.K., 2023. Bug Severity Classification

in Software Using Ant Colony Optimization Based Feature Weighting Technique. Expert

Systems with Applications, p.120573.

4. Dai, J., Li, Q., Xue, H., Luo, Z., Wang, Y. and Zhan, S., 2023. Graph collaborative

filtering-based bug triaging. Journal of Systems and Software, 200, p.111667.

5. Kukkar, A., Lilhore, U.K., Frnda, J., Sandhu, J.K., Das, R.P., Goyal, N., Kumar, A.,

Muduli, K. and Rezac, F., 2023. ProRE: An ACO-based programmer recommendation

model to precisely manage software bugs. Journal of King Saud University-Computer and

Information Sciences, 35(1), pp.483-498.

6. Chauhan, R., Sharma, S. and Goyal, A., 2023. DENATURE: duplicate detection and type

identification in open source bug repositories. International Journal of System Assurance

Engineering and Management, pp.1-18.

7. de Oliveira Calixto, F.E., Ramalho, F., Massoni, T. and Ferreira, J.M., 2023. Investigating

Bug Report Changes in Bugzilla.

8. Sarawan, K., Polpinij, J. and Luaphol, B., 2023, May. Machine Learning-Based Methods

for Identifying Bug Severity Level from Bug Reports. In International Conference on

Computing and Information Technology (pp. 199-208). Cham: Springer Nature

Switzerland.

9. Raghuvanshi, K.K., Agarwal, A., Singh, A.K. and Jain, K., 2023. Time-dependent

entropic analysis of software bugs. International Journal of System Assurance

Engineering and Management, pp.1-8.

140

10. Dao, A.H. and Yang, C.Z., 2023. Automated Priority Prediction for Bug Reports Using

Comment Intensiveness Features and SMOTE Data Balancing. International Journal of

Software Engineering and Knowledge Engineering, 33(03), pp.415-433.

11. Arora, R. and Kaur, A., 2023. BugFinder: Automatic Data Extraction Approach for Bug

Reports from Jira-Repositories. In Advances in Data-driven Computing and Intelligent

Systems: Selected Papers from ADCIS 2022, Volume 2 (pp. 511-521). Singapore:

Springer Nature Singapore.

12. Noyori, Y., Washizaki, H., Fukazawa, Y., Ooshima, K., Kanuka, H. and Nojiri, S., 2023.

Deep learning and gradient-based extraction of bug report features related to bug fixing

time. Frontiers in Computer Science, 5, p.1032440.

13. Peralta, S.R.O., Washizaki, H., Fukazawa, Y., Noyori, Y., Nojiri, S. and Kanuka, H.,

2023, June. Analysis of Bug Report Qualities with Fixing Time using a Bayesian

Network. In Proceedings of the 27th International Conference on Evaluation and

Assessment in Software Engineering (pp. 235-240).

14. Yan, A., Zhong, H., Song, D. and Jia, L., 2023. How do programmers fix bugs as

workarounds? An empirical study on Apache projects. Empirical Software Engineering,

28(4), p.96.

15. Bansal, K., Singh, G., Malik, S. and Rohil, H., 2023. NRPredictor: an ensemble learning

and feature selection based approach for predicting the non-reproducible bugs.

International Journal of System Assurance Engineering and Management, 14(3), pp.989-

1009.

16. Chauhan, R., Sharma, S. and Goyal, A., 2023. DENATURE: duplicate detection and type

identification in open source bug repositories. International Journal of System Assurance

Engineering and Management, pp.1-18.

17. Liang, H. and Wei, Q., 2023, August. A hybrid approach for developer recommendation

based on social network. In Second International Conference on Electronic Information

Technology (EIT 2023) (Vol. 12719, pp. 759-766). SPIE.

18. Tabassum, N., Namoun, A., Alyas, T., Tufail, A., Taqi, M. and Kim, K.H., 2023.

Classification of Bugs in Cloud Computing Applications Using Machine Learning

Techniques. Applied Sciences, 13(5), p.2880.

19. Mukherjee, U. and Rahman, M.M., 2023. Answering Follow-up Questions on Bug

Reports with Structured Information Retrieval and Deep Learning. arXiv preprint

arXiv:2304.12494.

141

20. Xu, Y., Liu, C., Li, Y., Xie, Q. and Choi, H.D., 2023, March. A Method of Component

Prediction for Crash Bug Reports Using Component-Based Features and Machine

Learning. In 2023 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 773-777). IEEE.

21. Qian, C., Zhang, M., Nie, Y., Lu, S. and Cao, H., 2023. A Survey on Bug Deduplication

and Triage Methods from Multiple Points of View. Applied Sciences, 13(15), p.8788.

22. Gomes, L., da Silva Torres, R. and Côrtes, M.L., 2023. BERT-and TF-IDF-based feature

extraction for long-lived bug prediction in FLOSS: a comparative study. Information and

Software Technology, 160, p.107217.

23. Life Cycles of Bug. [Online]. Available From: https://www.ques10.com/p/48607/life-

cycle-of-bugs-1/ [retrieved 10 September, 2023].

24. Software Testing. [Online]. Available From: https://www.softwaretestinghelp.com/bug-

life-cycle/ [retrieved 08 September, 2023]

25. Samir, M., Sherief, N. and Abdelmoez, W., 2023. Improving Bug Assignment and

Developer Allocation in Software Engineering through Interpretable Machine Learning

Models. Computers, 12(7), p.128.

26. Rao, N.R. and Suresh, K., 2023. Enhanced Bug Localization through Version Tag

Embedding: A Comprehensive Approach to Efficient Software Development.

International Journal of Intelligent Systems and Applications in Engineering, 11(6s),

pp.417-427.

27. Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S. and Runeson, P., 2016.

Automated bug assignment: Ensemble-based machine learning in large scale industrial

contexts. Empirical Software Engineering, 21, pp.1533-1578.

28. 28. Eclipse. [Online]. Available From: https://wiki.eclipse.org/Mylyn/User_Guide

[retrieved 18 November, 2021]

29. Gupta, M. and Sureka, A., 2014, February. Nirikshan: Mining bug report history for

discovering process maps, inefficiencies and inconsistencies. In Proceedings of the 7th

India Software Engineering Conference (pp. 1-10).

30. Rajalakshmi, R., Selvaraj, S. and Vasudevan, P., 2023. Hottest: Hate and offensive

content identification in Tamil using transformers and enhanced stemming. Computer

Speech & Language, 78, p.101464.

31. Alshammari, N.O. and Alharbi, F.D., 2022. Combining a Novel Scoring Approach with

Arabic Stemming Techniques for Arabic Chatbots Conversation Engine. Transactions on

Asian and Low-Resource Language Information Processing, 21(4), pp.1-21.

https://www.ques10.com/p/48607/life-cycle-of-bugs-1/
https://www.ques10.com/p/48607/life-cycle-of-bugs-1/
https://www.softwaretestinghelp.com/bug-life-cycle/
https://www.softwaretestinghelp.com/bug-life-cycle/
https://wiki.eclipse.org/Mylyn/User_Guide

142

32. Karaa, W.B.A. and Gribâa, N., 2013. Information retrieval with porter stemmer: a new

version for English. In Advances in Computational Science, Engineering and Information

Technology: Proceedings of the Third International Conference on Computational

Science, Engineering and Information Technology (CCSEIT-2013), KTO Karatay

University, June 7-9, 2013, Konya, Turkey-Volume 1 (pp. 243-254). Springer

International Publishing.

33. Porter, M.F., 2001. Snowball: A language for stemming algorithms.

34. Jodha, R. and Dadheech, A., 2019. Analysis and Evaluation of Unstructured data based

on Stemming Algorithms. American International Journal of Research in Formal, Applied

& Natural Sciences AIJRFANS, pp.19-201.

35. Karaa, W.B.A., 2013. A new stemmer to improve information retrieval. International

Journal of Network Security & Its Applications, 5(4), p.143.

36. Jumadi, J., Maylawati, D.S., Pratiwi, L.D. and Ramdhani, M.A., 2021, March.

Comparison of Nazief-Adriani and Paice-Husk algorithm for Indonesian text stemming

process. In IOP Conference Series: Materials Science and Engineering (Vol. 1098, No. 3,

p. 032044). IOP Publishing.

37. Jalil, M.M., Ismailov, A., Abd Rahim, N.H. and Abdullah, Z., 2017. The Development of

the Uzbek Stemming Algorithm. Advanced Science Letters, 23(5), pp.4171-4174.

38. Faheem, M.R., Anees, T. and Hussain, M., 2022. Keywords and Spatial Based Indexing

for Searching the Things on Web. KSII Transactions on Internet & Information Systems,

16(5).

39. Kumar, H., Mahindru, R. and Kar, D., 2022, November. Metadata-based retrieval for

resolution recommendation in AIOps. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (pp. 1379-1389).

40. Cabasag, C.J., Fagan, P.J., Ferlay, J., Vignat, J., Laversanne, M., Liu, L., van der Aa,

M.A., Bray, F. and Soerjomataram, I., 2022. Ovarian cancer today and tomorrow: A

global assessment by world region and Human Development Index using GLOBOCAN

2020. International Journal of Cancer, 151(9), pp.1535-1541.

41. Pu, W., Raman, A.A.A., Hamid, M.D., Gao, X. and Buthiyappan, A., 2023. Inherent

safety concept based proactive risk reduction strategies: A review. Journal of Loss

Prevention in the Process Industries, p.105133.

143

42. Liu, W., Gan, Z., Xi, T., Du, Y., Wu, J., He, Y., Jiang, P., Liu, X. and Lai, X., 2023. A

semantic and intelligent focused crawler based on semantic vector space model and

membrane computing optimization algorithm. Applied Intelligence, 53(7), pp.7390-7407.

43. Widaningrum, I., Mustikasari, D., Arifin, R., Tsaqila, S.L. and Fatmawati, D., 2022.

Algoritma Term Frequency–Inverse Document Frequency (TF-IDF) dan K-Means

Clustering Untuk Menentukan Kategori Dokumen. Prosiding SISFOTEK, 6(1), pp.145-

149.

44. Yu, T., Liu, J., Yang, Y., Li, Y., Fei, H. and Li, P., 2022, August. EGM: enhanced graph-

based model for large-scale video advertisement search. In Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 4443-4451).

45. Wang, R., Li, J. and Bai, R., 2023. Prediction and Analysis of Container Terminal

Logistics Arrival Time Based on Simulation Interactive Modeling: A Case Study of

Ningbo Port. Mathematics, 11(15), p.3271.

46. Hu, H., Zhang, H., Xuan, J. and Sun, W., 2014, November. Effective bug triage based on

historical bug-fix information. In 2014 IEEE 25th international symposium on software

reliability engineering (pp. 122-132). IEEE.

47. Xie, X., Zhang, W., Yang, Y. and Wang, Q., 2012, September. Dretom: Developer

recommendation based on topic models for bug resolution. In Proceedings of the 8th

international conference on predictive models in software engineering (pp. 19-28).

48. Zhang, W., Han, G. and Wang, Q., 2014, November. Butter: An approach to bug triage

with topic modeling and heterogeneous network analysis. In 2014 International

Conference on Cloud Computing and Big Data (pp. 62-69). IEEE.

49. Zhang, T., Yang, G., Lee, B. and Lua, E.K., 2014, December. A novel developer ranking

algorithm for automatic bug triage using topic model and developer relations. In 2014

21st Asia-Pacific Software Engineering Conference (Vol. 1, pp. 223-230). IEEE.

50. Zhang, W., Wang, S. and Wang, Q., 2016. BAHA: A novel approach to automatic bug

report assignment with topic modeling and heterogeneous network analysis. Chinese

Journal of Electronics, 25(6), pp.1011-1018.

51. Kagdi, H., Gethers, M., Poshyvanyk, D. and Hammad, M., 2012. Assigning change

requests to software developers. Journal of software: Evolution and Process, 24(1), pp.3-

33.

52. Shokripour, R., Kasirun, Z.M., Zamani, S. and Anvik, J., 2012, November. Automatic

bug assignment using information extraction methods. In 2012 International conference

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

144

on advanced computer science applications and technologies (ACSAT) (pp. 144-149).

IEEE.

53. Shokripour, R., Anvik, J., Kasirun, Z.M. and Zamani, S., 2013, May. Why so

complicated? simple term filtering and weighting for location-based bug report

assignment recommendation. In 2013 10th working conference on mining software

repositories (MSR) (pp. 2-11). IEEE.

54. Linares-Vásquez, M., Hossen, K., Dang, H., Kagdi, H., Gethers, M. and Poshyvanyk, D.,

2012, September. Triaging incoming change requests: Bug or commit history, or code

authorship?. In 2012 28th IEEE International Conference on Software Maintenance

(ICSM) (pp. 451-460). IEEE.

55. Naguib, H., Narayan, N., Brügge, B. and Helal, D., 2013, May. Bug report assignee

recommendation using activity profiles. In 2013 10th Working Conference on Mining

Software Repositories (MSR) (pp. 22-30). IEEE.

56. Yang, G., Zhang, T. and Lee, B., 2014, July. Towards semi-automatic bug triage and

severity prediction based on topic model and multi-feature of bug reports. In 2014 IEEE

38th Annual Computer Software and Applications Conference (pp. 97-106). IEEE.

57. Wang, S., Zhang, W. and Wang, Q., 2014, September. FixerCache: Unsupervised caching

active developers for diverse bug triage. In Proceedings of the 8th ACM/IEEE

international symposium on empirical software engineering and measurement (pp. 1-10).

58. Xia, X., Lo, D., Ding, Y., Al-Kofahi, J.M., Nguyen, T.N. and Wang, X., 2016. Improving

automated bug triaging with specialized topic model. IEEE Transactions on Software

Engineering, 43(3), pp.272-297.

59. Lee, D.G. and Seo, Y.S., 2020. Improving bug report triage performance using artificial

intelligence based document generation model. Human-centric Computing and

Information Sciences, 10(1), p.26.

60. Zhang, W., Cui, Y. and Yoshida, T., 2017. En-lda: An novel approach to automatic bug

report assignment with entropy optimized latent dirichlet allocation. Entropy, 19(5),

p.173.

61. Yadav, A., Singh, S.K. and Suri, J.S., 2019. Ranking of software developers based on

expertise score for bug triaging. Information and Software Technology, 112, pp.1-17.

62. Banitaan, S. and Alenezi, M., 2013, December. Decoba: Utilizing developers

communities in bug assignment. In 2013 12th International Conference on Machine

Learning and Applications (Vol. 2, pp. 66-71). IEEE.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

145

63. Zhang, W., Wang, S., Yang, Y. and Wang, Q., 2013, November. Heterogeneous network

analysis of developer contribution in bug repositories. In 2013 International Conference

on Cloud and Service Computing (pp. 98-105). IEEE.

64. Zhang, T. and Lee, B., 2013, March. A hybrid bug triage algorithm for developer

recommendation. In Proceedings of the 28th annual ACM symposium on applied

computing (pp. 1088-1094).

65. Zhang, T. and Lee, B., 2012. An automated bug triage approach: A concept profile and

social network based developer recommendation. In Intelligent Computing Technology:

8th International Conference, ICIC 2012, Huangshan, China, July 25-29, 2012.

Proceedings 8 (pp. 505-512). Springer Berlin Heidelberg.

66. Kumari, M., Misra, A., Misra, S., Fernandez Sanz, L., Damasevicius, R. and Singh, V.B.,

2019. Quantitative quality evaluation of software products by considering summary and

comments entropy of a reported bug. Entropy, 21(1), p.91.

67. Etemadi, V., Bushehrian, O., Akbari, R. and Robles, G., 2021. A scheduling-driven

approach to efficiently assign bug fixing tasks to developers. Journal of Systems and

Software, 178, p.110967.

68. Almhana, R. and Kessentini, M., 2021. Considering dependencies between bug reports to

improve bugs triage. Automated Software Engineering, 28, pp.1-26.

69. Jahanshahi, H., Chhabra, K., Cevik, M. and Baþar, A., 2021. DABT: A dependency-

aware bug triaging method. In Evaluation and Assessment in Software Engineering (pp.

221-230).

70. Bhattacharya, P. and Neamtiu, I., 2010, September. Fine-grained incremental learning

and multi-feature tossing graphs to improve bug triaging. In 2010 IEEE International

Conference on Software Maintenance (pp. 1-10). IEEE.

71. Tamrawi, A., Nguyen, T.T., Al-Kofahi, J. and Nguyen, T.N., 2011, May. Fuzzy set-based

automatic bug triaging (NIER track). In Proceedings of the 33rd international conference

on software engineering (pp. 884-887).

72. Anvik, J. and Murphy, G.C., 2011. Reducing the effort of bug report triage:

Recommenders for development-oriented decisions. ACM Transactions on Software

Engineering and Methodology (TOSEM), 20(3), pp.1-35.

73. Xuan, J., Jiang, H., Ren, Z. and Zou, W., 2012, June. Developer prioritization in bug

repositories. In 2012 34th International Conference on Software Engineering (ICSE) (pp.

25-35). IEEE.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

146

74. Banitaan, S. and Alenezi, M., 2013, June. Tram: An approach for assigning bug reports

using their metadata. In 2013 Third International Conference on Communications and

Information Technology (ICCIT) (pp. 215-219). IEEE.

75. Alenezi, M., Magel, K. and Banitaan, S., 2013. Efficient Bug Triaging Using Text

Mining. J. Softw., 8(9), pp.2185-2190.

76. Xuan, J., Jiang, H., Hu, Y., Ren, Z., Zou, W., Luo, Z. and Wu, X., 2014. Towards

effective bug triage with software data reduction techniques. IEEE transactions on

knowledge and data engineering, 27(1), pp.264-280.

77. Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S. and Runeson, P., 2016.

Automated bug assignment: Ensemble-based machine learning in large scale industrial

contexts. Empirical Software Engineering, 21, pp.1533-1578.

78. Florea, A.C., Anvik, J. and Andonie, R., 2017. Spark-based cluster implementation of a

bug report assignment recommender system. In Artificial Intelligence and Soft

Computing: 16th International Conference, ICAISC 2017, Zakopane, Poland, June 11-15,

2017, Proceedings, Part II 16 (pp. 31-42). Springer International Publishing.

79. Alenezi, M., Banitaan, S. and Zarour, M., 2018. Using categorical features in mining bug

tracking systems to assign bug reports. arXiv preprint arXiv:1804.07803.

80. Sarkar, A., Rigby, P.C. and Bartalos, B., 2019, September. Improving bug triaging with

high confidence predictions at ericsson. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp. 81-91). IEEE.

81. Anvik, J., Hiew, L. and Murphy, G.C., 2006, May. Who should fix this bug?. In

Proceedings of the 28th international conference on Software engineering (pp. 361-370).

82. Peng, X., Zhou, P., Liu, J. and Chen, X., 2017, July. Improving Bug Triage with Relevant

Search. In SEKE (pp. 123-128).

83. Nagwani, N.K. and Verma, S., 2012, January. Predicting expert developers for newly

reported bugs using frequent terms similarities of bug attributes. In 2011 Ninth

International Conference on ICT and Knowledge Engineering (pp. 113-117). IEEE.

84. Lee, S.R., Heo, M.J., Lee, C.G., Kim, M. and Jeong, G., 2017, August. Applying deep

learning based automatic bug triager to industrial projects. In Proceedings of the 2017

11th Joint Meeting on foundations of software engineering (pp. 926-931).

85. Choquette-Choo, C.A., Sheldon, D., Proppe, J., Alphonso-Gibbs, J. and Gupta, H., 2019,

December. A multi-label, dual-output deep neural network for automated bug triaging. In

2019 18th IEEE International Conference On Machine Learning And Applications

(ICMLA) (pp. 937-944). IEEE.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

147

86. Mani, S., Sankaran, A. and Aralikatte, R., 2019, January. Deeptriage: Exploring the

effectiveness of deep learning for bug triaging. In Proceedings of the ACM India joint

international conference on data science and management of data (pp. 171-179).

87. Guo, S., Zhang, X., Yang, X., Chen, R., Guo, C., Li, H. and Li, T., 2020. Developer

activity motivated bug triaging: via convolutional neural network. Neural Processing

Letters, 51, pp.2589-2606.

88. Zaidi, S.F.A., Awan, F.M., Lee, M., Woo, H. and Lee, C.G., 2020. Applying

convolutional neural networks with different word representation techniques to

recommend bug fixers. IEEE Access, 8, pp.213729-213747.

89. Zaidi, S.F.A. and Lee, C.G., 2021, January. Learning graph representation of bug reports

to triage bugs using graph convolution network. In 2021 International Conference on

Information Networking (ICOIN) (pp. 504-507). IEEE.

90. Choquette-Choo, C.A., Sheldon, D., Proppe, J., Alphonso-Gibbs, J. and Gupta, H., 2019,

December. A multi-label, dual-output deep neural network for automated bug triaging. In

2019 18th IEEE International Conference On Machine Learning And Applications

(ICMLA) (pp. 937-944). IEEE.

91. Jeong, G., Kim, S. and Zimmermann, T., 2009, August. Improving bug triage with bug

tossing graphs. In Proceedings of the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering (pp. 111-120).

92. Chen, L., Wang, X. and Liu, C., 2011. An Approach to Improving Bug Assignment with

Bug Tossing Graphs and Bug Similarities. J. Softw., 6(3), pp.421-427.

93. Bhattacharya, P. and Neamtiu, I., 2010, September. Fine-grained incremental learning

and multi-feature tossing graphs to improve bug triaging. In 2010 IEEE International

Conference on Software Maintenance (pp. 1-10). IEEE.

94. Baysal, O., Godfrey, M.W. and Cohen, R., 2009, May. A bug you like: A framework for

automated assignment of bugs. In 2009 IEEE 17th International Conference on Program

Comprehension (pp. 297-298). IEEE.

95. Hossen, M.K., 2013. Triaging incoming change requests: bug or commit history, or code

authorship?

96. Aggarwal, K., Timbers, F., Rutgers, T., Hindle, A., Stroulia, E. and Greiner, R., 2017.

Detecting duplicate bug reports with software engineering domain knowledge. Journal of

Software: Evolution and Process, 29(3), p.e1821.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

148

97. Matter, D., Kuhn, A. and Nierstrasz, O., 2009, May. Assigning bug reports using a

vocabulary-based expertise model of developers. In 2009 6th IEEE international working

conference on mining software repositories (pp. 131-140). IEEE.

98. Shokripour, R., Anvik, J., Kasirun, Z.M. and Zamani, S., 2015. A time-based approach to

automatic bug report assignment. Journal of Systems and Software, 102, pp.109-122.

99. Park, J.W., Lee, M.W., Kim, J., Hwang, S.W. and Kim, S., 2016. Cost-aware triage

ranking algorithms for bug reporting systems. Knowledge and Information Systems, 48,

pp.679-705.

100. Dedík, V. and Rossi, B., 2016, August. Automated bug triaging in an industrial

context. In 2016 42th Euromicro conference on software engineering and advanced

applications (SEAA) (pp. 363-367). IEEE.

101. Zhang, W., Wang, S. and Wang, Q., 2016. KSAP: An approach to bug report

assignment using KNN search and heterogeneous proximity. Information and software

technology, 70, pp.68-84.

102. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.

12, 2825–2830 (2011)

103. Prottasha, N.J., et al.: Transfer learning for sentiment analysis using bert based

supervised fine-tuning. Sensors 22(11), 4157 (2022)

104. Satu, M.S., et al.: Tclustvid: a novel machine learning classification model to

investigate topics and sentiment in covid-19 tweets. Knowledge-Based Systems, p.

107126 (2021)

105. Wolf, T., et al.: Huggingface’s transformers: State-of-the-art natural language

processing. arXiv preprint arXiv:1910.03771 (2019)

106. Podgorelec, V., Kokol, P., Stiglic, B. and Rozman, I., 2002. Decision trees: an

overview and their use in medicine. Journal of medical systems, 26, pp.445-463.

107. Costa, V.G. and Pedreira, C.E., 2023. Recent advances in decision trees: An updated

survey. Artificial Intelligence Review, 56(5), pp.4765-4800.

108. Blockeel, H., Devos, L., Frénay, B., Nanfack, G. and Nijssen, S., 2023. Decision

trees: from efficient prediction to responsible AI. Frontiers in Artificial Intelligence, 6.

109. El Bilali, A., Abdeslam, T., Ayoub, N., Lamane, H., Ezzaouini, M.A. and Elbeltagi,

A., 2023. An interpretable machine learning approach based on DNN, SVR, Extra Tree,

and XGBoost models for predicting daily pan evaporation. Journal of Environmental

Management, 327, p.116890.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

149

110. Ramakrishna, M.T., Venkatesan, V.K., Izonin, I., Havryliuk, M. and Bhat, C.R.,

2023. Homogeneous Adaboost Ensemble Machine Learning Algorithms with Reduced

Entropy on Balanced Data. Entropy, 25(2), p.245.

111. Lan, Y., Zhang, Y. and Lin, W., 2023. Diagnosis algorithms for indirect bridge health

monitoring via an optimized AdaBoost-linear SVM. Engineering Structures, 275,

p.115239.

112. Hao, L. and Huang, G., 2023. An improved AdaBoost algorithm for identification of

lung cancer based on electronic nose. Heliyon, 9(3).

113. Sharma, D. and Selwal, A., 2023. SFincBuster: Spoofed fingerprint buster via

incremental learning using leverage bagging classifier. Image and Vision

Computing, 135, p.104713.

114. Chandramouli, A., Hyma, V.R., Tanmayi, P.S., Santoshi, T.G. and Priyanka, B.,

2023. Diabetes prediction using Hybrid Bagging Classifier. Entertainment

Computing, 47, p.100593.

115. Janapareddy, D. and Yenduri, N.C., 2023. Credit Card Approval Prediction: A

comparative analysis between logistic regressionclassifier, random forest classifier,

support vectorclassifier with ensemble bagging classifier.

116. Bentéjac, C., Csörgő, A. and Martínez-Muñoz, G., 2021. A comparative analysis of

gradient boosting algorithms. Artificial Intelligence Review, 54, pp.1937-1967.

117. Dorogush, A.V., Ershov, V. and Gulin, A., 2018. CatBoost: gradient boosting with

categorical features support. arXiv preprint arXiv:1810.11363.

118. Khorshid, S.F. and Abdulazeez, A.M., 2021. Breast cancer diagnosis based on k-

nearest neighbors: a review. PalArch's Journal of Archaeology of

Egypt/Egyptology, 18(4), pp.1927-1951.

119. Boateng, E.Y., Otoo, J. and Abaye, D.A., 2020. Basic tenets of classification

algorithms K-nearest-neighbor, support vector machine, random forest and neural

network: a review. Journal of Data Analysis and Information Processing, 8(4), pp.341-

357.

120. Kumbure, M.M., Luukka, P. and Collan, M., 2020. A new fuzzy k-nearest neighbor

classifier based on the Bonferroni mean. Pattern Recognition Letters, 140, pp.172-178.

121. France, M.T., Ma, B., Gajer, P., Brown, S., Humphrys, M.S., Holm, J.B., Waetjen,

L.E., Brotman, R.M. and Ravel, J., 2020. VALENCIA: a nearest centroid classification

method for vaginal microbial communities based on composition. Microbiome, 8, pp.1-

15.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

150

122. Johri, S., Debnath, S., Mocherla, A., Singk, A., Prakash, A., Kim, J. and Kerenidis, I.,

2021. Nearest centroid classification on a trapped ion quantum computer. npj Quantum

Information, 7(1), p.122.

123. Artur, M., 2021. Review the performance of the Bernoulli Naïve Bayes Classifier in

Intrusion Detection Systems using Recursive Feature Elimination with Cross-validated

selection of the best number of features. Procedia computer science, 190, pp.564-570.

124. Singh, M., Bhatt, M.W., Bedi, H.S. and Mishra, U., 2020. WITHDRAWN:

Performance of bernoulli’s naive bayes classifier in the detection of fake news.

125. Hossain, E., Sharif, O. and Moshiul Hoque, M., 2021. Sentiment polarity detection on

bengali book reviews using multinomial naive bayes. In Progress in Advanced

Computing and Intelligent Engineering: Proceedings of ICACIE 2020 (pp. 281-292).

Singapore: Springer Singapore.

126. Pham, B.T., Phong, T.V., Nguyen, H.D., Qi, C., Al-Ansari, N., Amini, A., Ho, L.S.,

Tuyen, T.T., Yen, H.P.H., Ly, H.B. and Prakash, I., 2020. A comparative study of kernel

logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic

model tree for flash flood susceptibility mapping. Water, 12(1), p.239.

127. Farisi, A.A., Sibaroni, Y. and Al Faraby, S., 2019, March. Sentiment analysis on hotel

reviews using Multinomial Naïve Bayes classifier. In Journal of Physics: Conference

Series (Vol. 1192, No. 1, p. 012024). IOP Publishing.

128. Anagaw, A. and Chang, Y.L., 2019. A new complement naïve Bayesian approach for

biomedical data classification. Journal of Ambient Intelligence and Humanized

Computing, 10, pp.3889-3897.

129. Ali, L., Khan, S.U., Golilarz, N.A., Yakubu, I., Qasim, I., Noor, A. and Nour, R.,

2019. A feature-driven decision support system for heart failure prediction based on

statistical model and Gaussian naive bayes. Computational and Mathematical Methods in

Medicine, 2019.

130. Islam, R., Devnath, M.K., Samad, M.D. and Al Kadry, S.M.J., 2022. GGNB: Graph-

based Gaussian naive Bayes intrusion detection system for CAN bus. Vehicular

Communications, 33, p.100442.

131. Cataldi, L., Tiberi, L. and Costa, G., 2021. Estimation of MCS intensity for Italy from

high quality accelerometric data, using GMICEs and Gaussian Naïve Bayes

Classifiers. Bulletin of Earthquake Engineering, 19, pp.2325-2342.

132. Srimaneekarn, N., Hayter, A., Liu, W. and Tantipoj, C., 2022. Binary response

analysis using logistic regression in dentistry. International Journal of Dentistry, 2022.

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

151

133. Song, X., Liu, X., Liu, F. and Wang, C., 2021. Comparison of machine learning and

logistic regression models in predicting acute kidney injury: A systematic review and

meta-analysis. International journal of medical informatics, 151, p.104484.

134. Du, K.L., Leung, C.S., Mow, W.H. and Swamy, M.N.S., 2022. Perceptron: Learning,

generalization, model selection, fault tolerance, and role in the deep learning

era. Mathematics, 10(24), p.4730.

135. Desai, M. and Shah, M., 2021. An anatomization on breast cancer detection and

diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional

neural network (CNN). Clinical eHealth, 4, pp.1-11.

136. Heidari, A.A., Faris, H., Mirjalili, S., Aljarah, I. and Mafarja, M., 2020. Ant lion

optimizer: theory, literature review, and application in multi-layer perceptron neural

networks. Nature-Inspired Optimizers: Theories, Literature Reviews and Applications,

pp.23-46.

137. Khatun, A., Sakib, K.: A bug assignment approach combining expertise and recency

of both bug fixing and source commits. In: ENASE, pp. 351–358 (2018)

138. Khatun, A.: A team allocation technique ensuring bug assignment to existing and new

developers using their recency and expertise (2017)

Mahamudul Hasan
Typewritten text
Dhaka University Institutional Repository

