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Abstract

In practice, the count data may contain too many structures, which can cause the zero-

augmentation issue. If such data are analyzed using standard count models, the results

can be misleading. Traditionally, zero-inflated data are analyzed using a statistical model

assuming that data arise from a standard count as well as a degenerated populations. Since

zero-truncated count models provide similar results obtained from traditional zero-inflated

count models, in this study, we have proposed a marginalized statistical model based on mix-

ture of two-component Poisson distributions for analyzing zero-inflated longitudinal count

data (clustered and repeated measures data) to draw inference regarding the effects of the

covariates on marginal mean (marginalization over Poisson components) of the count re-

sponse.

To analyze the zero-inflated clustered data, our proposed marginalized Poisson-Poisson

(REMPois-Pois) mixture model takes into account the intra-cluster correlation by incorpo-

rating random effects into the models for marginal mean and component-1 mean in the exist-

ing marginalized Poisson-Poisson (MPois-Pois) mixture model suggested for cross-sectional

setup. The parameters of the REMPois-Pois model were estimated using maximum like-

lihood (ML) technique. The Gauss–Hermite quadrature (GHQ) technique was employed

to approximate the integrals appeared in the likelihood function. The performance of the

proposed marginalized model were assessed through extensive simulation studies. It was ob-

served that the proposed model performs well under different scenarios of simulation setups.

Finally, the proposed REMPois-Pois model was illustrated by using a nationally represen-
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tative data set on the number of antenatal care (ANC) visits extracted from Bangladesh

Demographic and Health Survey (BDHS), 2014.

To analyze zero-inflated longitudinal repeated measures count data, a marginalized mix-

ture of two-component longitudinal Poisson models (RMMPois-Pois model) have also been

proposed in this study. Since observations obtained from the same subject are likely to be

correlated in such instance, the regression parameters of the model were estimated by gener-

alized quasilikelihood (GQL) approach taking true correlation into account. To examine the

performance of the RMMPois-Pois model, we have conducted extensive simulation studies.

The results of the simulation studies indicate that the performance of the proposed model

is remarkable. To illustrate the RMMPois-Pois model, a real life repeated count data set

on the number of episodes for certain side effect acquired from a pharmaceutical company

was utilized.
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Chapter 1

Introduction

Poisson regression is considered as a foundation for modeling different types of count data

appeared in many field of applied researches. However, application of standard Poisson

model is based on an assumption of equality in the mean and variance of the values of

outcome variable.

In some situations, the observed count data consist of too many structures that may

lead to the problem of zero-augmentation as well as overdispersion (Benecha et al., 2017).

Analysis of such data using standard count models may provide misleading conclusions

(Frühwirth-Schnatter, 2006; Wedel and DeSarbo, 1995; Wang, 1994; Wang et al., 1996). To

overcome this problem, the mixture of Poisson distributions has been suggested instead of

one-component Poisson distribution (Wang et al., 1996) as the mixture model framework

provides a model for coping with local variation in the data (McLachlan and Peel, 2000). To

analyze heterogeneous data, Dempster et al. (1977) first proposed finite mixture distribu-

tions. The term ‘unobserved heterogeneity’ will be used in this dissertation to express the

type of heterogeneity in the data that cannot be controlled by imposing all the known co-

varitaes into the model. To address unobserved heterogeneity, Wang et al. (1996) had fitted

a mixture of Poisson regression models for analyzing count data with many structures.

Count data with excess zero arises in many areas such as engineering, biomedical, public
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health, demography, economics, and social science (Mullahy, 1986; Lambert, 1992; Böhning

et al., 1999; Shankar et al., 1997; Porter et al., 2012; Hu et al., 2011). Since the standard

Poisson regression model-based analysis of such count data yields misleading inference about

the parameters of interest due to the fact that the observed proportion of zero counts is much

higher than expected under the fitted Poisson model, Mullahy (1986) and Lambert (1992)

recommended using a different distribution for the zeros in a mixture model framework in

order to make valid inferences in modeling the zero-inflated count data.

The general framework of existing count models with excess zeros are based on mixture

of two subpopulations classified as ‘at-risk’ (or susceptible) and ‘not-at-risk’ groups. Using

a degenerate distribution with mass 1 for the zero outcome, the subpopulation designated

as ‘not-at-risk’ generates structural zeros. The subpopulation defined by ‘at-risk’ group

may provide non-negative counts following a count distribution or positive counts following

a zero truncated count distribution. Depending on the data generating process (dgp) for

counts in ‘at-risk’ group, hurdle or zero inflated count model is used in the literature where

zero heavy Poisson count data are assumed to be generated either following a Zero-Inflated

Poisson (ZIP) model (Lambert, 1992; Hu et al., 2011; Minami et al., 2007; Yip and Yau, 2005;

Rose et al., 2006; Gurmu and Trivedi, 1996; Shonkwiler and Shaw, 1996) or a Poisson Hurdle

(PH) model (Mullahy, 1986; Porter et al., 2012; Hu et al., 2011; Bilgic and Florkowski, 2007;

Rose et al., 2006; Pohlmeier, 1996; Welsh et al., 1996; Gurmu, 1997; Gurmu and Trivedi,

1996). Note that for ZIP model it is possible for susceptible classes to provide zero counts

as well, these are known as sampling zeros. An overview of zero-inflated count data models

including types of zeros (‘sampling zeros’ and ‘structural zeros’) is available in literatures

(Cameron and Trivedi, 2013; Hilbe, 2014) and the references therein.
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Traditionally, the inference procedure for the zero-inflated model is based on fitting

mean parameters of the Poisson distribution adjusting the excess zeros arising from the

binary dgp. The adjustment of excess zeros requires separate independent binary response

modelling approach (Lambert, 1992). Haque et al. (2022b) argued that since the mean of

the parent Poisson distribution is the parameter of interest in both the Poisson and Zero-

Truncated Poisson (ZTP) models, the ZTP model can be used as an alternative approach

for analyzing zero-inflated count data under the framework of the ZIP model.

The existing mechanism for generating zero-augmented counts is a two-component mix-

ture where one of the components forms a degenerate distribution at zero. A finite mixture

model (FMM) of this type with a degenerate component is sometimes referred to as a non-

standard mixture model (McLachlan and Peel, 2000). However, it may happen in practice

that count data observations in a sample arise from two or more populations, and thus the

resultant data for the whole population may contain zero-inflation and/or overdispersion

(Wang et al., 1996; Benecha et al., 2017). Although the problem of overdispersion can be

addressed by utilizing a ‘negative binomial’ model or zero-inflated negative binomial (ZINB)

model (Greene, 1994), it is difficult to handle overdispersion in a situation when it arises

due to a mixture of standard count distributions (Benecha et al., 2017). Moreover, a non-

standard mixture model setup based on a degenerate latent class may not be appropriate or

may provide a misleading conclusion in a setup when zero-augmentation arise from mixture

of latent standard count distributions (Benecha et al., 2017). To overcome this difficulty, a

mixture of standard count models can be applied to address different unobserved structures

in the populations (Wang et al., 1996; Benecha et al., 2017).

This study aimed to analyze zero-inflated data arising from mixture of two ‘at-risk’

3



populations by incorporating a mixture of two standard count models. To develop the

model, we assume that some counts originate from Poisson distributions with very low

means and some from another Poisson with larger means. Therefore, we limit the dgp

of zero heavy counts to a two-component Poisson mixture of a heterogeneous population

known as Poisson-Poisson mixture distribution.

For instance, consider the number of ANC visits as an outcome variable of interest.

The study population for analyzing the data regarding such an outcome variable consists

of all women in the reproductive age group who have completed at least one pregnancy in

their lifetime. In this situation, all women have a positive probability of providing a non-

negative count and hence there is no counts expected from a degenerate zero population in

the data. Data collected from this population may result in zero-inflated data. This may

be due to the study population consists of two susceptible classes one with very low means

and another with larger means. From the available literature (Haque et al., 2022b; Bekalo

and Kebede, 2021; Bhowmik et al., 2020; Afolabi and Agbaje, 2018), it can be found that

the researchers frequently use existing zero-augmented count models (ZIP, PH, ZTP, and

ZINB) to analyze such data. In such situations, they assumed some zeros were from the

degenerate population. In this instance, they assume some zeros were obtained from some

women other than those in the reproductive age group. This assumption is not appropriate

in general and resulted in a flaw in the study population. To overcome such flaw in the

study population, following Wang et al. (1996), the current study suggest to analyze such

data buy using a two-component mixture of Poisson distribution.

Because of latent class formulation, the interpretations of parameters in terms of inci-

dence rate ratio (IRR) under mixture model setup are often imprecise or misleading. To
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solve the difficulty, the significance of marginal inference (marginalization over the subpopu-

lations) under the framework of mixture models is well documented in many studies (Albert

et al., 2014; Böhning et al., 1999; Preisser et al., 2012; Long et al., 2014; Benecha et al.,

2017). The objective in such instances was to estimate the exposure effects on the entire

population. In mixture model setup, a marginal mean is defined by the overall mean ob-

tained by averaging the latent mean response across the distribution of the susceptibility

status, regardless of covariates. However, under the mixture model setup, it is not possible

to directly infer the marginal mean from the latent class inference of parameters (Albert

et al., 2014; Preisser et al., 2012; Benecha et al., 2017). Long et al. (2014), Albert et al.

(2014) and Preisser et al. (2012) made some efforts to overcome the difficulties by consider-

ing marginalized mixture modeling approach under existing non-standard mixture model for

zero-inflated count data in cross-sectional settings. Furthermore, Benecha et al. (2017) pro-

posed a marginalized mixture model for analyzing zero-inflated count data originated from

two ‘at-risk’ populations in cross-sectional settings in which the marginal parameters and

the nuisance parameters can be estimated by using the maximum likelihood (ML) method

of estimation. Since the aim of this study is to facilitate the interpretation of regression

parameters in terms of IRR, this study focuses inference procedure based on the marginal

mean of two-component Poisson mixture distribution.

The analysis of zero-inflated longitudinal count data using existing zero-inflated models

has recently drawn a lot of attention from researchers. In longitudinal data, observations

obtained from the same observation unit are likely to be correlated. One should take this

correlation into account in developing methods for such data. One can view the longitudinal

data as clustered data or repeated measures data. In clustered data, the sampling unit is a
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group of observation units, whereas in repeated measurements, the sampling unit is an ob-

servation unit where more than one observations are taken from the same observation units

at different occasions. Moreover, many studies in applied statistics utilize data that are not

perfectly longitudinal with reference to temporal order but can be treated as clustered. For

example, when intact groups are randomized to health interventions or naturally occurring

groups in the population are randomly sampled, this can be considered clustered data. It

is reasonable to expect that measurements on units within a cluster are more similar than

measurements on units in different clusters. The degree of clustering can be expressed in

terms of correlation among the measurement units within the same cluster (Fitzmaurice

et al., 2012). The distinctive feature of the observations within a cluster is that they exhibit

positive correlation.

Hall (2000) suggested a ZIP model modification for analyzing zero-augmented clustered

count data that includes random effects in the Poisson process to take intraclass correlation

into consideration. In order to account for excess zeros as well as over-dispersion in correlated

data, Yau et al. (2003) proposed a zero-inflated negative binomial (ZINB) regression model

with independent random effects in each process. As a two-part model, hurdle have also

been applied for clustered count data (Min and Agresti, 2005).

In some clinical contexts, as was previously noted, it is preferable to draw conclusions

from the marginal mean rather than the means of the two latent classes. Characterizing

marginal means and associated marginal effects of covariates is usually difficult when model

parameters are estimated under existing non-standard mixture modeling approach of zero-

inflation for clustered count data, especially when both portions of the model have random

effects (Su et al., 2015; Tom et al., 2016; Long et al., 2015). For taking care of this difficulty,
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the researchers have developed marginalized models in case of existing non-standard mixture

modeling approach of zero-inflation for clustered count data (Tabb et al., 2016; Long et al.,

2015; Kassahun et al., 2014; Lee et al., 2011). In the context of longitudinal semi-continuous

data, Farewell et al. (2017) have highlighted some of the difficulties associated with drawing

marginal inferences from two-part models. An excellent discussion of various zero-inflated

count models for longitudinal data and inference regarding their marginal means is available

in Farewell et al. (2017) and the references therein.

To analyze repeated measures zero-inflated count data, Hasan and Sneddon (2009) pro-

posed an observation driven ZIP models as an extension of the cross-sectional ZIP model

and Hall and Zhang (2004) proposed GEE based marginal (marginalization over the ob-

servation units) ZIP model. Also a comparative study for fitting observation driven ZIP

models and parameter driven ZIP models have been conducted by Hasan et al. (2016) if the

count data were collected repeatedly over time. The marginal inference (marginalization

over the subpopulations) from the non-standard mixture (ZIP) model had not studied yet to

analyze repeated measures zero-inflated count data. But we are restrained from developing

marginal models for such a mechanism of zero-inflation because we have already mentioned

that this mechanism is inappropriate when data are arising from ‘at-risk’ populations.

Although Benecha et al. (2017) proposed marginally-specified mean models for mix-

tures of two count distributions under a cross-sectional setup, the model still requires some

challenges for further extension in the analysis of zero-inflated longitudinal (clustered and

repeated measures) count data. Considering these challenges, an extension for these models

using two-component Poisson mixture is proposed in this study along with its inference

procedure.
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Following Benecha et al. (2017), we propose a marginalized Poisson-Poisson mixture

model in the current study to analyzing zero-inflated clustered count data and zero-inflated

repeated measures count data. Following McKenzie (1988), Sutradhar (2003) has gener-

ated repeated measures Poisson count data using observation-driven models by employing

some appropriate stationary AR(1), MA(1) and exchangeable autocorrelation structures.

To conduct extensive simulation studies for the dgp under the proposed zero-inflated re-

peated measures count model, two-component mixture of observation-driven Poisson model

(Sutradhar, 2003) has been used.

In order to propose marginalized models from mixture of ‘at-risk’ populations for zero-

inflated longitudinal count data, the specific objectives of this dissertation are

• to propose a marginalized Poisson-Poisson mixture model for analyzing

i) zero-inflated clustered count data

ii) zero-inflated repeated measures count data;

• to develop the inference process for the proposed models for clustered data and re-

peated measures data;

• to examine the performance of the proposed models by carrying out extensive simu-

lation studies.

• to analyze real data sets using the proposed models for clustered data and repeated

measures data.
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A comprehensive study of the cross-sectional marginalized Poisson-Poisson (MPois-Pois)

mixture model (Benecha et al., 2017) has been conducted in Chapter 2 with a view to ex-

tending it to the longitudinal setup. This chapter describes some fundamental mixture

modeling techniques for analyzing zero-inflated data, including reviews of the MZIP and

MPois-Pois models. Comparison of these model along with other zero-inflated count mod-

els has been conducted through extensive simulation studies. The MPois-Pois model has

been illustrated by utilizing a real data set in cross-sectional context. In Chapter 3, we have

developed the random effects marginalized Poisson-Poisson (REMPois-Pois) mixture model

for analyzing zero-inflated clustered count data. The method of handling the integration

with respect to the random effects while maximizing the likelihood function is described

and the performance of the proposed model are examined through extensive simulation

studies. At the end of Chapter 3, a nationally representative clustered data set extracted

from Bangladesh Demographic and Health Survey (BDHS), 2014 is used to illustrate the

proposed model. In Chapter 4, we have developed the repeated measures marginalized

Poisson-Poisson (RMMPois-Pois) mixture model (marginalization is considered over the

subpopulations) for analyzing zero-inflated repeated measures count data. The GQL esti-

mation method has been utilized for estimating the regression parameters of the proposed

model and correlation parameters have been estimated by method of moments. The per-

formance of the proposed model is examined through extensive simulation studies. A real

data set is used to illustrate the proposed model for zero-inflated repeated measures count

data. Chapter 5 concludes this study with overall findings and recommendations for future

research.
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Chapter 2

Marginalized Mixture Models: Cross-Sectional
Setup

The mixture modeling approach are frequently used in modeling zero-augmented count

data in the literature. The significance of inferences regarding the marginal mean under

the framework of FMM has been well demonstrated in several research (Albert et al., 2014;

Böhning et al., 1999; Preisser et al., 2012; Long et al., 2014). The objective of the researchers

in such instances was to estimate the exposure effects on the entire population mean, i.e.,

the marginalization of means over the subpopulations.

Zero-inflated (ZI) models have become popular in analysing data arising from many areas

of research such as biomedical, public health, engineering, ecology, demography, economics,

and social science over the past two decades. The existing ZI models such as ZIP and PH are

formulated using mixture model mechanism by considering an extra mass at the point zero.

Despite their increasing popularity, some researchers has been pointed out the shortcoming

of these models because of their latent class formulation where the mean response of the so-

called ‘at-risk’ or susceptible population and the susceptibility probability are both related

to covariates. The interpretations of parameters in terms of IRR are often imprecise or

misleading. Particularly, it fails to discriminate between inference for the class of ‘at-risk’

population and inference for the overall exposure effects. To overcome such difficulty, Long

et al. (2014) proposed a marginally specified mean model for analysing zero inflated count

data in the framework of ZIP model. Following Long et al. (2014), marginalized mixture
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models of two ‘at-risk’ classes have been proposed by Benecha et al. (2017).

In this chapter, we have considered a marginalized Poisson-Poisson mixture (MPois-Pois)

model for analyzing zero-augmented count data in cross-sectional settings. It is considered

as a two-component Poisson mixture model (standard mixture) developed for obtaining

marginal inference of the parameters. A comparison of MPois-Pois model has been made

with the existing count models by conducting extensive simulation studies. The existing

count models include Poisson model as a standard count model, negative binomial model

in the presence of over-dispersion, and the two components non-standard mixture using

a Poisson model along with its marginalized model in case of zero-augmentation. In this

instance, we will limit our comparison to the PH model in the hurdle model specification,

ZIP model in the ZI model specification.

We will explore the marginalized ZIP (MZIP) model and MPois-Pois model for analyzing

zero-inflated and/or over-dispersed count data in a cross-sectional setup with inferential

procedures. Finally, an attempt has been made to find out the potential determinants of

the number of ANC visits taken by women during pregnancy period by using a nationally

representative data extracted from Bangladesh Demographic and Health Survey (BDHS).

2.1 Marginalized Zero-Inflated Poisson Model

The ZI count model is considered as a non-standard two components mixture model. In ZI

model, the first component models the probability that zero count arises from ‘not-at-risk’

subpopulation i.e., zero follows a degenerated distribution. If the observation does not follow

a degenerated distribution at zero, the second component models the counts, including the
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‘at-risk’ zeros, arise from a standard count distribution. The pmf of ZI model is specified as

Pr[Yi = 0] = f1(0) +
[
1− f1(0)

]
f2(0)

Pr[Yi = s] =
[
1− f1(0)

]
f2(yi), s = 1, 2, . . . .

(2.1)

In equation Eq.(2.1), the mixing probability f1(0) is associated with the degenerated distri-

bution and f2(·) is the probability mass function (pmf) of the standard count distribution.

If counts for susceptible class arise following a Poisson distribution, the resulting model is

called Zero-Inflated Poisson (ZIP). In ZIP model, the response variables Yi, i = 1, ..., n are

independent; Yi = 0 from degenerated population with probability ψi and Yi ∼ Poisson(λi)

with probability (1− ψi). The ZIP model is then obtained from Eq.(2.1) as

Pr[Yi = 0] = ψi + (1− ψi)e−λi

Pr[Yi = s] =
(1− ψi)e−λiλsi

s!
, s = 1, 2, . . . .

(2.2)

The mean and standard deviation of ZIP random variable are obtained from Eq.(2.2) as

µZIP
i = (1− ψi)λi

σZIP
i =

√
µZIP
i +

( ψi
1− ψi

)
µZIP
i

2
.

Following Lambert (1992), covariates can be introduced in the ZIP model with the logit and

the log-link function as

logit
(
ψi
)

= log
( ψi

1− ψi

)
= z′iα,

log
(
λi
)

= x′iγ.

(2.3)

Note that if the ith subject is from ‘not-at-risk’ group, zi and α = (α1, α2, ..., αp1)
′ are p1×1

vector of covariates and parameters, respectively and if the ith subject is from susceptible

class, xi and γ = (γ1, γ2, ..., γp2)
′ are p2×1 vector of covariates and parameters, respectively.

It can be permissible to use same covariates for both classes (i.e., xi = zi) with p1 = p2 = p.
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Thus, the log-likelihood function of ZIP model may be of the form

l(α, γ) =
∑
yi=0

(
log
(
ex

′
iα + e− exp(x′

iγ)
))

+
∑
yi>0

(
yix
′
iγ − e

x′
iγ

)

−
n∑
i=1

(
log
(

1 + ex
′
iα
))
−
∑
yi>0

(
log(yi!)

)
.

(2.4)

The parameters α and γ of ZIP model in Eq.(2.3) have latent class interpretations; that is,

for one unit change in the kth element of xi, the odds of being in the degenerate population

can be expressed in terms of αk and the mean change in the population modeled by Poisson

distribution can be expressed in terms of γk.

To obtain the exposure effect on the overall population mean directly from the ZIP

model, let us consider µi ≡ E(Yi) is the marginal mean. The relationship between µi and

the parameters α and γ from the ZIP model is

µi = (1− ψi)λi =
ex
′
iγ

1 + ex
′
iα
. (2.5)

In Eq.(2.5), the overall population mean is a function of all covariates and parameters from

both model parts. Thus, for the kth covariate, the ratio of means for a one-unit increase in

xik is

µi(xik = a+ 1, x̃i = x̃i)

µi(xik = a, x̃i = x̃i)
= exp(γk)

1 + exp
(
aαk + x̃

′
iα̃
)

1 + exp
(

(a+ 1)αk + x̃
′
iα̃
) , (2.6)

where x̃i indicates all covariates except xik and α̃ is created by removing αk from α. Thus,

unless α̃ = 0, the IRR is not constant across various levels of the extraneous covariates

included in the ZIP model. Additionally, in order to make statements regarding the vari-

ability of any IRR estimates at fixed levels of the non-exposure covariates, formal statistical

techniques, such as the delta method or bootstrap resampling methods are required. How-

ever, sophisticated computational methods are required to use these techniques in many

applied analytics.
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To overcome the difficulties in interpreting the IRR given in Eq.(2.6), Long et al. (2014)

have suggested to model directly the overall mean µi to interpret the parameter in terms of

overall exposure effects in the ZIP model. The suggested model is known as marginalized

zero-inflated Poisson (MZIP) model. To model the marginal mean, MZIP model can be

specified as

logit
(
ψi
)

= x′iα,

log(µi) = x′iβ.

(2.7)

Then, µi = exp(x′iβ) and thus, the effect of covariates can be explained in terms of IRR.

Similar with ZIP model, it can be permissible to use same covariates for both the models for

simplicity as shown in Eq.(2.7). Under MZIP, the log-likelihood function can be obtained

by replacing λi in Eq.(2.4) in terms of β and α as

λi =
µi

1− ψi
= exp(δi). (2.8)

where δi = x′iβ+ log
[
1 + exp

(
x′iα

)]
. Then the log-likelihood function of MZIP model can

be expressed as

l(α, β) =−
n∑
i=1

(
log
(

1 + ex
′
iα
))

+
∑
yi=0

(
log
(
ex

′
iα + e− exp(x′

iβ)(1+e
x′iα)
))

+
∑
yi>0

(
−
(

1 + ex
′
iα
)
ex

′
iβ + yi log

(
(1 + ex

′
iα)
)

+ yix
′
iβ − log(yi!)

)
.

(2.9)

The quasi-Newton optimization method can be implemented to obtain the estimates of the

parameters of Eq.(2.9) (Long et al., 2014).
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2.2 Poisson-Poisson Mixture Model

The Poisson mixture model is a popular standard FMM in analysing heterogeneous and/or

over-dispersed count data, where the gth component of the FMM has a Poisson mass as

fg(yi;µg,i) =
e−µg,iµyig,i

yi!
, (2.10)

where µg,i for g = 1, ..., k is the mean of the ith response conditional on its membership on

the gth component of the mixture. The component means are then modeled as a function

of covariates through the link function as

log(µg,i) = x′g,iβg, (2.11)

where xg,i and βg are the pg×1 vector of covariates and parameters, respectively for the ith

subject. When a mixture distribution is physically identifiable and the mixing proportions

are known, subgroup analysis can be applied to the data. However, there are also many

situations where the components cannot be identified with externally existing groups since

the groups are treated as latent and it is apparently impossible to model the situation by a

standard probability model.

In order to model the counts from heterogeneous populations where the components

cannot be identified with externally existing groups, it is reasonable to assume that the

counts are generated from a mixture of finite number of latent components (Wang et al.,

1996; Benecha et al., 2017). Therefore in mixture model setup, linear function of separate

latent class regression parameters are specified for the mean of each component of the

mixture.

Suppose that in a mixture distribution there are two components (subpopulations). The
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count response, Yi for the set of covariates of ith subject may come from one of the two

components following a standard count distribution, i.e., Yi|G = g ∼ fg(yi;µg,i), g = 1, 2 for

i = 1, ..., n with Pr(G = 1) = π∗ and Pr(G = 2) = 1− π∗. Then, the marginal pmf of two

components mixture distribution (Wang et al., 1996) can be derived as

Pr(Yi = yi) = Pr(Yi = yi|G = 1)× Pr(G = 1) + Pr(Yi = yi|G = 2)× Pr(G = 2)

= π∗f1(yi;µ1,i) + (1− π∗)f2(yi;µ2,i).

(2.12)

The pmf of the Poisson-Poisson mixture distribution is then obtained from Eq.(2.10) and

Eq.(2.12) as follows

f(Yi = yi; π
∗, µ1,i, µ2,i) = π∗

e−µ1,iµyi1,i
yi!

+ (1− π∗)
e−µ2,iµyi2,i

yi!
. (2.13)

To study the properties of the mixture distribution it is convenient to express Eq.(2.13) in

a hierarchy as follows

Yi|di ∼ Pois
(
diµ1,i + [1− di]µ2,i

)
, di = 0, 1, (2.14)

where di is the realization of Bernoulli random variable Di with P [Di = 1] = π∗. Therefore

the conditional mean and variance are as follows

E
[
Yi|di

]
= diµ1,i + (1− di)µ2,i = Var

[
Yi|di

]
.

Then the marginal mean and variance of the Poisson-Poisson mixture distribution are re-
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spectively computed as

E(Yi) = E
[
E[Yi|Di]

]
= E

[
Diµ1,i + (1−Di)µ2,i

]
= π∗µ1,i + (1− π∗)µ2,i = µi, (2.15)

and

Var(Yi) = E
[
Var(Yi|Di)

]
+ Var

[
E[Yi|Di]

]
= E

[
Diµ1,i + (1−Di)µ2,i

]
+ Var

[
Diµ1,i + (1−Di)µ2,i

]
=
[
π∗µ1,i + (1− π∗)µ2,i

]
+
[
µ2
1,iVar(Di) + µ2

2,iVar(1−Di) + 2µ1,iµ2,iCov(Di, 1−Di)
]

= µi +
[
µ2
1,iπ

∗(1− π∗) + µ2
2,i(1− π∗)π∗ + 2µ1,iµ2,i

(
− π∗(1− π∗)

)]
= µi + π∗(1− π∗)(µ2,i − µ1,i)

2. (2.16)

Thus for a Poisson-Poisson mixture distribution, Var(Yi) > E(Yi) unless µ1,i = µ2,i. It

implies that the Poisson-Poisson mixture distribution can be used for modeling overdispersed

count data. In Poisson-Poisson mixture regression model, the latent class means µ1,i and

µ2,i can be modeled following Eq.(2.11) as

log(µ1,i) = x′iα,

log(µ2,i) = x′iγ,

logit(π∗) = τ,

(2.17)

where α and γ are p × 1 vector of and parameters corresponding to component-1 and

component-2, respectively, and τ is the logit transformation of the mixing proportion (-

∞ < τ < ∞). Note that in both latent components, same set of covariates, xi for the ith

subject is used for simplicity. The parameters of models in Eq.(2.17) can be estimated by

applying EM algorithm (Dempster et al., 1977; Wang et al., 1996; Benecha et al., 2017;

McLachlan and Peel, 2000).
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2.3 Marginalized Poisson-Poisson Mixture Model

The interpretations of parameters in terms of incidence rate ratio (IRR) under Poisson-

Poisson mixture model are often imprecise or misleading because of their latent class for-

mulation. To overcome this problem, it is preferable to draw conclusions from the marginal

mean rather than the means of the two latent classes. In order to develop a model for

marginal mean of Poisson-Poisson mixture distribution, Benecha et al. (2017) suggested to

express component-2 mean, using Eq.(2.15) as

µ2,i =
µi − π∗µ1,i

1− π∗
. (2.18)

Then using Eq.(2.18) the variance of Poisson-Poisson mixture distribution, given in Eq.(2.16),

can be expressed as

Var(Yi) = µi +
[ π∗

1− π∗
]
(µi − µ1,i)

2. (2.19)

It can be observed that the marginal mean µi defined in Eq.(2.15) under regression

models for latent class means µ1,i and µ2,i given in Eq.(2.17) generally depends upon a

complicated function of the regression parameters . Consequently, the inference regarding

marginal means is hardly possible from the FMM setup. Therefore, a new marginalized

model is required to draw inference regarding the effects of covariates on µi directly. As

suggested by Benecha et al. (2017), the marginalized Poisson-Poisson (MPois-Pois) distribu-

tion for the random variable Yi can be obtained from Eq.(2.13) using Eq.(2.18). Therefore,

the pmf of MPois-Pois random variable becomes

f(Yi = yi|π∗, µi, µ1,i) = π∗
e−µ1,iµ1,i

yi

yi!
+ (1− π∗)

e
−
µi − πµ1,i

1− π∗
(µi − π∗µ1,i

1− π∗
)yi

yi!
. (2.20)
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Under regression setup, the models for Eq.(2.20) can be written as (Benecha et al., 2017)

log(µi) = x′iβ,

log(µ1,i) = x′iα,

logit(π∗) = τ,

(2.21)

where xi is the set of covariates of order p×1 used for ith subject in the log linear models of

Eq.(2.21); also β and α both are the p× 1 vectors of parameters corresponding to marginal

mean and component-1 mean, respectively.

The IRR for the kth covariate in a MPois-Pois model is the ratio of means for a one-unit

increase in xik, which is obtained as follows

IRRk =
µi(xik = a+ 1, x̃i)

µi(xik = a, x̃i)
= exp(βk), (2.22)

where x̃i indicates all covariates except xik. Although, the primary interest is to estimate

the parameters (β) of the marginal mean (µi) of regression model as in Eq.(2.21), the

estimate of nuisance parameters α and τ are required to facilitate the maximum likelihood

estimation of β.

2.3.1 Likelihood Function

In order to estimate the parameters τ,β and α of MPois-Pois model under maximum

likelihood framework, it is required to construct the likelihood function. Let us consider

θ = (τ,β′,α′)′ for simplicity. Suppose that there are n observations y1, · · · , yn which are

realization of the corresponding n independent and identically distributed (iid) random

variables Y1, · · · , Yn having probability mass function (pmf) as in Eq.(2.20). Then the
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likelihood function of MPois-Pois model is as follows

L(θ|y) =
n∏
i=1

f(Yi = yi|θ)

=
n∏
i=1

[
Ai +Bi × Ci

]
, (2.23)

where

Ai =

(
1

1 + e−τ

)
e− exp(x′

iα)
(
ex

′
iα
)yi

yi!
,

Bi =

(
1

1 + eτ

)exp

(
− (1 + eτ )

(
ex

′
iβ −

(
1

1+e−τ

)
ex

′
iα
))

yi!
,

Ci =

(
(1 + eτ )

(
ex

′
iβ −

( 1

1 + e−τ
)
ex

′
iα
))yi

.

The likelihood function can also be expressed as

L(θ|y) =
n∏
i=1

1

(1 + eτ )yi!

{
eτ exp(−ex′

iα)ex
′
iαyi + e−ηi(θ)ηi(θ)yi

}
, (2.24)

where ηi(θ) = ex
′
iβ(1 + eτ ) − eτex′

iα. Therefore, the log-likelihood function of MPois-Pois

model can be obtained as

l(θ) =
n∑
i=1

[
− log(1 + eτ )− log(yi!) + log

{
eτ−e

x′iα+x′
iαyi + e−ηi(θ)ηi(θ)yi

}]
. (2.25)

2.3.2 Score Function

The score function of MPois-Pois model can be defined as

U(θ) =

[
∂l(θ)

∂τ
,
∂l(θ)

∂α′
,
∂l(θ)

∂β′

]′
=

[
U1, U

′
2, U

′
3

]′
.

In order to find the elements of the score function, it would be easier if the following

derivatives could be computed first,

∂ηi(θ)

∂τ
=eτ

(
ex

′
iβ − ex′

iα
)
;
∂ηi(θ)

∂α
= −ex′

iα+τxi;
∂ηi(θ)

∂β
= (1 + eτ )ex

′
iβxi.
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Using these, we can compute the required derivatives for score function as

U1 =
n∑
i=1

[
1− eτ

1 + eτ
+
eτ
(
ex

′
iβ − ex′

iα
)[
yi − ηi(θ)

]
e−ηi(θ)ηi(θ)yi−1 − e−ηi(θ)ηi(θ)yi

eτ−e
x′iα+x′

iαyi + e−ηi(θ)ηi(θ)yi

]
,

U2 =
n∑
i=1

[(
yi − ex

′
iα
)
eτ−e

x′iα+x′
iαyi − e−ηi(θ)ηi(θ)yi−1

[
yi − ηi(θ)

]
ex

′
iα+τ

eτ−e
x′iα+x′

iαyi + e−ηi(θ)ηi(θ)yi

]
xi,

U3 =
n∑
i=1

[
e−ηi(θ)ηi(θ)yi−1

[
yi − ηi(θ)

]
(1 + eτ )ex

′
iβ

eτ−e
x′iα+x′

iαyi + e−ηi(θ)ηi(θ)yi

]
xi.

Then the maximum likelihood estimating equations for θ can be formed as

U(θ) = 0(2p+1)×1. (2.26)

The solution of Eq.(2.26) can be obtained by Newton’s method. At the rth step, Newton’s

method updates the values of the parameters as

θ(r) = θ(r−1) +
(
I(θ(r−1))

)−1
U(θ(r−1)), (2.27)

for r = 1, 2, · · · until convergence. In Eq.(2.27), I(·) is a (2p + 1) × (2p + 1) matrix of

observed information obtained from negative of Hessian. The Hessian, H(·), is a matrix

of second partial derivative of the objective function l(θ), which is described in Appendix

A.1.

With carefully chosen starting values, the MLE of the parameters (θ̂) are the solution

of Eq.(2.26) and can be obtained by the use of quasi-Newton optimization method or the

Newton’s method. The quasi-Newton optimization can be implemented by SAS ‘nlmixed’

or R ‘optim’ function. Starting values for τ and α can be obtained by fitting the Poisson-

Poisson mixture model (Benecha et al., 2017) from Eq.(2.17) by applying the EM algorithm

(Dempster et al., 1977; Leisch, 2004). The EM algorithm for estimating parameters of

Poisson-Poisson mixture regression model of Eq.(2.17) is given in Appendix A.2. Also, the

initial values of β are the fitted values of the marginal parameters for MZIP model from

Eq.(2.7) or the fitted values of standard Poisson regression model.
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Let I ll(θ), l = 1, 2, . . . , (2p + 1) be the (l, l)th element of the inverse of information

matrix. Then the standard error of the lth component of the estimator of the parameter

vector θ is given by

se(θ̂l) =
√
I ll(θ). (2.28)

For lth parameter, l = 1, 2, . . . , (2p + 1), the asymptotic behavior of the estimator can be

expressed as

√
n
(
θ̂l − θl

)
∼ N

(
0, se(θ̂l)

2)
.

2.4 Simulation Study

Extensive simulation studies have been carried out with varying sample sizes and mixing

probabilities to investigate the fitting performance of MPois-Pois model. Other count models

such as MZIP, ZIP, PH, Poisson and negative binomial models along with the MPois-Pois

model have also been fitted in order to make comparison among the models in cross-sectional

setup. The simulation studies were conducted in the regression setup for MPois-Pois data

generating process (dgp). Note that, the data were generated using a two components

Poisson mixture model using varying mixing probabilities such as π∗ = 0.50, 0.70, 0.90 and

we were interested in the marginal means. It is assumed that both the Poisson models were

influenced by the same set of known covariates xi = (x0i, x1i, x2i, ..., x(p−1)i)
′ with x0i = 1

for the ith response. In order to generate zero-inflated count data, the parameters were

chosen in such a way that 0 < µ1,i < 0.50 and large value of µ2,i can be observed. To obtain

marginal inference from Poisson-Poisson mixture distribution, the zero-inflated data for a

sample of size n have been generated by using the following steps.
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1. The covariates (x1i, x2i) were generated from unif(0,1), Bernoulli(0.40), respectively.

2. Suitable values of regression parameters β = (β0, β1, β2)
′ were used in Eq.(2.21) to

compute the marginal mean µi, i = 1, ..., n for zero-inflated data. Note that β =

(0.20, 0.80, 0.80)′, β = (0.20, 0.70, 0.50)′, β = (0.15, 0.15, 0.15)′ were used for π∗ =

0.50, 0.70, 0.90, respectively.

3. Binary observations d1, ..., dn were generated using D ∼Bernoulli(π∗).

4. If di = 1, suitable values of regression parameters α = (α0, α1, α2)
′ were used in

Eq.(2.21) to compute the component-1 means (µ1,i) for generating the observations

yi ∼ Pois(µ1,i). Note that α = (−1.00, 0.20, 0.10)′ were used for each of π∗ =

0.50, 0.70, 0.90. If µ1,i ≥ 0.50 was observed in this process, a set of values xl =

(x0l, x1l, x2l)
′ for which µ1,l < 0.50 had been observed was replaced in place of the set

of values xi = (x0i, x1i, x2i)
′.

5. If di = 0, the relationship µ2,i =
µi − πµ1,i

1− π
from Eq.(2.18) was used to compute the

component-2 means (µ2,i) for generating yi ∼ Pois(µ2,i).

Using the generated data, the regression parameters of MPois-Pois model were estimated by

employing maximum likelihood (ML) approach. Other count models viz. MZIP, negative

binomial (NB), Poisson (Pois), ZIP, PH models have also been fitted to the generated data

by using the same (ML) approach.

The simulation was repeated 2000 times for each setup. In order to investigate the per-

formance of ML estimates, we have computed the biases, standard errors and the coverage

probability (Cov.Pr.) by using these repetitions. The biases were computed from the differ-
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ences between simulated means (SM) and the true values for each of the parameters. Two

types of standard errors such as estimated standard errors (ESE) and simulated standard

errors (SSE) were also computed to investigate the properties of the estimators. The SM,

ESE and SSE for a estimator θ̂ were defined respectively as

θ̂ =
1

r

r∑
l=1

θ̂l;ESEθ̂ =
1

r

r∑
l=1

sel(θ̂); and SSEθ̂ =

√√√√ 1

r − 1

r∑
l=1

(θ̂l − ˆ̄θ)2, (2.29)

where r represents the number of repetitions in the simulation and se(θ̂) was computed

using Eq. (2.28). The proportion of convergences (Conv.Prop.) in fitting the MPois-Pois

model were computed for all the setups. The results obtained from the fitted MPois-Pois

model for π∗ =0.90, 0.70 and 0.50 are shown in Table 2.1. Also, the MZIP, ZIP, PH, NB,

and Poisson models have been fitted for making comparison with MPois-Pois model. The

results obtained from these models for π∗ =0.90, and 0.50 are shown in Table 2.2.

From Table 2.1, it is clear that the estimates of marginal parameters had minimal

amount of biases for all the settings except for sample size 100 with π∗ = 0.90. These

biases decrease with increasing the sample size. For example, the amount of biases of

(β0, β1, β2) were (-0.023,0.026,-0.308), (-0.027,0.020,-0.035), (-0.018,0.004,-0.001) for π∗ =

0.90, 0.70, 0.50, respectively when n = 100; (-0.011,0.004,0.005), (-0.009,0.006,0.001), (-

0.001,-0.004,-0.003) for π∗ = 0.90, 0.70, 0.50, respectively when n = 500; and (-0.003,0.000,-

0.001), (-0.002,0.002,0.000), (0.001,-0.002,-0.002) for π∗ = 0.90, 0.70, 0.50, respectively when

n = 2000.

The largest standard errors of all the estimated parameters were found for π∗ = 0.90

when sample size 100. The standard errors decrease with increasing the sample size. Also,

for a given sample size, the standard errors of all the estimated parameters for π∗ = 0.50
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are smaller than for π∗ = 0.90. The smallest standard errors of all the estimated parameters

were found for π∗ = 0.50 when sample size 2000.

The coverage probabilities of the confidence interval constructed from the estimates of

the marginal models were found to be approximately equal to the nominal level of confidence

in all the setups.
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Table 2.1: Simulated mean (SM), simulated mean of mixing proportion (SMP), amount of bias
(Bias), estimated and simulated standard error (ESE, SSE) and coverage probability (Cov.Pr.)
for estimating Marginal Parameters (β); Component-1 Parameters (α) and τ under MPois-Pois
model for MPois-Pois dgp

π∗ n Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

0.90 100 0.949 β0 = 0.15 0.127 -0.023 0.318 0.367 93.2
β1 = 0.15 0.176 0.026 0.393 0.493 92.9
β2 = 0.15 -0.158 -0.308 0.374 0.683 79.1
α0 = −1.0 -1.087 0.897 -0.087 0.397 0.411 95.7
α1 = 0.20 0.256 0.056 0.621 0.650 94.7
α2 = 0.10 0.032 -0.068 0.628 0.603 97.6
τ = 2.1972 2.162 -0.035 0.353 0.339 94.9

500 1.000 β0 = 0.15 0.139 -0.011 0.133 0.136 94.7
β1 = 0.15 0.154 0.004 0.174 0.174 95.2
β2 = 0.15 0.155 0.005 0.117 0.117 95.6
α0 = −1.0 -1.014 0.901 -0.014 0.171 0.168 95.5
α1 = 0.20 0.201 0.001 0.300 0.296 95.4
α2 = 0.10 0.096 -0.004 0.208 0.209 95.5
τ = 2.1972 2.204 0.007 0.153 0.156 94.9

1000 1.000 β0 = 0.15 0.146 -0.004 0.096 0.097 94.6
β1 = 0.15 0.154 0.004 0.123 0.124 95.4
β2 = 0.15 0.151 0.001 0.077 0.076 95.0
α0 = −1.0 -1.009 0.900 -0.009 0.126 0.128 95.1
α1 = 0.20 0.206 0.006 0.215 0.220 94.6
α2 = 0.10 0.098 -0.002 0.138 0.137 95.3
τ = 2.1972 2.199 0.002 0.107 0.108 95.3

2000 1.000 β0 = 0.15 0.147 -0.003 0.067 0.069 95.0
β1 = 0.15 0.150 0.000 0.085 0.086 94.5
β2 = 0.15 0.149 -0.001 0.058 0.058 95.2
α0 = −1.0 -1.003 0.900 -0.003 0.089 0.090 94.5
α1 = 0.20 0.199 -0.001 0.148 0.148 95.4
α2 = 0.10 0.098 -0.002 0.104 0.105 93.9
τ = 2.1972 2.200 0.003 0.076 0.076 94.4

0.70 100 0.948 β0 = 0.20 0.173 -0.027 0.250 0.262 94.1
β1 = 0.70 0.720 0.020 0.368 0.397 93.5
β2 = 0.50 0.465 -0.035 0.307 0.380 92.5
α0 = −1.0 -1.099 0.699 -0.099 0.609 0.701 94.5
α1 = 0.20 0.222 0.022 0.895 1.003 94.7
α2 = 0.10 0.048 -0.052 0.825 0.805 97.3
τ = 0.8473 0.841 -0.006 0.266 0.265 95.4

500 1.000 β0 = 0.20 0.191 -0.009 0.110 0.114 94.0
β1 = 0.70 0.706 0.006 0.177 0.181 94.3
β2 = 0.50 0.501 0.001 0.111 0.110 96.0
α0 = −1.0 -1.027 0.700 -0.027 0.250 0.247 95.7
α1 = 0.20 0.219 0.019 0.408 0.399 95.6
α2 = 0.10 0.097 -0.003 0.274 0.271 96.0
τ = 0.8473 0.847 0.000 0.117 0.116 94.9

1000 1.000 β0 = 0.20 0.196 -0.004 0.080 0.079 94.8
β1 = 0.70 0.701 0.001 0.124 0.123 94.8
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Continued...Table 2.1

π∗ n Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

β2 = 0.50 0.500 0.000 0.075 0.074 95.5
α0 = −1.0 -1.012 0.700 -0.012 0.181 0.183 95.0
α1 = 0.20 0.205 0.005 0.289 0.294 94.9
α2 = 0.10 0.098 -0.002 0.182 0.181 94.9
τ = 0.8473 0.848 0.000 0.081 0.082 95.0

2000 1.000 β0 = 0.20 0.198 -0.002 0.057 0.056 94.6
β1 = 0.70 0.702 0.002 0.087 0.087 94.9
β2 = 0.50 0.500 -0.000 0.057 0.058 94.6
α0 = −1.0 -1.009 0.700 -0.009 0.128 0.131 94.3
α1 = 0.20 0.210 0.010 0.200 0.208 94.0
α2 = 0.10 0.100 0.000 0.137 0.137 95.9
τ = 0.8473 0.848 0.001 0.057 0.060 94.3

0.50 100 0.850 β0 = 0.20 0.182 -0.018 0.225 0.243 92.7
β1 = 0.80 0.804 0.004 0.346 0.368 93.2
β2 = 0.80 0.799 -0.001 0.269 0.305 92.8
α0 = −1.0 -1.655 0.505 -0.655 5.493 5.494 91.4
α1 = 0.20 0.649 0.449 1.914 5.910 94.1
α2 = 0.10 0.532 0.432 5.527 3.699 95.6
τ = 0.0 0.019 0.019 0.323 0.325 93.9

500 1.000 β0 = 0.20 0.199 -0.001 0.100 0.101 94.8
β1 = 0.80 0.796 -0.004 0.169 0.170 94.4
β2 = 0.80 0.797 -0.003 0.105 0.104 95.5
α0 = −1.0 -1.027 0.500 -0.027 0.375 0.396 94.6
α1 = 0.20 0.196 -0.004 0.590 0.608 95.2
α2 = 0.10 0.081 -0.019 0.382 0.377 96.4
τ = 0.0 0.000 0.000 0.141 0.143 94.7

1000 1.000 β0 = 0.20 0.199 -0.001 0.073 0.074 94.8
β1 = 0.80 0.799 -0.001 0.119 0.120 95.0
β2 = 0.80 0.799 -0.001 0.071 0.073 93.8
α0 = −1.0 -1.009 0.500 -0.009 0.265 0.271 94.8
α1 = 0.20 0.190 -0.010 0.409 0.414 94.9
α2 = 0.10 0.094 -0.006 0.249 0.258 94.5
τ = 0.0 -0.002 -0.002 0.095 0.094 95.3

2000 1.000 β0 = 0.20 0.201 0.001 0.052 0.052 94.8
β1 = 0.80 0.798 -0.002 0.084 0.083 95.2
β2 = 0.80 0.798 -0.002 0.054 0.054 95.3
α0 = −1.0 -1.005 0.500 -0.005 0.185 0.186 95.1
α1 = 0.20 0.197 -0.003 0.281 0.286 94.5
α2 = 0.10 0.100 0.000 0.186 0.190 95.3
τ = 0.0 0.002 0.002 0.068 0.069 95.1
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Table 2.2: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard error
(ESE, SSE) and coverage probability (Cov.Pr.) for estimating Marginal Parameters: (β) under
MZIP, NB, Pois, ZIP and PH models along with Component-1 Parameters (α) for MZIP model
for MPois-Pois dgp

π∗ Model n Params SM Bias ESE SSE Cov.Pr.

0.90 MZIP 100 β0 = 0.15 0.082 -0.068 0.329 0.509 80.5
β1 = 0.15 0.173 0.023 0.519 0.797 80.2
β2 = 0.15 -0.014 -0.164 0.478 0.843 73.3
α0 = −1.0 0.269 1.269 0.705 2.397 20.1
α1 = 0.20 -0.158 -0.358 0.867 2.483 89.3
α2 = 0.10 -1.673 -1.773 32.581 3.927 96.6

500 β0 = 0.15 0.132 -0.018 0.147 0.218 80.5
β1 = 0.15 0.156 0.006 0.258 0.378 82.3
β2 = 0.15 0.144 -0.006 0.179 0.279 79.5
α0 = −1.0 0.405 1.405 0.211 0.221 0.0
α1 = 0.20 -0.198 -0.398 0.379 0.395 80.1
α2 = 0.10 -0.091 -0.191 0.265 0.281 88.2

1000 β0 = 0.15 0.140 -0.010 0.109 0.166 80.3
β1 = 0.15 0.156 0.006 0.186 0.282 79.4
β2 = 0.15 0.152 0.002 0.119 0.183 79.9
α0 = −1.0 0.414 1.414 0.156 0.164 0.0
α1 = 0.20 -0.210 -0.410 0.271 0.289 66.3
α2 = 0.10 -0.084 -0.184 0.174 0.179 80.5

2000 β0 = 0.15 0.145 -0.005 0.076 0.114 80.3
β1 = 0.15 0.150 0.000 0.128 0.194 79.8
β2 = 0.15 0.148 -0.002 0.090 0.143 79.6
α0 = −1.0 0.410 1.410 0.109 0.114 0.0
α1 = 0.20 -0.197 -0.397 0.186 0.192 43.4
α2 = 0.10 -0.081 -0.181 0.130 0.135 72.1

NB 100 β0 = 0.15 0.083 -0.067 0.440 0.521 91.8
β1 = 0.15 0.172 0.022 0.709 0.820 90.7
β2 = 0.15 -0.013 -0.163 0.668 0.848 88.3

500 β0 = 0.15 0.131 -0.019 0.203 0.219 93.2
β1 = 0.15 0.157 0.007 0.364 0.381 93.8
β2 = 0.15 0.144 -0.006 0.254 0.279 92.9

1000 β0 = 0.15 0.140 -0.010 0.151 0.166 92.6
β1 = 0.15 0.156 0.006 0.263 0.282 93.5
β2 = 0.15 0.152 0.002 0.169 0.183 92.5

2000 β0 = 0.15 0.145 -0.005 0.106 0.114 93.8
β1 = 0.15 0.151 0.001 0.182 0.195 93.1
β2 = 0.15 0.148 -0.002 0.127 0.143 91.1

Pois 100 β0 = 0.15 0.084 -0.066 0.202 0.507 57.9
β1 = 0.15 0.173 0.023 0.321 0.791 58.8
β2 = 0.15 -0.016 -0.166 0.322 0.843 51.6

500 β0 = 0.15 0.132 -0.018 0.089 0.218 58.1
β1 = 0.15 0.156 0.006 0.157 0.378 58.6
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Continued...Table 2.2

π∗ Model n Params SM Bias ESE SSE Cov.Pr.

β2 = 0.15 0.144 -0.006 0.108 0.278 57.5

1000 β0 = 0.15 0.140 -0.010 0.066 0.166 56.2
β1 = 0.15 0.156 0.006 0.113 0.281 57.5
β2 = 0.15 0.152 0.002 0.071 0.183 56.3

2000 β0 = 0.15 0.145 -0.005 0.046 0.114 56.3
β1 = 0.15 0.151 0.001 0.078 0.194 56.9
β2 = 0.15 0.148 -0.002 0.054 0.143 53.5

ZIP 100 β0 = 0.15 0.996 0.846 0.233 0.570 20.8
β1 = 0.15 0.042 -0.108 0.369 0.882 57.8
β2 = 0.15 -0.235 -0.385 0.385 1.086 55.0
α0 = −1.0 0.360 1.360 0.515 0.586 20.8
α1 = 0.20 -0.221 -0.421 0.830 0.960 91.3
α2 = 0.10 -1.572 -1.672 16.539 3.273 97.7

500 β0 = 0.15 1.050 0.900 0.098 0.225 0.7
β1 = 0.15 0.042 -0.108 0.173 0.392 60.5
β2 = 0.15 0.095 -0.055 0.118 0.289 58.3
α0 = −1.0 0.405 1.405 0.211 0.219 0.0
α1 = 0.20 -0.198 -0.398 0.378 0.392 80.4
α2 = 0.10 -0.091 -0.191 0.265 0.280 88.3

1000 β0 = 0.15 1.062 0.912 0.072 0.170 0.0
β1 = 0.15 0.036 -0.114 0.123 0.287 57.0
β2 = 0.15 0.105 -0.045 0.077 0.183 58.5
α0 = −1.0 0.414 1.414 0.156 0.162 0.0
α1 = 0.20 -0.209 -0.409 0.271 0.286 66.5
α2 = 0.10 -0.083 -0.183 0.173 0.177 80.7

2000 β0 = 0.15 1.064 0.914 0.051 0.113 0.0
β1 = 0.15 0.037 -0.113 0.085 0.193 54.0
β2 = 0.15 0.102 -0.048 0.058 0.142 55.8
α0 = −1.0 0.410 1.410 0.109 0.114 0.0
α1 = 0.20 -0.198 -0.398 0.186 0.191 43.4
α2 = 0.10 -0.081 -0.181 0.130 0.135 71.9

PH 100 β0 = 0.15 0.994 0.844 0.235 0.581 20.5
β1 = 0.15 0.044 -0.106 0.372 0.895 58.2
β2 = 0.15 -1.114 -1.264 10.632 3.367 65.4
α0 = −1.0 -0.544 0.456 0.445 0.451 80.3
α1 = 0.20 0.247 0.047 0.716 0.728 95.7
α2 = 0.10 0.125 0.025 0.670 0.660 97.2

500 β0 = 0.15 1.050 0.900 0.098 0.224 0.7
β1 = 0.15 0.043 -0.107 0.173 0.392 60.7
β2 = 0.15 0.095 -0.055 0.118 0.289 58.4
α0 = −1.0 -0.510 0.490 0.200 0.197 31.0
α1 = 0.20 0.202 0.002 0.358 0.351 96.1
α2 = 0.10 0.102 0.002 0.251 0.252 94.9

1000 β0 = 0.15 1.062 0.912 0.072 0.170 0.0
β1 = 0.15 0.036 -0.114 0.123 0.287 57.0
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Continued...Table 2.2

π∗ Model n Params SM Bias ESE SSE Cov.Pr.

β2 = 0.15 0.105 -0.045 0.077 0.183 58.3
α0 = −1.0 -0.511 0.489 0.148 0.148 9.5
α1 = 0.20 0.211 0.011 0.258 0.260 94.8
α2 = 0.10 0.104 0.004 0.166 0.164 94.9

2000 β0 = 0.15 1.064 0.914 0.051 0.113 0.0
β1 = 0.15 0.037 -0.113 0.085 0.193 53.9
β2 = 0.15 0.102 -0.048 0.058 0.142 55.8
α0 = −1.0 -0.505 0.495 0.104 0.105 0.2
α1 = 0.20 0.200 0.000 0.178 0.176 95.6
α2 = 0.10 0.102 0.002 0.125 0.126 94.8

0.50 MZIP 100 β0 = 0.20 0.185 -0.015 0.223 0.249 91.3
β1 = 0.80 0.805 0.005 0.345 0.390 90.9
β2 = 0.80 0.748 -0.052 0.298 0.351 91.2
α0 = −1.0 -1.054 -0.054 0.711 1.000 93.9
α1 = 0.20 0.235 0.035 1.024 1.288 95.0
α2 = 0.10 0.009 -0.091 14.871 1.668 98.4

500 β0 = 0.20 0.202 0.002 0.100 0.107 93.2
β1 = 0.80 0.791 -0.009 0.173 0.186 92.8
β2 = 0.80 0.790 -0.010 0.114 0.128 91.6
α0 = −1.0 -0.944 0.056 0.278 0.289 92.5
α1 = 0.20 0.159 -0.041 0.458 0.462 94.6
α2 = 0.10 0.160 0.060 0.295 0.291 95.3

1000 β0 = 0.20 0.201 0.001 0.074 0.080 92.9

β1 = 0.80 0.796 -0.004 0.124 0.136 92.5
β2 = 0.80 0.797 -0.003 0.076 0.088 91.2
α0 = −1.0 -0.925 0.075 0.200 0.206 92.1
α1 = 0.20 0.132 -0.068 0.323 0.327 94.6
α2 = 0.10 0.144 0.044 0.197 0.205 93.5

2000 β0 = 0.20 0.202 0.002 0.052 0.055 92.8
β1 = 0.80 0.795 -0.005 0.086 0.093 92.8
β2 = 0.80 0.796 -0.004 0.058 0.065 91.8
α0 = −1.0 -0.925 0.075 0.142 0.144 89.8
α1 = 0.20 0.138 -0.062 0.225 0.227 93.1
α2 = 0.10 0.152 0.052 0.149 0.151 93.0

NB 100 β0 = 0.20 0.181 -0.019 0.270 0.250 96.0
β1 = 0.80 0.812 0.012 0.420 0.391 95.8
β2 = 0.80 0.755 -0.045 0.364 0.349 95.6

500 β0 = 0.20 0.199 -0.001 0.123 0.107 97.2
β1 = 0.80 0.795 -0.005 0.214 0.186 97.6
β2 = 0.80 0.792 -0.008 0.143 0.128 96.6

1000 β0 = 0.20 0.198 -0.002 0.092 0.080 97.7
β1 = 0.80 0.801 0.001 0.156 0.136 97.4
β2 = 0.80 0.800 -0.000 0.097 0.088 96.9

2000 β0 = 0.20 0.201 0.001 0.065 0.055 97.9
β1 = 0.80 0.798 -0.002 0.107 0.093 97.6
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Continued...Table 2.2

π∗ Model n Params SM Bias ESE SSE Cov.Pr.

β2 = 0.80 0.797 -0.003 0.073 0.065 96.8

Pois 100 β0 = 0.20 0.182 -0.018 0.176 0.252 83.4
β1 = 0.80 0.810 0.010 0.259 0.394 80.6
β2 = 0.80 0.754 -0.046 0.203 0.351 76.2

500 β0 = 0.20 0.199 -0.001 0.078 0.109 84.3
β1 = 0.80 0.795 -0.005 0.129 0.189 81.5
β2 = 0.80 0.793 -0.007 0.078 0.130 76.1

1000 β0 = 0.20 0.198 -0.002 0.057 0.081 84.4
β1 = 0.80 0.800 0.000 0.091 0.138 81.0
β2 = 0.80 0.799 -0.001 0.053 0.089 76.5

2000 β0 = 0.20 0.200 0.000 0.041 0.056 84.3
β1 = 0.80 0.798 -0.002 0.064 0.094 81.4
β2 = 0.80 0.797 -0.003 0.040 0.066 76.5

ZIP 100 β0 = 0.20 0.519 0.319 0.209 0.250 58.8
β1 = 0.80 0.846 0.046 0.298 0.365 89.0
β2 = 0.80 0.798 -0.002 0.223 0.298 88.2
α0 = −1.0 -1.058 -0.058 0.723 0.904 94.3
α1 = 0.20 0.247 0.047 1.046 1.225 96.0
α2 = 0.10 0.011 -0.089 14.476 1.610 98.9

500 β0 = 0.20 0.534 0.334 0.092 0.105 9.0
β1 = 0.80 0.837 0.037 0.145 0.172 88.4
β2 = 0.80 0.841 0.041 0.086 0.110 84.3
α0 = −1.0 -0.946 0.054 0.281 0.291 92.6
α1 = 0.20 0.162 -0.038 0.462 0.465 94.6
α2 = 0.10 0.161 0.061 0.297 0.292 95.7

1000 β0 = 0.20 0.536 0.336 0.066 0.079 0.7
β1 = 0.80 0.835 0.035 0.101 0.125 87.4
β2 = 0.80 0.842 0.042 0.058 0.075 82.4
α0 = −1.0 -0.926 0.074 0.202 0.207 92.2
α1 = 0.20 0.134 -0.066 0.325 0.328 94.6
α2 = 0.10 0.144 0.044 0.199 0.206 93.8

2000 β0 = 0.20 0.537 0.337 0.047 0.056 0.0
β1 = 0.80 0.836 0.036 0.072 0.088 85.9
β2 = 0.80 0.843 0.043 0.044 0.057 77.1
α0 = −1.0 -0.927 0.073 0.143 0.145 89.8
α1 = 0.20 0.141 -0.059 0.227 0.229 93.1
α2 = 0.10 0.153 0.053 0.149 0.153 93.0

PH 100 β0 = 0.20 0.518 0.318 0.211 0.253 59.4
β1 = 0.80 0.847 0.047 0.300 0.370 89.4
β2 = 0.80 0.793 -0.007 0.297 0.397 88.5
α0 = −1.0 0.400 1.400 0.447 0.466 11.0
α1 = 0.20 0.397 0.197 0.733 0.756 94.1
α2 = 0.10 0.418 0.318 11.332 1.462 97.6

500 β0 = 0.20 0.533 0.333 0.092 0.106 9.3

31



Continued...Table 2.2

π∗ Model n Params SM Bias ESE SSE Cov.Pr.

β1 = 0.80 0.839 0.039 0.146 0.174 88.8
β2 = 0.80 0.842 0.042 0.086 0.110 84.2
α0 = −1.0 0.410 1.410 0.201 0.205 0.0
α1 = 0.20 0.365 0.165 0.366 0.363 92.4
α2 = 0.10 0.224 0.124 0.260 0.254 94.2

1000 β0 = 0.20 0.535 0.335 0.067 0.079 0.7
β1 = 0.80 0.838 0.038 0.102 0.126 87.2
β2 = 0.80 0.843 0.043 0.058 0.075 82.4
α0 = −1.0 0.414 1.414 0.149 0.152 0.0
α1 = 0.20 0.356 0.156 0.265 0.265 91.4
α2 = 0.10 0.227 0.127 0.172 0.179 87.7

2000 β0 = 0.20 0.535 0.335 0.048 0.056 0.0
β1 = 0.80 0.838 0.038 0.072 0.088 85.7
β2 = 0.80 0.844 0.044 0.045 0.057 76.4
α0 = −1.0 0.410 1.410 0.105 0.104 0.0
α1 = 0.20 0.361 0.161 0.182 0.181 86.4
α2 = 0.10 0.232 0.132 0.129 0.132 82.6
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To compare the estimates of all the parameters of MPois-Pois model with the estimates

of all the parameters of some other count models such as MZIP, negative binomial and

Poisson models , we employed the mean square error (MSE) criterion. The sample size

versus MSE were plotted in Figures 2.1-2.3 for estimates of β0, β1 and β2, respectively. All

the figures were plotted in three parts, part (a) is for π∗ = 0.90, part (b) is for π∗ = 0.70

and part (c) is for π∗ = 0.50.

From Figures 2.1-2.3, it was clear that the MSE of estimators from MPois-Pois model for

all the parameters were lowest compared to others for all of setups. For a given sample size

and a given parameter, the MSE criterion indicates that the MPois-Pois model will perform

better if the mixing proportion (π∗) increases towards 1. In other words, the MPois-Pois

provides the best-fit model when a larger proportion of counts arise from the latent group

of mixtures with smaller means.

From the comparative study, it is obvious that when data arise from mixture of two-

component Poisson distribution, marginal inference of the parameters from the available

count models may provide larger amount of biases and/or higher standard errors of the

estimates. However, the use of the MPois-Pois model in such instance provides consistent

as well as efficient estimates of the marginal parameters of interest.
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(a) Sample size vs. MSE for π∗ = 0.90
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(b) Sample size vs. MSE for π∗ = 0.70
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(c) Sample size vs. MSE for π∗ = 0.50

Figure 2.1: A comparison of MSE estimated from MPois-Pois, MZIP, negative binomial (NB)
and Poisson (Pois) models with varying sample sizes for regression parameter β0
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(a) Sample size vs. MSE for π∗ = 0.90
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(b) Sample size vs. MSE for π∗ = 0.70
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(c) Sample size vs. MSE for π∗ = 0.50

Figure 2.2: A comparison of MSE estimated from MPois-Pois, MZIP, negative binomial (NB)
and Poisson (Pois) models with varying sample sizes for regression parameter β1
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(b) Sample size vs. MSE for π∗ = 0.70
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(c) Sample size vs. MSE for π∗ = 0.50

Figure 2.3: A comparison of MSE estimated from MPois-Pois, MZIP, negative binomial (NB)
and Poisson (Pois) models with varying sample sizes for regression parameter β2
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2.5 Illustration

2.5.1 Data

To illustrate the application of MPois-Pois mixture model, a nationwide data extracted

from the 2014 Bangladesh Demographic and Health Survey (BDHS) have been utilized.

This survey consists of a two stage sampling. In the first stage of sampling, 600 clusters

were randomly selected, 393 from rural and 207 from urban areas. In the second stage, about

30 households were randomly selected from each cluster using systematic sampling. Based

on the design, A total of 17,863 ever married women of reproductive age were interviewed

to collect data. Then the interviewers collect data on fertility, family planning along with

socioeconomic and demographic characteristics. The interviewers also collect data on several

aspect of maternal and newborn health, including antenatal care (ANC). Women having

children born in preceding three years of the survey were only considered and information

regarding ANC of the children was collected from the most recent births.

2.5.2 Variables

The outcome variable considered is the number of ANC visits a woman received during her

most recent pregnancy period before the survey. Some important covariates were included

in the analysis based on some available literature (Haque et al., 2022a; Bhowmik et al., 2020;

Islam and Masud, 2018; Hossain et al., 2020). These variables are: area of residence (urban,

rural); level of education (no education, primary, secondary, higher); media exposure for

any of the three media such as newspaper/magazine, radio, and television at least once in a
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week (yes, no); maternal age in years (<20, 20-29, ≥30); gap between husband age and wife

age in years (non-positive, 1-5, 6-10, >10); frequency of reasons for wife beating justification

out of common five reasons (not at all, 1-2, 3-5); wealth index (poor, middle, rich); birth

order for the index pregnancy for which ANC visits have been recorded (1, 2, 3, ≥4).

2.5.3 Results

To analyze the number of ANC visits taken by a woman during her pregnancy period,

4,427 women had been considered after adjusting for missing values. Descriptive statistics

such as the mean, standard deviation, minimum and maximum for the outcome variable

had been computed from the data. These statistics were found to be 2.78, 2.56, 0 and 20,

respectively. The percent distribution of the number of ANC visits is shown in Figure 2.4.

From the Figure 2.4, it is evident that the percentage of observed zero counts (21.28%) was

much higher than the expected (6.20%) with respect to the mean of the Poisson distribution.

It was observed from the count data that the number of ANC visits in Bangladesh arises

from mixture of two unobserved populations with proportions 0.52 and 0.48 in the absence

of covariates. Therefore, it is reasonable to fit a Poisson-Poisson mixture model for the

data set. Moreover, in order to draw inferences regarding the overall exposure effects on

marginal mean, it is rational to fit MPois-Pois model, a marginally-specified mean models

for mixtures of two count distributions. From Table 2.3, it is depicted that π̂∗ = 0.610. At

first we fitted the MPois-Pois model, the negative binomial model and the Poisson model.

Then, the AIC criterion had been employed to find the best fitted model. The AIC value

of the fitted models for MPois-Pois, negative binomial and Poisson were found as 17922,
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Figure 2.4: Distribution of number of ANC visits during pregnancy, BDHS 2014

18194, and 19192, respectively. Therefore, the MPois-Pois model provides the best fit to

the given data set.
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Table 2.3: The estimated marginal parameters (β̂), standard errors (SE), and p-values under
MPois-Pois mixture model on number of ANC visits, BDHS 2014

Variable name Estimates SE z-value p-value IRR

Marginalized Poisson-Poisson model:
Intercept 0.342 0.063 5.437 <0.001 –
Level of education
No education (ref)
Primary 0.279 0.057 4.899 <0.001 1.322
Secondary 0.490 0.056 8.735 <0.001 1.663
Higher 0.716 0.062 11.627 <0.001 2.047
Area of residence
Rural (ref)
Urban 0.160 0.026 6.148 <0.001 1.174
Media exposure
No (ref)
Yes 0.191 0.031 6.093 <0.001 1.210
Maternal age (years)
<20 -0.067 0.032 -2.068 0.039 0.936
20-29 (ref)
≥30 0.089 0.038 2.374 0.018 1.093
Gap between husband age and wife age (years)
Non-positive 0.146 0.108 1.347 0.178 1.157
1-5 (ref)
6-10 -0.004 0.028 -0.143 0.886 0.996
>10 -0.016 0.031 -0.521 0.603 0.984
Number of reasons wife beating justified
Not at all (ref)
1-2 -0.015 0.032 -0.455 0.649 0.986
3-5 -0.062 0.047 -1.305 0.192 0.940
Wealth index
Poor (ref)
Middle 0.121 0.038 3.168 0.002 1.128
Rich 0.328 0.043 7.712 <0.001 1.388
Birth Order
1 (ref)
2 -0.039 0.031 -1.254 0.210 0.961
3 -0.120 0.043 -2.782 0.005 0.887
≥4 -0.309 0.058 -5.355 <0.001 0.734

Model for Component-1:
Intercept -0.962 0.169 -5.701 <0.001 -
Level of education
No education (ref)
Primary 0.493 0.142 3.464 <0.001 -
Secondary 0.939 0.142 6.607 <0.001 -
Higher 1.266 0.153 8.301 <0.001 -
Area of residence
Rural (ref)
Urban 0.198 0.047 4.227 <0.001 -
Media exposure
No (ref)
Yes 0.327 0.057 5.722 <0.001 -
Maternal age (years)
<20 -0.169 0.058 -2.893 0.004 -
20-29 (ref)
≥30 0.354 0.097 3.660 <0.001 -
Gap between husband age and wife age (years)
Non-positive -0.076 0.202 -0.376 0.707 -
1-5 (ref)
6-10 0.063 0.052 1.229 0.219 -
>10 0.136 0.058 2.324 0.020 -
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Continued...Table 2.3

Variable name Estimates SE z-value p-value IRR
Number of reasons wife beating justified
Not at all (ref)
1-2 -0.048 0.058 -0.829 0.407 -
3-5 -0.153 0.089 -1.722 0.085 -
Wealth index
Poor (ref)
Middle 0.421 0.074 5.667 <0.001 -
Rich 0.698 0.080 8.673 <0.001 -
Birth Order
1 (ref)
2 -0.170 0.060 -2.846 0.004 -
3 -0.268 0.078 -3.453 0.001 -
≥4 -0.717 0.122 -5.871 <0.001 -
Mixing Proportion
π̂ 0.610 0.043 14.339 <0.001 -
AIC 17922

2.6 Conclusion

When analyzing count data, it is necessary to determine if the data originate from a pop-

ulation or from a mixture of populations in order to draw valid inferences. If the target

population consists of a mixture of populations and if the augmentation of zeros arises for

this reason, the latent class parameters for the regression model can be estimated by fitting

a mixture model. In case of mixture model setup, however, it is not possible to estimate the

regression parameters for modeling marginalized means. Hence, inference regarding the ex-

posure effects in terms of IRR for the population-wide parameters cannot be obtained from

such a model. This problem can be solved by developing a marginalized (marginalization

over the subpopulations) mixture model for drawing valid inference.

Extensive simulation studies were carried out to investigate the MPois-Pois model under

cross-sectional setup. According to the simulation studies, the MPois-Pois mixture model

offers minimal MSE and confidence interval coverages near to the nominal levels when the

true model is specified; and misspecification of the model increases MSE and under-estimates
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the coverage probability.

Real data set extracted from the Bangladesh Demographic and Health Survey (BDHS),

2014 has been utilized for the application of the MPois-Pois model under a cross-sectional

setup. It is observed that the MPois-Pois model is the best fitted model than the other

count models.
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Chapter 3

Marginalized Mixture Models: Zero-Inflated
Clustered Count Data

It may happen in practice that zero-inflated clustered count data or mixture of two-

component clustered count data may arise in a variety of contexts (Long et al., 2015; Wang

et al., 2007; Min and Agresti, 2005; Yau et al., 2003; Wang et al., 2002; Hall, 2000). There

are several modeling approach in the existing literature for analyzing zero-inflated clustered

count data. Under existing model of zero-inflated clustered count data, Hall (2000) sug-

gested a ZIP model modification that includes random effects in the Poisson process to

take within-cluster correlation into consideration; Yau et al. (2003) proposed a zero-inflated

negative binomial (ZINB) regression model in order to account for excess zeros as well

as over-dispersion with independent random effects in each process; and Min and Agresti

(2005) proposed hurdle model as a two-part model with independent random effects in each

part.

Numerous studies using the existing mixture modeling approach (mixture of ‘not-at-risk’

and ‘at-risk’ classes) for analyzing zero-inflated clustered count data have clearly shown the

importance of inferences regarding the marginal mean, and the researchers have developed

models in order to do so (Tabb et al., 2016; Long et al., 2015; Kassahun et al., 2014; Lee

et al., 2011; Hall and Zhang, 2004). Making a covariate-adjusted inference for the marginal

mean (marginalization over the subpopulations) of an exposure effect was the researchers’

aim in such cases.
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In the previous chapters, we have already provided the reasons of considering Poisson-

Poisson mixture instead of existing models for analyzing zero-inflated count data. In ana-

lyzing zero-inflated clustered data, in this thesis, it is assumed that an observation unit in

a cluster belongs to one of two latent populations each with Poisson distribution. In such

data, unobserved heterogeneity arises due to the presence of mixture in the dgp (Wang et al.,

2007) and existence of correlation among the observations (Ridout et al., 1999) in a cluster.

Although unobserved heterogeneity can be controlled by utilizing a negative binomial model

or employing a mixed modeling approach in the standard count models, it is not possible to

remove all the heterogeneity that have been considered in analyzing zero-inflated clustered

data by fitting such models.

Wang et al. (2007, 2002) have proposed a Poisson-Poisson mixture model for analyzing

clustered count data, where counts arise from two latent classes. Like cross-section setup,

the main limitation of such model is that the interpretation of the estimates is based on the

latent classes, and hence the inference of the parameters regarding marginal mean cannot

be made from the mixture model framework of clustered data.

To the best of our knowledge, the marginalized Poisson-Poisson model for analyzing

clustered data has yet not been studied by any researcher. This motivates to develop a

marginalized mean model that would be useful for analyzing clustered count data arising

from a mixture of two latent subpopulations. It can be accomplished by extending cross-

sectional MPois-Pois (Benecha et al., 2017) model in clustered data setup. To model the

marginal mean under standard mixture model setup for analyzing zero-inflated clustered

data, following Long et al. (2015) we proposed an extension of MPois-Pois model (Benecha

et al., 2017) under the framework of ML estimation. The proposed model is refer to as
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Random Effects Marginalized Poisson-Poisson (REMPois-Pois) mixture model.

To develop REMPois-Pois model, we assume that (i) data are collected from a population

is divided into a number of clusters; (ii) population observations in each cluster arises from

one of the two latent subpopulations with remarkable differences in means; (iii) the random

effects are incorporated into the linear predictors of the model for marginal mean and

component-1 mean as random intercepts to control the unobserved heterogeneity in the

data.

3.1 Random Effects Marginalized Poisson-Poisson Mix-

ture Model

Suppose that K clusters are selected randomly from a population and the ni observations

are selected from the ith cluster. The sample size is then expressed as n =
∑K

i=1 ni. Let

Yij(i = 1, · · · , K; j = 1, · · · , ni) be the count variable of interest for the jth individual in

the ith cluster. The Poisson-Poisson mixture distribution and its marginalized model for

cross-sectional setup were discussed in chapter 2. In the FMM setup for clustered data, the

probability distribution is known as the Poisson-Poisson mixture distribution with bivariate

random effects (Wang et al., 2007, 2002). It is assumed that the ith cluster-population

is divided into two latent subpopulations (component-1 and component-2) and for a given

random effect, the observations of component-1 follow independent Poisson distributions

with low means and that of component-2 follow independent Poisson distributions with

larger means. Let µ∗1,ij = E
[
Yij|ci

]
and µ∗2,ij = E

[
Yij|di

]
, where ci and di are the random

effects term corresponding to the component-1 mean (µ∗1,ij) and the component-2 mean

(µ∗2,ij), respectively. Let bTi = (ci, di) ∼ N2(0,Σ
∗), where Σ∗ is a 2 × 2 covariance matrix
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with diagonal elements σ2
c , σ

2
d and off-diagonal element ρ∗∗σcσd. Following Eq.(2.17), the

regression models for Poisson-Poisson mixture random variables for analyzing clustered data

can be written as

log(µ∗1,ij) = x′ijα+ ci; log(µ∗2,ij) = x′ijγ + di; logit(π∗) = τ ; (3.1)

where xij is the set of covariates for the jth individual in the ith cluster used in both the

models for component-1 and component-2; α and γ are p × 1 vector of and parameters

corresponding to component-1 and component-2, respectively, and ∞ < τ < ∞. Instead

of modeling the latent class Poisson means µ∗1,ij and µ∗2,ij, following Long et al. (2015),

an extension of MPois-Pois model (Benecha et al., 2017) called REMPois-Pois model for

analyzing clustered data is proposed in this study. The proposed model can directly models

the cluster-specific overall mean E
[
Yij|ui,

]
= µ∗ij through the following link functions

log(µ∗ij) = x′ijβ + ui; log(µ∗1,ij) = x′ijα+ ci; logit(π∗) = τ, (3.2)

where ui and ci are the random effects term corresponding to the cluster-specific overall mean

and the conditional mean of component-1, respectively. The random effects vTi = (ui, ci)

and are assumed to be distributed as N2(0,Σ), where

Σ =

 σ2
u ρ∗σuσc

ρ∗σuσc σ2
c


Under the marginalized model as in Eq.(3.2), the cluster-specific overall mean and vari-

ance of Yij can be written as

µ∗ij = π∗µ∗1,ij + (1− π∗)µ∗2,ij, (3.3)

and

Var
[
Yij|ui, ci

]
= µ∗ij +

[
π∗

1− π∗

](
µ∗ij − µ∗1,ij

)2
, (3.4)

respectively.
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3.1.1 Likelihood Function

Let yi = (yi1, · · · , yini)′ be the ni × 1 response vector for ith cluster (i = 1, · · · , K). The

observations in the ith cluster are conditionally independent. Therefore, the conditional

distribution of yi given the random effects ui, ci is given as follows

f(yi|ui, ci;β, α, τ) =

ni∏
j=1

f(yij|ui, ci;β, α, τ),

where following Benecha et al. (2017), the probability distribution function, f(yij) can be

written as

f(yij|ui, ci;β, α, τ) = π∗
e−µ

∗
1,ijµ∗1,ij

yij

yij!
+ (1− π∗)

e
−
µ∗ij − π∗µ1,ij

1− π∗
(µ∗ij − π∗µ1,ij

1− π∗
)yij

yij!
. (3.5)

The probability distribution given in Eq.(3.5) is named as REMPois-Pois distribution. The

contribution of ith cluster in the (unconditional) likelihood function is then

Li(β, σu,α, σc, τ, ρ
∗|yi) =f(yi|β, σu,α, σc, τ, ρ∗)

=

∫ ∞
−∞

∫ ∞
−∞

f(yi;ui, ci|β, σu,α, σc, τ, ρ∗)duidci

=

∫ ∞
−∞

∫ ∞
−∞

f(yi|ui, ci;β, α, τ)f(ui, ci|σu, σc, ρ∗)duidci

=

∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|ui, ci;β, α, τ)f(ui, ci|σu, σc, ρ∗)duidci.

For simplicity, let us consider δ = (β′, σu,α
′, σc, τ, ρ

∗)′. Since the clusters are independent,

the overall likelihood function can be computed as

L(δ|y1, . . .yK) =
K∏
i=1

Li(β, σu,α, σc, τ, ρ
∗|yi)

=
K∏
i=1

∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|ui, ci;β, α, τ)f(ui, ci|σu, σc, ρ∗)duidci. (3.6)

The log-likelihood function is then written as follows

l(δ|y1, . . .yK) =
K∑
i=1

log

[ ∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|ui, ci;β, α, τ)φ(ui, ci|σu, σc, ρ∗)duidci
]
. (3.7)
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Maximization of the log-likelihood function (3.7) is naturally complicated because the in-

tegrals inside the function cannot be expressed in closed form. As the joint probability

distribution of the random effects for the overall-means and the component-1 means is

bivariate normal, i.e., vTi = (ui, ci) ∼ N2(0,Σ), this complication could be overcome by

employing Gauss–Hermite quadrature (GHQ) to approximate the integrals inside the loga-

rithm of Eq.(3.7) over the random effects (Hall, 2000). After then a reasonable initial guess

of the parameters were considered for getting a converged sequence of estimates. For this

purpose, following Benecha et al. (2017), we have utilized estimates from random effects

Poisson model for the initial values of β and σu, and estimates of parameters for model

of component-1 from random effects two-component Poisson mixture model for the initial

values of π∗,α and σc.

The expression of the approximate log-likelihood function of REMPois-Pois model can

be obtained by using the GHQ technique (Hall, 2000; Pinheiro and Bates, 1995), which is

provided in Appendix B.1. Using the link functions of Eq.(3.2), the log-likelihood function

of Eq.(3.7) can be then approximated by
K∑
i=1

log

[ m∑
l1=1

m∑
l2=1

wul1w
c
l2

√
1− ρ∗2e2ρ

∗qul1
qcl2

π

ni∏
j=1

{
1

yij !
(
1+eτ

)(
e

[
τ+yij(x

′
ijα+
√

2(1−ρ∗2)σcqcl2 )−e
x′ijα+

√
2(1−ρ∗2)σcqcl2

]
+e
−
[(

1+eτ
)
e
x′ijβ+
√

2(1−ρ∗2)σuqul1−e
τ+x′ijα+

√
2(1−ρ∗2)σcqcl2

]
[(

1 + eτ
)
ex
′
ijβ+
√

2(1−ρ∗2)σuqul1 − eτ+x
′
ijα+
√

2(1−ρ∗2)σcqcl2

]yij)}]
.

(3.8)

If the random effects for the overall-means and the component-1 means are assumed indepen-
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dent (ρ∗ = 0), the log-likelihood function can be expressed by the following approximation
K∑
i=1

log

[ m∑
l1=1

m∑
l2=1

wul1w
c
l2

π

ni∏
j=1

{
1

yij !
(
1+eτ

)(e[τ+yij(x′ijα+√2σcqcl2 )−ex′ijα+
√
2σcq

c
l2

]

+e
−
[(

1+eτ
)
e
x′ijβ+

√
2σuq

u
l1−e

τ+x′ijα+
√
2σcq

c
l2

][(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij)}]
.

(3.9)

As −1 ≤ ρ∗ ≤ 1 is a restricted range parameter, we have encountered a problem in

directly estimating ρ∗ by quasi-Newton optimization. This problem can be overcome by

using the cumulative distribution function (cdf) of exponential distribution. Let us consider

that the parameter −∞ < ρ∗unres <∞ will be plugged-in in the optimization method. Then

it can be shown the quantity, sign(ρ∗unres)FS(| ρ∗unres |) will produce value between -1 and

+1, where S is a exponential random variable with mean 1 with cdf F (·). Therefore, the

problem has been addressed in this study by considering the transformation as follows

ρ∗ = sign(ρ∗unres)
(

1− e−|ρ∗unres|
)
.

To obtain the MLE of ρ∗, first we have estimated the unrestricted range parameter −∞ <

ρ∗unres < ∞ by quasi-Newton method and then the restricted range parameter had been

estimated as

ρ̂∗ = sign(ρ̂∗unres)
(

1− e−|ρ̂∗unres|
)
.

3.1.2 Score Function

The score function can be defined from the approximated log-likelihood function of REMPois-

Pois model given in Eq.(3.9) as

U(δ) =

[
∂l(δ)

∂τ
,
∂l(δ)

∂α′
,
∂l(δ)

∂σc
,
∂l(δ)

∂β′
,
∂l(δ)

∂σu

]′
=

[
U1, U

′
2, U3, U

′
4, U5

]′
The expression for the elements of score function was given in the Appendix B.2 . Using

these elements, the maximum likelihood estimating equations for δ of the REMPois-Pois

49



model can be formed as

U(δ) = 0(2p+3)×1. (3.10)

The solution of Eq.(3.10) can be obtained by Newton’s method. At the rth step, Newton’s

method updates the values of the parameters as

δ(r) = δ(r−1) +
(
I(δ(r−1))

)−1
U(δ(r−1)), r = 1, 2, · · · , (3.11)

for r = 1, 2, · · · until convergence. In Eq.(3.11), I(·) is a (2p+3)×(2p+3) matrix of observed

information obtained from negative of Hessian. Although we can derive the expression of

Hessian for the REMPois-Pois model, we have refrained providing the complex expressions

of Hessian.

With carefully chosen starting values, the MLE of the parameters (δ̂) are the solu-

tion of Eq.(3.10) and can be obtained by the use of quasi-Newton optimization method

or the Newton’s method. For the proposed REMPois-Pois model, the quasi-Newton opti-

mization technique was implemented by R ‘optim’ function. Starting values for marginal

parameters (β, σu) are the fitted values of random effects Poisson model. Also, the initial

values of (τ,α′, σc) can be obtained by fitting the random effects Poisson-Poisson mixture

model(Wang et al., 2007) by applying the EM algorithm with GHQ (Hall, 2000). The EM

algorithm for estimating parameters of Poisson-Poisson mixture regression model with ran-

dom effects is given in the Appendix B.3. This method of initialization was recommended by

Benecha et al. (2017) for obtaining the MLE of parameters of marginalized Poisson-Poisson

mixture model in cross-sectional setup.

Let I ll(δ), l = 1, 2, . . . , (2p + 3) be the (l, l)th element of the inverse of information

matrix. Then the standard error of the lth component of the estimator of the parameter
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vector δ is given by

se(δ̂l) =
√
I ll(δ). (3.12)

For lth parameter, l = 1, 2, · · · , (2p + 3), the asymptotic behavior of the estimator can be

expressed as

√
n
(
δ̂l − δl

)
∼ N

(
0, se(δ̂l)

2)
.

3.1.3 Intraclass Correlations

The term intraclass correlation coefficient (ICC) is commonly used in measuring the degree

of resemblance of units in the same cluster (Oliveira et al., 2016). The ICC is computed

by marginalization over the clusters and thus it is regarded as a population-averaged (PA)

characteristics. In analyzing clustered data, cluster-specific characteristics are usually intro-

duced by incorporating the random effects into the model for taking into account the ICC.

Although it is of interest to estimate the fixed effects parameters along with the random

effects parameters, a measure of ICC is also important in such instance. Under regression

setup, the population averaged (PA) characteristics of Yij for the proposed REMPois-Pois

model can be determined by computing the unconditional mean, variance, covariance and

intraclass correlation. To compute the PA characteristics, let us define two standard nor-

mal random variables as U∗i = σ−1u Ui and C∗i = σ−1c Ci. Therefore, the moment generating

function of U∗i and C∗i can be defined as MU∗i
(t) = e

1
2
t2 = MC∗i

(t).

Unconditional Mean and Variance
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The expression for unconditional mean and variance of Yij can be derived as

µij = E(Yij) =E
[
E
(
Yij|ui

)]
= E

[
ex
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∗
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]
= ex

′
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∗
i

]
= ex

′
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(σu) = ex
′
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1
2
σ2
u ,

(3.13)

and Var(Yij) =Var
[
E
(
Yij|ui

)]
+ E

[
Var
(
Yij|ui, ci

)]
=Var

[
ex
′
ijβ+σuU

∗
i

]
+ E

[
ex
′
ijβ+σuU

∗
i + eτ

(
ex
′
ijβ+σuU

∗
i − ex′ijα+σcC∗i

)2]
=

{
E
[
e2
(
x′ijβ+σuU

∗
i

)]
− µ2

ij

}
+

{
µij + eτ

(
E
[
e2
(
x′ijβ+σuU

∗
i

)]
+ E

[
e2
(
x′ijα+σcC

∗
i

)]
− 2E

[
ex
′
ijβ+x

′
ijα+σuU

∗
i +σcC

∗
i

])}
= (1 + eτ )e2

(
x′ijβ+σ

2
u

)
+ µij(1− µij) + eτ
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(3.14)

Unconditional Covariances

The unconditional covariances for the jth and lth individuals in the ith cluster i = 1, · · · , K, j =

1, · · · , ni, l = 1, · · · , ni, j 6= l can be obtained as

Cov
(
Yij, Yil

)
=Cov

[
E
(
Yij|ui

)
, E
(
Yil|ui

)]
+ E

[
Cov

(
Yij, Yil|ui

)]
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[
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ijβ+σuU

∗
i , ex

′
ilβ+σuU

∗
i

]
=E
[
ex
′
ijβ+σuU

∗
i ex

′
ilβ+σuU

∗
i

]
− µijµil

=ex
′
ijβ+x

′
ilβE

[
e2σuU

∗
i

]
− µijµil

=e

(
x′ij+x

′
il

)
β
(
e2σ

2
u − eσ2

u

)
. (3.15)

The correlation coefficient of jth and lth individuals in the ith cluster under the proposed

REMPois-Pois model can be computed from the expression of unconditional variance and

covariance as follows

ρijl =
Cov

(
Yij, Yil

)
√

Var(Yij)Var(Yil)
, i = 1, · · · , K, j = 1, · · · , ni − 1, l = j + 1, · · · , ni,
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where Cov
(
Yij, Yil

)
is the unconditional covariance as given in Eq.(3.15) and Var(Yij) is the

unconditional variance as given in Eq.(3.14). The intra-cluster correlation is then computed

as

ρ =
K∑
i=1

ni−1∑
j=1

ni∑
l=j+1

ρijl

/ K∑
i=1

(
ni
2

)
. (3.16)

The intra-cluster correlation (ρ) as shown in Eq.(3.16) can be estimated by using the es-

timates of unconditional covariance (Ĉov(Yij, Yil)) and the estimates of unconditional vari-

ance (V̂ar(Yij)). From Eq.(3.14) and Eq.(3.15), one can easily estimate the unconditional

variances and unconditional covariances by using the estimates of fixed effects regression

parameters (β̂ and α̂), the estimates of random effects parameters (σ̂u and σ̂c), the esti-

mates of parameters for mixing proportion (τ̂), and the estimates of correlation coefficient

between the random effects (ρ̂∗).

3.2 Simulation Study

In the simulation studies, it was assumed that both model for conditional marginalized mean

(marginalized over the subpopulations) and model for conditional component-1 mean given

in Eq.(3.2) were influenced by the same set of known covariates xij = (x0ij, x1ij, x2ij, · · · , x(p−1)ij)′

with x0ij = 1 for the ith response. In order to generate zero-inflated count in clustered data

setup, the parameters were chosen in such a way that 0 ≤ µ1,ij << µ2,ij < ∞ would be

observed. The number of cluster is denoted by K and for the ith cluster (i = 1, · · · , K),

the cluster size is denoted by ni. The sample size, n can be expressed as, n =
∑K

i=1 ni.

Note that the data were generated using a two components random effects Poisson mixture
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model using probability π∗ and we were interested in the inference regarding the marginal

(marginalization over the subpopulations) means.

3.2.1 The situation when ρ∗ = 0

In this situation, the random effects of marginal mean, U and the random effects of component-

1 mean, C were considered independent for simplicity. Extensive simulation studies were

conducted to investigate the performance of the proposed REMPois-Pois model for different

number of clusters and varying cluster sizes. For instance, we had considered K = 50, 100,

200 and ni = 5, 15, 30 while keeping same size for all the clusters for a particular value of

K i.e., n1 = · · · = nK . To obtain marginal inference from random effects Poisson-Poisson

mixture distribution, the zero-inflated data for a sample of size n had been generated by the

following steps where different mixing probabilities such as π∗ = 0.50, 0.70, 0.90 had been

used for varying the proportion of zeros in the data.

1. K random variables, U1, · · · , UK from N(0, σ2
u) and K random variables, C1, · · · , CK

from N(0, σ2
c ) had been generated and each value of both variables was then repeated

ni times (i = 1, · · · , K) to make up the n values of U and C.

2. The covariate x1ij were generated from unif(0,1), and the covariate x2ij were generated

from Bernoulli(0.40), i = 1, · · · , K, j = 1, · · · , ni.

3. In Eq.(3.2), suitable values of the fixed effect regression parameters β = (β0, β1, β2)
′ =

(0.20, 0.40, 0.30)′ and random effects parameter σu = 0.40 were used to compute the

marginal means µ∗ij, i = 1, · · · , K, j = 1, · · · , ni and suitable values of the fixed ef-

fect regression parameters α = (α0, α1, α2)
′ = (−1.50, 0.30, 0.20)′ and random ef-

54



fects parameter σc = 0.30 were used to compute the component-1 means µ∗1,ij, i =

1, · · · , K, j = 1, · · · , ni.

4. The component-2 means (µ∗2,ij) were then computed using Eq.(3.3). If µ∗2,ij < 0 was

observed in this process, the set of values xij = (xij0, xij1, xij2)
′ was replaced by

randomly selected set of values xil = (xil0, xil1, xil2)
′ for which µ∗2,il ≥ 0 had been

observed, j 6= l.

5. Binary observations dij, i = 1, · · · , K, j = 1, · · · , ni were generated usingD ∼Bernoulli(π∗).

6. Under REMPois-Pois setup, the n zero-inflated clustered count observations were then

obtained by

yij =


y1,ij ∼ Pois(µ∗1,ij), if dij = 1

y2,ij ∼ Pois(µ∗2,ij), if dij = 0.

for i = 1, · · · , K, j = 1, · · · , ni.

7. For different values of K, ni and for given values of β, σu,α, σc, various proportion

of zeros have been generated. For instances, data contain approximately 40% zeros

for π∗ = 0.50 (τ = 0.000), approximately 50% zeros for π∗ = 0.70 (τ = 0.8473), and

approximately 65% zeros for π∗ = 0.90 (τ = 2.1972).

The simulation was repeated 1000 times for each setup. We then estimated the regression

parameters, the random effects parameters and all other nuisance parameters by using max-

imum likelihood (ML) approach. In order to investigate the performance of ML estimates,

we have computed the bias, standard error and the coverage probability (Cov.Pr.). The bi-

ases were computed from the differences between simulated means (SM) and the true values
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for each of the parameters. Two types of standard errors such as estimated standard errors

(ESE) and simulated standard errors (SSE) were also computed to investigate the properties

of the estimators. The SM, ESE and SSE for a estimator δ̂ were calculated similarly as in

Eq.(2.29). The proportion of convergences (Conv.Prop.) in fitting the REMPois-Pois model

were computed for all the setups.

The SM, simulated mean of mixing proportion (SMP), Bias, ESE, SSE, Cov.Pr. and

Conv.Prop. were given in Table 3.1 for mixing proportion π∗ = 0.50. From Table 3.1, it is

clear that the estimates of marginal parameters for fixed effects had minimal amount of bi-

ases for all the settings. However, random effect parameter had highest bias for K = 50 and

ni = 5, the bias decreases with increasing the cluster size and/or with increasing the num-

ber of clusters. For example, the amount of bias for (β0, β1, β2) was (−0.005, 0.004,−0.001)

when ni = 5, it was (0.001,−0.004, 0.001) if ni = 15 and (0.006,−0.002, 0.000) when

ni = 30 for K = 50. These figures were (−0.003, 0.007,−0.010), (0.004,−0.003,−0.002)

and (0.007, 0.001,−0.003) when K = 100; (0.002, 0.001,−0.003), (−0.003, 0.000, 0.001)and

(0.006,−0.002, 0.000) if K = 200 for ni = 5, 15 and ni = 30, respectively. The amount of

bias of σu were -0.034, -0.008 and -0.007 when ni = 5, 15 and 30, respectively for K = 50.

These amounts were -0.026, -0.001 and -0.008 for ni = 5, 15 and 30, respectively if K = 100;

and -0.010, -0.006 and -0.013 for ni = 5, 15 and 30, respectively when K = 200.

The amount of bias also decreases with increasing the cluster size and/or with increasing

the number of clusters for most of the nuisance parameters. For example, the amount

of bias of (α0, α1, α2) was (0.024,−0.055,−0.014) when ni = 5, (0.002,−0.026,−0.006) if

ni = 15 and it was (−0.007,−0.012, 0.003) when ni = 30 for K = 50. These figures were

(−0.009, 0.046,−0.021), (−0.014, 0.002,−0.010) and (0.000, 0.003,−0.010) for ni = 5, 15
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and 30, respectively when K = 100; (−0.006, 0.002,−0.015), (−0.005,−0.002,−0.003) and

(0.004, 0.001, 0.002) for ni = 5, 15 and 30, respectively if K = 200.

The amount of bias of σc was 0.073, -0.049 and -0.033 when ni = 5, 15 and 30, respectively

for K = 50. These amounts were 0.003, -0.05 and -0.008 for ni = 5, 15 and 30, respectively

if K = 100; and -0.008, -0.024 and 0.013 for ni = 5, 15 and 30, respectively when K = 200.
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Table 3.1: Simulated mean (SM), simulated mean of mixing proportion (SMP), amount of bias
(Bias), estimated and simulated standard error (ESE, SSE) and coverage probability (Cov.Pr)
for estimating Marginal Parameters: (β, σu); Component-1 Parameters (α, σc) and τ for mixing
proportion π∗ = 0.50 from REMPois-Pois model for different number of clusters and various cluster
sizes

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(50,5) β0 = 0.20 0.195 -0.005 0.164 0.175 94.3
β1 = 0.40 0.404 0.004 0.244 0.262 94.4
β2 = 0.30 0.299 -0.001 0.142 0.147 95.6
σu = 0.40 0.366 -0.034 0.100 0.125 94.6

0.789 α0 = −1.50 -1.476 0.521 0.024 0.623 0.863 95.2
α1 = 0.30 0.245 -0.055 0.857 1.223 94.6
α2 = 0.20 0.186 -0.014 0.518 0.623 94.4
σc = 0.30 0.373 0.073 0.508 0.430 94.8
τ = 0.0000 0.082 0.082 0.232 0.254 94.2

(50,15) β0 = 0.20 0.201 0.001 0.095 0.105 95.4
β1 = 0.40 0.396 -0.004 0.123 0.124 94.2
β2 = 0.30 0.301 0.001 0.072 0.073 94.9
σu = 0.40 0.392 -0.008 0.051 0.067 95.4

0.846 α0 = −1.50 -1.498 0.510 0.002 0.356 0.363 95.5
α1 = 0.30 0.274 -0.026 0.499 0.520 94.7
α2 = 0.20 0.194 -0.006 0.291 0.307 94.6
σc = 0.30 0.251 -0.049 0.355 0.249 97.8
τ = 0.0000 0.039 0.039 0.123 0.189 96.9

(50,30) β0 = 0.20 0.206 0.006 0.072 0.093 94.8
β1 = 0.40 0.398 -0.002 0.084 0.086 94.6
β2 = 0.30 0.300 0.000 0.049 0.049 95.0
σu = 0.40 0.393 -0.007 0.035 0.057 95.3

0.920 α0 = −1.50 -1.507 0.501 -0.007 0.261 0.274 94.9
α1 = 0.30 0.288 -0.012 0.351 0.360 94.8
α2 = 0.20 0.203 0.003 0.203 0.206 94.2
σc = 0.30 0.267 -0.033 0.220 0.186 99.2
τ = 0.0000 0.005 0.005 0.085 0.084 95.5

(100, 5) β0 = 0.20 0.197 -0.003 0.114 0.121 95.3
β1 = 0.40 0.407 0.007 0.167 0.174 94.3
β2 = 0.30 0.290 -0.010 0.097 0.100 94.8
σu = 0.40 0.374 -0.026 0.071 0.080 93.6

0.859 α0 = −1.50 -1.509 0.513 -0.009 0.444 0.495 94.1
α1 = 0.30 0.346 0.046 0.604 0.726 94.3
α2 = 0.20 0.179 -0.021 0.361 0.409 94.8
σv = 0.30 0.303 0.003 0.502 0.372 94.6
τ = 0.0000 0.052 0.052 0.172 0.182 94.3

(100, 15) β0 = 0.20 0.204 0.004 0.070 0.075 95.1
β1 = 0.40 0.397 -0.003 0.086 0.090 94.8
β2 = 0.30 0.298 -0.002 0.050 0.052 95.4
σu = 0.40 0.399 -0.001 0.035 0.046 94.7

0.938 α0 = −1.50 -1.514 0.501 -0.014 0.263 0.271 94.6
α1 = 0.30 0.302 0.002 0.353 0.367 94.9
α2 = 0.20 0.190 -0.010 0.206 0.207 95.2
σv = 0.30 0.250 -0.050 0.295 0.210 99.1
τ = 0.0000 0.003 0.003 0.087 0.087 95.3
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Continued...Table 3.1

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(100, 30) β0 = 0.20 0.207 0.007 0.052 0.066 94.7
β1 = 0.40 0.401 0.001 0.059 0.060 95.2
β2 = 0.30 0.297 -0.003 0.035 0.034 95.5
σu = 0.40 0.392 -0.008 0.024 0.040 95.1

0.913 α0 = −1.50 -1.500 0.501 0.000 0.182 0.178 93.8
α1 = 0.30 0.303 0.003 0.244 0.239 94.9
α2 = 0.20 0.190 -0.010 0.142 0.140 94.6
σv = 0.30 0.292 -0.008 0.153 0.140 89.4
τ = 0.0000 0.004 0.004 0.060 0.058 94.0

(200,5) β0 = 0.20 0.202 0.002 0.081 0.080 95.1
β1 = 0.40 0.401 0.001 0.116 0.115 95.1
β2 = 0.30 0.297 -0.003 0.067 0.067 94.6
σu = 0.40 0.390 -0.010 0.048 0.052 95.1

0.900 α0 = −1.50 -1.506 0.506 -0.006 0.326 0.338 94.9
α1 = 0.30 0.302 0.002 0.440 0.479 95.1
α2 = 0.20 0.185 -0.015 0.256 0.267 94.4
σc = 0.30 0.292 -0.008 0.431 0.308 96.4
τ = 0.0000 0.026 0.026 0.122 0.121 94.4

(200,15) β0 = 0.20 0.197 -0.003 0.049 0.052 94.6
β1 = 0.40 0.400 -0.000 0.061 0.062 95.1
β2 = 0.30 0.301 0.001 0.036 0.036 95.5
σu = 0.40 0.394 -0.006 0.025 0.032 95.2

0.932 α0 = −1.50 -1.505 0.502 -0.005 0.182 0.182 95.4
α1 = 0.30 0.298 -0.002 0.248 0.251 95.7
α2 = 0.20 0.197 -0.003 0.144 0.141 95.7
σc = 0.30 0.276 -0.024 0.211 0.167 99.7
τ = 0.0000 0.006 0.006 0.062 0.064 94.8

(200,30) β0 = 0.20 0.206 0.006 0.038 0.050 94.8
β1 = 0.40 0.398 -0.002 0.042 0.042 95.1
β2 = 0.30 0.300 0.000 0.024 0.024 95.2
σu = 0.40 0.387 -0.013 0.017 0.030 93.8

0.922 α0 = −1.50 -1.496 0.502 0.004 0.128 0.127 95.0
α1 = 0.30 0.301 0.001 0.173 0.169 95.4
α2 = 0.20 0.202 0.002 0.100 0.098 95.8
σc = 0.30 0.313 0.013 0.097 0.088 95.2
τ = 0.0000 0.008 0.008 0.042 0.042 94.7
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Table 3.2: Simulated mean (SM), simulated mean of mixing proportion (SMP), amount of bias
(Bias), estimated and simulated standard error (ESE, SSE) and coverage probability (Cov.Pr)
for estimating Marginal Parameters: (β, σu); Component-1 Parameters (α, σc) and τ for mixing
proportion π∗ = 0.70 from REMPois-Pois model for different number of clusters and various cluster
sizes

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(50,5) β0 = 0.20 0.206 0.006 0.183 0.194 94.7
β1 = 0.40 0.388 -0.012 0.259 0.278 94.1
β2 = 0.30 0.302 0.002 0.149 0.158 95.9
σu = 0.40 0.371 -0.029 0.103 0.142 93.9

0.884 α0 = −1.50 -1.507 0.704 -0.007 0.424 0.462 94.8
α1 = 0.30 0.258 -0.042 0.621 0.715 94.5
α2 = 0.20 0.184 -0.016 0.361 0.398 94.5
σc = 0.30 0.277 -0.023 0.419 0.329 95.4
τ = 0.8473 0.868 0.020 0.184 0.195 94.8

(50,15) β0 = 0.20 0.212 0.012 0.124 0.131 95.8
β1 = 0.40 0.395 -0.005 0.162 0.166 94.6
β2 = 0.30 0.298 -0.002 0.093 0.094 95.2
σu = 0.40 0.398 -0.002 0.068 0.098 94.6

0.922 α0 = −1.50 -1.518 0.699 -0.018 0.291 0.291 94.1
α1 = 0.30 0.297 -0.003 0.431 0.441 94.8
α2 = 0.20 0.193 -0.007 0.247 0.240 95.0
σc = 0.30 0.263 -0.037 0.291 0.218 98.4
τ = 0.8473 0.842 -0.005 0.125 0.129 96.0

(50,30) β0 = 0.20 0.211 0.011 0.074 0.105 95.3
β1 = 0.40 0.405 0.005 0.082 0.088 94.7
β2 = 0.30 0.300 0.000 0.047 0.047 94.7
σu = 0.40 0.396 -0.004 0.034 0.058 95.6

0.912 α0 = −1.50 -1.507 0.700 -0.007 0.169 0.171 95.0
α1 = 0.30 0.303 0.003 0.235 0.239 95.4
α2 = 0.20 0.201 0.001 0.136 0.136 94.8
σc = 0.30 0.287 -0.013 0.119 0.110 95.1
τ = 0.8473 0.848 0.001 0.068 0.071 94.2

(100, 5) β0 = 0.20 0.205 0.005 0.126 0.133 95.3
β1 = 0.40 0.396 -0.004 0.175 0.186 95.0
β2 = 0.30 0.300 -0.000 0.102 0.106 95.0
σu = 0.40 0.385 -0.015 0.072 0.086 94.8

0.912 α0 = −1.50 -1.509 0.703 -0.009 0.292 0.292 95.3
α1 = 0.30 0.310 0.010 0.424 0.432 94.7
α2 = 0.20 0.181 -0.019 0.248 0.260 95.3
σv = 0.30 0.257 -0.043 0.369 0.244 98.7
τ = 0.8473 0.864 0.016 0.133 0.140 94.7

(100, 15) β0 = 0.20 0.209 0.009 0.073 0.079 95.4
β1 = 0.40 0.397 -0.003 0.086 0.085 94.9
β2 = 0.30 0.300 0.000 0.050 0.051 94.7
σu = 0.40 0.397 -0.003 0.036 0.052 94.7

0.918 α0 = −1.50 -1.494 0.701 0.006 0.167 0.174 94.4
α1 = 0.30 0.285 -0.015 0.234 0.241 95.2
α2 = 0.20 0.203 0.003 0.137 0.138 94.6
σv = 0.30 0.275 -0.025 0.156 0.142 87.9
τ = 0.8473 0.853 0.006 0.070 0.071 95.1
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Continued...Table 3.2

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(100, 30) β0 = 0.20 0.211 0.011 0.053 0.074 94.8
β1 = 0.40 0.397 -0.003 0.057 0.057 94.5
β2 = 0.30 0.299 -0.001 0.033 0.034 94.2
σu = 0.40 0.390 -0.010 0.024 0.045 95.0

0.929 α0 = −1.50 -1.500 0.701 0.000 0.118 0.118 95.2
α1 = 0.30 0.293 -0.007 0.164 0.166 94.7
α2 = 0.20 0.203 0.003 0.096 0.098 95.2
σv = 0.30 0.297 -0.003 0.079 0.071 95.7
τ = 0.8473 0.851 0.004 0.048 0.047 95.2

(200,5) β0 = 0.20 0.198 -0.002 0.090 0.092 94.2
β1 = 0.40 0.405 0.005 0.122 0.127 95.7
β2 = 0.30 0.303 0.003 0.071 0.075 95.1
σu = 0.40 0.391 -0.009 0.049 0.055 94.2

0.933 α0 = −1.50 -1.509 0.701 -0.009 0.208 0.206 95.1
α1 = 0.30 0.303 0.003 0.297 0.302 95.2
α2 = 0.20 0.193 -0.007 0.172 0.178 94.6
σc = 0.30 0.272 -0.028 0.276 0.203 99.2
τ = 0.8473 0.852 0.005 0.093 0.094 95.2

(200,15) β0 = 0.20 0.204 0.004 0.052 0.056 94.5
β1 = 0.40 0.398 -0.002 0.061 0.060 94.2
β2 = 0.30 0.299 -0.001 0.036 0.036 94.5
σu = 0.40 0.394 -0.006 0.026 0.035 94.6

0.926 α0 = −1.50 -1.498 0.701 0.002 0.117 0.112 95.8
α1 = 0.30 0.300 -0.000 0.166 0.166 95.6
α2 = 0.20 0.198 -0.002 0.097 0.098 95.9
σc = 0.30 0.300 0.000 0.097 0.085 96.4
τ = 0.8473 0.853 0.005 0.050 0.051 94.4

(200,30) β0 = 0.20 0.209 0.009 0.038 0.052 95.0
β1 = 0.40 0.400 0.000 0.041 0.043 95.3
β2 = 0.30 0.299 -0.001 0.024 0.024 95.1
σu = 0.40 0.383 -0.017 0.017 0.031 92.8

0.960 α0 = −1.50 -1.501 0.701 -0.001 0.084 0.086 94.5
α1 = 0.30 0.307 0.007 0.117 0.120 94.9
α2 = 0.20 0.200 0.000 0.068 0.069 95.7
σc = 0.30 0.303 0.003 0.054 0.051 94.6
τ = 0.8473 0.854 0.007 0.034 0.034 93.5

The amount of bias of τ was 0.082, 0.039 and 0.005 when ni = 5, 15 and 30, respectively

for K = 50. These amounts were 0.052, 0.003 and 0.004 for ni = 5, 15 and 30, respectively

when K = 100; these figures were 0.026, 0.006 and 0.008 for ni = 5, 15 and 30, respectively

if K = 200.

The convergence rate increases with increasing the cluster size. For example, the conver-
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gence rate of the ML estimation technique was 0.789, 0.846 and 0.920 when ni = 5, 15 and

30, respectively for K = 50 whereas, these amount were 0.859, 0.938 and 0.913 for ni = 5,

15 and 30, respectively when K = 100; these were 0.900, 0.932 and 0.922 for ni = 5, 15 and

30, respectively if K = 200. It was found that the coverage probabilities always lied in the

nominal level of confidence for all the setups.

Extensive simulation studies have also been conducted for mixing proportion, π∗ = 0.70

and 0.90. The results of simulation studies for π∗ = 0.70 and 0.90 were presented in Table

3.2 and Table 3.3, respectively. The results obtained from Table 3.2, and Table 3.3 are

very similar with the results obtained from Table 3.1 but, the convergence rates went up

for π∗ = 0.70 and 0.90. The convergence rates were lied from 84% to 97% depending on the

simulation setup.
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Table 3.3: Simulated mean (SM), simulated mean of mixing proportion (SMP), amount of bias
(Bias), estimated and simulated standard error (ESE, SSE) and coverage probability (Cov.Pr)
for estimating Marginal Parameters: (β, σu); Component-1 Parameters (α, σc) and τ for mixing
proportion π∗ = 0.90 from REMPois-Pois model for different number of clusters and various cluster
sizes

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(50,5) β0 = 0.20 0.156 -0.044 0.233 0.367 95.1
β1 = 0.40 0.415 0.015 0.279 0.458 95.7
β2 = 0.30 0.308 0.008 0.158 0.244 94.7
σu = 0.40 0.471 0.071 0.097 0.323 95.7

0.845 α0 = −1.50 -1.521 0.896 -0.021 0.301 0.306 95.7
α1 = 0.30 0.280 -0.020 0.461 0.483 94.2
α2 = 0.20 0.210 0.010 0.267 0.271 94.7
σc = 0.30 0.217 -0.083 0.312 0.243 98.8
τ = 2.1972 2.150 -0.047 0.215 0.229 94.4

(50,15) β0 = 0.20 0.212 0.012 0.127 0.157 94.7
β1 = 0.40 0.396 -0.004 0.126 0.145 95.1
β2 = 0.30 0.300 -0.000 0.073 0.084 95.0
σu = 0.40 0.408 0.008 0.049 0.098 94.6

0.913 α0 = −1.50 -1.501 0.900 -0.001 0.166 0.166 94.9
α1 = 0.30 0.300 -0.000 0.249 0.252 95.7
α2 = 0.20 0.202 0.002 0.146 0.147 95.0
σc = 0.30 0.277 -0.023 0.130 0.123 91.5
τ = 2.1972 2.198 0.000 0.123 0.119 95.6

(50,30) β0 = 0.20 0.215 0.015 0.088 0.125 94.2
β1 = 0.40 0.398 -0.002 0.077 0.084 94.4
β2 = 0.30 0.303 0.003 0.045 0.049 95.1
σu = 0.40 0.392 -0.008 0.031 0.072 95.6

0.926 α0 = −1.50 -1.505 0.900 -0.005 0.124 0.126 94.5
α1 = 0.30 0.303 0.003 0.174 0.180 95.6
α2 = 0.20 0.202 0.002 0.101 0.102 95.2
σc = 0.30 0.297 -0.003 0.075 0.071 94.3
τ = 2.1972 2.199 0.002 0.087 0.085 95.5

(100, 5) β0 = 0.20 0.194 -0.006 0.168 0.195 94.4
β1 = 0.40 0.408 0.008 0.194 0.244 95.3
β2 = 0.30 0.306 0.006 0.112 0.135 94.0
σu = 0.40 0.407 0.007 0.064 0.114 95.9

0.903 α0 = −1.50 -1.509 0.900 -0.009 0.206 0.208 94.8
α1 = 0.30 0.300 -0.000 0.310 0.314 94.2
α2 = 0.20 0.195 -0.005 0.181 0.180 94.9
σv = 0.30 0.244 -0.056 0.254 0.182 99.6
τ = 2.1972 2.194 -0.003 0.152 0.150 95.2

(100, 15) β0 = 0.20 0.207 0.007 0.092 0.113 94.7
β1 = 0.40 0.401 0.001 0.088 0.102 94.5
β2 = 0.30 0.301 0.001 0.051 0.055 95.9
σu = 0.40 0.397 -0.003 0.033 0.062 96.5

0.920 α0 = −1.50 -1.500 0.900 -0.000 0.121 0.121 94.6
α1 = 0.30 0.300 -0.000 0.174 0.174 95.1
α2 = 0.20 0.206 0.006 0.102 0.096 94.2
σv = 0.30 0.289 -0.011 0.086 0.078 96.2
τ = 2.1972 2.196 -0.001 0.087 0.085 95.7
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Continued...Table 3.3

(K,ni) Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

(100, 30) β0 = 0.20 0.212 0.012 0.063 0.093 94.6
β1 = 0.40 0.401 0.001 0.055 0.058 95.3
β2 = 0.30 0.300 0.000 0.032 0.036 94.4
σu = 0.40 0.378 -0.022 0.022 0.049 94.5

0.970 α0 = −1.50 -1.496 0.901 0.004 0.087 0.086 95.8
α1 = 0.30 0.300 -0.000 0.122 0.123 95.4
α2 = 0.20 0.197 -0.003 0.071 0.071 94.0
σv = 0.30 0.297 -0.003 0.052 0.052 95.4
τ = 2.1972 2.204 0.007 0.062 0.060 94.9

(200,5) β0 = 0.20 0.204 0.004 0.119 0.128 95.0
β1 = 0.40 0.401 0.001 0.136 0.154 94.4
β2 = 0.30 0.300 0.000 0.079 0.089 94.6
σu = 0.40 0.396 -0.004 0.043 0.061 95.2

0.929 α0 = −1.50 -1.504 0.900 -0.004 0.146 0.145 94.2
α1 = 0.30 0.290 -0.010 0.216 0.217 94.0
α2 = 0.20 0.205 0.005 0.126 0.134 94.3
σc = 0.30 0.255 -0.045 0.182 0.152 85.0
τ = 2.1972 2.195 -0.002 0.107 0.108 96.1

(200,15) β0 = 0.20 0.204 0.004 0.065 0.076 95.0
β1 = 0.40 0.399 -0.001 0.062 0.065 95.3
β2 = 0.30 0.298 -0.002 0.036 0.039 94.8
σu = 0.40 0.384 -0.016 0.023 0.037 93.1

0.956 α0 = −1.50 -1.494 0.901 0.006 0.085 0.083 93.8
α1 = 0.30 0.294 -0.006 0.123 0.122 94.7
α2 = 0.20 0.198 -0.002 0.072 0.071 95.4
σc = 0.30 0.298 -0.002 0.058 0.056 94.8
τ = 2.1972 2.204 0.007 0.062 0.061 95.2

(200,30) β0 = 0.20 0.205 0.005 0.046 0.066 94.7
β1 = 0.40 0.401 0.001 0.039 0.041 94.8
β2 = 0.30 0.299 -0.001 0.023 0.025 96.6
σu = 0.40 0.370 -0.030 0.015 0.032 86.1

0.965 α0 = −1.50 -1.497 0.901 0.003 0.062 0.058 94.6
α1 = 0.30 0.298 -0.002 0.087 0.085 95.5
α2 = 0.20 0.200 -0.000 0.050 0.051 95.1
σc = 0.30 0.303 0.003 0.036 0.035 94.7
τ = 2.1972 2.207 0.010 0.044 0.045 94.0

The MSE of β0, β1, β2, σu were shown in Figures 3.1-3.4, respectively. In each figure, part

(a), part (b) and part (c) were drawn for π∗ = 0.50, 0.70 and 0.90, respectively. From these

figures, it is depicted that the MSEs were very close to zero for all the indicated situations

when cluster size is considered as 15 or 30. Also, the MSEs decreases for increasing cluster

size and/or number of clusters.
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The intra-cluster correlation coefficient (ICC) and its estimated value were computed

using Eq.(3.16) by employing the values of the true parameters and their estimates, re-

spectively. The ICC and estimates of ICC was given in the Appendix B (Section B.4) for

different number of clusters and various cluster sizes and for varying probability of mixture

in Table-B.1. Using Eq.(3.14)-Eq.(3.16), it can be easily observed that the ICC decreases as

the unconditional variance of Yij increases, and the unconditional variance of Yij increases

with increasing the mixing probability. The true values of ICC were range from 0.10747 to

0.10873 and its estimates were from 0.09832 to 0.10785 when we considered π∗ = 0.50; the

true ICCs varied from 0.06224 to 0.06258 and its estimates were from 0.05792 to 0.06465

when π∗ = 0.70 ; and the values of ICC went from 0.02006 to 0.02008 and its estimates

were from 0.01743 to 0.03697 when π∗ = 0.90 for different number of clusters and various

cluster sizes. Although the ICC can varies 0 to 1 theoretically, the ICCs can be observed

as small value such as 0.01 or 0.02 for discrete clustered data in most of the human studies

(Peerawaranun et al., 2019; Killip et al., 2004; Murray and Short, 1997).
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(b) Cluster size vs. MSE for π∗ = 0.70
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(c) Cluster size vs. MSE for π∗ = 0.90

Figure 3.1: A comparison of MSE from REMPois-Pois models with different mixing probability
and varying cluster sizes for the regression parameter β0 = 0.20
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(c) Cluster size vs. MSE for π∗ = 0.90

Figure 3.2: A comparison of MSE from REMPois-Pois models with different mixing probability
and varying cluster sizes for the regression parameter β1 = 0.40
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Figure 3.3: A comparison of MSE from REMPois-Pois models with different mixing probability
and varying cluster sizes for the regression parameter β2 = 0.30
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Figure 3.4: A comparison of MSE from REMPois-Pois models with different mixing probability
and varying cluster sizes for the regression parameter σu = 0.40
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3.2.2 The situation when ρ∗ > 0

A simulation study was also conducted for evaluating the performance of the proposed model

by considering bivariate random effects for fixed number of 200 clusters each with size 10.

In this case, a low (ρ∗ = 0.30) degree and a high (ρ∗ = 0.70) degree of positive correlation

between the random effects for marginal means and random effects for component-1 means

had been considered. These random effects had been utilized in generating two-component

Poisson count clustered data only by using τ = 0.8473 (π∗ = 0.70). At the step-1 of

simulation study, K bivariate random variables, (U1, C1), · · · , (UK , CK) from N2(0,Σ) had

been generated and each paired variable was then repeated ni times (i = 1, · · · , K) to make

up the n values of U and C. Since the values of all other parameters were considered same

as the simulation study for ρ∗ = 0, step-2 to step-6 of the simulation study for ρ∗ = 0 were

followed. Results of the simulation studies were presented in Table 3.4, which also reports

the SM, SMP, Bias, ESE, SSE, Cov.Pr. and Conv.Prop. computed from 1000 replications.

From Table 3.4, it was observed that the performance of the proposed model with bivariate

random effects was similar as the performance of the proposed model with independent

random effects. Also, the true values of ICC and its estimates were found similar as those

values computed for ρ∗ = 0 and for π∗ = 0.70. However, the Conv.Prop. decreases while

considering bivariate random effects.
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Table 3.4: Results from simulation study for estimating marginal parameters: (β, σu);
component-1 parameters (α, σc) from REMPois-Pois model by considering correlated u and c
(random effects for marginal and subpopulation) with mixing proportion π∗ = 0.70 and cluster
size 10 for 200 clusters

Conv.Prop. Params SM SMP Bias ESE SSE Cov.Pr.

β0 = 0.20 0.199 -0.001 0.064 0.061 94.7
β1 = 0.40 0.400 0.000 0.079 0.080 94.7
β2 = 0.30 0.304 0.004 0.046 0.046 94.8
σu = 0.40 0.398 -0.002 0.037 0.038 95.5
α0 = −1.50 -1.503 -0.003 0.146 0.142 95.5

0.732 α1 = 0.30 0.307 0.701 0.007 0.204 0.210 95.2
α2 = 0.20 0.205 0.005 0.119 0.120 95.6
σc = 0.30 0.272 -0.028 0.119 0.133 94.4
ρ∗unres = 0.3568 0.468 0.112 0.215 0.284 91.4
τ = 0.8473 0.852 0.004 0.062 0.060 94.9
ρ∗ = 0.30 0.367 0.067

β0 = 0.20 0.202 0.002 0.064 0.063 95.0
β1 = 0.40 0.402 0.002 0.079 0.079 94.1
β2 = 0.30 0.300 0.000 0.046 0.043 94.5
σu = 0.40 0.401 0.001 0.037 0.036 94.3
α0 = −1.50 -1.510 -0.010 0.148 0.147 94.1

0.767 α1 = 0.30 0.303 0.700 0.003 0.204 0.209 94.5
α2 = 0.20 0.204 0.004 0.119 0.114 95.3
σc = 0.30 0.323 0.023 0.100 0.097 95.0
ρ∗unres = 1.204 1.153 -0.051 0.320 0.385 96.7
τ = 0.8473 0.849 0.002 0.061 0.064 94.9
ρ∗ = 0.70 0.660 -0.040

3.3 Illustration

To illustrate the application of REMPois-Pois model, a nationwide representative data ex-

tracted from the 2014 Bangladesh Demographic and Health Survey (BDHS) have been

utilized. The data and variables were described in the Section 2.5.

3.3.1 Results

The mean, standard deviation, minimum and maximum of the number of ANC visits for

the data under consideration were 2.78, 2.56, 0 and 20, respectively. The distribution of
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Table 3.5: The estimated parameters and other statistics for REMPois-Pois models for analyzing
the number of ANC visits during a pregnancy period, BDHS 2014

Variable name Estimates SE p-value IRR

Marginalized Poisson-Poisson model:
Intercept 0.340 0.066 <0.001

Area of residence
Rural (ref)
Urban 0.204 0.038 <0.001 1.226

Level of education
No education (ref)
Primary 0.256 0.058 <0.001 1.291
Secondary 0.458 0.057 <0.001 1.581
Higher 0.659 0.064 <0.001 1.933

Media exposure
Not exposure (ref)
Exposure 0.174 0.032 <0.001 1.190

Maternal age (years)
<20 -0.079 0.033 0.016 0.924
20-29 (ref)
≥30 0.060 0.042 0.153 1.062

Gap between husband age and wife age (years)
Non-positive 0.186 0.110 0.092 1.205
1-5 (ref)
6-10 0.002 0.029 0.953 1.002
>10 -0.010 0.032 0.766 0.990

Number of reasons wife beating justified
Not at all (ref)
1-2 -0.019 0.033 0.561 0.981
3-5 -0.055 0.049 0.264 0.946

Wealth index
Poor (ref)
Middle 0.133 0.039 0.001 1.142
Rich 0.328 0.044 <0.001 1.388

Birth Order
1 (ref)
2 -0.065 0.032 0.044 0.937
3 -0.132 0.045 0.003 0.876
≥4 -0.276 0.059 <0.001 0.759

Random effect :σu 0.297 0.016 <0.001

Corr(marginal,subpopulation):ρ∗u,c 0.844
Intra-cluster correlation:ρ 0.124

AIC 17737
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Continued...Table 3.5

Variable name Estimates SE p-value IRR

Model for Component-1:
Intercept -0.790 0.198 <0.001

Area of residence
Rural (ref)
Urban 0.259 0.071 <0.001 -

Level of education
No education (ref)
Primary 0.420 0.161 0.009 -
Secondary 0.904 0.165 <0.001 -
Higher 1.151 0.178 <0.001 -

Media exposure
Not exposure (ref)
Exposure 0.290 0.069 <0.001 -

Maternal age (years)
<20 -0.214 0.069 0.002 -
20-29 (ref)
≥30 0.232 0.084 0.006 -

Gap between husband age and wife age (years)
Non-positive 0.232 0.084 0.006 -
1-5 (ref)
6-10 0.077 0.062 0.213 -
>10 0.149 0.070 0.032 -

Number of reasons wife beating justified
Not at all (ref)
1-2 -0.051 0.065 0.433 -
3-5 -0.239 0.104 0.022 -

Wealth index
Poor (ref)
Middle 0.402 0.082 <0.001 -
Rich 0.699 0.095 <0.001 -

Birth Order
1 (ref)
2 -0.240 0.071 0.001 -
3 -0.335 0.097 0.001 -
≥4 -0.693 0.128 <0.001 -

Random effect :σc 0.431 0.018 <0.001

Mixing Proportion: π∗ 0.582

the number of ANC visits is presented in Figure 2.4 which indicates the zero-inflated model

would be suited for the data. At first a null model had been fitted to investigate the

applicability of the proposed REMPois-Pois model in the data under consideration. From

the null model, it was observed that the frequency of ANC visits in Bangladesh arises from
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mixture of two unobserved populations with mixing proportion π∗ = 0.66; the random

effects had significant influence on both the marginal model as well as subpopulations; and

the random effects possess high positive correlation (0.85). This findings motivated us to fit

a REMPois-Pois model for analyzing data under consideration. For the full model, the AIC

of fitted REMPois-Pois model was found as 17737 while it was 17757 for random effects

negative binomial model and 18372 for random effects Poisson model. The main aim of this

illustration is to find some important determinants of the outcome variable under study as

well as to estimate the intra-cluster correlation (ρ).

The results of the fitted REMPois-Pois model are presented in Table 3.5. From Table

3.5, it was found that the covariates area of residence, level of education, media exposure,

maternal age, gap between husband age and wife age (years), wealth index, birth order are

the factors had significant influence on the number of ANC visits during the pregnancy

period of a woman; the intra-cluster correlation under the fitted model was ρ̂ = 0.124;

and the correlation between the random effects for marginal model and subpopulation was

(ρ̂∗ = 0.844). It was observed that, the estimated incidence rate of ANC visits was 22.6%

higher for urban women as compared to rural women (p-value<0.001). The IRR of ANC

visits were 1.291, 1.581, 1.933 for mothers with education level ‘primary’, ‘secondary’ and

‘higher’ respectively to mothers with education level ‘no education’. All three categories of

‘level of education’ were statistically significant with p-value<0.001. The IRR of ANC visits

was 1.19 for mothers with exposed media to unexposed media (p-value<0.001). The rate

of ANC visits was 7.6% lower for mothers who gave their index birth below 20 years of age

(p-value<0.05) than those who gave birth during age 20-29 years. However, the rate was

statistically insignificant for mothers who gave birth at age ≥ 30 years than those who gave
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birth during age 20-29 years. The incidence rate of ANC visits were 20.5% higher for women

whose husband were not older than them compared to the women whose husband were 1-5

years older than them . However, the rate was statistically insignificant for other categories

of ‘gap between husband age and wife age (years)’. The rates of ANC visits were statistically

insignificant among all categories of ‘number of reasons wife beating justified’. The rate of

ANC visit was 14.2% higher for the mothers from middle-wealth households (p-value<0.01)

than the poor households, and 38.8% higher for the mothers from rich households than

the poor households (p-value<0.001). The rate of ANC visits of mothers during their

pregnancy were 6.3%, 12.4% and 24.1% less likely for the second birth, third birth and forth

or upper order birth respectively compared to the first birth. It was also experienced that

the marginal mean parameters were estimated from mixture of two latent subpopulations

with the proportions 0.58 and 0.42; the random effects had significant influence on both the

marginal model (σ̂u = 0.297, p-value <0.001) as well as subpopulations (σ̂c = 0.431, p-value

<0.001) ; and the random effects possess high positive correlation (0.84) after adjusting the

covariates.

3.4 Conclusion

Like cross-sectional setup, it is impossible to obtain the inference regarding the exposure

effects on the marginal mean (marginalized over subpopulations) from latent class regression

model for clustered data. Therefore, the marginal inference from the existing Poisson-

Poisson mixture model with random effects is hardly possible. In this chapter, we have

developed a marginalized two components Poisson mixture model with random effects for
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clustered count data. The parameters of the proposed model have been estimated by using

the ML method. However, this estimation technique requires evaluating the integrals while

maximizing the log-likelihood function, which results in an intractable form of the marginal

distribution of responses within a cluster. To address the difficulty, we have utilized the

Gauss–Hermite quadrature method to approximate the integral for the random effects.

The proposed method enables us to directly model the marginal cluster specific mean and

it controls latent class-based unexplained heterogeneity. Therefore, the proposed REMPois-

Pois model provides inference of parameters that allows marginal interpretation rater than

latent class interpretation of the parameters along with the inference of random effects

parameters as well as the intra-cluster correlation coefficient.

The performance of the proposed model has been examined by conducting extensive

simulation studies. It was observed from the simulation studies that the REMPois-Pois

model provides estimates with low bias and low MSE when the number of clusters as well

as the cluster size were considered large.

In this study, a nationally representative data set from Bangladesh has been analyzed

using the proposed model as an illustration. It was found that the sampled data have been

arisen from two latent subpopulations using mixing probability of 0.582. The potential

predictors for the frequency of ANC visits were determined by fitting the proposed model. It

was observed that the intraclass correlation between the random effects of the marginalized

model and the component-1 model was high.
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Chapter 4

Marginalized Mixture Models: Zero-Inflated
Repeated Measures Count Data

Repeated measures data, known as longitudinal data, usually comprise of responses

obtained from each individual repeatedly at multiple occasions. Since the observations are

obtained from same individual, they are likely to exhibit positive correlation in longitudinal

setup (Fitzmaurice et al., 2012). The method of analyzing such data is usually complex due

to the relationship among the observed values of the response variable. However, various

analytical methods have been developed by taking the correlation or covariance into account

for analyzing discrete longitudinal data (Liang and Zeger, 1986; Fitzmaurice and Laird, 1993;

Hall and Severini, 1998; Zhao and Prentice, 1990; Prentice and Zhao, 1991; Zhao et al., 1992;

Sutradhar and Das, 1999).

The maximum likelihood (ML) estimation of regression parameters of the model fo the

repeated count responses had been found difficult. This is because the joint probability

distribution of repeated count responses has complicated functional form. To solve the dif-

ficulty, Liang and Zeger (1986) proposed a ‘working’ correlation structure based generalized

estimating equation (GEE) to obtain the consistent estimates of regression parameters by

using generalized linear model (GLM) framework. In this approach, the ‘working’ correla-

tion parameters are estimated by ‘method of moments’ and these estimates are then use in

the GEE for the regression parameters. However, the method proposed by Liang and Zeger

(1986) may lead to a complete breakdown in the estimation method because of uncertainty
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of the definition of ‘working’ correlation (Crowder, 1995). Later, Fitzmaurice and Laird

(1993); Hall and Severini (1998) have developed estimating equation for finding estimates of

regression parameters and parameters for ‘working’ correlation simultaneously. Addition-

ally, Zhao and Prentice (1990); Prentice and Zhao (1991); Zhao et al. (1992) have developed

an extended GEE method for joint estimation of the regression parameters and the true

correlation parameters. Although ‘working’ correlation based GEE estimators (Liang and

Zeger, 1986) were developed with a view to gaining efficiency, Sutradhar and Das (1999);

Sutradhar and Kumar (2001) have argued that the efficiency of these estimators are rather

less than the efficiency of ‘working’ independence based estimators in many situations. In

order to gaining efficiency of the estimators, Sutradhar and Das (1999) proposed a gen-

eralized quasi-likelihood (GQL) approach for the estimation of the regression parameters

of the longitudinal model with true correlation structure and the correlation parameters

are then estimated by using the method of moments. The estimating equations of the

GQL appraoch use a general longitudinal autocorrelation structure which accommodates

Gaussian-type AR(1), MA(1) and exchangeable correlations. After reviewing some existing

methods of estimation (Liang and Zeger, 1986; Fitzmaurice and Laird, 1993; Hall and Sev-

erini, 1998; Sutradhar and Das, 1999), Sutradhar (2003) recommended GQL approach of

estimation for the regression parameters as well as method of moments estimation of true

longitudinal correlations in analyzing longitudinal discrete data. The method suggested by

Sutradhar (2003) is much simpler than other existing methods and it does not encounter

convergence problems.

Statistical techniques for analyzing longitudinal count data with excess zeros have been

taking researcher’s attention to a great extent in various disciplines like engineering, biomed-
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ical science, public health, demography, economics, and social science (Alfò and Maruotti,

2010; Mekonnen et al., 2019; Buu et al., 2012; Dobbie and Welsh, 2001; Min and Agresti,

2005; Zhu et al., 2017; Hasan and Sneddon, 2009; Hasan et al., 2016). In Chapter-3, a

random effect MPois-Pois model with inference procedure has been developed for analyzing

clustered data. In such cases, the intraclass correlation can be incorporated by considering

a random effects term. A random effect model can also be applied in analyzing longitudinal

data as it can incorporate the equicorrelation structure based lag correlations through the

random effects (Sutradhar, 2011). Though random effect models are now frequently used in

analyzing longitudinal data, the time effects cannot be accommodated by using these corre-

lations. This is because the temporal effects of repeated measurement cannot be captured

by using the fixed random effects for an individual (Sutradhar, 2011). To overcome this

difficulty, we proposed a mixture of longitudinal Poisson count model in this chapter with a

view to drawing marginal inference regarding exposure effects and longitudinal correlation

for analyzing zero-inflated repeated measures count data.

Assuming various correlation structure such as AR(1), MA(1), equicorrelation structure,

longitudinal data containing zero-heavy count responses have been studied by researchers in

the past two decades (Hall and Zhang, 2004; Hasan and Sneddon, 2009; Hasan et al., 2016).

In analyzing excess zero longitudinal count data, the researchers assumed existing method

of zero-inflation i.e., they had considered that the data arise by the mixture of ‘not-at-risk’

and ‘at-risk’ populations. In order to analyze zero-inflated longitudinal count data, Hall and

Zhang (2004) developed marginal models for Poisson part as well as for zero part separately.

They employed the usual EM algorithm for fitting zero-inflated models, in which the M step

is replaced by the solution of a GEE to take into account longitudinal correlation. Hasan and
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Sneddon (2009) proposed an extension of ZIP model for analyzing longitudinal count data by

utilizing a non stationary observation-driven time series model based correlation structure

such as AR(1), MA(1), and equicorrelation structure. Following Sutradhar and Das (1999),

they suggested to estimated the parameters of the proposed model using GQL technique by

incorporating the true correlation structure. The main limitation of the observation-driven

approach is that it cannot accommodate additional over-dispersion parameter which may

present in longitudinal count data (Sutradhar and Bari, 2007; Hasan and Sneddon, 2009).

This limitation is overcome by using a parameter-driven model, where the longitudinal

correlation is captured through the latent process using random effects. A comparison of

the observation-driven ZIP model (Hasan and Sneddon, 2009) with the parameter-driven

model also have been studied by the researchers (Hasan et al., 2016).

A two-component mixture of ‘at-risk’ populations has been proposed for drawing marginal

(marginalization over the subpopulations and over the individuals) inference in analyzing

longitudinal count data in this study. For this purpose, we have extended the cross-sectional

MPois-Pois mixture model (Benecha et al., 2017) given in Eq.(2.20)-Eq.(2.21) for drawing

marginal inferences for longitudinal count data with excess zeros in this chapter. This model

is named as repeated measures MPois-Pois (RMMPois-Pois) model. In the RMMPois-Pois

model, it is assumed that if the observation obtained from an individual at the first time

point belongs to a specific subpopulation, then all other observations obtained from that

individual at other time points also belong to that subpopulation. A generalized quasilike-

lihood (GQL) based estimating equation approach for regression parameters and method of

moment approach for true longitudinal correlation have been utilized following Sutradhar

and Das (1999) for estimating the parameters of the proposed marginalized model.
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4.1 MPois-Pois Model for Repeated Measures Count

Data

Suppose that K independent individuals are selected randomly from a population and

that the data are collected from the ith (i = 1, · · · , K) individual at time points t, t =

1, · · · , T . Let Yit be the count variable of interest and xit be a p-dimensional vector of

covariates for the ith individual at tth time point. To develop the RMMPois-Pois model, it

is assumed that the population is comprised of component-1 and component-2 and for the

ith individual if the response yi1 is arisen from component-1 as the first repeated outcome,

then for t = 2, · · · , T , the set {yit} is also arisen from component-1; similarly, if yi1 comes

from component-2, other responses yi2, · · · , yiT are also from component-2.

4.1.1 Two-component Mixture of Longitudinal Poisson Models

Let the mean response for component-1 at tth time point is µ1,it and for component-2, it is

denoted by µ2,it, t = 1, · · · , T . Recall that the membership of the subpopulation is denoted

by random variable Di with the realization di, where Di is the latent Bernoulli random

variable with P [Di = 1] = π∗. Then for i = 1, · · · , K and t = 1, · · · , T , we have

Yit|di ∼Pois
(
diµ1,it + [1− di]µ2,it

)
, di = 0, 1. (4.1)

The conditional means, and variances are as follows

E
[
Yit|di

]
= diµ1,it + (1− di)µ2,it = var

[
Yit|di

]
.

Let ρ∗l and ρ∗∗l be the lag-l, l = 1, . . . , (T − 1) correlation between pair of observations

obtained from any individual in component-1 and component-2, respectively. Then the
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conditional lag-l correlation is given as follows.

corr
[
Yit, Yit′|di

]
= diρ

∗
l + (1− di)ρ∗∗l , l =| t− t′ |, t 6= t′, t, t′ = 1, · · · , T. (4.2)

Suppose that all possible lag-l correlations in the component-1 and the component-2 are

represented by the correlation matrices C1(ρ
∗) and C2(ρ

∗∗), respectively. Then C1(ρ
∗) is

defined as

C1(ρ
∗
1, ρ
∗
2, · · · , ρ∗T−1) =



1 ρ∗1 ρ∗2 . . . ρ∗T−1

ρ∗1 1 ρ∗1 . . . ρ∗T−2

ρ∗2 ρ∗1 1 . . . ρ∗T−3
...

...
...

. . .
...

ρ∗T−1 ρ∗T−2 ρ∗T−3 . . . 1


and C2(ρ

∗∗) can be defined similarly.

Suppose that Y i = (Yi1, · · · , Yit, · · · , YiT )′ be the T × 1 random vector for the re-

sponse variable and X i = (xi1, · · · ,xit, · · · ,xiT )′ be the T × p matrix of covariates for

ith individual, i = 1, · · · , K. Conditioning on the membership of the ith population, let

µ1,i = (µ1,i1, · · · , µ1,it, · · · , µ1,iT )′, where E[Yit|di = 1] = µ1,it, t = 1, · · · , T and µ2,i =

(µ2,i1, · · · , µ2,it, · · · , µ2,iT )′, where E[Yit|di = 0] = µ2,it, t = 1, · · · , T . Note that both µ1,i

and µ2,i, i = 1, · · · , K are the T ×1 vectors. Then the longitudinal Poisson-Poisson mixture

model can be formed as

log(µ1,i) = X iα, and log(µ2,i) = X iγ, i = 1, · · · , K, (4.3)

whereα and γ both are the p×1 vector of parameters for component-1 mean and component-

2 mean, respectively.
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4.1.2 Marginalized Mixture of Two-Component Longitudinal Pois-
son Models

Suppose that the marginalized (unconditional) mean vector is denoted by µi = E(Y i) =

(µi1, · · · , µit, · · · , µiT )′, where E[Yit] = µit, t = 1, · · · , T . Using similar computations as in

Eq.(2.15), the marginalized mean can be computed as

µi = [π∗µ1,i + (1− π∗)µ2,i], i = 1, · · · , K. (4.4)

Then the elements of the component-2 mean vector µ2,i can be computed as

µ2,it =
µit − π∗µ1,it

1− π∗
, t = 1, · · · , T. (4.5)

Also, the marginalized (unconditional) variance at a specific time point of ith individual

can be computed by using similar calculation as in Eq.(2.19), which is given by

var(Yit) = µit +
[ π∗

1− π∗
]
(µit − µ1,it)

2, i = 1, · · · , K, t = 1, · · · , T. (4.6)

Suppose that all possible lag-l correlations in the marginalized (unconditional) population

is represented by the correlation matrix C(ρ), where

C(ρ) = C(ρ1, ρ2, · · · , ρT−1) =



1 ρ1 ρ2 . . . ρT−1

ρ1 1 ρ1 . . . ρT−2

ρ2 ρ1 1 . . . ρT−3
...

...
...

. . .
...

ρT−1 ρT−2 ρT−3 . . . 1.


The elements of C(ρ) matrix, marginalized (unconditional) lag-l correlation between pair of

observations obtained from any individual, can be defined as

ρl =
cov(Yit, Yit′)√

var(Yit)var(Yit′)
,∀i = 1, · · · , K, l =| t− t′ |, t 6= t′, t, t′ = 1, · · · , T. (4.7)

Following Benecha et al. (2017), we can model both the marginal mean vector µi and

component-1 mean vector µ1,i of Eq.(4.4) as

log(µi) = X iβ, and log(µ1,i) = X iα, (4.8)
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respectively; where β and α both are the p× 1 vector of parameters for marginalized mean

and component-1 mean, respectively.

4.2 Estimation: GLM in Longitudinal Setup

The proposed model can be considered a mixture of GLMs in longitudinal setup, where

the main interest is to draw marginal (marginalization over the subpopulations) inference

of regression parameters. The most popular techniques for estimating the parameters of

GLM in analyzing the longitudinal data are the GEE and GQL approaches. Both these

techniques were derived from the quasi-likelihood (QL) estimation approach(Wedderburn,

1974; McCullagh, 1983). The following two subsections provide a brief discussion about

GEE and GQL methods.

4.2.1 Generalized Estimating Equation Method

Let Yit, t = 1, · · · , T, i = 1, · · · , K be the response variable of interest and xit be a p-

dimensional vector of covariates for the ith individual at the tth time point. Assume that

the probability distribution of Yit is a member of an exponential family given as follows

f(yit) = exp
[
{yitθit − b(θit) + a(yit)}φ

]
, i = 1, · · · , K, t = 1, · · · , T, (4.9)

where θit = h(ηit) with ηit = x′itβ, β be a p× 1 vector of regression parameters, and φ is a

possibly unknown scale parameter. If the underlying data strictly follow some probability

model, φ may be assumed to known. For example, we may use φ = 1 for binary and Poisson

data. The first two moments of the probability distribution as shown in Eq.(4.9) are given

by

E(Yit) = µit = b′(θit), var(Yit) = σ2
it = φ−1b′′(θit) (4.10)
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where b′(θit), and b′′(θit) are the first and second derivatives of b(θit) with respect to θit,

respectively. In longitudinal data setup, the repeated measurements of ith individual, yi, are

correlated. In such instance, following Wedderburn (1974) the quasi-likelihood estimating

equations can be written as
K∑
i=1

∂µ′i
∂β

Σ−1i (yi − µi) = 0, (4.11)

where µi = E(Y i) = (µi1, · · · , µit, · · · , µiT )′ is the mean vector and Σi = Var(Y i) is the

T × T covariance matrix of yi. But for discrete responses, the joint probability distribu-

tion of repeated observations have complicated functional form. Therefore, it is almost

impossible to compute the covariance terms Σi in Eq.(4.11). To solve this difficulty, Liang

and Zeger (1986) proposed a ‘working’ correlation structure based generalized estimating

equation (GEE) for repeated measures data to obtain the consistent estimates of regression

parameters for GLM.

Let R(ζ) be a T × T symmetric matrix fulfilling the requirement of being a correlation

matrix, and let ζ a correlation parameter. Liang and Zeger (1986) refer the matrix, R(ζ)

as a ‘working’ correlation matrix and suggested to use V i = A
1/2
i R(ζ)A

1/2
i instead of Σi in

Eq.(4.11), where Ai = diag[var(Yi1), · · · , var(YiT )]. The V i will be equal to Σi if R(ζ) is

indeed the true correlation matrix of yi. Then the ‘working’ correlation based estimating

equations suggested by Liang and Zeger (1986) are as follows
K∑
i=1

∂µ′i
∂β

[
A

1/2
i R(ζ)A

1/2
i

]−1
(yi − µi) = 0. (4.12)

To solve the estimating equations as given in Eq.(4.12), ζ is replaced by its consistent

estimator (method of moment estimator), ζ̂. The method of moment estimator of ζ is

computed by using Pearson residuals. The moment estimator of ζ is available in Liang and
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Zeger (1986).

Under mild regularity conditions, the random quantity K1/2(β̃ − β) is asymptotically

multivariate normal with zero mean vector and covariance matrix VT , where VT is given as

VT = lim
K→∞

K

{ K∑
i=1

∂µ′i
∂β
V −1i

∂µi
∂β′

}−1
. (4.13)

4.2.2 Generalized Quasi-Likelihood Method

The GEE method of estimation for various choice of ‘working’ correlation matrix generally

provides less efficient estimates than under the assumption of independent observations

(Sutradhar and Das, 1999). With a view to increasing efficiency, Sutradhar and Das (1999)

suggested a generalized quasi-likelihood (GQL) method of estimation for the regression

parameters under GLM in longitudinal setup and the method of moments estimation for

the associated true longitudinal correlations. The proposed GQL estimators of the regression

parameter provide gain in efficiency as it uses true correlation structure.

To estimate the regression parameters for discrete data, Sutradhar and Das (1999) pro-

posed to replace R(ζ) with the true correlation matrix C(ρ) in Eq.(4.12), where C(ρ) is the

T × T symmetric matrix of true correlation defined as

C(ρ1, ρ2, · · · , ρT−1) =



1 ρ1 ρ2 . . . ρT−1

ρ1 1 ρ1 . . . ρT−2

ρ2 ρ1 1 . . . ρT−3
...

...
...

. . .
...

ρT−1 ρT−2 ρT−3 . . . 1


Then the quasi-likelihood estimator of β can be obtained as the root of the following esti-
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mating equations
K∑
i=1

∂µ′i
∂β

[
A

1/2
i C(ρ)A

1/2
i

]−1
(yi − µi) = 0, (4.14)

where Ai = diag[var(Yi1), · · · , var(YiT )]. As the solution of Eq.(4.14) requires the unknown

true correlation matrix C(ρ), Sutradhar and Kovacevic (2000) proposed the method of

moment estimators of the elements of C(ρ) as

ρ̂l =

∑K
i=1

∑T−l
t=1 ỹitỹi,t+l/K(T − l)∑K
i=1

∑T
t=1 ỹ

2
it/KT

, l = 1, · · · , T − 1, (4.15)

where ỹit is the standardized residual defined as ỹit = (yit − µit)
/√

var(Yit).

Suppose we denote the solution of the Eq.(4.14) as β̂GQL. It can be shown that under

mild regularity conditions, the random quantity K1/2(β̂GQL − β) is asymptotically multi-

variate normal with zero mean vector and covariance matrix VG. One can computes VG

as

VG = lim
K→∞

K

{ K∑
i=1

∂µ′i
∂β

[
A

1/2
i C(ρ)A

1/2
i

]−1∂µi
∂β′

}−1
. (4.16)

The estimator β̂GQL is then consistent for β as well as more efficient than the estimator

obtained by independent estimating equations.

4.3 GQL Estimation: RMMPois-Pois Model

Suppose that the population is comprised of component-1 and component-2 and if the

first observation of ith individual i.e., yi1 belongs to component-m(m = 1, 2), then for

t = 2, · · · , T , the set {yit} also belongs to component-m. In analyzing longitudinal data,

the main objective is to propose a GQL estimate of the regression parameter of marginal

(marginalization over the subpopulations) means, β as given in Eq.(4.8) under the repeated
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measures Poisson-Poisson mixture model. From Eq.(4.14) and Eq.(4.15), we have observed

that the GQL approach requires computation of the quantity, marginal mean E(Yit) and

marginal variance Var(Yit). Also from Eq.(4.6), we found that the quantity Var(Yit) involves

the mixing proportion (π∗) and the regression parameters, parameters of marginal means

as well as component-1 means. Therefore, before implementing the GQL approach for

estimating marginal parameters, it is required to have estimates of group membership of

ith individual and also the nuisance parameter π∗ (the mixing proportion).

In the mixture model setup of the repeated measurement, the data can be treated

as incomplete because it involves unobserved variable for identifying group membership.

However, it is possible to compute the conditional expectation of unobserved binary variable

given the data in EM framework (discussed in Subsection-4.3.1) assuming that observations

obtained from same individual are independent. As it is essential to identify the group

membership of the mixture components to estimate the regression parameters of component-

1, we proposed to use EM algorithm (Dempster et al., 1977) for estimating the expected value

of latent binary variable for identifying group membership of each individual. Using these

expected values an explicit formula for estimating mixing proportion (π∗) can be derived

(discussed in Subsection-4.3.1). After getting the estimates, the regression parameters of the

marginal model as well as the regression parameters of the component-1 can be estimated

by using the GQL method. The true longitudinal correlation parameters for the marginal

model and the component-1 model can be estimated by the method of moments. The

estimation of parameters of interest can be summarized in following steps.

1. Estimate the group membership of ith individual, the expected value of the latent
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variable Di and the nuisance parameter π∗ using EM algorithm.

2. Consider the initial value for the regression parameters of the marginal model, β and

the regression parameters of the component-1, α.

3. Estimate the true correlation parameters for marginal model and the true correlation

parameters for component-1 using method of moment approach.

4. Update the regression parameters of the marginal model, α and the regression param-

eters of the component-1, β by using GQL approach.

5. Repeat Step-3 to Step-4 until convergence.

4.3.1 Estimating Mixing Proportion

We have assumed that if the response yi1 is arisen from component-m as the first repeated

outcome, then for t = 2, · · · , T , the set {yit} is also arisen from component-m,m = 1, 2

for the ith individual, i = 1, · · · , K. Therefore, each yi = (yi1, · · · , yiT )′, i = 1, · · · , K

can be thought of having arisen from only one of the components of the mixture model as

represented in Eq.(4.1) for which we are intended to find estimates of associated marginal

parameters as given in Eq.(4.8). In the EM framework of Poisson-Poisson mixture repeated

data, the observed data vector within the formulation of the mixture problem is viewed as

being incomplete i.e., the membership in the population, di. = dit for all t = 1, · · · , T is

considered missing. As the individuals are independent and the membership of them in the

population is constant with respect to occasions, it is assumed that the observations obtained

from an individual over all the occasions are independent for the purpose of estimating
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the mixing probability, π∗. Further we denote y = (y11, · · · , y1T , · · · , yK1, · · · , yKT )′ and

d = (d11, · · · , d1T , · · · , dK1, · · · , dKT )′. In order to estimating the nuisance parameters, the

mixing proportion and the group membership, we then formulate the likelihood function for

complete data under the assumption of independent observations as

Lc(π
∗,α, γ|d, y) =

K∏
i=1

T∏
t=1

[
π∗
e−µ1,itµyit1,it

yit!

]dit[
(1− π∗)

e−µ2,itµyit2,it

yit!

]1−dit
. (4.17)

The corresponding log likelihood is given by

lc(π
∗,α, γ) =

K∑
i=1

T∑
t=1

[
ditlogit(π∗) + log(1− π∗)

]
+

K∑
i=1

T∑
t=1

dit

[
yitx

′
itα− exp(x′itα)− log(yit!)

]
+

K∑
i=1

T∑
t=1

(1− dit)
[
yitx

′
itγ − exp(x′itγ)− log(yit!)

]
.

(4.18)

The EM algorithm is applied to this problem by treating the dit as missing, which proceeds

iteratively in two steps, E (for expectation) and M (for maximization).

E-Step

In EM framework, the latent data is handled by the E-step. It computes the conditional

expectation of the complete data log likelihood, lc(π,α,γ), given the observed data y, using

the current fit θ(r) at the rth iteration, where θ = (π∗,α′,γ ′)′. Therefore, given the initial

values θ(0) = (π∗(0),α′(0),γ′(0))′, the E-step computes

E
[
lc(θ|θ(0))

]
=

K∑
i=1

T∑
t=1

(
E
[
Dit|θ(0), yit,xit

]
logit(π∗) + log(1− π∗)

)
+

K∑
i=1

T∑
t=1

E
[
Dit|θ(0), yit,xit

][
yitx

′
itα− exp(x′itα)− log(yit!)

]
(4.19)

+
K∑
i=1

T∑
t=1

[
1− E[Dit|θ(0), yit,xit]

][
yitx

′
itγ − exp(x′itγ)− log(yit!)

]
.
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It follows that on the (r+1)th iteration, E-step requires the calculation ofE
[
lc(π

∗,α,γ|θ(r))
]
,

where θ(r) is the value of θ after the rth EM iteration. As the complete data log likelihood

in Eq.(4.18) is linear in the unobservable data dit, the E-step simply requires the calculation

of the current conditional expectation of Dit, given the observed data y. Now

Eθ(r)(Dit|y) = Pr
[
Dit = 1|y

]
=

π∗(0)
e−µ1,itµ

yit
1,it

yit!

π∗(0)
e−µ1,itµyit1,it

yit!
+ (1− π∗(0))

e−µ2,itµyit2,it

yit!

≡ P
(0)
it . (4.20)

Therefore, computation of the conditional expectation in Eq.(4.19) yields

E
[
lc(θ|θ(0))

]
=

[ K∑
i=1

T∑
t=1

P
(0)
it logit(π∗) + n log(1− π∗)

]

+

[ K∑
i=1

T∑
t=1

P
(0)
it

(
yitx

′
itα− exp(x′itα)− log(yit!)

)]

+

[ K∑
i=1

T∑
t=1

(
1− P (0)

it

)(
yitx

′
itγ − exp(x′itγ)− log(yit!)

)]

= lπ∗ + lα + lγ . (4.21)

M-Step

The M-step on the (r + 1)th iteration requires the global maximization of Eq.(4.21) with

respect to θ over the parameter space Ω to give the update estimate θ(r+1). For the Poisson

mixture, the update θ(r+1) = (π∗(r+1),α′(r+1),γ′(r+1))′ can be obtained separately as three

components l∗π ,lα and lγ in Eq.(4.21) can be optimized separately. Maximizing l∗π with

respect to π∗ of Eq.(4.21) gives the updated estimate of π∗ as

π∗(1) =

∑K
i=1

∑T
t=1 P

(0)
it

KT
. (4.22)
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Components lα and lγ of Eq.(4.21) correspond to weighted log likelihood of GLM so that

they can be solved iteratively using Fisher’s method of scoring to obtain the next set of

parameters α(1) and γ(1). For a GLM, it is equivalent to using iteratively reweighed least

squares (IRLS) (McLachlan and Peel, 2000).

As EM-algorithm always provides convergence sequence of estimator, the E- and M-

steps are continued repeatedly until convergence. If the convergence is achieved at the hth

step, the estimates of conditional expectation of group membership, P
(h)
it and the mixing

proportion, π∗(h) are required for implementing the GQL approach. The EM-estimates of

the regression parameters α(h) and γ(h) are not of our interest as these are estimated using

the assumption of independent measurements. Hence, these are not used further in the

estimation approach.

4.3.2 Estimation of Regression Parameters: Marginal Model

Let yi = (yi1, · · · , yit, · · · , yiT )′ be a T × 1 vector of repeated count observations obtained

from ith individual. Again let µi = (µi1, · · · , µiT )′ be the T × 1 mean vector and Σi =

Var(Y i) be the T × T covariance matrix. But for repeated discrete responses, it is almost

impossible to compute Σi because of its complicated multivariate distribution. One may

express the Σi as Σi(ρ) = A
1/2
i C(ρ)A

1/2
i , where Ai = diag[var(Yi1) , · · · , var(YiT )] be the

T ×T diagonal matrix of unconditional variance (the elements of Ai are shown in Eq.(4.6))

and C(ρ) = C(ρ1, · · · , ρT−1) be the T × T true correlation matrix i = 1, 2, · · · , K, where

the true lag-l correlation of the observations is represented by ρl, l = |t − t′|, t 6= t′, t, t′ =

1, · · · , T . For a known correlation matrix C(ρ), the GQL estimating equation (Sutradhar,
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2003) for the regression parameters β in the marginalized model can be written as
K∑
i=1

∂µ′i
∂β

Σ−1i (ρ)(yi − µi) = 0, (4.23)

where
∂µ′i
∂β

= X ′iZi withX i = (xi1, · · · ,xit, · · · ,xiT )′ is a T×pmatrix and Zi = diag[µi1, · · · , µiT ]

is a T × T matrix. The corresponding GQL estimates of β can be computed iteratively by

using Newton-Raphson method. Thus the estimate of β in the (r + 1)th iteration can be

expressed as

β̂
(r+1)

GQL = β̂
(r)

GQL +
[ K∑
i=1

∂µ′i
∂β

Σ−1i (ρ̂)
∂µi
∂β′

]−1[ K∑
i=1

∂µ′i
∂β

Σ−1i (ρ̂)(yi − µi)
]
. (4.24)

Under some mild regularity conditions, it can be shown that the quantity K1/2(β̂GQL − β)

is asymptotically multivariate normal with zero mean vector and covariance matrix V ∗

(Sutradhar, 2003), where V ∗ is given as

V ∗ = lim
K→∞

K

{ K∑
i=1

∂µ′i
∂β

Σ−1i (ρ̂)
∂µi
∂β′

}−1
. (4.25)

4.3.3 Estimation of Correlation Parameter: Marginal Model

If the true correlation matrix C(ρ) is unknown, one may estimates the elements of the

correlation matrix by the method of moment (Sutradhar and Kovacevic, 2000). For l =

1, · · · , T − 1, the method of moments estimator of the true correlation of lag l, ρl for the

marginalized model is given as

ρ̂l =

∑K
i=1

∑T−l
t=1 ỹitỹi,t+l/K(T − l)∑K
i=1

∑T
t=1 ỹ

2
it/KT

, (4.26)

where ỹit is the standardized residual defined as

ỹit = (yit − µit)/
√

var(Yit), (4.27)

where µit is given in Eq.(4.8) and var(Yit) is given in Eq.(4.6).
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4.3.4 Estimating Regression Parameters: Component-1 Model

The E-step of EM algorithm as given in Eq.(4.20) provides the expected value (conditional

on the given data) of unobserved binary variable Dit, t = 1, · · · , T for identifying group

membership of ith individual. If convergency is achieved at the hth step, the estimates of

conditional expectation of the unobserved binary variable is denoted by P
(h)
it . Then the

expected value of the unobserved binary variable for the ith individual can be computed as

Di. =
∑T
t=1 P

(h)
it

T
, i = 1, · · · , K, ∀t = 1, · · · , T . An individual can be identified as member of

component-1 if Di. ≥ 0.50; otherwise, the individual is identified as member of component-2.

Suppose that we have identified K1 individuals as member of component-1 and K2

individuals as member of component-2 by using the above classification approach. The

individuals from both groups comprise the whole sample i.e, K = K1 + K2. Let, an in-

dividual i, i = 1, · · · , K1 is observed at time points t, t = 1, · · · , T and at each t we have

a scalar response Y1,it and a p-dimensional vector of covariates x1,it in the component-

1 of mixture. For the ith individual, let y1,i = (y1,i1, · · · , y1,iT )′ be the response vec-

tor and X1,i = (x1,i1, · · · ,x1,it, · · · ,x1,iT )′ be the T × p matrix of covariates. Also let

var(Y1,it) = E(Y1,it) = µ1,it, where µ1,it is given in Eq.(4.8). The variance-covariance matrix

of Y1,i1 is given by

Σ1,i(ρ
∗) = A

1/2
1,i C1(ρ

∗)A
1/2
1,i ,

where A1,i = diag[var(Y1,i1), · · · , var(Y1,iT )] is the T × T diagonal matrix of variance com-

ponent of longitudinal Poisson model and C1(ρ
∗) is the true longitudinal correlation for

component-1. For known true correlation matrix C1(ρ
∗), the GQL estimating equation (Su-
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tradhar, 2003) for the regression parameters for model of component-1 then can be written

as
K1∑
i=1

X>1,iA1,iΣ
−1
1,i (ρ̂

∗)(Y 1,i − µ1,i) = 0

⇒
K1∑
i=1

X>1,iA
1/2
1,i C

−1
1 (ρ∗)A

−1/2
1,i (y1,i − µ1,i) = 0. (4.28)

The estimate of component-1 regression parameters α at the (r + 1)th iteration obtained

by using the Newton-Raphson algorithm can be expressed as

α̂
(r+1)
GQL = α̂

(r)
GQL+

[ K1∑
i=1

X>1,iA
1/2
1,i C

−1
1 (ρ∗)A

1/2
1,i X1,i

]−1[ K1∑
i=1

X>1,iA
1/2
1,i C

−1
1 (ρ∗)A

−1/2
1,i (y1,i−µ1,i)

]
.

(4.29)

Under some mild regularity conditions, it can be shown that the quantity K
1/2
1 (α̂GQL−α) is

asymptotically multivariate normal with zero mean vector and covariance matrix V ∗1 , where

V ∗1 = lim
K1→∞

K1

{ K1∑
i=1

X>1,iA
1/2
1,i C

−1
1 (ρ∗)A

1/2
1,i X1,i

}−1
. (4.30)

4.3.5 Estimation of Correlation Parameter: Component-1 Model

For unknown true correlation matrix C1(ρ
∗) is , the elements of the correlation matrix can be

estimated by the method of moment (Sutradhar and Kovacevic, 2000). For l = 1, · · · , T −1,

the method of moments estimator of the true correlation of lag l, ρ̂∗l for the component-1

model is given as

ρ̂∗l =

∑K1

i=1

∑T−l
t=1 ỹ1,itỹ1i,t+l/K1(T − l)∑K1

i=1

∑T
t=1 ỹ

2
1,it/K1T

, (4.31)

where ỹ1,it is the standardized residual defined as

ỹ1,it = (y1,it − µ1,it)/
√
µ1,it, (4.32)

where µ1,it is given in Eq.(4.8).
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4.4 Simulation Study

Extensive simulation studies were conducted to investigate the performance of the pro-

posed RMMPois-Pois model. For this purpose, mixture of correlated Poisson data have

been generated following three widely used AR(1), MA(1) and exchangeable autocorrela-

tion structures. Simulated data were generated for different proportions of mixture (π∗),

for different sample sizes (K) and for different numbers of occasions (T ) using each of the

three correlation structures. For instance, we had considered K = 100, 200, 500 each at

varying number of occasions (T = 3, 4, 5). To obtain marginal inference from longitudinal

Poisson-Poisson mixture distribution, the zero-inflated data had been generated using dif-

ferent π∗ = 0.50, 0.70, 0.90. In the simulation studies, it was assumed that both the models

(model for unconditional mean and component-1 mean) given in Eq.(4.8) were influenced

by the same set of known covariates.

4.4.1 Marginalized Poisson AR(1)-Poisson AR(1) Mixture Prob-
ability Model

Let us consider the stationary AR(1) based Poisson model (McKenzie, 1988) for component-

1 as

yit = ρ1 ∗ yi,t−1 + w
(1)
it , i = 1, · · · , K, t = 1, · · · , T, (4.33)

where Yi,t−1 ∼ Pois(µ1,i.) with µ1,i. = exp(x′i.α), x′i. = x′it,∀t = 1, · · · , T (i.e., all covariates

are time independent); ρ1 is a constant scale parameter satisfying the range restriction

0 ≤ ρ1 ≤ 1. For a given yi,t−1, ρ1 ∗ yi,t−1 in Eq.(4.33) is computed through a binomial
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thinning operation (McKenzie, 1988). More specifically, ρ1 ∗yi,t−1 is the sum of yi,t−1 binary

random variables each with probability of success ρ1. Mathematically we can write,

ρ1 ∗ yi,t−1 =

yi,t−1∑
j=1

bj(ρ1) = z
(1)
i,t−1, (4.34)

with Pr[bj(ρ1) = 1] = ρ1 and Pr[bj(ρ1) = 0] = 1 − ρ1. That is, Z
(1)
i,t−1|yi,t−1 ∼Bin(yi,t−1, ρ1).

Assume that W
(1)
it ∼Pois(µ1,i.(1− ρ1)) with W

(1)
it and Z

(1)
i,t−1 are independent. The mean of

the ith individual at all the occasions can be computed as

E
[
Yi1
]

=µ1,i.,

E
[
Yi2
]

=E
[
E
(
Yi2|Yi1

)]
= E

[
E
(
Z

(1)
i1 |Yi1 +W

(1)
i2

)]
= E

[
Yi1ρ1 + (1− ρ1)µ1,i.

]
= µ1,i..

Similarly, we can compute E
[
Yi3
]

= · · · = E
[
YiT
]

= µ1,i.. The variance of the ith individual

at all the occasions can be determined as

Var
[
Yi1
]

=µ1,i.,

Var
[
Yi2
]

=Var
[
E
(
Yi2|Yi1

)]
+ E

[
Var
(
Yi2|Yi1

)]
=Var

[
ρ1Yi1 + (1− ρ1)µ1,i.

]
+ E

[
ρ1(1− ρ1)Yi1 + (1− ρ1)µ1,i.

]
= µ1,i..

Similarly, one can compute Var
[
Yi3
]

= · · · = Var
[
YiT
]

= µ1,i.. The expected value of the

lag-l product of Yit for the ith individual can be calculated as

E
[
YitYi,t−1

]
=E
[
Yi,t−1E

(
Yit|Yi,t−1

)]
= E

[
Yi,t−1

(
Yi,t−1ρ1 + (1− ρ1)µ1,i.

)]
= µ1,i.ρ1 + µ2

1,i.,

E
[
YitYi,t−2

]
=E
[
Yi,t−2E

{
E
(
Yit|Yi,t−1

)
|Yi,t−2

}]
=E
[
Yi,t−2E

{
Yi,t−1ρ1 + (1− ρ1)µ1,i.|Yi,t−2

}]
=E
[
Yi,t−2

{
ρ1E

(
Yi,t−1|Yi,t−2

)
+ (1− ρ1)µ1,i.

}]
=E
[
Yi,t−2

{
ρ1
(
Yi,t−2ρ1 + (1− ρ1)µ1,i.

)
+ (1− ρ1)µ1,i.

}]
= µ1,i.ρ

2
1 + µ2

1,i..
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Similarly, we can calculate E
[
YitYi,t−l

]
= µ1,i.ρ

l
1 + µ2

1,i.. The lag-l covariance between Yit

and Yi,t−l can be found as

Cov(Yit, Yi,t−l) = µ1,i.ρ
l
1, l = 1, · · · , T − 1, t > l. (4.35)

The lag-l correlation between Yit and Yi,t−l for component-1 is then computed as

ρ∗l = corr(Yit, Yi,t−l|di = 1) = ρl1, l = 1, · · · , T − 1, t > l. (4.36)

Again, let us consider consider the stationary AR(1) based Poisson model (McKenzie,

1988) for component-2 as

yit = ρ2 ∗ yi,t−1 + w
(2)
it , i = 1, · · · , K, t = 1, · · · , T, (4.37)

where 0 ≤ ρ2 ≤ 1, Yi,t−1 ∼ Pois(µ2,i.) with µ2,i. = µ2,it∀t = 1, · · · , T . Note that µ2,i. is

defined in Eq.(4.5), and ρ2 is defined similarly as ρ1 for component-1. Like component-1,

we have assumed that ρ2 ∗ yi,t−1 in Eq.(4.37) can be computed through a binomial thinning

operation as

ρ2 ∗ yi,t−1 =

yi,t−1∑
j=1

bj(ρ2) = z
(2)
i,t−1.

Similarly as component-1, it can be shown that for component-2, Yit ∼Pois(µ2,i.). Then

the lag-l correlation between Yit and Yi,t−l for component-2 can be computed similarly as

computed for component-1, which is ρ∗∗l = ρl2.

The Poisson AR(1)-Poisson AR(1) mixture probability model can be constructed then

by using the conditional model as provided in Eq.(4.1), where Poisson AR(1) probability

model for component-1 and component-2 are given in Eq.(4.33) and Eq.(4.37), respectively.

In constructing the mixture model, we have assumed that when an individual provides an

observation from component-m,m = 1, 2 at first occasion then all subsequent observations

for that individual at subsequent occasions will also belong to the same component. Then
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the conditional mean, variance and lag-l covariances with respect to the group membership

of the ith individual are as follows

E
[
Yit|di

]
= diµ1,i. + (1− di)µ2,i.,∀t = 1, · · · , T,

Var
[
Yit|di

]
= diµ1,i. + (1− di)µ2,i.,∀t = 1, · · · , T,

Cov
[
Yit, Yi,t−l|di

]
= diρ

l
1µ1,i. + (1− di)ρl2µ2,i., l = 1, · · · , T − 1, ∀t > l.

The unconditional (marginalized over the subpopulations) mean, and variance are then com-

puted by using Eq.(4.4), and Eq.(4.6), respectively. Also, the unconditional lag-l covariance

under Poisson AR(1)-Poisson AR(1) mixture can be obtained as

Cov
[
Yit, Yi,t−l

]
=E
[
Cov

{
Yit, Yi,t−l|di

}]
+ Cov

[
E
{
Yit|di

}
, E
{
Yi,t−l|di

}]
=E
[
Diρ

l
1µ1,i. + (1−Di)ρ

l
2µ2,i.

]
+

Cov
[
Diµ1,i. + (1−Di)µ2,i., Diµ1,i. + (1−Di)µ2,i.

]
=
[
π∗ρl1µ1,i. + (1− π∗)ρl2µ2,i.

]
+ Var

[
Diµ1,i. + (1−Di)µ2,i.

]
=
[
π∗ρl1µ1,i. + (1− π∗)ρl2µ2,i.

]
+
[
π∗(1− π∗)µ2

1,i. + π∗(1− π∗)µ2
2,i.+

2µ1,i.µ2,i.Cov[Di, 1−Di]
]

=
[
π∗ρl1µ1,i. + (1− π∗)ρl2µ2,i.

]
+
[
π∗(1− π∗)

{
µ2,i. − µ1,i.

}2]
=
[
π∗ρl1µ1,i. + (1− π∗)ρl2µ2,i.

]
+
( π∗

1− π∗
)

(µi. − µ1,i.)
2. (4.38)

We have assumed same probability of success for the binomial thinning operation in both

the components of mixture, for simplicity , i.e., we use ρ1 = ρ2 = ρ∗. Then Eq.(4.38)

becomes

Cov
[
Yit, Yi,t−l

]
= ρ∗lµi. +

( π∗

1− π∗
)

(µi. − µ1,i.)
2. (4.39)

Therefore, the unconditional lag-l correlation defined in Eq.(4.7) for the ith individual under
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marginalized Poisson AR(1)-Poisson AR(1) mixture model setup can be obtained from

Eq.(4.6) and Eq.(4.39) as

ρli = corr
[
Yit, Yi,t−l

]
=
ρ∗lµi. +

(
π∗

1−π∗

)
(µi. − µ1,i.)

2

µi. +
(

π∗

1−π∗
)
(µi. − µ1,i.)2

, l = 1, · · · , T − 1, i = 1, · · · , K, ∀t > l.

(4.40)

Note that Eq.(4.40) reduces to correlation structure of Poisson AR(1) probability model

(Sutradhar, 2003; McKenzie, 1988) if and only if µ1,i. = µ2,i. = µi.. Finally, the longitudinal

correlation under proposed marginalized model is obtained by averaging the K quantities

computed from Eq.(4.40) as

ρl =
1

K

K∑
i=1

ρli , l = 1, · · · , T − 1. (4.41)

Data Generation from RMMPois-Pois Model: Mixture of Poisson AR(1) Processes

To obtain marginal inference from RMMPois-Pois model using mixture of Poisson AR(1)

models, the zero-inflated data had been generated from K individuals each at T occasions

by the following steps.

1. The covariate xit = (xit1, xit2)
′ were generated in such a way that xit1 ∼unif(0,1), and

xit2 ∼Bernoulli(0.40), i = 1, · · · , K, t = 1.

2. In Eq.(4.8), suitable values of the regression parameters β = (β0, β1, β2)
′ = (0.20, 0.60,

0.50)′ were used to compute the marginal means at first occasion µi1, i = 1, · · · , K

and suitable values of the regression parameters α = (α0, α1, α2)
′ = (−1.0, 0.40, 0.50)′

were used to compute the component-1 means at first occasion µ1,i1, i = 1, · · · , K.

3. The component-2 means at first occasion (µ2,i1) were then computed using Eq.(4.5).

4. Binary observations di, i = 1, · · · , K were generated using D ∼ Bernoulli(π∗).
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5. Under RMMPois-Pois setup, zero-inflated counts from K individuals at first occasion,

yi1 were then generated.

6. Other T − 1 repeated observations from ith individual, i =, 1, · · · , K were generated

using observation-driven Poisson model as given in either Eq.(4.33) or in Eq.(4.37)

conditioning on the value of di = 1 or di = 0, respectively. The value of ρ1 = ρ2 =

ρ∗ = 0.40 and 0.70 had been considered while using the Eq.(4.33) and the Eq.(4.37).

7. For different values of K, T and for given values of β,α, ρ∗ various proportion of

zeros have been generated. For instances, data contain approximately 33% zeros for

π∗ = 0.50, approximately 43% zeros for π∗ = 0.70, and approximately 54% zeros for

π∗ = 0.90.

4.4.2 Marginalized Poisson MA(1)-Poisson MA(1) Mixture Prob-
ability Model

Let us consider the stationary MA(1) based Poisson model (McKenzie, 1988) for component-

1 as

yit = ρ1 ∗ w(1)
i,t−1 + w

(1)
it , i = 1, · · · , K, t = 1, · · · , T, (4.42)

where W
(1)
it

iid∼Pois
(
µ1,i.
1+ρ1

)
with µ1,i. = exp(x′i.α), x′i. = x′it,∀t = 1, · · · , T (i.e., all covariates

are time independent); ρ1 is the parameter for longitudinal correlation satisfying the range

restriction 0 ≤ ρ1 ≤ 1. Like AR(1) process, we have considered ρ1 ∗ w(1)
i,t−1 in Eq.(4.42) is

computed through a binomial thinning operation.

Following AR(1) model for component-1, one can derive the expression for mean and
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variance at all occasion, and expected value of the products for lag-l. The mean of the ith

individual at all the occasions can be computed as

E
[
Yit
]

=µ1,i. = Var
[
Yit
]
, i = 1, · · · , K, t = 1, · · · , T.

The expected value of the lag-l product of Yit for the ith individual can be computed as

E
[
YitYi,t−1

]
=µ1,i.

ρ1
1 + ρ1

+ µ2
1,i.,

E
[
YitYi,t−2

]
=µ2

1,i..

Similarly, we can calculate E
[
YitYi,t−l

]
= µ2

1,i., l > 2. The lag-l correlation for component-1,

defined as in Eq.(4.2), can be obtained as

ρ∗l = corr
[
Yit, Yi,t−l|di = 1

]
=


ρ1

1 + ρ1
for l = 1

0 otherwise.

(4.43)

Again, let us consider the stationary MA(1) based Poisson model (McKenzie, 1988) for

component-2 as

yit = ρ2 ∗ w(2)
i,t−1 + w

(2)
it , i = 1, · · · , K, t = 1, · · · , T, (4.44)

where W
(2)
it

iid∼Pois
(
µ2,i.
1+ρ2

)
with µ2,i. = µ2,it∀t = 1, · · · , T . Note that µ2,i. is defined in

Eq.(4.5), and ρ2 is defined similarly as ρ1 for component-1. By similar calculations as for

component-1 MA(1) process, we can easily obtain Yit ∼Pois(µ2,i.) for component-2 MA(1)

process with lag-l correlation as

ρ∗∗l = corr
[
Yit, Yi,t−l|di = 0

]
=


ρ2

1 + ρ2
for l = 1

0 otherwise.

The unconditional (marginalized over the subpopulations) mean, and variance are then

computed by using Eq.(4.4), and Eq.(4.6), respectively. Similarly as Subsection-4.4.1, the

unconditional lag-l covariance under Poisson MA(1)-Poisson MA(1) mixture can be obtained
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as

Cov
[
Yit, Yi,t−l

]
=


[
π∗

ρ1
1 + ρ1

µ1,i. + (1− π∗) ρ2
1 + ρ2

µ2,i.

]
+
( π∗

1− π∗
)

(µi. − µ1,i.)
2 for l = 1( π∗

1− π∗
)

(µi. − µ1,i.)
2 otherwise.

For simplicity, we have assumed ρ1 = ρ2 = ρ∗. Then the covariance between Yit and Yi,t−l

becomes

Cov
[
Yit, Yi,t−l

]
=


( ρ∗

1 + ρ∗

)
µi. +

( π∗

1− π∗
)

(µi. − µ1,i.)
2 for l = 1( π∗

1− π∗
)

(µi. − µ1,i.)
2 otherwise.

Therefore, the unconditional lag-l correlation defined in Eq.(4.7) for the ith individual under

marginalized Poisson MA(1)-Poisson MA(1) mixture model setup can be obtained as

ρl,i = corr
[
Yit, Yi,t−l

]
=



(
ρ∗

1+ρ∗

)
µi. +

(
π∗

1−π∗

)
(µi. − µ1,i.)

2

µi. +
(

π∗

1−π∗
)
(µi. − µ1,i.)2

for l = 1(
π∗

1−π∗

)
(µi. − µ1,i.)

2

µi. +
(

π∗

1−π∗
)
(µi. − µ1,i.)2

otherwise.

(4.45)

Note that Eq.(4.45) reduces to correlation structure of Poisson MA(1) probability model

(Sutradhar, 2003; McKenzie, 1988) if and only if µ1,i. = µ2,i. = µi.. Finally, the longitudinal

correlation under proposed marginalized model is obtained by averaging the K quantities

of Eq.(4.45) using Eq.(4.41).

Data Generation from RMMPois-Pois Model: Mixture of Poisson MA(1) Processes

The steps for generating data from the proposed marginalized model using mixture of MA(1)

model are same as marginalized model using mixture of AR(1) model except step (6). In this

case, the step (6) is: other T−1 repeated observations from ith individual, i =, 1, · · · , K were

generated using observation-driven Poisson model as given in either Eq.(4.42) or in Eq.(4.44)

conditioning on the value of di = 1 or di = 0, respectively. The value of ρ1 = ρ2 = ρ∗ = 0.40

and 0.70 had been considered while using the Eq.(4.42) and the Eq.(4.44).

103



4.4.3 Marginalized Poisson EQCOR - Poisson EQCOR Mixture
Probability Model

Let us consider the stationary equicorrelation based Poisson model (Sutradhar, 2003)

for component-1 as

yit = ρ1 ∗ yi0 + w
(1)
it , i = 1, · · · , K, t = 1, · · · , T, (4.46)

where Yi0 ∼Pois(µ1,i.), W
(1)
it

iid∼Pois
(
(1 − ρ1)µ1,i.

)
with µ1,i. = exp(x′i.α), x′i. = x′it,∀t =

1, · · · , T and 0 ≤ ρ1 ≤ 1.

Following AR(1) model for component-1, we can derive the expression for mean and

variance at all the occasions, and expected value of the products for lag-l. The mean of the

ith individual at all the occasions can be computed as

E
[
Yit
]

=µ1,i. = Var
[
Yit
]
, i = 1, · · · , K, t = 1, · · · , T.

The expected value of the lag-l product of Yit for the ith individual can be computed as

E
[
YitYi,t−l

]
= ρ21µ1,i. + µ2

1,i., t = 1, · · · , T, l = 1, · · · , T − 1, t > l.

Then the lag-l correlation for component-1, defined as in Eq.(4.2), can be obtained as

ρ∗l = corr
[
Yit, Yi,t−l

]
= ρ21. (4.47)

One can also shows that the conditional process of Yit ∼Pois(µ2,i.) with Yit in component-2

is defined as

yit = ρ2 ∗ yi0 + w
(2)
it , i = 1, · · · , K, (4.48)

where where W
(2)
it

iid∼Pois
(
(1 − ρ2)µ2,i.

)
with µ2,i. = µ2,it∀t = 1, · · · , T , µ2,i. is defined as in

Eq.(4.5) and ρ2 is defined similarly as ρ1 for component-1; with the expected value of the

joint variable Yit and Yi,t−l as

E
[
YitYi,t−l

]
= ρ21µ1,i. + µ2

1,i..
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Then the lag-l correlation for component-1, defined as in Eq.(4.2), can be obtained as

ρ∗∗l = corr
[
Yit, Yi,t−l

]
= ρ22.

The unconditional (marginalized over the subpopulations) mean, and variance and covari-

ance are then computed similarly as Subsection-4.4.2. The unconditional lag-l covariance

under Poisson EQCOR - Poisson EQCOR mixture can be obtained as

Cov
[
Yit, Yi,t−l

]
=
[
π∗ρ21µ1,i. + (1− π∗)ρ22µ2,i.

]
+
( π∗

1− π∗
)

(µi. − µ1,i.)
2.

For simplicity, we have considered ρ1 = ρ2 = ρ∗. Then the covariance between Yit and Yi,t−l

becomes

Cov
[
Yit, Yi,t−l

]
= ρ∗2µi. +

( π∗

1− π∗
)

(µi. − µ1,i.)
2.

Therefore, the unconditional lag-l correlation defined in Eq.(4.7) for the ith individual under

marginalized Poisson EQCOR-Poisson EQCOR mixture model setup can be obtained as

ρl,i = corr
[
Yit, Yi,t−l

]
=
ρ∗2µi. +

(
π∗

1−π∗

)
(µi. − µ1,i.)

2

µi. +
(

π∗

1−π∗
)
(µi. − µ1,i.)2

. (4.49)

Note that Eq.(4.49) reduces to correlation structure of Poisson EQCOR probability model

(Sutradhar, 2003) if and only if µ1,i. = µ2,i. = µi.. Finally, the longitudinal correlation under

proposed marginalized model is obtained by averaging the K quantities of Eq.(4.49) using

Eq.(4.41).

Data Generation from RMMPois-Pois Model: Mixture of Poisson EQCOR Processes

The steps for generating data from the proposed marginalized model using mixture of EQ-

COR model are same as marginalized model using mixture of AR(1) model except step

(6). In this case, the step (6) is: other T − 1 repeated observations from ith individual,

i =, 1, · · · , K were generated using observation-driven Poisson model as given in either
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Eq.(4.46) or in Eq.(4.48) conditioning on the value of di = 1 or di = 0, respectively. The

value of ρ1 = ρ2 = ρ∗ = 0.40 and 0.70 had been considered while using the Eq.(4.46) and

the Eq.(4.48).

4.4.4 Performance of the Proposed RMMPois-Pois Model

The simulation was repeated 1000 times for each setup. We estimated the regression param-

eters (modeling marginalized means), the lag-l correlation parameters, all other nuisance

parameters by the proposed estimation approaches which are given in Section-4.3. In order

to investigate the performance of the estimates, we have computed the bias, standard error

and the coverage probability (Cov.Pr.). The biases were computed by taking the differences

between simulated means (SM) and the true values for each of the parameters. Two types

of standard errors such as estimated standard errors (ESE) and simulated standard errors

(SSE) were also computed to investigate the properties of the estimators. The SM, ESE

and SSE for estimators β̂ and α̂ were calculated similarly as in Eq.(2.29). The proportion

of convergences (Conv.Prop.) in fitting the REMPois-Pois model were computed for all the

setups.

The SM, Bias, ESE, SSE, Cov.Pr. and Conv.Prop. were computed from RMMPois-Pois

model using mixture of Poisson AR(1), mixture of Poisson MA(1) and mixture of Poisson

EQCOR model. The results obtained from mixing proportion π∗ = 0.70 with ρ∗ = 0.40 were

given in Table-4.1, Table-4.2, and Table-4.3 for mixture of Poisson AR(1), mixture of Poisson

MA(1) and mixture of Poisson EQCOR model, respectively. The results of the simulation

studies were also given in the Appendix C for mixing proportion π∗ = 0.50 with ρ∗ = 0.40

in Table-C.1, Table-C.3, and Table-C.5 for mixture of Poisson AR(1), mixture of Poisson

MA(1) and mixture of Poisson EQCOR model respectively; and for mixing proportion
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π∗ = 0.90 with ρ∗ = 0.40 in Table-C.2, Table-C.4, and Table-C.6 for mixture of Poisson

AR(1), mixture of Poisson MA(1) and mixture of Poisson EQCOR model, respectively.

Table 4.1: Simulated mean (SM), Bias, estimated and simulated standard error (ESE, SSE) and
coverage probability (Cov.Pr) in estimating marginal parameters (β); and component-1 parameters
(α) with mixing proportion π∗ = 0.70 from marginalized mixture of Poisson AR(1) model for
different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.196 -0.004 0.292 0.259 96.0
β1 = 0.60 0.570 -0.030 0.451 0.424 95.2
β2 = 0.50 0.491 -0.009 0.317 0.284 95.5
ρ1 = 0.810 0.805 -0.005
α0 = −1.00 -0.942 0.058 0.301 0.411 95.1
α1 = 0.40 0.325 -0.075 0.452 0.591 94.7

0.871 α2 = 0.50 0.455 -0.045 0.308 0.394 94.8
ρ∗1 = 0.40 0.337 -0.063
π∗ = 0.70 0.694 -0.006

(100,4) β0 = 0.20 0.195 -0.005 0.286 0.238 94.8
β1 = 0.60 0.592 -0.008 0.442 0.388 94.8
β2 = 0.50 0.478 -0.022 0.310 0.283 95.2
ρ1 = 0.810 0.806 -0.004
α0 = −1.00 -0.949 0.051 0.275 0.366 93.9
α1 = 0.40 0.345 -0.055 0.413 0.512 94.3

0.884 α2 = 0.50 0.463 -0.037 0.280 0.357 95.0
ρ∗1 = 0.40 0.367 -0.033
π∗ = 0.70 0.694 -0.006

(100,5) β0 = 0.20 0.195 -0.005 0.284 0.256 95.7
β1 = 0.60 0.575 -0.025 0.438 0.409 94.8
β2 = 0.50 0.489 -0.011 0.308 0.270 95.6
ρ1 = 0.810 0.807 -0.003
α0 = −1.00 -0.946 0.054 0.255 0.326 94.6
α1 = 0.40 0.351 -0.049 0.382 0.459 94.4

0.881 α2 = 0.50 0.460 -0.040 0.260 0.307 94.0
ρ∗1 = 0.40 0.386 -0.014
π∗ = 0.70 0.695 -0.005

(200,3) β0 = 0.20 0.205 0.005 0.208 0.184 95.9
β1 = 0.60 0.584 -0.016 0.324 0.291 95.7
β2 = 0.50 0.490 -0.010 0.211 0.185 95.5
ρ1 = 0.810 0.811 0.001
α0 = −1.00 -0.934 0.066 0.216 0.291 95.5
α1 = 0.40 0.343 -0.057 0.326 0.413 94.6

0.905 α2 = 0.50 0.455 -0.045 0.205 0.258 93.9
ρ∗1 = 0.40 0.353 -0.047
π∗ = 0.70 0.696 -0.004

(200,4) β0 = 0.20 0.173 -0.027 0.204 0.180 95.7
β1 = 0.60 0.620 0.020 0.320 0.286 95.7
β2 = 0.50 0.518 0.018 0.208 0.197 95.7
ρ1 = 0.810 0.812 0.002
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Continued...Table 4.1

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

α0 = −1.00 -0.925 0.075 0.195 0.259 94.5
α1 = 0.40 0.320 -0.080 0.297 0.373 94.5

0.913 α2 = 0.50 0.457 -0.043 0.186 0.222 94.6
ρ∗1 = 0.40 0.373 -0.027
π∗ = 0.70 0.698 -0.002

(200,5) β0 = 0.20 0.190 -0.010 0.202 0.163 94.7
β1 = 0.60 0.602 0.002 0.315 0.278 96.4
β2 = 0.50 0.496 -0.004 0.205 0.175 94.7
ρ1 = 0.810 0.812 0.002
α0 = −1.00 -0.915 0.085 0.181 0.225 93.0
α1 = 0.40 0.312 -0.088 0.275 0.322 93.7

0.867 α2 = 0.50 0.441 -0.059 0.172 0.202 94.1
ρ∗1 = 0.40 0.390 -0.010
π∗ = 0.70 0.698 -0.002

(500,3) β0 = 0.20 0.200 0.000 0.125 0.111 95.0
β1 = 0.60 0.588 -0.012 0.212 0.191 95.5
β2 = 0.50 0.502 0.002 0.137 0.121 96.0
ρ1 = 0.810 0.809 -0.001
α0 = −1.00 -0.942 0.058 0.129 0.166 94.5
α1 = 0.40 0.366 -0.034 0.211 0.253 93.9

0.902 α2 = 0.50 0.466 -0.034 0.130 0.157 95.3
ρ∗1 = 0.40 0.356 -0.044
π∗ = 0.70 0.699 -0.001

(500,4) β0 = 0.20 0.207 0.007 0.123 0.103 95.5
β1 = 0.60 0.587 -0.013 0.208 0.181 96.1
β2 = 0.50 0.487 -0.013 0.134 0.122 95.7
ρ1 = 0.810 0.809 -0.001
α0 = −1.00 -0.910 0.090 0.118 0.145 89.5
α1 = 0.40 0.314 -0.086 0.193 0.226 93.0

0.898 α2 = 0.50 0.441 -0.059 0.119 0.138 93.0
ρ∗1 = 0.40 0.382 -0.018
π∗ = 0.70 0.699 -0.001

(500,5) β0 = 0.20 0.199 -0.001 0.121 0.099 94.9
β1 = 0.60 0.595 -0.005 0.206 0.173 95.7
β2 = 0.50 0.498 -0.002 0.133 0.113 95.8
ρ1 = 0.810 0.810 -0.000
α0 = −1.00 -0.922 0.078 0.110 0.130 91.1
α1 = 0.40 0.321 -0.079 0.180 0.202 93.8

0.890 α2 = 0.50 0.450 -0.050 0.111 0.121 93.1
ρ∗1 = 0.40 0.398 -0.002
π∗ = 0.70 0.699 -0.001
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Table 4.2: Simulated mean (SM), Bias, estimated and simulated standard error (ESE, SSE) and
coverage probability (Cov.Pr) in estimating marginal parameters (β); and component-1 parameters
(α) with mixing proportion π∗ = 0.70 from marginalized mixture of Poisson MA(1) model for
different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.209 0.009 0.286 0.249 95.1
β1 = 0.60 0.555 -0.045 0.443 0.400 95.1
β2 = 0.50 0.464 -0.036 0.311 0.287 94.9
ρ1 = 0.775 0.770 -0.005
α0 = −1.00 -0.919 0.081 0.279 0.370 93.8
α1 = 0.40 0.318 -0.082 0.420 0.544 94.4

0.896 α2 = 0.50 0.437 -0.063 0.286 0.360 94.0
ρ∗1 = 0.286 0.256 -0.030
π∗ = 0.70 0.697 -0.003

(100,4) β0 = 0.20 0.185 -0.015 0.283 0.250 95.7
β1 = 0.60 0.602 0.002 0.437 0.405 95.5
β2 = 0.50 0.484 -0.016 0.307 0.277 95.3
ρ1 = 0.775 0.771 -0.004
α0 = −1.00 -0.936 0.064 0.250 0.310 94.9
α1 = 0.40 0.341 -0.059 0.375 0.426 94.2

0.890 α2 = 0.50 0.441 -0.059 0.256 0.301 94.2
ρ∗1 = 0.286 0.275 -0.011
π∗ = 0.70 0.696 -0.004

(100,5) β0 = 0.20 0.193 -0.007 0.280 0.256 95.9
β1 = 0.60 0.574 -0.026 0.434 0.408 96.1
β2 = 0.50 0.481 -0.019 0.304 0.276 96.4
ρ1 = 0.775 0.772 -0.003
α0 = −1.00 -0.926 0.074 0.228 0.280 93.1
α1 = 0.40 0.311 -0.089 0.343 0.406 94.4

0.899 α2 = 0.50 0.449 -0.051 0.232 0.269 92.5
ρ∗1 = 0.286 0.288 0.003
π∗ = 0.70 0.699 -0.001

(200,3) β0 = 0.20 0.192 -0.008 0.204 0.173 95.3
β1 = 0.60 0.598 -0.002 0.319 0.276 95.7
β2 = 0.50 0.502 0.002 0.208 0.188 95.5
ρ1 = 0.775 0.776 0.001
α0 = −1.00 -0.917 0.083 0.200 0.258 93.5
α1 = 0.40 0.331 -0.069 0.302 0.373 93.7

0.893 α2 = 0.50 0.439 -0.061 0.190 0.232 94.4
ρ∗1 = 0.286 0.265 -0.020
π∗ = 0.70 0.697 -0.003

(200,4) β0 = 0.20 0.195 -0.005 0.202 0.171 95.5
β1 = 0.60 0.584 -0.016 0.316 0.278 95.3
β2 = 0.50 0.497 -0.003 0.206 0.183 96.5
ρ1 = 0.775 0.776 0.001
α0 = −1.00 -0.934 0.066 0.179 0.231 93.9
α1 = 0.40 0.332 -0.068 0.272 0.332 94.9

0.887 α2 = 0.50 0.457 -0.043 0.170 0.196 95.5
ρ∗1 = 0.286 0.279 -0.007
π∗ = 0.70 0.700 -0.000
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Continued...Table 4.2

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(200,5) β0 = 0.20 0.195 -0.005 0.199 0.171 95.8
β1 = 0.60 0.596 -0.004 0.311 0.283 95.1
β2 = 0.50 0.499 -0.001 0.202 0.182 95.6
ρ1 = 0.775 0.777 0.002
α0 = −1.00 -0.927 0.073 0.164 0.200 93.5
α1 = 0.40 0.324 -0.076 0.249 0.279 93.9

0.903 α2 = 0.50 0.450 -0.050 0.156 0.178 93.8
ρ∗1 = 0.286 0.293 0.007
π∗ = 0.70 0.697 -0.003

(500,3) β0 = 0.20 0.205 0.005 0.123 0.103 96.2
β1 = 0.60 0.584 -0.016 0.209 0.180 95.3
β2 = 0.50 0.488 -0.012 0.135 0.123 95.1
ρ1 = 0.775 0.773 -0.002
α0 = −1.00 -0.915 0.085 0.120 0.157 91.9
α1 = 0.40 0.333 -0.067 0.196 0.235 93.7

0.890 α2 = 0.50 0.449 -0.051 0.121 0.153 93.5
ρ∗1 = 0.286 0.267 -0.019
π∗ = 0.70 0.700 0.000

(500,4) β0 = 0.20 0.195 -0.005 0.121 0.100 95.5
β1 = 0.60 0.601 0.001 0.205 0.174 96.1
β2 = 0.50 0.500 -0.000 0.132 0.118 95.5
ρ1 = 0.775 0.773 -0.002
α0 = −1.00 -0.925 0.075 0.108 0.129 91.7
α1 = 0.40 0.325 -0.075 0.177 0.196 93.1

0.882 α2 = 0.50 0.453 -0.047 0.109 0.127 93.8
ρ∗1 = 0.286 0.288 0.002
π∗ = 0.70 0.699 -0.001

(500,5) β0 = 0.20 0.193 -0.007 0.120 0.098 95.5
β1 = 0.60 0.612 0.012 0.203 0.180 96.0
β2 = 0.50 0.500 -0.000 0.131 0.122 95.8
ρ1 = 0.775 0.773 -0.002
α0 = −1.00 -0.937 0.063 0.099 0.113 90.0
α1 = 0.40 0.336 -0.064 0.162 0.175 93.3

0.929 α2 = 0.50 0.461 -0.039 0.100 0.109 92.8
ρ∗1 = 0.286 0.299 0.013
π∗ = 0.70 0.698 -0.002
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Table 4.3: Simulated mean (SM), Bias, estimated and simulated standard error (ESE, SSE) and
coverage probability (Cov.Pr) in estimating marginal parameters (β); and component-1 parameters
(α) with mixing proportion π∗ = 0.70 from marginalized mixture of Poisson EQCOR model for
different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.189 -0.011 0.287 0.269 95.8
β1 = 0.60 0.578 -0.022 0.444 0.419 95.6
β2 = 0.50 0.489 -0.011 0.313 0.308 95.2
ρ1 = 0.735 0.733 -0.002
α0 = −1.00 -0.927 0.073 0.275 0.383 93.5
α1 = 0.40 0.312 -0.088 0.414 0.544 94.0

0.902 α2 = 0.50 0.430 -0.070 0.283 0.369 94.7
ρ∗1 = 0.16 0.150 -0.010
π∗ = 0.70 0.696 -0.004

(100,4) β0 = 0.20 0.189 -0.011 0.285 0.247 96.4
β1 = 0.60 0.592 -0.008 0.440 0.397 96.1
β2 = 0.50 0.488 -0.012 0.310 0.281 96.1
ρ1 = 0.735 0.731 -0.004
α0 = −1.00 -0.935 0.065 0.254 0.318 95.1
α1 = 0.40 0.323 -0.077 0.382 0.459 95.9

0.900 α2 = 0.50 0.440 -0.060 0.261 0.312 94.1
ρ∗1 = 0.16 0.155 -0.005
π∗ = 0.70 0.697 -0.003

(100,5) β0 = 0.20 0.185 -0.015 0.282 0.264 95.6
β1 = 0.60 0.592 -0.008 0.436 0.413 95.9
β2 = 0.50 0.500 -0.000 0.306 0.283 95.6
ρ1 = 0.735 0.732 -0.003
α0 = −1.00 -0.949 0.051 0.241 0.307 93.7
α1 = 0.40 0.338 -0.062 0.362 0.431 95.1

0.906 α2 = 0.50 0.469 -0.031 0.246 0.307 94.6
ρ∗1 = 0.16 0.159 -0.001
π∗ = 0.70 0.696 -0.004

(200,3) β0 = 0.20 0.189 -0.011 0.205 0.186 95.9
β1 = 0.60 0.604 0.004 0.320 0.294 94.8
β2 = 0.50 0.498 -0.002 0.208 0.195 95.7
ρ1 = 0.735 0.738 0.003
α0 = −1.00 -0.935 0.065 0.198 0.247 94.6
α1 = 0.40 0.358 -0.042 0.299 0.345 94.9

0.922 α2 = 0.50 0.454 -0.046 0.188 0.225 94.8
ρ∗1 = 0.16 0.161 0.001
π∗ = 0.70 0.698 -0.002

(200,4) β0 = 0.20 0.193 -0.007 0.202 0.162 94.9
β1 = 0.60 0.596 -0.004 0.317 0.274 94.7
β2 = 0.50 0.501 0.001 0.206 0.177 95.6
ρ1 = 0.735 0.739 0.004
α0 = −1.00 -0.931 0.069 0.182 0.232 94.8
α1 = 0.40 0.327 -0.073 0.277 0.323 94.9

0.885 α2 = 0.50 0.453 -0.047 0.173 0.207 94.6
ρ∗1 = 0.16 0.164 0.004
π∗ = 0.70 0.698 -0.002
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Continued...Table 4.3

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(200,5) β0 = 0.20 0.200 -0.000 0.201 0.172 95.1
β1 = 0.60 0.594 -0.006 0.314 0.279 96.4
β2 = 0.50 0.485 -0.015 0.204 0.192 95.9
ρ1 = 0.735 0.738 0.003
α0 = −1.00 -0.935 0.065 0.173 0.219 93.3
α1 = 0.40 0.332 -0.068 0.262 0.311 93.6

0.927 α2 = 0.50 0.452 -0.048 0.164 0.200 93.3
ρ∗1 = 0.16 0.168 0.008
π∗ = 0.70 0.697 -0.003

(500,3) β0 = 0.20 0.199 -0.001 0.123 0.102 95.2
β1 = 0.60 0.597 -0.003 0.208 0.175 95.2
β2 = 0.50 0.499 -0.001 0.134 0.119 96.1
ρ1 = 0.735 0.734 -0.001
α0 = −1.00 -0.917 0.083 0.118 0.151 91.5
α1 = 0.40 0.334 -0.066 0.194 0.231 94.8

0.893 α2 = 0.50 0.445 -0.055 0.119 0.142 93.6
ρ∗1 = 0.16 0.165 0.005
π∗ = 0.70 0.699 -0.001

(500,4) β0 = 0.20 0.193 -0.007 0.122 0.101 96.0
β1 = 0.60 0.602 0.002 0.206 0.173 95.8
β2 = 0.50 0.502 0.002 0.133 0.115 96.1
ρ1 = 0.735 0.733 -0.002
α0 = −1.00 -0.932 0.068 0.110 0.132 92.6
α1 = 0.40 0.330 -0.070 0.181 0.206 93.3

0.890 α2 = 0.50 0.453 -0.047 0.111 0.125 94.7
ρ∗1 = 0.16 0.173 0.013
π∗ = 0.70 0.699 -0.001

(500,5) β0 = 0.20 0.202 0.002 0.121 0.102 95.6
β1 = 0.60 0.588 -0.012 0.205 0.175 96.0
β2 = 0.50 0.499 -0.001 0.132 0.120 96.0
ρ1 = 0.735 0.733 -0.002
α0 = −1.00 -0.934 0.066 0.104 0.131 91.9
α1 = 0.40 0.331 -0.069 0.171 0.203 93.6

0.890 α2 = 0.50 0.453 -0.047 0.105 0.121 93.5
ρ∗1 = 0.16 0.175 0.015
π∗ = 0.70 0.700 -0.000

From Table-4.1-Table-4.3, it is clear that the estimators of marginal parameters and

correlation parameters had minimal amount of biases for all the settings. For exam-

ple, the biases in Table-4.1 for mixture of Poisson AR(1) model are given as follows.

The amount of bias of (β0, β1, β2) was (−0.004,−0.030,−0.009) when T = 3 and it was

(−0.005,−0.025,−0.011) when T = 5 for K = 100. For K = 500, these were (0.000,-
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0.012,0.002) and (−0.001,−0.005,−0.002) for T = 3 and T = 5, respectively. The amount

of bias for lag-1 correlation of marginalized model (ρ1) was -0.005 when T = 3 and -0.003

when T = 5 for K = 100. These amount were -0.001 and 0.000 for T = 3 and T = 5,

respectively when we considered K = 500. Although the amount of biases are similar for

different values of T , these amount decreases with increasing the values of K for most of

the parameters. Similar pattern had also been observed for the nuisance parameters. The

rate of convergence increases with increasing the value of K. It was found that the coverage

probabilities are almost equal to the nominal level of confidence for all the parameters. The

ESE and SSE were almost same for all the parameters. It was also observed that the results

of Table-4.2, and Table-4.3 follow the similar pattern of the results given in Table-4.1.

For mixing proportion π∗ = 0.50, the results of simulation studies from mixture of AR(1),

mixture of MA(1) and mixture of EQCOR were given in Table-C.1, Table-C.3, and Table-

C.5, respectively. From the results, it had been observed that the estimates of marginal

parameters and other nuisance parameters had a minimal amount of bias for all settings.

The relationship between bias and the values of K, and T was found to be similar to that

observed for π∗ = 0.70.

For mixing proportion π∗ = 0.90, the SM, Bias, ESE, SSE, Cov.Pr. and Conv.Prop.

computed from the simulation studies for mixture of AR(1), mixture of MA(1) and mixture

of EQCOR were given in Table-C.2, Table-C.4, and Table-C.6, respectively. The pattern

of the results were found to be similar to the results observed for π∗ = 0.50 and π∗ = 0.90

in estimating all the marginal parameters and other nuisance parameters. However, the

biases obtained for π∗ = 0.90 were found to be higher than the biases obtained for mixing

proportion π∗ = 0.50 and π∗ = 0.70.
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The MSE of β0, β1, β2 for various observation driven probability model and for different

values of mixing probabilities were shown in Figure-4.1–Figure-4.3, respectively. In each

Figure, part (a), part (b) and part (c) were drawn for mixture of AR(1), mixture of MA(1)

and mixture of EQCOR models, respectively. From these figures, it is depicted that the

MSEs were found low for all the indicated situations except for π∗ = 0.90. Also, the MSEs

decreases for increasing the value of K.

The Bias for the nuisance parameter ρ1 (lag-1 correlation) for different observation driven

model and for different values of mixing probabilities was presented in Figure-4.4. It also

contains part (a), part (b) and part (c) for representing Bias in case of mixture of AR(1),

mixture of MA(1) and mixture of EQCOR models, respectively. From the figure, it is clear

that the Bias were found close to zero for all the indicated situations except for π∗ = 0.90

and K = 100.

Extensive simulation studies were also conducted for ρ∗ = 0.70. Results for simulation

study obtained using ρ∗ = 0.70 from mixture of Poisson AR(1), Poisson MA(1), and Poisson

EQCOR models with mixing proportion π∗ = 0.50, π∗ = 0.70 and π∗ = 0.90 were given

in Table-C.7, Table-C.8 and Table-C.9, respectively in the Appendix C (Section C.4) for

T = 4 and for different values of K.
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(c) Number of individuals vs. MSE mixture of Poisson EQCOR

Figure 4.1: A comparison of MSE from RMMPois-Pois models with different mixing probability
and varying number of individuals for the regression parameter β0 = 0.20
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(c) Number of individuals vs. MSE mixture of Poisson EQCOR

Figure 4.2: A comparison of MSE from RMMPois-Pois models with different mixing probability
and varying number of individuals for the regression parameter β1 = 0.60
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(c) Number of individuals vs. MSE mixture of Poisson EQCOR

Figure 4.3: A comparison of MSE from RMMPois-Pois models with different mixing probability
and varying number of individuals for the regression parameter β2 = 0.50
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Figure 4.4: A comparison of Bias from RMMPois-Pois models with different mixing probability
and varying number of individuals for the lag-1 correlation ρ1
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4.5 Illustration

Min and Agresti (2005) had conducted a study for analyzing zero-inflated repeated measures

data, where the data set was obtained from a pharmaceutical company. The main aspect

of the study conducted by Min and Agresti (2005) was to make a comparison between two

treatments for a particular disease using repeated number of episodes of a certain side effect.

To illustrate our proposed (RMMPois-Pois) model to analyze the longitudinal zero-inflated

count data, we have utilized the same data set and the data set is available on the journal

website https://journals.sagepub.com/doi/abs/10.1191/1471082X05st084oa. In the

data set 118 patients were considered. Of them, 59 patients were randomly allocated to

treatment A (TRT1) and rest of them were allocated to treatment B (TRT2). The number

of side effect episodes was measured at each of six visits (i.e., T = 6). The data set contains

observations about 83% zero counts. Following the notations used in the proposed model,

the covariate (type of treatment) for the ith individual (i = 1, · · · , K = 118) at time t

(t = 1, · · · , 6) is denoted by xit . Let xit be the value of covariate for the ith individual at

tth time point. Since the covariate is time independent, xit = xi.∀t = 1, · · · , T . We have

xi. = 0, if the ith individual received treatment A and xit = 1, if the individual received

treatment B. The effect of the covariate is denoted by β1 in the population and α1 in the

component-1 so that the marginal mean (marginalized over subpopulation) and the latent

component-1 mean of the count responses for the ith individual is given by

µi. = exp(β0 + β1xi.); and µ1,i. = exp(α0 + α1xi.), (4.50)

where β0 and α0 are intercept terms corresponding to the marginalized model and the
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component-1 model, respectively.

If we assume the repeated responses yi1, · · · , yi6 are correlated with true correlation

structure C(ρ) in the population and C1(ρ
∗) in the latent component-1, then the GQL

based regression estimates and the moment estimates of true correlations can be obtained

by following the estimation approach discussed in Section-4.3. The estimates of regression

parameters, along with the lag-1 correlation, standard errors (SE), and IRR obtained from

RMMPois-Pois model are given in Table-4.4.

Table 4.4: RMMPois-Pois Model estimates of parameters, standard errors (SE), and the IRR for
analyzing repeated number of episodes of a certain side effect

Variable name Estimates SE p-value IRR

Marginalized:
Intercept -1.871 0.200 <0.001

Treatment
TRT1 (ref)
TRT2 0.984 0.239 <0.001 2.675

Lag-1 correlation
ρ1 0.427

Component-1:
Intercept -2.094 0.194 <0.001

Treatment
TRT1 (ref)
TRT2 0.887 0.232 <0.001 -

Lag-1 correlation
ρ∗1 0.338

It was observed from Table-4.4 that the treatment had significant (p-value < 0.001) effect

on the number of episode of side effect. The incidence rate of side effect for the patient taking

Treatment B was 2.675 times of the incidence rate of treatment A. The estimate of true

lag-1 correlation was found to be 0.427 in the overall population. Estimates of other lag

correlations are presented in Table-4.5.
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Table 4.5: Lag-l correlation estimated from the proposed RMMPois-Pois model

l 2 3 4 5

ρl 0.273 0.116 0.047 0.012

4.6 Conclusion

In this chapter, we have assumed that the zero-inflated repeated count data arise from two

latent populations and hence we proposed a repeated measures Poisson model for each of

the component of mixture. Therefore, the proposed approach allowed us to control the

unexplained heterogeneity accounted for by latent classes and also to address the excess

zeros in the analysis. In addition, the suggested model can directly postulate the marginal

mean to draw straightforward inference for overall exposure effects taking the correlation

among the repeated measures of an individual into account.

The performance of the proposed model has been examined by conducting extensive

simulation studies for mixture of observation-driven Poisson model such as Poisson AR(1),

Poisson MA(1) and Poisson equicorrelation models. It was observed from the simulation

studies that the RMMPois-Pois model, in general, provides estimates with low bias and low

MSE.

In this study, a data set from a pharmaceutical company was analyzed by using the

proposed model as an illustration in order to make a comparison between two treatments

for a particular disease in terms of the repeated number of episodes for certain side effect.
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Chapter 5

Conclusions

Mixture models control heterogeneity in data by decomposing the population into two or

more latent subgroups each of which is modeled by using its own set of parameters (McLach-

lan and Peel, 2000; Benecha et al., 2017). Although mixture of a ‘not-at-risk’ class and

‘at-risk’ class are usually used for analyzing zero-inflated data in the literature (Lambert,

1992; Hall, 2000; Hasan and Sneddon, 2009; Long et al., 2014, 2015), mixture of two ‘at-

risk’ classes can also be used to analyze zero-inflated count data when all individuals have

a risk of developing the event of interest (Benecha et al., 2017; Wang et al., 2007). This is

because if the population consists mixture of ‘at-risk’ and ‘not-at-risk’ groups for analyz-

ing zero-inflated Poisson data, a zero-truncated Poisson model provide similar inference as

zero-inflated Poisson model (Haque et al., 2022b).

In order to model the marginal means for analyzing heterogeneous count data, two-

component finite mixture distributions have been used by researchers (Long et al., 2015;

Benecha et al., 2017; Long et al., 2014). In such cases, the model is built in such a way that

it can directly estimate the regression parameters for the marginal mean.

Although non-standard and standard two-component mixture models have been devel-

oped under correlated count responses (Wang et al., 2007, 2002; Hasan and Sneddon, 2009),

no researcher has yet developed the marginalized version of such a model to the best of our
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knowledge. This motivates us to develop a marginalized Poisson-Poisson mixture model

(MPois-Pois) for analysing zero-inflated correlated count data.

As an extension of the Poisson-Poisson mixture model (Wang et al., 1996) under cross-

sectional data contexts, Benecha et al. (2017) have proposed a marginalized version of

the Poisson-Poisson mixture model following Long et al. (2014) for estimating the effects

of overall exposure effects on the marginal means. Utilizing the concept of marginalized

Poisson-Poisson mixture model under cross-sectional setup (Benecha et al., 2017), we have

developed a marginalized version of the Poisson-Poisson mixture model under clustered

data setup following Long et al. (2015) as an extension of the Poisson-Poisson mixture model

(Wang et al., 2007, 2002) for estimating the effects of overall exposure effects on the marginal

means when the count responses are correlated. A generalized quasi-likelihood estimation

method has also been developed under a mixture of longitudinal models for analyzing zero-

inflated repeated count data. The performance of the proposed models (clustered as well

as repeated measures) was investigated by conducting extensive simulation studies. Finally,

real data sets have been used to illustrate the proposed models.

A comprehensive review of the cross-sectional marginalized Poisson-Poisson mixture

model (Benecha et al., 2017) has been conducted with extensive simulation studies un-

der different scenarios in Chapter 2 with a view to extending it to the longitudinal setup.

Benecha et al. (2017) developed marginally-specified mean models for mixtures of two count

distributions under cross-sectional setup in which the marginal parameters and the nuisance

parameters may be estimated by applying the maximum likelihood (ML) technique of esti-

mation. From the simulation studies, it was observed that the MPois-Pois mixture model

offers minimal biases under the true model. The model also performs the best in terms of
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goodness of fit among all other competitive models in order to make inferences regarding

the marginal parameters. It was also discovered that the MPois-Pois model can also be

used for drawing conclusions about the overall effects of exposure on the marginal mean in

situations where data arises from mixture of two susceptible classes.

The main contributions of this thesis are reported in Chapter 3 and Chapter 4 for

longitudinal clustered and repeated measures data setup, respectively. In this thesis, we

were able to develop a random effects marginalized Poisson-Poisson mixture (REMPois-Pois)

model under the framework of ML estimation for analysing clustered count data. To address

the within-cluster correlation into the model, we have considered random effects in the both

latent class models. The estimation method of the proposed model was examined under two

cases (i) latent class’s random effects are independent and (ii) bivariate latent class’s random

effects. The proposed model was then fitted by employing the Gauss–Hermite quadrature

method to approximate the integral while maximizing the log-likelihood function. The

performance of our proposed model was examined through extensive simulation studies.

The simulation studies were conducted with a different number of clusters, different cluster

sizes, and a different proportion of mixture. For all of the simulation setups, the amount

of bias for the marginal parameters of the fixed effects were found negligible. The random

effect parameter and all the nuisance parameters had highest bias for low number of cluster

and/or cluster size, and these biases were decreased with increasing the cluster size and/or

with increasing the number of clusters. It was discovered that for all of the parameters,

the coverage probabilities were always close to the nominal level of confidence. Similar

performance of the proposed model with bivariate random effects was observed.

To illustrate the proposed REMPois-Pois model for correlated clustered count data, a
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nationwide representative data set extracted from the Bangladesh Demographic and Health

Survey (BDHS), 2014 has been analyzed to find the potential factors associated with the

number of antenatal care (ANC) visits. Note that this data set was collected using two-

stage cluster sampling. In the absence of covariates, the mixing probability was estimated

as 0.66. The variance components of the random effects were 0.297 (p-value < 0.001) for

the marginal model and 0.431 (p-value < 0.001) for the component-1 model. From this

analysis, it was found that covariates place of residence, education level, media exposure,

mother’s age at birth, difference between husband and wife age (years), wealth index, birth

order have significant association with ANC visits.

To analyze zero-inflated repeated measures count data, we proposed repeated measures

marginalized Poisson-Poisson mixture (RMMPois-Pois) model. As the so-called ‘working’

correlation based GEE technique may not provides efficient regression estimates, the regres-

sion parameters of RMMPois-Pois model have been estimated using the GQL estimation

technique following Sutradhar and Das (1999). The proposed approach directly models the

marginal means from mixtures of correlated counts arising from two subpopulations. This

model formulation offers meaningful statements about an exposure effect on the marginal

means of the count responses, in contrast to the unobserved latent class models for which

the mixture model is accounted for. Extensive simulation studies were carried out to inves-

tigate the performance of our proposed RMMPois-Pois model. The simulation studies were

conducted with a different number of individuals, number of occasions, proportion of mix-

ture and longitudinal correlation coefficients. From the simulation studies, it was depicted

that the estimates of regression parameters and correlation parameters for marginal model

had minimal amount of biases for all the settings. It was also observed that the amount of
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bias of the regression parameters as well as correlation parameters for component-1 model

decreases with the increase of the number of individuals. It was found that the coverage

probabilities for all the parameters approximately closed to the nominal level of confidence.

To illustrate the proposed RMMPois-Pois model, a real life repeated count data set

obtained from a pharmaceutical company was analyzed to examine how the treatments for

a particular disease work on the number of episodes for certain side effect.

To analyze zero-inflated correlated count data, future research could extend the marginal-

ized count regression models to mixtures of Poisson and negative binomial distributions or

mixtures of two negative binomial distributions and could allow the mixing probabilities to

depend on covariates. The proposed marginalized models can also be extended to deal with

missing values and outliers present in correlated count data.
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Appendix A

A.1 Hessian: MPois-Pois Model

The Hessian is a (2p + 1) × (2p + 1) matrix of second partial derivative of log-likelihood

function l(θ) i.e.,

H(θ) =
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M
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i M
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where

M
(1)
i =eτ
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ex

′
iβ − ex′

iα
)
,

M
(2)
i =(1 + eτ )ex

′
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M
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i =eτex

′
iα,

M
(4)
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i ,

M
(5)
i =

[
M

(4)
i

]yi
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M
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i =e−M
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M
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′
iαyi+τ−e

x′iα ,
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i =M
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i M
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(6)
i M
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A.2 The EM Algorithm: Poisson-Poisson Mixture Model

The parameters of Poisson-Poisson mixture model can be estimated by the EM algorithm

(Benecha et al., 2017; McLachlan and Peel, 2000). In practice, the value of Di for Eq.

(2.14) is not known. Suppose that (Yi, Di) is the complete data vector for ith observation

(i = 1, 2, · · · , n) and fg(·), g = 1, 2 is the probability distribution of the count response

for gth component. Under Poisson-Poisson mixture distribution, each yi can be thought as

having arisen from one of the components of mixture where f1(yi; ·) ≡ Pois(µ1,i), f2(yi; ·) ≡

Pois(µ2,i) as shown in Eq.(2.14) for which we are intended to find estimates of associated

parameters as given in Eq.(2.17). If we assume same set of covariates in the both models

of mixing component, then under the assumption of independent observations, the log-

likelihood function of parameter, θ = (π∗,α′,γ ′)′ for complete data can be written as

lc(π
∗,α, γ) =

n∑
i=1

[
dilogit(π∗) + log(1− π∗)

]
+

n∑
i=1

di

[
yix
′
iα− exp(x′iα)− log(yi!)

]
+

n∑
i=1

(1− di)
[
yix
′
iγ − exp(x′iγ)− log(yi!)

]
.

(A.1)

The EM algorithm is applied to this problem for finding the MLE of (π∗,α′,γ ′)′ by treating

di as missing. It proceeds iteratively in two steps, E (for expectation) and M (for maxi-

mization).

E-Step:

In EM framework, the latent data are handled in the E-step. It computes the condi-

tional expectation of the complete data log likelihood, lc(π
∗,α, γ), given the observed data

y, using the current fit θ(0), where θ = (π∗,α′,γ ′)′. Therefore, given the initial values
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θ(0) = (π∗(0),α′(0),γ ′(0))′, the E-step computes

E
[
lc(θ|θ(0))

]
=

n∑
i=1

(
E
[
Di|θ(0), yi,xi

]
logit(π∗) + log(1− π∗)

)
+

n∑
i=1

E
[
Di|θ(0), yi,xi

][
yix
′
iα− exp(x′iα)− log(yi!)

]
(A.2)

+
n∑
i=1

[
1− E[Di|θ(0), yi,xi]

][
yix
′
iγ − exp(x′iγ)− log(yi!)

]
.

As the complete data log-likelihood in Eq.(A.1) is linear in the unobservable data di, the

E-step simply requires the calculation of the current conditional expectation of Di, given

the observed data yi. Therefore we can write

Eθ(0)
[
Di|yi,θ(0)

]
=

π∗(0)f1(yi;α
′)

π∗(0)f1(yi;α′) + (1− π∗(0))f2(yi;γ ′)
≡ P

(0)
i , (A.3)

for i = 1, 2, · · · , n. Using Eq.(A.3), the conditional expectation in Eq.(A.2) can be written

as

E
[
lc(θ|θ(0))

]
=

[ n∑
i=1

P
(0)
i logit(π) + n log(1− π)

]

+

[ n∑
i=1

P
(0)
i

(
yixi

′α− exp(xi
′α)− log(yi!)

)]

+

[ n∑
i=1

(
1− P (0)

i

)(
yixi

′γ − exp(xi
′γ)− log(yi!)

)]

= lπ∗ + lα + lγ . (A.4)

M-Step:

The M-step maximizes Eq.(A.4). To obtain the next estimates in the M step, the three

components lπ∗ ,lα and lγ in Eq.(A.4) can be optimized separately. Maximizing lπ∗ with

respect to π∗ of Eq.(A.4) gives the next updated estimate of π∗ as

π∗(1) =
n∑
i=1

P
(0)
i

n
(A.5)
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It is clear that both components lα and lγ of Eq.(A.4) correspond to the weighted log-

likelihood of standard Poisson regression model, a member of generalized linear models

(GLMs). To estimate the parameters of both components, one can perform Fisher’s method

of scoring separately. For a GLM, it is equivalent to use iteratively reweighed least squares

(IRLS) method. Thus, one can apply IRLS method separately to get estimate of α(1) and

γ(1) in the first step. Utilizing the parameters π∗(1), α(1) and γ(1) in the first step, EM again

computes and optimizes the expected log-likelihood and continues iterations between the

two steps until convergence.

It follows that on the (r+1)th iteration, E-step requires the calculation ofE
[
lc(π

∗,α, γ|θ(r))
]
,

where θ(r) is the value of θ after the rth EM iteration. Then the (r+ 1)th iteration requires

the global maximization of Eq.(A.4) with respect to θ over the parameter space Ω to give

the updated estimate of θ(r+1).
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Appendix B

B.1 Gauss-Hermite numerical quadrature for evaluat-

ing integrals

Gaussian quadrature is used to approximate integrals of functions with respect to a given

kernel by a weighted average of the integrand evaluated at predetermined abscissas. The

weights and abscissas used in Gaussian quadrature rules for the most common kernels can

be obtained from the tables of Abramowitz et al. (1964) or by using an algorithm proposed

by Golub (1973). To approximate a two-dimensional integrals with the Gaussian kernel, the

Gauss-Hermite quadrature (GHQ) can be expressed as follows∫ ∞
−∞

∫ ∞
−∞

f(u, c)e−(u
2+c2)dudc ≈

m∑
k=1

m∑
l=1

wukw
c
l f(uk, cl), (B.1)

where uk and cl are abscissas of m-point GHQ corresponding to u and c, respectively with

associated respective weights wuk , w
c
l , k = l = 1, . . . ,m. The log-likelihood function of

REMPois-Pois model as given in Eq.(3.7) can be written as

l(δ) =
K∑
i=1

log

[ ∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|ui, ci; δ)
1

σuσc2π
√

1− ρ∗2
e
− 1

2(1−ρ∗2)

(
(
ui
σu

)
2
+(

ci
σc

)
2−2ρ∗( ui

σu
)(
ci
σc

)

)
duidci

]
.

(B.2)
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Change-of-variable operations have been carried out at this stage. For this purpose, let

ui =
√

2(1− ρ∗2)σuu∗i and ci =
√

2(1− ρ∗2)σcc∗i . Then the log-likelihood function becomes

l(δ) =
K∑
i=1

[
log

{∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f
(
yij|
√

2(1− ρ∗2)σuu∗i ,
√

2(1− ρ∗2)σcc∗i ; δ
)

×
(√1− ρ∗2

π

)
e−
(
u∗2i +c∗2i −2ρ∗u∗i c∗i

)
du∗i dc

∗
i

}]

=
K∑
i=1

[
log

{∫ ∞
−∞

∫ ∞
−∞

(√1− ρ∗2e2ρ∗u∗i c∗i
π

)
×

ni∏
j=1

f
(
yij|
√

2(1− ρ∗2)σuu∗i ,
√

2(1− ρ∗2)σcc∗i ; δ
)
e−
(
u∗2i +c∗2i

)}]
. (B.3)

Using Eq.(B.1), the GHQ rule for two-dimensional integrals given in Eq.(B.3) can be ap-

proximated by

l(δ|yi) ≈

K∑
i=1

[
log

{ m∑
l1=1

m∑
l2=1

wul1w
c
l2

√
1− ρ∗2

π
e2ρ
∗qul1

qcl2

×

ni∏
j=1

f
(
yij|
√

2(1− ρ∗2)σuqul1 ,
√

2(1− ρ∗2)σcqcl2 ; δ
)}]

, (B.4)

where qul1 and qcl2are abscissas of m-point GHQ corresponding to u∗ and c∗, respectively with

associated respective weights wul1 , w
c
l2

, l1 = l2 = 1, · · · ,m.
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B.2 REMPois-Pois Model: Score function

The elements of score function for the REMPois-Pois model can be computed as

U1 =

K∑
i=1

m∑
l1=1

m∑
l2=1

wul1w
c
l2

Di

1(∏ni
m=1 yim!

)
π
(
1 + eτ

)ni
[ ni∑
j=1

{(
eτ+x

′
ijα+

√
2σcqcl2 − eτ+x

′
ijβ+

√
2σcqcl2

)
([(

1 + eτ
)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij
− yij

[(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij−1)
(
e

[
e
τ+x′ijα+

√
2σcq

c
l2−(1+eτ )e

x′ijβ+
√
2σuq

u
l1

])
+ e

[
τ+yij(x

′
ijα+

√
2σcqcl2

)−e
x′ijα+

√
2σcq

c
l2

]}
{ ni∏
k 6=j=1

([(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

]
+

e

[
τ+yik(x

′
ikα+

√
2σcqcl2

)−e
x′ikα+

√
2σcq

c
l2

])}

− ni(
1 + eτ

) ni∏
k=1

([(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

]

+ e

[
τ+yik(x

′
ikα+

√
2σcc∗l2

)−e
x′ikα+

√
2σcq

c
l2

])]
,

U2 =

K∑
i=1

m∑
l1=1

m∑
l2=1

wul1w
c
l2

Di

1(∏ni
m=1 yim!

)
π
(
1 + eτ

)ni
[ ni∑
j=1

xij

{
e

[
e
τ+x′ijα+

√
2σcq

c
l2−(1+eτ )e

x′ijβ+
√
2σuq

u
l1

]
([(

1 + eτ
)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij
− yij

[(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij−1)

eτ+x
′
ijα+

√
2σcqcl2 + e

[
τ+yij(x

′
ijα+

√
2σcqcl2

)−e
x′ijα+

√
2σcq

c
l2

](
yij − ex

′
ijα+

√
2σcqcl2

)}
{ ni∏
k 6=j=1

(
e

[
τ+yik(x

′
ikα+

√
2σcqcl2

)−e
x′ikα+

√
2σcq

c
l2

]
+

[(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

])}]
,

135



U3 =

K∑
i=1

m∑
l1=1

m∑
l2=1

wul1w
c
l2
c∗l2

Di

√
2(∏ni

m=1 yim!
)
π
(
1 + eτ

)ni
[ ni∑
j=1

{
e

[
e
τ+x′ijα+

√
2σcq

c
l2−(1+eτ )e

x′ijβ+
√
2σuq

u
l1

]
([(

1 + eτ
)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij
− yij

[(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij−1)

eτ+x
′
ijα+

√
2σcqcl2 +

(
yij − ex

′
ijα+

√
2σcqcl2

)}
{ ni∏
k 6=j=1

([(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

]
+

e

[
τ+yik(x

′
ikα+

√
2σcqcl2

)−e
x′ikα+

√
2σcq

c
l2

])}]
,

U4 =

K∑
i=1

m∑
l1=1

m∑
l2=1

wul1w
c
l2

Di

1(∏ni
m=1 yim!

)
π
(
1 + eτ

)ni−1
[ ni∑
j=1

xij

{
e

[
e
τ+x′ijα+

√
2σcq

c
l2−(1+eτ )e

x′ijβ+
√
2σuq

u
l1

]
(
yij

[(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij−1
−
[(

1 + eτ
)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij)

ex
′
ijβ+

√
2σuqul1

}{ ni∏
k 6=j=1

(
e

[
τ+yik(x

′
ikα+

√
2σcqcl2

)−e
x′ikα+

√
2σcq

c
l2

]
+

[(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

])}]
,

U5 =

K∑
i=1

m∑
l1=1

m∑
l2=1

wul1u
∗
l1
wcl2

Di

√
2(∏ni

m=1 yim!
)
π
(
1 + eτ

)ni−1
[ ni∑
j=1

{
e

[
e
τ+x′ijα+

√
2σcq

c
l2−(1+eτ )e

x′ijβ+
√
2σuq

u
l1

]
(
yij

[(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij−1
−
[(

1 + eτ
)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij)

ex
′
ijβ+

√
2σuqul1

}{ ni∏
k 6=j=1

(
e

[
τ+yik(x

′
ikα+

√
2σcqcl2

)−e
x′ikα+

√
2σcq

c
l2

]
+

[(
1 + eτ

)
ex
′
ikβ+

√
2σuqul1 − eτ+x

′
ikα+

√
2σcqcl2

]yik
e

[
e
τ+x′ikα+

√
2σcq

c
l2−(1+eτ )e

x′ikβ+
√
2σuq

u
l1

])}]
,
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where

Di =

m∑
l1=1

m∑
l2=1

wul1w
c
l2

π

ni∏
j=1

{
1

yij!
(
1 + eτ

)(e[τ+yij(x′ijα+√2σcqcl2 )−ex′ijα+
√

2σcq
c
l2

]

+ e
−
[(

1+eτ
)
e
x′ijβ+

√
2σuq

u
l1−e

τ+x′ijα+
√
2σcq

c
l2

][(
1 + eτ

)
ex
′
ijβ+

√
2σuqul1 − eτ+x

′
ijα+

√
2σcqcl2

]yij)}
.

B.3 The EM Algorithm: Random Effects Poisson-Poisson

Mixture Model

Let Yij(i = 1, · · · , K; j = 1, · · · , ni) be the count variable of interest for the jth individual in

the ith cluster. Since the ith cluster-population is divided into component-1 and component-

2 and for a given random effect, the observations of component-1 follow independent Poisson

distributions and that of component-2 follow independent another Poisson distributions.

Suppose that µ∗1,ij = E
[
Yij|ci

]
(ci is a random effect for component-1) and µ∗2,ij = E

[
Yij|di

]
(di is a random effect for component-2). Let bTi = (ci, di) ∼ N2(0,Σ

∗), where Σ∗ is a 2× 2

covariance matrix with diagonal elements σ2
c , σ

2
d and off-diagonal element ρ∗∗σcσd.

The EM algorithm for random effects Poisson-Poisson mixture model is derived following

Hall (2000). Let δ∗ = (α′, σc,γ
′, σd, π

∗, ρ∗∗)′ be the combined vector of model parameters.

Under the regression setup as in Eq.(3.1), the likelihood function of the Poisson-Poisson

mixture model with random effects is given as

L(δ∗|y) =
K∏
i=1

∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|bi;α, γ)f(bi|σc, σd, ρ∗∗)dciddi, (B.5)

where f(yij|ci, di;α, γ) is the pmf of Poisson-Poisson mixture distribution for analyzing

clustered data defined as

f(Yij = yij|α, ci,γ, di, τ) = π∗
e−µ

∗
1,ijµ∗1,ij

yij

yij!
+ (1− π∗)

e−µ
∗
2,ijµ∗2,ij

yij

yij!
, (B.6)
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and f(bi|σc, σd, ρ∗∗) is a pdf of bivariate normal distribution. For avoiding complexity arisen

in computation as well as notation, we assume that b∗i = (c∗i , d
∗
i )
′ with c∗i = ci/σc, d

∗
i = di/σd;

and that ci and di are independent i.e., ρ∗∗ = 0. Then Eq.(B.5) can be written as

L(δ∗|y) =
K∏
i=1

∫ ∞
−∞

∫ ∞
−∞

ni∏
j=1

f(yij|b∗i ; δ∗)φ(c∗i )φ(d∗i )dc
∗
i dd
∗
i , (B.7)

where

f(yij|bi; δ∗) = π∗
e−µ

∗
1,ijµ∗1,ij

yij

yij!
+ (1− π∗)

e−µ
∗
2,ijµ∗2,ij

yij

yij!
, (B.8)

and φ(·) is the standard normal pdf, and

log(µ∗1,ij) = x′ijα+ σcc
∗
i ; log(µ∗2,ij) = x′ijγ + σdd

∗
i , (B.9)

where xij is the design matrix for the jth individual of the ith cluster in both the components

of the mixture. The method of estimating regression parameters and random effects param-

eters by maximizing Eq.(B.7) is usually complicated. The complication can be reduced to

a great extent by employing the EM algorithm. In the EM framework for Poisson-Poisson

mixture model with random effects, the observed count within the formulation of the mix-

ture problem and also the random effects are viewed as being incomplete. In other words,

each yij can be thought as having arisen from one of the components of the mixture distribu-

tion Eq.(B.8) for which we are intended to find estimates of associated parameters as given

in equation Eq.(B.9). But the EM problem at this stage is that in Eq.(B.9) the random

effects ci or di, associated with the component of mixture, can also be thought as missing.

Let us consider the latent Bernoulli variable uij, i = 1, · · · , K, j = 1, · · · , ni denote

the component membership. i.e., uij = 1 if Yij is drawn following the distribution of

component-1 and uij = 0 if it is from component-2. The complete data are then (y,u, b)

for the EM algorithm, where (u, b) are thought as missing data. Let f1(yij) ≡ Pois(µ∗1,ij),
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f2(yij) ≡ Pois(µ∗2,ij) and b∗i ∼ N2(0, I), where I is a identity matrix and that b∗i has pdf

φ2(b
∗
i ). The likelihood of Poisson-Poisson mixture model with random effects based on the

complete data (y,u, b) under the assumption of independence of yi, i = 1, · · · , K and also

independence of bi, i = 1, · · · , K can be written as

Lc(δ
∗|y,u, b) =

K∏
i=1

Pr(Y i = yi,U i = ui, Bi = bi|δ∗;xij)

=
K∏
i=1

Pr(Y i = yi,U i = ui|Bi = bi, δ
∗;xij)φ2(b

∗
i )

=

[
K∏
i=1

{
ni∏
j=1

Pr(Yij = yij, Uij = uij|Bi = bi, δ
∗;xij)

}
φ2(b

∗
i )

]

=

[
K∏
i=1

φ2(b
∗
i )

][
K∏
i=1

ni∏
j=1

Pr(Yij = yij|Uij = uij, Bi = bi, δ
∗;xij)

× Pr(Uij = uij|Bi = bi, π
∗)

]

=

[
K∏
i=1

φ2(b
∗
i )

][
K∏
i=1

ni∏
j=1

Pr(Yij = yij|Uij = uij, Bi = bi, δ
∗;xij)Pr(Uij = uij|π∗)

]

=

[
K∏
i=1

φ2(b
∗
i )

]

×

[
K∏
i=1

ni∏
j=1

[
f1(yij|α,xij, ci, σc)

]uij[f2(yij|γ,xij, di, σd)]1−uij[π∗]uij[1− π∗]1−uij]

=

[
K∏
i=1

φ2(b
∗
i )

][
K∏
i=1

ni∏
j=1

{
π∗f1(yij|α,xij, ci, σc)

}uij{
(1− π∗)f2(yij|γ,xij, di, σd)

}1−uij
]

=

[
K∏
i=1

φ2(b
∗
i )

][
K∏
i=1

ni∏
j=1

{
π∗
e−µ

∗
1,ijµ∗1,ij

yij

yij!

}uij{
(1− π∗)

e−µ
∗
2,ijµ∗2,ij

yij

yij!

}1−uij
]
.

(B.10)
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The corresponding log-likelihood is given as

lc(δ
∗|y,u, b∗) = log f(b∗) + log f(u|b∗; δ∗) + log f(y|u, b∗; δ∗)

=
K∑
i=1

[{ 1√
2π
e−

1
2
c∗2i

}{ 1√
2π
e−

1
2
d∗2i

}]
+

K∑
i=1

ni∑
j=1

[
uij log(π∗) + (1− uij) log(1− π∗)

]
+

K∑
i=1

ni∑
j=1

[
uij

{
log
( 1

yij!

)
+ yij

(
x′ijα+ σcc

∗
i

)
− ex′ijα+σcc∗i

}]
+

K∑
i=1

ni∑
j=1

[(
1− uij

){
log
( 1

yij!

)
+ yij

(
x′ijγ + σdd

∗
i

)
− ex′ijγ+σdd∗i

}]
, (B.11)

The EM algorithm is applied to this problem for finding the MLE of δ∗ by treating c∗i , d
∗
i

and uij as missing. Given a starting value for the vector of parameters δ∗, say δ∗(0), the EM

algorithm proceeds iteratively to obtain the required MLE by switching between an E-step

(for expectation) and a M-step (for maximization)

E-Step:

In EM framework, the latent data is handled by the E-step. It follows that on the (r+ 1)th

iteration, E-step requires the calculation of

Q(δ∗|δ∗(r)) = E
[

log f
(
y,u, b∗|δ∗(r)

)
|y, δ∗(r)

]
= E

[
E
{

log f
(
y,u, b∗|δ∗(r)

)
|y, b∗, δ∗(r)

}
|y, δ∗(r)

]
,

where the inner expectation is with respect to u only. Since log f(y,u, b∗|δ∗) is linear

with respect to u, this inner expectation can be taken simply by substituting u(r) =

E
[
u|y, b∗, δ∗(r)

]
for u. In this case, it is noted that u(r) depends only on b∗ and thus

it can be expressed as a function of b∗. Then the vector u(r)(b∗) can be easily computed

140



with elements

u
(r)
ij (b∗i ) = E

[
uij|yij, b∗i , δ∗(r)

]
= 1× Pr

[
uij = 1|yij, b∗i , δ∗(r)

]
+ 0× Pr

[
uij = 0|yij, b∗i , δ∗(r)

]
= Pr

[
uij = 1|yij, b∗i , δ∗(r)

]
=
Pr(uij = 1, yij|b∗i , δ∗(r))

f(yij|b∗i , δ
∗(r))

=
Pr(uij = 1|δ∗(r))× f(yij|uij = 1, b∗i , δ

∗(r))

f(yij|b∗i , δ
∗(r))

=
π∗(r)f1(yij|c∗i , δ∗(r))

π∗(0)f1(yij|c∗i , δ
∗(r)) + (1− π∗(0))f2(yij|d∗i , δ

∗(r))

=

[
1 +

(1− π∗(0))
π∗(0)

f2(yij|d∗i , δ∗(r))
f1(yij|c∗i , δ

∗(r))

]−1
. (B.12)

To complete the E-step, it is required to take the outer expectation and it also requires

dropping the terms not involving δ∗ and thus we obtain

Q(δ∗|δ∗(r)) =E
[

log f
(
y,u(r)(b∗), b∗|δ∗

)
|y, δ∗(r)

]

=

K∑
i=1

ni∑
j=1

∫ +∞

−∞

∫ +∞

−∞
lc
(
δ∗|yij, u(r)ij (b∗i )

)
f
(
yi|b∗i , δ∗(r)

)
φ2(b

∗
i )dc

∗
i dd
∗
i∫ +∞

−∞

∫ +∞

−∞
f
(
yi|b∗i , δ

∗(r))φ2(b∗i )dc
∗
i dd
∗
i

. (B.13)

Here, we have used the fact that

f
(
b∗i |yi, δ∗(r)

)
=

f
(
yi|b∗i , δ∗(r)

)
φ2(b

∗
i )∫ +∞

−∞

∫ +∞

−∞
f
(
yi|b∗i , δ

∗(r))φ2(b∗i )dc
∗
i dd
∗
i

.

We can utilize the method of GHQ to approximate the integrals. Let qcl1 and qdl2 are abscissas

of m-point GHQ corresponding to the random effects of component-1 and component-2,

respectively with associated respective weights wcl1 and wdl2 ; l1, l2 = 1, · · · ,m. Let us define

g
(r)
i =

∫ +∞
−∞

∫ +∞
−∞ f

(
yi|b∗i , δ∗(r)

)
φ2(b

∗
i )dc

∗
i dd
∗
i . Then

g
(r)
i ≈

m∑
l1=1

m∑
l2=1

1

π
f
(
yi|q∗cl1 , q

∗d
l2
, δ∗(r)

)
wcl1w

d
l2

=
m∑
l1=1

m∑
l2=1

f
(
yi|q∗cl1 , q

∗d
l2
, δ∗(r)

)
w∗cl1 w

∗d
l2
,
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where q∗cl1 =
√

2qcl1 , q
∗d
l2

=
√

2qdl2 , w
∗c
l1

= wcl1/
√
π,w∗dl2 = wdl2/

√
π. Then, we have

Q(δ∗|δ∗(r)) ≈
K∑
i=1

ni∑
j=1

m∑
l1=1

m∑
l2=1

w∗il1l2

[
u
(r)
ij (q∗cl1 , q

∗d
l2

) log(π∗) +
(
1− u(r)ij (q∗cl1 , q

∗d
l2

)
)

log(1− π∗)
]
+

K∑
i=1

ni∑
j=1

m∑
l1=1

m∑
l2=1

w∗il1l2u
(r)
ij (q∗cl1 , q

∗d
l2

)

[
yij
(
x′ijα+ σcq

∗c
l1

)
− ex

′
ijα+σcq

∗c
l1

]
+

K∑
i=1

ni∑
j=1

m∑
l1=1

m∑
l2=1

w∗il1l2
(
1− u(r)ij (q∗cl1 , q

∗d
l2

)
)[
yij
(
x′ijγ + σdq

∗d
l2

)
− ex

′
ijγ+σdq

∗d
l2

]

=lπ∗ + lα′,σc + lγ′,σd , (B.14)

where w∗il1l2 = f
(
yi|q∗cl1 , q

∗d
l2
, δ∗(r)

)
w∗cl1 w

∗d
l2
/g

(r)
i =

ni∏
j=1

f
(
yij|q∗cl1 , q

∗d
l2
, δ∗(r)

)
w∗cl1 w

∗d
l2
/g

(r)
i (constant

over index j).

M-Step:

Like EM algorithm of Poisson-Poisson mixture model for cross-sectional setup, from Eq.(B.14)

we observed that Q(δ∗|δ∗(r)) can be decomposed into three components lπ∗ ,lα′,σc and lγ′,σd .

Therefore, these can be optimized separately.

M-Step for π∗:

At the (r + 1)th step, maximization of lπ∗ of Eq.(B.14) with respect to π∗ gives the next

updated estimate of π∗ as

π∗(r+1) =

K∑
i=1

ni∑
j=1

m∑
l1=1

m∑
l2=1

w∗il1l2u
(r)
ij (q∗cl1 , q

∗d
l2

)

K∑
i=1

ni∑
j=1

m∑
l1=1

m∑
l2=1

w∗il1l2

. (B.15)

M-Step for α, σc:

Maximization of lα′,σc of Eq.(B.14) with respect to α, σc can be done simultaneously by

fitting a weighted Poisson regression model. To do this, let us define x∗ =
[(
x⊗1m2

)
,
{
1n⊗(

1m ⊗ (q∗c1 , . . . , q
∗c
m)′
)}]

nm2×(p+1)
,α∗(p+1)×1 = (α′, σc)

′. Here 1h is the h × 1 vector of 1s.
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Hence maximization with respect to α∗ can be accomplished by fitting a weighted log-linear

regression of y ⊗ 1m2 on x∗ with weights w∗il1l2u
(r)
ij (q∗cl1 , q

∗d
l2

), i = 1, · · · , K, j = 1, · · · , ni, l1 =

l2 = 1, · · · ,m.

M-Step for γ, σd:

Maximization of lγ′,σd of Eq.(B.14) with respect to γ, σd can be done simultaneously by

fitting another weighted Poisson regression model. To do this, let us define x∗ =
[(
x ⊗

1m2

)
,
{
1n⊗

(
(q∗d1 , . . . , q

∗d
m )′⊗1m

)}]
nm2×(p+1)

,γ∗(p+1)×1 = (γ ′, σd)
′. Hence maximization with

respect to γ∗ can be accomplished by fitting a weighted log-linear regression of y ⊗ 1m2 on

x∗ with weights w∗il1l2
(
1− u(r)ij (q∗cl1 , q

∗d
l2

)
)
, i = 1, · · · , K, j = 1, · · · , ni, l1 = l2 = 1, · · · ,m.

B.4 Simulation Results: Intra-cluster Correlation Co-

efficient from the REMPois-Pois Model

Table B.1: The ICC and the estimated ICC from REMPois-Pois model for different number of
clusters and various cluster sizes

π∗ K ni ICC ˆICC

0.50 50 5 0.108 0.098
15 0.107 0.102
30 0.108 0.106

100 5 0.109 0.100
15 0.108 0.108
30 0.108 0.104

200 5 0.108 0.104
15 0.107 0.105
30 0.108 0.102

0.70 50 5 0.062 0.062
15 0.062 0.065
30 0.062 0.062

100 5 0.063 0.061
15 0.062 0.062
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Continued...Table B.1

π∗ K ni ICC ˆICC

30 0.062 0.060

200 5 0.062 0.061
15 0.062 0.061
30 0.062 0.058

0.90 50 5 0.020 0.037
15 0.020 0.022
30 0.020 0.020

100 5 0.020 0.024
15 0.020 0.020
30 0.020 0.018

200 5 0.020 0.021
15 0.020 0.019
30 0.020 0.017
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Appendix C

C.1 Simulation Results: Marginalized Mixture of Pois-

son AR(1) Model

Table C.1: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.50 from marginalized mixture of
Poisson AR(1) model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.196 -0.004 0.225 0.196 95.6
β1 = 0.60 0.584 -0.016 0.340 0.293 95.6
β2 = 0.50 0.493 -0.007 0.237 0.216 95.5
ρ1 = 0.691 0.685 -0.006
α0 = −1.00 -1.192 -0.192 0.349 0.706 94.3
α1 = 0.40 0.545 0.145 0.510 0.878 95.1

0.907 α2 = 0.50 0.586 0.086 0.350 0.588 94.6
ρ∗1 = 0.40 0.175 -0.225
π∗ = 0.50 0.500 -0.000

(100,4) β0 = 0.20 0.184 -0.016 0.217 0.175 95.3
β1 = 0.60 0.605 0.005 0.328 0.279 95.9
β2 = 0.50 0.503 0.003 0.228 0.202 96.1
ρ1 = 0.691 0.685 -0.006
α0 = −1.00 -1.111 -0.111 0.310 0.604 95.8
α1 = 0.40 0.485 0.085 0.458 0.801 96.2

0.899 α2 = 0.50 0.581 0.081 0.310 0.509 94.8
ρ∗1 = 0.40 0.251 -0.149
π∗ = 0.50 0.504 0.004

(100,5) β0 = 0.20 0.192 -0.008 0.210 0.167 95.5
β1 = 0.60 0.591 -0.009 0.318 0.263 96.4
β2 = 0.50 0.517 0.017 0.221 0.194 95.7
ρ1 = 0.691 0.688 -0.003
α0 = −1.00 -1.077 -0.077 0.288 0.529 95.4
α1 = 0.40 0.448 0.048 0.426 0.685 96.4

0.870 α2 = 0.50 0.555 0.055 0.288 0.461 95.3
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Continued...Table C.1

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

ρ∗1 = 0.40 0.294 -0.106
π∗ = 0.50 0.496 -0.004

(200,3) β0 = 0.20 0.194 -0.006 0.161 0.136 95.9
β1 = 0.60 0.599 -0.001 0.245 0.214 95.9
β2 = 0.50 0.499 -0.001 0.159 0.142 95.5
ρ1 = 0.691 0.690 -0.001
α0 = −1.00 -1.159 -0.159 0.246 0.450 93.2
α1 = 0.40 0.546 0.146 0.364 0.570 94.3

0.913 α2 = 0.50 0.578 0.078 0.228 0.343 95.0
ρ∗1 = 0.40 0.187 -0.213
π∗ = 0.50 0.498 -0.002

(200,4) β0 = 0.20 0.196 -0.004 0.155 0.133 96.6
β1 = 0.60 0.594 -0.006 0.237 0.206 94.8
β2 = 0.50 0.497 -0.003 0.153 0.141 95.6
ρ1 = 0.691 0.694 0.003
α0 = −1.00 -1.066 -0.066 0.219 0.372 94.8
α1 = 0.40 0.458 0.058 0.328 0.475 95.1

0.903 α2 = 0.50 0.545 0.045 0.205 0.300 95.2
ρ∗1 = 0.40 0.264 -0.136
π∗ = 0.50 0.504 0.004

(200,5) β0 = 0.20 0.191 -0.009 0.151 0.127 96.4
β1 = 0.60 0.598 -0.002 0.230 0.204 96.6
β2 = 0.50 0.513 0.013 0.148 0.132 95.7
ρ1 = 0.691 0.693 0.002
α0 = −1.00 -1.056 -0.056 0.205 0.337 94.5
α1 = 0.40 0.452 0.052 0.307 0.455 94.5

0.911 α2 = 0.50 0.543 0.043 0.191 0.274 95.2
ρ∗1 = 0.40 0.304 -0.096
π∗ = 0.50 0.498 -0.002

(500,3) β0 = 0.20 0.201 0.001 0.097 0.081 96.2
β1 = 0.60 0.593 -0.007 0.160 0.136 96.1
β2 = 0.50 0.499 -0.001 0.102 0.090 95.6
ρ1 = 0.691 0.690 -0.001
α0 = −1.00 -1.129 -0.129 0.145 0.272 91.7
α1 = 0.40 0.516 0.116 0.232 0.363 93.7

0.914 α2 = 0.50 0.568 0.068 0.142 0.215 93.3
ρ∗1 = 0.40 0.189 -0.211
π∗ = 0.50 0.498 -0.002

(500,4) β0 = 0.20 0.202 0.002 0.093 0.074 95.5
β1 = 0.60 0.593 -0.007 0.154 0.128 96.0
β2 = 0.50 0.496 -0.004 0.098 0.086 95.9
ρ1 = 0.691 0.690 -0.001
α0 = −1.00 -1.063 -0.063 0.131 0.225 94.0
α1 = 0.40 0.469 0.069 0.211 0.308 93.9

0.881 α2 = 0.50 0.540 0.040 0.129 0.190 94.0
ρ∗1 = 0.40 0.262 -0.138
π∗ = 0.50 0.501 0.001

(500,5) β0 = 0.20 0.197 -0.003 0.090 0.075 95.6
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Continued...Table C.1

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

β1 = 0.60 0.603 0.003 0.149 0.129 96.6
β2 = 0.50 0.500 -0.000 0.095 0.085 95.7
ρ1 = 0.691 0.689 -0.002
α0 = −1.00 -1.028 -0.028 0.122 0.199 95.5
α1 = 0.40 0.437 0.037 0.197 0.266 94.0

0.915 α2 = 0.50 0.518 0.018 0.121 0.165 95.5
ρ∗1 = 0.40 0.307 -0.093
π∗ = 0.50 0.500 -0.000

Table C.2: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.90 from marginalized mixture of
Poisson AR(1) model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.195 -0.005 0.507 0.569 95.6
β1 = 0.60 0.557 -0.043 0.792 0.938 94.4
β2 = 0.50 0.398 -0.102 0.555 0.687 95.5
ρ1 = 0.935 0.908 -0.027
α0 = −1.00 -1.015 -0.015 0.278 0.286 93.9
α1 = 0.40 0.389 -0.011 0.413 0.429 95.0

0.825 α2 = 0.50 0.490 -0.010 0.280 0.301 94.4
ρ∗1 = 0.40 0.380 -0.020
π∗ = 0.90 0.896 -0.004

(100,4) β0 = 0.20 0.195 -0.005 0.500 0.577 95.2
β1 = 0.60 0.551 -0.049 0.781 0.934 94.4
β2 = 0.50 0.404 -0.096 0.552 0.700 95.2
ρ1 = 0.935 0.906 -0.029
α0 = −1.00 -1.004 -0.004 0.248 0.251 94.5
α1 = 0.40 0.392 -0.008 0.369 0.383 94.7

0.833 α2 = 0.50 0.483 -0.017 0.250 0.263 94.4
ρ∗1 = 0.40 0.384 -0.016
π∗ = 0.90 0.896 -0.004

(100,5) β0 = 0.20 0.207 0.007 0.497 0.564 94.6
β1 = 0.60 0.519 -0.081 0.774 0.922 94.5
β2 = 0.50 0.404 -0.096 0.547 0.680 94.0
ρ1 = 0.935 0.907 -0.028
α0 = −1.00 -1.004 -0.004 0.227 0.224 95.0
α1 = 0.40 0.401 0.001 0.337 0.339 95.6

0.815 α2 = 0.50 0.488 -0.012 0.229 0.228 95.3
ρ∗1 = 0.40 0.385 -0.015
π∗ = 0.90 0.896 -0.004

(200,3) β0 = 0.20 0.158 -0.042 0.371 0.367 95.2
β1 = 0.60 0.633 0.033 0.590 0.568 94.9
β2 = 0.50 0.500 -0.000 0.386 0.362 95.4
ρ1 = 0.935 0.931 -0.004
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Continued...Table C.2

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

α0 = −1.00 -1.020 -0.020 0.199 0.205 94.8
α1 = 0.40 0.420 0.020 0.298 0.307 94.9

0.811 α2 = 0.50 0.511 0.011 0.186 0.191 94.9
ρ∗1 = 0.40 0.390 -0.010
π∗ = 0.90 0.900 0.000

(200,4) β0 = 0.20 0.154 -0.046 0.366 0.363 94.4
β1 = 0.60 0.622 0.022 0.581 0.585 95.0
β2 = 0.50 0.479 -0.021 0.380 0.383 95.0
ρ1 = 0.935 0.930 -0.005
α0 = −1.00 -1.011 -0.011 0.179 0.189 95.3
α1 = 0.40 0.409 0.009 0.268 0.278 94.4

0.854 α2 = 0.50 0.499 -0.001 0.167 0.174 95.1
ρ∗1 = 0.40 0.392 -0.008
π∗ = 0.90 0.900 -0.000

(200,5) β0 = 0.20 0.170 -0.030 0.363 0.348 95.3
β1 = 0.60 0.606 0.006 0.577 0.570 95.0
β2 = 0.50 0.522 0.022 0.379 0.347 95.3
ρ1 = 0.935 0.932 -0.003
α0 = −1.00 -1.007 -0.007 0.164 0.172 95.9
α1 = 0.40 0.400 -0.000 0.246 0.262 95.3

0.812 α2 = 0.50 0.503 0.003 0.153 0.153 95.2
ρ∗1 = 0.40 0.391 -0.009
π∗ = 0.90 0.898 -0.002

(500,3) β0 = 0.20 0.197 -0.003 0.223 0.193 95.0
β1 = 0.60 0.586 -0.014 0.385 0.337 95.0
β2 = 0.50 0.481 -0.019 0.250 0.228 95.4
ρ1 = 0.935 0.932 -0.003
α0 = −1.00 -0.997 0.003 0.119 0.117 94.6
α1 = 0.40 0.390 -0.010 0.193 0.192 95.1

0.863 α2 = 0.50 0.492 -0.008 0.118 0.117 94.7
ρ∗1 = 0.40 0.396 -0.004
π∗ = 0.90 0.899 -0.001

(500,4) β0 = 0.20 0.196 -0.004 0.223 0.203 96.3
β1 = 0.60 0.576 -0.024 0.382 0.368 96.3
β2 = 0.50 0.489 -0.011 0.248 0.230 96.0
ρ1 = 0.935 0.934 -0.001
α0 = −1.00 -0.998 0.002 0.107 0.109 94.5
α1 = 0.40 0.393 -0.007 0.174 0.173 95.2

0.901 α2 = 0.50 0.500 -0.000 0.107 0.102 94.7
ρ∗1 = 0.40 0.398 -0.002
π∗ = 0.90 0.900 -0.000

(500,5) β0 = 0.20 0.178 -0.022 0.222 0.187 95.1
β1 = 0.60 0.603 0.003 0.382 0.331 96.2
β2 = 0.50 0.495 -0.005 0.248 0.212 95.7
ρ1 = 0.935 0.933 -0.002
α0 = −1.00 -1.004 -0.004 0.099 0.096 95.1
α1 = 0.40 0.403 0.003 0.160 0.151 94.8

0.869 α2 = 0.50 0.499 -0.001 0.098 0.099 95.2
ρ∗1 = 0.40 0.397 -0.003
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Continued...Table C.2

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

π∗ = 0.90 0.900 0.000

C.2 Simulation Results: Marginalized Mixture of Pois-

son MA(1) Model

Table C.3: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.50 from marginalized mixture of
Poisson MA(1) model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.204 0.004 0.216 0.199 95.8
β1 = 0.60 0.590 -0.010 0.326 0.308 95.2
β2 = 0.50 0.496 -0.004 0.228 0.207 96.4
ρ1 = 0.632 0.626 -0.006
α0 = −1.00 -1.114 -0.114 0.325 0.648 95.8
α1 = 0.40 0.496 0.096 0.479 0.782 95.2

0.924 α2 = 0.50 0.558 0.058 0.326 0.537 95.2
ρ∗1 = 0.286 0.121 -0.165
π∗ = 0.50 0.496 -0.004

(100,4) β0 = 0.20 0.190 -0.010 0.208 0.181 96.1
β1 = 0.60 0.607 0.007 0.314 0.281 96.4
β2 = 0.50 0.500 0.000 0.220 0.201 96.1
ρ1 = 0.632 0.628 -0.004
α0 = −1.00 -1.076 -0.076 0.289 0.532 95.2
α1 = 0.40 0.468 0.068 0.426 0.685 95.2

0.915 α2 = 0.50 0.544 0.044 0.289 0.447 95.2
ρ∗1 = 0.286 0.188 -0.098
π∗ = 0.50 0.494 -0.006

(100,5) β0 = 0.20 0.186 -0.014 0.203 0.178 96.1
β1 = 0.60 0.619 0.019 0.307 0.278 96.5
β2 = 0.50 0.509 0.009 0.214 0.181 95.8
ρ1 = 0.632 0.629 -0.003
α0 = −1.00 -1.024 -0.024 0.261 0.442 95.7
α1 = 0.40 0.450 0.050 0.387 0.591 95.4

0.891 α2 = 0.50 0.512 0.012 0.264 0.397 95.2
ρ∗1 = 0.286 0.237 -0.048
π∗ = 0.50 0.497 -0.003

(200,3) β0 = 0.20 0.202 0.002 0.155 0.125 96.1
β1 = 0.60 0.591 -0.009 0.237 0.199 95.7
β2 = 0.50 0.504 0.004 0.153 0.124 96.2
ρ1 = 0.632 0.636 0.004
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Continued...Table C.3

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

α0 = −1.00 -1.080 -0.080 0.229 0.392 94.6
α1 = 0.40 0.472 0.072 0.341 0.495 94.5

0.894 α2 = 0.50 0.553 0.053 0.213 0.309 94.4
ρ∗1 = 0.286 0.138 -0.148
π∗ = 0.50 0.496 -0.004

(200,4) β0 = 0.20 0.190 -0.010 0.150 0.121 95.5
β1 = 0.60 0.609 0.009 0.228 0.192 95.2
β2 = 0.50 0.497 -0.003 0.148 0.127 95.3
ρ1 = 0.632 0.635 0.003
α0 = −1.00 -1.030 -0.030 0.204 0.330 94.6
α1 = 0.40 0.449 0.049 0.305 0.414 94.8

0.890 α2 = 0.50 0.519 0.019 0.191 0.272 95.3
ρ∗1 = 0.286 0.209 -0.077
π∗ = 0.50 0.501 0.001

(200,5) β0 = 0.20 0.199 -0.001 0.145 0.125 96.5
β1 = 0.60 0.598 -0.002 0.222 0.195 96.6
β2 = 0.50 0.498 -0.002 0.143 0.132 96.3
ρ1 = 0.632 0.635 0.003
α0 = −1.00 -0.990 0.010 0.186 0.295 94.5
α1 = 0.40 0.393 -0.007 0.280 0.383 94.3

0.916 α2 = 0.50 0.502 0.002 0.175 0.241 95.2
ρ∗1 = 0.286 0.246 -0.039
π∗ = 0.50 0.497 -0.003

(500,3) β0 = 0.20 0.197 -0.003 0.093 0.078 96.8
β1 = 0.60 0.601 0.001 0.154 0.134 95.7
β2 = 0.50 0.499 -0.001 0.098 0.088 95.7
ρ1 = 0.632 0.630 -0.002
α0 = −1.00 -1.075 -0.075 0.135 0.249 93.3
α1 = 0.40 0.500 0.100 0.217 0.319 93.9

0.899 α2 = 0.50 0.542 0.042 0.133 0.206 94.1
ρ∗1 = 0.286 0.134 -0.152
π∗ = 0.50 0.499 -0.001

(500,4) β0 = 0.20 0.198 -0.002 0.089 0.071 94.7
β1 = 0.60 0.601 0.001 0.148 0.125 96.1
β2 = 0.50 0.497 -0.003 0.094 0.081 95.9
ρ1 = 0.632 0.631 -0.001
α0 = −1.00 -1.021 -0.021 0.121 0.195 95.6
α1 = 0.40 0.434 0.034 0.196 0.275 95.2

0.894 α2 = 0.50 0.513 0.013 0.120 0.165 95.1
ρ∗1 = 0.286 0.204 -0.082
π∗ = 0.50 0.499 -0.001

(500,5) β0 = 0.20 0.200 -0.000 0.087 0.069 95.7
β1 = 0.60 0.592 -0.008 0.144 0.120 95.4
β2 = 0.50 0.503 0.003 0.092 0.081 96.1
ρ1 = 0.632 0.630 -0.002
α0 = −1.00 -0.985 0.015 0.111 0.171 95.4
α1 = 0.40 0.405 0.005 0.180 0.234 95.6

0.900 α2 = 0.50 0.501 0.001 0.110 0.147 94.7
ρ∗1 = 0.286 0.248 -0.038
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Continued...Table C.3

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

π∗ = 0.50 0.500 0.000

Table C.4: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.90 from marginalized mixture of
Poisson MA(1) model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.202 0.002 0.508 0.533 94.6
β1 = 0.60 0.539 -0.061 0.790 0.879 95.1
β2 = 0.50 0.426 -0.074 0.559 0.654 94.0
ρ1 = 0.923 0.895 -0.028
α0 = −1.00 -1.027 -0.027 0.255 0.253 94.2
α1 = 0.40 0.411 0.011 0.378 0.376 95.0

0.834 α2 = 0.50 0.507 0.007 0.256 0.254 95.6
ρ∗1 = 0.286 0.269 -0.017
π∗ = 0.90 0.896 -0.004

(100,4) β0 = 0.20 0.165 -0.035 0.497 0.575 94.4
β1 = 0.60 0.585 -0.015 0.777 0.961 94.6
β2 = 0.50 0.436 -0.064 0.547 0.623 93.9
ρ1 = 0.923 0.891 -0.032
α0 = −1.00 -0.999 0.001 0.222 0.229 95.2
α1 = 0.40 0.388 -0.012 0.331 0.335 95.4

0.821 α2 = 0.50 0.489 -0.011 0.224 0.234 95.2
ρ∗1 = 0.286 0.275 -0.011
π∗ = 0.90 0.897 -0.003

(100,5) β0 = 0.20 0.201 0.001 0.497 0.598 95.1
β1 = 0.60 0.528 -0.072 0.775 0.993 94.0
β2 = 0.50 0.378 -0.122 0.544 0.698 93.6
ρ1 = 0.923 0.890 -0.033
α0 = −1.00 -1.014 -0.014 0.202 0.204 94.5
α1 = 0.40 0.402 0.002 0.299 0.305 94.9

0.823 α2 = 0.50 0.506 0.006 0.202 0.208 94.9
ρ∗1 = 0.286 0.274 -0.012
π∗ = 0.90 0.897 -0.003

(200,3) β0 = 0.20 0.206 0.006 0.368 0.358 94.2
β1 = 0.60 0.577 -0.023 0.582 0.586 95.1
β2 = 0.50 0.454 -0.046 0.379 0.388 94.7
ρ1 = 0.923 0.917 -0.006
α0 = −1.00 -1.008 -0.008 0.182 0.186 95.1
α1 = 0.40 0.404 0.004 0.273 0.283 95.3

0.850 α2 = 0.50 0.499 -0.001 0.171 0.171 95.9
ρ∗1 = 0.286 0.278 -0.008
π∗ = 0.90 0.898 -0.002

(200,4) β0 = 0.20 0.160 -0.040 0.363 0.327 94.8
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Continued...Table C.4

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

β1 = 0.60 0.607 0.007 0.574 0.574 95.7
β2 = 0.50 0.516 0.016 0.378 0.376 94.9
ρ1 = 0.923 0.919 -0.004
α0 = −1.00 -1.001 -0.001 0.160 0.164 94.4
α1 = 0.40 0.401 0.001 0.240 0.246 95.3

0.851 α2 = 0.50 0.494 -0.006 0.150 0.155 95.1
ρ∗1 = 0.286 0.284 -0.002
π∗ = 0.90 0.899 -0.001

(200,5) β0 = 0.20 0.184 -0.016 0.362 0.350 95.2
β1 = 0.60 0.592 -0.008 0.574 0.582 94.9
β2 = 0.50 0.503 0.003 0.376 0.358 95.3
ρ1 = 0.923 0.920 -0.003
α0 = −1.00 -1.002 -0.002 0.144 0.148 94.1
α1 = 0.40 0.394 -0.006 0.217 0.227 94.3

0.846 α2 = 0.50 0.504 0.004 0.135 0.138 94.4
ρ∗1 = 0.286 0.279 -0.006
π∗ = 0.90 0.898 -0.002

(500,3) β0 = 0.20 0.179 -0.021 0.222 0.194 95.4
β1 = 0.60 0.620 0.020 0.382 0.343 96.2
β2 = 0.50 0.517 0.017 0.249 0.223 95.7
ρ1 = 0.923 0.920 -0.003
α0 = −1.00 -1.003 -0.003 0.109 0.112 95.4
α1 = 0.40 0.405 0.005 0.177 0.178 95.3

0.876 α2 = 0.50 0.502 0.002 0.108 0.112 94.4
ρ∗1 = 0.286 0.283 -0.003
π∗ = 0.90 0.899 -0.001

(500,4) β0 = 0.20 0.197 -0.003 0.222 0.187 96.1
β1 = 0.60 0.587 -0.013 0.381 0.320 94.4
β2 = 0.50 0.485 -0.015 0.247 0.217 96.5
ρ1 = 0.923 0.921 -0.002
α0 = −1.00 -1.009 -0.009 0.096 0.095 94.8
α1 = 0.40 0.411 0.011 0.156 0.152 94.9

0.869 α2 = 0.50 0.502 0.002 0.096 0.094 95.3
ρ∗1 = 0.286 0.283 -0.002
π∗ = 0.90 0.899 -0.001

(500,5) β0 = 0.20 0.185 -0.015 0.221 0.182 94.6
β1 = 0.60 0.595 -0.005 0.379 0.324 96.4
β2 = 0.50 0.500 0.000 0.246 0.225 95.4
ρ1 = 0.923 0.922 -0.001
α0 = −1.00 -1.002 -0.002 0.087 0.086 95.5
α1 = 0.40 0.400 0.000 0.141 0.140 95.4

0.883 α2 = 0.50 0.507 0.007 0.086 0.082 95.0
ρ∗1 = 0.286 0.284 -0.002
π∗ = 0.90 0.900 -0.000
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C.3 Simulation Results: Marginalized Mixture of Pois-

son EQCOR Model

Table C.5: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.50 from marginalized mixture of
Poisson EQCOR model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.189 -0.011 0.217 0.185 95.6
β1 = 0.60 0.595 -0.005 0.328 0.282 95.4
β2 = 0.50 0.498 -0.002 0.229 0.207 95.5
ρ1 = 0.567 0.565 -0.002
α0 = −1.00 -1.102 -0.102 0.314 0.633 96.3
α1 = 0.40 0.499 0.099 0.462 0.772 95.9

0.895 α2 = 0.50 0.573 0.073 0.314 0.533 95.6
ρ∗1 = 0.16 0.039 -0.121
π∗ = 0.50 0.505 0.005

(100,4) β0 = 0.20 0.191 -0.009 0.210 0.177 95.7
β1 = 0.60 0.604 0.004 0.318 0.277 96.2
β2 = 0.50 0.487 -0.013 0.222 0.208 95.1
ρ1 = 0.567 0.561 -0.006
α0 = −1.00 -1.072 -0.072 0.288 0.553 95.5
α1 = 0.40 0.470 0.070 0.425 0.679 95.2

0.903 α2 = 0.50 0.540 0.040 0.289 0.481 94.8
ρ∗1 = 0.16 0.073 -0.087
π∗ = 0.50 0.500 -0.000

(100,5) β0 = 0.20 0.205 0.005 0.206 0.172 95.8
β1 = 0.60 0.584 -0.016 0.312 0.274 95.1
β2 = 0.50 0.487 -0.013 0.218 0.195 95.6
ρ1 = 0.567 0.562 -0.005
α0 = −1.00 -1.015 -0.015 0.268 0.474 94.9
α1 = 0.40 0.400 0.000 0.399 0.619 95.7

0.901 α2 = 0.50 0.516 0.016 0.271 0.398 94.6
ρ∗1 = 0.16 0.093 -0.067
π∗ = 0.50 0.498 -0.002

(200,3) β0 = 0.20 0.188 -0.012 0.155 0.134 96.0
β1 = 0.60 0.607 0.007 0.236 0.210 96.7
β2 = 0.50 0.506 0.006 0.153 0.132 96.0
ρ1 = 0.567 0.571 0.004
α0 = −1.00 -1.081 -0.081 0.222 0.397 94.6
α1 = 0.40 0.504 0.104 0.330 0.490 94.5

0.907 α2 = 0.50 0.536 0.036 0.207 0.307 95.0
ρ∗1 = 0.16 0.042 -0.118
π∗ = 0.50 0.499 -0.001

(200,4) β0 = 0.20 0.202 0.002 0.151 0.130 96.8
β1 = 0.60 0.589 -0.011 0.231 0.205 95.9
β2 = 0.50 0.493 -0.007 0.149 0.123 94.6
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Continued...Table C.5

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

ρ1 = 0.567 0.572 0.005
α0 = −1.00 -1.046 -0.046 0.205 0.342 95.1
α1 = 0.40 0.442 0.042 0.307 0.445 95.6

0.903 α2 = 0.50 0.530 0.030 0.192 0.277 95.1
ρ∗1 = 0.16 0.088 -0.072
π∗ = 0.50 0.501 0.001

(200,5) β0 = 0.20 0.197 -0.003 0.148 0.123 95.4
β1 = 0.60 0.592 -0.008 0.226 0.201 95.7
β2 = 0.50 0.503 0.003 0.146 0.138 96.0
ρ1 = 0.567 0.571 0.004
α0 = −1.00 -1.006 -0.006 0.193 0.315 95.3
α1 = 0.40 0.408 0.008 0.289 0.412 94.4

0.908 α2 = 0.50 0.505 0.005 0.181 0.258 95.6
ρ∗1 = 0.16 0.107 -0.053
π∗ = 0.50 0.501 0.001

(500,3) β0 = 0.20 0.200 0.000 0.093 0.080 96.3
β1 = 0.60 0.597 -0.003 0.153 0.137 95.8
β2 = 0.50 0.500 -0.000 0.098 0.089 95.7
ρ1 = 0.567 0.566 -0.001
α0 = −1.00 -1.064 -0.064 0.131 0.243 93.5
α1 = 0.40 0.498 0.098 0.211 0.319 94.1

0.910 α2 = 0.50 0.542 0.042 0.130 0.197 94.8
ρ∗1 = 0.16 0.044 -0.116
π∗ = 0.50 0.500 0.000

(500,4) β0 = 0.20 0.195 -0.005 0.090 0.072 95.6
β1 = 0.60 0.608 0.008 0.149 0.122 95.5
β2 = 0.50 0.500 0.000 0.095 0.079 95.9
ρ1 = 0.567 0.564 -0.003
α0 = −1.00 -1.029 -0.029 0.121 0.195 95.0
α1 = 0.40 0.440 0.040 0.197 0.273 94.8

0.885 α2 = 0.50 0.520 0.020 0.120 0.170 94.9
ρ∗1 = 0.16 0.083 -0.077
π∗ = 0.50 0.500 0.000

(500,5) β0 = 0.20 0.201 0.001 0.089 0.072 95.5
β1 = 0.60 0.598 -0.002 0.147 0.126 95.3
β2 = 0.50 0.496 -0.004 0.094 0.080 95.4
ρ1 = 0.567 0.566 -0.001
α0 = −1.00 -1.020 -0.020 0.116 0.181 94.9
α1 = 0.40 0.428 0.028 0.188 0.250 95.200

0.889 α2 = 0.50 0.517 0.017 0.115 0.155 93.8
ρ∗1 = 0.16 0.107 -0.053
π∗ = 0.50 0.499 -0.001

154



Table C.6: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.90 from marginalized mixture of
Poisson EQCOR model for ρ∗ = 0.40 and for different values of K and T

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(100,3) β0 = 0.20 0.184 -0.016 0.503 0.565 95.2
β1 = 0.60 0.564 -0.036 0.788 0.921 93.8
β2 = 0.50 0.417 -0.083 0.553 0.624 93.7
ρ1 = 0.909 0.881 -0.028
α0 = −1.00 -1.000 -0.000 0.250 0.257 95.8
α1 = 0.40 0.375 -0.025 0.372 0.384 95.2

0.811 α2 = 0.50 0.484 -0.016 0.252 0.259 95.1
ρ∗1 = 0.16 0.142 -0.018
π∗ = 0.90 0.896 -0.004

(100,4) β0 = 0.20 0.164 -0.036 0.496 0.551 95.9
β1 = 0.60 0.605 0.005 0.777 0.892 95.0
β2 = 0.50 0.443 -0.057 0.546 0.646 94.9
ρ1 = 0.909 0.880 -0.029
α0 = −1.00 -1.001 -0.001 0.229 0.235 94.9
α1 = 0.40 0.389 -0.011 0.340 0.347 94.6

0.820 α2 = 0.50 0.499 -0.001 0.230 0.235 96.1
ρ∗1 = 0.16 0.148 -0.012
π∗ = 0.90 0.896 -0.004

(100,5) β0 = 0.20 0.113 -0.087 0.493 0.567 94.7
β1 = 0.60 0.678 0.078 0.777 0.934 93.8
β2 = 0.50 0.460 -0.040 0.546 0.625 93.7
ρ1 = 0.909 0.874 -0.035
α0 = −1.00 -0.996 0.004 0.212 0.209 94.9
α1 = 0.40 0.392 -0.008 0.315 0.308 94.8

0.808 α2 = 0.50 0.486 -0.014 0.214 0.229 95.2
ρ∗1 = 0.16 0.142 -0.018
π∗ = 0.90 0.897 -0.003

(200,3) β0 = 0.20 0.162 -0.038 0.368 0.335 95.2
β1 = 0.60 0.606 0.006 0.584 0.564 95.5
β2 = 0.50 0.494 -0.006 0.383 0.378 94.6
ρ1 = 0.909 0.902 -0.007
α0 = −1.00 -1.008 -0.008 0.179 0.184 94.8
α1 = 0.40 0.400 0.000 0.269 0.275 93.9

0.851 α2 = 0.50 0.504 0.004 0.168 0.174 94.6
ρ∗1 = 0.16 0.149 -0.011
π∗ = 0.90 0.900 -0.000

(200,4) β0 = 0.20 0.156 -0.044 0.363 0.336 95.3
β1 = 0.60 0.636 0.036 0.576 0.522 96.2
β2 = 0.50 0.519 0.019 0.379 0.363 94.9
ρ1 = 0.909 0.905 -0.004
α0 = −1.00 -1.018 -0.018 0.165 0.169 95.0
α1 = 0.40 0.413 0.013 0.247 0.253 95.6

0.847 α2 = 0.50 0.508 0.008 0.154 0.155 95.0
ρ∗1 = 0.16 0.150 -0.010
π∗ = 0.90 0.897 -0.003
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Continued...Table C.6

(K,T ) Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

(200,5) β0 = 0.20 0.174 -0.026 0.366 0.340 95.0
β1 = 0.60 0.597 -0.003 0.578 0.560 94.5
β2 = 0.50 0.505 0.005 0.379 0.376 95.4
ρ1 = 0.909 0.905 -0.004
α0 = −1.00 -1.009 -0.009 0.155 0.156 95.1
α1 = 0.40 0.403 0.003 0.232 0.230 94.7

0.812 α2 = 0.50 0.504 0.004 0.145 0.148 95.8
ρ∗1 = 0.16 0.155 -0.005
π∗ = 0.90 0.898 -0.002

(500,3) β0 = 0.20 0.180 -0.020 0.223 0.191 96.2
β1 = 0.60 0.609 0.009 0.383 0.339 96.2
β2 = 0.50 0.496 -0.004 0.249 0.222 95.5
ρ1 = 0.909 0.907 -0.002
α0 = −1.00 -1.001 -0.001 0.108 0.108 95.1
α1 = 0.40 0.397 -0.003 0.175 0.179 94.2

0.880 α2 = 0.50 0.499 -0.001 0.107 0.105 94.3
ρ∗1 = 0.16 0.158 -0.002
π∗ = 0.90 0.900 0.000

(500,4) β0 = 0.20 0.174 -0.026 0.221 0.198 95.1
β1 = 0.60 0.628 0.028 0.381 0.338 95.8
β2 = 0.50 0.512 0.012 0.248 0.212 95.8
ρ1 = 0.909 0.907 -0.002
α0 = −1.00 -1.002 -0.002 0.099 0.097 95.4
α1 = 0.40 0.396 -0.004 0.160 0.162 96.3

0.886 α2 = 0.50 0.500 -0.000 0.098 0.099 95.5
ρ∗1 = 0.16 0.157 -0.003
π∗ = 0.90 0.899 -0.001

(500,5) β0 = 0.20 0.190 -0.010 0.221 0.191 96.0
β1 = 0.60 0.588 -0.012 0.380 0.341 95.9
β2 = 0.50 0.499 -0.001 0.247 0.222 96.0
ρ1 = 0.909 0.907 -0.002
α0 = −1.00 -0.999 0.001 0.093 0.093 95.6
α1 = 0.40 0.395 -0.005 0.151 0.154 94.8

0.883 α2 = 0.50 0.500 -0.000 0.092 0.091 94.9
ρ∗1 = 0.16 0.157 -0.003
π∗ = 0.90 0.900 -0.000
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C.4 Simulation Results: Marginalized Mixture of Lon-

gitudinal Poisson Model

Table C.7: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.50 from marginalized mixture of
Poisson AR(1), Poisson MA(1), and Poisson EQCOR model for ρ∗ = 0.70 and T = 4, and for
different values of K

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

AR(1) 100 β0 = 0.20 0.175 -0.025 0.237 0.208 95.8
β1 = 0.60 0.611 0.011 0.356 0.308 94.9
β2 = 0.50 0.499 -0.001 0.249 0.227 96.0

0.905 ρ1 = 0.848 0.839 -0.009
α0 = −1.00 -1.412 -0.412 0.413 0.964 93.7
α1 = 0.40 0.687 0.287 0.595 1.123 95.4
α2 = 0.50 0.711 0.211 0.403 0.733 94.0
π∗ = 0.50 0.498 -0.002

200 β0 = 0.20 0.205 0.005 0.169 0.144 95.4
β1 = 0.60 0.585 -0.015 0.257 0.223 96.1
β2 = 0.50 0.499 -0.001 0.166 0.146 95.8

0.908 ρ1 = 0.848 0.845 -0.003
α0 = −1.00 -1.229 -0.229 0.279 0.500 92.0
α1 = 0.40 0.549 0.149 0.412 0.654 94.3
α2 = 0.50 0.622 0.122 0.256 0.394 93.7
π∗ = 0.50 0.499 -0.001

500 β0 = 0.20 0.202 0.002 0.101 0.084 95.9
β1 = 0.60 0.594 -0.006 0.167 0.141 95.3
β2 = 0.50 0.500 -0.000 0.106 0.090 96.1

0.900 ρ1 = 0.848 0.844 -0.004
α0 = −1.00 -1.217 -0.217 0.163 0.327 89.3
α1 = 0.40 0.579 0.179 0.260 0.401 92.0
α2 = 0.50 0.608 0.108 0.159 0.255 92.2
π∗ = 0.50 0.499 -0.001

MA(1) 100 β0 = 0.20 0.193 -0.007 0.212 0.177 96.2
β1 = 0.60 0.596 -0.004 0.321 0.280 95.3
β2 = 0.50 0.506 0.006 0.224 0.193 95.8

0.896 ρ1 = 0.703 0.694 -0.009
α0 = −1.00 -1.072 -0.072 0.300 0.573 95.0
α1 = 0.40 0.460 0.060 0.444 0.709 95.8
α2 = 0.50 0.547 0.047 0.302 0.480 96.0
π∗ = 0.50 0.499 -0.001

200 β0 = 0.20 0.186 -0.014 0.152 0.132 96.2
β1 = 0.60 0.610 0.010 0.232 0.209 96.2
β2 = 0.50 0.510 0.010 0.150 0.129 95.6

0.905 ρ1 = 0.703 0.699 -0.004
α0 = −1.00 -1.055 -0.055 0.214 0.374 96.0

157



Continued...Table C.7

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

α1 = 0.40 0.466 0.066 0.320 0.481 95.5
α2 = 0.50 0.548 0.048 0.200 0.309 94.8
π∗ = 0.50 0.501 0.001

500 β0 = 0.20 0.197 -0.003 0.091 0.076 96.0
β1 = 0.60 0.602 0.002 0.150 0.134 95.3
β2 = 0.50 0.501 0.001 0.096 0.084 95.7

0.908 ρ1 = 0.703 0.696 -0.007
α0 = −1.00 -1.043 -0.043 0.127 0.207 94.9
α1 = 0.40 0.452 0.052 0.206 0.288 95.2
α2 = 0.50 0.528 0.028 0.126 0.173 94.8
π∗ = 0.50 0.499 -0.001

EQCOR 100 β0 = 0.20 0.183 -0.017 0.233 0.198 96.0
β1 = 0.60 0.612 0.012 0.352 0.313 95.5
β2 = 0.50 0.489 -0.011 0.245 0.226 96.0

0.915 ρ1 = 0.743 0.730 -0.013
α0 = −1.00 -1.323 -0.323 0.383 0.817 93.8
α1 = 0.40 0.606 0.206 0.557 0.969 95.3
α2 = 0.50 0.651 0.151 0.378 0.677 94.9
π∗ = 0.50 0.498 -0.002

200 β0 = 0.20 0.200 0.000 0.167 0.141 96.9
β1 = 0.60 0.591 -0.009 0.254 0.220 95.3
β2 = 0.50 0.493 -0.007 0.164 0.138 95.4

0.907 ρ1 = 0.743 0.737 -0.006
α0 = −1.00 -1.230 -0.230 0.268 0.512 93.9
α1 = 0.40 0.553 0.153 0.396 0.621 95.3
α2 = 0.50 0.610 0.110 0.247 0.382 94.5
π∗ = 0.50 0.499 -0.001

500 β0 = 0.20 0.197 -0.003 0.100 0.084 96.4
β1 = 0.60 0.601 0.001 0.165 0.143 95.1
β2 = 0.50 0.499 -0.001 0.105 0.090 96.7

0.917 ρ1 = 0.743 0.735 -0.008
α0 = −1.00 -1.183 -0.183 0.156 0.294 90.4
α1 = 0.40 0.536 0.136 0.250 0.389 92.5
α2 = 0.50 0.596 0.096 0.152 0.243 93.1
π∗ = 0.50 0.501 0.001

158



Table C.8: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.70 from marginalized mixture of
Poisson AR(1), Poisson MA(1), and Poisson EQCOR model for ρ∗ = 0.70 and T = 4, and for
different values of K

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

AR(1) 100 β0 = 0.20 0.166 -0.034 0.298 0.277 95.2
β1 = 0.60 0.627 0.027 0.461 0.443 95.8
β2 = 0.50 0.491 -0.009 0.324 0.301 95.1

0.880 ρ1 = 0.905 0.901 -0.004
α0 = −1.00 -0.982 0.018 0.333 0.443 93.9
α1 = 0.40 0.365 -0.035 0.499 0.633 94.9
α2 = 0.50 0.457 -0.043 0.341 0.436 94.9
π∗ = 0.70 0.693 -0.007

200 β0 = 0.20 0.177 -0.023 0.213 0.192 95.2
β1 = 0.60 0.624 0.024 0.331 0.295 95.8
β2 = 0.50 0.510 0.010 0.216 0.195 94.8

0.910 ρ1 = 0.905 0.904 -0.001
α0 = −1.00 -0.974 0.026 0.237 0.324 94.8
α1 = 0.40 0.392 -0.008 0.358 0.460 95.3
α2 = 0.50 0.480 -0.020 0.225 0.292 95.1
π∗ = 0.70 0.695 -0.005

500 β0 = 0.20 0.191 -0.009 0.129 0.109 96.1
β1 = 0.60 0.605 0.005 0.217 0.187 95.3
β2 = 0.50 0.505 0.005 0.140 0.120 96.0

0.908 ρ1 = 0.905 0.903 -0.002
α0 = −1.00 -0.959 0.041 0.141 0.185 94.4
α1 = 0.40 0.375 -0.025 0.231 0.281 94.4
α2 = 0.50 0.478 -0.022 0.142 0.170 94.4
π∗ = 0.70 0.700 -0.000

MA(1) 100 β0 = 0.20 0.168 -0.032 0.285 0.246 94.8
β1 = 0.60 0.614 0.014 0.442 0.396 95.3
β2 = 0.50 0.490 -0.010 0.310 0.275 96.3

0.886 ρ1 = 0.814 0.810 -0.004
α0 = −1.00 -0.931 0.069 0.262 0.327 94.1
α1 = 0.40 0.326 -0.074 0.394 0.472 93.8
α2 = 0.50 0.454 -0.046 0.267 0.323 95.5
π∗ = 0.70 0.699 -0.001

200 β0 = 0.20 0.197 -0.003 0.202 0.166 96.4
β1 = 0.60 0.596 -0.004 0.316 0.259 95.7
β2 = 0.50 0.492 -0.008 0.206 0.183 95.6

0.879 ρ1 = 0.814 0.817 0.003
α0 = −1.00 -0.923 0.077 0.188 0.245 92.5
α1 = 0.40 0.326 -0.074 0.285 0.337 94.7
α2 = 0.50 0.448 -0.052 0.178 0.210 92.9
π∗ = 0.70 0.697 -0.003

500 β0 = 0.20 0.202 0.002 0.122 0.105 95.8
β1 = 0.60 0.590 -0.010 0.206 0.179 95.0
β2 = 0.50 0.492 -0.008 0.133 0.120 95.7
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Continued...Table C.8

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

0.904 ρ1 = 0.814 0.813 -0.001
α0 = −1.00 -0.922 0.078 0.113 0.142 91.8
α1 = 0.40 0.328 -0.072 0.186 0.218 93.6
α2 = 0.50 0.454 -0.046 0.114 0.130 94.0
π∗ = 0.70 0.699 -0.001

EQCOR 100 β0 = 0.20 0.183 -0.017 0.298 0.255 96.0
β1 = 0.60 0.598 -0.002 0.460 0.408 96.2
β2 = 0.50 0.488 -0.012 0.323 0.287 96.1

0.898 ρ1 = 0.839 0.832 -0.007
α0 = −1.00 -0.978 0.022 0.323 0.436 94.8
α1 = 0.40 0.360 -0.040 0.483 0.611 95.5
α2 = 0.50 0.464 -0.036 0.331 0.431 94.5
π∗ = 0.70 0.696 -0.004

200 β0 = 0.20 0.197 -0.003 0.213 0.174 96.0
β1 = 0.60 0.588 -0.012 0.332 0.288 95.3
β2 = 0.50 0.494 -0.006 0.216 0.198 95.4

0.894 ρ1 = 0.839 0.839 0.000
α0 = −1.00 -0.975 0.025 0.231 0.310 95.0
α1 = 0.40 0.370 -0.030 0.348 0.438 95.5
α2 = 0.50 0.475 -0.025 0.219 0.271 94.2
π∗ = 0.70 0.697 -0.003

500 β0 = 0.20 0.193 -0.007 0.128 0.111 96.1
β1 = 0.60 0.597 -0.003 0.216 0.189 95.0
β2 = 0.50 0.507 0.007 0.139 0.123 95.0

0.905 ρ1 = 0.839 0.838 -0.001
α0 = −1.00 -0.948 0.052 0.137 0.172 94.5
α1 = 0.40 0.344 -0.056 0.225 0.275 94.3
α2 = 0.50 0.459 -0.041 0.138 0.157 93.4
π∗ = 0.70 0.699 -0.001
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Table C.9: Simulated mean (SM), amount of bias (Bias), estimated and simulated standard
error (ESE, SSE) and coverage probability (Cov.Pr) in estimating marginal parameters (β); and
component-1 parameters (α) with mixing proportion π∗ = 0.90 from marginalized mixture of
Poisson AR(1), Poisson MA(1), and Poisson EQCOR model for ρ∗ = 0.70 and T = 4, and for
different values of K

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

AR(1) 100 β0 = 0.20 0.179 -0.021 0.515 0.590 93.8
β1 = 0.60 0.564 -0.036 0.802 0.967 94.4
β2 = 0.50 0.467 -0.033 0.567 0.646 94.5

0.819 ρ1 = 0.967 0.952 -0.015
α0 = −1.00 -1.041 -0.041 0.308 0.319 95.0
α1 = 0.40 0.430 0.030 0.456 0.480 94.6
α2 = 0.50 0.505 0.005 0.310 0.314 94.3
π∗ = 0.90 0.896 -0.004

200 β0 = 0.20 0.168 -0.032 0.372 0.345 95.2
β1 = 0.60 0.614 0.014 0.590 0.561 94.8
β2 = 0.50 0.519 0.019 0.389 0.335 94.5

0.806 ρ1 = 0.967 0.964 -0.003
α0 = −1.00 -1.011 -0.011 0.220 0.232 95.3
α1 = 0.40 0.402 0.002 0.330 0.351 95.2
α2 = 0.50 0.500 -0.000 0.206 0.211 95.2
π∗ = 0.90 0.899 -0.001

500 β0 = 0.20 0.171 -0.029 0.224 0.207 95.4
β1 = 0.60 0.633 0.033 0.386 0.337 96.3
β2 = 0.50 0.523 0.023 0.252 0.244 96.3

0.890 ρ1 = 0.967 0.966 -0.001
α0 = −1.00 -1.008 -0.008 0.132 0.137 94.7
α1 = 0.40 0.410 0.010 0.213 0.221 94.4
α2 = 0.50 0.504 0.004 0.131 0.139 95.1
π∗ = 0.90 0.899 -0.001

MA(1) 100 β0 = 0.20 0.151 -0.049 0.497 0.602 94.5
β1 = 0.60 0.596 -0.004 0.776 1.033 95.2
β2 = 0.50 0.421 -0.079 0.544 0.657 95.1

0.830 ρ1 = 0.936 0.903 0.033
α0 = −1.00 -1.011 -0.011 0.236 0.242 94.9
α1 = 0.40 0.403 0.003 0.350 0.362 94.7
α2 = 0.50 0.504 0.004 0.237 0.232 95.7
π∗ = 0.90 0.898 -0.002

200 β0 = 0.20 0.171 -0.029 0.364 0.338 94.9
β1 = 0.60 0.592 -0.008 0.577 0.570 95.7
β2 = 0.50 0.507 0.007 0.380 0.350 95.5

0.831 ρ1 = 0.936 0.931 -0.005
α0 = −1.00 -1.002 -0.002 0.169 0.183 95.3
α1 = 0.40 0.390 -0.010 0.254 0.273 95.5
α2 = 0.50 0.498 -0.002 0.158 0.169 95.2
π∗ = 0.90 0.899 -0.001

500 β0 = 0.20 0.177 -0.023 0.221 0.202 94.8
β1 = 0.60 0.611 0.011 0.382 0.346 95.5
β2 = 0.50 0.514 0.014 0.248 0.213 95.6
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Continued...Table C.9

Mixture
Type

K Conv.Prop. Params SM Bias ESE SSE Cov.Pr.

0.885 ρ1 = 0.936 0.935 -0.001
α0 = −1.00 -0.998 0.002 0.102 0.105 94.8
α1 = 0.40 0.392 -0.008 0.165 0.167 95.5
α2 = 0.50 0.501 0.001 0.101 0.103 95.0
π∗ = 0.90 0.900 -0.000

EQCOR 100 β0 = 0.20 0.199 -0.001 0.508 0.595 95.7
β1 = 0.60 0.504 -0.096 0.792 1.004 94.8
β2 = 0.50 0.439 -0.061 0.561 0.676 95.3

0.830 ρ1 = 0.945 0.919 0.026
α0 = −1.00 -1.001 -0.001 0.296 0.309 94.8
α1 = 0.40 0.375 -0.025 0.441 0.460 94.9
α2 = 0.50 0.485 -0.015 0.299 0.312 94.9
π∗ = 0.90 0.896 -0.004

200 β0 = 0.20 0.186 -0.014 0.371 0.365 95.1
β1 = 0.60 0.588 -0.012 0.586 0.596 95.0
β2 = 0.50 0.489 -0.011 0.385 0.375 94.8

0.854 ρ1 = 0.945 0.941 -0.004
α0 = −1.00 -1.030 -0.030 0.215 0.227 94.6
α1 = 0.40 0.428 0.028 0.321 0.333 94.8
α2 = 0.50 0.512 0.012 0.201 0.211 95.7
π∗ = 0.90 0.898 -0.002

500 β0 = 0.20 0.192 -0.008 0.225 0.175 94.5
β1 = 0.60 0.607 0.007 0.387 0.313 96.1
β2 = 0.50 0.490 -0.010 0.251 0.218 96.1

0.854 ρ1 = 0.945 0.945 0.000
α0 = −1.00 -1.009 -0.009 0.128 0.129 95.2
α1 = 0.40 0.409 0.009 0.207 0.199 94.6
α2 = 0.50 0.501 0.001 0.127 0.131 94.5
π∗ = 0.90 0.899 -0.001
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