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  IV 

ABSTRACT 
 

Stereo correspondence has attained a position of overwhelming dominance in 

Computer Vision for long days for determining three-dimensional depth information of 

objects using a pair of left and right images from a stereo camera system. In this thesis 

we propose four novel ideas for improving the efficiency and accuracy of stereo 

correspondence estimation in stereo vision. First idea presents a “Real Time 

Approximation (RTA)” algorithm for computing the disparity of the stereo image 

sequences. The algorithm has been organized to make it dedicated for real time-

applications. To do this, the original image is scaled down and obtained highest speed 

to compute the stereo correspondences. The second idea is a searching algorithm titled 

“Two Dimensional Real Time Spiral Search Algorithm (2DRTSSA)” to compute the 

stereo correspondence two dimensionally. The 2DRTSSA thus increases the speed and 

accuracy over the existing state-of-the-art methods of one dimensional and left-right 

searching strategy. The third idea is a new and significant searching method, is 

explored by the name “Self-Adaptive Algorithm (SAA)” for computing stereo 

correspondence or disparity of stereo image. According to the SAA method, stereo 

matching search range can be selected dynamically until finding the best match. The 

searching speed is almost doubled by reducing the search range half of its original, by 

dividing the searching range into two regions. First one is –dmax to 0 and second one is 

0 to +dmax. To determine the correspondence of a pixel of the reference image (left 

image), the window costs of the right image are computed either for –dmax to 0 region 

or for 0 to +dmax region depending on the result of previous matching. The speed and 

accuracy are further improved by introducing the fourth idea entitled “Self-Guided 

Stereo Correspondence (SGSC) Estimation” algorithm. The SGSC algorithm is 

directed by photometric properties of the candidate-pixels. Searching performance is 

slightly improved by utilizing this photometric property of the candidate-pixels as well 

as by implanting the pioneer threshold technique. These two key techniques reduced 

the computational costs with further improvement of accuracy. The achievements of the 

SGSC method are testified on Middlebury standard stereo datasets of 2001, 2003, 2006 

and Middlebury latest Optical Flow Datasets. Moreover, the newly invented algorithms 

RTA, 2DRTSSA, SAA and SGSC have been justified on real images which are 

acquisitioned in our laboratory in complex environment. The overall performances of 

all algorithms are satisfactory in case of real stereo images. Finally, the proposed 

methods are compared with present state-of-the-art methods and our 2DRTSSA, SAA 

and SGSC outperforms the latest methods in terms of speed, visualization of hidden 

ground truth, 3D reconstruction and accuracy. 
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1.1  Disparity or Stereo Correspondence Estimation and Rudiments 

Stereo correspondence or disparity is one of the most important research areas in 

computer vision. It has been found in many applications e.g., industrial inspection for 

3D objects, 3D sensing, 3D growth monitoring, Z-keying, novel view synthesis, 

image-based rendering, autonomous vehicles and robotics. The applications of stereo 

correspondence are found in medical-biomedical and/or bioengineering fields.  It can 

be also used in surveillance, transportation for traffic scene analysis, digital 

photogrammetry, remote sensing, 3D database for urban and town planning, stereo 

lithography, stereo sculpting, on-line shopping and many more. Dense depth 

measurements obtained from disparity are required in applications such as 

teleconferencing, robot navigation and control, exploration and modeling of 

unstructured environments, virtual reality etc.  

The reference pixel ),(
LLL

yxP  of left image as shown in Fig. 1.1 should be matched 

in the same co-ordinate position of the right image. But practically, the matching pixel 

),(
RRR

yxP in the right image is found in earlier or later position due to noise or 

different camera-position. Usually the deviation occurs along the x axis. The 

difference in the coordinate of the corresponding pixels from left and right images is 

known as disparity, which is inversely proportional to the distance of the object from 

the camera [1].  

Disparity,           
  

 
              (1.1) 

Where f is the focal length of the cameras, B is baseline distance between two 

identical cameras and Z is the distance from the object P(x, y, z) to the camera. By 

knowing the parameters of right side of equation (1.1), we can also measure the 

disparity d. This is the main rudiments of stereo corresponding or disparity. 

For of a pixel in the left image, its correspondence has to be searched in the right 

image based on epipolar line for 3D scene reconstruction. Stereo correspondence or 

disparity is conventionally determined from the pixels of the matching windows by 

using Sum of Square Differences (SSD), Sum of Absolute Differences (SAD) or 

Normalized Correlation Techniques (NCT). Another rudiment is the cost aggression 

process using SSD, SAD or NCT. The aggregation of the window cost using SSD, 

SAD or NCT functions, leads to the score of most of the stereo vision methods, which 

can be mathematically expressed as follows- 
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Fig. 1.1 Disparity in a stereo pair of images. 

where fL, fR are the intensity values in left and right image, (x, y) are the pixel’s 

coordinates, d is the disparity value under consideration and W is the window cost of 

masking region[9].  

Window-based stereo correspondence estimation technique is widely used due to its 

efficiency and ease of implementation. However, there is a well-known problem in 

the selection of an appropriate size and shape of window [2-3]. If the window is small 

and does not cover enough intensity variation, it gives inaccurate result due to low 

signal to noise ratio. On the other hand, if window is large, it includes a region where 

the disparity varies or discontinuity of disparity happens, then the result becomes 

erroneous due to different projective distortions in the left and right images. Pixels 

those are close to a disparity discontinuity require windows of different shapes to 
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avoid crossing the discontinuity. Therefore, different pixels in an image require 

windows of different shapes and sizes. To overcome this problem, many researchers 

proposed adaptive window techniques using windows of different shapes and sizes [4-

7]. In adaptive window technique, it requires comparing the window costs for 

different window sizes and shapes, so the computation time is relatively higher than 

that of fixed window-based technique. For example, in [6] and [7] the authors used a 

direct search over several window shapes to find that one, which gives the best 

window cost. Beside gray scale stereo images, the use of color stereo images brings a 

substantial gain in accuracy with the expense of computation time [8].  

New approaches are introduced every year. But none of them are still now perfect for 

stereo matching algorithm in real sense. Some special applications, like autonomous 

vehicle and robot navigation, virtual reality and stereo image coding in 3D-TV, 

require a very fast estimation of dense stereo correspondence. It was aimed that the 

pruning technique was useful in such situations for speedy determination of dense 

disparity [9].  

 The Two-Stage Approximation (TSA) method showed in such situations for speedy 

determination of dense disparity [10]. But its accuracy as well as visual quality of 

dense map was very poor. At present the researcher trying to pursue real-time 

execution speed and better accuracy.  

 
Fig. 1.2 Graphical illustration of window cost calculation. 

To determine the correspondence of a pixel in the left image using equation (1.2), 

(1.3) or (1.4) is computed window costs (WC) for all candidate-pixels in the right 



 

 

Introduction 

5 

 

image within the search range. The computational window costs are presented by Fig. 

1.2 within the search range from –dmax to +dmax along the x axis. Only eight window 

costs (WC1…WC8) are shown within the specified search range for simplicity and 

better understanding, practically it is more than this. The pixel in the right image that 

gives the best window cost is considered as the corresponding pixel in the left image.  

Suppose the reference pixel P(x, y) in the left image is matched with the pixel P′(x, y) 

in right image. Therefore, the minimum window cost is finalized at WC7. Since the 

difference from original position to matching position is six (6) pixels, therefore the 

disparity is 6. 

A constraint in the stereo matching is that the corresponding pixels should be close in 

color or intensity [9-10]. Based on this constraint, we proposed and implemented four 

new methods in this research work. All the methods are original, where it is not 

necessary to compute the window costs of all candidate-pixels in the right image 

within the search range. A problem with window-based matching is that, the window 

size must be large enough to include enough intensity variation for matching but 

small enough to avoid the effects of projective distortion. 

In this chapter, comparative performance analysis of existing stereo matching 

algorithms is explored in details. All stereo matching algorithms are classified into 

two categories [11-12]. First one is named as local method while the second one is 

global method. The algorithms taken consideration in literature are analyzed by 

frame-rate, accuracy and disparity range. Experimental results applied on different 

image sizes and different image sets (Tsukuba Stereo pair, Sawtooth stereo pair, Map 

Stereo pair and Venus Stereo pair) are also presented. Some neural network and 

automata based latest algorithms are analyzed. Besides these, some algorithms are not 

fallen into above mentioned categories are also discussed in details within the 

literature review section. Critical analyses of recent related works are discussed in last 

portion of literature review section. 

1.2  Literature Review  

Many researchers worked on a dense two-frame stereo in many ways. They try to 

optimize the dense disparity in locally or globally on a stereo pair.  So, the dense 

matching algorithms are divided into local and global ones [11]. The best 

classifications have been presented by Scharstein and Szeliski [12] and many new 
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methods have been proposed here. Local methods are also known as area based stereo 

matching that can perform better frame-rate compare to global methods. According to 

this, disparity is being calculated at a point in a fixed window. Global methods are 

also known as intensity or energy based stereo matching that can perform better 

accuracy compare to local methods. In this method, the global cost function is 

reduced to minimum as possible. This cost function synthesizes image data and 

smoothness terms. Because of increasing the computational power, some algorithms 

that results dense map became very popular in the recent decade. That is why dense 

disparity is more interested research area than spare disparity results. 

1.2.1 Local Methods 

Local methods provide good results and show speedy performance. Disparity has 

been calculated from color stereo images [8]. Sum of Absolute Difference (SAD) 

technique is used for RGB color image and a fast median filter uses to result in [8]. Its 

scanning frame-rate is 20 fps for 160 × 120 image size. The method is suitable for 

real-time application. A Fast Area Based (FAB) stereo matching algorithm has been 

introduced by L. D. Stefano et al. [13]. As it is a unidirectional searching, it is also 

referred as Single Matching Phase (SMP). Based on uniqueness constraint, it rejects 

previous matches as soon as better result is detected. It also uses SAD technique for 

error function, but any technique could be used. This method results a dense disparity 

map in real-time. It performs 39.59 fps frame-rate for 320 × 240 image size and 16 

disparity levels and the root mean square (r.m.s.) error for Tsukuba pair is 5.77. 

Shaped based stereo matching is reported in [14], where shape of the target is 

depicted by the algorithm.  It demonstrates the importance of the  horizontal and 

vertical slanted surfaces. The authors propose the replacement of the standard 

uniqueness constrain  referred to pixels with a uniqueness constraint referred to line 

segments along a scanline. In this method interval matching is performed instead of 

pixel matching. Matching factor is performed based on the absolute intensity 

difference and the stretching factor is obtained. The object is also achieved by 

minimum segmentation. The experimental results show that 1.77%, 0.61%,3.00% and 

7.63% errors for the Tsukuba , Sawtooth, Venus and Map stereo pair respectively. 

The execution speed of the algorithm varies from 1 to 5 seconds on 2.4 GHz 

processor. 

Almost real-time performance method is reported in [15] presented by Yoon et al. It 
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uses SAD method and a left-right consistency check. This method is able to find out 

the errors in the problematic regions are reduced using different sized correlation 

windows. Accordingly, a median filter is used in order to interpolate the results. The 

algorithm can process 7 fps for 320 × 240 pixels images and 32 disparity levels. The 

result has been justified by using an Intel Pentium 4 at 2.66 GHz Processor. 

Table 1.1: Comparative study of local algorithms of earlier trends. 

Author’s 

Name 

Published 

Year 
Method 

Frame-rate 

 (in fps) 

Image 

Size 

Disparity 

Levels 

Computational 

Platform 

Muhlmann   

et al.[8] 
2002 SAD 20 160×120 N/A 

Processor:P3 

Speed:800MHz 

RAM: 512 MB 

Di Stefano  

et al.[13] 
2004 SAD 39.59 320×240 16 

Processor:P3 

Speed:800MHz 

RAM: 512 MB 

Yoon et al.[15] 2005 SAD 7 320 ×240 32 
Intel Pentium 4 

2.66GHz 

Ogale and 

Aloimonos[21] 
2005 SAD 1 384 ×288 16 

Processor:P3 

Speed:2.4 GHz 

Binaghi  

et al.[26] 
2004 ZNCC 0.024 284× 216 30 

Processor:P3 

Speed:300MHz 

Yoon and 

Kweon[27]  
2006 SAD 0.016 384× 288 16 AMD 2700+ 

Zach, Karner 

and Bischof[28] 
2004 SAD 50 256 × 256 88 

ATI Radeon 

9700 Pro 

Mordohai and 

Medioni[48] 
2006 NCC 0.002 384 ×288 20 

Intel Pentium 

2.8MHz 

The use of Cellular Automata (CA) is presented in [16]. This work presents 

architecture for real-time extraction of disparity maps. The proposed method can 

process 1Mpixels image pairs at more than 40 fps. The key idea behind the algorithm 

relies on matching pixels of each scan-line using a one-dimensional window and the 

SAD matching cost. According to the method a pre-processing mean filtering step and 

a post-processing CA based filtering one are employed. CA’s are models of physical 

systems, where space and time are discrete and interactions are local. They can easily 

handle complicated boundary and initial conditions. In CA analysis, physical 

processes and systems are described by a cell array and a local rule, which defines the 

new state of a cell depending on the states of its neighbors [17]. 

A window-based method is presented in [18] that use different support-weights. The 

support-weights of the pixels in a given support window are adjusted based on 
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geometric proximity and color similarity to reduce the image ambiguity. The frame-

rate for the Tsukuba image pair with a 35 × 35 pixels support window is about 0.016 

fps on an AMD 2700+ processor. The error ratio is 1.29%, 0.97%, 0.99%, and 1.13% 

for the Tsukuba, Sawtooth, Venus and Map image sets respectively. The experimental 

results can be further improved through a left-right consistency checking. A novel 

method has been introduced in [26]. This method uses zero mean normalized cross 

correlation for matching, it also uses neural model that uses least-mean-square delta 

rule for training. Proper window size and shapes are selected by the neural network 

for each considering region. The results obtained by the network are better but the 

computational costs are not suitable for real-time applications. 

1.2.2 Global Methods 

In a global algorithm, the disparity of every single pixel is calculated by taking into 

consideration the whole image. Global optimization methodologies involve 

segmentation of the input images according to their colors. The accuracy of the global 

methods is very high but the computational costs are also high due to repetitive 

comparisons. 

The research work presented in [18] based on unified framework that supports the 

fusion of any partial knowledge such as matching features and surfaces about 

disparities.  Accordingly, it combines the results of edge, corner and dense stereo 

matching algorithm to act as a guide points to the standard dynamic programming 

method. The result obtained by fully automatic dense stereo system is up to four times 

faster and greater accuracy compared to that obtained by using dynamic 

programming. A method based on the Bayesian Estimation theory with a prior 

Markov Random Fields model for the assigned disparities is described in [19]. 

According to this method, the continuity, coherence, occlusion constraints and the 

adjacency principles are taken into consideration. The optimal estimator is computed 

using a Gauss-Markov random field model for the corresponding posterior marginal, 

which results in a diffusion process in the probability space. The results are accurate 

but the algorithm is not suitable for real-time applications, since it needs a few 

minutes to process a 256 × 255 stereo pair with up to 32 disparity levels, on an Intel 

Pentium III running at 450 MHz. Image color segmentation is reported in [20]. By 

this method disparity map is calculated using an adapting window-based technique. 

The segments are combined in larger layers iteratively. A global cost function is used 
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to optimize the segments to layers. The quality of the disparity map is measured by 

warping the reference image to the second view and comparing it with the real image 

and calculating the color dissimilarity. For the 384 × 288 pixel of Tsukuba and the 

434 × 383 pixel of Venus test set, the algorithm produces results at 0.05 fps frame-rate 

and needed 20 seconds to produce results. For the 450 × 375 pixel Teddy image pair, 

the running frame-rate decreased to 0.01 fps due to the increased scene complexity. 

Running speeds refer to an Intel Pentium 4, 2.0 GHz processor. The root mean square 

error was 0.73 for the Tsukuba, 0.31 for the Venus and 1.07 for the Teddy image pair.  

Table 1.2: Comparative study of global algorithms of earlier trends. 

Author’s 

Name 

Published 

Year 

Applied 

Method 

Frame-rate 

 (in fps) 

Image 

Size 

Disparity 

Levels 

Computational 

Platform 

Gutierrez and 

Marroquin[19] 
2004 

Gauss-

Markov 

random 

field 

0.017 256×255 32 
Processor:P3 

Speed:450MHz 

Bleyer and 

Gelautz[20] 
2005 

Global cost 

function 
0.05 384×288 16 

Processor:P4 

Speed:2.0 GHz 

Ogale and 

Aloimonos 

[21] 

2005 

Left-right 

diffusion 

process 

0.5 384×288 16 
Intel Pentium 4 

Speed: 2 GHz 

Veksler et 

al.[49] 
2006 Graph cuts 1.04 434×383 20 

Processor:P4 

Speed:2.6 GHz 

Hong and 

Chen[50] 
2004 Graph cuts 0.33 384×288 16 

Processor:P4 

Speed:2.4 GHz 

Kim et al.[51] 2005 DP 0.23 384×288 16 
Intel Pentium 4 

Speed: 2 GHz 

Wang et 

al.[52] 
2006 DP 43.5 320×240 16 

3.0GHz CPU –

ATI  Radeon 

XL1800 GPU 

Lei et al.[53] 2006 DP 0.1 384×288 16 
1.4 GHz Intel 

Pentium M 

An algorithm which is focused on achieving contrast invariant stereo matching [21]. It 

depends on multiple spatial frequency channels for local matching. The global 

solution is determined by a fast non-iterative left-right diffusion process. Occlusions 

are found by imposing the uniqueness constraint. The algorithm can perform 

significant changes in contrast between the two images and can handle noise in one of 
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the frequency channels. The algorithm has been justified on standard image pairs and 

needs 2 to 4 seconds to process. 

Another algorithm that generates high quality results in real-time is reported in [22]. 

This algorithm is based on the minimization of a global energy function comprising of 

a data and a smoothness term. The propagation iteratively optimizes the smoothness 

and it achieves fast convergence by removing redundant computations. For real-time 

operation authors take advantage of the parallelism of graphics hardware. 

Experimental results indicate 16 fps processing frame-rate for 320 × 240 pixel self-

recorded images with 16 disparity levels.  

1.2.3 Other Methods 

Besides the two above mentioned methods there are also some methods producing 

dense disparity maps. Continuous Wavelet Transform (CWT) reported in [23] can be 

placed in neither of previous categories. It makes use of the redundant information 

that results from the CWT. Using 1D orthogonal and bio-orthogonal wavelets as well 

as 2D orthogonal wavelet the maximum matching rate obtained is 88.22% for the 

Tsukuba pair. 

An algorithm based on non-uniform rational B-splines (NURBS) curves presented in 

[24]. The curves replace the edges extracted with a wavelet-based method. The 

NURBS are projective invariant and so they reduce false matches due to distortion 

and image noise. Stereo matching is then obtained by estimating the similarity 

between projections of curves of an image and curves of another image. A 96.5% 

matching rate for a self-recorded image pair is reported for this method. Daniel 

Scharstein el at. [25] reported in High-Resolution Stereo Datasets with Sub-pixels 

Accurate Ground Truth to find high resolution thirty-three stereo datasets of static 

indoor scenes with highly accurate ground-truth disparities. The system includes 

novel techniques for efficient 2D sub-pixels correspondence search and self-

calibration of cameras and projectors with modeling of lens distortion. 

1.2.4 Related Works in Recent Trends  

The matching costs related recent works are stated in [29] and [30]. The authors used 

bilateral filter to determine the cost aggregation and in order to reduce the 

computational cost, they also limit the label space. The work in [31] can be 
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considered as a cost aggregation method by guided image filter. The average runtime 

[31] of the four standard Middlebury datasets (including Tsukuba, Venus, Teddy and 

Cones data sets) is 960 milliseconds reported in [34]. So the run time of single image 

pair like Tsukuba or Venus is about 240 milliseconds only. Disparity Space Image 

(DSI) structure and gradient information has been combined as a new technique is 

first time introduced by Nadia Baha and Slimane Larabi [32]. They used DSI 

technique with adaptive window-support. Another approach is introduced by 

themselves as DSI with refinement. The experimental results take time 0.2 second and 

0.39 second respectively to process Tsukuba head image pair with different approach.  

A new geodesic O(1) filter is employed in [33] for the reliable disparity propagation. 

Such type of filter is very effective for the cost matching. As it is state-of-the-art 

method and the speed of this method has been justified on the Middlebury standard 

datasets, so we can compare this paper to our proposed methods. Xun Sun et al. [33] 

performed the experiment on PC equipped with a 3.0 GHz Intel Core i-5 CPU, 8 GB 

of memory and a Geforce GTX 580 graphics card. The processing time on 

Middlebury standard dataset is only 9 milliseconds.  

A cost aggression has been adaptively estimated on a tree structure derived from the 

stereo image pair to preserve depth edges. This latest idea is launched by Q. Yang 

[34] in which shortest distances measure the similarity between two pixels on the tree. 

The average runtime of the four standard Middlebury datasets (including Tsukuba, 

Venus, Teddy and Cones data sets) is about 90 milliseconds using the tree filtering 

method. But he mentioned in same section that the runtime is about 7 milliseconds on 

average on the Middlebury datasets. For identical comparison to our proposed 

methods we consider his second result that takes 7 milliseconds on average on the 

Middlebury datasets. Q. Yang tested his experiment on a MacBook Air laptop with a 

1.8 GHz Intel Core i-7 CPU and 4 GB memory. Another recent method achieves 

state-of-the-art result on Middlebury stereo datasets that performs stereo matching as 

a two steps energy-minimization algorithm [35]. The running time of this method is 3 

seconds only for Tsukuba dataset and 20 seconds for Teddy dataset on a computer 

containing an Intel Core i-5-4300U 1.9-GHz CPU and a 6-GB RAM. Semi-global 

matching and cost is refined by cross-based aggression has been introduced by J. 

Zbontar et al. [36]. They also use left-right consistency check to eliminate the errors. 

The experiment performs on KITTI stereo datasets. At very recent, Fusing Adaptive 
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Support Weights has been launched by Wenhuan Wu et al. [37]. Local and global 

support windows are used for each pixel in [37]. Self -guided cost aggression [38] has 

been determined by deep learning method that depends on two sub-networks. A 

pyramid stereo matching network [39] also consists of two modules based on pyramid 

and 3D CNN that have been tested on KITTI 2012 and 2015 datasets. Adaptive 

Weighted Bilateral Filter [40] is used as main filter at cost aggression step for edge 

preserve factor. 

With the above reviews we found that some researchers employed adaptive window-

based techniques to calculate the matching costs. But in our proposed methods, we 

have employed self-adaptive, self-guided, or two-dimensional computing functions to 

calculate the matching costs dynamically. This is one of the distinguishable 

innovative ideas between our proposed methods and existing state-of-the-art methods. 

The computational cost calculation formula used in above-mentioned methods is 

similar to that of our proposed methods, but the search technique is very different. 

Besides these analysis, the work in [33] requires preprocess and the works in [32], 

[34] and [36] need post processing steps like refinement, filtering and histogram 

equalization. Our proposed methods are implemented without preprocessing and post-

processing. The experimental dense disparity maps are directly eligible to compare 

with ground truth dense disparity. So, considering the adaptive similarity, mode of 

guidance, identical stereo datasets (Middlebury Standard datasets) and hardware 

platforms, we can consider the articles of [9], [13], [28], [32], [33], [34], [35], [37], 

[38] and [39] to compare between the state-of-the-art methods and our proposed 

methods.  

1.3  Stereo Matching Standard Datasets 

Most of the stereo matching experiments are tested on standard datasets of stereo 

images. Such types of standard stereo images are Middlebury Standard Stereo Images 

[12] and [41]. The researchers who wish to work in stereo image processing must 

have to work with these standard images and should compare their experimental 

results with respective ground truth image. There are some others online stereo 

benchmarks, they are: 

 Robust Vision Challenge 

 KITTI Stereo 2012 evaluation 

 KITTI Stereo 2015 evaluation 

http://www.robustvision.net/
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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 ETH3D 2-view stereo benchmark 

 Heidelberg HD1K Stereo benchmark 

 

Fig. 1.3 Middlebury Standard Stereo Images of Different Datasets. 

 

Fig. 1.3 demonstrates the Middlebury Standard Stereo Images only. But Middlebury 

benchmark is categorized on five types of datasets. 

 Stereo 

 Mview 

 MRF 

 Flow 

 Color 

The experimental results of this research are tested and compared on - 

1) Middlebury Standard Stereo Images of different datasets and  

2) Middlebury Optical flow datasets.  

Tsukuba, Sawtooth and Venus reference image (Left image) and their ground truth 

are illustrated below for visual understanding. Middlebury 2001 datasets consists of 

six datasets (Sawtooth, Venus, Bull, Poster, Barn1, Barn2) of piecewise planar scenes 

[12]. Middlebury standard 2003 datasets consist of two datasets (Cones, Teddy) with 

ground truth obtained using structured light.  2006 datasets  comprise with 21 datasets 

(Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots, Lampshade1-2, Midd1-2, 

Monopoly, Plastic, Rocks1-2, Wood1-2), is obtained using the technique of high-

accuracy stereo depth maps using structured light and published in [41]. 

https://www.eth3d.net/low_res_two_view
http://hci-benchmark.org/stereo
https://vision.middlebury.edu/stereo/data/scenes2003/
https://vision.middlebury.edu/stereo/data/scenes2006/
http://www.cs.middlebury.edu/~schar/papers/structlight/
http://www.cs.middlebury.edu/~schar/papers/structlight/


 

 

Optimal Algorithms for Stereo Correspondence Estimation 

14 

 

  

           (a)                                   (b) 

Fig. 1.4 (a) Left image of Tsukuba stereo pair.                         (b) Ground truth image. 

 

(a)                        (b)  

Fig. 1.5 (a) Left image of Sawtooth stereo pair.                     (b) Ground truth image. 

 

(a)                                                            (b) 

Fig. 1.6 (a) Left image of Venus stereo pair.                             (b) Ground truth image. 

1.4  Inaugurated Motivation  

Window-based stereo correspondence estimation technique is widely used due to its 

efficiency and ease of implementation [9]. In a fixed window-based system a pixel 

might be compared repeatedly within several windows that lead to increase the 

computational time, which is relatively high. Fig. 1.7 shows the redundant 

comparisons area of two neighbor pixels of (x, y) and (x1, y1). The pixels of the 
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overlapping area (redundant area) are compared both for the center pixels (x, y) and 

(x1, y1). So, the computational time is calculated two, three or more times (depends on 

window size) higher than that of the actual time. 

 

Fig. 1.7 The redundant area of neighbor pixels [(x, y) and (x1, y1)]. 

First search performs on the candidacy nine pixels enclosed by first rectangular large 

window. Second search occurs on the candidacy nine pixels enclosed by second 

rectangular large window pixels, delayed by just one pixel along the x axis. So the 

redundant six pixels of overlapping area centered by the co-ordinate pixels (x, y) and 

(x1, y1) will participate both in first and second window cost calculation processes. 

These redundant calculations are firstly explored in our research and we resolve this 

problem by inventing some novels and original stereo matching algorithms which are 

explained in subsequent chapters. 

1.5 Research Objectives 

The objectives of this thesis are to develop an optimal algorithm to determine the 

stereo correspondences from the standard stereo images for real-time application. The 

goal of the desired algorithm should be fast, robust and accurate. The system should 

be performed on simple hardware platform without any requirement of parallel 

processing or Graphics Processing Unit (GPU). 

In order to achieve the destination, we developed four algorithms on trial and error 

basis and invent the optimal one.  
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The method should employ the standard window cost techniques like SSD, SAD or 

NCT. But most of the state of the works used SAD, so it should use the same for 

identical comparisons. The system should be tested on standard benchmark data like 

Middlebury or KITTI stereo datasets.  

The system should work on dense disparity based idea. At first the method calculates 

the window costs which is presented in this chapter in Section 1.1 with Figure 1.2. 

The system should be able to find out the minimum distance between reference pixel 

and corresponding pixels of minimum window cost. The invention of minimum 

window cost techniques are proposed in Chapter 2, Chapter 3, Chapter 4 and Chapter 

5. The self-guided optimal algorithm for stereo correspondence estimation is 

presented in Chapter 5. 

Different tests should be performed on different standard datasets to evaluate the 

performance of the system based on computational cost and accuracy. The system 

should be tested on Middlebury standard stereo datasets of 2001, 2003 and 2006. The 

system should be also tested on latest Middlebury optical flow datasets. 

The system should be performed better than previous related researches with respect 

to computational time, frame-rate and accuracy. The proposed systems are compared 

with related researches for same datasets and environment with respect to 

computational time, frame-rate and accuracy.  

1.6  Scope of the Work 

Stereo correspondence or disparity has variety of applications, including people 

tracking, robotics navigation and medical imaging. The proposed system can provide 

full field of view for 3D measurements. Some of those scope and application areas of 

this thesis are discussed in this section. It is also used in industrial automation and 3D 

machine vision to perform task such as 3D object location and identification. The 

system also can be applied in medical field for monitoring the patients and health 

care. 

The proposed system can be used for developing stereoscopic medical imaging 

devices to realize the surgical problems accurately. By using the proposed algorithm, 

stereoscopic medical devices can provide more realistic depth perception to the 

viewer than conventional imaging technology. The proposed system can permit more 

accurate understanding and analysis of 3D view and distance of small biological 

specimens. Therefore, this system can be used to develop the stereo endoscopy and 
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stereo microscopy that can be utilized clinically to improve the surgical accuracy and 

patient safety.  

The proposed SGSC algorithm can be used in the stereo imaging devices of the 

military and investigative fields. An Unmanned Aerial Vehicle (UAV) is commonly 

known as a drone. The visional part of UAV is performed by special camera. The 

stereo vision camera plays a key role in battle field. The proposed system can be used 

on UAV’s camera to measure the distance of enemies’ military vehicles and position 

exactly. Similarly, the system can be used in weather analysis to know the position of 

cyclone. 

1.7 Organization of Doctoral Dissertation 

The subsequent Chapters describe disparity estimation techniques employed for this 

research in details. Chapter 2 introduces a novel method entitled as Real Time 

Approximation (RTA) for stereo correspondence estimation. Some limitations of RTA 

algorithm encouraged us to invent a new original algorithm called Two Dimensional 

Real Time Spiral Search Algorithm (2DRTSSA) which is described in Chapter 3. The 

best Self Adaptive Algorithm (SAA) is presented in details in Chapter 4. The 

experimental results and performances of this algorithm have been presented 

numerically and visually. The original and novel Self- Guided Stereo Correspondence 

(SGSC) Estimation algorithm is the optimal algorithm of state-of-art method and is 

explained elaborately with experimental results in Chapter 5. The overall conclusion 

of this research has been drawn in Chapter 6. 

1.8 Summary 

The content of this Chapter is primarily background information for stereo 

correspondence estimation. The concepts introduced in Section 1.2, the classifications 

of stereo correspondence estimation approaches i.e., local techniques and global 

techniques are introduced here. Their limitations are also mentioned in this section. 

The subsections 1.2.1, 1.2.2, 1.2.3 and 1.2.4 focus on features and shortcomings on 

earlier and recent related works. Section 1.3 introduces the image-data of Middlebury 

Standard Stereo Images of different years. The eagerness of this research is described 

in Section 1.4. The hierarchical developments of this research are briefly described in 

Section 1.5. 
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2.1 Motivation of Real Time Approximation (RTA) Algorithm 

Conventional direct search dominates the intensity levels of each candidate-pixel 

within the specified search range. In direct search [9], it requires to compute the 

window costs for all candidate-pixels within the search range -dmax to +dmax. This type 

of algorithm is associated with high computational cost. In direct search, it requires to 

calculate the all window costs i.e., the SAD values for all candidate-pixels within the 

search range -dmax to +dmax. Some authors used bidirectional search or left-right 

checking algorithm with a view to discard the non-matching pixels or for smoothing 

the dense disparity map. This requires the doubling the computational complexity due 

to the requirement of its reverse matching search [13] and [43]. The disparity 

estimation algorithm using traditional direct search [9] is mentioned below. 

     For each Pixel (x, y), 

     for d ́ = -dmax to + dmax do 

       Calculate Wc (x, y, d ́); 

     end 

  Find best Wc (x,y,d)  Wc(x,y,d ́); 

     Disparity of (x, y) = d; 

  end 

In order to estimate the disparity with low cost computation, Sum of Square 

Differences (SSD) or Sum of Absolute Difference (SAD) or some other measure is 

computed between a window centered in the first image and the same window shifted 

by in the second image. The shifting mechanism depends on the window/ mask size. 

The shifting procedure does not require to determine the window cost for all 

candidate-pixels in right image. This key feature is employed in proposed RTA 

algorithm to reduce the computational cost. For fast and efficient computation, a 

rectangular window of fixed size centered at the pixel under consideration is 

employed.  

2.2 Proposed RTA Method 

Since the main objective of the proposed method is to reduce the computational cost 

for making the system useful for real-time applications, the first step of this proposed 

method is to reduce the size of rectified stereo images. The given left and right images 

are being reduced in size by nine times using vector quantization method, which 

ultimately helped to reduce the searching area significantly. After first step, the RTA 

algorithm produces the quantized shrinked left and right image as shown in Fig 2.1. 
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Secondly, SAD is applied to calculate the window cost for all candidate-pixels in the 

right image within the reduced search range. According to the proposed RTA method, 

the experimental disparity image is estimated from shrinked left and right images. But 

the conventional methods like Fast Area Based [13] stereo matching computed the 

stereo correspondence directly from left and right image. Various methods can be 

used for shrinking the left and right images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Hierarchical schematic of RTA method. 

We employed vector quantization of the window averaging method for image 

shrinking. Finally, we enlarge the obtained disparity image to its original size for 

comparing the experimental disparity map with the ground truth image. 

2.2.1 Quantization Process for Rectified Stereo Images 

Shrinking process can be viewed as under vector quantization. There are many 

approaches for image shrinking, for instance, to shrink an image by one-half, we 

delete every other row and column. In this proposed method, images are shrinked by 

window average method and consideration of a 3 × 3 window pixel as a vector. Fig. 

2.2 illustrates the shrinking process. Suppose the upper image is original left or right 

image and lower image is shrinking quantized-vector image. According to the 
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proposed RTA algorithm, for first window of original image, nine pixels are 

converted to the first quantized pixel of quantized image, which is shown in Fig. 2.2. 

The subsequent nine pixels of original image will be the second quantized pixel of 

quantized shrinked image and so on.  So, three times reduction occurs along the x-axis 

and three times reduction occurs along the y-axis. This process results the nine times 

reduced quantized-vector image which is demonstrated at the lower portion of Fig. 

2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Quantization process of rectified stereo images. 

2.2.2 Real Time Approximation Algorithm and Flowchart 

The overview of the RTA algorithm employed for this research work is shown in the 

flowchart in Fig. 2.3. The flow chart consists of three stages looping structure. In the 

first stage, the given left and right images are being compressed nine times by vector 

quantization of the window averaging method applying a 3 × 3 window size. Stereo 

correspondence or disparity estimation is performed at the second stage by matching 

windows of pixels using Sum of Absolute Differences (SAD) technique. Third stage 

involves the replication processing in order to retrieve the original size of 

experimentally estimated dense disparity map. This method has been experimentally 

evaluated for the computation of stereo under SAD technique. It performs reasonably 

good and significantly better than the methods based on window-based stereo 
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matching techniques. 

Fig. 2.3 Flow chart of proposed RTA method. 
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Algorithm RTA (m,n,temp,temp1,w1,w2,sum1,sum2,sum,d,t0,t1, 

v_left,v_right,image_left.pixel,image_right.pixel,image_disp

.pixel,ws1,ws2, k1,k2,kk1,kk2,dmax) 

 

1. //m,n is the row and column size of an image. 
2. // temp and temp1 are pixels intensity value of left and  
3. // right image. 
4. //w1,w2 is the row and column size of  mask.  
5. //sum1, sum2 and sum are the summation of pixel intensity  
6. //values of left and right images within the mask 
7. // image_left.pixel[1:m][1:n] is the left image pixel 

8. // coordinate that contains mn number of elements. 
9. //image_right.pixel[1:m][1:n]is the right image pixel  

10. // Coordinate that contains mn number of elements. 
11. //image_disp.pixel[1:m][1:n]is the disparity image  

12. // that contains mn disparity values. 
13. // v_left is the pixel intensity value of left image. 
14. // v_right is the pixel intensity value of right image. 
15. //k1,k2 is the number pixels to discard from left and 
16. // right side of image. 
17. //ws1 and ws2 are the local variable within the mask. 
18. //kk1,kk2 is the number pixels to discard from left and 
19. // right side of image within the mask. 
20. //d and dmax is the search range. 
21. // t0 and t1 are time variables.  
22. for n:=0 to size_y do 

23.  { 

24. for m:=0 to size_x do 

25.    { 

26. // Read left and right images and assign the   

27. //Intensity values in their respective array.       

28.        image_left.pixel[m][n]:= temp; 

29.         image_right.pixel[m][n]:= temp1; 

30.     } 

31.   }  

32. // Creation of quantized image. 

33. ws1:= (w1/2), ws2:= (w2/2); 

34. for n:=kk2 to size_y-kk2 step 3 do 

35.  { 

36.       for m:=kk1 to size_x-kk1 step 3 do 

37.         { 

38.        sum1:= 0; sum2:= 0;// initialization. 

39.        for i:=-1 to ws1 do 

40.           { 

41.             for j:=-1 to ws2 do 

42.             {                      

43.             v_left:=image_left.pixel[m+i][n+j]; 

44.             v_right:= image_right.pixel[m+i][n+j];   

45.             sum1:= sum1+ v_left; 

46.             sum2:= sum2+ v_right; 

47.              } 

48. i:=sum1/(w1*w2); j:= sum2/(w1*w2); 

49.  write(“quantized values of left image to 1st file”,i); 
50.  write(“quantized values of right image to 2nd file”,j); 
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51.      } 

52. } 

53. // read the quantized images. 

54. for n:=0 to size_y1 do 

55.  { 

56. for m:=0 to size_x1 do 

57.    { 

58.    image_left.pixel[m][n]:= temp;// scan the quantized      

59.    //images using different file pointers 

60.    image_right.pixel[m][n]:= temp1; 

61.     } 

62.   } 

63.  t0:= clock(); 

64. // Window cost calculation process using SAD  

65. for m:=k1 to size_x-k1 do 

66.  { 

67.    for n:=k2 to size_y-k2 do 

68.    { 

69.    for d:= -dmax to +dmax do 

70.     {           

71.       sum:= 0; 

72.       for i:= - ws1 to ws1  do 

73.        { 

74.         for j:= -ws2 to ws2 do 

75.            { 

76.               v_left:= image_left.pixel[m+i][n+j];  

77.               v_right:= image_right.pixel[m+i+d][n+j];   

78.               sum:= sum+abs(v_left - v_right);    

79.              } 

80.            }    

81.           Mtemp[d + dmax].pixel[m][n]:= sum; 

82.      }   

83. image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1,&p);        

84.    } 

85. //creating replicated dense disparity map. 

86. for n:=0 to size_y1-2*k2 do 

87. { 

88.    for m:=0 to size_x1-2*k1 do 

89.   { 

90.       Write(“Values", pixel[m][n], pixel[m][n],pixel[m][n]); 

91.    } 

92.        for m:=0 to 116 do  

93.       { 

94.    Write(“Values", pixel[m][n], pixel[m][n], pixel[m][n]); 

95.   } 

96.   for m:=0 to 116 do 

97.      { 

98.    Write(“Values", pixel[m][n], pixel[m][n], pixel[m][n]); 

99.   }   

100. } 
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101. t1:= clock(); 

102. cpu_speed:= t1 - t0; // time calculation. 

103. write("Total time",cpu_speed);  

 

 Algorithm minimum (temp[2*dmax+1],x,y,a,ws,*p) 

 

1. // Find the minimum value from temp[0:2*dmax+1] elements 

2. // x, y, i, j, mu, a, min are the integer variables. 

3. //*p is the pointer variable. 

4. j:=1; 

5.   for i:=0 to  2*dmax+1 do  

6.     { 

7.       if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

8.         j:= i;  

9.      } 

10.    min:= temp[j].pixel[x][y];   

11. for a:=0 to  2*dmax+1 do  

12. {  

13.  if(aj and temp[a].pixel[x][y] = min)then 

14.  { 

15.     *p+=1; 

16.      break; 

17.     } 

18.   }     

19. mu:= abs(j-dmax); 

20. return (mu); 

21. } 

2.3 Experimental Settings and Results 

The accuracy and frame-rate of this algorithm has been justified over Middlebury 

standard stereo images of Tsukuba head . Experiments are performed on Intel Core i-

3, 2.3 GHz processor PC with 4 GB DDR3 RAM. The algorithm has been 

implemented by Visual C++ programming language with Windows 10 operating 

system. Table 2.1 illustrates the summary of comparison between window-based Fast 

Area Based method [13] and proposed RTA method. The computational time of RTA 

method is shown in Table 2.1 using window size of 3  3 without any threshold. 

From this table, it reveals that for the same resolution of image(384 ×288), the 

proposed RTA method reduced 93.71 % of computational time. The  Fig. 2.4  and 

Fig. 2.5  show the Tskuba head of left and right images view. The Fig. 2.6  and Fig. 

2.7 illustrate the shrinked images of left and right respectively after applying 

quantization technique. Fig. 2.8 shows the disparity image that is experimentally 
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estimated from left and right image applying RTA method. The Fig. 2.9 shows the 

replicated image of experimental disparity image. Experimental disparity images of 

Fig. 2.8 and Fig. 2.9  are histogram equalized for visualization purpose. 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Left image 384 ×288.                      Fig. 2.5  Right image 384 ×288. 

 

 

 

 

 

 

           Fig. 2.6  Shrinked left image 128 × 96.          Fig. 2.7  Shrinked Right image 128 × 96. 

 

 

 

 
 

Fig. 2.8   Estimated disparity image 116 × 84. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9  Replicated disparity image 348 × 252. 

 

The size of the left and right image is (width × height) = (384 × 288) pixels, the 

shrinked image size is (width × height) = (128 × 96) pixels, disparity image size is 

(width × height) = (116 × 84) pixels and replicated image size is (width × height) = 

(348 ×252) pixels. 
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Table 2.1: Computational time reduction (%) compare to window-based method. 

Applying 

Method’s Name 

Accuracy 

(in %) 

Computational time 

(in µs) 

Computational 

time reduction  

( in%) 

Fast Area Based 

Algorithm[13] 
86.10 3229 0 

RTA method 30.00 203 93.71 

 

Table 2.2:  Accuracy of RTA Algorithm 

Reference 

image 

name 

Ground Truth 

Image 

Experimental Dense Disparity 

Map 

Estimated 

Accuracy 

Tsukuba 

Head 

  

 

 

30% 

Venus 

  

20% 

 

From the above experimental results it is seen that the computational time of RTA 

method is sharply reduced to only 203µs compared to 3229 µs. The processing time 

reduction is due to the following reasons: 

1) Image shirking. 

2) Reduced window size (3×3 instead of 11×11). 

Though the processing time reduction is very high, the accuracy of this method is 

only 30%. Table 2.2 demonstrates the estimated accuracy of Middlebury standard 

stereo datasets of Tsukuba and Venus stereo pair.  The experimentally estimated 

accuracy of Tsukuba head is 30% and accuracy of Venus stereo pair is only 20%. This 

is happened in shrinking process because nine pixels are quantized at a single pixel. 
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So, eight (8) pixels might lose some intensity attributes. Beside this some accuracy 

has been lost during the replication process. This is only shortcoming of proposed 

RTA algorithm. Since the computational time reduction is very good, the RTA 

algorithm can be used where a very fast estimation of dense disparity is essential. 

2.3.1 Experiment on Real Stereo Images by RTA  

The performances of RTA algorithm have been further justified on real stereo images 

acquisitioned by Logitech stereo web camera. This experiment is performed in our 

software laboratory and images were captured as indoor scenes. The specifications of 

stereo camera are listed below- 

Brand: Logitech C270 Webcam 

Country of Origin: Switzerland 

Sensor Resolution (MP) - 3MP, Video Resolution (Pixel) - 1280 720, Frame Rate -

30fps. Diagonal Field of View 55. 
 

 

Stereo Image Capturing Process: 

 

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of 

reference images were stood 63.00 cm away from the imaging sensor of the camera. 

The distance between two cameras was 6.70 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

a) Real image acqusition using stereo web camera for dataset-1(Human face). 
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b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand). 

Fig. 2.10 Real image acqusition process using stereo web camera. 

Experimental output for Real Stereo Images: 

The size of the left and right real-image is (width × height) = (550 × 720) pixels, the 

shrinked image size is (width × height) = (183× 240) pixels, disparity image size is 

(width × height) = (171 × 228) pixels and replicated image size is (width × height) = 

(514 ×684) pixels. 
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Table 2.3:  Visual observation of disparity map of real images generated by RTA 

algorithm 

Reference image Experimental Dense 

Disparity Map of Real 

Image 

Execution 

time(s) 
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Table 2.3 demonstrates the visual observation of dense disparity maps. The Table 2.3 

illustrates the dense disparity maps of three datasets - Human face, Nescafe coffee 

stand and Scotch tape stand respectively. The visual qualities of these disparity maps 

are not good. But the object inside the reference image is visualized and 

understandable. The disparity maps of output image contain some noise. This is 

happened due to the following three reasons- 

1) We could not provide the equilibrium light condition in our laboratory and hence 

the mask does not cover enough intensity variation. So the method gives 

erroneous result due to low signal to noise ratio. 

2) Similarly the room temperature was not equilibrium at all the point during the 

image acquisition process.  

3) Moreover, we have tried to our best to calibrate the stereo camera physically. The 

stereo cameras were manually placed on the same horizontal line, but 

experimentally, it was not possible. There was a vertical mismatch between two 

cameras in fractional millimeter (.05 mm approximately) range.  

 These cause to add a little noise in captured stereo images. Inspite of noise, the 

objects are demarked, visualized and understandable. So the overall performance of 

RTA algorithm is good in case of real stereo images. 

2.4 Discussion 

Experimental results confirm that we can easily reduce the computation time of about 

93.71%. Though the accuracy is poor because of quantization error, but the RTA 

method will be useful for many applications where a very fast estimation of dense 

disparities is essential. 

2.5 Summary 

The material of this Chapter establishes on our first original method for disparity 

estimation. The main objective of this method was to reduce the computational cost 

and make the system useful for real-time applications. The concepts behind RTA 

method are described in the Section 2.2 at subsection 2.2.1. The quantization process 

which was an important technique in RTA algorithm has been described in subsection 
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2.2.1 of this Chapter. Flow chart and Algorithm are included in subsection 2.2.2 for 

better understanding. Experimental settings and results are described in Section 2.3. 

The performances of RTA algorithm have been additionally justified on real images 

in subsection 3.2.1. 
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3.1 Motivation of 2DRTSSA Algorithm 

The main objective of this research was to invent the optimal algorithm for stereo 

correspondence estimation, which will be the best trade-off between speed and 

accuracy in local domain. Although the RTA algorithm of previous chapter had the 

satisfactory computational speed but its accuracy was poor due to quantization error. 

Instead of reducing the image size, we were trying to improve the inherent matching 

accuracy for increasing the quality of RTA algorithm. To achieve this, two-

dimensional pixel-wise costs are improved by employing a parallel computing on two 

axises, which is named as Two-Dimensional Real Time Spiral Search Algorithm - 

2DRTSSA.  

3.2 Proposed 2DRTSSA  

The innovative 2DRTSSA search method can be explained by using co-ordinate 

geometric concept. The search ranges are outlined in Fig. 3.1 that shows the search 

coordinates range (-Cxmin, -Cymin) to (+Cxmax, +Cymax) instead of using –dmax to +dmax of 

one dimensional existing system. Accordingly, the proposed method is applied to 

compute the window costs in two dimensionally. In first phase, first search is done 

concurrently in the 1
st
 and 3

rd
 quadrants (red pixel) of right image as indicated in Fig. 

3.1(a). In second phase, second search is performed in the second and fourth 

quadrants (green pixel) of right image. In both cases the searching commences from 

the starting point (say –Cxmin, 0) to the ending point (+Cxmax, 0) as shown in Fig. 

3.1(b). Every iterative program sequence tends to reach at the origin point. Each 

reference pixel of reference image (left image) is hunted in the two-axial coordinate-

points according to the above stated procedure. According to the proposed 2DRTSSA 

method, each pixel of reference image is firstly compared with negative x-direction of 

right image as well as positive y-direction of right image. Suppose in two cases, two 

distinct disparities are determined as d1 and d2 from their respective minimum window 

costs. Secondly, the same pixel is compared with positive x-direction of right image 

as well as negative y-direction of right image. Let another two distinct disparities are 

determined as d3 and d4 from their respective minimum costs. All the experimentally 

estimated disparities {d1, d2, …d+Cxmax} are passed to the minimum cost function of 

array di. Finally, disparity d is estimated from the set of elements Wc (x, y, di), i.e., Wc 

(x, y, d)  Wc (x, y, di). Therefore, the stereo correspondence or disparity of a 

reference pixel of left image is P(x, y)= d. 
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The process is then repeated for the successive pixels of reference image along the 2D 

scan lines from left to right of the whole image. With the above mentioned strategy, 

the proposed method avoids the repetition of redundant comparisons and false 

matching, hence increases the frame-rate and accuracy. 

 

 

 

 

 

 

 

 

 

      (a)                                               (b) 

Fig. 3.1 Illustration of 2DRTSSA search method with co-ordinate prefecture. 

3.2.1 Algorithm and Flowchart of 2DRTSSA 

Algorithm 2DRTSSA(m, n, temp, cid,cmin,temp1, w1, w2, 

sad1,sad2,v_left,v_right,image_left.pixel,image_right.pixel, 

image_disp.pixel,ws1,ws2,k1,k2,abs1,abs2,dmax,t0,t1) 

 

1. //m,n is the row and column size of an image. 
2. // temp and temp1 are pixels intensity value of left and  
3. // right image. 
4. //cid,cmin is the integer type variables indicate spiral 
5. // distance. 
6. //w1,w2 is the row and column size of the mask.  
7. //sad1 and sad2 is the summation window costs  
8. //values of two axes within the mask. 
9. // image_left.pixel[1:m][1:n] is the left image pixel 

10. // coordinate that contains mn number of elements. 
11. //image_right.pixel[1:m][1:n]is the right image pixel 

12. // coordinate that contains mn number of elements. 
13. //image_disp.pixel[1:m][1:n]is the disparity image  

14. // that contains mn disparity values. 
15. // v_left is the pixel intensity value of left image. 
16. // v_right is the pixel intensity value of right image. 
17. //k1 ,k2 are the number pixels to discard from left and 
18. // right side of image. 
19. //abs1 ,abs2 difference value of left and right pixel. 
20. //ws1 and ws2 are the local variable within the mask. 
21. //dmax is the search range. 
22. // dis counter variable. 
23. // t0, t1 is the variable for time calculation. 
24. for n:=0 to size_y do 

25.  { 

-Cxmin +Cxmax 

+Cymax 

-Cymin 
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26.  for m:=0 to size_x do 

27.   {      

28.   image_left.pixel[m][n]:= temp; // Read left image 

29.   image_right.pixel[m][n]:= temp1;//Read right image 

30.   } 

31.  }  

32. t0:= clock();    

33.  // 2D Window cost calculation process. 

34.    ws1 := (w1/2); ws2 := (w2/2); p:= 0; 

35.    for m:= k1 to size_x-k1 do  

36.    {   

37.      for n:= k2 to size_y-k2 do 

38.        {  

39.   dis:= 0; 

40.         for cid:= -cmin to  cmin do 

41.           { 

42.        sad1:= 0; 

43.        sad2:= 0; 

44.        for i:=- ws1 to ws1 do 

45.              { 

46.                for j:= -ws2 to ws2 do 

47.                 { 

48.  if(((m+i+cid*2)>= 0) and ((m+i+cid*2)< size_x))then 

49.     { 

50.    v_left:= image_left.pixel[m+i][n+j];  

51.    v_right:= image_right.pixel[m+i+cid*2][n+j]; 

52.    v_left1:= v_left;  

53.    v_right1:= image_right.pixel[m+i][n+j+cid*(-2)+1];  

54.                abs1:= v_left - v_right; 

55.             abs2:= v_left1 - v_right1; 

56.                   if(abs1 < 0) then abs1:= -1*abs1; 

57.           if(abs2 < 0) then abs2:= -1*abs2; 

58.        sad1:= sad1 + abs1; 

59.        sad2:= sad2 + abs2; 

60.     }     

61.    } 

62.   } 

63.     // Select the minimum window cost. 

64.     if(sad1 <= sad2)then 

65.      Mtemp[dis++].pixel[m][n]:= sad1; 

66.     else 

67.      Mtemp[dis++].pixel[m][n]:= sad2; 

68.    } 

69.   // Find the best window cost using minimum function. 

70. image_disp.pixel[m][n]:= 2*minimum(Mtemp,m,n,ws1,&p);        

71.   } 
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72.    }  

73.  t1:= clock(); 

74.    cpu_speed:= t1 - t0; // time calculation. 

75.    write("Total time",cpu_speed);  

76.  // Creating the dense disparity map. 

77.    for n:= k1 to size_y-k1 do  

78.      {   

79.      for m:= k2 to size_x-k2 do  

80.       { 

81.    write(“dense disparity 

image",image_disp.pixel[m][n]); 

82.   } 

83. } 

 

 Algorithm minimum (temp[2*dmax+1],x,y,ws,*p) 

 

1. // Find the minimum value from temp[0:2*dmax+1]elements 

2. // x, y, i, j, mu, a, min are the integer variables. 

3. // p is the pointer variable. 

4.  { j:=1; 

5.   for i:=0 to 2*cmin+1 do  

6.     { 

7.       if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then 

8.         j:= i;  

9.      } 

10.    min:= temp[j].pixel[x][y];   

11. for a:=0 to  2*cmin+1 do  

12. {  

13.  if(aj and temp[a].pixel[x][y] = min)then 

14.   { 

15.     *p+=1; 

16.      break; 

17.     } 

18.   }    

19. abs11:= j-cmin; 

20. mu:= (abs11<0)?(-1*abs11):abs11; 

21. return (mu); 

22.  } 

23. } 

The key idea of this algorithm is that, the search is divided into two axial regions 

which are well defined in step 48. One cost aggression is estimated along the x-axis 

on photometric point ((x + Cid * 2), y) while the other cost aggression is estimated 

along the y-axis on photometric point (x, (y + Cid * (-2) + 1)).  
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Fig. 3.2 Flow chart of 2DRTSSA algorithm. 
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Two axises are selected simultaneously by the expression in the third bracket in steps 

51 and 53. The proposed method searches a reference pixel on two probable spaces at 

a time within a finite range Cid. On the contrary, the existing state-of-the-art 

algorithms search a reference pixel only one space at a time. Therefore, this idea 

makes the proposed method faster than existing methods.  

The concept of 2DRTSSA is illustrated in flowchart of Fig. 3.2 for better 

understanding. The flow chart consists of two looping structures. In the first loop, it 

computes the window costs of positive x and negative y axis simultaneously. 

Secondly, the 2DRTSSA method measures the window costs on remaining negative x 

and positive y axis concurrently. Final disparity is the minimum window cost among 

the four window costs of x and y axis of a pixel (x, y). The process is then repeated for 

the successive pixels of reference image along the scan line from left to right of the 

whole image. This method has been experimentally evaluated for the computation of 

stereo correspondence under SAD technique.  

3.3 Computational Complexity Analysis 

The computational complexity of 2DRTSSA algorithm is O(n × w/2), where n is the 

total number of candidate-pixels and w is the window size of mask. Two matching 

costs are estimated two different co-ordinates (x and y) at the same time. The main 

idea of this method is to reduce the window cost by around 50%. These two 

simultaneous window cost calculations executed per instruction cycle. That is the 

main reason of reducing the computational time of this method. The required memory 

depends only the size of n i.e., it directly proportional to image size. It apparently 

seems that it requires more memory space for two window costs at a time. But 

actually, the proposed algorithm compares instantly two window costs, selects the 

minimum one, and discards the other. The total run time for the Tsukuba head image 

pair is 4480 µs in 2DRTSSA whereas 5844 µs in 1DRTSSA on the same hardware 

(Intel Core i-3, 2.3 GHz processor with 4 GB DDR3 RAM). 

3.4 Experimental Settings and Results 

The experiments were done on Middlebury standard stereo images of Tsukuba head 

stereo pair. The computational time, frame-rate and accuracy of the proposed 

algorithm have been compared with the Middlebury standard articles. The 

experimental dense disparity maps are estimated from left and right images applying 
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2DRTSSA is shown in Fig. 3.5 to Fig. 3.10. Standard dense disparity of ground truth 

image is shown in Fig. 3.11. Experiments were performed on Intel Core i-3, 2.3 GHz 

processor with 4 GB DDR3 RAM computer. The algorithm is performed by Visual 

C++ programming language with Windows10 operating system. To determine the 

correspondence of a pixel of reference image, the window costs are estimated for the 

candidate-pixels of right image within the search range -10 to +10. The experimental 

results show that, the proposed algorithm is currently a better method among the 

existing state-of-the-art methods. The top performer algorithms are reported in [32], 

[33], [34] and [35]. All are ranked by Middlebury benchmark [42]. Consequently, we 

have proved the claim by comparing the time and frame-rate with the top performer 

algorithms which demonstrated in Table 3.1. The disparity maps of the Middlebury 

datasets for Tsukuba head are estimated by proposed 2DRTSSA method are 

illustrated in Fig. 3.3(b). Table 3.1 shows that the proposed 2DRTSSA algorithm 

outperforms the present top performer algorithms [32-35]. Moreover, the proposed 

method is faster than top performer algorithms. The accuracy of the proposed 

algorithm for Tsukuba head is 93.8% i.e., the bad pixel in percentage with the error 

threshold 2 is only 6.2%, which is almost the same of the top algorithms. Little 

variation of accuracy occurs due to orientations of pixel redundancy. The 

experimental results are analyzed in four phases are stated below- 

 3.4.1 Observation of 3D Reconstruction and Objects Recognition of 

Experimental Output 

The Tsukuba stereo pair of input images contains different objects at different depth 

of positions. Background and foreground objects are situated at different depth. 

Almost overlapping objects are found in background of Tsukuba stereo pair those are 

occlusions and poor objects. Moreover, these stereo pair also contains some special 

regions like head of the statue, table lamp and video camera. These types of regions 

are really difficult to separate from other objects by stereo matching process. The first 

challenge was to distinguish the different depth by marking the different gray level 

value of output image. Nearest object is shown by more white color and farthest 

object is shown by dark grey level value or black. It is worth observing that the 3D 

structure of output image has been reconstructed clearly in Fig. 3.3(b) where the face 

of the statue, table lamp, video camera as well as interesting objects are recognized 

easily. Consequently, the camera and its nearest objects such as face (head) of 
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Tsukuba, table lamp are visualized by all most white color. On the contrary, the 

camera and its farthest objects such as video camera, book shelf, background wall of 

Tsukuba stereo pair are reconstructed with almost black color. Object borders are 

clearly recognized in estimated dense disparity image, i.e., border localization 

problem of article [13] are solved by the proposed method. The object borders of 

reference image are shown in Fig. 3.3(a). The output image of Fig. 3.3(b) is further 

fed into the object-detection algorithm and the object borders of output image are 

identified, which are illustrated in Fig. 3.3(c). 

 
 
 
 
 
 
 
 

(a)                                              (b)                                                            (c) 

Fig. 3.3 Localized object borders. 

The estimated dense disparity image is compared to ground truth image of Tsukuba 

head. The experimental results obtained by the 2DRTSSA method on Tsukuba head 

are very similar to their ground truth image. The estimated dense disparity 3D 

structure is recovered and its object borders are almost correctly identified which are 

given in Fig. 3.3(c). The result ensures that the similar depths are found in estimated 

dense disparity, shown in Fig. 3.3(b). 

3.4.2 Computational Cost Calculation and Comparison with state-of-the-

art Methods 

Disparities of reference image are estimated by Sum of Absolute Difference (SAD) 

technique using 2DRTSSA search algorithm without any pruning for different 

window sizes. The disparities are estimated with the search range from -10 to +10. 

The effects of said search are investigated with respect to computational costs and 

frame-rate (in fps). The computational costs and performances of proposed 2DRTSSA 

method has been compared with other state-of-the-art methods [32-35]. The 

2DRTSSA’s experimental results have been compared with the result of methods 

those are tested on Middlebury standard datasets. The result of ranking in Table 3.1 

indicates that the proposed 2DRTSSA method is ranked 2
nd

 out of existing five state-

of-the-art methods [13] and [32-35]. It shows the second highest frame-rate 223 fps 
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and computational time 4480 µs among the top five latest methods with lower 

configuration of machine. So, it can be claimed that the proposed method is currently 

the state-of-the-art methods for Tsukuba head image pair with 44.64X, 2.00X, 1.56X, 

and 669.64X faster than the methods of [32], [33], [34] and [35] respectively. 

However, the proposed method is 1.38X slower than Fast Area Based method [13]. 

Table 3.1: Numerical comparison of proposed 2DRTSSA and present state-of-the-art 

methods. 

Method’s Name 
Machine 

Configuration 

Computational 

time 

(in µs) 

Frame-rate 

(in fps) 

Accuracy 

(in %) 
Rank 

Fast Area Based 

method[13] 

2.3 GHz, Intel Core 

i-3, RAM: 4GB. 
3229 310 86.10 1 

2DRTSSA 

[Proposed] 

2.3 GHz, Intel 

Core i-3, RAM: 

4GB. 

4480 223 93.80 2 

Tree filtering 

[34] 

1.8 GHz, Intel Core 

i-7, RAM: 4GB. 
7000 143 93.18 3 

Edge-aware  

Geodesic 

filter[33] 

3.0GHz, Intel Core- 

i-5, Geforce GTX 

card. RAM: 8GB. 

9000 111 93.67 4 

DSI & Adaptive 

Support[32] 

2.2 GHz, Core Duo, 

RAM: NA. 
200000 5 90.18 5 

Energy 

Minimization[35] 

1.9 GHz, Intel Core 

i-5.RAM:6GB. 
3000000 0.33 92.82 6 

Table 3.2: Computational time reduction (%) compare to window-based existing 

methods. 

Computational 

Time(in µs) of 

2DRTSSA method      

[Proposed] 

Existing state-of-the-art Methods Computational Time 

Reduction (in %) by 

2DRTSSA method 

compared to the 

methods of 2
nd

 column 

 

Method’s Name 

Computational 

Time 

(in µs) 

 

 

4480 

Fast Area Based [13] 3229 -38.74 

Tree filtering [34] 7000  36.00 

Edge-aware 

Geodesic filter[33] 
9000  50.22 

The main achievement of this method is the improvement of accuracy and 

computational time reduction. The 2DRTSSA achieves 93.80% accuracy. The 

accuracy is enhanced by 63.80% compared to the RTA method. The recent state-of-
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art method, Edge-aware Geodesic Filter [33] that takes 9000 µs for execution and our 

proposed 2DRTSSA requires 4480 µs for the same resolution of Tsukuba head image. 

Thus the computational time reduction is 50.22% compared to the identical local 

stereo method [33], which is numerically figured out in Table 3.2.  

3.4.3 Accuracy of the Proposed 2DRTSSA Method 

The accuracy of this algorithm has been justified over standard stereo images of 

Tsukuba head. Table 3.3 illustrates the accuracy of the proposed 2DRTSSA method 

applied on Middlebury standard stereo images of Tsukuba head.  

  

 

 

 

 

  

  

 

 

 

Fig. 3.4 Run time snapshot of  2DRTSSA method for accuracy. 

 

 

 

 

 

 

Fig. 3.5 Dense disparity map for window size 33.   Fig. 3.6 Dense disparity map for window size 55. 

 

 

 

 

 

 

 

 

Fig. 3.7 Dense disparity map for window size 77.  Fig. 3.8 Dense disparity map for window size 99. 
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  Fig. 3.9 Dense disparity map for window size 1111.      Fig. 3.10 Dense disparity map for window size 1515. 

 

 

 

 

 

 

Fig. 3.11 Dense disparity map of ground truth image. 

In order to estimate the accuracy of this method we have tested the results using 

different mask sizes which are mentioned from Fig. 3.5 to Fig. 3.10.  From Table 3.3 

the numerical evaluations confirm that the bad pixel is only 6.2%. But using the 

similar condition the bad pixels in percentage were 6.33%, 7.88%, and 7.18% 

reported in [33], [34] and [35] respectively for Tsukuba head.  

Table 3.3: Accuracy of 2DRTSSA for Tsukuba stereo pair. 

Window size 
(pixel) 

Accuracy ( in %) Bad Pixels (in %)  

3×3 73.3 26.7 

5×5 79.8 20.2 

7×7 92.1 7.9 

9×9 93.2 6.8 

11×11 93.8 6.2 

15×15 83.6 16.4 

17×17 83.3 16.7 

19×19 72.9 27.1 

21×21 72.4 27.6 
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We observe from the data of Table 3.3 the accuracy is gradually increased if widow 

size increases. But this is valid from window size 3 × 3 to window size 11 × 11 only. 

The lowest accuracy started from 73.3% for 3 × 3 window size and the highest 

accuracy occurs at 93.8% for widow size 11 × 11 with bad pixel in percentage only 

6.2%. Further increase in widow size (like 15 × 15, 17 × 17 etc.), the accuracy is 

decreased and it reaches at 72.4% for the widow size 21 × 21. The graphical 

interpretation is illustrated in Fig. 3.12 that also prompted the best operating window 

size which is 11 × 11 for best accuracy.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3.12 Illustration of correct matching for estimated dense disparity with ground 

truth image of Tsukuba head. 

3.4.4 Experiment on Real Stereo Images by 2DRTSSA 

The performances of 2DRTSSA algorithm have been further justified on real stereo 

images acquisitioned by Logitech stereo web camera. This experiment is performed in 

our software laboratory and images were captured as indoor scenes. The 

specifications of stereo camera are listed below- 

Brand: Logitech C270 Webcam 

Country of Origin: Switzerland 

Sensor Resolution (MP) - 3MP, Video Resolution (Pixel) - 1280 720, Frame Rate -

30fps. Diagonal Field of View 55. 
 

Best Operating Window 
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Stereo Image Capturing Process:  
 

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of 

reference images were stood 63.00 cm away from the imaging sensor of the camera. 

The distance between two cameras was 6.70 cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)Real image acqusition using stereo web camera for dataset-1(Human face). 

 

.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand). 
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c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand). 

Fig. 3.13 Real image acqusition process using stereo web camera. 

Experimental output for Real Stereo Images: 

The size of the left and right real-image is (width × height) = (550 × 720) pixels. 

Disparity image size is (width × height) = (514 × 684) pixels. Table 3.4 demonstrates 

the visual observation of dense disparity maps.  

The Table 3.4 illustrates the dense disparity maps of three real datasets- Human face, 

Nescafe coffee stand and Scotch tape stand respectively. We could not compare the 

experimental outputs to the ground truth image because it has no ground truth images. 

In this situation, the disparity maps of output image should be considered and 

compared visually only. The visual qualities of these disparity maps are not good. 

This is happened because we could not provide the equilibrium light condition in our 

laboratory. Similarly the room temperature of laboratory was not equilibrium at all the 

places during the image acquisition process. Moreover, we have tried to our best to 

calibrate the stereo camera physically. The stereo cameras were manually placed on 

the same horizontal line, but experimentally it was not possible. There was vertical 

difference between two cameras in fractional millimeter (.05 mm approximately) 

range.  These cause to add a little noise in captured stereo images. Inspite of some 

noise, the objects are demarked and recognized at standard level. The object (Human 

face, Nescafe coffee stand and Scotch tape stand) inside the reference image is clearly 
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understandable and visualized. 

Table 3.4:  Visual observation of disparity map of real images generated by 

2DRTSSA algorithm 

Reference image & 

Resolution: 550720 

Experimental Dense 

Disparity Map of Real 

Image 

Mask size : 33 

Experimental Dense 

Disparity Map of Real 

Image 

Mask size : 1111 

 

Execution time(s) 

 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 1344 

Mask: 1111:  14609 

 

 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 1312 

Mask: 1111:  14984 

 

 

 

 

 

 

 

  

 

 

 

 

 

Mask: 33 : 1531 

Mask: 1111:  15890 
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The dense disparity map generated by 33 mask is more visualized and comprehensive 

than the disparity map of 1111 in noisy environment. So the overall performance of 

2DRTSSA algorithm is good in case real stereo images. 

3.5 Discussion 

The main contribution of the proposed method is to increase the performance by 

reducing the computational cost. Our ultimate aim is to improve the strength of the 

window-based cost aggression method in order to use in real-time application. The 

frame-rate of our algorithm is 223 fps for input images of Tsukuba head image pair. 

Hence, it can calculate, process and display output 223 frames/second for the case of 

standard Tsukuba head image pair. The proposed method achieves 93.8% accuracy 

and enhances 63.80% accuracy compared to RTA method. We have implemented it 

by 2D parallel costs estimation to reduce the computational costs. Moreover, the 

2DRTSSA algorithm does not require any additional hardware like 3D Graphics 

Processing Unit (GPU). The proposed 2DRTSSA method demonstrates the state-of-

the-art results and exceeds most of the existing top methods.  

3.6 Summary 

A novel method is presented in this Chapter for dense disparity measurement with 

better improvement of accuracy. This pioneer method leads to compensate the 

accuracy which was degraded by RTA method of chapter 2. The proposed 2DRTSSA 

method is described in Section 3.2. According to 2DRTSSA method two 

simultaneous instruction calculations (in C++ code) executed in one instruction cycle. 

Experimental results described in Section 3.4 demonstrate the visual and numerical 

comparison between the proposed method and top five state-of-the-art methods. The 

accuracy of 2DRTSSA method is well discussed in subsection 3.4.3. The impact of 

real stereo images by 2DRTSSA algorithm is reflected in subsection 3.4.4.  One of the 

most appealing aspects of this method is to reduce the computational cost and 

improvement the accuracy for real-time applications. A significant advantage in terms 

of implementation is the fact that 2DRTSSA algorithm performed 50.22% of 

computational time reduction and improved 93.8% accuracy, which means that the 

algorithm is going to reach at the door of real-time applications. 
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4.1 Motivation of SAA Method 
 

We have improved the accuracy of stereo matching by the 2DRTSSA method, which 

is described in Chapter 3. The accuracy of 2DRTSSA algorithm is raised to 93.8% 

from 30% and computational time increased to 4480 µs from 203 µs compared to 

RTA algorithm. In this chapter, we propose a new state-of-the-art method called Self-

Adaptive Algorithm (SAA) which is far better than 2DRTSSA. The idea behind the 

SAA method described in the following sections. 

4.2 Proposed Self-Adaptive Algorithm 

A new stereo imaging search technique has been introduced in this chapter. In 

traditional window-based searching algorithm, a particular pixel L(x, y) is selected by 

search method along the corresponding epipolar line in the right image within the 

search range from  - dmax  to  + dmax. Let us assume that the left image is the reference 

image.  So, for most pixels in the left image, there is a corresponding pixel in the right 

image within a search range from -dmax to +dmax. 

 

 

 

 

 

 

 

Fig. 4.1 The total search regions of right image for the particular pixel of L(x,y). 

 

 

 

Fig. 4.2  First search interval {R(x+ (-dmax)} … R{x+ (+ dmax)} 

 

 

 

Fig. 4.3 Search range separated by 1
st
 list and 2

nd
 list with their candidate-pixels. 

First search matching occurs into the 1
st
 list and the matching pixel indicated by the 

green color at position j = –4.  

-6    -5  -4   -3   -2  -1     0    1    2     3    4      5      6 
 

... ... 

2
nd

 List:  No match. 1
st
 List: Match found. 

  

-6   -5  j= -4   -3   -2  -1   0    1    2     3     4      5   6 
 



 

 

Optimal Algorithms for Stereo Correspondence Estimation 

52 

 

 

 

 

Fig. 4.4 Second search occurs in 1
st
 list too, and the matching pixel is indicated by 

green color also. 

 

 

 

Fig. 4.5 3
rd

 search occurs in 2
nd 

list, match indicated by green color. 

Accordingly, the first search of first reference pixel of L(x - dmax) is searched to the 

right image from R[(x +( -dmax)] , R[x+ (-dmax+1)]  , R[x+ (-dmax+2)] … R[x+ 0)] … 

R[x+ (dmax - 1)]   to R[(x + (+dmax)]. During the matching process the algorithm finds 

the best candidate-pixel by evaluating its window costs within the interval [R{x + (- 

dmax), y} … R{x + (+dmax ), y}]. The method is visually explained in Fig. 4.1 and Fig. 

4.2 by mortars its coordinate’s pixel. Suppose the window cost function f(wc) = {wc1, 

wc2, wc3…wcn}. Let wc2 < wc1 so the best match occurs for the cost function f(wc2) 

and the function associated with the corresponding pixel of right image say R(x2, y) to 

indicate that this match from left to right has been established. Assume another pixel 

R(x4, y) is associated with the cost function f(wc4). If f(wc4) has better score than the 

previous f(wc2). i.e., f(wc4) < f(wc2), this algorithm will reject the score of wc2 and will 

accept wc4. Therefore, the function f(wc4) associated with the corresponding pixel of 

right image say R(x4, y) indicates the new matching establishment. Thus the 

coordinate distance from R(x, y) to R(x4, y) is the final disparity of reference pixel of 

L(x - dmax). The process is then repeated for the successive pixels of reference image 

along with the scan line from left to right of the whole image. 

According to SAA method, if the matching pixel co-ordinate R(x4, y) of first search is 

“j” (illustrated in Fig. 4.3), indicates the x-position of matching point in the 1
st
 list. In 

the proposed approach, we use prior knowledge for 2
nd

 reference pixel matching. In 

the proposed method we assume that the 2
nd

 reference pixel obviously resides 

surrounding to the j
th 

position, i.e., within the 1
st
 list, this is because, most of the cases, 

the neighbor pixel’s photometric properties are approximately same as L(x - dmax).  

So, the searching for 2
nd

 reference pixel will be within the 1
st
 list too. This search 

matching procedure is depicted in Fig. 4.4. In case, if the 2
nd

 reference pixel does not 

2
nd

 List: No match. 1
st
 List: match found in 1

st
 list. 

-6    -5  -4   -3  j=-2  -1    0    1    2     3    4      5      6 
 

2
nd

 List: match found. 
 

1
st
 List: No Match 

-6    -5  -4   -3   -2  -1    0    1    2     3    4     j=5    6 
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match with the candidate-pixels of 1
st
 list, then the SAA search sequence goes to new 

searching zone, i.e., in the 2
nd

 list with readjusting the search interval. Accordingly, 

the SAA algorithm will calculate the window costs of 2
nd

 reference pixel in 2
nd

 list. 

This procedure is outlined in Fig. 4.5. In this case, the candidates-pixels of 1
st
 list are 

not taken into consideration for matching process. Next search for 3
rd

 reference pixel 

occurs again in 2
nd

 list too (which is not shown here). In case of no match in 2
nd

 list 

for 3
rd

 reference pixel, the program search sequence goes to 1
st
 list by resetting the 

new starting and ending points of 1
st
 list. The searching procedure of 3

rd
 reference 

pixel will be the same as illustrated in Fig. 4.4. Similarly next search for 4
th

 reference 

pixel occurs in 1
st
 list also as per base criteria of the proposed approach. So the 

matching procedure occurs either in 1
st
 list or in 2

nd
 list and so on.  

The above stated SAA approach is repeated for the successive pixels of reference 

image along with the scan line from left to right on the whole image. The algorithm 

divides automatically the search interval [R{x + (-dmax), y} … R{x + (+dmax ), y}] into 

two regions; 1
st
 list and 2

nd
 list. The 1

st
 list ranges from -dmax to 0, while 2

nd
 list from 0 

to +dmax. The capability of proposed SAA algorithm is to adapt itself the search range 

automatically (either in the 1
st
 list or 2

nd
 list). This process reduces the searching cost 

around 50% in each iteration. The proposed approach relies on j
th 

position of x axis. 

For a reference pixel (x, y) in the left image, this procedure is repeated for successive 

pixels in interval [R{x + (-dmax) , y} … R{x + (+ dmax), y}] along with the scan line, 

and the process is iterated for the whole image. In this paper (2n + 1) × (2n + 1) mask 

size is used to estimate the window cost of each pixel; where n = 1,2,3…k. We use n 

= 1, i.e., 3×3 mask is employed in the following figures of this section for making the 

process easy to understand. However, in the real image the value of n is 5. The right 

image is scanned by this mask from left to right and from top to bottom during the 

matching process. 

Suppose, dmax = 6 and j = 0, the algorithm resets the starting point at dmax1 = -dmax and 

ending point dmax2 = +dmax. In the beginning, the matching process occurs on the full 

scan line. Actually, it is treated as 1
st
 search, where window cost calculations are 

shown in Fig. 4.6. There are thirteen candidates-pixels in right image along the scan 

line.  For each pixel, the window cost is calculated according to the SAD method. So, 

there are thirteen window costs that have been extracted at 1
st
 search, although five 

window costs are shown in Fig. 4.6 for simplicity. The proposed algorithm arranges 
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the window cost functions in ascending order. Suppose the order for 1
st
 search is like 

as f(wc)= {wc2 < wc1 < wc3 < … < wc13}. Hence, the proposed method rejects all 

other window costs except wc2. Best match occurs for 2
nd

 window due to its minimum 

window cost. Thus, the first reference pixel L(x - dmax) matches with the candidate-

pixel (center pixel) of the second window of right image (indicated by green color).  

 

 

 

 

 

Fig. 4.6 Window cost estimation process over the scan line (1
st
 search). 

Thus the first matching pixel’s position is j = -3 illustrated in Fig. 4.6. Since j = -3 

(i.e. j < 0) the algorithm resets the search interval dmax1 = -dmax to dmax2 = 0 for 2
nd

 

search. In this region only seven pixels are participants, rest of the candidate-pixels of 

2
nd

 list are ignored for window cost calculations. This idea is illustrated in Fig. 4.7. 

 

 

 

 

 

 

Fig. 4.7 Window cost calculation process for 1
st
 list only (2

nd
 Search). 

Consequently, there are only seven window costs will be estimated from the 2
nd

 

search, although three window costs are shown in Fig. 4.7 for simplicity and well 

understanding. Suppose the order for 2
nd

 search is like as f(wc) = {wc1 < wc4 < wc3 < 

wc2 < wc5 < wc6 < wc0}. Hence the proposed method rejects all other window costs 

except wc1. In this case, the best match occurs for 1
st
 window cost in 1

st
 list due to its 

minimum window cost. Thus, the second reference pixel L(x - dmax + 1) matches with 

the candidate-pixel (center pixel) of the first window of right image (indicated by 

green color). Since the second reference pixel’s L(x - dmax+1) matching position is j = 

Scan line 
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participate in cost calculation. 
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-6 ( j < 0) shown in Fig. 4.7, therefore, the third search (not shown here) will be 

occurred into 1
st
 list too. If it falls into a critical situation in the 4

th
 search, i.e., pixel 

L(x - dmax + 1) does not match with the candidates-pixels of 1
st
 list, the algorithm 

readjusts the new searching interval dmax1 = 0 to dmax2 = +dmax and the searching 

sequence goes to 2
nd

 list. The proposed approach calculates the window costs in 2
nd

 

list using the same procedure applied in the 2
nd

 search. The cost calculations are 

outlined in Fig. 4.8 where the starting and ending points are different from 2
nd

 and 3
rd

 

search; although three window costs are shown for simplicity. Actually, seven 

window costs have been estimated in the algorithm.  

From the above discussion it is seen that, the proposed SAA method utilizes the prior 

knowledge of matching-pixel position in the x axis and accordingly it redirects the 

searching sequence in the 1
st
 list or in the 2

nd
 list. As the matching procedure occurs 

either in 1
st
 list or in 2

nd
 list, it reduces around 50% of searching costs.  

 

 

 

 

 

Fig. 4.8 Window cost calculation process for 2
nd

 list only (4
th

 search). 

  4.2.1 Disparity Estimation Algorithm of SAA Method  

Algorithm SAA(m, n, temp, temp1,sum,w1,w2 ,k1,k2,v_left,d, 

v_right,image_left.pixel,image_right.pixel,image_disp.pixel 

ws1,ws2,dmax,dmax1,dmax2,t0,t1,flag) 

 

1. //m,n is the row and column size of an image. 
2. // temp and temp1 are pixels intensity value of left and  
3. // right image. 
4. //w1,w2 is row and column size of the mask.  
5. //sum is the summation of window costs.  
6. // v_left is the pixel intensity value of left image. 
7. // v_right is the pixel intensity value of right image. 
8. // image_left.pixel[1:m][1:n] is the left image pixel 

9. // coordinate that contains mn elements. 
10. //image_right.pixel[1:m][1:n]is the right image pixel  

11. // coordinate that contains mn elements. 
12. // d is the search range counter variable. 

These candidate-pixels need not 

participate in cost calculation 
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13. //k1 ,k2 are the number pixels to discard from left and 
14. // right side of image. 
15. //image_disp.pixel[1:m][1:n]is the disparity image  

16. // that contains mn disparity values. 
17. // ws1 and ws2 are the local variable within the mask. 
18. //dmax,dmax1 and dmax2 are the search ranges. 
19. // t0, t1 is the variable for time. 
20. //i,j and flag is the integer type counter variables. 
21. for n:=0 to size_y do 

22. { 

23.  for m:=0 to size_x do 

24.    {      

25.   image_left.pixel[m][n]:= temp; // Read left image 

26.   image_right.pixel[m][n]:= temp1;//Read right image 

27.    } 

28.  }  

29. t0:= clock();    

30.  //Region selection. 

31.    ws1 := (w1/2); ws2 := (w2/2); 

32.    for m:= k1 to size_x-k1 do  

33.    {   

34.      for n:= k2 to size_y-k2 do 

35.        {  

36.    if(flag=0) then  

37.      {  dmax1:=-dmax;// initial search region. 

38.          dmax2:= dmax;  

39.       } 

40.    else if (flag<0) then  

41.      {  dmax1:=-dmax;// 1
st
 region. 

42.          dmax2:= 0;  

43.       } 

44.   else 

45.        { dmax1:= 0; // 2nd region. 

46.          dmax2:= dmax;  

47.          } 

48.    for d:= dmax1 to dmax2 do //computing window cost  

49.      { 

50.         sum:= 0; 

51.        for i:=-ws1 to ws1 do 

52.              { 

53.                for j:= -ws2 to ws2 do 

54.                 { 

55.           v_left:= image_left.pixel[m+i][n+j];  

56.          v_right:= image_right.pixel[m+i+d][n+j]; 

57.              sum:= sum + abs(v_left - v_right); 

58.     }     

59.    } 

60.   Mtemp[d + dmax].pixel[m][n]:= sum; 
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61. } 

62.   // Select the minimum window cost.   

63.  image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1);        

64.   } 

65.    }  

66.  t1:= clock(); 

67.    cpu_speed:= t1 - t0; // time calculation. 

68.    write("Total time",cpu_speed);  

69.    // Creating the dense disparity map. 

70.    for n:= k1 to size_y-k1 do  

71.      {   

72.      for m:= k2 to size_x-k2 do  

73.       { 

74. write(“dense disparity image",image_disp.pixel[m][n]); 

75.   } 

76. } 

 

Algorithm minimum (temp[2*dmax+1],x,y,ws) 

 

1. // Find the minimum value from temp[0:2*dmax+1] 

2. // x, y, i, j, mu, a, len are the integer variables. 

3.  { j:=1; 

4.   len:= 2*dmax+1; 

5.   if (flag  0 ) then  

6.     len:= dmax+1; 

7.      for i:=0 to len do  

8.        { 

9.        if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then  

10.         j:= i;  

11.      } 

12.  if (j < 10)then // selecting the search region. 

13.       flag:= -1; // for 1
st
 region. 

14.    else 

15.   flag:= 1; // for 2
nd
 region. 

16. // return the best matching co-ordinate distance. 

17.      mu:= abs(j-dmax);  

18.    return (mu); 

19. } 

The above procedure shows the calculation of window cost for one reference pixel 

only. The next matching position range is selected by setting the flag pointer either -1 

or +1 with the following statements: 

 



 

 

Optimal Algorithms for Stereo Correspondence Estimation 

58 

 

if(j < 10) 

flag = -1; 

  else    

flag = 1; 

Flag value controls the reduced matching range or searching area and thus the 

computational costs will reduce always. 

4.3 Comparison with Existing Matching Algorithms 

The proposed matching mechanism is compared with the some of the very popular 

and established stereo matching methods. They are 1) A Fast Area Based Algorithm 

2) Bidirectional Matching or left-right checking 3) Window-Based Fast Algorithm 

and 4) Hierarchical Disparity estimation. A Fast Area Based approach is kept trace 

previously matched points[13], while the Bidirectional Matching calculates every 

possible combination of matches from left to right and right to left. Window-Based 

Fast Algorithm uses the same idea of first method but it additionally uses the 

threshold techniques [9]. The hierarchical disparity estimation calculates disparities 

either for rectified stereo images or uncalibrated pairs of stereo images without known 

epipolar geometry [28]. This method also uses bidirectional matching to remove the 

false matches. The coloring area of Fig. 4.9 defines the probable matching points of 

right image.  

 

 

 

 

 

 

Fig. 4.9 Computational path of bidirectional and unidirectional matching from the 

computational point of view. 

For each point in the left image, bidirectional matching chooses in the direct phase the 

best score along a middle row in the color area (the matches found when matching 

left-to-right have been marked with a circle in the Fig. 4.9). Then, in the reverse 
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phase, when matching R(x, y) chooses the best score along the middle row level: a 

match is accepted only if the match found along this path turns out to be one of those 

found when matching left-to-right. It is worth noticing that, although during the 

reverse phase bidirectional matching checks all of the potential matches along the 

path in middle horizontal row, the allowed ones for R(x, y) turn out to be only those 

that in the direct phase fall in the middle horizontal row (i.e. the circles lying in the 

middle horizontal row) [13]. 

The comparisons of the proposed SAA method and recent related works [29-39] are 

explained briefly in the last portion of subsection 1.2.4 in Chapter 1. 

On the contrary, in our proposed adaptive matching method, the best match occurs by 

dynamically readjusting the starting and ending points of search region. According to 

the main concept stated in section 4.2, matching pixel is the nearest neighbor of R(x, 

y). It is important to mention here that, the 1
st
 search occurs on all the pixels ranges 

from R{x + (- dmax), y} to R{x + (+dmax ), y}. However, the second, third and 

consecutive searches are to be adapted according to the best match of the previous 

search. That is, by the completion of first search the proposed algorithm remembers 

the position of matching pixel. So, in the second search occurs surrounding to the first 

matching pixel, as we use the concepts that neighbor pixels have the same 

photometric properties. Hence depending on the position of matching pixel, the 

successive search ranges are reselected adaptively. This adaptive matching procedure 

ultimately is reducing the searching range by half of its original size. This is the main 

contribution of this research. 

The left-right check has proven to be particularly effective in detecting and discarding 

the erroneous matches but it requires two matching phases (direct and reverse). This 

implies doubling the computational complexity of the matching process. The Fast 

Area Based Algorithm is based on a matching core that it does not require a reverse 

matching phase but some details such as for example the lamp’s wire(Tsukuba pair), 

the lamp’s switch and the two roads that sustain the lamp, have been vanished. 

Moreover, the disparity map shows the border-localization problem, i.e. the objects’ 

borders are not perfectly localized with respect to their original position [13]. This 

algorithm requires only direct matching phase. The hierarchical method executed on 

DirectX 8.1 class 3D hardware (ATI Radeon 9000 Mobility).The disparity map is 

verified by bidirectional procedure. Window- Based Fast Algorithm uses the different 
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threshold values like 10, 20, 30, 40 and 50. From the experimental result, we found 

that as soon as the threshold value increased the searching range also increased, 

causes to high computational costs.  

Conversely, the proposed SAA method shows lowest computational cost because, it 

involves only minimum matching spaces. Suppose there are n candidate-pixels appear 

on the searching range with n reference pixels in left image. According to the above 

analysis, the Fast Area Based Algorithm requires n
2
 numbers of matching 

comparisons and the Bidirectional or Hierarchical search requires 2n
2
 matching 

comparisons. The proposed SAA method requires only n+ {(n/2) × (n-1)} matching 

comparisons. 

4.4 Optimization of Self- Adaptive Search 

The important part of SAA approach is optimization technique. We have already 

mentioned around 50% window costs are reduced at every reference pixel of left 

image except first pixel L(x - dmax). First reference pixel traverses from R(x - dmax), 

R(x - dmax + 1), R(x - dmax + 2) … R(x + dmax) along the scan line. The first search 

occurs from -dmax to +dmax over the scan line. In this case, for first search window 

costs have been calculated for every candidate-pixel of right image. Suppose the first 

reference pixel matches with the third pixel(x - dmax + 2) of right image. After tracking 

the first matching, the proposed method divides the searching space into two regions 

in right image: i) 1
st
 region and ii) 2

nd
 region. Accordingly, each region contains total 

dmax +1 numbers of candidate-pixels of search range. 

Let w is the square mask size and matching range is -dmax to +dmax. So the first 

searching computational cost of SAA method, C1= {(w
2
-1) × (2dmax +1)}. 

Second computational cost,  

             C2 = [(w
2
-1) × {(2dmax+ 1) - 1}/ 2 + 1] =  (w

2
-1) × (dmax + 1).  

 Third, fourth … n
th

 searching computational costs will be the same i.e., Cn = (w
2
-1) × 

(dmax+1).  

Fast Area Based Algorithm [13] requires the computational cost for each reference 

pixel, CAB= {(w
2
-1) × (2dmax +1)}.  
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The Hierarchical Disparity [28] or left-right checking algorithm requires the 

computational cost for each reference pixel, CHD= 2× (w
2
-1) × (2dmax +1).  

For the image size M × N, the total computational costs of Fast Area Based Algorithm 

[13] is CAB= (M × N) × (w
2
-1) × (2dmax +1). Total computational costs of Hierarchical 

Disparity [28] is CHD = 2× [(M × N) × (w
2
 -1) × (2dmax +1)]. The computational costs 

of proposed SAA method, CSAA= ( w
2
-1) ×{(2dmax +1)+ (M×N-1) × (dmax + 1) }.  

Suppose there are n reference pixels within the search range -dmax to +dmax. If n = 21 

reference pixels of left image, then the following comparisons are calculated. 

 In a stereo matching, searching range varies from -10 to +10 normally. Let 

dmax =10. The total comparisons for n (here n = 21) reference pixels of 

proposed SAA method = (2 dmax + 1) + (n-1) × (dmax+1) = (20 + 1) +  (21-1) 

× 11 = 241. 

 Fast Area Based Algorithm [13] requires the total comparisons =  n × (2 dmax 

+ 1) = 21× 21 = 441. 

 Hierarchical Disparity method [28] or Bidirectional method requires the total 

comparisons = 2× n × (2dmax +1). = 2×21×21= 882 

 Subsequently, comparisons reduction compared to the Fast Area Based 

algorithm = (220/441) × 100% = 45.35% 

  Reduction of comparisons compared to Hierarchical Disparity method or 

Bidirectional method = (641/882) × 100% = 72.67% 

Flag value always controls the matching range by resetting the parameter dmax1 and 

dmax2 that depends upon the previous matching position of x. From dmax1 to dmax2 for 

every window cost is determined by summing up the absolute differences between 

two pixels by the following pseudo statements- 

  sum = sum + (abs(v_left - v_right));  

The values of parameters v_left and v_right of (i, j)
th

  pixel is set up by - 

 v_left = image_left.pixel[m+i][n+j];  

 v_right= image_right.pixel[m+i+d][n+j];  

where i and j varies from -5 to +5 for a mask size 11 × 11. The window costs are 

stored in an array Mtemp[d+dmax].pixel[m][n].These cost values are gone to 

minimum cost function as arguments. The minimum function implements the key idea 

of the proposed method by the assessment of its comparisons among the window 

costs. The minimum function performs the dual tasks i) it can be able to determine the 
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matching position on x axis by setting j = i and ii) find the reduced new search range 

with the following pseudo statement- 

i) if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

      j = i; 

     and  

ii)  The SAA algorithm selects the upcoming search range by setting the flag value 

either -1 or +1 with the following statement- 

if(j < 10) 

         flag = -1; 

   else    

         flag = 1; 

Flag value controls the reduced matching position range and thus the computational 

costs are low by reducing the number of comparisons.   

4.5 Experimental Settings and Results 

The experiments have been performed on two Middlebury standard stereo images: i) 

Tsukuba stereo pair and ii) Venus stereo pair as shown in Fig. 4.10. The 

computational time, frame-rate, accuracy and gain performances of the proposed 

algorithm have been justified over the standard stereo images. Experiments are 

performed on Intel Core i-3, 2.3 GHz processor with 4 GB DDR3 RAM. The 

algorithm has been implemented using Visual C++ programming language with 

windows 10 operating system. The size of the left and right images of Tsukuba head 

is (width × height) = (384 × 288) pixels and, the ground truth image size is (width × 

height) = (348 × 252) pixels. The size of the left and right images of Venus stereo is 

(width × height) = (434 × 383) pixels and the ground truth image size of Venus is 

(width × height) = (348 × 252) pixels. Mask size 11 × 11 is used for every operation 

in this method. The experimental results state that the SAA algorithm is currently the 

best window- based method among the existing state-of-the-art methods. The top 

performer existing algorithms are reported in [31], [32], [33], [34] and [35]. All are 

ranked by Middlebury benchmark [42]. So we have to prove the claim by comparing 

the time and frame-rate with the top performer algorithms which is compared in 

Table 4.1 and Table 4.3. The disparity maps of the Middlebury datasets for Tsukuba 

head and Venus stereo pair are estimated by proposed SAA method are illustrated in 

Fig. 4.11 and Fig. 4.12 respectively. 
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       (a) Left image of Tsukuba Head.              (b) Ground Truth of Tsukuba Head. 

 

 
   (c) Left image of Venus stereo pair.           (d) Ground Truth of Venus stereo pair. 

Fig. 4.10 Standard Stereo image (Reference image) and their ground truth image. 

 

 

 

 

 

 

 

 
(a)3D dense disparity map using mask size 11× 11. (b) 3D dense disparity map using mask size 15× 15. 

Fig. 4.11 Estimated 3D dense disparity map of Tsukuba head using SAA method. 

 

 

 

 

 

 
  

 

(a) 3D dense disparity map using mask size 11× 11 (b) 3D dense disparity map using mask size 15× 15. 

 

Fig. 4.12 Estimated 3D dense disparity map of Venus stereo using SAA method. 
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The corresponding time reductions of SAA method are compared numerically in 

Table 4.2 and Table 4.4. From these tables it is evident that in both cases the 

proposed SAA algorithm outperforms the current and earlier established top 

performer algorithms. The accuracy of the SAA algorithm for Tsukuba head is 93.8% 

i.e., the bad pixel in percentage is only 6.2%. The performance enhancement by the 

SAA method is discussed in section 4.6. Table 4.5 and Table 4.6 show the 

noteworthy gain enhancements of proposed SAA method. The experimental results 

are analyzed in four phases are explained below. 

4.5.1 Observation of 3D Structures of Experimental Output 

Both the Tsukuba and Venus stereo pair of input images contain different objects at 

variable depth of positions. Contextual and forefront objects are positioned at 

different depth. Four objects are placed at different depth of Venus stereo of input 

image. Stereo pair also encloses some distinct areas like head of the statue, table 

lamp, video camera, Venus sport paper, and another paper and background paper 

wall. Such types of areas are quite challenging to isolate from other objects by stereo 

matching. So the first work is to differentiate the variable depth of objects by 

assigning the altered gray level value of output image. Nearby object is presented by 

deep white color and outermost object is presented by dark or deep black color. It is 

detecting that the experimental 3D construction of output image is recreated evidently 

in Fig. 4.11 and Fig. 4.12, where the face of the statue, table lamp, video camera, 

Venus sport paper, another paper as well as remarkable objects are seen easily. 

Comparing the output images of Fig. 4.11(a) and Fig. 4.12(a) with ground truth 

image of Fig. 4.10(b) and Fig. 4.10(d) respectively, the camera and its background 

objects have been recovered almost correctly. The objects depths are noting that 

nearby objects are realized by additional white color and outermost objects are 

realized by dark grey level value or black as shown in Fig. 4.11 and Fig. 4.12. Thus, 

the camera and nearby objects such as face of Tsukuba, table lamp and sports paper, 

2
nd

 paper (to be such: left side) of Venus stereo are visualized by more white color. 

On the other hand, the camera and outermost objects such as video camera, book 

shelf, background wall of Tsukuba stereo pair and background paper wall of Venus 

stereo are recreated with dark grey or black color. Object borders are evidently 

detecting in computed dense disparity image, i.e. border localization problem of 

article [13] are resolved by the SAA method. The experimentally estimated images 
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are tested again by the edge detection algorithm and the output object’s borders are 

acknowledged which are illustrated in Fig. 4.13.  

 

 

  

 

 

 
         (a) Objects of Reference image.                              (b) Reconstructed 3D dense disparity. 

 

 

 

 

 

 

 

 

 
 (c) Classified object borders of ground truth.                (d) Classified object borders of ground truth. 

Fig. 4.13 Localized object borders. 

The estimated dense disparity’s 3D structure is recovered and its objects border are 

correctly identified which are outlined in Fig. 4.13 (c) and (d).  So, the result ensures 

that the similar depths are found in estimated dense disparity. 

4.5.2 Computational Cost Calculation and Comparison with Existing state-

of-the- art Methods for Middlebury Standard Tsukuba Head  

 Disparities of reference image are estimated by SAD technique using adaptive search 

algorithm. The disparities are estimated within the search range from -10 to +10. The 

effects of self-adaptive search are considered with respect to computational costs, 

frame-rate (in fps), gain and accuracy. The computational costs, frame-rate and gain 

performance results of adaptive method have been compared with previous fastest 

literatures [9], [13], [28] and the current state-of-the-art methods [32-35], [37-39]. 

Fast Area Based algorithm [13] reports 3229µs required by Intel Core i-3, 2.3 GHz 

processor with 4 GB DDR3 RAM for 384 × 288 image resolution of Tsukuba head. 

This experiment also results the frame-rate 310 fps. Hierarchical Disparity method 

[28] reports 4243µs required by Intel Core i-3, 2.3 GHz processor with 4 GB DDR3 

RAM for 384 × 288 image resolution of Tsukuba head. This experiment also results 
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235 fps frame-rate. Fast algorithm [9] reports 4617µs required by Intel Core i-3, 2.3 

GHz processor with 4 GB DDR3 RAM for 384 × 288 image resolution of Tsukuba 

head. The frame-rate of this method is 216 fps. 

Table 4.1:  Disparity estimation computational time (in µs) and frame-rate (in fps) for 

the Middlebury standard data of Tsukuba head image using Self-Adaptive Search 

Method. 

 

Method’s Name 
Computational 

Time(in µs) 

Frame-rate 

(in fps) 

Accuracy 

( in %) 
Computational Machine 

Input image &  

Resolution 
Rank 

Self-Adaptive 

Algorithm 

[Proposed] 

1872 535 93.80 

Intel Core i-3 

Speed: 2.3 GHz. RAM: 

4GB 

 

 

Middlebury 

Standard 

Tsukuba Head 

384×288 

1 

Fast  Area Based 

[13] 
3229 310 86.10 

Intel Core i-3 

Speed: 2.3 GHz. RAM: 

4GB 

2 

 

Hierarchical 

Disparity [28] 
4243 235 92.10 

Intel Core i-3 

Speed: 2.3 GHz. RAM: 

4GB 

3 

Fast Algorithm 

[9] 
4617 216 88.23 

Intel Core i-3 

Speed: 2.3 GHz. RAM: 

4GB 

4 

Tree filtering 

[34] 
7000  143 93.18 

Intel Core i-7 

Speed: 1.8 GHz. RAM: 

4 GB 

5 

Edge-aware  

Geodesic 

filter[33] 

9000  111 93.67 

Intel Core i-5 +Geforce 

GTX card,Speed: 

3.0GHz.,RAM: 8GB 

6 

DSI & Adaptive 

Support[32] 
200000  5 90.18 

Core Duo,Speed: 

2.2GHz. 

RAM:NA 

7 

Pyramid stereo 

matching [39] 
550000 2 97.68 

Nvidia GeForce GTX 

1080 Ti/PCIe/SSE2 

KITTI -2015 

Datasets. 
8 

Deep self-

guided[38] 
2860000 0.35 91.76 

Intel Core i-7 Speed: 

3.4GHz. RAM.16GB 

Middlebury 

training 

datasets and 

KITTI -2015 

9 

Energy 

Minimization[35] 
3000000  0.33 92.82 

Intel Core i-5 

Speed: 1.9 GHz. 

RAM:6GB 

Middlebury 

Standard 

datasets 

10 

Fusing Adaptive 

Support[37] 
40500000 0.025 96.02 

Intel Core i-5  

Speed: 3.2 GHz. 

RAM: 8GB 

Tsukuba, 

Venus, Teddy, 

Cones 

[Middlebury 

Benchmark] 

11 
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The proposed SAA algorithm requires only 1872µs on the same hardware with 241 

comparisons instead of 441 and 882 comparisons as mentioned in section 4.4. The 

proposed method also performs better frame-rate compared to previous popular 

methods [9], [13], [28] and recent state-of-the-art methods of [32-35], [37-39]. It 

shows the highest frame-rate 535 fps among the state-of-the art methods. Table 4.1 

illustrates the summary of comparisons among the proposed method and present state-

of-the-art methods. The SAA’s experimental results have been also compared with the 

result of methods those are tested on Middlebury standard datasets. The results 

ranking in Table 4.1 indicate that the proposed SAA method is ranked 1
st
 out of 

existing top state-of-the-art methods of [32-35], [37-39]. It shows the highest frame-

rate 535 fps and lowest computational time 1872 microseconds among the latest 

methods. The proposed method outperforms all the state-of-the-art methods in frame-

rate and computational time on Middlebury standard Tsukuba head image pair. 

 

 

                    

 

 

 

                     (a)                                                                                     (b) 

Fig. 4.14 Left side graph(a) shows the comparison of computational costs and right 

side graph(b) shows the comparison of frame-rate (in fps) among the proposed and 

existing state-of-the-art methods for Tsukuba head image. 

We claim that the SAA method is currently the state-of-the-art method for 

Middlebury standard Tsukuba head image pair with 2.4X, 1.7X, 2.2X, 106.8X, 4.8X, 

3.7X, 1602.5X, 1527.7X, 293.8X faster than the methods of [9], [13], [28], [32], [33], 

[34], [35], [38] and [39] respectively.  

The SAA method achieves the reduction of 42.02% computational time comparing 

with the Fast Area Based Stereo Matching Algorithm [13]. The proposed method also 

performs 59.45% time reduction compare to window-based method by Fast 

Algorithm [9]. From Table 4.2, we observe that 55.88% reduction of computational 

time is done by the proposed SAA method comparing with the Hierarchical Disparity 
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Estimation [28]. Finally, the SAA method achieves 99.06%, 79.20%, 73.25%, 99.93%  

and 99.93% computational time reduction against the recent state-of-the-art methods 

of [32], [33], [34], [35] and [38] respectively with lower configurations of hardware. 

The graphical comparison of computational costs and frame-rate (in fps) are 

illustrated in Fig. 4.14. Therefore, from the Table 4.1, Table 4.2 and graph of Fig. 

4.14, the proposed SAA algorithm is the better choice on the basis of computational 

time and frame-rate.  

Table 4.2: Computational time reduction (in %) of proposed method for Tsukuba Head 

Computational 

Time(in µs) for Self-

Adaptive Algorithm 

[Proposed] 

Existing state-of-the-art Methods Computational 

Time Reduction 

(in %) by SAA 

method compared 

to the methods of 2
nd

 

column 

Method’s  Name 
Computational 

Time(in µs) 

  

 

 

 

 

1872 

Fast  Area Based [13] 3229 42.02 

Hierarchical Disparity [28] 4243 55.88 

Fast Algorithm[9] 4617 59.45 

Tree filtering [34] 7000  73.25 

Edge-aware  Geodesic 

filter[33] 
9000  79.20 

Energy Minimization[35] 3000000 99.93 

Pyramid stereo 

matching[39] 
550000 99.65 

Deep self-guided[38] 2860000 99.93 

 

4.5.3 Computational Cost Calculation and Comparison with Existing state-

of-the-art Methods for Middlebury Standard Venus Stereo Images  

The performances of computational time and frame-rate have been numerically 

evaluated in Table 4.3 for Middlebury standard data of Venus stereo pair. The 

proposed SAA algorithm also outperforms all other algorithms summarized in Table 

4.3. The comparison of computational costs and frame-rate (in fps) of proposed and 

recent state-of-the-art methods are illustrated in Table 4.3 with hardware 

specifications. The SAA algorithm also obtains the better performance in terms of 

computational time and frame-rate. It requires only 2652 µs instead of 6318 µs, 6724 

µs, 7000 µs, 7473 µs and 9000 µs of mentioned methods respectively. It shows the 

highest frame-rate 377 fps. The graphical comparisons of computational time and 
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frame-rate are illustrated in Fig. 4.15 which depicts that the proposed SAA method 

runs in lowest time and achieves the highest speed among the current state-of-the-art 

methods.  

Table 4.3:  Disparity estimation computational time (in µs) and frame-rate (in fps) 
for the Venus stereo image using Self -Adaptive Search Method. 

Method’s 

Name 

Computational     

Time(in µs) 

Frame-rate 

(in fps) 

Computational 

Machine 

Input image 

& Resolution 
Rank 

Self-Adaptive 

Algorithm 

[Proposed] 

2652 377 

Intel Core i-3 

Speed: 2.3 GHz. 

RAM: 4GB 

Middlebury 

Standard 

Venus 

Stereo dataset 

434×383 

1 

Fast Area Based 

[13] 
6318 158 

Intel Core i-3 

Speed: 2.3 GHz. 

RAM: 4GB 

2 

 

Hierarchical 

Disparity [28] 
6724 148 

Intel Core i-3 

Speed: 2.3 GHz. 

RAM: 4GB 

3 

Tree filtering 

[34] 
7000  143 

Intel Core i-7 

Speed: 1.8 GHz. 

RAM:4GB 

4 

Fast Algorithm 

[9] 
7473 133 

Intel Core i-3 

Speed: 2.3 GHz. 

RAM: 4GB 

5 

Edge-aware 

Geodesic 

filter[33] 

9000  111 

Intel Core i-5 

+Geforce GTX 

card 

Speed: 3.0Ghz 

RAM: 8GB 

6 

    

 

 

 

 

 

 

 

         (a)                                                                            (b) 

Fig. 4.15 Left side graph(a) shows the comparison of computational costs and 

right-side graph(b) shows the comparison of frame-rate (in fps) among 

proposed and existing state-of-the-art methods for Venus stereo images. 
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Another numerical evaluation and comparisons are represented in Table 4.4 in which 

proposed method performs 64.51% time reduction compared to window-based Fast 

Algorithm [9] for Venus stereo pair image. The computational time is reduced 

60.55% by proposed SAA method compared to the Hierarchical Disparity [28]. The 

SAA algorithm also reduces 58.02% of computational time comparing with the Fast 

Area Based method [13]. Finally the SAA method achieves 70.53% and 62.11% 

computational time reduction over the recent state-of-the-art methods of [33] and [34] 

respectively using the lower configurations of hardware. So it is evident that the 

proposed SAA method is currently the  state-of-the-art method for Middlebury 

standard Venus stereo pair with 2.8X, 2.3X, 2.5X,3.3X, 2.6X faster than the top five 

methods of [9], [13], [28], [33] and [34] respectively. 

Table 4.4: Computational time reduction (in %) of proposed method for Venus stereo 
pair. 

Computational 

Time(in µs) for 

Self-Adaptive 

Algorithm 

[Proposed] 

Existing state-of-the-art Methods Computational Time 

Reduction (in %) by SAA 

method compared to the 

methods of 2
nd

 column 

 

Method’s Name 

 

Computational 

Time(in µs) 

 

 

 

2652 

Fast Area Based [13] 6318 58.02 

Hierarchical Disparity 

[28] 
6724 60.55 

Tree filtering [34] 7000  62.11 

Fast Algorithm[9] 7473 64.51 

Edge-aware Geodesic 

filter[33] 
9000  70.53 

 

From the Table 4.4 and graph of Fig. 4.15, the proposed SAA algorithm again proves 

that it is the best choice on the basis of computational time and frame-rate. In both 

cases (For Tsukuba and Venus stereo input images) the SAA algorithm performs the 

lowest computational costs and highest frame-rate.  

4.5.4 Accuracy Measurement and Comparisons  
 

The accuracy of this algorithm has been justified over standard stereo images of 

Tsukuba head. The algorithm is implemented using Visual C++ programming 



 

 

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA) 

 

71 

 

language. To determine the correspondence of a pixel of reference image, the window 

costs are estimated for the candidate-pixels of right image within the search range -10 

to +10 pixels. The proposed SAA method estimates the accuracy in percentage with 

the error threshold 2. The accuracy of SAA method is 93.8%. The numerical 

evaluations confirm that the bad pixel in percentage is only 6.2% for our proposed 

method. But using the same resolution of image, bad pixels in percentage were 

6.33%, 7.88%, and 7.18% reported in [33], [34] and [35] respectively for Tsukuba 

head with the experiments of Middlebury stereo datasets.  

4.6 Performance Enhancement Analysis 

The performance of the proposed SAA approach has been compared to the state-of-

the-art methods. The comparison tools were computational time, frame-rate and gain. 

Our target was to speed up the computational costs with no degradation of accuracy. 

Since the accuracies and 3D dense disparity of state-of-the-art algorithms yield very 

similar to proposed SAA method; confirm the effectiveness of the proposed matching 

algorithm. Table 4.5 illustrates the performance enhancement of SAA method 

compared to the established state-of-the-art methods. The proposed SAA method has 

done 72% gain enhancement compared to Fast Area Based Method [13]. Enhanced 

gain is calculated as follows. 

Gain Enhancement by proposed SAA method over Fast Area Based Method 

[13]:  

 = {(Computational time of Fast Area Based Method ÷ Computational time of SAA   

      Method) × 100 - 100} %  

= {(3229/1872) × 100 -100} % 

= 72% 
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Table 4.5: Quantitative evaluation of performance of proposed SAA method with top 

five (5) algorithms. 

 

Method’s Name 
Computational 

Time(in µs) 

Frame-rate 

(in fps) 

Performance 

Enhanced (in %) 

by SAA method 

over the methods of 

1
st
 column 

 

Input 

image & 

Resolution 

Self-Adaptive 

Algorithm [Proposed] 
1872 535 × 

Middlebury 

Standard 

Tsukuba 

Head 

384×288 

Fast  Area Based [13] 3229 310 72 

Hierarchical Disparity 

[28] 
4243 235 126 

Fast Algorithm[9] 4617 216 146 

Tree filtering [34] 7000  143 273 

Edge-aware Geodesic 

filter[33] 
9000 111 380 

 

Similarly, the experimental gain, enhanced by proposed SAA method over the state-

of-the-art methods of [28], [9], [33] and [34] were 126%, 146%, 380% and 273% 

respectively which is illustrated in Fig. 4.16. The performance enhanced graph of 

proposed SAA method is shown Fig. 4.16. Since the speed of proposed method is 

very high, the estimated gains of this algorithm are automatically high. The numerical 

measurments of this claim is strongly supported by experimental data of Table 4.5 in 

which the SAA algorithm is compared with the top five(5) algorithms. The bar 

diagrams illustrate the increased  gain (in %) of SAA method compared to the cureent 

methods . The proposed method outpeforms  the existing state-of-the-art methods 

with respect to the performance enhancements too.  
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Fig. 4.16 Graph shows the performance enhancement of SAA method comparing to 

the mentioned state-of-the-art methods. 

Moreover, the performance of the SAA method has been tested on Middlebury 

standard Venus stereo datasets and the estimated experimental data are summarized in 

Table 4.6. From this table, the proposed SAA method also performs better than the 

existing top five algorithms for Venus stereo datasets. The gains have been estimated 

using the same procedures as mentioned earlier .The SAA method enhances 138%, 

153%, 181%, 239%, 163% gains compared to the established state-of-the-art methods 

of [13], [28], [9], [33] and [34] respectively. The SAA method enhances 239% gain 

over Geodesic filter method[33], but it actually increases (239-100)= 139% gain 

against Geodesic filter method. Similarly , the proposed method enhances 163% gain 

over the Tree Filtering[34] method and thus it actually increases (163-100)= 63% gain 

against Tree Filtering method. Therefore, the proposed SAA algorithm outperfoms the 

existing top five algorithms for Venus stereo datasets. In terms of computational time, 

frame-rate and gain achievement, the proposed matching approach is faster and better 

than the existing state-of-the-art methods. 
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Table 4.6: Quantitative evaluation of performance of proposed SAA method with top 

five (5) algorithms for Venus stereo pair. 

 

Method’s Name 

 

Computational 

Time(in µs) 

 

Frame-rate 

(in fps) 

Performance 

enhanced (in 

%) by SAA 

method over 

the methods of 

1
st
  column 

 

Input image 

& Resolution 

Self-Adaptive 

Algorithm [Proposed] 2652 377 × 
 

 

 

Middlebury 

Standard 

Venus Stereo 

dataset. 

434×383 

Fast Area Based[13] 6318 158 138 

Hierarchical Disparity 

[28] 
6724 148 153 

Tree filtering [34] 7000  143 163 

Fast Algorithm[9] 7473 133 181 

Edge-aware  Geodesic 

filter[33] 
9000  111 239 

4.6.1 Experiment on Real Stereo Images by SAA 

The performances of SAA algorithm have been further tested on real stereo images 

acquisitioned by Logitech stereo web camera. This experiment is performed in our 

software laboratory and images were captured as indoor scenes. The specifications of 

stereo camera are the same as we have mentioned in subsection 2.3.1 and 3.4.4. 

 

Stereo Image Capturing Process: 

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of 

reference images were stood 63.00 cm away from the imaging sensor of the camera. 

The distance between two cameras was 6.70 cm. 
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a)Real image acqusition using stereo web camera for dataset-1(Human face). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand). 
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c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand). 

Fig. 4.17 Real image acqusition process using stereo web camera. 

Experimental output for Real Stereo Images: 

The size of the left and right real-image is (width × height) = (550 × 720) pixels. 

Disparity image size is (width × height) = (514 × 684) pixels. Table 4.7 demonstrates 

the visual observations and findings of dense disparity map.  

Table 4.7: demonstrates the visual observation of dense disparity maps using two 

different types of mask (33 and 1111). The Table 4.7 illustrates the dense disparity 

maps of three real datasets -Human face, Nescafe coffee stand and Scotch tape stand 

respectively. The 1
st
 column of this table represents the reference image and its size 

which is captured by our stereo camera. The 2
nd

 and 3
rd

 column represent the 

estimated dense disparity maps of reference images using 33 and 1111 mask 

respectively. We could not compare the experimental outputs to the ground truth 

image because it has no ground truth images. In this situation, the disparity maps of 

reference image should be considered and compared visually only. 

The disparity maps of outputs contain some noise. This is happened because we could 

not provide the equilibrium light condition in our laboratory. 

 



 

 

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA) 

 

77 

 

Table 4.7:  Visual observation of disparity map of real images generated by SAA 

algorithm 

Reference image 

Resolution: 550720 

Experimental Dense 

Disparity Map of Real 

Image 

Mask size : 33 

Experimental Dense 

Disparity Map of Real 

Image 

Mask size : 1111 

 Execution time(s) 

 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 468 

Mask: 1111: 5360 

 

 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 468 

Mask: 1111: 6735 

 

 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 563 

Mask: 1111:  

5985 
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Similarly the room temperature was not equilibrium at all the places during the image 

acquisition process. Moreover, we have tried to our best to calibrate the stereo camera 

physically. The stereo cameras were manually placed on the same horizontal line, but 

experimentally, it was not possible. There was some vertical difference between two 

cameras in fractional millimeter (.05 mm approximately) range.  These cause to add a 

little noise in captured stereo images. Inspite of noise, the objects are demarked and 

recognized at standard level. The object (Human face, Nescafe coffee stand and 

Scotch tape stand) inside the reference image is clearly understandable and visualized. 

The dense disparity map generated by 33 mask is more visualized and 

comprehensive than the disparity map of 1111 in noisy environment. So the overall 

performance of SAA algorithm is good in case of real stereo images. 

4.7 Discussion 

The main objective of this method was to speed up the computational time. We have 

done this by a new technique called Self-Adaptive Algorithm that infers the upcoming 

matching pixel’s position. This algorithm itself readjusts as well as reduces the search 

range based on remembering the previously matching pixel’s position. The frame-rate 

of our algorithm is 535 fps for input images of Tsukuba head pair and 377 fps for 

input images of Venus stereo pair. Thus, it can calculate, process and display output 

535 frame/second for the case of standard Tsukuba head image pair and 377 

frame/second for the standard Venus stereo pair. The estimated gains of proposed 

SAA method are 380 and 239 for Tsukuba head and Venus stereo respectively 

whereas the gain of existing state-of-the-art method is 100. Since the accuracy and 3D 

dense disparity maps of proposed method are very similar with the existing state-of-

the-art algorithm, it confirms the effectiveness of the proposed matching algorithm. 

Moreover, the SAA algorithm does not require any additional programmable 3D 

hardware like 3D Graphics Processing Unit (GPU). The proposed SAA method 

demonstrates the state-of-the-art results and outdoes the present top methods. 

4.8 Summary 

The compulsion of SAA method is stated in Section 4.1 of this chapter. The proposed 

Self-Adaptive method is explained both in mathematically and graphically in Section 

4.2 for well understanding. The optimization technique of SAA method is described 
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in Section 4.4. The main achievements of this method are discussed in Section 4.5 and 

its Subsections of Experimental results. Experimental results described in Subsection 

4.5.1, 4.5.2 and 4.5.3 demonstrate the visual and numerical comparison between 

proposed SAA method and the present state-of-the-art methods. The great 

achievement of this method is Performance enhancement, which is quantified in 

Section 4.6. The SAA algorithm is tested on real images in subsection 4.6.1. The 

overall conclusion of this method has been drawn in Section 4.7. 
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5.1 Introduction 

For binocular machine vision, stereo correspondence is the fundamental issue for 

viewing the objects exactly. It is well-defined by the parameter d (Fig. 1.1) that is 

calculated by the deviation of x-axis between the reference image and right image, 

also known as disparity. It is still now open challenge to measure the accurate dense 

disparity map in 3D environment due to noise, difference in camera parameters, 

homogenous background of stereo images, variation of light intensities of indoor and 

outdoor scenes and variable textures of images. Though there are a lot of algorithms 

to estimate the real-time disparity map, but there is no perfect algorithm till to date to 

compute the stereo correspondence like human stereo eyes. The said parameter d is 

expressed by the equation (1.1) in Chapter 1. We can also measure the disparity d by 

knowing the camera parameters; B, f and Z.  Where B is the baseline distance of two 

horizontally placed cameras, f is the focal length of camera and Z is the depth of 

information of an object from the camera. The key challenge is to explore the 

matching position as fast as possible within the whole image or specified searching 

range. Our proposed SGSC algorithm can recognize the correspondence in right 

image with very quick response.  

The depth of information Z is an important parameter for machine vision, pedestrian 

navigation, 3D scene tracking and reconstruction. Disparity is experimentally 

estimated by using Sum of Absolute Differences (SAD) in our proposed SGSC 

method. Besides this, there is also Sum of Square Differences (SSD) and Normalized 

Correlation Techniques (NCT) is the alternative techniques to compute the stereo 

correspondence, which is already defined mathematically in Chapter 1. There are 

open problems in selection of shape and size of mask or window to scan the searching 

line. Different complexities are involved for different types of mask or window that is 

also discussed in Chapter 1.  

The current researches of connected problems to the matching costs are stated in [28] 

and [9]. Bilateral filter and threshold techniques are used to estimate the disparity. 

Guided image filter is used in the work [29] to estimate the window costs aggression. 

The authors employ unsupervised and online adaption [45] on KITTI 2012 and KITTI 

2015 datasets. Tree filtering method [34] computes the shortage distance between two 

pixels on designated pixel’s tree. This method is tested on Middlebury standard stereo 

datasets, but it requires more computational costs. The most recent works [35], [37], 
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[40] and Self-Adaptive Algorithm (SAA) [Chapter 4] worked on Middlebury standard 

stereo datasets. These methods require high computational costs. Besides these, the 

above methods except method SAA [Chapter 4] involve post processing step like 

filtering, refinement or left-right consistency checking those are responsible to 

increase the computational costs. However, our proposed Self-Guided Stereo 

Correspondence (SGSC) Estimation method does not require the post processing 

steps.  

5.1.1 Motivation 

The software driven parallel model, 2DRTSSA is mentioned in Chapter 3, computes 

two window costs simultaneously. As we have to find out the best cost among several 

possible correspondences, we choose the best correspondence carefully and 

purposefully. Though the performance of 2DRTSSA is satisfactory, i.e., the 

maximum accuracy was 93.8%, but the computational cost was higher than the RTA 

method. The SAA method in Chapter 4 reduces the search range around 50%; 

therefore it takes less time for computation compared to 2DRTSSA. In this method 

the accuracy is same as 2DRTSSA but the computational cost was lower.  

These observations give rise to the idea that the drawbacks of both approaches can be 

resolved by the newly approached SGSC method. In this method, both the accuracy 

and performance is enhanced by exactly tracking the matching pixel position in right 

image using the threshold technique.  

5.2 Proposed Self-Guided Search Algorithm 

This research work is the enhancement version of Self-Adaptive Algorithm (SAA) of 

Chapter 4. Some modifications have been imposed on SAA method to achieve the 

better performance and behaviors of the proposed method. The searching range -dmax 

to +dmax is divided into two searching regions; 1) first one is -dmax to 0 and 2) second 

one is 0 to +dmax . The cost aggression process on the right image is performed either 

in 1
st
 region or 2

nd
 region, reported in SAA method [Chapter 4]. The proposed method  

follows almost the same procedure of SAA method but it differs mostly that after first 

search it employs the threshold technique to reduce the search zone as close as needed 

to create the active zone. Employing the new technique, the modified SGSC algorithm 

reduces the processing time up to 253 microseconds compared to SAA method. The 

other betterments and performances are presented in Section 5.5. According to the 
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R[x+( -dmax)]   R[x+ (-dmax+1)]   

R[x+ (-dmax+2)]   

 

R[x+ (dmax-1)]   

R[x+ (+dmax)]   

R[x+ (-dmax+6)] 

   = R[x+ (-6+6)] 

   =R[x+ 0] 

 

-6    -5  -4   -3   -2  -1    0    1    2     3    4      5      6 

1
st
 zone 2

nd
 zone 

1
st
 scan 

line 

proposed algorithm, the 1
st
 search of 1

st
  reference pixel L(x - dmax) is searched on R{x  

+ ( -dmax)} , R{x + (-dmax + 1)}, R{x + (-dmax + 2)} … R(x + 0) … … R{x + (dmax - 1)}   

to R{(x  + (+ dmax)} in the right image towards the first scanning line (marked by red 

color pixel) of Fig. 5.1.. During the first cost aggression process, the algorithm 

explores the best matching pixel by measuring its lowest value of window cost within 

the whole coordinate range from R{x + (- dmax), y} to R{x + (+dmax ), y}. Suppose, the 

1
st
 best match is found at PR (i, y) with intensity IR in 1

st
 zone.  Actually, this 

coordinate position is the reference matching position of proposed method. Based on 

the coordinate position and photometric property of it’s, the proposed SGSC 

algorithm apply threshold technique with a view to more closer the search zone than 

SAA algorithm. Before starting the 2
nd

, 3
rd

, 4
th

 … M
th

 search the SGSC algorithm 

apply threshold technique to prevent the false-search area as well as to reduce the 

search zone for creating needful active zone. Accordingly, until the condition ǀPL(i + 

1,y) - PR (i, y)ǀ ≤  δT is satisfied, the cost aggression and searching continues  at 1
st
 

zone. Where δT is the optimal threshold intensity, magnitude of PR (i, y) is IR and 

magnitude of PL (i ,y) is IL.   

 

 

 

 

 

 

 

Fig. 5.1 The whole search and sub search zones of right image for the reference pixel 

of left image. 

Thus the overall execution time elapsed for 2
nd

 zone’s candidate-pixels are reduced at 

every search operation. Actually, this is an extra reduction time for self-decided 

SGSC algorithm over SAA method. When the above mentioned condition is not 

satisfied, the search and cost estimation process enter into the 2
nd

 zone and the 

procedure will be continued as like as 1
st
 zone. The mentioned SGSC procedure is 
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reiterated for the consecutive pixels of reference image towards the scanning line 

from minimum to maximum depth of the whole image.  

It is our experimental observation that while scan line crosses over the boundary 

pixels of a segment then the search toggles the zones. In such case, our algorithm 

scans both zones to find out the matching correspondence. For better understanding 

and realization of SGSC, we display a flow chart and algorithm for visual conception 

at a glance. The flow chart shows only the one scan line pixel of reference image with 

window cost estimation by self-guided algorithm. The SGSC algorithm always 

calculates the window costs within only half portion of candidate-pixels in right 

image with properly handling mismatching zone. The main benefits of this algorithm 

are that we need not to calculate the costs on half portion of specified search range for 

every reference pixel of left image. These advantageous procedures are graphically 

illustrated in Fig. 5.3, Fig. 5.4 and Fig. 5.5. The Fig. 5.3 shows the window cost 

aggression, calculation and searching cruise of 1
st
 search where five window costs are 

considered for simplicity and better realization. 

After finding the first stereo correspondence, the SGSC algorithm divides the whole 

search zone into two sub zone: 1) 1
st
 zone and 2) 2

nd
 zone. The territory of 1

st
 zone 

starts from R [(x  + ( -dmax)] and ends at R[(x + 0)] . Similarly, the territory of 2
nd

 zone 

begins from R[x + (0 + 1)] and ends at R[x + (+dmax )]. After that the SGSC algorithm 

assigns the position of first matching correspondence either in 1
st
 or in 2

nd
 zone 

depends on the intensity level of matching pixel IR. Let it is allocated in 1
st
 zone. 

From the flow chart, all subsequent reference pixels are firstly checked by threshold 

criteria that prohibit the search sequence to enter into the mismatching zone for false 

matching. The threshold value δT is selected as an optimal value and in our 

experiment we set the optimal threshold value at 5. 
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Firstly search the whole scan line & find first 
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Fig. 5.2 Flow chart of the proposed SGSC algorithm. 

If the first matching correspondence is found in 1
st
 zone, then the searching process 

and window cost calculations are associated with only the 1
st
 zone’s pixels as shown 

in Fig. 5.4. In such case, cost function calculates the window costs for the candidate-

pixels of -6,-5,-4,-3,-2,-1,0 only and window costs calculations are discarded for the 

candidate-pixels of 1,2,3,4,5,6.  
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Fig. 5.3 1
st
 search for window cost calculation process towards the scanning line. 

The window costs calculation continues within the 1
st
 zone until the condition ǀPL(i 

+1,y)-PR (i,y)ǀ ≤ δT is satisfied. So for every reference pixel the searching, comparing 

and window cost calculations are always discarded for the half portion of pixels (1, 2, 

3, 4, 5, and 6) of 2
nd

 zone. The search sequence enters into the 2
nd

 zone while it 

overpasses the border line of a segment of an input reference image.  

 

 

 

 

 

 

 

Fig. 5.4 Window cost estimation procedure for 1
st 

zone (2
nd

 Searching). 

If the correspondence is found in 2
nd

 zone; the searching process and window cost 

functions are associated with only the 2
nd

 zone’s pixels as shown in Fig. 5.5. In such 

case, cost function calculates the window costs for the candidate-pixels of 0, 1, 2, 3, 4, 

5 and 6 only. Window cost calculations are discarded for the candidate-pixels of -6, -

5, -4, -3, -2, and -1. 

 

 

 

 

 

 

 

Fig. 5.5 Window cost estimation procedure for 2
nd

 zone (3
rd

 searching). 
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So, the proposed SGSC method determine the upcoming reference pixel’s 

correspondence on x axis either in 1
st
 zone or in 2

nd
 zone. Therefore, SGSC method 

reduces more cost-estimation time than SAA method in local stereo matching domain.  

5.2.1 Disparity Estimation Algorithm of SGSC Method  

Algorithm SGSC(m, n, temp, temp1,sum,w1,w2 , k1,k2,v_left,d, 

v_right,image_left.pixel,image_right.pixel,image_disp.pixel 

,ws1,ws2,dmax,dmax1,dmax2,t0,t1,flag) 

 

1. //m,n is the row and column size of an image. 
2. // temp and temp1 are pixels intensity value of left and  
3. // right image. 
4. //w1,w2 is the row and column size of the mask.  
5. //sum is the summation of window costs.  
6. // v_left is the pixel intensity value of left image. 
7. // v_right is the pixel intensity value of right image. 
8. // image_left.pixel[1:m][1:n] is the left image pixel 

9. // coordinate that contains mn elements. 
10. //image_right.pixel[1:m][1:n]is the right image pixel  

11. // coordinate that contains mn elements. 
12. //image_disp.pixel[1:m][1:n]is the disparity image  

13. // that contains mn disparity values. 
14. // d is the search range counter variable. 
15. //k1 ,k2 are the number pixels to discard from left and 
16. // right side of image. 
17. // ws1 and ws2 are the local variable within the mask. 
18. //dmax,dmax1 and dmax2 are the search ranges. 
19. // t0, t1 is the variable for time. 
20. //i,j and flag is the integer type counter variables. 
21. for n:=0 to size_y do 

22. {    

23.  for m:=0 to size_x do 

24.   { 

25.   image_left.pixel[m][n]:= temp; // Read left image 

26.   image_right.pixel[m][n]:= temp1;//Read right image 

27.   } 

28.  }  

29. t0:= clock();    

30.  // Dividing the searching zone  

31.    ws1 := (w1/2); ws2 := (w2/2);  

32.    for m:= k1 to size_x-k1 do  

33.    {   

34.      for n:= k2 to size_y-k2 do 

35.        {  

36.    if(flag=0) then  

37.     {   dmax1:=-dmax;// initial zone. 

38.         dmax2:= dmax;  

39.      } 
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40.    else if (flag<0) then //  1st zone 

41.      { dmax1:=-dmax; 

42.         dmax2:= 0;  

43.       } 

44.      else          //  2nd  zone 

45.        {  dmax1:= 1; 

46.          dmax2:= dmax;  

47.         } 

48. // window cost calculation 

49.       for d:= dmax1 to dmax2 do 

50.      { 

51.         sum:= 0; 

52.        for i:=-ws1 to ws1 do 

53.            { 

54.                for j:= -ws2 to ws2 do 

55.               { 

56.            v_left:= image_left.pixel[m+i][n+j];  

57.          v_right:= image_right.pixel[m+i+d][n+j]; 

58.              sum:= sum + abs(v_left - v_right); 

59.         }     

60.        } 

61.   Mtemp[d + dmax].pixel[m][n]:= sum; 

62.  

63.     } 

64.   // Select the minimum window cost. 

65.    

66.   image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1);        

67.   } 

68.    }  

69.  t1:= clock(); 

70.    cpu_speed:= t1 - t0; // time calculation. 

71.    write("Total time",cpu_speed);  

72.    // Creating the dense disparity map. 

73.    for n:= k1 to size_y-k1 do  

74.      {   

75.      for m:= k2 to size_x-k2 do  

76.       { 

77. write(“dense disparity image",image_disp.pixel[m][n]); 

78.   } 

79. } 

 

 Algorithm minimum (temp[2*dmax+1],x,y,ws) 

 

1. // Find the minimum value from temp[0:2*dmax+1] elements 

2. // x, y, i, j, mu, a, len , Th are the integer variables. 



 

 

Optimal Algorithms for Stereo Correspondence Estimation 

89 

 

3.  { j:=1,Th:=5; 

4.   len:= 2*dmax+1; 

5.   if (flag  0 ) then  

6.     len:= dmax+1; 

7.   for i:=0 to len do  

8.     { 

9.       if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then  

10.         j:= i;  

11.   } 

12.     mu:=abs(j-dmax); 

13. // Applying Threshold technique 

14.  if (abs(image_disp.pixel[x][y-1]- mu) <= Th)then  

15.       flag:= -1; // Set 1
st
 Zone as active. 

16.    else 

17.   flag:= 1; // Set 2
nd
 Zone as active. 

18.    return (mu); 

19. } 

5.3 Computational Complexity Analysis  

The complexity of SGSC algorithm is always less than current state-of-the-art 

methods. The optimization technique is applied in this algorithm in three stages, 1) 

Total search zone is divided into two zones and window cost calculation occurs 

always on one zone at a time. Therefore, half portions of candidate-pixels are 

discarded all times. 2) Threshold technique is employed in second stage to reduce 

search zone to be closer the effective zone, and 3) The window cost calculation 

process will not be toggled to opposite zone until or unless δT > 5. So, the proposed 

SGSC algorithm is optimized in three phases that makes the algorithm faster than 

current state-of-the-art methods. The complexity depends on image size, window size, 

and search range. Suppose the window size (square size), image size and search range 

are W, M×N, d respectively. The computational cost of SGSC on half zone for each 

reference-pixel is Chz  = (W
2
 – 1) × {(d + 1) / 2}.  This cost will again be reduced by 

applying threshold technique and ChzδT  = (W
2
 – 1) × {(d+1) / 2 - δT)}. Therefore, the 

total comparisons for each reference-pixel of SGSC method is {(d + 1) / 2 - δT} times. 

The overall complexity of the proposed stereo matching algorithm  

CSGSC  =  [(M × N) ×(W
2
 -1) × {(d +1) / 2 - δT}]                                          (5.1) 

Fast Area-Based [13] Algorithm needs for overall complexity,  

CFAB  = (M × N) × (W
2
 -1) × (d +1)                                                              (5.2) 
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Hierarchical Disparity [28] or left-right checking algorithm needs overall 

computational cost, CHD = 2×(M×N)×(W
2
-1)×(d+1)                                               (5.3)                                                        

The overall complexity of FAS [37] is CFAS = Ο (NM
2
ǀDǀ) which is equivalent to our 

notation CFAS = {(M × N) × W
2
 × ǀDǀ}. Where ǀDǀ is the total levels of disparity. With 

the above analysis of complexity, it is clear that the overall complexity of our method 

is relatively less than the state-of-the-art methods. Moreover, no multiprocessing 

hardware or accelerated hardware is used in our proposed method. 

5.4 Experimental Results 

The proposed SGSC algorithm is implemented in Visual C++ language with 

Windows 10 operating system. All experimental results are implemented by the 

processor of Intel Core i-3, 2.3 GHz speed and 4GB RAM. We tested our algorithm 

on the following datasets and environments. 

 Experimental settings and adjustment for threshold value δT 

 Observation of 3D reconstruction with object borders, size and shape 

localization. 

 Middlebury standard stereo images of Tsukuba and Venus stereo for detailed 

analysis.  

 Middlebury standard stereo datasets 2003 of indoor scenes. 

 Middlebury standard stereo datasets 2006 of indoor scenes and  

 Middlebury optical flow latest datasets for hidden, synthetic and stereo types of 

image data. 

5.4.1 Experimental Settings and Adjustment for Threshold Value δT 

The threshold technique is used to make the searching zone as close-fitting as 

possible. The threshold value (δT) is calibrated properly and carefully. Table 5.1 

shows the different dense disparity maps for different values of δT with different time 

reductions. From the experimental data of Table 5.1 we find that for the case of small 

values of δT (like 1, 2 and 3), the background of the disparity map is condensed and 

overlapped each other because it abruptly reduced the search region. These maps are 

shown in first row of Table 5.1. The background is expanded with increasing the 

threshold value (like 4, 5 …10). The large values of threshold increased the search 

region to make the opportunity for several matchings’ and thus expanded both dark 

and bright values of disparity map. Hence, we set the threshold value at 5 for all 

subsequent processes. 
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Table 5.1: Effects of variation of threshold value δT. 
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We mainly focus on two types of datasets: 1) Middlebury Standard Stereo datasets 

2006 and 2003, 2) Middlebury current Optical Flow datasets. Middlebury Standard 

Stereo datasets 2006 consists of 21 stereo pair and Middlebury Standard Stereo 

datasets 2003 consist of 6 stereo pair. Optical flow datasets are categorized four types: 

1) Hidden Texture, 2) Synthetic, 3) Stereo and 4) High-speed camera (No GT). We 

evaluated our algorithm on above mentioned datasets both in terms of numerical and 

visual and compared to the state-of-the-art methods. But detailed comparisons like 

frame-rate, time and accuracy are presented for Tsukuba and Venus stereo pair in 

subsection 5.4.3 and 5.4.4 of this section. Moreover, we evaluated our proposed 

method on Middlebury Optical Flow of datasets for visual comparisons with hidden 

ground-truth. The window cost calculation mask size of 11 × 11 is used in this 

proposed experiment. 
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5.4.2 Observation of 3D Reconstruction with Object Border, Size and 

Shape Localization 

Tsukuba head image encloses with various objects at different depth of locations. 

Background and foreground objects are positioned at various depths. Some occlusions 

and bad objects are found in Tsukuba with overlapping condition and it encloses with 

some special frontal objects; for example, statue’s head, lamp of table and camera. 

The proposed algorithm distinguishes the various depths by setting the dissimilar gray 

scale values to the output image as shown by 3D reconstruction map in Table 5.2. 

Short-distance object is indicated by white grey level and long-distance object is 

assigned by black grey level value. Object borders are easily visualized in our 

estimated border classification map. Border localization problems [13] are resolved 

by SGSC algorithm properly. The 3D dense disparity map is further checked by the 

object detection algorithm and the object borders are figured out in 3
rd

 column of 

Table 5.2. The 3D dense maps of SGSC method are almost similar to their ground 

truth image. The estimated 3D restructure is convalesced and their object’s borders 

are perfectly recognized. Therefore, the result confirms that the almost same depths 

are found in experimentally calculated disparity map. 

Table 5.2: Visual examination of 3D structures, borders and objects detection on 

experimental disparity map. 

Ref. Image 3D Reconstruction map. Object borders classification Comments 
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5.4.3 Evaluation on Middlebury Standard of Tsukuba Head Image Pair 

for Detailed Analysis 

We have evaluated our method on Tsukuba head both on numerically and graphically 

in this section. Sum of Absolute Differences (SAD) technique is used in our 

experiment to compare identically with the current state-of-the-art methods. The 

stereo correspondences are calculated within usual search range (from -10 to +10).  

Table 5.3: Numerical comparisons of computing time (in μs) and frame-rate (in fps) 

with top eleven (11) methods for the Middlebury data of Tsukuba head using SGSC 

algorithm. 

Method’s 

Name 

Computing 

Time 

(in µs) 

Frame-rate 

( in fps) 

Accuracy 

(in %) 

Computational 

Machine 

Input 

image 
Rank 

SGSC 

[Proposed] 
1689 592 97.60 

Processor: 2.3 GHz 

Core i-3, Main- 

Memory: 4GB. 

 

 

 

 

 

 

 

 

 

 

Middlebury 

Standard  

Tsukuba 

image pair 

 

1 

SAA 

[Chapter 4] 
1872 535 93.80 

Processor: 2.3 GHz 

Core i-3, Main- 

Memory: 4GB. 

2 

 

FAB[13] 3229 310 86.10 

Processor: 2.3 GHz 

Core i-3, Main- 

Memory: 4GB. 

3 

HD[28] 4243 235 92.10 

Processor: 2.3 GHz 

Core i-3, Main- 

Memory: 4GB. 

4 

FA[9] 4617 216 88.23 

Processor: 2.3 GHz 

Core i-3, Main- 

Memory: 4GB. 

5 

TF[34] 7000 143 93.18 

Processor: 1.8 GHz 

Core i-7, 

Main Memory: 4GB 

6 

EGF[33] 9000 111 93.67 

Processor: 3.0 GHz 

Core i-5, Main -

Memory: 8GB, 

GTX card. 

7 

DSI-

AS[32] 
200000 5 90.18 

Processor: 2.2 GHz 

Core Duo. 
8 

PSM[39] 550000 2 97.68 

Processor: Nvidia 

G.F GTX-1080. 

KITTI -

2015 

Standard 

9 

DSG[38] 2860000 0.35 91.76 

Processor: 3.4 GHz 

Core i-7, Main –

Memory: 16GB 

Middlebury 

and 

KITTI -

2015 

Standard 

10 

EM[35] 3000000 0.33 92.82 

Processor: 1.9 GHz 

Core i-5, Main -

Memory: 6GB 

Middlebury 

datasets 11 

FAS[37] 40500000 0.025 96.02 

Processor: 3.2 GHz 

Core i-5, Main -

Memory: 8GB 

Middlebury 

& KITTI 

Standard 

12 
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The experimental outcomes of self-guided search are analyzed with respect to 

computational time, scanning frame-rate (in fps) and its accuracy. The computational 

time, frame-rate (in fps) as well as other achievements of self-guided technique are 

examined with previous [9], [13], [28] and the present state-of-the-art methods [32], 

[33, [34], [35] as well as with SAA [Chapter 4]. Table 5.3 demonstrates the summary 

of numerical evaluations among the proposed SGSC method and current state-of-the-

art methods with their computational machine specifications. From Table 5.3, it is 

seen that proposed SGSC method is ranked 1
st
 among the non-learning local and 

learning global state-of-the-art methods. Even our proposed algorithm run with lower 

configurations of machine and no special hardware or parallel processing technique is 

used to accelerate the running speed.  

This algorithm takes computational time only 1689 microseconds with highest frame-

rate 592 fps. The nearest comparable method is SAA that takes 1872 microseconds 

with frame-rate 535 fps. From Table 5.3 and Fig. 5.6, we observe that the SGSC 

method requires minimum computational time and gives the maximum frame-rate. 

 

 

   

 

 

 

 

 

 

                   

 

 

           

                (a)                                                                                  (b)   

Fig. 5.6 Left-side graph(a) shows the comparison of computational time (in µs)and 

right-side graph(b) shows the comparison of frame-rate (in fps) among the proposed 

SGSC and current state-of-the-art methods for Tsukuba head image. 

Therefore, the SGSC method outdoes the present state-of-the-art methods with respect 

to computational cost and frame-rate on Middlebury Tsukuba head data. So, we can 

claim that the SGSC method is presently the state-of-the-art method for Tsukuba 

image with 1.11X, 1.9X, 2.5X, 2.7X, 118.4X, 5.32X, 4.14X, 1776.19X, 1693.3X, 

335.6X faster than the methods of SAA [Chapter 4], [13], [28], [9], [32], [33], [34], 

[35], [38] and [39] respectively.  
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Table 5.4: Numerical comparisons of time reduction (in %) of SGSC algorithm for 

Tsukuba stereo image. 
 

 

Computational 

Time(in µs) for 

SGSC[Proposed] 

Existing state-of-the-art methods Computational Time 

Reduction (in %) by 

SGSC method 

compared to the 

methods of 2
nd

 column 

 

Applied Method 

 

Computational 

Time(in µs) 

 

 

 

 

 

1689 

SAA[Chapter 4] 1872 09.77 

FAB[13] 3229 47.69 

HD[28] 4243 60.19 

FA[9] 4617 63.41 

TF[34] 7000  75.87 

EGF[33] 9000  81.23 

EM[35] 3000000  99.94 

PSM[39] 550000 99.69 

DSG[38] 2860000 99.94 

Similarly, computational time reductions of SGSC algorithm are calculated both on 

local and global method those are demonstrated in Table 5.4. First six methods of 

Table 5.4 are non-learning local methods and last three methods are learning global 

methods. Our proposed SGSC method is non-learning and it performs up to 81.23% 

time reduction in non-learning local method as well as 99.94% time reduction in 

learning environment.  

5.4.4 Evaluation on Middlebury Standard Stereo Images of Venus Stereo 

Pair for Detailed Analysis 

The computational time and frame-rate are assessed by numeric figures in Table 5.5 

for Middlebury Venus stereo datasets. The SGSC method also exceeds to all other 

non-learning local methods those are tabulated in Table 5.5. Table 5.5 distinguishes 

the SGSC method and recent state-of-the-art methods with respect to computational 

time and frame-rate with machine configurations. Our SGSC needs only 2452 μs 

compared to 2652 μs, 6318 μs, 6724 μs, 7000 μs, 7473 μs and 9000 μs respectively. It 

runs with highest frame-rate at 408 fps among the top six performer algorithms those 

are represented in Fig. 5.7. 
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Table 5.5: Numerical comparison of time (in μs) and frame-rate (in fps) for the Venus 

stereo image using SGSC algorithm. 
 

 

Applied Method 
Computational 

Time(in µs) 

Frame-rate 

 (in fps) 

Computational 

Machine 

Input 

image 
Rank 

SGSC 

[Proposed] 2452 408 

Processor: 2.3 GHz 

Core i-3, M. Memory: 

4GB 

 

Middlebury 

Venus 

Stereo 

dataset 

 

1 

SAA [Chapter 4] 2652 377 

Processor: 2.3 GHz 

Core i-3, M. Memory: 

4GB 

2 

 

FAB[13] 6318 158 

Processor: 2.3 GHz 

Core i-3, M. Memory: 

4GB 

3 

HD[28] 6724 148 

Processor: 2.3 GHz 

Core i-3, M. Memory: 

4GB 

4 

TF[34] 7000  143 

Processor: 1.8 GHz 

Core i-7, M. Memory: 

4GB 

5 

FA[9] 7473 133 

Processor: 2.3 GHz 

Core i-3, M. Memory: 

4GB 

6 

EGF[33] 9000 111 

Processor: 3.0 GHz 

Core i-5, M. Memory: 

8GB 

GF, GTX card. 

7 

 

 

 

 

 

 

  

 

 

 

 

             

 

                      (a)                                                                               (b) 

Fig. 5.7 Left-side graph (a) shows the comparison of computational time (in µs) and 

right-side graph (b) shows the comparison of frame-rate (in fps) for Venus stereo pair. 

 

Another assessment of the SGSC algorithm is measured numerically based on 

computational time reduction and their comparisons are represented in Table 5.6. 
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Table 5.6: Numerical comparisons of time reduction (in %) of proposed method for 

Venus stereo pair. 

Computing 

Time(in µs) 

for SGSC 

[Proposed] 

Current state-of-the-art methods Computational Time 

Reduction (in %) by 

SGSC method over the 

methods of 2
nd

 column 
Method’s Name 

Computational 

Time(in µs) 

2452 

SAA[Chapter 4] 2652 07.54 

FAB [13] 6318 61.19 

HD [28] 6724 63.53 

TF[34] 7000  64.97 

FA[9] 7473 67.18 

EGF[33] 9000  72.75 

All methods presented in Table 5.6 are non-learning local method. Among these 

methods, the proposed algorithm shows lowest time reduction 7.54% compared with 

the nearest similar method SAA and highest time reduction 72.75% compared to the 

recent state-of-the-art method EGF [33]. Therefore, our SGSC algorithm is presently 

state-of-the-art method for Middlebury Venus stereo datasets with 2.5X, 2.7X, 3.04X, 

3.67X, 2.8X, 1.08X faster than the top six methods of [13], [28], [9], [33], [34] and 

SAA respectively.  

5.4.5 Estimation of Accuracy and Comparison with Top State-of-the-Art 

Methods 

The accuracy of proposed SGSC method is estimated on Tsukuba head stereo pair for 

testing the validity of SGSC algorithm. The SGSC algorithm is executed by Microsoft 

visual C++ compiler. To calculate the stereo correspondence of a reference image, the 

cost aggression of window is determined on the candidate-pixel of right image for the 

usual search range.  

 

 

 

 
                          

 

 

                    (a)                                                                              (b) 

Fig. 5.8 Left side figure(a) shows the run time screen shoot and right side graph(b) 

demonstrates the accuracy curve of SGSC algorithm. 
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The proposed SGSC algorithm calculates the accuracy with error threshold 2. From 

the run time snapshot of Fig. 5.8(a), the highest accuracy of SGSC method is 

achieved as 97.5% and 97.6% for 11 × 11and 13 × 13 window sizes respectively. The 

numerical evaluation confirms that the proposed method generates only 2.4% error. 

The errors are 6.33%, 7.88%, 7.18% and 6.2% reported in [33], [34], [35] and SAA 

respectively for Middlebury standard stereo data of Tsukuba head using the same 

resolution of input images. From the graph of Fig. 5.8(b), it is seen that the accuracy 

curve is almost steady-state after 11 × 11 window size of mask. So, we can conclude 

that the accuracy goes to saturation level after correct matching 97.6% with 2.4% bad 

pixel only.  

5.5 Performance Analysis with Additional Standard Images 

The effectiveness is carried out on Middlebury Standard Tsukuba head and Venus 

stereo data in Section 5.4 with numerical and graphical comparisons. To justify the 

adaptability and efficiency of proposed SGSC method we tested our algorithm on 

complex backgrounds for different types of Middlebury Standard images of different 

resolutions. Such types of positive results reconfirm again the effectiveness of SGSC 

method. Versatility testing is made on the following Middlebury Standard Stereo and 

Optical Flow datasets.  

5.5.1 Evaluation on Middlebury Standard Stereo Datasets 2003 and 2001 

of Indoor Scenes 

The proposed SGSC method is compared with current state-of-the-art methods on 

Middlebury Standard stereo datasets 2003 and 2001 including four standard stereo 

pairs of Tsukuba, Venus, Teddy and Cones. The top six current state-of-the-art 

methods FA[9], FAB[13], TF[34], SAA[Chapter 4], EGF[33] and EM[35] are 

compared with SGSC method, as they are closely related to our proposed method. 

The first column of Table 5.7 represents the stereo image name and their resolution. 

The stereo images of Cones and Teddy are Middlebury Standard stereo dataset 2003 

and their ground truth achieved by structural light. 

The stereo images of Burn2, Bull, Poster and Venus are piecewise planar scenes [12] 

of Middlebury Standard stereo datasets 2001. The 2
nd

 and 3
rd

 column’s images are 

directly provided by Middlebury benchmark.  
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Table 5.7:  Numerical and visual comparisons between SGSC method and current 

state-of-the-art methods on Middlebury standard stereo datasets of 2003 and 2001. 

 

Reference 
Image 

Name & 

Size 

 

 
Left Image 

 

 
Ground truth 

 

Output of current 
state-of-the-art 

method 

(Appling last 
column’s method) 

 

Output of SGSC 

Method 

 

Running 
time for last 

column’s 

method 
(in µs) 

 

Running 
time for 

SGSC    

method  
(in µs) 

 

Compared 
With 

Burn2: 

430×381 

 

 

 
 

  

 

 

 

3109 1390 

 

FA 
[9] 

Bull: 

433×381 

    

3145 1391 
FAB 

[13] 

Cones: 

450×375 

    

7000 1433 
TF 

[34] 

Poster: 
435×383 

 
 

 
 

 

 
 

 
 

 

  

1675 1422 
SAA 

[Chap. 4] 

Venus: 

434×383 

 

 
 

 

 

   

9000  2652 

EGF 

[33] 
 

Teddy: 
450×375 

 

 
 

 

 

   

20000000  1437 
EM 
[35] 

The overall matching performance of our proposed SGSC method and its final dense 

disparity map is evaluated by threshold technique represents at 5
th

 column marked by 

shadow color of header in Table 5.7. The dense disparity maps of top six current 

methods are presented at 4
th

 column. The numerical computational time and 

comparisons are demonstrated at 6
th

 and 7
th

 columns in Table 5.7, where whole 

shadow column (7
th

 column) represents the computational cost of the proposed SGSC 

algorithm. The visual comparisons are placed at 4
th

 and 5
th

 column and quantitative 

comparisons are held on 6
th

 and 7
th

 columns of Table 5.7. By observing the numerical 

comparisons carefully, we found that in all cases our proposed method is 2X or more 
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faster than current state-of-the-art methods. The SGSC method takes 253 

microseconds less than nearest SAA algorithm. From Table 5.7, we observe that 

except SAA method, all top performer algorithms run at double or more times than 

our proposed method. All 3D reconstructions are properly localized and objects-

borders are visualized easily as seen by visual comparisons for different types of 

image data. Besides these, our algorithm preserves the edges of object correctly. An 

added feature is found in the proposed SGSC algorithm. By examining the estimated 

dense disparity map of SGSC method and ground truth image of Poster, Venus and 

Teddy, it is seen that the SGSC disparity map contains the hidden ground truth, which 

is not visible in conventional disparity estimation algorithms. Because of this 

extraordinary feature of SGSC algorithm, it can also detect the variation of optical 

flow. The detailed discussion is given in subsection 5.5.3 about the optical flow of 

variation where we discussed with the Middlebury Optical Flow Data. 

5.5.2 Evaluation on Middlebury Standard Stereo Datasets 2006 of Indoor 

Scenes 

The top six current state-of-the-art methods FA [9], FAB [13], EGF [33], FAS [37], 

and SAA are compared with SGSC method on Middlebury standard stereo datasets 

2006, as they are closely associated to our proposed method. The first column of 

Table 5.8 represents the stereo images name and their resolution. The left and ground 

truth images of 2
nd

 and 3
rd

 columns are provided by Middlebury benchmark. The 

visual comparisons are presented on 4
th

 and 5
th

 column and quantitative comparisons 

are held on 6
th

 and 7
th

 columns in Table 5.8.  

The experimentally evaluated visual and numerical results of our proposed method 

are represented at column 5
th

 and 7
th

 respectively. In SGSC, a photometric threshold 

technique is embedded on SAA method in order to reduce the search range as close-

fitting as needed. Therefore, SGSC algorithm is faster than SAA. The computational 

time of SAA method for Aloe stereo image is 3405µs whereas the computational time 

of our SGSC method is 3191µs. So, proposed method takes 214 µs fewer than nearest 

similar method (i.e., SAA). In the rest cases, proposed SGSC is 2X or more faster 

than current state-of-the-art methods. 

Dual support windows are used in FAS [37] for each candidate-pixel of right image. 

That is why its computational cost was very high, noted at 40.5 seconds. 
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Table 5.8: Numerical and visual comparisons between SGSC method and current 

state-of-the-art methods on Middlebury Standard stereo datasets of 2006.  

Reference 

Image 

Name & 
Size 

Left Image Ground truth 

Output of current 

state-of-the-art 

methods (Appling last 
column’s method) 

Output of SGSC 

Method 

Running 

time for last 
column’s 

method 

(in µs) 

Running 

time for 
SGSC    

method 

(in µs) 

 
Compared 

With 

ALOE: 

641×555 

 

 

 
 

 

   

3405 3191 

SAA 

[Chap. 4] 
 

BABY2: 

620×555 

    

40500000 

 
3094 

FAS 

[37] 
 

BOWLING2: 

665×555 

    

7484 3359 
FAB 

[13] 

CLOTH-1: 
626×555 

 
 

 

 

   

7001 3125 
FA 
[9] 

CLOTH-3: 

626×555 

 

 

 
 

 

 

 

 

9000 3094 

EGF 

[33] 
 

MIDD-2: 

683×555 

 
 

 

 
 

  

 

40500000 

 
3422 

FAS 

[37] 
 

The SGSC method does not require preprocess and post-process like filtering, 

refinement or left-right checking to discard the outliers from the raw disparity map. 

The related works of top six methods need post-process techniques in order to make 

the raw disparity map as close as ground truth image. In our method no post-

processing is required, only enhancement technique is used to visualize the raw 

disparity map. The raw disparity map of our SGSC method is directly comparable 

with ground truth image. Our proposed method not only takes less time for computing 

the dense disparity but also more efficient to preserve the object border. 
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Layer-4 

Layer-3 

Layer-2 

Layer-1 

Left (Ref.) Image   Output of SGSC Ground Truth   

 

 

  

 

 

 

 
                                                                              

Fig. 5.9 Detection of different layers and hidden structures by SGSC algorithm. 

For the case of first image (ALOE) of Table 5.8., if we compare the ground truth with 

the SGSC output like Fig. 5.9, it is seen that our proposed method estimates the dense 

disparity map and detects the hidden layers of background concurrently. The four 

different layers are indicated by arrow in experimental output image. We observe that 

background cloth of left image encompassed with four bends shape with different 

flow of light in the same horizontal line. So, these different flows of light are mapped 

clearly by our proposed SGSC algorithm. But no hidden structure or layer is found in 

ground truth image. BABY-2(2
nd

 image) contains some noise which is marked by 

read color in current state-of-the-art method [37]. We utilized threshold technique in 

our proposed method to reduce the false matching in active zone. Therefore our 

method contains comparatively less noise. 

5.5.3 Evaluation on Middlebury Optical Flow for Hidden, Synthetic and 

Stereo Datasets 

The algorithm has been justified on latest Middlebury Optical Flow datasets. The 

tested datasets are- 

 

1) Real imagery of nonrigidly moving scenes where dense ground-truth flow is 

obtained using hidden fluorescent texture painted on the scene [46]. This type of 

image is called “Hidden Texture” as mentioned in Table 5.9. 

2) Realistic synthetic imagery texture and  

3) Stereo image of rigid scenes modified for optical flow.  

 

The proposed SGSC algorithm shows excellent performance on all types of above 

mentioned optical flow data. The visual comparisons between SGSC outputs and 

Middlebury evaluated outputs with hidden ground-truth flow are depicted in Table 
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5.9. The color column (5
th

 Column) represents the Middlebury hidden-ground truth 

flow and 3
rd

 column represent our experimental hidden ground-truth flow. 

Table 5.9: Visual comparisons between SGSC method and current state-of-the-art 

methods on current Middlebury optical flow datasets.  

Source: https://vision.middlebury.edu/flow/data 

Image 

Type 
Reference Image 

Experimental output 

of 

SGSC algorithm 

Image 

Name 

Evaluated Datasets 
(With hidden 

ground-truth flow)  

 

 

Optical Flow 

Hidden 

Texture 

  

Army 

 

Yes 

 

 

 

 

Mequon 

 

Yes 

 

 

 

 

Schefflera 

 

Yes 

 

 

 

 

Wooden 

 

Yes 

Synthetic 

Texture 

 

  

Grove 

 

 

Yes 

  
 

Urban 

 

 

Yes 

   

Yosemite 

 

 

Yes 

Stereo 

  

 

 

 

Teddy 

 

 

Yes 

 

All the color segments, boundaries and objects created by variation of optical flow are 

detected in our SGSC experimental ground-truth with grey-scale color as like as 

Middlebury hidden-ground truth. The fluorescent painted textures of two armies are 

seen at right most bottom of 1
st
 reference image. These armies are clearly visualized 

at the same position in our experimental optical flow ground-truth. Whereas, these 

armies are not clearly visualized in optical flow ground-truth of Middlebury. By 

observing the 2
nd

 image (Mequon), it is found that, two heads of Mequon are 

visualized in both cases. However, in synthetic texture, the urban 1
st
 building is more 
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clearly detected in our experimental ground-truth than Middlebury. These results 

confirm us that, the apparent motion of brightness pattern can be sensed by our SGSC 

algorithm accurately. The unknown difference is found in comparatively more 

complex Yosemite image data. The difference is that, upper portion of Middlebury 

ground-truth is black and upper portion of our ground-truth is white. Rests of the 

flows are captured correctly. Our proposed method not only estimates the stereo 

ground-truth but also detects the all hidden background textures in modified stereo 

image of Teddy for optical flow. Therefore, the proposed SGSC algorithm can 

compute both the stereo and optical flow ground-truth. 

5.5.4 Experiment on Real Stereo Images by SGSC 

The performances of SGSC algorithm have been further tested on real stereo images 

acquisitioned by Logitech stereo web camera. This experiment is performed in our 

software laboratory and images were captured as indoor scenes. The specifications of 

stereo camera are the same as we mentioned in subsection 2.3.1 and 3.4.4. 

Stereo Image Capturing Process: 

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of 

reference images were stood 63.00 cm away from the imaging sensor of the camera. 

The distance between two cameras was 6.70 cm. The stereo images are captured by 

the software at a time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

a) Real image acqusition using stereo web camera for dataset-1(Human face). 
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b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Real image acqusition using stereo web camera for dataset-3 (Scotch tape stand). 

Fig. 5.10 Real image acqusition process using stereo web camera. 

Experimental output for Real Stereo Images: 

The size of the left and right real-image is (width × height) = (550 × 720) pixels. 

Disparity image size is (width × height) = (514 × 684) pixels. Table 5.10 

demonstrates the visual observations and findings of dense disparity map. The Table 

5.10 illustrates the dense disparity maps of three real datasets -Human face, Nescafe 
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coffee stand and Scotch tape stand respectively. Image names and its resolution are 

mentioned in 1
st
 column. The 2

nd
 column of Table 5.10 represents the reference 

image which is captured by our stereo camera. The 3
rd

 and 4
th

 column represent the 

estimated dense disparity maps of reference images generated by SGSC algorithm 

using 33 and 1111 mask respectively. 

Table 5.10:  Visual observation of disparity map of real images generated by SGSC 

algorithm 

Image Name 

& Resolution 

 

Reference image Experimental 

Dense Disparity 

Map of Real Image 

Mask size : 33 

Experimental 

Dense Disparity 

Map of Real Image 

Mask size : 1111 

Execution time(s) 

 

Dataset-1 

(Human face) 

550720 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 469 

Mask: 1111: 5359 

 

Dataset-2 

(Nescafe 

coffee stand) 

550720 

 

 

 

 

 

  

 

 

 

 

Mask: 33 : 469 

Mask: 1111: 5374 

 

Dataset-3 

(Scotch tape 

stand) 

550720 

 

 

 

 

 

 

 

 

 

 

 

 

Mask: 33 : 563 

Mask: 1111:  5985 

We could not compare the experimental outputs to the ground truth image because it 

has no ground truth image. In this situation, the disparity maps of output image should 

be considered and compared visually only. The disparity maps contain some noise. 



 

 

Optimal Algorithms for Stereo Correspondence Estimation 

107 

 

This is happened because we could not provide the equilibrium light condition in our 

laboratory. Similarly the room temperature was not equilibrium at all the places 

during the image acquisition process. Moreover, we have tried to our best to calibrate 

the stereo camera physically. The stereo cameras were manually placed on the same 

horizontal line, but experimentally, it was not possible. There was some vertical 

mismatch between two cameras in fractional millimeter (.05 mm approximately) 

range.   

These cause to add a little noise in captured stereo images. Inspite of noise, the 

objects are demarked and recognized at standard level. The object (Human face, 

Nescafe coffee stand and Scotch tape stand) inside the reference image is clearly 

understandable and visualized. The dense disparity map generated by 33 mask is 

more visualized and comprehensive than the disparity map of 1111 in noisy 

environment. So the overall performance of SGSC algorithm is good in case of real 

stereo images. 

5.6 Discussion 

Reducing the computational cost is one of the main aims of this research on stereo 

correspondence estimation. An inventive method introduced as Self-Guided Stereo 

Correspondence (SGSC) Estimation Algorithm is implemented here to perform the 

vision speedily. So, a pioneer core idea of threshold technique is embedded in SAA 

[Chapter 4] method in order to reduce the search zone as close-fitting as needed. This 

closefitting impression bans the fake search in its two little territories and thus reduces 

the computational cost with improvement of 3D structures, object border and 

accuracies. The frame-rate of our SGSC method is 592 fps for Tsukuba image pair 

and 408 fps for Venus stereo images which are the fastest among the current state-of-

the-art methods. The outstanding feature of our proposed algorithm is hybrid in 

nature. It has the adaptability and threshold to process the data both in Middlebury 

stereo datasets as well as optical flow datasets. This combination makes the SGSC 

algorithm distinguishable from current state-of-the-art methods.  

5.7 Summary 

The significant of this Chapter establishes an original optimal method for disparity 

estimation. The main goal of this method was to reduce the computational cost as well 
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as to increase the accuracy and make the system useful or real-time applications. The 

concept behind SGSC is described in the Section 5.2. The computational complexity 

of the algorithm is presented in Section 5.3. The experimental data are tested in 

different aspects in Section 5.4 and in its Subsections. The performance of SGSC 

algorithm is tested on additional standard images in Section 5.5 to justify the 

adaptability of this algorithm. The performance of SGSC algorithm has been further 

justified on real image datasets in subsection 5.5.4. Experimental results illustrate its 

efficiencies in Table 5.7, Table 5.8 and Table 5.9 both in visually and numerically. 

An overall achievement has been drawn in Section 5.6 as a discussion.  
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6.1 Contributions of the Thesis  

The main objective of this research was to reduce the computational cost, i.e., to 

improve the performance of stereo matching. The next objective was to improve the 

accuracy of stereo correspondence estimation in presence of noise.  

In this research, we present four contributions on stereo correspondence estimation. 

We started our first voyage to realize the stereo correspondence using a Real Time 

Approximation (RTA) algorithm. To achieve the first objective, the RTA algorithm 

has been structured by vector quantization to create the algorithm a real-time one. 

Then the cost matching scores of the corresponding pixels of the stereo images are 

approximated to ensure acceptable matching scores. Experimental results prove that 

this algorithm performs significantly better than the methods employed for window- 

based existing stereo matching techniques. The computational cost of RTA algorithm 

is very small compared to the window-based Fast Area Based Algorithm [13]. To 

justify the effectiveness and validity of this method, we have applied it on the 

Middlebury standard stereo images. The experimental result of first method is 

illustrated visually in Fig. 6.1(a). The numerical result is demonstrated in the first row 

of Table 6.1 and Table 6.2. The computational time reduction is increased by 93.71% 

and 97.74% compared to reference FAB [13] and EGF [33] methods respectively. 

Though the computational time reduction of RTA is very good compared to window-

based local stereo methods, but its accuracy is only 30%. So, the RTA algorithm can 

be used where very fast estimation of dense disparity is essential. 

The second achievement of this research is the 2D Real Time Spiral Search Algorithm 

(2DRTSSA) for computing the stereo correspondence of the stereo image sequences 

with a view to implement the first and second objectives at a time. The 2DRTSSA 

method calculates two window costs; one is along with the +x direction and the other 

is along with –y direction. The rest two window costs are along with the opposite 

directions (i.e., –x direction and +y direction) are also calculated using the same 

procedure. The minimum disparity is estimated from the four window costs. The 

computational cost of this algorithm is less than the existing state-of-the-art methods 

[32], [33], [34] and [35]. The visual quality of experimental output is demonstrated in 

Fig. 6.1(b), which shows that the output of 2DRTSSA is better than that of RTA 

algorithm. 
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      (a) Output image 348 × 252                     (b) Output image 348 × 252 

        From RTA Algorithm.              From 2DRTSSA Algorithm 

 

 

    (c) Output image 348 × 252   (d) Output image 348 × 252 

      From SAA Algorithm.         From SGSC Algorithm at δT = 5 

Fig. 6.1 Visual comparison of disparity maps developed by different methods of this 

research. 

The numerical result is demonstrated in the second row of Table 6.1 and Table 6.2. 

The computational time reduction is decreased by -38.74% and increased by 50.22% 

compared to reference FAB [13] and EGF [33] methods respectively. The 2DRTSSA 

method calculates stereo correspondences with good accuracy 93.80%. This method 

can optimize the speed and accuracy of estimated dense disparity over recent state-of-

the-art method.  
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Table 6.1: Performance comparison of experimental results with Fast Area Based 

Algorithm, FAB [13] using SAD method. Given that the accuracy of FAB is 86.10% 

and computation time is 3229 µs. 

Applied Algorithm 
Computational time 

(in µs) 

Time Reduction (in %) 

compared to FAB 

Accuracy 

( in %) 

RTA 203 93.71 30.00 

2DRTSAA 4480 -38.74 93.80 

SAA 1872 42.02 93.80 

SGSC 1689 47.69 97.60 

Table 6.2: Performance comparison of experimental results with recent state-of-the-

art Edge-aware Geodesic Filter, EGF [33] using SAD method. Given that the accuracy 

of EGF is 93.67% and computation time is 9000 µs. 

Applied Algorithm 
Computational time 

(in µs) 

Time Reduction (in %) 

compared to EGF 

Accuracy  

( in %) 

 RTA 203 97.74  30.00 

2DRTSAA 4480 50.22 93.80 

SAA 1872 79.20  93.80 

SGSC 1689 81.23  97.60 

The third and most significant achievement of this research work is the introduction 

of Self-Adaptive Algorithm (SAA) for computing disparity of the stereo images. 

According to the proposed SAA method, stereo matching search range can be selected 

dynamically after first matching. That is, by the completion of first search the 

proposed algorithm remembers the position of matching pixel. So, the second search 

occurs surrounding to the first matching pixel, as we use the concepts that neighbor 

pixels have the same photometric properties. Hence depending on the position of 

matching pixel, the successive search ranges are reselected adaptively. The 

performance of this algorithm has been tested on Middlebury standard stereo datasets. 

The performance enhancement of this method was better which is described in details 

in Section 4.6, Chapter 4. The computational time reduction of SAA method is 

increased by 42.02% compared to previous fastest literature FAB [13] method and by 

79.20% compared to present state-of-the-art, EGF [33] method, with accuracy 

improvement 7.7% compared to FAB [13] method and 0.13% compared to EGF [33] 

method.  
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The fourth and most significant method of this research is Self-Guided Stereo 

Correspondence (SGSC) estimation for disparity of stereo images. Both SGSC and 

SAA methods are directed by photometric properties of the candidate-pixels. As the 

photometric properties of reference image pixel and its neighbor’s pixel is similar in 

most cases, so the upcoming corresponding pixel exists in surrounding of the previous 

matching pixel. Searching performance is greatly improved by utilizing this 

photometric property of the candidate-pixels. In SGSC the searching performance is 

further improved by implanting the pioneer threshold technique. We have utilized 

threshold technique in SAA method; these two techniques jointly reduced the 

computational costs significantly with further improvement of accuracy over previous 

methods. The achievements of the proposed SGSC method are testified on 

Middlebury standard stereo datasets of 2001, 2003, 2006 and Middlebury latest 

Optical Flow Datasets. Finally, the proposed method is compared with present state-

of-the-art methods and SAA. The SGSC experimentally shows that, it outperforms the 

latest methods in terms of speed, visualization of hidden ground truth, 3D 

reconstruction and accuracy. The experimental results of SGSC algorithm are figured 

out in last row of Table 6.1 and Table 6.2, which demonstrates the maximum 

computational time reduction 81.23% compared to the recent state-of-the-art EGF[33] 

method and highest accuracy with 97.6%. The accuracy is improved by 11.50% 

compared to FAB [13] method and 3.93% compared to EGF [33] method. Therefore, 

SGSC is the optimal algorithm among the algorithms proposed in this research. 

6.2 Future Work 

This research introduces a novel contribution of four algorithms for stereo 

correspondence estimation.  There are a number of ways to diversify the research in 

future. Fuzzy logic will be one of the solutions for better understanding the detailed 

object and to provide more accuracy for visualization purposes. The fuzzy logic may 

give accurate measurement for the disparity membership function. The reverse-

fuzzification technique can be used instead of gray level logic.  

Deep learning technique may be employed for better perception of its behaviors 

hereafter. Besides these, we have a plan to apply our algorithms on color images to 

observe the capability of our algorithms for color variation. By completion of the said 

variation, it can be applied to detect the color flow of outdoor scenes of KITTI 
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datasets. We think that variation of both x and y axis concurrently of SAA or SGSC 

algorithm will be able to map the hidden ground truth as well as to detect the flow of 

color variation. In those cases, the modified version of SAA or SGSC may be applied 

to other benchmarks like KITTI 2015, Robust Vision Challenge and many more with 

a view to identify the flow of variation and to map the hidden ground truth 

simultaneously.  

6.3 Summary 

This chapter describes the main achievements obtained from this research work using 

four novel algorithms for stereo correspondence. These are: Real Time Approximation 

(RTA), Two-Dimensional Real Time Spiral Search Algorithm (2DRTSSA), Self-

Adaptive Algorithm (SAA) and Self-Guided Stereo Correspondence (SGSC) 

estimation algorithm. The RTA algorithm shows the good performance over existing 

Fast Area Based Algorithm. The experimental result showed its computational time 

reduction 93.71%. The second achievement of this research is the Two-Dimensional 

Real Time Spiral Search Algorithm (2DRTSSA) for computing the stereo 

correspondence of the stereo image sequences with a view to implement the first and 

second objectives at a time. The performance Table 6.2 shows that the computational 

time reduction and accuracy of 2DRTSSA algorithm is 50.22% and 93.80% 

respectively. The important achievement of this research work is the implementation 

of Self-Adaptive Algorithm (SAA) for computing the stereo correspondence of stereo 

images with computational time reduction is 79.20% in local stereo matching.   

The novel method of this research is the implementation of Self-Guided Stereo 

Correspondence (SGSC) estimation algorithm. The SGSC algorithm achieves 81.23% 

computational time reduction and 97.60% accuracy. The visual qualities of 

experimental dense disparity maps outperform the present state-of-the-art methods. 

Section 6.2 provides some concepts for improving the algorithms for stereo 

correspondence measurement in future.  
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#include <stdio.h> 

#include <stdlib.h> 

#include <conio.h> 

#include <time.h> 

#include <math.h> 

#define   size_x   384   //original image size 

#define   size_y   288 

 

#define   size_x1  128  // 3 times reduced image size 

#define   size_y1  96 

 

#define   dmax     10 

#define   k1       6    

#define   k2       6   

    

#define   kk1      1    

#define   kk2      1  

  

#define   w1       3    

#define   w2       3    

 

typedef struct{ 

 int imagesize_x, imagesize_y; 

 int **pixel; 

}image_t; 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y); 

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws,int *p); 

 

void main(){ 

   image_t image_left, image_right, image_disp; 

  

   int m, n, v_left, v_right, temp, temp1; 

   int i, j, ws1, ws2, p, d; 

   int sum, sum1, sum2; 

 

   image_t   Mtemp[2*dmax + 1]; 

 

  clock_t t0, t1;  

  double cpu_speed; 

   FILE *cpp, *cpp1, *cpp2, *cpp3, *cpp4, *cpp5, *cpp6; 

   char dummy[50] = ""; 

 

   cpp  = fopen("f:\\l.pgm", "r+"); 

   cpp1 = fopen("f:\\r.pgm", "r+"); 

   cpp2 = fopen("f:\\ls.pgm", "w+"); 

   cpp3 = fopen("f:\\rs.pgm", "w+"); 

 

   fgets(dummy, 50, cpp);            
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   do{ 

     fgets(dummy,50,cpp);  

   }while(dummy[0]=='#');  // All comments lines of .pgm file are  

                           //  stored in dummy array.    

 

   fgets(dummy,50, cpp);            

 

   fgets(dummy, 50, cpp1);            

   do{ 

     fgets(dummy,50,cpp1);          

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp1);            

   fprintf(cpp2,"P2\n%d %d\n255\n", size_x/3,size_y/3); 

   fprintf(cpp3,"P2\n%d %d\n255\n", size_x/3,size_y/3); 

   image_left = allocate_image(size_x,size_y); 

   image_right = allocate_image(size_x,size_y); 

    

  t0 = clock ();   

 

   for(n = 0; n < size_y; n++){ 

     for(m = 0; m < size_x; m++){ 

    fscanf(cpp,"%d", &temp);   // read left input image.  

    fscanf(cpp1,"%d", &temp1); // read right input image. 

         image_left.pixel[m][n] = temp; //assign the -             

                                        //intensity value in array. 

    image_right.pixel[m][n] = temp1; 

  } 

   } 

   // Creation of quantized image. 

   ws1 = (w1/2); ws2 = (w2/2); p = 0; 

       

 for(n = kk2; n < size_y-kk2 ; n += 3){   

  for (m = kk1; m < size_x-kk1 ; m += 3){   

   sum1 = 0; 

    sum2 = 0; 

     for(i = -ws1; i <= ws1; i++){ 

           for(j = -ws2; j <= ws2; j++){ 

             v_left = image_left.pixel[m+i][n+j];  

             v_right = image_right.pixel[m+i][n+j];   

     sum1 += v_left;    

     sum2 += v_right;    

         } 

         }    

      fprintf(cpp2,"%d ", (int)(sum1/(w1*w2))); 

      fprintf(cpp3,"%d ", (int)(sum2/(w1*w2))); 

    }   

 }   

   fclose(cpp2);  

 fclose(cpp3); 
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   cpp4 = fopen("f:\\ls.pgm", "r+");//open the quantized image. 

   cpp5 = fopen("f:\\rs.pgm", "r+");//open the quantized image. 

   cpp6 = fopen("f:\\tds.pgm", "w+");// file for dense disparity. 

   fgets(dummy, 50, cpp4);            

 do{ 

  fgets(dummy, 50, cpp4);  

 }while(dummy[0] == '#'); 

 fgets(dummy, 50, cpp4);            

 

   fgets(dummy, 50, cpp5);            

   do{ 

     fgets(dummy, 50, cpp5);          

   }while(dummy[0] == '#'); 

   fgets(dummy, 50, cpp5);  

     

 // writing the header and memory allocation for estimated dense 

 // disparity map.      

  

   fprintf(cpp6,"P2\n%d %d\n255\n", size_x1-2*k1, size_y1-2*k2); 

  

   image_left = allocate_image(size_x,size_y); 

   image_right = allocate_image(size_x,size_y); 

   image_disp = allocate_image(size_x,size_y); 

  

   for(d=0; d <= 2*dmax; d++){ 

     Mtemp[d] = allocate_image(size_x, size_y); 

   } 

   // read the quantized images. 

 

   for(n = 0; n < size_y1; n++){ 

     for(m = 0; m <size_x1; m++){ 

   fscanf(cpp4, "%d", &temp);            

         fscanf(cpp5, "%d", &temp1); 

        image_left.pixel[m][n] = temp; 

   image_right.pixel[m][n] = temp1; 

  } 

   } 

 

 t0 = clock();   

   ws1 = (w1/2);  

 ws2 = (w2/2); p = 0; 

 // Window cost calculation process using SAD technique. 

   for(m = k1; m < size_x-k1 ; m++){   

     for(n = k2; n < size_y-k2 ; n++){       

       for (d = -dmax; d <= dmax; d++){ 

          sum = 0; 

          for(i =- ws1; i <= ws1; i++){ 

            for(j = -ws2; j <= ws2; j++){ 

              v_left = image_left.pixel[m+i][n+j];  
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              v_right = image_right.pixel[m+i+d][n+j];   

       sum += abs(v_left - v_right);    

            } 

          }    

          Mtemp[d + dmax].pixel[m][n] = sum; 

      }   

 // Assign the best window cost in array using minimum function. 

       image_disp.pixel[m][n] = minimum(Mtemp,m,n,ws1,&p);        

    } 

    for(n = k1; n < size_y1-k1; n++){   

      for(m = k2; m < size_x1-k2; m++){ 

       fprintf(cpp6, "%d ", (image_disp.pixel[m][n])); 

      } 

    } 

    fclose(cpp6); 

  int pixel[400][400]; 

  FILE *cpp7, *cpp8 ; 

  cpp7 = fopen("f:\\tds.pgm", "r+");  

  // open Shrinked disparity image. 

  cpp8 = fopen("f:\\tdz.pgm", "w+"); // Open replicated file. 

  fgets(dummy, 50, cpp7);            

    do{ 

   fgets(dummy, 50, cpp7);          

  }while(dummy[0] == '#'); 

    fgets(dummy, 50, cpp7);            

  for(n = 0; n < size_y1-2*k2; n++){ 

   for(m = 0; m <size_x1-2*k1; m++){ 

      fscanf(cpp7, "%d", &temp);  

    // read the Shrinked disparity map.         

            pixel[m][n] = temp; 

      } 

    } 

   // write down the header information of replicated image &     

   //creating replicated dense disparity map. 

   

    fprintf(cpp8,"P2\n%d %d\n255\n", 348, 252); 

   

  for(n = 0; n < size_y1-2*k2; n++){ 

   for(m = 0; m <size_x1-2*k1; m++){ 

    fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n],pixel[m][n]); 

   } 

   for (m = 0; m <116; m++){ 

   fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n], pixel[m][n]); 

  } 

  for (m = 0; m <116; m++){ 

   fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n], pixel[m][n]); 

  } 

 } 

   t1 = clock(); 
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   cpu_speed = ((double) (t1 - t0)); 

   printf("Total time= %.2f Microseconds\n", cpu_speed);  

} 

 

 

// ------Memory allocation--------. 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y){ 

 image_t result; 

   int x = 0, y = 0; 

 

   result.imagesize_x = imagesize_x; 

   result.imagesize_y = imagesize_y; 

 

   result.pixel =(int **) calloc(imagesize_x, sizeof(int*)); 

 

   for(x = 0; x < imagesize_x; x++){ 

     result.pixel[x] =(int*) calloc(imagesize_y, sizeof(int)); 

     for(y = 0; y < imagesize_y; y++){ 

       result.pixel[x][y] = 0; 

     } 

   } 

   return result; 

} 

 

// -----Best window cost calculation function------. 

 

int minimum(const image_t temp[2*dmax+1],int x, int y, int ws, int *p){ 

   int i, j = 1, mu, a; 

   double min; 

   for(i=0; i < 2*dmax+1; i++){ 

     if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

       j = i;  

   } 

 

   min = temp[j].pixel[x][y];     

   for(a = 0; a < 2*dmax+1; a++){ 

      if(a != j && temp[a].pixel[x][y] == min){ 

        *p+=1; 

        break; 

      } 

  }     

   mu = abs(j-dmax); 

   return (mu); 

} 
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#include<stdio.h> 

#include<stdlib.h> 

#include<conio.h> 

#include<time.h> 

#include<math.h> 

#define   size_x  384    

#define   size_y  288 

#define   cmin     10   // (1/2) Search depth. 

    

#define   k1       18    

#define   k2       18   

#define   w1       11 

#define   w2       11 

typedef struct{ 

 int imagesize_x, imagesize_y; 

 int **pixel; 

}image_t; 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y); 

int minimum(const image_t temp[2*cmin+1],int x, int y,int ws,int *p); 

void main(){ 

   image_t   image_left,image_right,image_disp; 

  image_t   Mtemp[2*cmin + 1]; 

   int m, n, v_left, v_right, temp, temp1, v_right1, v_left1; 

   int i, j, cid, ws1, ws2, p; //cid = Spiral Distance. 

 int sad1, sad2, dis=0; //dis = Disparity, sad=Sum of absolute difference. 

   clock_t t0,t1; 

   double cpu_speed; 

   FILE *cpp, *cpp1, *cpp2; 

   char dummy[50] = " "; 

   cpp = fopen("f:\\l.pgm", "r+");     // open input images. 

   cpp1 = fopen("f:\\r.pgm", "r+"); 

   cpp2 = fopen("f:\\td_2D.pgm", "w"); // open output file 

   fgets(dummy,50,cpp);               // comments lines are stored in dummy.        

   do{ 

      fgets(dummy, 50, cpp);          

   }while(dummy[0] == '#'); 

   fgets(dummy, 50, cpp);            

   fgets(dummy, 50, cpp1);            

   do{ 

      fgets(dummy, 50, cpp1);          

   }while(dummy[0]=='#'); 

   fgets(dummy, 50, cpp1);  

 // writing of output file header information.           

   fprintf(cpp2, "P2\n%d %d\n255\n", size_x-2*k1, size_y-2*k2); 

  // memory allocation. 

   image_left = allocate_image(size_x,size_y);   

 image_right = allocate_image(size_x,size_y); 

   image_disp = allocate_image(size_x,size_y); 
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   for(cid = 0; cid <= 2*cmin; cid++){ 

     Mtemp[cid] = allocate_image(size_x, size_y); 

   } 

 // Scanning the left and right images. 

   for (n = 0; n < size_y; n++){  

     for (m = 0; m < size_x; m++){ 

   fscanf(cpp, "%d", &temp); 

   fscanf(cpp1, "%d", &temp1); 

        image_left.pixel[m][n] = temp; 

   image_right.pixel[m][n] = temp1; 

     } 

   } 

 

 t0 = clock();    

 // 2D Window cost calculation process. 

   ws1 = (w1/2); ws2 = (w2/2); p = 0; 

   for (m = k1; m < size_x-k1 ; m++){   

     for (n = k2; n < size_y-k2 ; n++){  

  dis = 0; 

        for (cid = -cmin; cid <= cmin; cid++){ 

       sad1 = 0; 

       sad2 = 0; 

       for(i =- ws1; i <= ws1; i++){ 

               for(j = -ws2; j <= ws2; j++){ 

        if(((m+i+cid*2) >= 0) && ((m+i+cid*2) < size_x)){ 

       v_left = image_left.pixel[m+i][n+j];  

       v_right = image_right.pixel[m+i+cid*2][n+j]; 

               v_left1 = v_left;  

               v_right1 = image_right.pixel[m+i][n+j+cid*(-2)+1];  

                    int abs1 = v_left - v_right; 

               int abs2 = v_left1 - v_right1; 

                     if(abs1 < 0) abs1 = -1*abs1; 

       if(abs2 < 0) abs2 = -1*abs2; 

       sad1 += abs1; 

       sad2 += abs2; 

      }     

     } 

    } 

    // Select the minimum window cost. 

    if(sad1 <= sad2) 

     Mtemp[dis++].pixel[m][n] = sad1; 

    else 

     Mtemp[dis++].pixel[m][n] = sad2; 

   } 

       // Find the best window cost using minimum function. 

   image_disp.pixel[m][n] = 2 * minimum(Mtemp,m,n,ws1,&p);        

  } 

   }  

 t1 = clock(); 
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   cpu_speed = ((double) (t1 - t0)); // time calculation. 

   printf("Total time = %lf  microseconds. \n",cpu_speed);  

 

 //  Creating the dense disparity map. 

   for (n = k1; n < size_y-k1 ; n++){   

     for (m = k2; m < size_x-k2 ; m++){ 

       fprintf(cpp2,"%d ", (image_disp.pixel[m][n])); 

     } 

   } 

} 

 

//Memory Allocation 

image_t allocate_image(const int imagesize_x, const int imagesize_y){ 

   image_t result; 

   int x =  0, y = 0; 

   result.imagesize_x = imagesize_x; 

   result.imagesize_y = imagesize_y; 

   result.pixel = (int **) calloc(imagesize_x, sizeof(int*)); 

   for (x = 0; x < imagesize_x; x++){ 

     result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int)); 

      for(y = 0; y < imagesize_y; y++){ 

         result.pixel[x][y] = 0; 

     } 

   } 

   return result; 

} 

 

// Finding the best window cost. i.e. minimum window cost. 

int minimum(const image_t temp[2*cmin+1],int x, int y,int ws,int *p){ 

   int i,j,mu,a; 

   double min; 

   j = 1;   

   for(i = 0;i < 2*cmin+1; i++ ){ 

      if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

      j = i;  

   } 

 

   min = temp[j].pixel[x][y];     

   for(a = 0;a<2*cmin+1; a++){ 

      if (a != j && temp[a].pixel[x][y] == min){ 

        *p += 1; 

         break; 

      } 

   }     

   int abs11 = j-cmin; 

 mu = (abs11<0)?(-1*abs11):abs11; 

   return (mu); 

} 
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#include <stdio.h> 

#include <stdlib.h> 

#include<conio.h> 

#include<time.h> 

#include<math.h> 

#define   size_x  384    

#define   size_y  288 

#define   dmax     10    

#define   k1       18    

#define   k2       18   

#define   w1       11    

#define   w2       11  

 

typedef struct{ 

 int imagesize_x, imagesize_y; 

 int **pixel; 

}image_t; 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y); 

int  minimum(const image_t temp[2*dmax+1],int x, int y,int ws); 

int flag = 0; 

 

void main(){ 

   image_t   image_left,image_right,image_disp; 

   image_t   Mtemp[2*dmax + 1]; 

   int m,n,v_left,v_right,temp,temp1; 

   int i,j,d,ws1,ws2; 

   int sum; 

   clock_t t0,t1; 

   FILE *cpp,*cpp1,*cpp2; 

   char dummy[50] = " "; 

   cpp=fopen("imL.pgm", "r+");// opening left and right images. 

   cpp1=fopen("imR.pgm", "r+"); 

   cpp2=fopen("tdadaptive.pgm", "w"); 

   fgets(dummy,50,cpp); // all comments lines are stored in dummy. 

           

   do{ 

      fgets(dummy,50,cpp);          

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp);            

 

   fgets(dummy,50,cpp1);   

          

   do{ 

      fgets(dummy,50,cpp1);          

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp1);            

   fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// output header. 
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   image_left = allocate_image(size_x,size_y);// memory allocation. 

   image_right = allocate_image(size_x,size_y); 

   image_disp  = allocate_image(size_x,size_y); 

   for(d = 0;d <= 2*dmax; d++){ 

     Mtemp[d] = allocate_image(size_x, size_y); 

   } 

 // scanning of input images. 

   for (n = 0; n < size_y; n++){ 

     for (m = 0; m <size_x; m++){ 

   fscanf(cpp, "%d", &temp); 

   fscanf(cpp1, "%d", &temp1); 

         image_left.pixel[m][n] = temp; 

   image_right.pixel[m][n] = temp1; 

   } 

 } 

 t0 = clock();    

   ws1 = (w1/2); ws2=(w2/2);  

   for (m = k1; m < size_x-k1; m++){   

      for (n = k2; n < size_y-k2; n++){    

     int dmax1, dmax2;  

       if(flag == 0){ // 1st searching region. 

     dmax1 = -dmax; 

     dmax2 = dmax;  

     } 

      else if(flag < 0){ // 1st Region. 

    dmax1 = -dmax; 

    dmax2 = 0; 

     } 

     else{              // 2nd Region. 

     dmax1 = 0; 

     dmax2 = dmax; 

     } 

  // Window costs are computing either in 1st or in 2nd Region using SAD. 

       for(d = dmax1; d <= dmax2; d++){ 

        sum = 0; 

          for(i = -ws1; i <= ws1; i++){ 

            for(j = -ws2; j <= ws2; j++){ 

              v_left = image_left.pixel[m+i][n+j];  

              v_right = image_right.pixel[m+i+d][n+j];    

              sum += abs(v_left - v_right);    

            } 

          }    

          Mtemp[d + dmax].pixel[m][n] = sum; 

       }   

    

   // Select the minimum window cost. 

        image_disp.pixel[m][n] = minimum(Mtemp, m, n, ws1);        

     } 

   }  
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   t1 = clock(); // time calculation. 

   printf(" Total time = %d  microseconds\n",(t1 - t0));  

 

   for (n = k1; n < size_y-k1 ; n++{   

     for (m = k2; m < size_x-k2 ; m++){ 

        fprintf(cpp2,"%d ",(image_disp.pixel[m][n])); 

      } 

   } 

} 

//Memory Allocation 

image_t allocate_image(const int imagesize_x, const int imagesize_y){ 

   image_t result; 

   int x =  0, y = 0; 

 

   result.imagesize_x = imagesize_x; 

   result.imagesize_y = imagesize_y; 

 

   result.pixel = (int **) calloc(imagesize_x, sizeof(int*)); 

 

   for(x = 0; x < imagesize_x; x++){ 

     result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int)); 

      for(y = 0; y < imagesize_y; y++){ 

        result.pixel[x][y] = 0; 

      } 

   } 

   return result; 

} 

// Finding the minimum window cost and its co-ordinate distance. 

 

int  minimum(const image_t temp[2*dmax+1],int x, int y,int ws){ 

   int i, j = 1, mu, a; 

   double min; 

   int len = 2*dmax+1; 

   if(flag != 0) 

   len = dmax+1; 

   for(i = 0;i < len; i++){ 

     if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

       j = i; 

  } 

 

  if (j < 10) // selecting the search region. 

      flag = -1; // for 1st region. 

   else 

  flag = 1; // for 2nd region. 

 

   mu = abs(j-dmax); // return the best matching co-ordinate distance. 

   return (mu); 

} 
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Accuracy Measurement Code: 
 
//for measuring the accuracy of self-adaptive algorithm 

#include <stdio.h> 

#include <stdlib.h> 

#include<conio.h> 

#include<time.h> 

#include<math.h> 

#define   size_x  384    

#define   size_y  288 

#define   dmax     20    

#define   k1       18    

#define   k2       18   

#define   k        7  

typedef struct{  

 int imagesize_x, imagesize_y; 

 int **pixel; 

}image_t; 

image_t allocate_image(const int imagesize_x, const int imagesize_y); 

int  minimum(const image_t temp[2*dmax+1],int x, int y,int ws); 

int flag = 0; 

 

int main(){ 

   image_t   image_left,image_right,image_disp,image_tdisp; 

   image_t   Mtemp[2*dmax + 1]; 

   int m, n, v_left, v_right, temp, temp1; 

   int i, j, d, ws1, ws2, p, dd; 

   int sum, w1, w2; 

   double correct1[20] = {0},correct2[20] = {0}; 

   int total_time,time_dmax; 

   double totaldata = (size_x-(2*k1+2*k))*(size_y-2*k2); 

   clock_t t0,t1; 

   FILE *cpp,*cpp1,*cpp2; 

   char dummy[50] = ""; 

   cpp  = fopen("imL.pgm", "r+");// open input images. 

   cpp1 = fopen("imR.pgm", "r+"); 

   cpp2 = fopen("td.pgm", "r+");// open ground truth image. 

   fgets(dummy,50,cpp);    

   do{ 

     fgets(dummy,50,cpp);    // all comments are removed to dummy.      

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp);            

   fgets(dummy,50,cpp1);    

   do{ 

     fgets(dummy,50,cpp1);          

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp1);            
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  fgets(dummy,50,cpp2);            

   do{ 

     fgets(dummy,50,cpp2);          

   }while(dummy[0]=='#'); 

   fgets(dummy,50,cpp2);            

   fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// writing header info. 

  

 // ********* memory allocations************ 

 

   image_left  = allocate_image(size_x,size_y); 

   image_right = allocate_image(size_x,size_y); 

   image_tdisp = allocate_image(size_x,size_y); 

   image_disp  = allocate_image(size_x,size_y); 

  

   for(d = 0;d <= 2*dmax; d++){ 

     Mtemp[d] = allocate_image(size_x, size_y); 

   } 

 

 //----------Read input images-----------. 

   for (n = 0; n < size_y; n++){ 

      for (m = 0; m <size_x; m++){ 

   fscanf(cpp,"%d",&temp); 

   fscanf(cpp1,"%d",&temp1); 

         image_left.pixel[m][n]  = temp; 

   image_right.pixel[m][n] = temp1; 

      } 

   } 

 for (n = k1; n < size_y-k1; n++){ 

     for (m = k2; m <size_x-k2; m++){ 

   fscanf(cpp2,"%d",&temp); 

         image_tdisp.pixel[m][n] = temp; 

       

      } 

   } 

 printf("__________________________________________________\n"); 

 printf("  Window size    Accuracy (%%)  Computational time\n"); 

 printf("  (pixel)  correct match    Diff %c1 pixel (Microsecond) \n",241); 

 printf("________________________________________________\n"); 

 total_time = 0; 

 

 //-------- Dividing the search area ------------ 

 for(w1 = 3,w2 = 3;w1 <= 15,w2 <= 15;w1 += 2,w2 += 2){ 

  t0 = clock(); 

    ws1 = (w1/2); ws2 = (w2/2); p = 0; 

    for (m = k1; m < size_x-k1 ; m++){   

      for (n = k2; n < size_y-k2 ; n++){   

      int dmax1,dmax2; 

       if(flag == 0){ 

     dmax1 = -dmax; 
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     dmax2 = dmax; 

       } 

        else if(flag < 0){             // 1st Region. 

       dmax1 = -dmax; 

       dmax2 = 0; 

        } 

      else{                          // 2nd Region. 

       dmax1 = 0; 

       dmax2 = dmax; 

      }   

 

// **** window cost calculation either in 1st or in 2nd Region*** 

        for (d = dmax1; d <= dmax2; d++){ 

           sum = 0; 

           for(i =- ws1; i <= ws1; i++){ 

             for(j = -ws2; j <= ws2; j++){ 

        if(((m+i+d)>=0) && ((m+i+d)<size_x )){ 

            v_left =  image_left.pixel[m+i][n+j];  

            v_right= image_right.pixel[m+i+d][n+j];   

            sum += abs(v_left - v_right);    

         }     

             } 

           }    

           Mtemp[d + dmax].pixel[m][n] = sum; 

        }   

        image_disp.pixel[m][n] = minimum(Mtemp,m,n,ws1);        

      } 

     }  

     t1 = clock(); 

     total_time = (t1-t0); 

 

  // ----- Accuracy Measurement steps -------. 

  for(n = k1; n < size_y-k1; n++){ 

      for(m = k2; m <size_x-k2; m++){ 

      if(abs(image_disp.pixel[m][n]-image_tdisp.pixel[m][n])==0) 

     correct1[w1]++; 

        if(abs(image_disp.pixel[m][n]-image_tdisp.pixel[m][n])<=2) 

     correct2[w1]++; 

       } 

  } 

 } 

  

 // ----- Writing the output data for different Masks-------. 

 if(w1 == 3) 

    printf("     %d x %d       %.1lf %%         %.1lf %%   %d\n", w1, w2,  

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 else if(w1 == 5) 

printf("     %d x %d       %.1lf %%         %.1lf %%   %d\n", w1, w2,  
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  (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

   total_time); 

 else if(w1 == 7) 

    printf("     %d x %d       %.1lf %%         %.1lf %%    %d\n", w1, w2,  

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 else if(w1 == 9) 

    printf("     %d x %d       %.1lf %%         %.1lf %%     %d\n", w1, w2, 

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 else if(w1 == 11) 

    printf("    %d x %d      %.1lf %%         %.1lf %%       %d\n", w1, w2, 

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 else if(w1 == 13) 

    printf("    %d x %d      %.1lf %%         %.1lf %%       %d\n", w1, w2, 

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 else if(w1 == 15) 

    printf("    %d x %d      %.1lf %%         %.1lf %%       %d\n", w1, w2,  

    (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100, 

     total_time); 

 printf("_______________________________________________________\n"); 

 time_dmax = total_time / 3; 

} 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y){ 

   image_t result; 

   int x =  0, y = 0; 

   result.imagesize_x = imagesize_x; 

   result.imagesize_y = imagesize_y; 

   result.pixel = (int **) calloc(imagesize_x, sizeof(int*)); 

   for(x = 0; x < imagesize_x; x++){ 

      result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int)); 

     for(y = 0; y < imagesize_y; y++){ 

       result.pixel[x][y] = 0; 

     } 

   } 

   return result; 

} 

 

//**Finding the best window cost and its co-ordinate distance** 

int  minimum(const image_t temp[2*dmax+1],int x, int y,int ws){ 

   int i,j = 1, mu, a; 

   double min; 

   int len = 2 * dmax + 1; 

   if(flag != 0) 

    len = dmax + 1; 
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   for(i = 0;i < len; i++){ 

     if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

       j = i; 

   } 

 if(j < 20) 

      flag = -1; // set 1st region. 

   else  

 flag = 1; // set 2nd region. 

   mu = abs(j - dmax); 

   return (mu); 

} 
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Appendix-D:  

 

 

 

 

 

 

 

 

 

 

 

 

        Source Code for SGSC Algorithm 
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#include <stdio.h> 

#include <stdlib.h> 

#include<conio.h> 

#include<time.h> 

#include<math.h> 

 

#define   size_x  384    

#define   size_y  288 

#define   dmax     10    

#define   k1       18    

#define   k2       18   

#define   w1       11    

#define   w2       11  

 

typedef struct{ 

 int imagesize_x, imagesize_y; 

  int **pixel; 

}image_t; 

 

image_t allocate_image(const int imagesize_x, const int imagesize_y); 

int  minimum(const image_t temp[2*dmax+1], int x, int y, int ws); 

int flag=0; 

image_t image_left,image_right,image_disp; 

 

int main(){ 

   image_t Mtemp[2*dmax + 1]; 

   int m, n, v_left, v_right, temp, temp1; 

   int i, j, d, ws1, ws2; 

   int sum; 

   clock_t t0,t1; 

 FILE *cpp, *cpp1, *cpp2; 

   char dummy[50] = ""; 

   cpp  = fopen("imL.pgm", "r+");// open input images. 

   cpp1 = fopen("imR.pgm", "r+"); 

   cpp2 = fopen("td_SGSC.pgm", "w");// open dense disparity file. 

   fgets(dummy, 50, cpp);   

    

 do{ 

      fgets(dummy, 50, cpp); // all comments lines are moved to dummy.         

   }while(dummy[0]  =='#'); 

   fgets(dummy, 50, cpp);            

   fgets(dummy, 50, cpp1);    

    

 do{ 

      fgets(dummy, 50, cpp1);          

   }while(dummy[0] == '#'); 

   fgets(dummy, 50, cpp1);            

   fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// write file header info. 
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   // ******** Memory Allocation ************ 

   image_left = allocate_image(size_x,size_y); 

   image_right = allocate_image(size_x,size_y); 

   image_disp = allocate_image(size_x,size_y); 

   for(d = 0;d <= 2*dmax; d++){ 

     Mtemp[d] = allocate_image(size_x, size_y); 

   } 

 

 // ------ Scanning the input images ---------- 

   for (n = 0; n < size_y; n++){ 

     for (m = 0; m <size_x; m++){ 

   fscanf(cpp,"%d", &temp); 

   fscanf(cpp1,"%d", &temp1); 

         image_left.pixel[m][n] = temp; 

   image_right.pixel[m][n] = temp1; 

     } 

   } 

 t0 = clock();   

  

 //--- Dividing the searching zone -------- 

   ws1 = (w1/2); ws2=(w2/2);  

   for (m = k1; m < size_x-k1; m++){   

     for (n = k2; n < size_y-k2; n++){    

     int dmax1, dmax2; 

      if(flag == 0){ 

     dmax1 = -dmax; 

     dmax2 = dmax; 

    } 

     else if(flag < 0){   // 1st Zone. 

    dmax1 = -dmax; 

    dmax2 = 0; 

     } 

     else{                 // 2nd Zone. 

      dmax1 = 1; 

      dmax2 = dmax; 

     } 

   //** Window cost calculation either in 1st or in 2nd Zone using SAD** 

       for (d = dmax1; d <= dmax2; d++){ 

          sum = 0; 

         for(i = -ws1; i <= ws1; i++){ 

           for(j = -ws2; j <= ws2; j++){ 

              v_left  = image_left.pixel[m+i][n+j];  

              v_right = image_right.pixel[m+i+d][n+j];   

          sum += abs(v_left - v_right);    

            } 

          }    

          Mtemp[d + dmax].pixel[m][n] = sum; 

       }   
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       // Save the best window cost using minimum function.  

       image_disp.pixel[m][n]=minimum(Mtemp, m, n, ws1);        

     } 

   }  

   t1 = clock();// time calculation. 

   printf(" Total time = %d  Microseconds\n",(t1-t0));  

 

 //***** writing the output dense disparity image******* 

   for (n = k1; n < size_y-k1 ; n++){   

     for (m = k2; m < size_x-k2 ; m++){ 

        fprintf(cpp2,"%d ", (image_disp.pixel[m][n])); 

     } 

   } 

} 

// **** Memory Allocation *** 

image_t allocate_image(const int imagesize_x, const int imagesize_y){ 

   image_t result; 

   int x = 0, y = 0; 

   result.imagesize_x = imagesize_x; 

   result.imagesize_y = imagesize_y; 

   result.pixel = (int **) calloc(imagesize_x, sizeof(int*)); 

 

   for(x = 0; x < imagesize_x; x++){ 

      result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int)); 

      for(y = 0; y < imagesize_y; y++){ 

       result.pixel[x][y] = 0; 

     } 

   } 

   return result; 

} 

// ***Finding the best window cost i.e. minimum window cost*** 

int minimum(const image_t temp[2*dmax+1],int x, int y, int ws){ 

   int i, j = 1, mu, a, Th=5; 

   double min; 

   int len = 2*dmax+1; 

   if(flag != 0) 

   len = dmax+1; 

   for(i = 0; i < len; i++){ 

     if(temp[i].pixel[x][y] < temp[j].pixel[x][y])  

       j = i; 

   } 

   mu = abs(j - dmax); 

 // --- Applying Threshold technique in active Zone---- 

   if(abs(image_disp.pixel[x][y-1]- mu) <= Th)  

      flag = -1; // Set 1st Zone as active. 

   else 

    flag = 1; // Set 2nd Zone as active. 

  return (mu); 

} 
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