

Optimal Algorithms for Stereo

Correspondence Estimation

By

Md. Abdul Mannan Mondal

Supervised by

Professor Dr. Md. Haider Ali

Submitted to the Department of Computer Science and Engineering of the

Faculty of Engineering and Technology in the University of Dhaka for

partial fulfillment of the requirements of the degree of Doctor of

Philosophy (Ph.D.)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 UNIVERISTY OF DHAKA, BANGLADESH

September 2023

Registration No. : 74 (Original)

Session : 2010-2011(Original)

Registration No. : 159 (Re-registration)

Session : 2016-2017

Approval

As the candidate’s supervisor, I have approved this dissertation for submission.

Name: Prof. Dr. Md. Haider Ali

Signature:

………………………………………

Anis
Typewritten text
Dhaka University Institutional Repository

II

Declaration

We declare that this thesis entitled “Optimal Algorithms for Stereo

Correspondence Estimation” presented in it are performed by me under the

supervision of Prof. Dr. Md. Haider Ali, Department of Computer science and

Engineering, University of Dhaka, Dhaka-1000. We have confirmed that the

full part of the work is done during this Ph.D. research work in the University

of Dhaka. We have also declared that any part of this thesis has not previously

been submitted for an award of any degree or other qualification. We have

discussed related published works of others with appropriate references and

this thesis work is done entirely by us and our contributions and enhancements

from other works are clearly stated.

Candidate:

(Md. Abdul Mannan Mondal)

Signature:

…………………………………………

Supervisor:

(Prof. Dr. Md. Haider Ali)

Signature:

…………………………………………

Anis
Typewritten text
Dhaka University Institutional Repository

 III

List of Publications

[1] Md. Abdul Mannan Mondal and Mohammad Haider Ali, “Self-Guided Stereo Correspondence

Estimation Algorithm,” International Journal of Image and Graphics (IJIG), Vol. 21, No. 3, pp.

21500281-215002826, January 2021, © World Scientific Publishing Company, USA. Available at:

https://www.worldscientific.com/worldscinet/ijig , https://doi.org/10.1142/S0219467821500285

[2] Md. Abdul Mannan Mondal and Mohammad Haider Ali,“Disparity of Stereo Images by Self-

Adaptive Algorithm,” International Journal of Advanced Computer Science and

Applications(IJACSA) Vol. 11, No. 5, pp. 441-454, May 2020. DOI: 10.14569/IJACSA.2020.0110558

 Available at:

https://thesai.org/Publications/ViewPaper?Volume=11&Issue=5&Code=IJACSA&SerialNo=58

[3] Md. Abdul Mannan Mondal and Mohammad Haider Ali, “Stereo Correspondence Estimation by

Two Dimensional Real Time Spiral Search Algorithm,” International Journal of Engineering

and Advanced Technology(IJEAT) Vol.9, No. 5, pp.96-103, June 2020. DOI:

10.35940/ijeat.D8592.069520.

Available at: https://www.ijeat.org/wp-content/uploads/papers/v9i5/D8592049420.pdf

[4]

Md. Abdul Mannan Mondal and Md. Haider Ali, “Disparity Estimation by a Real Time

Approximation Algorithm,” International Journal of Image Processing (IJIP), vol. 10 Issue: 03,

pp: 126-134, July 2016. Available at:

http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJIP-1076

[5] Md. Abdul Mannan Mondal and Md. Haider Ali, “Performance Review of the Stereo Matching

Algorithms,” American Journal of Computer Science and Information Engineering, vol.04, Issue:

01, pp: 7-15, June 2017. Available at: http://www.aascit.org/journal/ajcsie

[6] Md. Abdul Mannan Mondal and Md. Haider Ali ,“On Stereo Correspondence Estimation: A

Spiral Search Algorithm,” in Proceeding of International Conference on Signal and

Information Processing (ICSIP), December 2010, pp: 204-207. Available at:

https://doi.org/10.1117/12.913526

[7] Md.Abdul Mannan Mondal and Md. Haider Ali ,“Disparity Estimation by Reverse

Fuzzyfication,” in Proceeding of International Conference on Signal and Information

Processing (ICSIP), December 2010. pp: 234-237. DOI : 10.1117/12.913533

https://doi.org/10.1142/S0219467821500285
https://dx.doi.org/10.14569/IJACSA.2020.0110558
https://doi.org/10.1117/12.913533
Anis
Typewritten text
Dhaka University Institutional Repository

 IV

ABSTRACT

Stereo correspondence has attained a position of overwhelming dominance in

Computer Vision for long days for determining three-dimensional depth information of

objects using a pair of left and right images from a stereo camera system. In this thesis

we propose four novel ideas for improving the efficiency and accuracy of stereo

correspondence estimation in stereo vision. First idea presents a “Real Time

Approximation (RTA)” algorithm for computing the disparity of the stereo image

sequences. The algorithm has been organized to make it dedicated for real time-

applications. To do this, the original image is scaled down and obtained highest speed

to compute the stereo correspondences. The second idea is a searching algorithm titled

“Two Dimensional Real Time Spiral Search Algorithm (2DRTSSA)” to compute the

stereo correspondence two dimensionally. The 2DRTSSA thus increases the speed and

accuracy over the existing state-of-the-art methods of one dimensional and left-right

searching strategy. The third idea is a new and significant searching method, is

explored by the name “Self-Adaptive Algorithm (SAA)” for computing stereo

correspondence or disparity of stereo image. According to the SAA method, stereo

matching search range can be selected dynamically until finding the best match. The

searching speed is almost doubled by reducing the search range half of its original, by

dividing the searching range into two regions. First one is –dmax to 0 and second one is

0 to +dmax. To determine the correspondence of a pixel of the reference image (left

image), the window costs of the right image are computed either for –dmax to 0 region

or for 0 to +dmax region depending on the result of previous matching. The speed and

accuracy are further improved by introducing the fourth idea entitled “Self-Guided

Stereo Correspondence (SGSC) Estimation” algorithm. The SGSC algorithm is

directed by photometric properties of the candidate-pixels. Searching performance is

slightly improved by utilizing this photometric property of the candidate-pixels as well

as by implanting the pioneer threshold technique. These two key techniques reduced

the computational costs with further improvement of accuracy. The achievements of the

SGSC method are testified on Middlebury standard stereo datasets of 2001, 2003, 2006

and Middlebury latest Optical Flow Datasets. Moreover, the newly invented algorithms

RTA, 2DRTSSA, SAA and SGSC have been justified on real images which are

acquisitioned in our laboratory in complex environment. The overall performances of

all algorithms are satisfactory in case of real stereo images. Finally, the proposed

methods are compared with present state-of-the-art methods and our 2DRTSSA, SAA

and SGSC outperforms the latest methods in terms of speed, visualization of hidden

ground truth, 3D reconstruction and accuracy.

Anis
Typewritten text
Dhaka University Institutional Repository

 V

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude to my revered supervisor Dr. Md.

Haider Ali, Professor, Dept. of Computer Science and Engineering, University of

Dhaka for his constant inspiration, encouragement, supervision and understanding

throughout the research. I would like to express immense gratitude to Dr. Md.

Hasanuzzaman, Professor, Dept. of Computer Science and Engineering, University of

Dhaka for his valuable suggestions and constant inspiration. I am grateful to Dr.

Saifuddin Md. Tareek, Professor and Chairman, Dept. of Computer Science and

Engineering, University of Dhaka for his pragmatic suggestions and immense sense of

encouragement and helps during this work. I am grateful to Dr. Shabbir Ahmed and Dr.

Md. Mustafizur Rahman, Professors, Dept. of Computer Science and Engineering,

University of Dhaka. I would like to give thanks to all of my honorable teachers of the

Dept. of Computer Science and Engineering in the University of Dhaka, for their

invaluable comments and suggestions. I am also indebted to all the staffs of the Dept.

of Computer Science and Engineering, University of Dhaka for their help. I would also

like to present my humble thanks to Middlebury Vision Benchmark for providing the

standard stereo images for this research work. Warm thanks to all my friends, who were

with me all the time for their effective appreciations regarding my research.

.

Anis
Typewritten text
Dhaka University Institutional Repository

 VI

Table of Contents

 Page No.

Declaration…………………………………………………………… II

List of Publications…………………………………………………... III

Abstract ……………………………………………………………… IV

Acknowledgments……….…………………………………………… V

Table of Contents ……………………………………………………. VI

List of Tables………………………………………………………… X

List of Figures…………………………………………….………….. XII

List of Abbreviations………………………………………………… XV

Chapter 1:
Introduction …….. …….. …….. …….. 1

 1.1 Disparity or Stereo Correspondence Estimation and

Rudiments ……. ……. …….. ……..

2

 1.2 Literature Review ……. …….. …….. 5

 1.2.1 Local Methods ……. …….. …….. 6

 1.2.2 Global Methods ……. …….. …….. 8

 1.2.3 Other Methods ……. …….. …….. 10

 1.2.4 Related Works in Recent Trends …….. …….. 10

 1.3 Stereo Matching Standard Datasets …….. …….. 12

 1.4 Inaugurated Motivation …….. …….. …….. 14

 1.5 Research Objectives …….. …….. …….. 15

 1.6 Scope of the Work …….. …….. …….. 16

 1.7 Organization of Doctoral Dissertation …….. …….. 17

 1.8 Summary ……. …….. …….. ……. 17

Chapter 2: Stereo Correspondence Estimation Technique: Real Time

Approximation (RTA) Algorithm …….. ……..

18

 2.1 Motivation of Real Time Approximation (RTA) Algorithm 19

 2.2 Proposed RTA Method …….. …….. …….. 19

 2.2.1 Quantization Process for Rectified Stereo Images ... 20

 2.2.2 Real Time Approximation Algorithm and Flowchart 21

 2.3 Experimental Settings and Results …….. …….. 25

 2.3.1 Experiment on Real Stereo Images by RTA …….. 28

Anis
Typewritten text
Dhaka University Institutional Repository

 VII

 2.4 Discussion ……. …….. …….. …….. 31

 2.5 Summary ……. …….. …….. …….. 31

Chapter 3: Stereo Correspondence Estimation Technique: Two

Dimensional Real Time Spiral Search Algorithm

(2DRTSSA) …….. ……. …….. ……..

33

 3.1 Motivation of 2DRTSSA Algorithm …….. …….. 34

 3.2 Proposed 2DRTSSA …….. …….. 34

 3.2.1 Algorithm and Flowchart of 2DRTSSA …….. 35

 3.3 Computational Complexity Analysis …….. …….. 39

 3.4 Experimental Settings and Results .…….. …….. 39

 3.4.1 Observation of 3D Reconstruction and Objects

Recognition of Experimental Output ……..

40

 3.4.2 Computational Cost Calculation and Comparison

with state-of-the-art Methods …….. ……..

41

 3.4.3 Accuracy of Proposed 2DRTSSA Method …….. 43

 3.4.4 Experiment on Real Stereo Images by 2DRTSSA … 45

 3.5 Discussion ……. …….. …….. …….. 49

 3.6 Summary ……. …….. …….. …….. 49

Chapter 4: Stereo Correspondence Estimation Technique: Self-

Adaptive Algorithm (SAA) ……. …….. ……..

50

 4.1 Motivation of SAA Method ……. …….. 51

 4.2 Proposed Self-Adaptive Algorithm …….. …….. 51

 4.2.1 Disparity Estimation Algorithm of SAA Method ….. 55

 4.3 Comparison with Existing Matching Algorithms …….. 58

 4.4 Optimization of Self-Adaptive Search …….. …….. 60

 4.5 Experimental Settings and Results …….. …….. 62

 4.5.1 Observation of 3D Structures of Experimental

Output …… ……. …….. ……..

64

 4.5.2 Computational Cost Calculation and Comparison

with Existing state-of-the-art Methods for

Middlebury Standard Tsukuba Head ……..

65

 4.5.3 Computational Cost Calculation and Comparison

with Existing state-of-the-art Methods for

Middlebury Standard Venus Stereo Images ……..

68

 4.5.4 Accuracy Measurement and Comparisons …….. 70

 4.6 Performance Enhancement Analysis …….. …….. 71

 4.6.1 Experiment on Real Stereo Images by SAA …….. 74

 4.7 Discussion …….. ……. …….. …….. 78

Anis
Typewritten text
Dhaka University Institutional Repository

 VIII

 4.8 Summary …….. ……. …….. …….. 78

Chapter 5: Stereo Correspondence Estimation Technique: Self-

Guided Stereo Correspondence (SGSC) Estimation

Algorithm ……. ……. …….. ……..

80

 5.1 Introduction ……. …….. …….. 81

 5.1.1 Motivation ……. …….. …….. 82

 5.2 Proposed Self-Guided Search Algorithm ……. ……. 82

 5.2.1 Disparity Estimation Algorithm of SGSC Method … 87

 5.3 Computational Complexity Analysis …….. …….. 89

 5.4 Experimental Results ……. …….. …….. 90

 5.4.1 Experimental Settings and Adjustment for Threshold

Value δT ……. ……. …….. ……..

90

 5.4.2 Observation of 3D Reconstruction with Object

Border, Size and Shape Localization ……..

92

 5.4.3 Evaluation on Middlebury Standard of Tsukuba

Head Image Pair for Detailed Analysis ……..

93

 5.4.4 Evaluation on Middlebury Standard Stereo Images

of Venus Stereo Pair for Detailed Analysis ……..

95

 5.4.5 Estimation of Accuracy and Comparison with Top

state-of-the-art Methods …….. ……..

97

 5.5 Performance Analysis with Additional Standard Images …. 98

 5.5.1 Evaluation on Middlebury Standard Stereo Datasets

2003 and 2001 of Indoor Scenes …….. ……..

98

 5.5.2 Evaluation on Middlebury Standard Stereo Datasets

2006 of Indoor Scenes …….. ……..

100

 5.5.3 Evaluation on Middlebury Optical Flow for Hidden,

Synthetic and Stereo Datasets …….. ……..

102

 5.5.4 Experiment on Real Stereo Images by SGSC …… 104

 5.6 Discussion ……. …….. …….. ……. 107

 5.7 Summary ……. …….. …….. ……. 107

Chapter 6: Conclusion and Discussion …….. …….. ……. 109

 6.1 Contributions of the Thesis …….. ……. ……. 110

 6.2 Future Work ……. …….. …….. ……. 113

 6.3 Summary … …….. …….. ……. 114

References …………………………………………………………... 115

Appendix-A Source Code for RTA Algorithm … …….. 120

Anis
Typewritten text
Dhaka University Institutional Repository

 IX

Appendix-B Source Code for 2DTRASSA Algorithm … …….. 126

Appendix-C Source Code for SAA Algorithm ……. …….. 130

Appendix-D Source Code for SGSC Algorithm ……. …….. 139

Anis
Typewritten text
Dhaka University Institutional Repository

 X

List of Tables

Table No. Table Caption Page No.

Table 1.1 Comparative study of local algorithms of earlier trends. 7

Table 1.2 Comparative study of global algorithms of earlier trends. 9

Table 2.1 Computational time reduction (%) compare to window-based

method.

27

Table 2.2 Accuracy of RTA Algorithm. 27

Table 2.3 Visual observation of disparity map of real images generated by

RTA algorithm.

30

Table 3.1 Numerical comparison of proposed 2DRTSSA and present state-

of-the-art methods.

42

Table 3.2 Computational time reduction (%) compare to window-based

existing method.

42

Table 3.3 Accuracy of 2DRTSSA for Tsukuba stereo pair. 44

Table 3.4 Visual observation of disparity map of real images generated by

2DRTSSA algorithm.

48

Table 4.1 Disparity estimation computational time (in µs) and frame-rate (in

fps) for the Middlebury standard data of Tsukuba head image

using Self-Adaptive Search Method.

66

Table 4.2 Computational time reduction (in %) of proposed method for

Tsukuba Head.

68

Table 4.3 Disparity estimation computational time (in µs) and frame-rate (in

fps) for the Venus stereo image using Self -Adaptive Search

Method.

69

Table 4.4 Computational time reduction (in %) of proposed method for

Venus stereo pair.
70

Table 4.5 Quantitative evaluation of performance of proposed SAA method

with top five (5) algorithms.

72

Table 4.6 Quantitative evaluation of performance of proposed SAA method

with top five (5) algorithms for Venus stereo pair.

74

Table 4.7 Visual observation of disparity map of real images generated by

SAA algorithm.

77

Table 5.1 Effects of variation of threshold value δT. 91

Table 5.2 Visual examination of 3D structures, borders and objects detection 92

 XI

Table No. Table Caption Page No.

on experimental disparity map.

Table 5.3 Numerical comparisons of computing time (in μs) and frame-rate

(in fps) with top eleven (11) methods for the Middlebury data of

Tsukuba head using SGSC algorithm.

93

Table 5.4 Numerical comparisons of time reduction (%) of SGSC algorithm

for Tsukuba stereo image.

95

Table 5.5 Numerical comparison of time (in μs) and frame-rate (in fps) for

the Venus stereo image using SGSC algorithm.

96

Table 5.6 Numerical comparisons of time reduction (in %) of proposed

method for Venus stereo pair.

97

Table 5.7 Numerical and visual comparisons between SGSC method and

current state-of-the-art methods on Middlebury standard stereo

datasets of 2003 and 2001.

99

Table 5.8 Numerical and visual comparisons between SGSC method and

current state-of-the-art methods on Middlebury Standard stereo

datasets of 2006.

101

Table 5.9 Visual comparisons between SGSC method and current state-of-

the-art methods on current Middlebury optical flow datasets.

103

Table 5.10 Visual observation of disparity map of real images generated by

SGSC algorithm
106

Table 6.1 Performance comparison of experimental results with Fast Area

Based Algorithm, FAB [13] using SAD method. Given that the

accuracy of FAB is 86.10% and computation time is 3229 µs.

112

Table 6.2 Performance comparison of experimental results with recent state-

of-the-art Edge-aware Geodesic Filter, EGF [33] using SAD

method. Given that the accuracy of EGF is 93.67% and

computation time is 9000 µs.

112

 XII

List of Figures

Fig. No. Figure Caption Page No.

Fig. 1.1 Disparity in a stereo pair of images. 3

Fig. 1.2 Graphical illustration of window cost calculation. 4

Fig. 1.3 Middlebury Standard Stereo Images of Different Datasets. 13

Fig. 1.4 (a) Left image of Tsukuba stereo pair (b) ground truth image. 14

Fig. 1.5 (a)Left image of Sawtooth stereo pair (b) ground truth image. 14

Fig. 1.6 (a) Left image of Venus stereo pair (b) ground truth image. 14

Fig. 1.7 The redundant area of neighbor pixels [(x, y) and (x1, y1)]. 15

Fig. 2.1 Hierarchical schematic of RTA method. 20

Fig. 2.2 Quantization process of rectified stereo images. 21

Fig. 2.3 Flow chart of proposed RTA method. 22

Fig. 2.4 Left image 384 ×288. 26

Fig. 2.5 Right image 384 ×288. 26

Fig. 2.6 Shrinked left image 128 × 96. 26

Fig. 2.7 Shrinked Right image 128 × 96. 26

Fig. 2.8 Estimated disparity image 116 × 84. 26

Fig. 2.9 Replicated disparity image 348 × 252. 26

Fig. 2.10 Real image acqusition process using stereo web camera. 29

Fig. 3.1 Illustration of 2DRTSSA search method with co-ordinate prefecture. 35

Fig. 3.2 Flow chart of 2DRTSSA algorithm. 38

Fig. 3.3 Localized object borders. 41

Fig. 3.4 Run time snapshot of 2DRTSSA method for accuracy. 43

Fig. 3.5 Dense disparity map for window size 33. 43

Fig. 3.6 Dense disparity map for window size 55. 43

Fig. 3.7 Dense disparity map for window size 77. 43

Fig. 3.8 Dense disparity map for window size 99. 43

Fig. 3.9 Dense disparity map for window size 1111 44

 XIII

Fig. No. Figure Caption Page No.

Fig. 3.10 Dense disparity map for window size 1515. 44

Fig. 3.11 Dense disparity map of ground truth image. 44

Fig. 3.12 Illustration of correct matching for estimated dense disparity with

ground truth image of Tsukuba head.

45

Fig. 3.13 Real image acqusition process using stereo web camera. 47

Fig. 4.1 The total search regions of right image for the particular pixel of

L(x,y).

51

Fig. 4.2 First search interval {R(x+ (-dmax)} … R{x+ (+ dmax)}. 51

Fig. 4.3 Search range separated by 1
st
 list and 2

nd
 list with their candidate-

pixels.

51

Fig. 4.4 Second search occurs in 1
st
 list too, and the matching pixel is

indicated by green color also.

52

Fig. 4.5 3
rd

 search occurs in 2
nd

list, match indicated by green color. 52

Fig. 4.6 Window cost estimation process over the scan line (1
st
 search). 54

Fig. 4.7 Window cost calculation process for 1
st
 list only (2

nd
 Search). 54

Fig. 4.8 Window cost calculation process for 2
nd

 list only (4
th

 search). 55

Fig. 4.9 Computational path of bidirectional and unidirectional matching

from the computational point of view.

58

Fig. 4.10 Standard Stereo image (Reference image) and their ground truth

image.

63

Fig. 4.11 Estimated 3D dense disparity map of Tsukuba head using SAA

method

63

Fig. 4.12 Estimated 3D dense disparity map of Venus stereo using SAA

method.

63

Fig. 4.13 Localized object borders. 65

Fig. 4.14 Left side graph (a) shows the comparison of computational costs and

right side graph (b) shows the comparison of frame-rate (in fps)

among the proposed and existing state-of-the-art methods for

Tsukuba head image.

67

Fig. 4.15 Left side graph (a) shows the comparison of computational costs and

right-side graph (b) shows the comparison of frame-rate (in fps)

among proposed and existing state-of-the-art methods for Venus

stereo images.

69

Fig. 4.16 Graph shows the performance enhancement of SAA method 73

 XIV

Fig. No. Figure Caption Page No.

comparing to the mentioned state-of-the-art methods.

Fig. 4.17 Real image acqusition process using stereo web camera. 76

Fig. 5.1 The whole search and sub search zones of right image for the

reference pixel of left image.

83

Fig. 5.2 Flow chart of the proposed SGSC algorithm. 85

Fig. 5.3 1
st
 search for window cost calculation process towards the scanning

line.

86

Fig. 5.4 Window cost estimation procedure for 1
st

zone (2
nd

 Searching). 86

Fig. 5.5 Window cost estimation procedure for 2
nd

 zone (3
rd

 searching). 86

Fig. 5.6 Left-side graph (a) shows the comparison of computational time (in

µs) and right-side graph (b) shows the comparison of frame-rate (in

fps) among the proposed SGSC and current state-of-the-art methods

for Tsukuba head image.

94

Fig. 5.7 Left-side graph (a) shows the comparison of computational time (in

µs) and right-side graph (b) shows the comparison of frame-rate (in

fps) for Venus stereo pair.

96

Fig. 5.8 Left side figure (a) shows the run time screen shoot and right side

graph (b) demonstrates the accuracy curve of SGSC algorithm.

97

Fig. 5.9 Detection of different layers and hidden structures by SGSC

algorithm.

102

Fig. 5.10 Real image acqusition process using stereo web camera. 105

Fig. 6.1 Visual comparison of disparity maps developed by different methods

of this research.

111

XV

List of Abbreviations

CA Cellular Automata

CWT Continuous Wavelet Transform

DP Dynamic Programming

DSI Disparity Space Image

2DRTSSA Two Dimensional Real Time Spiral Search Algorithm

DSG Deep Self-Guided

EGF Edge-aware Geodesic Filter

EM Energy Minimization

FAB Fast Area Based

FA Fast Algorithm

FAS Fusing Adaptive Support

GT Ground Truth

HD Hierarchical Disparity

NURBS Non-Uniform Rational B-Splines

NCT Normalized Correlation Technique

PSM Pyramid Stereo Matching

RTA Real Time Approximation

SAD Sum of Absolute Difference

SSD Sum of Square Difference

SMP Single Matching Phase

SAA Self-Adaptive Algorithm

SGSC Self- Guided Stereo Correspondence

TSA Two Stage Approximation

TF Tree Filtering

WC/Wc Window Cost

Chapter 1

Introduction

Optimal Algorithms for Stereo Correspondence Estimation

2

1.1 Disparity or Stereo Correspondence Estimation and Rudiments

Stereo correspondence or disparity is one of the most important research areas in

computer vision. It has been found in many applications e.g., industrial inspection for

3D objects, 3D sensing, 3D growth monitoring, Z-keying, novel view synthesis,

image-based rendering, autonomous vehicles and robotics. The applications of stereo

correspondence are found in medical-biomedical and/or bioengineering fields. It can

be also used in surveillance, transportation for traffic scene analysis, digital

photogrammetry, remote sensing, 3D database for urban and town planning, stereo

lithography, stereo sculpting, on-line shopping and many more. Dense depth

measurements obtained from disparity are required in applications such as

teleconferencing, robot navigation and control, exploration and modeling of

unstructured environments, virtual reality etc.

The reference pixel),(
LLL

yxP of left image as shown in Fig. 1.1 should be matched

in the same co-ordinate position of the right image. But practically, the matching pixel

),(
RRR

yxP in the right image is found in earlier or later position due to noise or

different camera-position. Usually the deviation occurs along the x axis. The

difference in the coordinate of the corresponding pixels from left and right images is

known as disparity, which is inversely proportional to the distance of the object from

the camera [1].

Disparity,

 (1.1)

Where f is the focal length of the cameras, B is baseline distance between two

identical cameras and Z is the distance from the object P(x, y, z) to the camera. By

knowing the parameters of right side of equation (1.1), we can also measure the

disparity d. This is the main rudiments of stereo corresponding or disparity.

For of a pixel in the left image, its correspondence has to be searched in the right

image based on epipolar line for 3D scene reconstruction. Stereo correspondence or

disparity is conventionally determined from the pixels of the matching windows by

using Sum of Square Differences (SSD), Sum of Absolute Differences (SAD) or

Normalized Correlation Techniques (NCT). Another rudiment is the cost aggression

process using SSD, SAD or NCT. The aggregation of the window cost using SSD,

SAD or NCT functions, leads to the score of most of the stereo vision methods, which

can be mathematically expressed as follows-

Introduction

3

SSD(x, y, d)=  
2

1 1

),(),(
 


Wx

i

Wy

j

jydixfRjyixfL (1.2)

SAD(x, y, d) = 
 


Wx

i

Wy

j

jydixfRjyixfL
1 1

),(),((1.3)

Correlation method NCT (x, y, d)=

 



   

 





Wx

i

Wy

j

Wx

i

Wy

j

Wx

i

Wy

j

jydixfRjyixfL

jydixfRjyixfL

1 1 1 1

22

1 1

),(),(

),(),(

 (1.4)

Fig. 1.1 Disparity in a stereo pair of images.

where fL, fR are the intensity values in left and right image, (x, y) are the pixel’s

coordinates, d is the disparity value under consideration and W is the window cost of

masking region[9].

Window-based stereo correspondence estimation technique is widely used due to its

efficiency and ease of implementation. However, there is a well-known problem in

the selection of an appropriate size and shape of window [2-3]. If the window is small

and does not cover enough intensity variation, it gives inaccurate result due to low

signal to noise ratio. On the other hand, if window is large, it includes a region where

the disparity varies or discontinuity of disparity happens, then the result becomes

erroneous due to different projective distortions in the left and right images. Pixels

those are close to a disparity discontinuity require windows of different shapes to

B

f f

Left image Right image

x

y

z

Optimal Algorithms for Stereo Correspondence Estimation

4

avoid crossing the discontinuity. Therefore, different pixels in an image require

windows of different shapes and sizes. To overcome this problem, many researchers

proposed adaptive window techniques using windows of different shapes and sizes [4-

7]. In adaptive window technique, it requires comparing the window costs for

different window sizes and shapes, so the computation time is relatively higher than

that of fixed window-based technique. For example, in [6] and [7] the authors used a

direct search over several window shapes to find that one, which gives the best

window cost. Beside gray scale stereo images, the use of color stereo images brings a

substantial gain in accuracy with the expense of computation time [8].

New approaches are introduced every year. But none of them are still now perfect for

stereo matching algorithm in real sense. Some special applications, like autonomous

vehicle and robot navigation, virtual reality and stereo image coding in 3D-TV,

require a very fast estimation of dense stereo correspondence. It was aimed that the

pruning technique was useful in such situations for speedy determination of dense

disparity [9].

 The Two-Stage Approximation (TSA) method showed in such situations for speedy

determination of dense disparity [10]. But its accuracy as well as visual quality of

dense map was very poor. At present the researcher trying to pursue real-time

execution speed and better accuracy.

Fig. 1.2 Graphical illustration of window cost calculation.

To determine the correspondence of a pixel in the left image using equation (1.2),

(1.3) or (1.4) is computed window costs (WC) for all candidate-pixels in the right

Introduction

5

image within the search range. The computational window costs are presented by Fig.

1.2 within the search range from –dmax to +dmax along the x axis. Only eight window

costs (WC1…WC8) are shown within the specified search range for simplicity and

better understanding, practically it is more than this. The pixel in the right image that

gives the best window cost is considered as the corresponding pixel in the left image.

Suppose the reference pixel P(x, y) in the left image is matched with the pixel P′(x, y)

in right image. Therefore, the minimum window cost is finalized at WC7. Since the

difference from original position to matching position is six (6) pixels, therefore the

disparity is 6.

A constraint in the stereo matching is that the corresponding pixels should be close in

color or intensity [9-10]. Based on this constraint, we proposed and implemented four

new methods in this research work. All the methods are original, where it is not

necessary to compute the window costs of all candidate-pixels in the right image

within the search range. A problem with window-based matching is that, the window

size must be large enough to include enough intensity variation for matching but

small enough to avoid the effects of projective distortion.

In this chapter, comparative performance analysis of existing stereo matching

algorithms is explored in details. All stereo matching algorithms are classified into

two categories [11-12]. First one is named as local method while the second one is

global method. The algorithms taken consideration in literature are analyzed by

frame-rate, accuracy and disparity range. Experimental results applied on different

image sizes and different image sets (Tsukuba Stereo pair, Sawtooth stereo pair, Map

Stereo pair and Venus Stereo pair) are also presented. Some neural network and

automata based latest algorithms are analyzed. Besides these, some algorithms are not

fallen into above mentioned categories are also discussed in details within the

literature review section. Critical analyses of recent related works are discussed in last

portion of literature review section.

1.2 Literature Review

Many researchers worked on a dense two-frame stereo in many ways. They try to

optimize the dense disparity in locally or globally on a stereo pair. So, the dense

matching algorithms are divided into local and global ones [11]. The best

classifications have been presented by Scharstein and Szeliski [12] and many new

Optimal Algorithms for Stereo Correspondence Estimation

6

methods have been proposed here. Local methods are also known as area based stereo

matching that can perform better frame-rate compare to global methods. According to

this, disparity is being calculated at a point in a fixed window. Global methods are

also known as intensity or energy based stereo matching that can perform better

accuracy compare to local methods. In this method, the global cost function is

reduced to minimum as possible. This cost function synthesizes image data and

smoothness terms. Because of increasing the computational power, some algorithms

that results dense map became very popular in the recent decade. That is why dense

disparity is more interested research area than spare disparity results.

1.2.1 Local Methods

Local methods provide good results and show speedy performance. Disparity has

been calculated from color stereo images [8]. Sum of Absolute Difference (SAD)

technique is used for RGB color image and a fast median filter uses to result in [8]. Its

scanning frame-rate is 20 fps for 160 × 120 image size. The method is suitable for

real-time application. A Fast Area Based (FAB) stereo matching algorithm has been

introduced by L. D. Stefano et al. [13]. As it is a unidirectional searching, it is also

referred as Single Matching Phase (SMP). Based on uniqueness constraint, it rejects

previous matches as soon as better result is detected. It also uses SAD technique for

error function, but any technique could be used. This method results a dense disparity

map in real-time. It performs 39.59 fps frame-rate for 320 × 240 image size and 16

disparity levels and the root mean square (r.m.s.) error for Tsukuba pair is 5.77.

Shaped based stereo matching is reported in [14], where shape of the target is

depicted by the algorithm. It demonstrates the importance of the horizontal and

vertical slanted surfaces. The authors propose the replacement of the standard

uniqueness constrain referred to pixels with a uniqueness constraint referred to line

segments along a scanline. In this method interval matching is performed instead of

pixel matching. Matching factor is performed based on the absolute intensity

difference and the stretching factor is obtained. The object is also achieved by

minimum segmentation. The experimental results show that 1.77%, 0.61%,3.00% and

7.63% errors for the Tsukuba , Sawtooth, Venus and Map stereo pair respectively.

The execution speed of the algorithm varies from 1 to 5 seconds on 2.4 GHz

processor.

Almost real-time performance method is reported in [15] presented by Yoon et al. It

Introduction

7

uses SAD method and a left-right consistency check. This method is able to find out

the errors in the problematic regions are reduced using different sized correlation

windows. Accordingly, a median filter is used in order to interpolate the results. The

algorithm can process 7 fps for 320 × 240 pixels images and 32 disparity levels. The

result has been justified by using an Intel Pentium 4 at 2.66 GHz Processor.

Table 1.1: Comparative study of local algorithms of earlier trends.

Author’s

Name

Published

Year
Method

Frame-rate

 (in fps)

Image

Size

Disparity

Levels

Computational

Platform

Muhlmann

et al.[8]
2002 SAD 20 160×120 N/A

Processor:P3

Speed:800MHz

RAM: 512 MB

Di Stefano

et al.[13]
2004 SAD 39.59 320×240 16

Processor:P3

Speed:800MHz

RAM: 512 MB

Yoon et al.[15] 2005 SAD 7 320 ×240 32
Intel Pentium 4

2.66GHz

Ogale and

Aloimonos[21]
2005 SAD 1 384 ×288 16

Processor:P3

Speed:2.4 GHz

Binaghi

et al.[26]
2004 ZNCC 0.024 284× 216 30

Processor:P3

Speed:300MHz

Yoon and

Kweon[27]
2006 SAD 0.016 384× 288 16 AMD 2700+

Zach, Karner

and Bischof[28]
2004 SAD 50 256 × 256 88

ATI Radeon

9700 Pro

Mordohai and

Medioni[48]
2006 NCC 0.002 384 ×288 20

Intel Pentium

2.8MHz

The use of Cellular Automata (CA) is presented in [16]. This work presents

architecture for real-time extraction of disparity maps. The proposed method can

process 1Mpixels image pairs at more than 40 fps. The key idea behind the algorithm

relies on matching pixels of each scan-line using a one-dimensional window and the

SAD matching cost. According to the method a pre-processing mean filtering step and

a post-processing CA based filtering one are employed. CA’s are models of physical

systems, where space and time are discrete and interactions are local. They can easily

handle complicated boundary and initial conditions. In CA analysis, physical

processes and systems are described by a cell array and a local rule, which defines the

new state of a cell depending on the states of its neighbors [17].

A window-based method is presented in [18] that use different support-weights. The

support-weights of the pixels in a given support window are adjusted based on

Optimal Algorithms for Stereo Correspondence Estimation

8

geometric proximity and color similarity to reduce the image ambiguity. The frame-

rate for the Tsukuba image pair with a 35 × 35 pixels support window is about 0.016

fps on an AMD 2700+ processor. The error ratio is 1.29%, 0.97%, 0.99%, and 1.13%

for the Tsukuba, Sawtooth, Venus and Map image sets respectively. The experimental

results can be further improved through a left-right consistency checking. A novel

method has been introduced in [26]. This method uses zero mean normalized cross

correlation for matching, it also uses neural model that uses least-mean-square delta

rule for training. Proper window size and shapes are selected by the neural network

for each considering region. The results obtained by the network are better but the

computational costs are not suitable for real-time applications.

1.2.2 Global Methods

In a global algorithm, the disparity of every single pixel is calculated by taking into

consideration the whole image. Global optimization methodologies involve

segmentation of the input images according to their colors. The accuracy of the global

methods is very high but the computational costs are also high due to repetitive

comparisons.

The research work presented in [18] based on unified framework that supports the

fusion of any partial knowledge such as matching features and surfaces about

disparities. Accordingly, it combines the results of edge, corner and dense stereo

matching algorithm to act as a guide points to the standard dynamic programming

method. The result obtained by fully automatic dense stereo system is up to four times

faster and greater accuracy compared to that obtained by using dynamic

programming. A method based on the Bayesian Estimation theory with a prior

Markov Random Fields model for the assigned disparities is described in [19].

According to this method, the continuity, coherence, occlusion constraints and the

adjacency principles are taken into consideration. The optimal estimator is computed

using a Gauss-Markov random field model for the corresponding posterior marginal,

which results in a diffusion process in the probability space. The results are accurate

but the algorithm is not suitable for real-time applications, since it needs a few

minutes to process a 256 × 255 stereo pair with up to 32 disparity levels, on an Intel

Pentium III running at 450 MHz. Image color segmentation is reported in [20]. By

this method disparity map is calculated using an adapting window-based technique.

The segments are combined in larger layers iteratively. A global cost function is used

Introduction

9

to optimize the segments to layers. The quality of the disparity map is measured by

warping the reference image to the second view and comparing it with the real image

and calculating the color dissimilarity. For the 384 × 288 pixel of Tsukuba and the

434 × 383 pixel of Venus test set, the algorithm produces results at 0.05 fps frame-rate

and needed 20 seconds to produce results. For the 450 × 375 pixel Teddy image pair,

the running frame-rate decreased to 0.01 fps due to the increased scene complexity.

Running speeds refer to an Intel Pentium 4, 2.0 GHz processor. The root mean square

error was 0.73 for the Tsukuba, 0.31 for the Venus and 1.07 for the Teddy image pair.

Table 1.2: Comparative study of global algorithms of earlier trends.

Author’s

Name

Published

Year

Applied

Method

Frame-rate

 (in fps)

Image

Size

Disparity

Levels

Computational

Platform

Gutierrez and

Marroquin[19]
2004

Gauss-

Markov

random

field

0.017 256×255 32
Processor:P3

Speed:450MHz

Bleyer and

Gelautz[20]
2005

Global cost

function
0.05 384×288 16

Processor:P4

Speed:2.0 GHz

Ogale and

Aloimonos

[21]

2005

Left-right

diffusion

process

0.5 384×288 16
Intel Pentium 4

Speed: 2 GHz

Veksler et

al.[49]
2006 Graph cuts 1.04 434×383 20

Processor:P4

Speed:2.6 GHz

Hong and

Chen[50]
2004 Graph cuts 0.33 384×288 16

Processor:P4

Speed:2.4 GHz

Kim et al.[51] 2005 DP 0.23 384×288 16
Intel Pentium 4

Speed: 2 GHz

Wang et

al.[52]
2006 DP 43.5 320×240 16

3.0GHz CPU –

ATI Radeon

XL1800 GPU

Lei et al.[53] 2006 DP 0.1 384×288 16
1.4 GHz Intel

Pentium M

An algorithm which is focused on achieving contrast invariant stereo matching [21]. It

depends on multiple spatial frequency channels for local matching. The global

solution is determined by a fast non-iterative left-right diffusion process. Occlusions

are found by imposing the uniqueness constraint. The algorithm can perform

significant changes in contrast between the two images and can handle noise in one of

Optimal Algorithms for Stereo Correspondence Estimation

10

the frequency channels. The algorithm has been justified on standard image pairs and

needs 2 to 4 seconds to process.

Another algorithm that generates high quality results in real-time is reported in [22].

This algorithm is based on the minimization of a global energy function comprising of

a data and a smoothness term. The propagation iteratively optimizes the smoothness

and it achieves fast convergence by removing redundant computations. For real-time

operation authors take advantage of the parallelism of graphics hardware.

Experimental results indicate 16 fps processing frame-rate for 320 × 240 pixel self-

recorded images with 16 disparity levels.

1.2.3 Other Methods

Besides the two above mentioned methods there are also some methods producing

dense disparity maps. Continuous Wavelet Transform (CWT) reported in [23] can be

placed in neither of previous categories. It makes use of the redundant information

that results from the CWT. Using 1D orthogonal and bio-orthogonal wavelets as well

as 2D orthogonal wavelet the maximum matching rate obtained is 88.22% for the

Tsukuba pair.

An algorithm based on non-uniform rational B-splines (NURBS) curves presented in

[24]. The curves replace the edges extracted with a wavelet-based method. The

NURBS are projective invariant and so they reduce false matches due to distortion

and image noise. Stereo matching is then obtained by estimating the similarity

between projections of curves of an image and curves of another image. A 96.5%

matching rate for a self-recorded image pair is reported for this method. Daniel

Scharstein el at. [25] reported in High-Resolution Stereo Datasets with Sub-pixels

Accurate Ground Truth to find high resolution thirty-three stereo datasets of static

indoor scenes with highly accurate ground-truth disparities. The system includes

novel techniques for efficient 2D sub-pixels correspondence search and self-

calibration of cameras and projectors with modeling of lens distortion.

1.2.4 Related Works in Recent Trends

The matching costs related recent works are stated in [29] and [30]. The authors used

bilateral filter to determine the cost aggregation and in order to reduce the

computational cost, they also limit the label space. The work in [31] can be

Introduction

11

considered as a cost aggregation method by guided image filter. The average runtime

[31] of the four standard Middlebury datasets (including Tsukuba, Venus, Teddy and

Cones data sets) is 960 milliseconds reported in [34]. So the run time of single image

pair like Tsukuba or Venus is about 240 milliseconds only. Disparity Space Image

(DSI) structure and gradient information has been combined as a new technique is

first time introduced by Nadia Baha and Slimane Larabi [32]. They used DSI

technique with adaptive window-support. Another approach is introduced by

themselves as DSI with refinement. The experimental results take time 0.2 second and

0.39 second respectively to process Tsukuba head image pair with different approach.

A new geodesic O(1) filter is employed in [33] for the reliable disparity propagation.

Such type of filter is very effective for the cost matching. As it is state-of-the-art

method and the speed of this method has been justified on the Middlebury standard

datasets, so we can compare this paper to our proposed methods. Xun Sun et al. [33]

performed the experiment on PC equipped with a 3.0 GHz Intel Core i-5 CPU, 8 GB

of memory and a Geforce GTX 580 graphics card. The processing time on

Middlebury standard dataset is only 9 milliseconds.

A cost aggression has been adaptively estimated on a tree structure derived from the

stereo image pair to preserve depth edges. This latest idea is launched by Q. Yang

[34] in which shortest distances measure the similarity between two pixels on the tree.

The average runtime of the four standard Middlebury datasets (including Tsukuba,

Venus, Teddy and Cones data sets) is about 90 milliseconds using the tree filtering

method. But he mentioned in same section that the runtime is about 7 milliseconds on

average on the Middlebury datasets. For identical comparison to our proposed

methods we consider his second result that takes 7 milliseconds on average on the

Middlebury datasets. Q. Yang tested his experiment on a MacBook Air laptop with a

1.8 GHz Intel Core i-7 CPU and 4 GB memory. Another recent method achieves

state-of-the-art result on Middlebury stereo datasets that performs stereo matching as

a two steps energy-minimization algorithm [35]. The running time of this method is 3

seconds only for Tsukuba dataset and 20 seconds for Teddy dataset on a computer

containing an Intel Core i-5-4300U 1.9-GHz CPU and a 6-GB RAM. Semi-global

matching and cost is refined by cross-based aggression has been introduced by J.

Zbontar et al. [36]. They also use left-right consistency check to eliminate the errors.

The experiment performs on KITTI stereo datasets. At very recent, Fusing Adaptive

Optimal Algorithms for Stereo Correspondence Estimation

12

Support Weights has been launched by Wenhuan Wu et al. [37]. Local and global

support windows are used for each pixel in [37]. Self -guided cost aggression [38] has

been determined by deep learning method that depends on two sub-networks. A

pyramid stereo matching network [39] also consists of two modules based on pyramid

and 3D CNN that have been tested on KITTI 2012 and 2015 datasets. Adaptive

Weighted Bilateral Filter [40] is used as main filter at cost aggression step for edge

preserve factor.

With the above reviews we found that some researchers employed adaptive window-

based techniques to calculate the matching costs. But in our proposed methods, we

have employed self-adaptive, self-guided, or two-dimensional computing functions to

calculate the matching costs dynamically. This is one of the distinguishable

innovative ideas between our proposed methods and existing state-of-the-art methods.

The computational cost calculation formula used in above-mentioned methods is

similar to that of our proposed methods, but the search technique is very different.

Besides these analysis, the work in [33] requires preprocess and the works in [32],

[34] and [36] need post processing steps like refinement, filtering and histogram

equalization. Our proposed methods are implemented without preprocessing and post-

processing. The experimental dense disparity maps are directly eligible to compare

with ground truth dense disparity. So, considering the adaptive similarity, mode of

guidance, identical stereo datasets (Middlebury Standard datasets) and hardware

platforms, we can consider the articles of [9], [13], [28], [32], [33], [34], [35], [37],

[38] and [39] to compare between the state-of-the-art methods and our proposed

methods.

1.3 Stereo Matching Standard Datasets

Most of the stereo matching experiments are tested on standard datasets of stereo

images. Such types of standard stereo images are Middlebury Standard Stereo Images

[12] and [41]. The researchers who wish to work in stereo image processing must

have to work with these standard images and should compare their experimental

results with respective ground truth image. There are some others online stereo

benchmarks, they are:

 Robust Vision Challenge

 KITTI Stereo 2012 evaluation

 KITTI Stereo 2015 evaluation

http://www.robustvision.net/
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

Introduction

13

 ETH3D 2-view stereo benchmark

 Heidelberg HD1K Stereo benchmark

Fig. 1.3 Middlebury Standard Stereo Images of Different Datasets.

Fig. 1.3 demonstrates the Middlebury Standard Stereo Images only. But Middlebury

benchmark is categorized on five types of datasets.

 Stereo

 Mview

 MRF

 Flow

 Color

The experimental results of this research are tested and compared on -

1) Middlebury Standard Stereo Images of different datasets and

2) Middlebury Optical flow datasets.

Tsukuba, Sawtooth and Venus reference image (Left image) and their ground truth

are illustrated below for visual understanding. Middlebury 2001 datasets consists of

six datasets (Sawtooth, Venus, Bull, Poster, Barn1, Barn2) of piecewise planar scenes

[12]. Middlebury standard 2003 datasets consist of two datasets (Cones, Teddy) with

ground truth obtained using structured light. 2006 datasets comprise with 21 datasets

(Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots, Lampshade1-2, Midd1-2,

Monopoly, Plastic, Rocks1-2, Wood1-2), is obtained using the technique of high-

accuracy stereo depth maps using structured light and published in [41].

https://www.eth3d.net/low_res_two_view
http://hci-benchmark.org/stereo
https://vision.middlebury.edu/stereo/data/scenes2003/
https://vision.middlebury.edu/stereo/data/scenes2006/
http://www.cs.middlebury.edu/~schar/papers/structlight/
http://www.cs.middlebury.edu/~schar/papers/structlight/

Optimal Algorithms for Stereo Correspondence Estimation

14

 (a) (b)

Fig. 1.4 (a) Left image of Tsukuba stereo pair. (b) Ground truth image.

(a) (b)

Fig. 1.5 (a) Left image of Sawtooth stereo pair. (b) Ground truth image.

(a) (b)

Fig. 1.6 (a) Left image of Venus stereo pair. (b) Ground truth image.

1.4 Inaugurated Motivation

Window-based stereo correspondence estimation technique is widely used due to its

efficiency and ease of implementation [9]. In a fixed window-based system a pixel

might be compared repeatedly within several windows that lead to increase the

computational time, which is relatively high. Fig. 1.7 shows the redundant

comparisons area of two neighbor pixels of (x, y) and (x1, y1). The pixels of the

Introduction

15

overlapping area (redundant area) are compared both for the center pixels (x, y) and

(x1, y1). So, the computational time is calculated two, three or more times (depends on

window size) higher than that of the actual time.

Fig. 1.7 The redundant area of neighbor pixels [(x, y) and (x1, y1)].

First search performs on the candidacy nine pixels enclosed by first rectangular large

window. Second search occurs on the candidacy nine pixels enclosed by second

rectangular large window pixels, delayed by just one pixel along the x axis. So the

redundant six pixels of overlapping area centered by the co-ordinate pixels (x, y) and

(x1, y1) will participate both in first and second window cost calculation processes.

These redundant calculations are firstly explored in our research and we resolve this

problem by inventing some novels and original stereo matching algorithms which are

explained in subsequent chapters.

1.5 Research Objectives

The objectives of this thesis are to develop an optimal algorithm to determine the

stereo correspondences from the standard stereo images for real-time application. The

goal of the desired algorithm should be fast, robust and accurate. The system should

be performed on simple hardware platform without any requirement of parallel

processing or Graphics Processing Unit (GPU).

In order to achieve the destination, we developed four algorithms on trial and error

basis and invent the optimal one.

Redundant Area

1
st
 Search

for (x, y)

2
nd

 Search

for (x1, y1)

(x1, y1) (x, y)

Optimal Algorithms for Stereo Correspondence Estimation

16

The method should employ the standard window cost techniques like SSD, SAD or

NCT. But most of the state of the works used SAD, so it should use the same for

identical comparisons. The system should be tested on standard benchmark data like

Middlebury or KITTI stereo datasets.

The system should work on dense disparity based idea. At first the method calculates

the window costs which is presented in this chapter in Section 1.1 with Figure 1.2.

The system should be able to find out the minimum distance between reference pixel

and corresponding pixels of minimum window cost. The invention of minimum

window cost techniques are proposed in Chapter 2, Chapter 3, Chapter 4 and Chapter

5. The self-guided optimal algorithm for stereo correspondence estimation is

presented in Chapter 5.

Different tests should be performed on different standard datasets to evaluate the

performance of the system based on computational cost and accuracy. The system

should be tested on Middlebury standard stereo datasets of 2001, 2003 and 2006. The

system should be also tested on latest Middlebury optical flow datasets.

The system should be performed better than previous related researches with respect

to computational time, frame-rate and accuracy. The proposed systems are compared

with related researches for same datasets and environment with respect to

computational time, frame-rate and accuracy.

1.6 Scope of the Work

Stereo correspondence or disparity has variety of applications, including people

tracking, robotics navigation and medical imaging. The proposed system can provide

full field of view for 3D measurements. Some of those scope and application areas of

this thesis are discussed in this section. It is also used in industrial automation and 3D

machine vision to perform task such as 3D object location and identification. The

system also can be applied in medical field for monitoring the patients and health

care.

The proposed system can be used for developing stereoscopic medical imaging

devices to realize the surgical problems accurately. By using the proposed algorithm,

stereoscopic medical devices can provide more realistic depth perception to the

viewer than conventional imaging technology. The proposed system can permit more

accurate understanding and analysis of 3D view and distance of small biological

specimens. Therefore, this system can be used to develop the stereo endoscopy and

Introduction

17

stereo microscopy that can be utilized clinically to improve the surgical accuracy and

patient safety.

The proposed SGSC algorithm can be used in the stereo imaging devices of the

military and investigative fields. An Unmanned Aerial Vehicle (UAV) is commonly

known as a drone. The visional part of UAV is performed by special camera. The

stereo vision camera plays a key role in battle field. The proposed system can be used

on UAV’s camera to measure the distance of enemies’ military vehicles and position

exactly. Similarly, the system can be used in weather analysis to know the position of

cyclone.

1.7 Organization of Doctoral Dissertation

The subsequent Chapters describe disparity estimation techniques employed for this

research in details. Chapter 2 introduces a novel method entitled as Real Time

Approximation (RTA) for stereo correspondence estimation. Some limitations of RTA

algorithm encouraged us to invent a new original algorithm called Two Dimensional

Real Time Spiral Search Algorithm (2DRTSSA) which is described in Chapter 3. The

best Self Adaptive Algorithm (SAA) is presented in details in Chapter 4. The

experimental results and performances of this algorithm have been presented

numerically and visually. The original and novel Self- Guided Stereo Correspondence

(SGSC) Estimation algorithm is the optimal algorithm of state-of-art method and is

explained elaborately with experimental results in Chapter 5. The overall conclusion

of this research has been drawn in Chapter 6.

1.8 Summary

The content of this Chapter is primarily background information for stereo

correspondence estimation. The concepts introduced in Section 1.2, the classifications

of stereo correspondence estimation approaches i.e., local techniques and global

techniques are introduced here. Their limitations are also mentioned in this section.

The subsections 1.2.1, 1.2.2, 1.2.3 and 1.2.4 focus on features and shortcomings on

earlier and recent related works. Section 1.3 introduces the image-data of Middlebury

Standard Stereo Images of different years. The eagerness of this research is described

in Section 1.4. The hierarchical developments of this research are briefly described in

Section 1.5.

Chapter 2

Stereo Correspondence Estimation Technique:

Real Time Approximation (RTA) Algorithm

Optimal Algorithms for Stereo Correspondence Estimation

19

2.1 Motivation of Real Time Approximation (RTA) Algorithm

Conventional direct search dominates the intensity levels of each candidate-pixel

within the specified search range. In direct search [9], it requires to compute the

window costs for all candidate-pixels within the search range -dmax to +dmax. This type

of algorithm is associated with high computational cost. In direct search, it requires to

calculate the all window costs i.e., the SAD values for all candidate-pixels within the

search range -dmax to +dmax. Some authors used bidirectional search or left-right

checking algorithm with a view to discard the non-matching pixels or for smoothing

the dense disparity map. This requires the doubling the computational complexity due

to the requirement of its reverse matching search [13] and [43]. The disparity

estimation algorithm using traditional direct search [9] is mentioned below.

 For each Pixel (x, y),

 for d ́ = -dmax to + dmax do

 Calculate Wc (x, y, d ́);

 end

 Find best Wc (x,y,d)  Wc(x,y,d ́);

 Disparity of (x, y) = d;

 end

In order to estimate the disparity with low cost computation, Sum of Square

Differences (SSD) or Sum of Absolute Difference (SAD) or some other measure is

computed between a window centered in the first image and the same window shifted

by in the second image. The shifting mechanism depends on the window/ mask size.

The shifting procedure does not require to determine the window cost for all

candidate-pixels in right image. This key feature is employed in proposed RTA

algorithm to reduce the computational cost. For fast and efficient computation, a

rectangular window of fixed size centered at the pixel under consideration is

employed.

2.2 Proposed RTA Method

Since the main objective of the proposed method is to reduce the computational cost

for making the system useful for real-time applications, the first step of this proposed

method is to reduce the size of rectified stereo images. The given left and right images

are being reduced in size by nine times using vector quantization method, which

ultimately helped to reduce the searching area significantly. After first step, the RTA

algorithm produces the quantized shrinked left and right image as shown in Fig 2.1.

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

20

Secondly, SAD is applied to calculate the window cost for all candidate-pixels in the

right image within the reduced search range. According to the proposed RTA method,

the experimental disparity image is estimated from shrinked left and right images. But

the conventional methods like Fast Area Based [13] stereo matching computed the

stereo correspondence directly from left and right image. Various methods can be

used for shrinking the left and right images.

Fig. 2.1 Hierarchical schematic of RTA method.

We employed vector quantization of the window averaging method for image

shrinking. Finally, we enlarge the obtained disparity image to its original size for

comparing the experimental disparity map with the ground truth image.

2.2.1 Quantization Process for Rectified Stereo Images

Shrinking process can be viewed as under vector quantization. There are many

approaches for image shrinking, for instance, to shrink an image by one-half, we

delete every other row and column. In this proposed method, images are shrinked by

window average method and consideration of a 3 × 3 window pixel as a vector. Fig.

2.2 illustrates the shrinking process. Suppose the upper image is original left or right

image and lower image is shrinking quantized-vector image. According to the

Right Image

Shrinked Right Image Shrinked Left Image

Left Image

Disparity Image

Enlarged disparity

Image

Optimal Algorithms for Stereo Correspondence Estimation

21

proposed RTA algorithm, for first window of original image, nine pixels are

converted to the first quantized pixel of quantized image, which is shown in Fig. 2.2.

The subsequent nine pixels of original image will be the second quantized pixel of

quantized shrinked image and so on. So, three times reduction occurs along the x-axis

and three times reduction occurs along the y-axis. This process results the nine times

reduced quantized-vector image which is demonstrated at the lower portion of Fig.

2.2.

Fig. 2.2 Quantization process of rectified stereo images.

2.2.2 Real Time Approximation Algorithm and Flowchart

The overview of the RTA algorithm employed for this research work is shown in the

flowchart in Fig. 2.3. The flow chart consists of three stages looping structure. In the

first stage, the given left and right images are being compressed nine times by vector

quantization of the window averaging method applying a 3 × 3 window size. Stereo

correspondence or disparity estimation is performed at the second stage by matching

windows of pixels using Sum of Absolute Differences (SAD) technique. Third stage

involves the replication processing in order to retrieve the original size of

experimentally estimated dense disparity map. This method has been experimentally

evaluated for the computation of stereo under SAD technique. It performs reasonably

good and significantly better than the methods based on window-based stereo

Average

Window

Original image

0 1 2…………………………. n-1

0

1

.

.

.

.

.

.

m-1

0 1……… (n-1)/3

0

1

.

.

(m-1)/3

Quantized-vector image

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

22

matching techniques.

Fig. 2.3 Flow chart of proposed RTA method.

Start

Calculate Quantized value

Set the Quantized value as a single

Pixel (x, y)

Are any

Window?

Calculate Wc(x, y, di)

d = +dmax ?

Disparity of (x,y)=d

Find best Wc(x, y, d)  Wc(x,y, di)

Are any
Pixel remain?

Replicate disparity map
(window_size_x*window_size_y)

Are any

Pixel?

Stop

d = -dmax++

Yes

No

Yes

Yes

No

No

Yes

No

Optimal Algorithms for Stereo Correspondence Estimation

23

Algorithm RTA (m,n,temp,temp1,w1,w2,sum1,sum2,sum,d,t0,t1,

v_left,v_right,image_left.pixel,image_right.pixel,image_disp

.pixel,ws1,ws2, k1,k2,kk1,kk2,dmax)

1. //m,n is the row and column size of an image.
2. // temp and temp1 are pixels intensity value of left and
3. // right image.
4. //w1,w2 is the row and column size of mask.
5. //sum1, sum2 and sum are the summation of pixel intensity
6. //values of left and right images within the mask
7. // image_left.pixel[1:m][1:n] is the left image pixel

8. // coordinate that contains mn number of elements.
9. //image_right.pixel[1:m][1:n]is the right image pixel

10. // Coordinate that contains mn number of elements.
11. //image_disp.pixel[1:m][1:n]is the disparity image

12. // that contains mn disparity values.
13. // v_left is the pixel intensity value of left image.
14. // v_right is the pixel intensity value of right image.
15. //k1,k2 is the number pixels to discard from left and
16. // right side of image.
17. //ws1 and ws2 are the local variable within the mask.
18. //kk1,kk2 is the number pixels to discard from left and
19. // right side of image within the mask.
20. //d and dmax is the search range.
21. // t0 and t1 are time variables.
22. for n:=0 to size_y do

23. {

24. for m:=0 to size_x do

25. {

26. // Read left and right images and assign the

27. //Intensity values in their respective array.

28. image_left.pixel[m][n]:= temp;

29. image_right.pixel[m][n]:= temp1;

30. }

31. }

32. // Creation of quantized image.

33. ws1:= (w1/2), ws2:= (w2/2);

34. for n:=kk2 to size_y-kk2 step 3 do

35. {

36. for m:=kk1 to size_x-kk1 step 3 do

37. {

38. sum1:= 0; sum2:= 0;// initialization.

39. for i:=-1 to ws1 do

40. {

41. for j:=-1 to ws2 do

42. {

43. v_left:=image_left.pixel[m+i][n+j];

44. v_right:= image_right.pixel[m+i][n+j];

45. sum1:= sum1+ v_left;

46. sum2:= sum2+ v_right;

47. }

48. i:=sum1/(w1*w2); j:= sum2/(w1*w2);

49. write(“quantized values of left image to 1st file”,i);
50. write(“quantized values of right image to 2nd file”,j);

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

24

51. }

52. }

53. // read the quantized images.

54. for n:=0 to size_y1 do

55. {

56. for m:=0 to size_x1 do

57. {

58. image_left.pixel[m][n]:= temp;// scan the quantized

59. //images using different file pointers

60. image_right.pixel[m][n]:= temp1;

61. }

62. }

63. t0:= clock();

64. // Window cost calculation process using SAD

65. for m:=k1 to size_x-k1 do

66. {

67. for n:=k2 to size_y-k2 do

68. {

69. for d:= -dmax to +dmax do

70. {

71. sum:= 0;

72. for i:= - ws1 to ws1 do

73. {

74. for j:= -ws2 to ws2 do

75. {

76. v_left:= image_left.pixel[m+i][n+j];

77. v_right:= image_right.pixel[m+i+d][n+j];

78. sum:= sum+abs(v_left - v_right);

79. }

80. }

81. Mtemp[d + dmax].pixel[m][n]:= sum;

82. }

83. image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1,&p);

84. }

85. //creating replicated dense disparity map.

86. for n:=0 to size_y1-2*k2 do

87. {

88. for m:=0 to size_x1-2*k1 do

89. {

90. Write(“Values", pixel[m][n], pixel[m][n],pixel[m][n]);

91. }

92. for m:=0 to 116 do

93. {

94. Write(“Values", pixel[m][n], pixel[m][n], pixel[m][n]);

95. }

96. for m:=0 to 116 do

97. {

98. Write(“Values", pixel[m][n], pixel[m][n], pixel[m][n]);

99. }

100. }

Optimal Algorithms for Stereo Correspondence Estimation

25

101. t1:= clock();

102. cpu_speed:= t1 - t0; // time calculation.

103. write("Total time",cpu_speed);

 Algorithm minimum (temp[2*dmax+1],x,y,a,ws,*p)

1. // Find the minimum value from temp[0:2*dmax+1] elements

2. // x, y, i, j, mu, a, min are the integer variables.

3. //*p is the pointer variable.

4. j:=1;

5. for i:=0 to 2*dmax+1 do

6. {

7. if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

8. j:= i;

9. }

10. min:= temp[j].pixel[x][y];

11. for a:=0 to 2*dmax+1 do

12. {

13. if(aj and temp[a].pixel[x][y] = min)then

14. {

15. *p+=1;

16. break;

17. }

18. }

19. mu:= abs(j-dmax);

20. return (mu);

21. }

2.3 Experimental Settings and Results

The accuracy and frame-rate of this algorithm has been justified over Middlebury

standard stereo images of Tsukuba head . Experiments are performed on Intel Core i-

3, 2.3 GHz processor PC with 4 GB DDR3 RAM. The algorithm has been

implemented by Visual C++ programming language with Windows 10 operating

system. Table 2.1 illustrates the summary of comparison between window-based Fast

Area Based method [13] and proposed RTA method. The computational time of RTA

method is shown in Table 2.1 using window size of 3  3 without any threshold.

From this table, it reveals that for the same resolution of image(384 ×288), the

proposed RTA method reduced 93.71 % of computational time. The Fig. 2.4 and

Fig. 2.5 show the Tskuba head of left and right images view. The Fig. 2.6 and Fig.

2.7 illustrate the shrinked images of left and right respectively after applying

quantization technique. Fig. 2.8 shows the disparity image that is experimentally

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

26

estimated from left and right image applying RTA method. The Fig. 2.9 shows the

replicated image of experimental disparity image. Experimental disparity images of

Fig. 2.8 and Fig. 2.9 are histogram equalized for visualization purpose.

Fig. 2.4 Left image 384 ×288. Fig. 2.5 Right image 384 ×288.

 Fig. 2.6 Shrinked left image 128 × 96. Fig. 2.7 Shrinked Right image 128 × 96.

Fig. 2.8 Estimated disparity image 116 × 84.

Fig. 2.9 Replicated disparity image 348 × 252.

The size of the left and right image is (width × height) = (384 × 288) pixels, the

shrinked image size is (width × height) = (128 × 96) pixels, disparity image size is

(width × height) = (116 × 84) pixels and replicated image size is (width × height) =

(348 ×252) pixels.

Optimal Algorithms for Stereo Correspondence Estimation

27

Table 2.1: Computational time reduction (%) compare to window-based method.

Applying

Method’s Name

Accuracy

(in %)

Computational time

(in µs)

Computational

time reduction

(in%)

Fast Area Based

Algorithm[13]
86.10 3229 0

RTA method 30.00 203 93.71

Table 2.2: Accuracy of RTA Algorithm

Reference

image

name

Ground Truth

Image

Experimental Dense Disparity

Map

Estimated

Accuracy

Tsukuba

Head

30%

Venus

20%

From the above experimental results it is seen that the computational time of RTA

method is sharply reduced to only 203µs compared to 3229 µs. The processing time

reduction is due to the following reasons:

1) Image shirking.

2) Reduced window size (3×3 instead of 11×11).

Though the processing time reduction is very high, the accuracy of this method is

only 30%. Table 2.2 demonstrates the estimated accuracy of Middlebury standard

stereo datasets of Tsukuba and Venus stereo pair. The experimentally estimated

accuracy of Tsukuba head is 30% and accuracy of Venus stereo pair is only 20%. This

is happened in shrinking process because nine pixels are quantized at a single pixel.

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

28

So, eight (8) pixels might lose some intensity attributes. Beside this some accuracy

has been lost during the replication process. This is only shortcoming of proposed

RTA algorithm. Since the computational time reduction is very good, the RTA

algorithm can be used where a very fast estimation of dense disparity is essential.

2.3.1 Experiment on Real Stereo Images by RTA

The performances of RTA algorithm have been further justified on real stereo images

acquisitioned by Logitech stereo web camera. This experiment is performed in our

software laboratory and images were captured as indoor scenes. The specifications of

stereo camera are listed below-

Brand: Logitech C270 Webcam

Country of Origin: Switzerland

Sensor Resolution (MP) - 3MP, Video Resolution (Pixel) - 1280 720, Frame Rate -

30fps. Diagonal Field of View 55.

Stereo Image Capturing Process:

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of

reference images were stood 63.00 cm away from the imaging sensor of the camera.

The distance between two cameras was 6.70 cm.

a) Real image acqusition using stereo web camera for dataset-1(Human face).

Optimal Algorithms for Stereo Correspondence Estimation

29

b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand).

c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand).

Fig. 2.10 Real image acqusition process using stereo web camera.

Experimental output for Real Stereo Images:

The size of the left and right real-image is (width × height) = (550 × 720) pixels, the

shrinked image size is (width × height) = (183× 240) pixels, disparity image size is

(width × height) = (171 × 228) pixels and replicated image size is (width × height) =

(514 ×684) pixels.

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

30

Table 2.3: Visual observation of disparity map of real images generated by RTA

algorithm

Reference image Experimental Dense

Disparity Map of Real

Image

Execution

time(s)

813

828

859

Optimal Algorithms for Stereo Correspondence Estimation

31

Table 2.3 demonstrates the visual observation of dense disparity maps. The Table 2.3

illustrates the dense disparity maps of three datasets - Human face, Nescafe coffee

stand and Scotch tape stand respectively. The visual qualities of these disparity maps

are not good. But the object inside the reference image is visualized and

understandable. The disparity maps of output image contain some noise. This is

happened due to the following three reasons-

1) We could not provide the equilibrium light condition in our laboratory and hence

the mask does not cover enough intensity variation. So the method gives

erroneous result due to low signal to noise ratio.

2) Similarly the room temperature was not equilibrium at all the point during the

image acquisition process.

3) Moreover, we have tried to our best to calibrate the stereo camera physically. The

stereo cameras were manually placed on the same horizontal line, but

experimentally, it was not possible. There was a vertical mismatch between two

cameras in fractional millimeter (.05 mm approximately) range.

 These cause to add a little noise in captured stereo images. Inspite of noise, the

objects are demarked, visualized and understandable. So the overall performance of

RTA algorithm is good in case of real stereo images.

2.4 Discussion

Experimental results confirm that we can easily reduce the computation time of about

93.71%. Though the accuracy is poor because of quantization error, but the RTA

method will be useful for many applications where a very fast estimation of dense

disparities is essential.

2.5 Summary

The material of this Chapter establishes on our first original method for disparity

estimation. The main objective of this method was to reduce the computational cost

and make the system useful for real-time applications. The concepts behind RTA

method are described in the Section 2.2 at subsection 2.2.1. The quantization process

which was an important technique in RTA algorithm has been described in subsection

Disparity Estimation Technique: Real Time Approximation (RTA) Algorithm

32

2.2.1 of this Chapter. Flow chart and Algorithm are included in subsection 2.2.2 for

better understanding. Experimental settings and results are described in Section 2.3.

The performances of RTA algorithm have been additionally justified on real images

in subsection 3.2.1.

Chapter 3

 Stereo Correspondence Estimation Technique:

Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

Optimal Algorithms for Stereo Correspondence Estimation

34

3.1 Motivation of 2DRTSSA Algorithm

The main objective of this research was to invent the optimal algorithm for stereo

correspondence estimation, which will be the best trade-off between speed and

accuracy in local domain. Although the RTA algorithm of previous chapter had the

satisfactory computational speed but its accuracy was poor due to quantization error.

Instead of reducing the image size, we were trying to improve the inherent matching

accuracy for increasing the quality of RTA algorithm. To achieve this, two-

dimensional pixel-wise costs are improved by employing a parallel computing on two

axises, which is named as Two-Dimensional Real Time Spiral Search Algorithm -

2DRTSSA.

3.2 Proposed 2DRTSSA

The innovative 2DRTSSA search method can be explained by using co-ordinate

geometric concept. The search ranges are outlined in Fig. 3.1 that shows the search

coordinates range (-Cxmin, -Cymin) to (+Cxmax, +Cymax) instead of using –dmax to +dmax of

one dimensional existing system. Accordingly, the proposed method is applied to

compute the window costs in two dimensionally. In first phase, first search is done

concurrently in the 1
st
 and 3

rd
 quadrants (red pixel) of right image as indicated in Fig.

3.1(a). In second phase, second search is performed in the second and fourth

quadrants (green pixel) of right image. In both cases the searching commences from

the starting point (say –Cxmin, 0) to the ending point (+Cxmax, 0) as shown in Fig.

3.1(b). Every iterative program sequence tends to reach at the origin point. Each

reference pixel of reference image (left image) is hunted in the two-axial coordinate-

points according to the above stated procedure. According to the proposed 2DRTSSA

method, each pixel of reference image is firstly compared with negative x-direction of

right image as well as positive y-direction of right image. Suppose in two cases, two

distinct disparities are determined as d1 and d2 from their respective minimum window

costs. Secondly, the same pixel is compared with positive x-direction of right image

as well as negative y-direction of right image. Let another two distinct disparities are

determined as d3 and d4 from their respective minimum costs. All the experimentally

estimated disparities {d1, d2, …d+Cxmax} are passed to the minimum cost function of

array di. Finally, disparity d is estimated from the set of elements Wc (x, y, di), i.e., Wc

(x, y, d)  Wc (x, y, di). Therefore, the stereo correspondence or disparity of a

reference pixel of left image is P(x, y)= d.

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

35

The process is then repeated for the successive pixels of reference image along the 2D

scan lines from left to right of the whole image. With the above mentioned strategy,

the proposed method avoids the repetition of redundant comparisons and false

matching, hence increases the frame-rate and accuracy.

 (a) (b)

Fig. 3.1 Illustration of 2DRTSSA search method with co-ordinate prefecture.

3.2.1 Algorithm and Flowchart of 2DRTSSA

Algorithm 2DRTSSA(m, n, temp, cid,cmin,temp1, w1, w2,

sad1,sad2,v_left,v_right,image_left.pixel,image_right.pixel,

image_disp.pixel,ws1,ws2,k1,k2,abs1,abs2,dmax,t0,t1)

1. //m,n is the row and column size of an image.
2. // temp and temp1 are pixels intensity value of left and
3. // right image.
4. //cid,cmin is the integer type variables indicate spiral
5. // distance.
6. //w1,w2 is the row and column size of the mask.
7. //sad1 and sad2 is the summation window costs
8. //values of two axes within the mask.
9. // image_left.pixel[1:m][1:n] is the left image pixel

10. // coordinate that contains mn number of elements.
11. //image_right.pixel[1:m][1:n]is the right image pixel

12. // coordinate that contains mn number of elements.
13. //image_disp.pixel[1:m][1:n]is the disparity image

14. // that contains mn disparity values.
15. // v_left is the pixel intensity value of left image.
16. // v_right is the pixel intensity value of right image.
17. //k1 ,k2 are the number pixels to discard from left and
18. // right side of image.
19. //abs1 ,abs2 difference value of left and right pixel.
20. //ws1 and ws2 are the local variable within the mask.
21. //dmax is the search range.
22. // dis counter variable.
23. // t0, t1 is the variable for time calculation.
24. for n:=0 to size_y do

25. {

-Cxmin +Cxmax

+Cymax

-Cymin

Optimal Algorithms for Stereo Correspondence Estimation

36

26. for m:=0 to size_x do

27. {

28. image_left.pixel[m][n]:= temp; // Read left image

29. image_right.pixel[m][n]:= temp1;//Read right image

30. }

31. }

32. t0:= clock();

33. // 2D Window cost calculation process.

34. ws1 := (w1/2); ws2 := (w2/2); p:= 0;

35. for m:= k1 to size_x-k1 do

36. {

37. for n:= k2 to size_y-k2 do

38. {

39. dis:= 0;

40. for cid:= -cmin to cmin do

41. {

42. sad1:= 0;

43. sad2:= 0;

44. for i:=- ws1 to ws1 do

45. {

46. for j:= -ws2 to ws2 do

47. {

48. if(((m+i+cid*2)>= 0) and ((m+i+cid*2)< size_x))then

49. {

50. v_left:= image_left.pixel[m+i][n+j];

51. v_right:= image_right.pixel[m+i+cid*2][n+j];

52. v_left1:= v_left;

53. v_right1:= image_right.pixel[m+i][n+j+cid*(-2)+1];

54. abs1:= v_left - v_right;

55. abs2:= v_left1 - v_right1;

56. if(abs1 < 0) then abs1:= -1*abs1;

57. if(abs2 < 0) then abs2:= -1*abs2;

58. sad1:= sad1 + abs1;

59. sad2:= sad2 + abs2;

60. }

61. }

62. }

63. // Select the minimum window cost.

64. if(sad1 <= sad2)then

65. Mtemp[dis++].pixel[m][n]:= sad1;

66. else

67. Mtemp[dis++].pixel[m][n]:= sad2;

68. }

69. // Find the best window cost using minimum function.

70. image_disp.pixel[m][n]:= 2*minimum(Mtemp,m,n,ws1,&p);

71. }

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

37

72. }

73. t1:= clock();

74. cpu_speed:= t1 - t0; // time calculation.

75. write("Total time",cpu_speed);

76. // Creating the dense disparity map.

77. for n:= k1 to size_y-k1 do

78. {

79. for m:= k2 to size_x-k2 do

80. {

81. write(“dense disparity

image",image_disp.pixel[m][n]);

82. }

83. }

 Algorithm minimum (temp[2*dmax+1],x,y,ws,*p)

1. // Find the minimum value from temp[0:2*dmax+1]elements

2. // x, y, i, j, mu, a, min are the integer variables.

3. // p is the pointer variable.

4. { j:=1;

5. for i:=0 to 2*cmin+1 do

6. {

7. if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then

8. j:= i;

9. }

10. min:= temp[j].pixel[x][y];

11. for a:=0 to 2*cmin+1 do

12. {

13. if(aj and temp[a].pixel[x][y] = min)then

14. {

15. *p+=1;

16. break;

17. }

18. }

19. abs11:= j-cmin;

20. mu:= (abs11<0)?(-1*abs11):abs11;

21. return (mu);

22. }

23. }

The key idea of this algorithm is that, the search is divided into two axial regions

which are well defined in step 48. One cost aggression is estimated along the x-axis

on photometric point ((x + Cid * 2), y) while the other cost aggression is estimated

along the y-axis on photometric point (x, (y + Cid * (-2) + 1)).

Optimal Algorithms for Stereo Correspondence Estimation

38

Fig. 3.2 Flow chart of 2DRTSSA algorithm.

Yes

No

Yes

No

Start

Set the image value in an array

For each pixel (x,y)

Cid <= +Cmax?

Calculate the window cost of positive x axis

Calculate the window cost of negative y axis

Calculate the minimum window costs from

d1 and d2
Wc(x, y, di) = min(d1, d2)

Find the best Wc(x, y, d)  Wc(x, y, di)

For each pixel (x,y)
Cid <= +Cmax?

Calculate the window cost of negative x axis

Calculate the window cost of positive y axis

Calculate the minimum window costs from

d3 and d4
Wc(x, y, di) = min(d3, d4)

Find the best Wc(x, y, d)  Wc(x, y, di)

Disparity of (x, y)= d

Stop

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

39

Two axises are selected simultaneously by the expression in the third bracket in steps

51 and 53. The proposed method searches a reference pixel on two probable spaces at

a time within a finite range Cid. On the contrary, the existing state-of-the-art

algorithms search a reference pixel only one space at a time. Therefore, this idea

makes the proposed method faster than existing methods.

The concept of 2DRTSSA is illustrated in flowchart of Fig. 3.2 for better

understanding. The flow chart consists of two looping structures. In the first loop, it

computes the window costs of positive x and negative y axis simultaneously.

Secondly, the 2DRTSSA method measures the window costs on remaining negative x

and positive y axis concurrently. Final disparity is the minimum window cost among

the four window costs of x and y axis of a pixel (x, y). The process is then repeated for

the successive pixels of reference image along the scan line from left to right of the

whole image. This method has been experimentally evaluated for the computation of

stereo correspondence under SAD technique.

3.3 Computational Complexity Analysis

The computational complexity of 2DRTSSA algorithm is O(n × w/2), where n is the

total number of candidate-pixels and w is the window size of mask. Two matching

costs are estimated two different co-ordinates (x and y) at the same time. The main

idea of this method is to reduce the window cost by around 50%. These two

simultaneous window cost calculations executed per instruction cycle. That is the

main reason of reducing the computational time of this method. The required memory

depends only the size of n i.e., it directly proportional to image size. It apparently

seems that it requires more memory space for two window costs at a time. But

actually, the proposed algorithm compares instantly two window costs, selects the

minimum one, and discards the other. The total run time for the Tsukuba head image

pair is 4480 µs in 2DRTSSA whereas 5844 µs in 1DRTSSA on the same hardware

(Intel Core i-3, 2.3 GHz processor with 4 GB DDR3 RAM).

3.4 Experimental Settings and Results

The experiments were done on Middlebury standard stereo images of Tsukuba head

stereo pair. The computational time, frame-rate and accuracy of the proposed

algorithm have been compared with the Middlebury standard articles. The

experimental dense disparity maps are estimated from left and right images applying

Optimal Algorithms for Stereo Correspondence Estimation

40

2DRTSSA is shown in Fig. 3.5 to Fig. 3.10. Standard dense disparity of ground truth

image is shown in Fig. 3.11. Experiments were performed on Intel Core i-3, 2.3 GHz

processor with 4 GB DDR3 RAM computer. The algorithm is performed by Visual

C++ programming language with Windows10 operating system. To determine the

correspondence of a pixel of reference image, the window costs are estimated for the

candidate-pixels of right image within the search range -10 to +10. The experimental

results show that, the proposed algorithm is currently a better method among the

existing state-of-the-art methods. The top performer algorithms are reported in [32],

[33], [34] and [35]. All are ranked by Middlebury benchmark [42]. Consequently, we

have proved the claim by comparing the time and frame-rate with the top performer

algorithms which demonstrated in Table 3.1. The disparity maps of the Middlebury

datasets for Tsukuba head are estimated by proposed 2DRTSSA method are

illustrated in Fig. 3.3(b). Table 3.1 shows that the proposed 2DRTSSA algorithm

outperforms the present top performer algorithms [32-35]. Moreover, the proposed

method is faster than top performer algorithms. The accuracy of the proposed

algorithm for Tsukuba head is 93.8% i.e., the bad pixel in percentage with the error

threshold 2 is only 6.2%, which is almost the same of the top algorithms. Little

variation of accuracy occurs due to orientations of pixel redundancy. The

experimental results are analyzed in four phases are stated below-

 3.4.1 Observation of 3D Reconstruction and Objects Recognition of

Experimental Output

The Tsukuba stereo pair of input images contains different objects at different depth

of positions. Background and foreground objects are situated at different depth.

Almost overlapping objects are found in background of Tsukuba stereo pair those are

occlusions and poor objects. Moreover, these stereo pair also contains some special

regions like head of the statue, table lamp and video camera. These types of regions

are really difficult to separate from other objects by stereo matching process. The first

challenge was to distinguish the different depth by marking the different gray level

value of output image. Nearest object is shown by more white color and farthest

object is shown by dark grey level value or black. It is worth observing that the 3D

structure of output image has been reconstructed clearly in Fig. 3.3(b) where the face

of the statue, table lamp, video camera as well as interesting objects are recognized

easily. Consequently, the camera and its nearest objects such as face (head) of

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

41

Tsukuba, table lamp are visualized by all most white color. On the contrary, the

camera and its farthest objects such as video camera, book shelf, background wall of

Tsukuba stereo pair are reconstructed with almost black color. Object borders are

clearly recognized in estimated dense disparity image, i.e., border localization

problem of article [13] are solved by the proposed method. The object borders of

reference image are shown in Fig. 3.3(a). The output image of Fig. 3.3(b) is further

fed into the object-detection algorithm and the object borders of output image are

identified, which are illustrated in Fig. 3.3(c).

(a) (b) (c)

Fig. 3.3 Localized object borders.

The estimated dense disparity image is compared to ground truth image of Tsukuba

head. The experimental results obtained by the 2DRTSSA method on Tsukuba head

are very similar to their ground truth image. The estimated dense disparity 3D

structure is recovered and its object borders are almost correctly identified which are

given in Fig. 3.3(c). The result ensures that the similar depths are found in estimated

dense disparity, shown in Fig. 3.3(b).

3.4.2 Computational Cost Calculation and Comparison with state-of-the-

art Methods

Disparities of reference image are estimated by Sum of Absolute Difference (SAD)

technique using 2DRTSSA search algorithm without any pruning for different

window sizes. The disparities are estimated with the search range from -10 to +10.

The effects of said search are investigated with respect to computational costs and

frame-rate (in fps). The computational costs and performances of proposed 2DRTSSA

method has been compared with other state-of-the-art methods [32-35]. The

2DRTSSA’s experimental results have been compared with the result of methods

those are tested on Middlebury standard datasets. The result of ranking in Table 3.1

indicates that the proposed 2DRTSSA method is ranked 2
nd

 out of existing five state-

of-the-art methods [13] and [32-35]. It shows the second highest frame-rate 223 fps

Optimal Algorithms for Stereo Correspondence Estimation

42

and computational time 4480 µs among the top five latest methods with lower

configuration of machine. So, it can be claimed that the proposed method is currently

the state-of-the-art methods for Tsukuba head image pair with 44.64X, 2.00X, 1.56X,

and 669.64X faster than the methods of [32], [33], [34] and [35] respectively.

However, the proposed method is 1.38X slower than Fast Area Based method [13].

Table 3.1: Numerical comparison of proposed 2DRTSSA and present state-of-the-art

methods.

Method’s Name
Machine

Configuration

Computational

time

(in µs)

Frame-rate

(in fps)

Accuracy

(in %)
Rank

Fast Area Based

method[13]

2.3 GHz, Intel Core

i-3, RAM: 4GB.
3229 310 86.10 1

2DRTSSA

[Proposed]

2.3 GHz, Intel

Core i-3, RAM:

4GB.

4480 223 93.80 2

Tree filtering

[34]

1.8 GHz, Intel Core

i-7, RAM: 4GB.
7000 143 93.18 3

Edge-aware

Geodesic

filter[33]

3.0GHz, Intel Core-

i-5, Geforce GTX

card. RAM: 8GB.

9000 111 93.67 4

DSI & Adaptive

Support[32]

2.2 GHz, Core Duo,

RAM: NA.
200000 5 90.18 5

Energy

Minimization[35]

1.9 GHz, Intel Core

i-5.RAM:6GB.
3000000 0.33 92.82 6

Table 3.2: Computational time reduction (%) compare to window-based existing

methods.

Computational

Time(in µs) of

2DRTSSA method

[Proposed]

Existing state-of-the-art Methods Computational Time

Reduction (in %) by

2DRTSSA method

compared to the

methods of 2
nd

 column

Method’s Name

Computational

Time

(in µs)

4480

Fast Area Based [13] 3229 -38.74

Tree filtering [34] 7000 36.00

Edge-aware

Geodesic filter[33]
9000 50.22

The main achievement of this method is the improvement of accuracy and

computational time reduction. The 2DRTSSA achieves 93.80% accuracy. The

accuracy is enhanced by 63.80% compared to the RTA method. The recent state-of-

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

43

art method, Edge-aware Geodesic Filter [33] that takes 9000 µs for execution and our

proposed 2DRTSSA requires 4480 µs for the same resolution of Tsukuba head image.

Thus the computational time reduction is 50.22% compared to the identical local

stereo method [33], which is numerically figured out in Table 3.2.

3.4.3 Accuracy of the Proposed 2DRTSSA Method

The accuracy of this algorithm has been justified over standard stereo images of

Tsukuba head. Table 3.3 illustrates the accuracy of the proposed 2DRTSSA method

applied on Middlebury standard stereo images of Tsukuba head.

Fig. 3.4 Run time snapshot of 2DRTSSA method for accuracy.

Fig. 3.5 Dense disparity map for window size 33. Fig. 3.6 Dense disparity map for window size 55.

Fig. 3.7 Dense disparity map for window size 77. Fig. 3.8 Dense disparity map for window size 99.

Optimal Algorithms for Stereo Correspondence Estimation

44

 Fig. 3.9 Dense disparity map for window size 1111. Fig. 3.10 Dense disparity map for window size 1515.

Fig. 3.11 Dense disparity map of ground truth image.

In order to estimate the accuracy of this method we have tested the results using

different mask sizes which are mentioned from Fig. 3.5 to Fig. 3.10. From Table 3.3

the numerical evaluations confirm that the bad pixel is only 6.2%. But using the

similar condition the bad pixels in percentage were 6.33%, 7.88%, and 7.18%

reported in [33], [34] and [35] respectively for Tsukuba head.

Table 3.3: Accuracy of 2DRTSSA for Tsukuba stereo pair.

Window size
(pixel)

Accuracy (in %) Bad Pixels (in %)

3×3 73.3 26.7

5×5 79.8 20.2

7×7 92.1 7.9

9×9 93.2 6.8

11×11 93.8 6.2

15×15 83.6 16.4

17×17 83.3 16.7

19×19 72.9 27.1

21×21 72.4 27.6

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

45

We observe from the data of Table 3.3 the accuracy is gradually increased if widow

size increases. But this is valid from window size 3 × 3 to window size 11 × 11 only.

The lowest accuracy started from 73.3% for 3 × 3 window size and the highest

accuracy occurs at 93.8% for widow size 11 × 11 with bad pixel in percentage only

6.2%. Further increase in widow size (like 15 × 15, 17 × 17 etc.), the accuracy is

decreased and it reaches at 72.4% for the widow size 21 × 21. The graphical

interpretation is illustrated in Fig. 3.12 that also prompted the best operating window

size which is 11 × 11 for best accuracy.

Fig. 3.12 Illustration of correct matching for estimated dense disparity with ground

truth image of Tsukuba head.

3.4.4 Experiment on Real Stereo Images by 2DRTSSA

The performances of 2DRTSSA algorithm have been further justified on real stereo

images acquisitioned by Logitech stereo web camera. This experiment is performed in

our software laboratory and images were captured as indoor scenes. The

specifications of stereo camera are listed below-

Brand: Logitech C270 Webcam

Country of Origin: Switzerland

Sensor Resolution (MP) - 3MP, Video Resolution (Pixel) - 1280 720, Frame Rate -

30fps. Diagonal Field of View 55.

Best Operating Window

Optimal Algorithms for Stereo Correspondence Estimation

46

Stereo Image Capturing Process:

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of

reference images were stood 63.00 cm away from the imaging sensor of the camera.

The distance between two cameras was 6.70 cm

a)Real image acqusition using stereo web camera for dataset-1(Human face).

..

b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand).

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

47

c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand).

Fig. 3.13 Real image acqusition process using stereo web camera.

Experimental output for Real Stereo Images:

The size of the left and right real-image is (width × height) = (550 × 720) pixels.

Disparity image size is (width × height) = (514 × 684) pixels. Table 3.4 demonstrates

the visual observation of dense disparity maps.

The Table 3.4 illustrates the dense disparity maps of three real datasets- Human face,

Nescafe coffee stand and Scotch tape stand respectively. We could not compare the

experimental outputs to the ground truth image because it has no ground truth images.

In this situation, the disparity maps of output image should be considered and

compared visually only. The visual qualities of these disparity maps are not good.

This is happened because we could not provide the equilibrium light condition in our

laboratory. Similarly the room temperature of laboratory was not equilibrium at all the

places during the image acquisition process. Moreover, we have tried to our best to

calibrate the stereo camera physically. The stereo cameras were manually placed on

the same horizontal line, but experimentally it was not possible. There was vertical

difference between two cameras in fractional millimeter (.05 mm approximately)

range. These cause to add a little noise in captured stereo images. Inspite of some

noise, the objects are demarked and recognized at standard level. The object (Human

face, Nescafe coffee stand and Scotch tape stand) inside the reference image is clearly

Optimal Algorithms for Stereo Correspondence Estimation

48

understandable and visualized.

Table 3.4: Visual observation of disparity map of real images generated by

2DRTSSA algorithm

Reference image &

Resolution: 550720

Experimental Dense

Disparity Map of Real

Image

Mask size : 33

Experimental Dense

Disparity Map of Real

Image

Mask size : 1111

Execution time(s)

Mask: 33 : 1344

Mask: 1111: 14609

Mask: 33 : 1312

Mask: 1111: 14984

Mask: 33 : 1531

Mask: 1111: 15890

Disparity Estimation Technique: Two-Dimensional Real Time Spiral Search

Algorithm-2DRTSSA

49

The dense disparity map generated by 33 mask is more visualized and comprehensive

than the disparity map of 1111 in noisy environment. So the overall performance of

2DRTSSA algorithm is good in case real stereo images.

3.5 Discussion

The main contribution of the proposed method is to increase the performance by

reducing the computational cost. Our ultimate aim is to improve the strength of the

window-based cost aggression method in order to use in real-time application. The

frame-rate of our algorithm is 223 fps for input images of Tsukuba head image pair.

Hence, it can calculate, process and display output 223 frames/second for the case of

standard Tsukuba head image pair. The proposed method achieves 93.8% accuracy

and enhances 63.80% accuracy compared to RTA method. We have implemented it

by 2D parallel costs estimation to reduce the computational costs. Moreover, the

2DRTSSA algorithm does not require any additional hardware like 3D Graphics

Processing Unit (GPU). The proposed 2DRTSSA method demonstrates the state-of-

the-art results and exceeds most of the existing top methods.

3.6 Summary

A novel method is presented in this Chapter for dense disparity measurement with

better improvement of accuracy. This pioneer method leads to compensate the

accuracy which was degraded by RTA method of chapter 2. The proposed 2DRTSSA

method is described in Section 3.2. According to 2DRTSSA method two

simultaneous instruction calculations (in C++ code) executed in one instruction cycle.

Experimental results described in Section 3.4 demonstrate the visual and numerical

comparison between the proposed method and top five state-of-the-art methods. The

accuracy of 2DRTSSA method is well discussed in subsection 3.4.3. The impact of

real stereo images by 2DRTSSA algorithm is reflected in subsection 3.4.4. One of the

most appealing aspects of this method is to reduce the computational cost and

improvement the accuracy for real-time applications. A significant advantage in terms

of implementation is the fact that 2DRTSSA algorithm performed 50.22% of

computational time reduction and improved 93.8% accuracy, which means that the

algorithm is going to reach at the door of real-time applications.

Chapter 4

Stereo Correspondence Estimation Technique:

Self-Adaptive Algorithm (SAA)

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

51

4.1 Motivation of SAA Method

We have improved the accuracy of stereo matching by the 2DRTSSA method, which

is described in Chapter 3. The accuracy of 2DRTSSA algorithm is raised to 93.8%

from 30% and computational time increased to 4480 µs from 203 µs compared to

RTA algorithm. In this chapter, we propose a new state-of-the-art method called Self-

Adaptive Algorithm (SAA) which is far better than 2DRTSSA. The idea behind the

SAA method described in the following sections.

4.2 Proposed Self-Adaptive Algorithm

A new stereo imaging search technique has been introduced in this chapter. In

traditional window-based searching algorithm, a particular pixel L(x, y) is selected by

search method along the corresponding epipolar line in the right image within the

search range from - dmax to + dmax. Let us assume that the left image is the reference

image. So, for most pixels in the left image, there is a corresponding pixel in the right

image within a search range from -dmax to +dmax.

Fig. 4.1 The total search regions of right image for the particular pixel of L(x,y).

Fig. 4.2 First search interval {R(x+ (-dmax)} … R{x+ (+ dmax)}

Fig. 4.3 Search range separated by 1
st
 list and 2

nd
 list with their candidate-pixels.

First search matching occurs into the 1
st
 list and the matching pixel indicated by the

green color at position j = –4.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

... ...

2
nd

 List: No match. 1
st
 List: Match found.

-6 -5 j= -4 -3 -2 -1 0 1 2 3 4 5 6

Optimal Algorithms for Stereo Correspondence Estimation

52

Fig. 4.4 Second search occurs in 1
st
 list too, and the matching pixel is indicated by

green color also.

Fig. 4.5 3
rd

 search occurs in 2
nd

list, match indicated by green color.

Accordingly, the first search of first reference pixel of L(x - dmax) is searched to the

right image from R[(x +(-dmax)] , R[x+ (-dmax+1)] , R[x+ (-dmax+2)] … R[x+ 0)] …

R[x+ (dmax - 1)] to R[(x + (+dmax)]. During the matching process the algorithm finds

the best candidate-pixel by evaluating its window costs within the interval [R{x + (-

dmax), y} … R{x + (+dmax), y}]. The method is visually explained in Fig. 4.1 and Fig.

4.2 by mortars its coordinate’s pixel. Suppose the window cost function f(wc) = {wc1,

wc2, wc3…wcn}. Let wc2 < wc1 so the best match occurs for the cost function f(wc2)

and the function associated with the corresponding pixel of right image say R(x2, y) to

indicate that this match from left to right has been established. Assume another pixel

R(x4, y) is associated with the cost function f(wc4). If f(wc4) has better score than the

previous f(wc2). i.e., f(wc4) < f(wc2), this algorithm will reject the score of wc2 and will

accept wc4. Therefore, the function f(wc4) associated with the corresponding pixel of

right image say R(x4, y) indicates the new matching establishment. Thus the

coordinate distance from R(x, y) to R(x4, y) is the final disparity of reference pixel of

L(x - dmax). The process is then repeated for the successive pixels of reference image

along with the scan line from left to right of the whole image.

According to SAA method, if the matching pixel co-ordinate R(x4, y) of first search is

“j” (illustrated in Fig. 4.3), indicates the x-position of matching point in the 1
st
 list. In

the proposed approach, we use prior knowledge for 2
nd

 reference pixel matching. In

the proposed method we assume that the 2
nd

 reference pixel obviously resides

surrounding to the j
th

position, i.e., within the 1
st
 list, this is because, most of the cases,

the neighbor pixel’s photometric properties are approximately same as L(x - dmax).

So, the searching for 2
nd

 reference pixel will be within the 1
st
 list too. This search

matching procedure is depicted in Fig. 4.4. In case, if the 2
nd

 reference pixel does not

2
nd

 List: No match. 1
st
 List: match found in 1

st
 list.

-6 -5 -4 -3 j=-2 -1 0 1 2 3 4 5 6

2
nd

 List: match found.

1
st
 List: No Match

-6 -5 -4 -3 -2 -1 0 1 2 3 4 j=5 6

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

53

match with the candidate-pixels of 1
st
 list, then the SAA search sequence goes to new

searching zone, i.e., in the 2
nd

 list with readjusting the search interval. Accordingly,

the SAA algorithm will calculate the window costs of 2
nd

 reference pixel in 2
nd

 list.

This procedure is outlined in Fig. 4.5. In this case, the candidates-pixels of 1
st
 list are

not taken into consideration for matching process. Next search for 3
rd

 reference pixel

occurs again in 2
nd

 list too (which is not shown here). In case of no match in 2
nd

 list

for 3
rd

 reference pixel, the program search sequence goes to 1
st
 list by resetting the

new starting and ending points of 1
st
 list. The searching procedure of 3

rd
 reference

pixel will be the same as illustrated in Fig. 4.4. Similarly next search for 4
th

 reference

pixel occurs in 1
st
 list also as per base criteria of the proposed approach. So the

matching procedure occurs either in 1
st
 list or in 2

nd
 list and so on.

The above stated SAA approach is repeated for the successive pixels of reference

image along with the scan line from left to right on the whole image. The algorithm

divides automatically the search interval [R{x + (-dmax), y} … R{x + (+dmax), y}] into

two regions; 1
st
 list and 2

nd
 list. The 1

st
 list ranges from -dmax to 0, while 2

nd
 list from 0

to +dmax. The capability of proposed SAA algorithm is to adapt itself the search range

automatically (either in the 1
st
 list or 2

nd
 list). This process reduces the searching cost

around 50% in each iteration. The proposed approach relies on j
th

position of x axis.

For a reference pixel (x, y) in the left image, this procedure is repeated for successive

pixels in interval [R{x + (-dmax) , y} … R{x + (+ dmax), y}] along with the scan line,

and the process is iterated for the whole image. In this paper (2n + 1) × (2n + 1) mask

size is used to estimate the window cost of each pixel; where n = 1,2,3…k. We use n

= 1, i.e., 3×3 mask is employed in the following figures of this section for making the

process easy to understand. However, in the real image the value of n is 5. The right

image is scanned by this mask from left to right and from top to bottom during the

matching process.

Suppose, dmax = 6 and j = 0, the algorithm resets the starting point at dmax1 = -dmax and

ending point dmax2 = +dmax. In the beginning, the matching process occurs on the full

scan line. Actually, it is treated as 1
st
 search, where window cost calculations are

shown in Fig. 4.6. There are thirteen candidates-pixels in right image along the scan

line. For each pixel, the window cost is calculated according to the SAD method. So,

there are thirteen window costs that have been extracted at 1
st
 search, although five

window costs are shown in Fig. 4.6 for simplicity. The proposed algorithm arranges

Optimal Algorithms for Stereo Correspondence Estimation

54

the window cost functions in ascending order. Suppose the order for 1
st
 search is like

as f(wc)= {wc2 < wc1 < wc3 < … < wc13}. Hence, the proposed method rejects all

other window costs except wc2. Best match occurs for 2
nd

 window due to its minimum

window cost. Thus, the first reference pixel L(x - dmax) matches with the candidate-

pixel (center pixel) of the second window of right image (indicated by green color).

Fig. 4.6 Window cost estimation process over the scan line (1
st
 search).

Thus the first matching pixel’s position is j = -3 illustrated in Fig. 4.6. Since j = -3

(i.e. j < 0) the algorithm resets the search interval dmax1 = -dmax to dmax2 = 0 for 2
nd

search. In this region only seven pixels are participants, rest of the candidate-pixels of

2
nd

 list are ignored for window cost calculations. This idea is illustrated in Fig. 4.7.

Fig. 4.7 Window cost calculation process for 1
st
 list only (2

nd
 Search).

Consequently, there are only seven window costs will be estimated from the 2
nd

search, although three window costs are shown in Fig. 4.7 for simplicity and well

understanding. Suppose the order for 2
nd

 search is like as f(wc) = {wc1 < wc4 < wc3 <

wc2 < wc5 < wc6 < wc0}. Hence the proposed method rejects all other window costs

except wc1. In this case, the best match occurs for 1
st
 window cost in 1

st
 list due to its

minimum window cost. Thus, the second reference pixel L(x - dmax + 1) matches with

the candidate-pixel (center pixel) of the first window of right image (indicated by

green color). Since the second reference pixel’s L(x - dmax+1) matching position is j =

Scan line

WC5

WC2 WC3

WC1

WC4

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-dmax

+dmax

WC1

WC2 WC3

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

These candidate-pixels need not

participate in cost calculation.

-dmax

+dmax

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

55

-6 (j < 0) shown in Fig. 4.7, therefore, the third search (not shown here) will be

occurred into 1
st
 list too. If it falls into a critical situation in the 4

th
 search, i.e., pixel

L(x - dmax + 1) does not match with the candidates-pixels of 1
st
 list, the algorithm

readjusts the new searching interval dmax1 = 0 to dmax2 = +dmax and the searching

sequence goes to 2
nd

 list. The proposed approach calculates the window costs in 2
nd

list using the same procedure applied in the 2
nd

 search. The cost calculations are

outlined in Fig. 4.8 where the starting and ending points are different from 2
nd

 and 3
rd

search; although three window costs are shown for simplicity. Actually, seven

window costs have been estimated in the algorithm.

From the above discussion it is seen that, the proposed SAA method utilizes the prior

knowledge of matching-pixel position in the x axis and accordingly it redirects the

searching sequence in the 1
st
 list or in the 2

nd
 list. As the matching procedure occurs

either in 1
st
 list or in 2

nd
 list, it reduces around 50% of searching costs.

Fig. 4.8 Window cost calculation process for 2
nd

 list only (4
th

 search).

 4.2.1 Disparity Estimation Algorithm of SAA Method

Algorithm SAA(m, n, temp, temp1,sum,w1,w2 ,k1,k2,v_left,d,

v_right,image_left.pixel,image_right.pixel,image_disp.pixel

ws1,ws2,dmax,dmax1,dmax2,t0,t1,flag)

1. //m,n is the row and column size of an image.
2. // temp and temp1 are pixels intensity value of left and
3. // right image.
4. //w1,w2 is row and column size of the mask.
5. //sum is the summation of window costs.
6. // v_left is the pixel intensity value of left image.
7. // v_right is the pixel intensity value of right image.
8. // image_left.pixel[1:m][1:n] is the left image pixel

9. // coordinate that contains mn elements.
10. //image_right.pixel[1:m][1:n]is the right image pixel

11. // coordinate that contains mn elements.
12. // d is the search range counter variable.

These candidate-pixels need not

participate in cost calculation

WC3

Search Range:

Scan line

+dmax

WC5

+dmax

 WC4

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Optimal Algorithms for Stereo Correspondence Estimation

56

13. //k1 ,k2 are the number pixels to discard from left and
14. // right side of image.
15. //image_disp.pixel[1:m][1:n]is the disparity image

16. // that contains mn disparity values.
17. // ws1 and ws2 are the local variable within the mask.
18. //dmax,dmax1 and dmax2 are the search ranges.
19. // t0, t1 is the variable for time.
20. //i,j and flag is the integer type counter variables.
21. for n:=0 to size_y do

22. {

23. for m:=0 to size_x do

24. {

25. image_left.pixel[m][n]:= temp; // Read left image

26. image_right.pixel[m][n]:= temp1;//Read right image

27. }

28. }

29. t0:= clock();

30. //Region selection.

31. ws1 := (w1/2); ws2 := (w2/2);

32. for m:= k1 to size_x-k1 do

33. {

34. for n:= k2 to size_y-k2 do

35. {

36. if(flag=0) then

37. { dmax1:=-dmax;// initial search region.

38. dmax2:= dmax;

39. }

40. else if (flag<0) then

41. { dmax1:=-dmax;// 1
st
 region.

42. dmax2:= 0;

43. }

44. else

45. { dmax1:= 0; // 2nd region.

46. dmax2:= dmax;

47. }

48. for d:= dmax1 to dmax2 do //computing window cost

49. {

50. sum:= 0;

51. for i:=-ws1 to ws1 do

52. {

53. for j:= -ws2 to ws2 do

54. {

55. v_left:= image_left.pixel[m+i][n+j];

56. v_right:= image_right.pixel[m+i+d][n+j];

57. sum:= sum + abs(v_left - v_right);

58. }

59. }

60. Mtemp[d + dmax].pixel[m][n]:= sum;

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

57

61. }

62. // Select the minimum window cost.

63. image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1);

64. }

65. }

66. t1:= clock();

67. cpu_speed:= t1 - t0; // time calculation.

68. write("Total time",cpu_speed);

69. // Creating the dense disparity map.

70. for n:= k1 to size_y-k1 do

71. {

72. for m:= k2 to size_x-k2 do

73. {

74. write(“dense disparity image",image_disp.pixel[m][n]);

75. }

76. }

Algorithm minimum (temp[2*dmax+1],x,y,ws)

1. // Find the minimum value from temp[0:2*dmax+1]

2. // x, y, i, j, mu, a, len are the integer variables.

3. { j:=1;

4. len:= 2*dmax+1;

5. if (flag  0) then

6. len:= dmax+1;

7. for i:=0 to len do

8. {

9. if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then

10. j:= i;

11. }

12. if (j < 10)then // selecting the search region.

13. flag:= -1; // for 1
st
 region.

14. else

15. flag:= 1; // for 2
nd
 region.

16. // return the best matching co-ordinate distance.

17. mu:= abs(j-dmax);

18. return (mu);

19. }

The above procedure shows the calculation of window cost for one reference pixel

only. The next matching position range is selected by setting the flag pointer either -1

or +1 with the following statements:

Optimal Algorithms for Stereo Correspondence Estimation

58

if(j < 10)

flag = -1;

 else

flag = 1;

Flag value controls the reduced matching range or searching area and thus the

computational costs will reduce always.

4.3 Comparison with Existing Matching Algorithms

The proposed matching mechanism is compared with the some of the very popular

and established stereo matching methods. They are 1) A Fast Area Based Algorithm

2) Bidirectional Matching or left-right checking 3) Window-Based Fast Algorithm

and 4) Hierarchical Disparity estimation. A Fast Area Based approach is kept trace

previously matched points[13], while the Bidirectional Matching calculates every

possible combination of matches from left to right and right to left. Window-Based

Fast Algorithm uses the same idea of first method but it additionally uses the

threshold techniques [9]. The hierarchical disparity estimation calculates disparities

either for rectified stereo images or uncalibrated pairs of stereo images without known

epipolar geometry [28]. This method also uses bidirectional matching to remove the

false matches. The coloring area of Fig. 4.9 defines the probable matching points of

right image.

Fig. 4.9 Computational path of bidirectional and unidirectional matching from the

computational point of view.

For each point in the left image, bidirectional matching chooses in the direct phase the

best score along a middle row in the color area (the matches found when matching

left-to-right have been marked with a circle in the Fig. 4.9). Then, in the reverse

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

59

phase, when matching R(x, y) chooses the best score along the middle row level: a

match is accepted only if the match found along this path turns out to be one of those

found when matching left-to-right. It is worth noticing that, although during the

reverse phase bidirectional matching checks all of the potential matches along the

path in middle horizontal row, the allowed ones for R(x, y) turn out to be only those

that in the direct phase fall in the middle horizontal row (i.e. the circles lying in the

middle horizontal row) [13].

The comparisons of the proposed SAA method and recent related works [29-39] are

explained briefly in the last portion of subsection 1.2.4 in Chapter 1.

On the contrary, in our proposed adaptive matching method, the best match occurs by

dynamically readjusting the starting and ending points of search region. According to

the main concept stated in section 4.2, matching pixel is the nearest neighbor of R(x,

y). It is important to mention here that, the 1
st
 search occurs on all the pixels ranges

from R{x + (- dmax), y} to R{x + (+dmax), y}. However, the second, third and

consecutive searches are to be adapted according to the best match of the previous

search. That is, by the completion of first search the proposed algorithm remembers

the position of matching pixel. So, in the second search occurs surrounding to the first

matching pixel, as we use the concepts that neighbor pixels have the same

photometric properties. Hence depending on the position of matching pixel, the

successive search ranges are reselected adaptively. This adaptive matching procedure

ultimately is reducing the searching range by half of its original size. This is the main

contribution of this research.

The left-right check has proven to be particularly effective in detecting and discarding

the erroneous matches but it requires two matching phases (direct and reverse). This

implies doubling the computational complexity of the matching process. The Fast

Area Based Algorithm is based on a matching core that it does not require a reverse

matching phase but some details such as for example the lamp’s wire(Tsukuba pair),

the lamp’s switch and the two roads that sustain the lamp, have been vanished.

Moreover, the disparity map shows the border-localization problem, i.e. the objects’

borders are not perfectly localized with respect to their original position [13]. This

algorithm requires only direct matching phase. The hierarchical method executed on

DirectX 8.1 class 3D hardware (ATI Radeon 9000 Mobility).The disparity map is

verified by bidirectional procedure. Window- Based Fast Algorithm uses the different

Optimal Algorithms for Stereo Correspondence Estimation

60

threshold values like 10, 20, 30, 40 and 50. From the experimental result, we found

that as soon as the threshold value increased the searching range also increased,

causes to high computational costs.

Conversely, the proposed SAA method shows lowest computational cost because, it

involves only minimum matching spaces. Suppose there are n candidate-pixels appear

on the searching range with n reference pixels in left image. According to the above

analysis, the Fast Area Based Algorithm requires n
2
 numbers of matching

comparisons and the Bidirectional or Hierarchical search requires 2n
2
 matching

comparisons. The proposed SAA method requires only n+ {(n/2) × (n-1)} matching

comparisons.

4.4 Optimization of Self- Adaptive Search

The important part of SAA approach is optimization technique. We have already

mentioned around 50% window costs are reduced at every reference pixel of left

image except first pixel L(x - dmax). First reference pixel traverses from R(x - dmax),

R(x - dmax + 1), R(x - dmax + 2) … R(x + dmax) along the scan line. The first search

occurs from -dmax to +dmax over the scan line. In this case, for first search window

costs have been calculated for every candidate-pixel of right image. Suppose the first

reference pixel matches with the third pixel(x - dmax + 2) of right image. After tracking

the first matching, the proposed method divides the searching space into two regions

in right image: i) 1
st
 region and ii) 2

nd
 region. Accordingly, each region contains total

dmax +1 numbers of candidate-pixels of search range.

Let w is the square mask size and matching range is -dmax to +dmax. So the first

searching computational cost of SAA method, C1= {(w
2
-1) × (2dmax +1)}.

Second computational cost,

 C2 = [(w
2
-1) × {(2dmax+ 1) - 1}/ 2 + 1] = (w

2
-1) × (dmax + 1).

 Third, fourth … n
th

 searching computational costs will be the same i.e., Cn = (w
2
-1) ×

(dmax+1).

Fast Area Based Algorithm [13] requires the computational cost for each reference

pixel, CAB= {(w
2
-1) × (2dmax +1)}.

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

61

The Hierarchical Disparity [28] or left-right checking algorithm requires the

computational cost for each reference pixel, CHD= 2× (w
2
-1) × (2dmax +1).

For the image size M × N, the total computational costs of Fast Area Based Algorithm

[13] is CAB= (M × N) × (w
2
-1) × (2dmax +1). Total computational costs of Hierarchical

Disparity [28] is CHD = 2× [(M × N) × (w
2
 -1) × (2dmax +1)]. The computational costs

of proposed SAA method, CSAA= (w
2
-1) ×{(2dmax +1)+ (M×N-1) × (dmax + 1) }.

Suppose there are n reference pixels within the search range -dmax to +dmax. If n = 21

reference pixels of left image, then the following comparisons are calculated.

 In a stereo matching, searching range varies from -10 to +10 normally. Let

dmax =10. The total comparisons for n (here n = 21) reference pixels of

proposed SAA method = (2 dmax + 1) + (n-1) × (dmax+1) = (20 + 1) + (21-1)

× 11 = 241.

 Fast Area Based Algorithm [13] requires the total comparisons = n × (2 dmax

+ 1) = 21× 21 = 441.

 Hierarchical Disparity method [28] or Bidirectional method requires the total

comparisons = 2× n × (2dmax +1). = 2×21×21= 882

 Subsequently, comparisons reduction compared to the Fast Area Based

algorithm = (220/441) × 100% = 45.35%

 Reduction of comparisons compared to Hierarchical Disparity method or

Bidirectional method = (641/882) × 100% = 72.67%

Flag value always controls the matching range by resetting the parameter dmax1 and

dmax2 that depends upon the previous matching position of x. From dmax1 to dmax2 for

every window cost is determined by summing up the absolute differences between

two pixels by the following pseudo statements-

 sum = sum + (abs(v_left - v_right));

The values of parameters v_left and v_right of (i, j)
th

 pixel is set up by -

 v_left = image_left.pixel[m+i][n+j];

 v_right= image_right.pixel[m+i+d][n+j];

where i and j varies from -5 to +5 for a mask size 11 × 11. The window costs are

stored in an array Mtemp[d+dmax].pixel[m][n].These cost values are gone to

minimum cost function as arguments. The minimum function implements the key idea

of the proposed method by the assessment of its comparisons among the window

costs. The minimum function performs the dual tasks i) it can be able to determine the

Optimal Algorithms for Stereo Correspondence Estimation

62

matching position on x axis by setting j = i and ii) find the reduced new search range

with the following pseudo statement-

i) if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 and

ii) The SAA algorithm selects the upcoming search range by setting the flag value

either -1 or +1 with the following statement-

if(j < 10)

 flag = -1;

 else

 flag = 1;

Flag value controls the reduced matching position range and thus the computational

costs are low by reducing the number of comparisons.

4.5 Experimental Settings and Results

The experiments have been performed on two Middlebury standard stereo images: i)

Tsukuba stereo pair and ii) Venus stereo pair as shown in Fig. 4.10. The

computational time, frame-rate, accuracy and gain performances of the proposed

algorithm have been justified over the standard stereo images. Experiments are

performed on Intel Core i-3, 2.3 GHz processor with 4 GB DDR3 RAM. The

algorithm has been implemented using Visual C++ programming language with

windows 10 operating system. The size of the left and right images of Tsukuba head

is (width × height) = (384 × 288) pixels and, the ground truth image size is (width ×

height) = (348 × 252) pixels. The size of the left and right images of Venus stereo is

(width × height) = (434 × 383) pixels and the ground truth image size of Venus is

(width × height) = (348 × 252) pixels. Mask size 11 × 11 is used for every operation

in this method. The experimental results state that the SAA algorithm is currently the

best window- based method among the existing state-of-the-art methods. The top

performer existing algorithms are reported in [31], [32], [33], [34] and [35]. All are

ranked by Middlebury benchmark [42]. So we have to prove the claim by comparing

the time and frame-rate with the top performer algorithms which is compared in

Table 4.1 and Table 4.3. The disparity maps of the Middlebury datasets for Tsukuba

head and Venus stereo pair are estimated by proposed SAA method are illustrated in

Fig. 4.11 and Fig. 4.12 respectively.

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

63

 (a) Left image of Tsukuba Head. (b) Ground Truth of Tsukuba Head.

 (c) Left image of Venus stereo pair. (d) Ground Truth of Venus stereo pair.

Fig. 4.10 Standard Stereo image (Reference image) and their ground truth image.

(a)3D dense disparity map using mask size 11× 11. (b) 3D dense disparity map using mask size 15× 15.

Fig. 4.11 Estimated 3D dense disparity map of Tsukuba head using SAA method.

(a) 3D dense disparity map using mask size 11× 11 (b) 3D dense disparity map using mask size 15× 15.

Fig. 4.12 Estimated 3D dense disparity map of Venus stereo using SAA method.

Optimal Algorithms for Stereo Correspondence Estimation

64

The corresponding time reductions of SAA method are compared numerically in

Table 4.2 and Table 4.4. From these tables it is evident that in both cases the

proposed SAA algorithm outperforms the current and earlier established top

performer algorithms. The accuracy of the SAA algorithm for Tsukuba head is 93.8%

i.e., the bad pixel in percentage is only 6.2%. The performance enhancement by the

SAA method is discussed in section 4.6. Table 4.5 and Table 4.6 show the

noteworthy gain enhancements of proposed SAA method. The experimental results

are analyzed in four phases are explained below.

4.5.1 Observation of 3D Structures of Experimental Output

Both the Tsukuba and Venus stereo pair of input images contain different objects at

variable depth of positions. Contextual and forefront objects are positioned at

different depth. Four objects are placed at different depth of Venus stereo of input

image. Stereo pair also encloses some distinct areas like head of the statue, table

lamp, video camera, Venus sport paper, and another paper and background paper

wall. Such types of areas are quite challenging to isolate from other objects by stereo

matching. So the first work is to differentiate the variable depth of objects by

assigning the altered gray level value of output image. Nearby object is presented by

deep white color and outermost object is presented by dark or deep black color. It is

detecting that the experimental 3D construction of output image is recreated evidently

in Fig. 4.11 and Fig. 4.12, where the face of the statue, table lamp, video camera,

Venus sport paper, another paper as well as remarkable objects are seen easily.

Comparing the output images of Fig. 4.11(a) and Fig. 4.12(a) with ground truth

image of Fig. 4.10(b) and Fig. 4.10(d) respectively, the camera and its background

objects have been recovered almost correctly. The objects depths are noting that

nearby objects are realized by additional white color and outermost objects are

realized by dark grey level value or black as shown in Fig. 4.11 and Fig. 4.12. Thus,

the camera and nearby objects such as face of Tsukuba, table lamp and sports paper,

2
nd

 paper (to be such: left side) of Venus stereo are visualized by more white color.

On the other hand, the camera and outermost objects such as video camera, book

shelf, background wall of Tsukuba stereo pair and background paper wall of Venus

stereo are recreated with dark grey or black color. Object borders are evidently

detecting in computed dense disparity image, i.e. border localization problem of

article [13] are resolved by the SAA method. The experimentally estimated images

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

65

are tested again by the edge detection algorithm and the output object’s borders are

acknowledged which are illustrated in Fig. 4.13.

 (a) Objects of Reference image. (b) Reconstructed 3D dense disparity.

 (c) Classified object borders of ground truth. (d) Classified object borders of ground truth.

Fig. 4.13 Localized object borders.

The estimated dense disparity’s 3D structure is recovered and its objects border are

correctly identified which are outlined in Fig. 4.13 (c) and (d). So, the result ensures

that the similar depths are found in estimated dense disparity.

4.5.2 Computational Cost Calculation and Comparison with Existing state-

of-the- art Methods for Middlebury Standard Tsukuba Head

 Disparities of reference image are estimated by SAD technique using adaptive search

algorithm. The disparities are estimated within the search range from -10 to +10. The

effects of self-adaptive search are considered with respect to computational costs,

frame-rate (in fps), gain and accuracy. The computational costs, frame-rate and gain

performance results of adaptive method have been compared with previous fastest

literatures [9], [13], [28] and the current state-of-the-art methods [32-35], [37-39].

Fast Area Based algorithm [13] reports 3229µs required by Intel Core i-3, 2.3 GHz

processor with 4 GB DDR3 RAM for 384 × 288 image resolution of Tsukuba head.

This experiment also results the frame-rate 310 fps. Hierarchical Disparity method

[28] reports 4243µs required by Intel Core i-3, 2.3 GHz processor with 4 GB DDR3

RAM for 384 × 288 image resolution of Tsukuba head. This experiment also results

Optimal Algorithms for Stereo Correspondence Estimation

66

235 fps frame-rate. Fast algorithm [9] reports 4617µs required by Intel Core i-3, 2.3

GHz processor with 4 GB DDR3 RAM for 384 × 288 image resolution of Tsukuba

head. The frame-rate of this method is 216 fps.

Table 4.1: Disparity estimation computational time (in µs) and frame-rate (in fps) for

the Middlebury standard data of Tsukuba head image using Self-Adaptive Search

Method.

Method’s Name
Computational

Time(in µs)

Frame-rate

(in fps)

Accuracy

(in %)
Computational Machine

Input image &

Resolution
Rank

Self-Adaptive

Algorithm

[Proposed]

1872 535 93.80

Intel Core i-3

Speed: 2.3 GHz. RAM:

4GB

Middlebury

Standard

Tsukuba Head

384×288

1

Fast Area Based

[13]
3229 310 86.10

Intel Core i-3

Speed: 2.3 GHz. RAM:

4GB

2

Hierarchical

Disparity [28]
4243 235 92.10

Intel Core i-3

Speed: 2.3 GHz. RAM:

4GB

3

Fast Algorithm

[9]
4617 216 88.23

Intel Core i-3

Speed: 2.3 GHz. RAM:

4GB

4

Tree filtering

[34]
7000 143 93.18

Intel Core i-7

Speed: 1.8 GHz. RAM:

4 GB

5

Edge-aware

Geodesic

filter[33]

9000 111 93.67

Intel Core i-5 +Geforce

GTX card,Speed:

3.0GHz.,RAM: 8GB

6

DSI & Adaptive

Support[32]
200000 5 90.18

Core Duo,Speed:

2.2GHz.

RAM:NA

7

Pyramid stereo

matching [39]
550000 2 97.68

Nvidia GeForce GTX

1080 Ti/PCIe/SSE2

KITTI -2015

Datasets.
8

Deep self-

guided[38]
2860000 0.35 91.76

Intel Core i-7 Speed:

3.4GHz. RAM.16GB

Middlebury

training

datasets and

KITTI -2015

9

Energy

Minimization[35]
3000000 0.33 92.82

Intel Core i-5

Speed: 1.9 GHz.

RAM:6GB

Middlebury

Standard

datasets

10

Fusing Adaptive

Support[37]
40500000 0.025 96.02

Intel Core i-5

Speed: 3.2 GHz.

RAM: 8GB

Tsukuba,

Venus, Teddy,

Cones

[Middlebury

Benchmark]

11

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

67

The proposed SAA algorithm requires only 1872µs on the same hardware with 241

comparisons instead of 441 and 882 comparisons as mentioned in section 4.4. The

proposed method also performs better frame-rate compared to previous popular

methods [9], [13], [28] and recent state-of-the-art methods of [32-35], [37-39]. It

shows the highest frame-rate 535 fps among the state-of-the art methods. Table 4.1

illustrates the summary of comparisons among the proposed method and present state-

of-the-art methods. The SAA’s experimental results have been also compared with the

result of methods those are tested on Middlebury standard datasets. The results

ranking in Table 4.1 indicate that the proposed SAA method is ranked 1
st
 out of

existing top state-of-the-art methods of [32-35], [37-39]. It shows the highest frame-

rate 535 fps and lowest computational time 1872 microseconds among the latest

methods. The proposed method outperforms all the state-of-the-art methods in frame-

rate and computational time on Middlebury standard Tsukuba head image pair.

 (a) (b)

Fig. 4.14 Left side graph(a) shows the comparison of computational costs and right

side graph(b) shows the comparison of frame-rate (in fps) among the proposed and

existing state-of-the-art methods for Tsukuba head image.

We claim that the SAA method is currently the state-of-the-art method for

Middlebury standard Tsukuba head image pair with 2.4X, 1.7X, 2.2X, 106.8X, 4.8X,

3.7X, 1602.5X, 1527.7X, 293.8X faster than the methods of [9], [13], [28], [32], [33],

[34], [35], [38] and [39] respectively.

The SAA method achieves the reduction of 42.02% computational time comparing

with the Fast Area Based Stereo Matching Algorithm [13]. The proposed method also

performs 59.45% time reduction compare to window-based method by Fast

Algorithm [9]. From Table 4.2, we observe that 55.88% reduction of computational

time is done by the proposed SAA method comparing with the Hierarchical Disparity

Optimal Algorithms for Stereo Correspondence Estimation

68

Estimation [28]. Finally, the SAA method achieves 99.06%, 79.20%, 73.25%, 99.93%

and 99.93% computational time reduction against the recent state-of-the-art methods

of [32], [33], [34], [35] and [38] respectively with lower configurations of hardware.

The graphical comparison of computational costs and frame-rate (in fps) are

illustrated in Fig. 4.14. Therefore, from the Table 4.1, Table 4.2 and graph of Fig.

4.14, the proposed SAA algorithm is the better choice on the basis of computational

time and frame-rate.

Table 4.2: Computational time reduction (in %) of proposed method for Tsukuba Head

Computational

Time(in µs) for Self-

Adaptive Algorithm

[Proposed]

Existing state-of-the-art Methods Computational

Time Reduction

(in %) by SAA

method compared

to the methods of 2
nd

column

Method’s Name
Computational

Time(in µs)

1872

Fast Area Based [13] 3229 42.02

Hierarchical Disparity [28] 4243 55.88

Fast Algorithm[9] 4617 59.45

Tree filtering [34] 7000 73.25

Edge-aware Geodesic

filter[33]
9000 79.20

Energy Minimization[35] 3000000 99.93

Pyramid stereo

matching[39]
550000 99.65

Deep self-guided[38] 2860000 99.93

4.5.3 Computational Cost Calculation and Comparison with Existing state-

of-the-art Methods for Middlebury Standard Venus Stereo Images

The performances of computational time and frame-rate have been numerically

evaluated in Table 4.3 for Middlebury standard data of Venus stereo pair. The

proposed SAA algorithm also outperforms all other algorithms summarized in Table

4.3. The comparison of computational costs and frame-rate (in fps) of proposed and

recent state-of-the-art methods are illustrated in Table 4.3 with hardware

specifications. The SAA algorithm also obtains the better performance in terms of

computational time and frame-rate. It requires only 2652 µs instead of 6318 µs, 6724

µs, 7000 µs, 7473 µs and 9000 µs of mentioned methods respectively. It shows the

highest frame-rate 377 fps. The graphical comparisons of computational time and

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

69

frame-rate are illustrated in Fig. 4.15 which depicts that the proposed SAA method

runs in lowest time and achieves the highest speed among the current state-of-the-art

methods.

Table 4.3: Disparity estimation computational time (in µs) and frame-rate (in fps)
for the Venus stereo image using Self -Adaptive Search Method.

Method’s

Name

Computational

Time(in µs)

Frame-rate

(in fps)

Computational

Machine

Input image

& Resolution
Rank

Self-Adaptive

Algorithm

[Proposed]

2652 377

Intel Core i-3

Speed: 2.3 GHz.

RAM: 4GB

Middlebury

Standard

Venus

Stereo dataset

434×383

1

Fast Area Based

[13]
6318 158

Intel Core i-3

Speed: 2.3 GHz.

RAM: 4GB

2

Hierarchical

Disparity [28]
6724 148

Intel Core i-3

Speed: 2.3 GHz.

RAM: 4GB

3

Tree filtering

[34]
7000 143

Intel Core i-7

Speed: 1.8 GHz.

RAM:4GB

4

Fast Algorithm

[9]
7473 133

Intel Core i-3

Speed: 2.3 GHz.

RAM: 4GB

5

Edge-aware

Geodesic

filter[33]

9000 111

Intel Core i-5

+Geforce GTX

card

Speed: 3.0Ghz

RAM: 8GB

6

 (a) (b)

Fig. 4.15 Left side graph(a) shows the comparison of computational costs and

right-side graph(b) shows the comparison of frame-rate (in fps) among

proposed and existing state-of-the-art methods for Venus stereo images.

Optimal Algorithms for Stereo Correspondence Estimation

70

Another numerical evaluation and comparisons are represented in Table 4.4 in which

proposed method performs 64.51% time reduction compared to window-based Fast

Algorithm [9] for Venus stereo pair image. The computational time is reduced

60.55% by proposed SAA method compared to the Hierarchical Disparity [28]. The

SAA algorithm also reduces 58.02% of computational time comparing with the Fast

Area Based method [13]. Finally the SAA method achieves 70.53% and 62.11%

computational time reduction over the recent state-of-the-art methods of [33] and [34]

respectively using the lower configurations of hardware. So it is evident that the

proposed SAA method is currently the state-of-the-art method for Middlebury

standard Venus stereo pair with 2.8X, 2.3X, 2.5X,3.3X, 2.6X faster than the top five

methods of [9], [13], [28], [33] and [34] respectively.

Table 4.4: Computational time reduction (in %) of proposed method for Venus stereo
pair.

Computational

Time(in µs) for

Self-Adaptive

Algorithm

[Proposed]

Existing state-of-the-art Methods Computational Time

Reduction (in %) by SAA

method compared to the

methods of 2
nd

 column

Method’s Name

Computational

Time(in µs)

2652

Fast Area Based [13] 6318 58.02

Hierarchical Disparity

[28]
6724 60.55

Tree filtering [34] 7000 62.11

Fast Algorithm[9] 7473 64.51

Edge-aware Geodesic

filter[33]
9000 70.53

From the Table 4.4 and graph of Fig. 4.15, the proposed SAA algorithm again proves

that it is the best choice on the basis of computational time and frame-rate. In both

cases (For Tsukuba and Venus stereo input images) the SAA algorithm performs the

lowest computational costs and highest frame-rate.

4.5.4 Accuracy Measurement and Comparisons

The accuracy of this algorithm has been justified over standard stereo images of

Tsukuba head. The algorithm is implemented using Visual C++ programming

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

71

language. To determine the correspondence of a pixel of reference image, the window

costs are estimated for the candidate-pixels of right image within the search range -10

to +10 pixels. The proposed SAA method estimates the accuracy in percentage with

the error threshold 2. The accuracy of SAA method is 93.8%. The numerical

evaluations confirm that the bad pixel in percentage is only 6.2% for our proposed

method. But using the same resolution of image, bad pixels in percentage were

6.33%, 7.88%, and 7.18% reported in [33], [34] and [35] respectively for Tsukuba

head with the experiments of Middlebury stereo datasets.

4.6 Performance Enhancement Analysis

The performance of the proposed SAA approach has been compared to the state-of-

the-art methods. The comparison tools were computational time, frame-rate and gain.

Our target was to speed up the computational costs with no degradation of accuracy.

Since the accuracies and 3D dense disparity of state-of-the-art algorithms yield very

similar to proposed SAA method; confirm the effectiveness of the proposed matching

algorithm. Table 4.5 illustrates the performance enhancement of SAA method

compared to the established state-of-the-art methods. The proposed SAA method has

done 72% gain enhancement compared to Fast Area Based Method [13]. Enhanced

gain is calculated as follows.

Gain Enhancement by proposed SAA method over Fast Area Based Method

[13]:

 = {(Computational time of Fast Area Based Method ÷ Computational time of SAA

 Method) × 100 - 100} %

= {(3229/1872) × 100 -100} %

= 72%

Optimal Algorithms for Stereo Correspondence Estimation

72

Table 4.5: Quantitative evaluation of performance of proposed SAA method with top

five (5) algorithms.

Method’s Name
Computational

Time(in µs)

Frame-rate

(in fps)

Performance

Enhanced (in %)

by SAA method

over the methods of

1
st
 column

Input

image &

Resolution

Self-Adaptive

Algorithm [Proposed]
1872 535 ×

Middlebury

Standard

Tsukuba

Head

384×288

Fast Area Based [13] 3229 310 72

Hierarchical Disparity

[28]
4243 235 126

Fast Algorithm[9] 4617 216 146

Tree filtering [34] 7000 143 273

Edge-aware Geodesic

filter[33]
9000 111 380

Similarly, the experimental gain, enhanced by proposed SAA method over the state-

of-the-art methods of [28], [9], [33] and [34] were 126%, 146%, 380% and 273%

respectively which is illustrated in Fig. 4.16. The performance enhanced graph of

proposed SAA method is shown Fig. 4.16. Since the speed of proposed method is

very high, the estimated gains of this algorithm are automatically high. The numerical

measurments of this claim is strongly supported by experimental data of Table 4.5 in

which the SAA algorithm is compared with the top five(5) algorithms. The bar

diagrams illustrate the increased gain (in %) of SAA method compared to the cureent

methods . The proposed method outpeforms the existing state-of-the-art methods

with respect to the performance enhancements too.

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

73

Fig. 4.16 Graph shows the performance enhancement of SAA method comparing to

the mentioned state-of-the-art methods.

Moreover, the performance of the SAA method has been tested on Middlebury

standard Venus stereo datasets and the estimated experimental data are summarized in

Table 4.6. From this table, the proposed SAA method also performs better than the

existing top five algorithms for Venus stereo datasets. The gains have been estimated

using the same procedures as mentioned earlier .The SAA method enhances 138%,

153%, 181%, 239%, 163% gains compared to the established state-of-the-art methods

of [13], [28], [9], [33] and [34] respectively. The SAA method enhances 239% gain

over Geodesic filter method[33], but it actually increases (239-100)= 139% gain

against Geodesic filter method. Similarly , the proposed method enhances 163% gain

over the Tree Filtering[34] method and thus it actually increases (163-100)= 63% gain

against Tree Filtering method. Therefore, the proposed SAA algorithm outperfoms the

existing top five algorithms for Venus stereo datasets. In terms of computational time,

frame-rate and gain achievement, the proposed matching approach is faster and better

than the existing state-of-the-art methods.

Optimal Algorithms for Stereo Correspondence Estimation

74

Table 4.6: Quantitative evaluation of performance of proposed SAA method with top

five (5) algorithms for Venus stereo pair.

Method’s Name

Computational

Time(in µs)

Frame-rate

(in fps)

Performance

enhanced (in

%) by SAA

method over

the methods of

1
st
 column

Input image

& Resolution

Self-Adaptive

Algorithm [Proposed] 2652 377 ×

Middlebury

Standard

Venus Stereo

dataset.

434×383

Fast Area Based[13] 6318 158 138

Hierarchical Disparity

[28]
6724 148 153

Tree filtering [34] 7000 143 163

Fast Algorithm[9] 7473 133 181

Edge-aware Geodesic

filter[33]
9000 111 239

4.6.1 Experiment on Real Stereo Images by SAA

The performances of SAA algorithm have been further tested on real stereo images

acquisitioned by Logitech stereo web camera. This experiment is performed in our

software laboratory and images were captured as indoor scenes. The specifications of

stereo camera are the same as we have mentioned in subsection 2.3.1 and 3.4.4.

Stereo Image Capturing Process:

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of

reference images were stood 63.00 cm away from the imaging sensor of the camera.

The distance between two cameras was 6.70 cm.

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

75

a)Real image acqusition using stereo web camera for dataset-1(Human face).

 b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand).

Optimal Algorithms for Stereo Correspondence Estimation

76

c) Real image acqusition using stereo web camera for dataset-3(Scotch tape stand).

Fig. 4.17 Real image acqusition process using stereo web camera.

Experimental output for Real Stereo Images:

The size of the left and right real-image is (width × height) = (550 × 720) pixels.

Disparity image size is (width × height) = (514 × 684) pixels. Table 4.7 demonstrates

the visual observations and findings of dense disparity map.

Table 4.7: demonstrates the visual observation of dense disparity maps using two

different types of mask (33 and 1111). The Table 4.7 illustrates the dense disparity

maps of three real datasets -Human face, Nescafe coffee stand and Scotch tape stand

respectively. The 1
st
 column of this table represents the reference image and its size

which is captured by our stereo camera. The 2
nd

 and 3
rd

 column represent the

estimated dense disparity maps of reference images using 33 and 1111 mask

respectively. We could not compare the experimental outputs to the ground truth

image because it has no ground truth images. In this situation, the disparity maps of

reference image should be considered and compared visually only.

The disparity maps of outputs contain some noise. This is happened because we could

not provide the equilibrium light condition in our laboratory.

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

77

Table 4.7: Visual observation of disparity map of real images generated by SAA

algorithm

Reference image

Resolution: 550720

Experimental Dense

Disparity Map of Real

Image

Mask size : 33

Experimental Dense

Disparity Map of Real

Image

Mask size : 1111

 Execution time(s)

Mask: 33 : 468

Mask: 1111: 5360

Mask: 33 : 468

Mask: 1111: 6735

Mask: 33 : 563

Mask: 1111:

5985

Optimal Algorithms for Stereo Correspondence Estimation

78

Similarly the room temperature was not equilibrium at all the places during the image

acquisition process. Moreover, we have tried to our best to calibrate the stereo camera

physically. The stereo cameras were manually placed on the same horizontal line, but

experimentally, it was not possible. There was some vertical difference between two

cameras in fractional millimeter (.05 mm approximately) range. These cause to add a

little noise in captured stereo images. Inspite of noise, the objects are demarked and

recognized at standard level. The object (Human face, Nescafe coffee stand and

Scotch tape stand) inside the reference image is clearly understandable and visualized.

The dense disparity map generated by 33 mask is more visualized and

comprehensive than the disparity map of 1111 in noisy environment. So the overall

performance of SAA algorithm is good in case of real stereo images.

4.7 Discussion

The main objective of this method was to speed up the computational time. We have

done this by a new technique called Self-Adaptive Algorithm that infers the upcoming

matching pixel’s position. This algorithm itself readjusts as well as reduces the search

range based on remembering the previously matching pixel’s position. The frame-rate

of our algorithm is 535 fps for input images of Tsukuba head pair and 377 fps for

input images of Venus stereo pair. Thus, it can calculate, process and display output

535 frame/second for the case of standard Tsukuba head image pair and 377

frame/second for the standard Venus stereo pair. The estimated gains of proposed

SAA method are 380 and 239 for Tsukuba head and Venus stereo respectively

whereas the gain of existing state-of-the-art method is 100. Since the accuracy and 3D

dense disparity maps of proposed method are very similar with the existing state-of-

the-art algorithm, it confirms the effectiveness of the proposed matching algorithm.

Moreover, the SAA algorithm does not require any additional programmable 3D

hardware like 3D Graphics Processing Unit (GPU). The proposed SAA method

demonstrates the state-of-the-art results and outdoes the present top methods.

4.8 Summary

The compulsion of SAA method is stated in Section 4.1 of this chapter. The proposed

Self-Adaptive method is explained both in mathematically and graphically in Section

4.2 for well understanding. The optimization technique of SAA method is described

Disparity Estimation Technique: Self-Adaptive Algorithm (SAA)

79

in Section 4.4. The main achievements of this method are discussed in Section 4.5 and

its Subsections of Experimental results. Experimental results described in Subsection

4.5.1, 4.5.2 and 4.5.3 demonstrate the visual and numerical comparison between

proposed SAA method and the present state-of-the-art methods. The great

achievement of this method is Performance enhancement, which is quantified in

Section 4.6. The SAA algorithm is tested on real images in subsection 4.6.1. The

overall conclusion of this method has been drawn in Section 4.7.

Chapter 5

Stereo Correspondence Estimation Technique:

Self-Guided Stereo Correspondence (SGSC)

Estimation Algorithm

Optimal Algorithms for Stereo Correspondence Estimation

81

5.1 Introduction

For binocular machine vision, stereo correspondence is the fundamental issue for

viewing the objects exactly. It is well-defined by the parameter d (Fig. 1.1) that is

calculated by the deviation of x-axis between the reference image and right image,

also known as disparity. It is still now open challenge to measure the accurate dense

disparity map in 3D environment due to noise, difference in camera parameters,

homogenous background of stereo images, variation of light intensities of indoor and

outdoor scenes and variable textures of images. Though there are a lot of algorithms

to estimate the real-time disparity map, but there is no perfect algorithm till to date to

compute the stereo correspondence like human stereo eyes. The said parameter d is

expressed by the equation (1.1) in Chapter 1. We can also measure the disparity d by

knowing the camera parameters; B, f and Z. Where B is the baseline distance of two

horizontally placed cameras, f is the focal length of camera and Z is the depth of

information of an object from the camera. The key challenge is to explore the

matching position as fast as possible within the whole image or specified searching

range. Our proposed SGSC algorithm can recognize the correspondence in right

image with very quick response.

The depth of information Z is an important parameter for machine vision, pedestrian

navigation, 3D scene tracking and reconstruction. Disparity is experimentally

estimated by using Sum of Absolute Differences (SAD) in our proposed SGSC

method. Besides this, there is also Sum of Square Differences (SSD) and Normalized

Correlation Techniques (NCT) is the alternative techniques to compute the stereo

correspondence, which is already defined mathematically in Chapter 1. There are

open problems in selection of shape and size of mask or window to scan the searching

line. Different complexities are involved for different types of mask or window that is

also discussed in Chapter 1.

The current researches of connected problems to the matching costs are stated in [28]

and [9]. Bilateral filter and threshold techniques are used to estimate the disparity.

Guided image filter is used in the work [29] to estimate the window costs aggression.

The authors employ unsupervised and online adaption [45] on KITTI 2012 and KITTI

2015 datasets. Tree filtering method [34] computes the shortage distance between two

pixels on designated pixel’s tree. This method is tested on Middlebury standard stereo

datasets, but it requires more computational costs. The most recent works [35], [37],

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

82

[40] and Self-Adaptive Algorithm (SAA) [Chapter 4] worked on Middlebury standard

stereo datasets. These methods require high computational costs. Besides these, the

above methods except method SAA [Chapter 4] involve post processing step like

filtering, refinement or left-right consistency checking those are responsible to

increase the computational costs. However, our proposed Self-Guided Stereo

Correspondence (SGSC) Estimation method does not require the post processing

steps.

5.1.1 Motivation

The software driven parallel model, 2DRTSSA is mentioned in Chapter 3, computes

two window costs simultaneously. As we have to find out the best cost among several

possible correspondences, we choose the best correspondence carefully and

purposefully. Though the performance of 2DRTSSA is satisfactory, i.e., the

maximum accuracy was 93.8%, but the computational cost was higher than the RTA

method. The SAA method in Chapter 4 reduces the search range around 50%;

therefore it takes less time for computation compared to 2DRTSSA. In this method

the accuracy is same as 2DRTSSA but the computational cost was lower.

These observations give rise to the idea that the drawbacks of both approaches can be

resolved by the newly approached SGSC method. In this method, both the accuracy

and performance is enhanced by exactly tracking the matching pixel position in right

image using the threshold technique.

5.2 Proposed Self-Guided Search Algorithm

This research work is the enhancement version of Self-Adaptive Algorithm (SAA) of

Chapter 4. Some modifications have been imposed on SAA method to achieve the

better performance and behaviors of the proposed method. The searching range -dmax

to +dmax is divided into two searching regions; 1) first one is -dmax to 0 and 2) second

one is 0 to +dmax . The cost aggression process on the right image is performed either

in 1
st
 region or 2

nd
 region, reported in SAA method [Chapter 4]. The proposed method

follows almost the same procedure of SAA method but it differs mostly that after first

search it employs the threshold technique to reduce the search zone as close as needed

to create the active zone. Employing the new technique, the modified SGSC algorithm

reduces the processing time up to 253 microseconds compared to SAA method. The

other betterments and performances are presented in Section 5.5. According to the

Optimal Algorithms for Stereo Correspondence Estimation

83

R[x+(-dmax)] R[x+ (-dmax+1)]

R[x+ (-dmax+2)]

R[x+ (dmax-1)]

R[x+ (+dmax)]

R[x+ (-dmax+6)]

 = R[x+ (-6+6)]

 =R[x+ 0]

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1
st
 zone 2

nd
 zone

1
st
 scan

line

proposed algorithm, the 1
st
 search of 1

st
 reference pixel L(x - dmax) is searched on R{x

+ (-dmax)} , R{x + (-dmax + 1)}, R{x + (-dmax + 2)} … R(x + 0) … … R{x + (dmax - 1)}

to R{(x + (+ dmax)} in the right image towards the first scanning line (marked by red

color pixel) of Fig. 5.1.. During the first cost aggression process, the algorithm

explores the best matching pixel by measuring its lowest value of window cost within

the whole coordinate range from R{x + (- dmax), y} to R{x + (+dmax), y}. Suppose, the

1
st
 best match is found at PR (i, y) with intensity IR in 1

st
 zone. Actually, this

coordinate position is the reference matching position of proposed method. Based on

the coordinate position and photometric property of it’s, the proposed SGSC

algorithm apply threshold technique with a view to more closer the search zone than

SAA algorithm. Before starting the 2
nd

, 3
rd

, 4
th

 … M
th

 search the SGSC algorithm

apply threshold technique to prevent the false-search area as well as to reduce the

search zone for creating needful active zone. Accordingly, until the condition ǀPL(i +

1,y) - PR (i, y)ǀ ≤ δT is satisfied, the cost aggression and searching continues at 1
st

zone. Where δT is the optimal threshold intensity, magnitude of PR (i, y) is IR and

magnitude of PL (i ,y) is IL.

Fig. 5.1 The whole search and sub search zones of right image for the reference pixel

of left image.

Thus the overall execution time elapsed for 2
nd

 zone’s candidate-pixels are reduced at

every search operation. Actually, this is an extra reduction time for self-decided

SGSC algorithm over SAA method. When the above mentioned condition is not

satisfied, the search and cost estimation process enter into the 2
nd

 zone and the

procedure will be continued as like as 1
st
 zone. The mentioned SGSC procedure is

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

84

reiterated for the consecutive pixels of reference image towards the scanning line

from minimum to maximum depth of the whole image.

It is our experimental observation that while scan line crosses over the boundary

pixels of a segment then the search toggles the zones. In such case, our algorithm

scans both zones to find out the matching correspondence. For better understanding

and realization of SGSC, we display a flow chart and algorithm for visual conception

at a glance. The flow chart shows only the one scan line pixel of reference image with

window cost estimation by self-guided algorithm. The SGSC algorithm always

calculates the window costs within only half portion of candidate-pixels in right

image with properly handling mismatching zone. The main benefits of this algorithm

are that we need not to calculate the costs on half portion of specified search range for

every reference pixel of left image. These advantageous procedures are graphically

illustrated in Fig. 5.3, Fig. 5.4 and Fig. 5.5. The Fig. 5.3 shows the window cost

aggression, calculation and searching cruise of 1
st
 search where five window costs are

considered for simplicity and better realization.

After finding the first stereo correspondence, the SGSC algorithm divides the whole

search zone into two sub zone: 1) 1
st
 zone and 2) 2

nd
 zone. The territory of 1

st
 zone

starts from R [(x + (-dmax)] and ends at R[(x + 0)] . Similarly, the territory of 2
nd

 zone

begins from R[x + (0 + 1)] and ends at R[x + (+dmax)]. After that the SGSC algorithm

assigns the position of first matching correspondence either in 1
st
 or in 2

nd
 zone

depends on the intensity level of matching pixel IR. Let it is allocated in 1
st
 zone.

From the flow chart, all subsequent reference pixels are firstly checked by threshold

criteria that prohibit the search sequence to enter into the mismatching zone for false

matching. The threshold value δT is selected as an optimal value and in our

experiment we set the optimal threshold value at 5.

Optimal Algorithms for Stereo Correspondence Estimation

85

Start

Read Left image, Right

image, Image size

M×N

Firstly search the whole scan line & find first

matching pixel position for Ref. pixel P1(x,y)

Divide the whole scan line into 1
st
 Zone

and 2
nd

 Zone and assign the first matching

position i either in zone 1 or in zone 2.

Let it is in 1
st
 zone.

Search and compute window costs in 1
st

Zone, Update i

Search and compute window costs in 2
nd

Zone, Update i

If ǀPL(i+1,y)-PR

(i,y)ǀ≤ δT

Increment for next Ref. Pixel

If i ≤ M
Yes

No

Construct the dense disparity map

Stop

Yes

No

Fig. 5.2 Flow chart of the proposed SGSC algorithm.

If the first matching correspondence is found in 1
st
 zone, then the searching process

and window cost calculations are associated with only the 1
st
 zone’s pixels as shown

in Fig. 5.4. In such case, cost function calculates the window costs for the candidate-

pixels of -6,-5,-4,-3,-2,-1,0 only and window costs calculations are discarded for the

candidate-pixels of 1,2,3,4,5,6.

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

86

Fig. 5.3 1
st
 search for window cost calculation process towards the scanning line.

The window costs calculation continues within the 1
st
 zone until the condition ǀPL(i

+1,y)-PR (i,y)ǀ ≤ δT is satisfied. So for every reference pixel the searching, comparing

and window cost calculations are always discarded for the half portion of pixels (1, 2,

3, 4, 5, and 6) of 2
nd

 zone. The search sequence enters into the 2
nd

 zone while it

overpasses the border line of a segment of an input reference image.

Fig. 5.4 Window cost estimation procedure for 1
st

zone (2
nd

 Searching).

If the correspondence is found in 2
nd

 zone; the searching process and window cost

functions are associated with only the 2
nd

 zone’s pixels as shown in Fig. 5.5. In such

case, cost function calculates the window costs for the candidate-pixels of 0, 1, 2, 3, 4,

5 and 6 only. Window cost calculations are discarded for the candidate-pixels of -6, -

5, -4, -3, -2, and -1.

Fig. 5.5 Window cost estimation procedure for 2
nd

 zone (3
rd

 searching).

Search start at:

 -dmax

Search end at:

+dmax

WC5

WC2 WC3

WC1

WC4

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
 Scan line

Window costs of these candidate-

pixels are discarded.

WC1

WC2 WC3

 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-dmax

+dmax

1st Zone 2nd Zone

Scan line

Window costs of these candidate-

pixels are discarded.

WC3

Search Range:

Scan line

WC5 WC4

+dmax,

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1st Zone 2nd Zone

-dmax,

Optimal Algorithms for Stereo Correspondence Estimation

87

So, the proposed SGSC method determine the upcoming reference pixel’s

correspondence on x axis either in 1
st
 zone or in 2

nd
 zone. Therefore, SGSC method

reduces more cost-estimation time than SAA method in local stereo matching domain.

5.2.1 Disparity Estimation Algorithm of SGSC Method

Algorithm SGSC(m, n, temp, temp1,sum,w1,w2 , k1,k2,v_left,d,

v_right,image_left.pixel,image_right.pixel,image_disp.pixel

,ws1,ws2,dmax,dmax1,dmax2,t0,t1,flag)

1. //m,n is the row and column size of an image.
2. // temp and temp1 are pixels intensity value of left and
3. // right image.
4. //w1,w2 is the row and column size of the mask.
5. //sum is the summation of window costs.
6. // v_left is the pixel intensity value of left image.
7. // v_right is the pixel intensity value of right image.
8. // image_left.pixel[1:m][1:n] is the left image pixel

9. // coordinate that contains mn elements.
10. //image_right.pixel[1:m][1:n]is the right image pixel

11. // coordinate that contains mn elements.
12. //image_disp.pixel[1:m][1:n]is the disparity image

13. // that contains mn disparity values.
14. // d is the search range counter variable.
15. //k1 ,k2 are the number pixels to discard from left and
16. // right side of image.
17. // ws1 and ws2 are the local variable within the mask.
18. //dmax,dmax1 and dmax2 are the search ranges.
19. // t0, t1 is the variable for time.
20. //i,j and flag is the integer type counter variables.
21. for n:=0 to size_y do

22. {

23. for m:=0 to size_x do

24. {

25. image_left.pixel[m][n]:= temp; // Read left image

26. image_right.pixel[m][n]:= temp1;//Read right image

27. }

28. }

29. t0:= clock();

30. // Dividing the searching zone

31. ws1 := (w1/2); ws2 := (w2/2);

32. for m:= k1 to size_x-k1 do

33. {

34. for n:= k2 to size_y-k2 do

35. {

36. if(flag=0) then

37. { dmax1:=-dmax;// initial zone.

38. dmax2:= dmax;

39. }

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

88

40. else if (flag<0) then // 1st zone

41. { dmax1:=-dmax;

42. dmax2:= 0;

43. }

44. else // 2nd zone

45. { dmax1:= 1;

46. dmax2:= dmax;

47. }

48. // window cost calculation

49. for d:= dmax1 to dmax2 do

50. {

51. sum:= 0;

52. for i:=-ws1 to ws1 do

53. {

54. for j:= -ws2 to ws2 do

55. {

56. v_left:= image_left.pixel[m+i][n+j];

57. v_right:= image_right.pixel[m+i+d][n+j];

58. sum:= sum + abs(v_left - v_right);

59. }

60. }

61. Mtemp[d + dmax].pixel[m][n]:= sum;

62.

63. }

64. // Select the minimum window cost.

65.

66. image_disp.pixel[m][n]:= minimum(Mtemp,m,n,ws1);

67. }

68. }

69. t1:= clock();

70. cpu_speed:= t1 - t0; // time calculation.

71. write("Total time",cpu_speed);

72. // Creating the dense disparity map.

73. for n:= k1 to size_y-k1 do

74. {

75. for m:= k2 to size_x-k2 do

76. {

77. write(“dense disparity image",image_disp.pixel[m][n]);

78. }

79. }

 Algorithm minimum (temp[2*dmax+1],x,y,ws)

1. // Find the minimum value from temp[0:2*dmax+1] elements

2. // x, y, i, j, mu, a, len , Th are the integer variables.

Optimal Algorithms for Stereo Correspondence Estimation

89

3. { j:=1,Th:=5;

4. len:= 2*dmax+1;

5. if (flag  0) then

6. len:= dmax+1;

7. for i:=0 to len do

8. {

9. if(temp[i].pixel[x][y] < temp[j].pixel[x][y]) then

10. j:= i;

11. }

12. mu:=abs(j-dmax);

13. // Applying Threshold technique

14. if (abs(image_disp.pixel[x][y-1]- mu) <= Th)then

15. flag:= -1; // Set 1
st
 Zone as active.

16. else

17. flag:= 1; // Set 2
nd
 Zone as active.

18. return (mu);

19. }

5.3 Computational Complexity Analysis

The complexity of SGSC algorithm is always less than current state-of-the-art

methods. The optimization technique is applied in this algorithm in three stages, 1)

Total search zone is divided into two zones and window cost calculation occurs

always on one zone at a time. Therefore, half portions of candidate-pixels are

discarded all times. 2) Threshold technique is employed in second stage to reduce

search zone to be closer the effective zone, and 3) The window cost calculation

process will not be toggled to opposite zone until or unless δT > 5. So, the proposed

SGSC algorithm is optimized in three phases that makes the algorithm faster than

current state-of-the-art methods. The complexity depends on image size, window size,

and search range. Suppose the window size (square size), image size and search range

are W, M×N, d respectively. The computational cost of SGSC on half zone for each

reference-pixel is Chz = (W
2
 – 1) × {(d + 1) / 2}. This cost will again be reduced by

applying threshold technique and ChzδT = (W
2
 – 1) × {(d+1) / 2 - δT)}. Therefore, the

total comparisons for each reference-pixel of SGSC method is {(d + 1) / 2 - δT} times.

The overall complexity of the proposed stereo matching algorithm

CSGSC = [(M × N) ×(W
2
 -1) × {(d +1) / 2 - δT}] (5.1)

Fast Area-Based [13] Algorithm needs for overall complexity,

CFAB = (M × N) × (W
2
 -1) × (d +1) (5.2)

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

90

Hierarchical Disparity [28] or left-right checking algorithm needs overall

computational cost, CHD = 2×(M×N)×(W
2
-1)×(d+1) (5.3)

The overall complexity of FAS [37] is CFAS = Ο (NM
2
ǀDǀ) which is equivalent to our

notation CFAS = {(M × N) × W
2
 × ǀDǀ}. Where ǀDǀ is the total levels of disparity. With

the above analysis of complexity, it is clear that the overall complexity of our method

is relatively less than the state-of-the-art methods. Moreover, no multiprocessing

hardware or accelerated hardware is used in our proposed method.

5.4 Experimental Results

The proposed SGSC algorithm is implemented in Visual C++ language with

Windows 10 operating system. All experimental results are implemented by the

processor of Intel Core i-3, 2.3 GHz speed and 4GB RAM. We tested our algorithm

on the following datasets and environments.

 Experimental settings and adjustment for threshold value δT

 Observation of 3D reconstruction with object borders, size and shape

localization.

 Middlebury standard stereo images of Tsukuba and Venus stereo for detailed

analysis.

 Middlebury standard stereo datasets 2003 of indoor scenes.

 Middlebury standard stereo datasets 2006 of indoor scenes and

 Middlebury optical flow latest datasets for hidden, synthetic and stereo types of

image data.

5.4.1 Experimental Settings and Adjustment for Threshold Value δT

The threshold technique is used to make the searching zone as close-fitting as

possible. The threshold value (δT) is calibrated properly and carefully. Table 5.1

shows the different dense disparity maps for different values of δT with different time

reductions. From the experimental data of Table 5.1 we find that for the case of small

values of δT (like 1, 2 and 3), the background of the disparity map is condensed and

overlapped each other because it abruptly reduced the search region. These maps are

shown in first row of Table 5.1. The background is expanded with increasing the

threshold value (like 4, 5 …10). The large values of threshold increased the search

region to make the opportunity for several matchings’ and thus expanded both dark

and bright values of disparity map. Hence, we set the threshold value at 5 for all

subsequent processes.

Optimal Algorithms for Stereo Correspondence Estimation

91

Table 5.1: Effects of variation of threshold value δT.

E
x

p
erim

en
ta

l

O
u

tp
u

t Im
a

g
e

Threshold

Value δT 1 2 3

Time(in µs)

reduction

compared to a

SAA [Chap. 4]

86 112 145

E
x

p
erim

en
ta

l o
u

tp
u

t

Im
a

g
e

Threshold

Value δT

4

5

10

Time(in µs)

reduction

compared to

SAA [Cha. 4]

167

183

183

We mainly focus on two types of datasets: 1) Middlebury Standard Stereo datasets

2006 and 2003, 2) Middlebury current Optical Flow datasets. Middlebury Standard

Stereo datasets 2006 consists of 21 stereo pair and Middlebury Standard Stereo

datasets 2003 consist of 6 stereo pair. Optical flow datasets are categorized four types:

1) Hidden Texture, 2) Synthetic, 3) Stereo and 4) High-speed camera (No GT). We

evaluated our algorithm on above mentioned datasets both in terms of numerical and

visual and compared to the state-of-the-art methods. But detailed comparisons like

frame-rate, time and accuracy are presented for Tsukuba and Venus stereo pair in

subsection 5.4.3 and 5.4.4 of this section. Moreover, we evaluated our proposed

method on Middlebury Optical Flow of datasets for visual comparisons with hidden

ground-truth. The window cost calculation mask size of 11 × 11 is used in this

proposed experiment.

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

92

5.4.2 Observation of 3D Reconstruction with Object Border, Size and

Shape Localization

Tsukuba head image encloses with various objects at different depth of locations.

Background and foreground objects are positioned at various depths. Some occlusions

and bad objects are found in Tsukuba with overlapping condition and it encloses with

some special frontal objects; for example, statue’s head, lamp of table and camera.

The proposed algorithm distinguishes the various depths by setting the dissimilar gray

scale values to the output image as shown by 3D reconstruction map in Table 5.2.

Short-distance object is indicated by white grey level and long-distance object is

assigned by black grey level value. Object borders are easily visualized in our

estimated border classification map. Border localization problems [13] are resolved

by SGSC algorithm properly. The 3D dense disparity map is further checked by the

object detection algorithm and the object borders are figured out in 3
rd

 column of

Table 5.2. The 3D dense maps of SGSC method are almost similar to their ground

truth image. The estimated 3D restructure is convalesced and their object’s borders

are perfectly recognized. Therefore, the result confirms that the almost same depths

are found in experimentally calculated disparity map.

Table 5.2: Visual examination of 3D structures, borders and objects detection on

experimental disparity map.

Ref. Image 3D Reconstruction map. Object borders classification Comments

Tsukuba

Head

Object

borders are

perfectly

localized.

(Edge

preserved)

Tsukuba

Head

Object

borders are

perfectly

localized.

(Edge

preserved)

Optimal Algorithms for Stereo Correspondence Estimation

93

5.4.3 Evaluation on Middlebury Standard of Tsukuba Head Image Pair

for Detailed Analysis

We have evaluated our method on Tsukuba head both on numerically and graphically

in this section. Sum of Absolute Differences (SAD) technique is used in our

experiment to compare identically with the current state-of-the-art methods. The

stereo correspondences are calculated within usual search range (from -10 to +10).

Table 5.3: Numerical comparisons of computing time (in μs) and frame-rate (in fps)

with top eleven (11) methods for the Middlebury data of Tsukuba head using SGSC

algorithm.

Method’s

Name

Computing

Time

(in µs)

Frame-rate

(in fps)

Accuracy

(in %)

Computational

Machine

Input

image
Rank

SGSC

[Proposed]
1689 592 97.60

Processor: 2.3 GHz

Core i-3, Main-

Memory: 4GB.

Middlebury

Standard

Tsukuba

image pair

1

SAA

[Chapter 4]
1872 535 93.80

Processor: 2.3 GHz

Core i-3, Main-

Memory: 4GB.

2

FAB[13] 3229 310 86.10

Processor: 2.3 GHz

Core i-3, Main-

Memory: 4GB.

3

HD[28] 4243 235 92.10

Processor: 2.3 GHz

Core i-3, Main-

Memory: 4GB.

4

FA[9] 4617 216 88.23

Processor: 2.3 GHz

Core i-3, Main-

Memory: 4GB.

5

TF[34] 7000 143 93.18

Processor: 1.8 GHz

Core i-7,

Main Memory: 4GB

6

EGF[33] 9000 111 93.67

Processor: 3.0 GHz

Core i-5, Main -

Memory: 8GB,

GTX card.

7

DSI-

AS[32]
200000 5 90.18

Processor: 2.2 GHz

Core Duo.
8

PSM[39] 550000 2 97.68

Processor: Nvidia

G.F GTX-1080.

KITTI -

2015

Standard

9

DSG[38] 2860000 0.35 91.76

Processor: 3.4 GHz

Core i-7, Main –

Memory: 16GB

Middlebury

and

KITTI -

2015

Standard

10

EM[35] 3000000 0.33 92.82

Processor: 1.9 GHz

Core i-5, Main -

Memory: 6GB

Middlebury

datasets 11

FAS[37] 40500000 0.025 96.02

Processor: 3.2 GHz

Core i-5, Main -

Memory: 8GB

Middlebury

& KITTI

Standard

12

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

94

The experimental outcomes of self-guided search are analyzed with respect to

computational time, scanning frame-rate (in fps) and its accuracy. The computational

time, frame-rate (in fps) as well as other achievements of self-guided technique are

examined with previous [9], [13], [28] and the present state-of-the-art methods [32],

[33, [34], [35] as well as with SAA [Chapter 4]. Table 5.3 demonstrates the summary

of numerical evaluations among the proposed SGSC method and current state-of-the-

art methods with their computational machine specifications. From Table 5.3, it is

seen that proposed SGSC method is ranked 1
st
 among the non-learning local and

learning global state-of-the-art methods. Even our proposed algorithm run with lower

configurations of machine and no special hardware or parallel processing technique is

used to accelerate the running speed.

This algorithm takes computational time only 1689 microseconds with highest frame-

rate 592 fps. The nearest comparable method is SAA that takes 1872 microseconds

with frame-rate 535 fps. From Table 5.3 and Fig. 5.6, we observe that the SGSC

method requires minimum computational time and gives the maximum frame-rate.

 (a) (b)

Fig. 5.6 Left-side graph(a) shows the comparison of computational time (in µs)and

right-side graph(b) shows the comparison of frame-rate (in fps) among the proposed

SGSC and current state-of-the-art methods for Tsukuba head image.

Therefore, the SGSC method outdoes the present state-of-the-art methods with respect

to computational cost and frame-rate on Middlebury Tsukuba head data. So, we can

claim that the SGSC method is presently the state-of-the-art method for Tsukuba

image with 1.11X, 1.9X, 2.5X, 2.7X, 118.4X, 5.32X, 4.14X, 1776.19X, 1693.3X,

335.6X faster than the methods of SAA [Chapter 4], [13], [28], [9], [32], [33], [34],

[35], [38] and [39] respectively.

Optimal Algorithms for Stereo Correspondence Estimation

95

Table 5.4: Numerical comparisons of time reduction (in %) of SGSC algorithm for

Tsukuba stereo image.

Computational

Time(in µs) for

SGSC[Proposed]

Existing state-of-the-art methods Computational Time

Reduction (in %) by

SGSC method

compared to the

methods of 2
nd

 column

Applied Method

Computational

Time(in µs)

1689

SAA[Chapter 4] 1872 09.77

FAB[13] 3229 47.69

HD[28] 4243 60.19

FA[9] 4617 63.41

TF[34] 7000 75.87

EGF[33] 9000 81.23

EM[35] 3000000 99.94

PSM[39] 550000 99.69

DSG[38] 2860000 99.94

Similarly, computational time reductions of SGSC algorithm are calculated both on

local and global method those are demonstrated in Table 5.4. First six methods of

Table 5.4 are non-learning local methods and last three methods are learning global

methods. Our proposed SGSC method is non-learning and it performs up to 81.23%

time reduction in non-learning local method as well as 99.94% time reduction in

learning environment.

5.4.4 Evaluation on Middlebury Standard Stereo Images of Venus Stereo

Pair for Detailed Analysis

The computational time and frame-rate are assessed by numeric figures in Table 5.5

for Middlebury Venus stereo datasets. The SGSC method also exceeds to all other

non-learning local methods those are tabulated in Table 5.5. Table 5.5 distinguishes

the SGSC method and recent state-of-the-art methods with respect to computational

time and frame-rate with machine configurations. Our SGSC needs only 2452 μs

compared to 2652 μs, 6318 μs, 6724 μs, 7000 μs, 7473 μs and 9000 μs respectively. It

runs with highest frame-rate at 408 fps among the top six performer algorithms those

are represented in Fig. 5.7.

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

96

Table 5.5: Numerical comparison of time (in μs) and frame-rate (in fps) for the Venus

stereo image using SGSC algorithm.

Applied Method
Computational

Time(in µs)

Frame-rate

 (in fps)

Computational

Machine

Input

image
Rank

SGSC

[Proposed] 2452 408

Processor: 2.3 GHz

Core i-3, M. Memory:

4GB

Middlebury

Venus

Stereo

dataset

1

SAA [Chapter 4] 2652 377

Processor: 2.3 GHz

Core i-3, M. Memory:

4GB

2

FAB[13] 6318 158

Processor: 2.3 GHz

Core i-3, M. Memory:

4GB

3

HD[28] 6724 148

Processor: 2.3 GHz

Core i-3, M. Memory:

4GB

4

TF[34] 7000 143

Processor: 1.8 GHz

Core i-7, M. Memory:

4GB

5

FA[9] 7473 133

Processor: 2.3 GHz

Core i-3, M. Memory:

4GB

6

EGF[33] 9000 111

Processor: 3.0 GHz

Core i-5, M. Memory:

8GB

GF, GTX card.

7

 (a) (b)

Fig. 5.7 Left-side graph (a) shows the comparison of computational time (in µs) and

right-side graph (b) shows the comparison of frame-rate (in fps) for Venus stereo pair.

Another assessment of the SGSC algorithm is measured numerically based on

computational time reduction and their comparisons are represented in Table 5.6.

Optimal Algorithms for Stereo Correspondence Estimation

97

Table 5.6: Numerical comparisons of time reduction (in %) of proposed method for

Venus stereo pair.

Computing

Time(in µs)

for SGSC

[Proposed]

Current state-of-the-art methods Computational Time

Reduction (in %) by

SGSC method over the

methods of 2
nd

 column
Method’s Name

Computational

Time(in µs)

2452

SAA[Chapter 4] 2652 07.54

FAB [13] 6318 61.19

HD [28] 6724 63.53

TF[34] 7000 64.97

FA[9] 7473 67.18

EGF[33] 9000 72.75

All methods presented in Table 5.6 are non-learning local method. Among these

methods, the proposed algorithm shows lowest time reduction 7.54% compared with

the nearest similar method SAA and highest time reduction 72.75% compared to the

recent state-of-the-art method EGF [33]. Therefore, our SGSC algorithm is presently

state-of-the-art method for Middlebury Venus stereo datasets with 2.5X, 2.7X, 3.04X,

3.67X, 2.8X, 1.08X faster than the top six methods of [13], [28], [9], [33], [34] and

SAA respectively.

5.4.5 Estimation of Accuracy and Comparison with Top State-of-the-Art

Methods

The accuracy of proposed SGSC method is estimated on Tsukuba head stereo pair for

testing the validity of SGSC algorithm. The SGSC algorithm is executed by Microsoft

visual C++ compiler. To calculate the stereo correspondence of a reference image, the

cost aggression of window is determined on the candidate-pixel of right image for the

usual search range.

 (a) (b)

Fig. 5.8 Left side figure(a) shows the run time screen shoot and right side graph(b)

demonstrates the accuracy curve of SGSC algorithm.

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

98

The proposed SGSC algorithm calculates the accuracy with error threshold 2. From

the run time snapshot of Fig. 5.8(a), the highest accuracy of SGSC method is

achieved as 97.5% and 97.6% for 11 × 11and 13 × 13 window sizes respectively. The

numerical evaluation confirms that the proposed method generates only 2.4% error.

The errors are 6.33%, 7.88%, 7.18% and 6.2% reported in [33], [34], [35] and SAA

respectively for Middlebury standard stereo data of Tsukuba head using the same

resolution of input images. From the graph of Fig. 5.8(b), it is seen that the accuracy

curve is almost steady-state after 11 × 11 window size of mask. So, we can conclude

that the accuracy goes to saturation level after correct matching 97.6% with 2.4% bad

pixel only.

5.5 Performance Analysis with Additional Standard Images

The effectiveness is carried out on Middlebury Standard Tsukuba head and Venus

stereo data in Section 5.4 with numerical and graphical comparisons. To justify the

adaptability and efficiency of proposed SGSC method we tested our algorithm on

complex backgrounds for different types of Middlebury Standard images of different

resolutions. Such types of positive results reconfirm again the effectiveness of SGSC

method. Versatility testing is made on the following Middlebury Standard Stereo and

Optical Flow datasets.

5.5.1 Evaluation on Middlebury Standard Stereo Datasets 2003 and 2001

of Indoor Scenes

The proposed SGSC method is compared with current state-of-the-art methods on

Middlebury Standard stereo datasets 2003 and 2001 including four standard stereo

pairs of Tsukuba, Venus, Teddy and Cones. The top six current state-of-the-art

methods FA[9], FAB[13], TF[34], SAA[Chapter 4], EGF[33] and EM[35] are

compared with SGSC method, as they are closely related to our proposed method.

The first column of Table 5.7 represents the stereo image name and their resolution.

The stereo images of Cones and Teddy are Middlebury Standard stereo dataset 2003

and their ground truth achieved by structural light.

The stereo images of Burn2, Bull, Poster and Venus are piecewise planar scenes [12]

of Middlebury Standard stereo datasets 2001. The 2
nd

 and 3
rd

 column’s images are

directly provided by Middlebury benchmark.

Optimal Algorithms for Stereo Correspondence Estimation

99

Table 5.7: Numerical and visual comparisons between SGSC method and current

state-of-the-art methods on Middlebury standard stereo datasets of 2003 and 2001.

Reference
Image

Name &

Size

Left Image

Ground truth

Output of current
state-of-the-art

method

(Appling last
column’s method)

Output of SGSC

Method

Running
time for last

column’s

method
(in µs)

Running
time for

SGSC

method
(in µs)

Compared
With

Burn2:

430×381

3109 1390

FA
[9]

Bull:

433×381

3145 1391
FAB

[13]

Cones:

450×375

7000 1433
TF

[34]

Poster:
435×383

1675 1422
SAA

[Chap. 4]

Venus:

434×383

9000 2652

EGF

[33]

Teddy:
450×375

20000000 1437
EM
[35]

The overall matching performance of our proposed SGSC method and its final dense

disparity map is evaluated by threshold technique represents at 5
th

 column marked by

shadow color of header in Table 5.7. The dense disparity maps of top six current

methods are presented at 4
th

 column. The numerical computational time and

comparisons are demonstrated at 6
th

 and 7
th

 columns in Table 5.7, where whole

shadow column (7
th

 column) represents the computational cost of the proposed SGSC

algorithm. The visual comparisons are placed at 4
th

 and 5
th

 column and quantitative

comparisons are held on 6
th

 and 7
th

 columns of Table 5.7. By observing the numerical

comparisons carefully, we found that in all cases our proposed method is 2X or more

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

100

faster than current state-of-the-art methods. The SGSC method takes 253

microseconds less than nearest SAA algorithm. From Table 5.7, we observe that

except SAA method, all top performer algorithms run at double or more times than

our proposed method. All 3D reconstructions are properly localized and objects-

borders are visualized easily as seen by visual comparisons for different types of

image data. Besides these, our algorithm preserves the edges of object correctly. An

added feature is found in the proposed SGSC algorithm. By examining the estimated

dense disparity map of SGSC method and ground truth image of Poster, Venus and

Teddy, it is seen that the SGSC disparity map contains the hidden ground truth, which

is not visible in conventional disparity estimation algorithms. Because of this

extraordinary feature of SGSC algorithm, it can also detect the variation of optical

flow. The detailed discussion is given in subsection 5.5.3 about the optical flow of

variation where we discussed with the Middlebury Optical Flow Data.

5.5.2 Evaluation on Middlebury Standard Stereo Datasets 2006 of Indoor

Scenes

The top six current state-of-the-art methods FA [9], FAB [13], EGF [33], FAS [37],

and SAA are compared with SGSC method on Middlebury standard stereo datasets

2006, as they are closely associated to our proposed method. The first column of

Table 5.8 represents the stereo images name and their resolution. The left and ground

truth images of 2
nd

 and 3
rd

 columns are provided by Middlebury benchmark. The

visual comparisons are presented on 4
th

 and 5
th

 column and quantitative comparisons

are held on 6
th

 and 7
th

 columns in Table 5.8.

The experimentally evaluated visual and numerical results of our proposed method

are represented at column 5
th

 and 7
th

 respectively. In SGSC, a photometric threshold

technique is embedded on SAA method in order to reduce the search range as close-

fitting as needed. Therefore, SGSC algorithm is faster than SAA. The computational

time of SAA method for Aloe stereo image is 3405µs whereas the computational time

of our SGSC method is 3191µs. So, proposed method takes 214 µs fewer than nearest

similar method (i.e., SAA). In the rest cases, proposed SGSC is 2X or more faster

than current state-of-the-art methods.

Dual support windows are used in FAS [37] for each candidate-pixel of right image.

That is why its computational cost was very high, noted at 40.5 seconds.

Optimal Algorithms for Stereo Correspondence Estimation

101

Table 5.8: Numerical and visual comparisons between SGSC method and current

state-of-the-art methods on Middlebury Standard stereo datasets of 2006.

Reference

Image

Name &
Size

Left Image Ground truth

Output of current

state-of-the-art

methods (Appling last
column’s method)

Output of SGSC

Method

Running

time for last
column’s

method

(in µs)

Running

time for
SGSC

method

(in µs)

Compared

With

ALOE:

641×555

3405 3191

SAA

[Chap. 4]

BABY2:

620×555

40500000

3094

FAS

[37]

BOWLING2:

665×555

7484 3359
FAB

[13]

CLOTH-1:
626×555

7001 3125
FA
[9]

CLOTH-3:

626×555

9000 3094

EGF

[33]

MIDD-2:

683×555

40500000

3422

FAS

[37]

The SGSC method does not require preprocess and post-process like filtering,

refinement or left-right checking to discard the outliers from the raw disparity map.

The related works of top six methods need post-process techniques in order to make

the raw disparity map as close as ground truth image. In our method no post-

processing is required, only enhancement technique is used to visualize the raw

disparity map. The raw disparity map of our SGSC method is directly comparable

with ground truth image. Our proposed method not only takes less time for computing

the dense disparity but also more efficient to preserve the object border.

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

102

Layer-4

Layer-3

Layer-2

Layer-1

Left (Ref.) Image Output of SGSC Ground Truth

Fig. 5.9 Detection of different layers and hidden structures by SGSC algorithm.

For the case of first image (ALOE) of Table 5.8., if we compare the ground truth with

the SGSC output like Fig. 5.9, it is seen that our proposed method estimates the dense

disparity map and detects the hidden layers of background concurrently. The four

different layers are indicated by arrow in experimental output image. We observe that

background cloth of left image encompassed with four bends shape with different

flow of light in the same horizontal line. So, these different flows of light are mapped

clearly by our proposed SGSC algorithm. But no hidden structure or layer is found in

ground truth image. BABY-2(2
nd

 image) contains some noise which is marked by

read color in current state-of-the-art method [37]. We utilized threshold technique in

our proposed method to reduce the false matching in active zone. Therefore our

method contains comparatively less noise.

5.5.3 Evaluation on Middlebury Optical Flow for Hidden, Synthetic and

Stereo Datasets

The algorithm has been justified on latest Middlebury Optical Flow datasets. The

tested datasets are-

1) Real imagery of nonrigidly moving scenes where dense ground-truth flow is

obtained using hidden fluorescent texture painted on the scene [46]. This type of

image is called “Hidden Texture” as mentioned in Table 5.9.

2) Realistic synthetic imagery texture and

3) Stereo image of rigid scenes modified for optical flow.

The proposed SGSC algorithm shows excellent performance on all types of above

mentioned optical flow data. The visual comparisons between SGSC outputs and

Middlebury evaluated outputs with hidden ground-truth flow are depicted in Table

Optimal Algorithms for Stereo Correspondence Estimation

103

5.9. The color column (5
th

 Column) represents the Middlebury hidden-ground truth

flow and 3
rd

 column represent our experimental hidden ground-truth flow.

Table 5.9: Visual comparisons between SGSC method and current state-of-the-art

methods on current Middlebury optical flow datasets.

Source: https://vision.middlebury.edu/flow/data

Image

Type
Reference Image

Experimental output

of

SGSC algorithm

Image

Name

Evaluated Datasets
(With hidden

ground-truth flow)

Optical Flow

Hidden

Texture

Army

Yes

Mequon

Yes

Schefflera

Yes

Wooden

Yes

Synthetic

Texture

Grove

Yes

Urban

Yes

Yosemite

Yes

Stereo

Teddy

Yes

All the color segments, boundaries and objects created by variation of optical flow are

detected in our SGSC experimental ground-truth with grey-scale color as like as

Middlebury hidden-ground truth. The fluorescent painted textures of two armies are

seen at right most bottom of 1
st
 reference image. These armies are clearly visualized

at the same position in our experimental optical flow ground-truth. Whereas, these

armies are not clearly visualized in optical flow ground-truth of Middlebury. By

observing the 2
nd

 image (Mequon), it is found that, two heads of Mequon are

visualized in both cases. However, in synthetic texture, the urban 1
st
 building is more

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

104

clearly detected in our experimental ground-truth than Middlebury. These results

confirm us that, the apparent motion of brightness pattern can be sensed by our SGSC

algorithm accurately. The unknown difference is found in comparatively more

complex Yosemite image data. The difference is that, upper portion of Middlebury

ground-truth is black and upper portion of our ground-truth is white. Rests of the

flows are captured correctly. Our proposed method not only estimates the stereo

ground-truth but also detects the all hidden background textures in modified stereo

image of Teddy for optical flow. Therefore, the proposed SGSC algorithm can

compute both the stereo and optical flow ground-truth.

5.5.4 Experiment on Real Stereo Images by SGSC

The performances of SGSC algorithm have been further tested on real stereo images

acquisitioned by Logitech stereo web camera. This experiment is performed in our

software laboratory and images were captured as indoor scenes. The specifications of

stereo camera are the same as we mentioned in subsection 2.3.1 and 3.4.4.

Stereo Image Capturing Process:

The main objects (Human face, Nescafe coffee stand and Scotch tape stand) of

reference images were stood 63.00 cm away from the imaging sensor of the camera.

The distance between two cameras was 6.70 cm. The stereo images are captured by

the software at a time.

a) Real image acqusition using stereo web camera for dataset-1(Human face).

Optimal Algorithms for Stereo Correspondence Estimation

105

b) Real image acqusition using stereo web camera for dataset-2(Nescafe coffee stand).

c) Real image acqusition using stereo web camera for dataset-3 (Scotch tape stand).

Fig. 5.10 Real image acqusition process using stereo web camera.

Experimental output for Real Stereo Images:

The size of the left and right real-image is (width × height) = (550 × 720) pixels.

Disparity image size is (width × height) = (514 × 684) pixels. Table 5.10

demonstrates the visual observations and findings of dense disparity map. The Table

5.10 illustrates the dense disparity maps of three real datasets -Human face, Nescafe

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

106

coffee stand and Scotch tape stand respectively. Image names and its resolution are

mentioned in 1
st
 column. The 2

nd
 column of Table 5.10 represents the reference

image which is captured by our stereo camera. The 3
rd

 and 4
th

 column represent the

estimated dense disparity maps of reference images generated by SGSC algorithm

using 33 and 1111 mask respectively.

Table 5.10: Visual observation of disparity map of real images generated by SGSC

algorithm

Image Name

& Resolution

Reference image Experimental

Dense Disparity

Map of Real Image

Mask size : 33

Experimental

Dense Disparity

Map of Real Image

Mask size : 1111

Execution time(s)

Dataset-1

(Human face)

550720

Mask: 33 : 469

Mask: 1111: 5359

Dataset-2

(Nescafe

coffee stand)

550720

Mask: 33 : 469

Mask: 1111: 5374

Dataset-3

(Scotch tape

stand)

550720

Mask: 33 : 563

Mask: 1111: 5985

We could not compare the experimental outputs to the ground truth image because it

has no ground truth image. In this situation, the disparity maps of output image should

be considered and compared visually only. The disparity maps contain some noise.

Optimal Algorithms for Stereo Correspondence Estimation

107

This is happened because we could not provide the equilibrium light condition in our

laboratory. Similarly the room temperature was not equilibrium at all the places

during the image acquisition process. Moreover, we have tried to our best to calibrate

the stereo camera physically. The stereo cameras were manually placed on the same

horizontal line, but experimentally, it was not possible. There was some vertical

mismatch between two cameras in fractional millimeter (.05 mm approximately)

range.

These cause to add a little noise in captured stereo images. Inspite of noise, the

objects are demarked and recognized at standard level. The object (Human face,

Nescafe coffee stand and Scotch tape stand) inside the reference image is clearly

understandable and visualized. The dense disparity map generated by 33 mask is

more visualized and comprehensive than the disparity map of 1111 in noisy

environment. So the overall performance of SGSC algorithm is good in case of real

stereo images.

5.6 Discussion

Reducing the computational cost is one of the main aims of this research on stereo

correspondence estimation. An inventive method introduced as Self-Guided Stereo

Correspondence (SGSC) Estimation Algorithm is implemented here to perform the

vision speedily. So, a pioneer core idea of threshold technique is embedded in SAA

[Chapter 4] method in order to reduce the search zone as close-fitting as needed. This

closefitting impression bans the fake search in its two little territories and thus reduces

the computational cost with improvement of 3D structures, object border and

accuracies. The frame-rate of our SGSC method is 592 fps for Tsukuba image pair

and 408 fps for Venus stereo images which are the fastest among the current state-of-

the-art methods. The outstanding feature of our proposed algorithm is hybrid in

nature. It has the adaptability and threshold to process the data both in Middlebury

stereo datasets as well as optical flow datasets. This combination makes the SGSC

algorithm distinguishable from current state-of-the-art methods.

5.7 Summary

The significant of this Chapter establishes an original optimal method for disparity

estimation. The main goal of this method was to reduce the computational cost as well

Disparity Estimation Technique:

Self-Guided Stereo Correspondence (SGSC) Estimation Algorithm

108

as to increase the accuracy and make the system useful or real-time applications. The

concept behind SGSC is described in the Section 5.2. The computational complexity

of the algorithm is presented in Section 5.3. The experimental data are tested in

different aspects in Section 5.4 and in its Subsections. The performance of SGSC

algorithm is tested on additional standard images in Section 5.5 to justify the

adaptability of this algorithm. The performance of SGSC algorithm has been further

justified on real image datasets in subsection 5.5.4. Experimental results illustrate its

efficiencies in Table 5.7, Table 5.8 and Table 5.9 both in visually and numerically.

An overall achievement has been drawn in Section 5.6 as a discussion.

Chapter 6

Conclusion and Discussion

Optimal Algorithms for Stereo Correspondence Estimation

110

6.1 Contributions of the Thesis

The main objective of this research was to reduce the computational cost, i.e., to

improve the performance of stereo matching. The next objective was to improve the

accuracy of stereo correspondence estimation in presence of noise.

In this research, we present four contributions on stereo correspondence estimation.

We started our first voyage to realize the stereo correspondence using a Real Time

Approximation (RTA) algorithm. To achieve the first objective, the RTA algorithm

has been structured by vector quantization to create the algorithm a real-time one.

Then the cost matching scores of the corresponding pixels of the stereo images are

approximated to ensure acceptable matching scores. Experimental results prove that

this algorithm performs significantly better than the methods employed for window-

based existing stereo matching techniques. The computational cost of RTA algorithm

is very small compared to the window-based Fast Area Based Algorithm [13]. To

justify the effectiveness and validity of this method, we have applied it on the

Middlebury standard stereo images. The experimental result of first method is

illustrated visually in Fig. 6.1(a). The numerical result is demonstrated in the first row

of Table 6.1 and Table 6.2. The computational time reduction is increased by 93.71%

and 97.74% compared to reference FAB [13] and EGF [33] methods respectively.

Though the computational time reduction of RTA is very good compared to window-

based local stereo methods, but its accuracy is only 30%. So, the RTA algorithm can

be used where very fast estimation of dense disparity is essential.

The second achievement of this research is the 2D Real Time Spiral Search Algorithm

(2DRTSSA) for computing the stereo correspondence of the stereo image sequences

with a view to implement the first and second objectives at a time. The 2DRTSSA

method calculates two window costs; one is along with the +x direction and the other

is along with –y direction. The rest two window costs are along with the opposite

directions (i.e., –x direction and +y direction) are also calculated using the same

procedure. The minimum disparity is estimated from the four window costs. The

computational cost of this algorithm is less than the existing state-of-the-art methods

[32], [33], [34] and [35]. The visual quality of experimental output is demonstrated in

Fig. 6.1(b), which shows that the output of 2DRTSSA is better than that of RTA

algorithm.

Conclusion and Discussion

111

 (a) Output image 348 × 252 (b) Output image 348 × 252

 From RTA Algorithm. From 2DRTSSA Algorithm

 (c) Output image 348 × 252 (d) Output image 348 × 252

 From SAA Algorithm. From SGSC Algorithm at δT = 5

Fig. 6.1 Visual comparison of disparity maps developed by different methods of this

research.

The numerical result is demonstrated in the second row of Table 6.1 and Table 6.2.

The computational time reduction is decreased by -38.74% and increased by 50.22%

compared to reference FAB [13] and EGF [33] methods respectively. The 2DRTSSA

method calculates stereo correspondences with good accuracy 93.80%. This method

can optimize the speed and accuracy of estimated dense disparity over recent state-of-

the-art method.

Optimal Algorithms for Stereo Correspondence Estimation

112

Table 6.1: Performance comparison of experimental results with Fast Area Based

Algorithm, FAB [13] using SAD method. Given that the accuracy of FAB is 86.10%

and computation time is 3229 µs.

Applied Algorithm
Computational time

(in µs)

Time Reduction (in %)

compared to FAB

Accuracy

(in %)

RTA 203 93.71 30.00

2DRTSAA 4480 -38.74 93.80

SAA 1872 42.02 93.80

SGSC 1689 47.69 97.60

Table 6.2: Performance comparison of experimental results with recent state-of-the-

art Edge-aware Geodesic Filter, EGF [33] using SAD method. Given that the accuracy

of EGF is 93.67% and computation time is 9000 µs.

Applied Algorithm
Computational time

(in µs)

Time Reduction (in %)

compared to EGF

Accuracy

(in %)

 RTA 203 97.74 30.00

2DRTSAA 4480 50.22 93.80

SAA 1872 79.20 93.80

SGSC 1689 81.23 97.60

The third and most significant achievement of this research work is the introduction

of Self-Adaptive Algorithm (SAA) for computing disparity of the stereo images.

According to the proposed SAA method, stereo matching search range can be selected

dynamically after first matching. That is, by the completion of first search the

proposed algorithm remembers the position of matching pixel. So, the second search

occurs surrounding to the first matching pixel, as we use the concepts that neighbor

pixels have the same photometric properties. Hence depending on the position of

matching pixel, the successive search ranges are reselected adaptively. The

performance of this algorithm has been tested on Middlebury standard stereo datasets.

The performance enhancement of this method was better which is described in details

in Section 4.6, Chapter 4. The computational time reduction of SAA method is

increased by 42.02% compared to previous fastest literature FAB [13] method and by

79.20% compared to present state-of-the-art, EGF [33] method, with accuracy

improvement 7.7% compared to FAB [13] method and 0.13% compared to EGF [33]

method.

Conclusion and Discussion

113

The fourth and most significant method of this research is Self-Guided Stereo

Correspondence (SGSC) estimation for disparity of stereo images. Both SGSC and

SAA methods are directed by photometric properties of the candidate-pixels. As the

photometric properties of reference image pixel and its neighbor’s pixel is similar in

most cases, so the upcoming corresponding pixel exists in surrounding of the previous

matching pixel. Searching performance is greatly improved by utilizing this

photometric property of the candidate-pixels. In SGSC the searching performance is

further improved by implanting the pioneer threshold technique. We have utilized

threshold technique in SAA method; these two techniques jointly reduced the

computational costs significantly with further improvement of accuracy over previous

methods. The achievements of the proposed SGSC method are testified on

Middlebury standard stereo datasets of 2001, 2003, 2006 and Middlebury latest

Optical Flow Datasets. Finally, the proposed method is compared with present state-

of-the-art methods and SAA. The SGSC experimentally shows that, it outperforms the

latest methods in terms of speed, visualization of hidden ground truth, 3D

reconstruction and accuracy. The experimental results of SGSC algorithm are figured

out in last row of Table 6.1 and Table 6.2, which demonstrates the maximum

computational time reduction 81.23% compared to the recent state-of-the-art EGF[33]

method and highest accuracy with 97.6%. The accuracy is improved by 11.50%

compared to FAB [13] method and 3.93% compared to EGF [33] method. Therefore,

SGSC is the optimal algorithm among the algorithms proposed in this research.

6.2 Future Work

This research introduces a novel contribution of four algorithms for stereo

correspondence estimation. There are a number of ways to diversify the research in

future. Fuzzy logic will be one of the solutions for better understanding the detailed

object and to provide more accuracy for visualization purposes. The fuzzy logic may

give accurate measurement for the disparity membership function. The reverse-

fuzzification technique can be used instead of gray level logic.

Deep learning technique may be employed for better perception of its behaviors

hereafter. Besides these, we have a plan to apply our algorithms on color images to

observe the capability of our algorithms for color variation. By completion of the said

variation, it can be applied to detect the color flow of outdoor scenes of KITTI

Optimal Algorithms for Stereo Correspondence Estimation

114

datasets. We think that variation of both x and y axis concurrently of SAA or SGSC

algorithm will be able to map the hidden ground truth as well as to detect the flow of

color variation. In those cases, the modified version of SAA or SGSC may be applied

to other benchmarks like KITTI 2015, Robust Vision Challenge and many more with

a view to identify the flow of variation and to map the hidden ground truth

simultaneously.

6.3 Summary

This chapter describes the main achievements obtained from this research work using

four novel algorithms for stereo correspondence. These are: Real Time Approximation

(RTA), Two-Dimensional Real Time Spiral Search Algorithm (2DRTSSA), Self-

Adaptive Algorithm (SAA) and Self-Guided Stereo Correspondence (SGSC)

estimation algorithm. The RTA algorithm shows the good performance over existing

Fast Area Based Algorithm. The experimental result showed its computational time

reduction 93.71%. The second achievement of this research is the Two-Dimensional

Real Time Spiral Search Algorithm (2DRTSSA) for computing the stereo

correspondence of the stereo image sequences with a view to implement the first and

second objectives at a time. The performance Table 6.2 shows that the computational

time reduction and accuracy of 2DRTSSA algorithm is 50.22% and 93.80%

respectively. The important achievement of this research work is the implementation

of Self-Adaptive Algorithm (SAA) for computing the stereo correspondence of stereo

images with computational time reduction is 79.20% in local stereo matching.

The novel method of this research is the implementation of Self-Guided Stereo

Correspondence (SGSC) estimation algorithm. The SGSC algorithm achieves 81.23%

computational time reduction and 97.60% accuracy. The visual qualities of

experimental dense disparity maps outperform the present state-of-the-art methods.

Section 6.2 provides some concepts for improving the algorithms for stereo

correspondence measurement in future.

References

[1] M. S. Uddin, T. Shioyama, M. H. Chowdhury and A. M. Mondal, “Fast window-

based approach for stereo matching,” Journal of Science, Jahangirnagar

University, vol. 27, pp. 145-154, 2004.

[2] S. T. Barnard and M. A. Fischler, “Stereo vision,” Encyclopedia of Artificial

Intelligence, (John Wiley, New York, 1987), pp. 1083-1090, 1987.

[3] W. Hoff and N. Ahuja, “Surfaces from stereo: Integrating feature matching,

disparity estimation and contour detection,” IEEE Transections on Pattern

Analysis and Machine Intelligence, vol. 11, no. 2, pp. 121-136, 1989.

[4] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive

window: Theory and experiment,” IEEE Transections on Pattern Analysis and

Machine Intelligence, vol. 16, no. 9, 1994.

[5] O. Veksler, “Stereo matching by compact windows via minimum ratio cycle,” in

Proceedings of the IEEE International Conference on Computer Vision (ICCV),

2001, pp. 540-547.

[6] S. S. Intille and A. F. Bobick, “Disparity-space images and large occlusion stereo,”

in Proceedings of the European Conference on Computer Vision (ECCV), 1994,

pp. 179-186.

[7] A. Fusiello and V. Roberto, “Efficient stereo with multiple windowing,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(ICVPR), 1997. pp. 858-863.

[8] K. Muhlmann, D. Maier, J. Hesser and R. Manner, “Calculating dense disparity

maps from color stereo images, an efficient implementation,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (ICVPR),

2001, pp. 30-36.

[9] M. S. Uddin, “Stereo correspondence estimation using window- based methods by

a fast algorithm,” Journal of Electronics & Computer Science, vol. 4, pp. 5-11,

June 2003.

[10] Md. Abdul Mannan Mondal and Md. Al-Amin Bhuiyan, “Disparity Estimation by

a Two-Stage Approximation Real Time Algorithm,” in Proceedings of the

International Management and Technology Conference (IMT), 2004, pp. 12-17.

[11] Md. Abdul Mannan Mondal and Md. Haider Ali, “Performance Review of the

Optimal Algorithms for Stereo Correspondence Estimation

116

Stereo Matching Algorithms,” American Journal of Computer Science and

Information Engineering, vol. 4, no.1, pp- 7-15, 2017.

[12] D.Schartein and R.Szeliski, “ A taxonomy and evaluation of dense two frame

stereo correspondence algorithms,” International Journal of Computer Vision, vol.

47, no.1-3, pp.7-42,2002.

[13] Lugi Di Stefano, Massimiliano Marchionni and Stefano Mattoccia, “A fast Area

Based Stereo Matching Algorithm,” Image and vision Computing, vol.22, pp. 983-

1005, 2004.

[14] Abijit S. Ogale and Yiannis Aloimonos, “Shape and the Stereo Correspondence

Problem,” International Journal of Computer Vision, vol.65, no. 3, pp.147-167,

2005.

[15] Sukjune Yoon, Sung-Kee Park, Sungehul Kang and Yoon Keun Kwak, “Fast

correlation–based stereo matching with the reduction of systematic errors,” Pattern

Recognition Letters, vol. 26, pp. 2221-2231, 2005.

[16] L. Kotoulas, A. Gasteratos, G. Ch. Sirakoulis, C. Georoulas and I. Andreadis,

“Enhancement of Fast Acquired Disparity Maps using a 1-D Cellular Automation

Filter,” in Proceedings of the fifth IASTED International Conference on

Visualization, Imaging and Image Processing, 2005, pp.7-9.

[17] Lazaros Nalpantidis, Georgios Ch. Sirakoulis and Antonios Gasteratos, “Rieview

of stereo matching algorithms for 3D vision,” in Proceedings of the 16
th

International Symposium on Measurement and Control in Robotics (ISMCR),

2007, pp.116-124.

[18] P. H. S. Torra and A. Criminisi, “Dense stereo using pivoted dynamic

programming,” Image and Vision Computing, vol.22, pp. 795-806, 2004.

[19] Salvador Gutierrez and Jose Luis Marroquin, “Robust approach for disparity

estimation in stereo vision,” Image and Vision Computing, vol. 22, pp. 183-195,

2004.

[20] Michael Bleyer and Margrit Gelautz, “A layered stereo matching algorithm using

image segmentation and global visibility constraints,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 59, pp.128-150, 2005.

[21] Abijit S. Ogale and Yiannis Aloimonos, “Robust Contrast Invariant Stereo

Correspondence,” in Proceedings of the 2005 IEEE International on Robotics and

Automation, 2005, pp. 819-824.

References

117

[22] Qingxiong Yang, Liang Wang, Ruigang Yang, Shengnan Wang, Miao Liao and

David Nister, “ Real-time Global Stereo Matching Using Hierarchical Belief

Propagation,” in Proceedings of the British Machine Vision Conference (BMVC),

2006, pp. 989-998.

[23] Xiaodong Huang and Eric Dubois, “Dense Disparity Estimation based on the

continuous wavelet transformation,” in Proceedings of the Canadian Conference

on Electrical and Computer Engineering (CCECE), 2004, pp. 465-468.

[24] C. Liu, W. Pei, S. Niyokindi, J. C. Song and L. D. Wang, “Micro stereo matching

based on wavelet transform and projective invariance,” Measurement Science and

Technology. vol.17, pp. 565 -571, 2006.

[25] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang,

and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground

truth,” in Proceeding of the German Conference on Pattern Recognition (GCPR),

September 2014, pp.31-42.

[26] Elisabetta Binaghi, Ignazio Gallo, Giuseppe Marino and Mario Raspanti, “Neural

adaptive stereo matching,” Pattern Recognition Letters, vol.25, pp. 1743-1758,

2004.

[27] Yoon ,Kuk-Jin and In So Kweon, “Adaptive Support –Weight Approach for

Correspondence Search,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 4, pp. 650-656, April 2006.

[28] Christopher Zach,Konrad Karner and Horst Bischof, “Hierarchical Disparity

Estimation with Programmable 3D Hardware ,” in Proceeding of the International

Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision, 2004, pp. 275–282.

[29] D. Min, J. Lu and M. N. Do, “A revisit to cost aggregation in stereo matching:

How far can we reduce its computational redundancy?,” in Proceedings of IEEE

International Conference on Computer Vision, Nov. 2011. pp. 1567-1574.

[30] D.Min, J. Lu and M. N. Do, “Joint histogram-based cost aggregation for stereo

matching,” IEEE Transections on Pattern Analysis and Machine Intelligence,

vol.35, no.10, pp. 2539–2545, Oct. 2013.

[31] A. Hosni, C.Rhemann, M. Bleyer, C. Rother and M. Gelautz, “Fast cost volume

filtering for visual correspondence and beyond,” . PAMI, vol.35, pp.504-511,

2013.

[32] Nadia Baha and Slimane Larabi, “Accurate real-time disparity map computation

http://www.cs.middlebury.edu/~schar/papers/datasets-gcpr2014.pdf
http://www.cs.middlebury.edu/~schar/papers/datasets-gcpr2014.pdf

Optimal Algorithms for Stereo Correspondence Estimation

118

based on variable support window,” International Journal of Artificial Intelligence

& Applications (IJAIA), vol.2, no.3, pp. 22-33, July 2011.

[33] Xun Sun , Xing Mei , Shaohui Jiao , Mingcai Zhou , Zhihua Liu and Haitao Wang,

“Real-time local stereo via edge-aware disparity propagation,” Pattern

Recognition Letters , vol. 49, pp. 201-206, 2014.

[34] Q. Yang, “Stereo matching using tree filtering,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 4, pp. 834-846, 2015.

[35] Mikhail G. Mozerov and van de Weijer, “Accurate stereo matching by two-step

energy minimization,” IEEE Transactions on Image Processing, vol. 24, no. 3,

pp. 1153-1163, March 2015.

[36] Zbontar J. and LeCun Y., “ Computing the stereo matching cost with a

convolutional neural network,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, October 2015, pp.1592-1599.

[37] Wenhuan Wu,Hong Zhu,Shunyuan Yu and Jing Shi , “Stereo Matching with

Fusing Adaptive Support Weights,” IEEE Access, vol. 7, pp. 61960-61974, May

2019.

[38] Williem and In Kyu Park, “Deep self-guided cost aggregation for stereo

matching,” Pattern Recognition Letters, vol. 112, pp. 168-175, September 2018.

[39] Jia-Ren Chang and Yong-Sheng Chen, “Pyramid Stereo Matching Network,” in

Proceeding of the IEEE conference Computer vission and pattern

recognition,June 2018, pp. 5410-5418.

[40] Siti Safwana Abd Razak, Mohd Azlishah Othman and Ahmad Fauzan Kadmin,

“The effect of Adaptive Weighted Bilateral Filter on Stereo Matching Algorithm,”

International Journal of Engineering and Advanced Technology, vol. 8, no. 3, pp.

284-287, February 2019.

[41] H. Hirschmüller and D. Scharstein, “Evaluation of cost functions for stereo

matching,” in Proceedings of IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2007),June 2007, pp. 1-8.

https://vision.middlebury.edu/stereo/data

[42] [3[D. Scharstein and R. Szeliski, Middlebury Stereo Evaluation – version 2, 2010,

https://vision.middlebury.edu/stereo/eval/

[43] Md. Abdul Mannan Mondal, M.S. Thesis, Jahamgirnagar University, Savar,

Dhaka, 2007.

http://www.cs.middlebury.edu/~schar/papers/evalCosts_cvpr07.pdf
http://www.cs.middlebury.edu/~schar/papers/evalCosts_cvpr07.pdf
https://vision.middlebury.edu/stereo/data

References

119

[44] Zbontar J. and LeCun Y. ,“Stereo matching by training a convolutional neural

network to compare image patches,” Journal of Machine Learning Research, vol.

17, no. 2, pp. 1-32, April 2016.

[45] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia and Luigi di

Stefano ,“Real-time Self-adaptive deep stereo,” in Proceeding of IEEE conference

on Computer vission and pattern recognition(CVPR), June 2019, pp. 195-204.

[46] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J. Black and

Richard Szeliski ,“A Database and Evaluation Methodology for Optical

Flow,” International Journal of ComputerVision, vol. 92, no. 1, pp.1-31, March

2011.

[47] Computer Vision: Algorithms and Applications, by Richard Szeliski, September 3,

2010, Springer. http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

[48] Mordohai, Philippos and Gerard G. Medioni, “Stereo using monocular cues within

the tensor voting framework,” IEEE Transactions on Pattern Analysis and

Machine Intelligence vol. 28, no. 6, pp. 968-982, 2006.

[49] Veksler,Olga., “Reducing search space for stereo correspondence with graph cuts,”

in Proceedings of British Machine Vision Conference, February 2006, pp.709–718.

 [50] Hong, Li and George Chen, “Segment-based stereo matching using graph cuts,” in

Proceedings of IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2004, pp.74–81.

 [51] Kim, Jae Chul, Kyoung Mu Lee, Byoung Tae Choi and Sang Uk Lee, “A dense

stereo matching using two-pass dynamic programming with generalized ground

control points,” in Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2005, pp.1075–1082.

 [52] Wang, Liang, Miao Liao, Minglun Gong, Ruigang Yang and David Nister, “High

quality real-time stereo using adaptive cost aggregation and dynamic

programming,” in Proceedings of Third International Symposium on 3D Data

Processing, Visualization, and Transmission, 2006, pp.798–805.

 [53] Lei, Cheng, Jason Selzer and Yee-Hong Yang, “Region-tree based stereo using

dynamic programming optimization,” in Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2006, pp.2378–2385.

http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

Appendix-A:

 Source Code for RTA Algorithm

121

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <time.h>

#include <math.h>

#define size_x 384 //original image size

#define size_y 288

#define size_x1 128 // 3 times reduced image size

#define size_y1 96

#define dmax 10

#define k1 6

#define k2 6

#define kk1 1

#define kk2 1

#define w1 3

#define w2 3

typedef struct{

 int imagesize_x, imagesize_y;

 int **pixel;

}image_t;

image_t allocate_image(const int imagesize_x, const int imagesize_y);

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws,int *p);

void main(){

 image_t image_left, image_right, image_disp;

 int m, n, v_left, v_right, temp, temp1;

 int i, j, ws1, ws2, p, d;

 int sum, sum1, sum2;

 image_t Mtemp[2*dmax + 1];

 clock_t t0, t1;

 double cpu_speed;

 FILE *cpp, *cpp1, *cpp2, *cpp3, *cpp4, *cpp5, *cpp6;

 char dummy[50] = "";

 cpp = fopen("f:\\l.pgm", "r+");

 cpp1 = fopen("f:\\r.pgm", "r+");

 cpp2 = fopen("f:\\ls.pgm", "w+");

 cpp3 = fopen("f:\\rs.pgm", "w+");

 fgets(dummy, 50, cpp);

122

 do{

 fgets(dummy,50,cpp);

 }while(dummy[0]=='#'); // All comments lines of .pgm file are

 // stored in dummy array.

 fgets(dummy,50, cpp);

 fgets(dummy, 50, cpp1);

 do{

 fgets(dummy,50,cpp1);

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp1);

 fprintf(cpp2,"P2\n%d %d\n255\n", size_x/3,size_y/3);

 fprintf(cpp3,"P2\n%d %d\n255\n", size_x/3,size_y/3);

 image_left = allocate_image(size_x,size_y);

 image_right = allocate_image(size_x,size_y);

 t0 = clock ();

 for(n = 0; n < size_y; n++){

 for(m = 0; m < size_x; m++){

 fscanf(cpp,"%d", &temp); // read left input image.

 fscanf(cpp1,"%d", &temp1); // read right input image.

 image_left.pixel[m][n] = temp; //assign the -

 //intensity value in array.

 image_right.pixel[m][n] = temp1;

 }

 }

 // Creation of quantized image.

 ws1 = (w1/2); ws2 = (w2/2); p = 0;

 for(n = kk2; n < size_y-kk2 ; n += 3){

 for (m = kk1; m < size_x-kk1 ; m += 3){

 sum1 = 0;

 sum2 = 0;

 for(i = -ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 v_left = image_left.pixel[m+i][n+j];

 v_right = image_right.pixel[m+i][n+j];

 sum1 += v_left;

 sum2 += v_right;

 }

 }

 fprintf(cpp2,"%d ", (int)(sum1/(w1*w2)));

 fprintf(cpp3,"%d ", (int)(sum2/(w1*w2)));

 }

 }

 fclose(cpp2);

 fclose(cpp3);

123

 cpp4 = fopen("f:\\ls.pgm", "r+");//open the quantized image.

 cpp5 = fopen("f:\\rs.pgm", "r+");//open the quantized image.

 cpp6 = fopen("f:\\tds.pgm", "w+");// file for dense disparity.

 fgets(dummy, 50, cpp4);

 do{

 fgets(dummy, 50, cpp4);

 }while(dummy[0] == '#');

 fgets(dummy, 50, cpp4);

 fgets(dummy, 50, cpp5);

 do{

 fgets(dummy, 50, cpp5);

 }while(dummy[0] == '#');

 fgets(dummy, 50, cpp5);

 // writing the header and memory allocation for estimated dense

 // disparity map.

 fprintf(cpp6,"P2\n%d %d\n255\n", size_x1-2*k1, size_y1-2*k2);

 image_left = allocate_image(size_x,size_y);

 image_right = allocate_image(size_x,size_y);

 image_disp = allocate_image(size_x,size_y);

 for(d=0; d <= 2*dmax; d++){

 Mtemp[d] = allocate_image(size_x, size_y);

 }

 // read the quantized images.

 for(n = 0; n < size_y1; n++){

 for(m = 0; m <size_x1; m++){

 fscanf(cpp4, "%d", &temp);

 fscanf(cpp5, "%d", &temp1);

 image_left.pixel[m][n] = temp;

 image_right.pixel[m][n] = temp1;

 }

 }

 t0 = clock();

 ws1 = (w1/2);

 ws2 = (w2/2); p = 0;

 // Window cost calculation process using SAD technique.

 for(m = k1; m < size_x-k1 ; m++){

 for(n = k2; n < size_y-k2 ; n++){

 for (d = -dmax; d <= dmax; d++){

 sum = 0;

 for(i =- ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 v_left = image_left.pixel[m+i][n+j];

124

 v_right = image_right.pixel[m+i+d][n+j];

 sum += abs(v_left - v_right);

 }

 }

 Mtemp[d + dmax].pixel[m][n] = sum;

 }

 // Assign the best window cost in array using minimum function.

 image_disp.pixel[m][n] = minimum(Mtemp,m,n,ws1,&p);

 }

 for(n = k1; n < size_y1-k1; n++){

 for(m = k2; m < size_x1-k2; m++){

 fprintf(cpp6, "%d ", (image_disp.pixel[m][n]));

 }

 }

 fclose(cpp6);

 int pixel[400][400];

 FILE *cpp7, *cpp8 ;

 cpp7 = fopen("f:\\tds.pgm", "r+");

 // open Shrinked disparity image.

 cpp8 = fopen("f:\\tdz.pgm", "w+"); // Open replicated file.

 fgets(dummy, 50, cpp7);

 do{

 fgets(dummy, 50, cpp7);

 }while(dummy[0] == '#');

 fgets(dummy, 50, cpp7);

 for(n = 0; n < size_y1-2*k2; n++){

 for(m = 0; m <size_x1-2*k1; m++){

 fscanf(cpp7, "%d", &temp);

 // read the Shrinked disparity map.

 pixel[m][n] = temp;

 }

 }

 // write down the header information of replicated image &

 //creating replicated dense disparity map.

 fprintf(cpp8,"P2\n%d %d\n255\n", 348, 252);

 for(n = 0; n < size_y1-2*k2; n++){

 for(m = 0; m <size_x1-2*k1; m++){

 fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n],pixel[m][n]);

 }

 for (m = 0; m <116; m++){

 fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n], pixel[m][n]);

 }

 for (m = 0; m <116; m++){

 fprintf(cpp8,"%d %d %d ", pixel[m][n], pixel[m][n], pixel[m][n]);

 }

 }

 t1 = clock();

125

 cpu_speed = ((double) (t1 - t0));

 printf("Total time= %.2f Microseconds\n", cpu_speed);

}

// ------Memory allocation--------.

image_t allocate_image(const int imagesize_x, const int imagesize_y){

 image_t result;

 int x = 0, y = 0;

 result.imagesize_x = imagesize_x;

 result.imagesize_y = imagesize_y;

 result.pixel =(int **) calloc(imagesize_x, sizeof(int*));

 for(x = 0; x < imagesize_x; x++){

 result.pixel[x] =(int*) calloc(imagesize_y, sizeof(int));

 for(y = 0; y < imagesize_y; y++){

 result.pixel[x][y] = 0;

 }

 }

 return result;

}

// -----Best window cost calculation function------.

int minimum(const image_t temp[2*dmax+1],int x, int y, int ws, int *p){

 int i, j = 1, mu, a;

 double min;

 for(i=0; i < 2*dmax+1; i++){

 if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 }

 min = temp[j].pixel[x][y];

 for(a = 0; a < 2*dmax+1; a++){

 if(a != j && temp[a].pixel[x][y] == min){

 *p+=1;

 break;

 }

 }

 mu = abs(j-dmax);

 return (mu);

}

126

Appendix-B:

 Source Code for 2DTRASSA Algorithm

127

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<time.h>

#include<math.h>

#define size_x 384

#define size_y 288

#define cmin 10 // (1/2) Search depth.

#define k1 18

#define k2 18

#define w1 11

#define w2 11

typedef struct{

 int imagesize_x, imagesize_y;

 int **pixel;

}image_t;

image_t allocate_image(const int imagesize_x, const int imagesize_y);

int minimum(const image_t temp[2*cmin+1],int x, int y,int ws,int *p);

void main(){

 image_t image_left,image_right,image_disp;

 image_t Mtemp[2*cmin + 1];

 int m, n, v_left, v_right, temp, temp1, v_right1, v_left1;

 int i, j, cid, ws1, ws2, p; //cid = Spiral Distance.

 int sad1, sad2, dis=0; //dis = Disparity, sad=Sum of absolute difference.

 clock_t t0,t1;

 double cpu_speed;

 FILE *cpp, *cpp1, *cpp2;

 char dummy[50] = " ";

 cpp = fopen("f:\\l.pgm", "r+"); // open input images.

 cpp1 = fopen("f:\\r.pgm", "r+");

 cpp2 = fopen("f:\\td_2D.pgm", "w"); // open output file

 fgets(dummy,50,cpp); // comments lines are stored in dummy.

 do{

 fgets(dummy, 50, cpp);

 }while(dummy[0] == '#');

 fgets(dummy, 50, cpp);

 fgets(dummy, 50, cpp1);

 do{

 fgets(dummy, 50, cpp1);

 }while(dummy[0]=='#');

 fgets(dummy, 50, cpp1);

 // writing of output file header information.

 fprintf(cpp2, "P2\n%d %d\n255\n", size_x-2*k1, size_y-2*k2);

 // memory allocation.

 image_left = allocate_image(size_x,size_y);

 image_right = allocate_image(size_x,size_y);

 image_disp = allocate_image(size_x,size_y);

128

 for(cid = 0; cid <= 2*cmin; cid++){

 Mtemp[cid] = allocate_image(size_x, size_y);

 }

 // Scanning the left and right images.

 for (n = 0; n < size_y; n++){

 for (m = 0; m < size_x; m++){

 fscanf(cpp, "%d", &temp);

 fscanf(cpp1, "%d", &temp1);

 image_left.pixel[m][n] = temp;

 image_right.pixel[m][n] = temp1;

 }

 }

 t0 = clock();

 // 2D Window cost calculation process.

 ws1 = (w1/2); ws2 = (w2/2); p = 0;

 for (m = k1; m < size_x-k1 ; m++){

 for (n = k2; n < size_y-k2 ; n++){

 dis = 0;

 for (cid = -cmin; cid <= cmin; cid++){

 sad1 = 0;

 sad2 = 0;

 for(i =- ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 if(((m+i+cid*2) >= 0) && ((m+i+cid*2) < size_x)){

 v_left = image_left.pixel[m+i][n+j];

 v_right = image_right.pixel[m+i+cid*2][n+j];

 v_left1 = v_left;

 v_right1 = image_right.pixel[m+i][n+j+cid*(-2)+1];

 int abs1 = v_left - v_right;

 int abs2 = v_left1 - v_right1;

 if(abs1 < 0) abs1 = -1*abs1;

 if(abs2 < 0) abs2 = -1*abs2;

 sad1 += abs1;

 sad2 += abs2;

 }

 }

 }

 // Select the minimum window cost.

 if(sad1 <= sad2)

 Mtemp[dis++].pixel[m][n] = sad1;

 else

 Mtemp[dis++].pixel[m][n] = sad2;

 }

 // Find the best window cost using minimum function.

 image_disp.pixel[m][n] = 2 * minimum(Mtemp,m,n,ws1,&p);

 }

 }

 t1 = clock();

129

 cpu_speed = ((double) (t1 - t0)); // time calculation.

 printf("Total time = %lf microseconds. \n",cpu_speed);

 // Creating the dense disparity map.

 for (n = k1; n < size_y-k1 ; n++){

 for (m = k2; m < size_x-k2 ; m++){

 fprintf(cpp2,"%d ", (image_disp.pixel[m][n]));

 }

 }

}

//Memory Allocation

image_t allocate_image(const int imagesize_x, const int imagesize_y){

 image_t result;

 int x = 0, y = 0;

 result.imagesize_x = imagesize_x;

 result.imagesize_y = imagesize_y;

 result.pixel = (int **) calloc(imagesize_x, sizeof(int*));

 for (x = 0; x < imagesize_x; x++){

 result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int));

 for(y = 0; y < imagesize_y; y++){

 result.pixel[x][y] = 0;

 }

 }

 return result;

}

// Finding the best window cost. i.e. minimum window cost.

int minimum(const image_t temp[2*cmin+1],int x, int y,int ws,int *p){

 int i,j,mu,a;

 double min;

 j = 1;

 for(i = 0;i < 2*cmin+1; i++){

 if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 }

 min = temp[j].pixel[x][y];

 for(a = 0;a<2*cmin+1; a++){

 if (a != j && temp[a].pixel[x][y] == min){

 *p += 1;

 break;

 }

 }

 int abs11 = j-cmin;

 mu = (abs11<0)?(-1*abs11):abs11;

 return (mu);

}

130

Appendix-C:

 Source Code for SAA Algorithm

131

#include <stdio.h>

#include <stdlib.h>

#include<conio.h>

#include<time.h>

#include<math.h>

#define size_x 384

#define size_y 288

#define dmax 10

#define k1 18

#define k2 18

#define w1 11

#define w2 11

typedef struct{

 int imagesize_x, imagesize_y;

 int **pixel;

}image_t;

image_t allocate_image(const int imagesize_x, const int imagesize_y);

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws);

int flag = 0;

void main(){

 image_t image_left,image_right,image_disp;

 image_t Mtemp[2*dmax + 1];

 int m,n,v_left,v_right,temp,temp1;

 int i,j,d,ws1,ws2;

 int sum;

 clock_t t0,t1;

 FILE *cpp,*cpp1,*cpp2;

 char dummy[50] = " ";

 cpp=fopen("imL.pgm", "r+");// opening left and right images.

 cpp1=fopen("imR.pgm", "r+");

 cpp2=fopen("tdadaptive.pgm", "w");

 fgets(dummy,50,cpp); // all comments lines are stored in dummy.

 do{

 fgets(dummy,50,cpp);

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp);

 fgets(dummy,50,cpp1);

 do{

 fgets(dummy,50,cpp1);

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp1);

 fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// output header.

132

 image_left = allocate_image(size_x,size_y);// memory allocation.

 image_right = allocate_image(size_x,size_y);

 image_disp = allocate_image(size_x,size_y);

 for(d = 0;d <= 2*dmax; d++){

 Mtemp[d] = allocate_image(size_x, size_y);

 }

 // scanning of input images.

 for (n = 0; n < size_y; n++){

 for (m = 0; m <size_x; m++){

 fscanf(cpp, "%d", &temp);

 fscanf(cpp1, "%d", &temp1);

 image_left.pixel[m][n] = temp;

 image_right.pixel[m][n] = temp1;

 }

 }

 t0 = clock();

 ws1 = (w1/2); ws2=(w2/2);

 for (m = k1; m < size_x-k1; m++){

 for (n = k2; n < size_y-k2; n++){

 int dmax1, dmax2;

 if(flag == 0){ // 1st searching region.

 dmax1 = -dmax;

 dmax2 = dmax;

 }

 else if(flag < 0){ // 1st Region.

 dmax1 = -dmax;

 dmax2 = 0;

 }

 else{ // 2nd Region.

 dmax1 = 0;

 dmax2 = dmax;

 }

 // Window costs are computing either in 1st or in 2nd Region using SAD.

 for(d = dmax1; d <= dmax2; d++){

 sum = 0;

 for(i = -ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 v_left = image_left.pixel[m+i][n+j];

 v_right = image_right.pixel[m+i+d][n+j];

 sum += abs(v_left - v_right);

 }

 }

 Mtemp[d + dmax].pixel[m][n] = sum;

 }

 // Select the minimum window cost.

 image_disp.pixel[m][n] = minimum(Mtemp, m, n, ws1);

 }

 }

133

 t1 = clock(); // time calculation.

 printf(" Total time = %d microseconds\n",(t1 - t0));

 for (n = k1; n < size_y-k1 ; n++{

 for (m = k2; m < size_x-k2 ; m++){

 fprintf(cpp2,"%d ",(image_disp.pixel[m][n]));

 }

 }

}

//Memory Allocation

image_t allocate_image(const int imagesize_x, const int imagesize_y){

 image_t result;

 int x = 0, y = 0;

 result.imagesize_x = imagesize_x;

 result.imagesize_y = imagesize_y;

 result.pixel = (int **) calloc(imagesize_x, sizeof(int*));

 for(x = 0; x < imagesize_x; x++){

 result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int));

 for(y = 0; y < imagesize_y; y++){

 result.pixel[x][y] = 0;

 }

 }

 return result;

}

// Finding the minimum window cost and its co-ordinate distance.

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws){

 int i, j = 1, mu, a;

 double min;

 int len = 2*dmax+1;

 if(flag != 0)

 len = dmax+1;

 for(i = 0;i < len; i++){

 if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 }

 if (j < 10) // selecting the search region.

 flag = -1; // for 1st region.

 else

 flag = 1; // for 2nd region.

 mu = abs(j-dmax); // return the best matching co-ordinate distance.

 return (mu);

}

134

Accuracy Measurement Code:

//for measuring the accuracy of self-adaptive algorithm

#include <stdio.h>

#include <stdlib.h>

#include<conio.h>

#include<time.h>

#include<math.h>

#define size_x 384

#define size_y 288

#define dmax 20

#define k1 18

#define k2 18

#define k 7

typedef struct{

 int imagesize_x, imagesize_y;

 int **pixel;

}image_t;

image_t allocate_image(const int imagesize_x, const int imagesize_y);

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws);

int flag = 0;

int main(){

 image_t image_left,image_right,image_disp,image_tdisp;

 image_t Mtemp[2*dmax + 1];

 int m, n, v_left, v_right, temp, temp1;

 int i, j, d, ws1, ws2, p, dd;

 int sum, w1, w2;

 double correct1[20] = {0},correct2[20] = {0};

 int total_time,time_dmax;

 double totaldata = (size_x-(2*k1+2*k))*(size_y-2*k2);

 clock_t t0,t1;

 FILE *cpp,*cpp1,*cpp2;

 char dummy[50] = "";

 cpp = fopen("imL.pgm", "r+");// open input images.

 cpp1 = fopen("imR.pgm", "r+");

 cpp2 = fopen("td.pgm", "r+");// open ground truth image.

 fgets(dummy,50,cpp);

 do{

 fgets(dummy,50,cpp); // all comments are removed to dummy.

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp);

 fgets(dummy,50,cpp1);

 do{

 fgets(dummy,50,cpp1);

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp1);

135

 fgets(dummy,50,cpp2);

 do{

 fgets(dummy,50,cpp2);

 }while(dummy[0]=='#');

 fgets(dummy,50,cpp2);

 fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// writing header info.

 // ********* memory allocations************

 image_left = allocate_image(size_x,size_y);

 image_right = allocate_image(size_x,size_y);

 image_tdisp = allocate_image(size_x,size_y);

 image_disp = allocate_image(size_x,size_y);

 for(d = 0;d <= 2*dmax; d++){

 Mtemp[d] = allocate_image(size_x, size_y);

 }

 //----------Read input images-----------.

 for (n = 0; n < size_y; n++){

 for (m = 0; m <size_x; m++){

 fscanf(cpp,"%d",&temp);

 fscanf(cpp1,"%d",&temp1);

 image_left.pixel[m][n] = temp;

 image_right.pixel[m][n] = temp1;

 }

 }

 for (n = k1; n < size_y-k1; n++){

 for (m = k2; m <size_x-k2; m++){

 fscanf(cpp2,"%d",&temp);

 image_tdisp.pixel[m][n] = temp;

 }

 }

 printf("__\n");

 printf(" Window size Accuracy (%%) Computational time\n");

 printf(" (pixel) correct match Diff %c1 pixel (Microsecond) \n",241);

 printf("__\n");

 total_time = 0;

 //-------- Dividing the search area ------------

 for(w1 = 3,w2 = 3;w1 <= 15,w2 <= 15;w1 += 2,w2 += 2){

 t0 = clock();

 ws1 = (w1/2); ws2 = (w2/2); p = 0;

 for (m = k1; m < size_x-k1 ; m++){

 for (n = k2; n < size_y-k2 ; n++){

 int dmax1,dmax2;

 if(flag == 0){

 dmax1 = -dmax;

136

 dmax2 = dmax;

 }

 else if(flag < 0){ // 1st Region.

 dmax1 = -dmax;

 dmax2 = 0;

 }

 else{ // 2nd Region.

 dmax1 = 0;

 dmax2 = dmax;

 }

// **** window cost calculation either in 1st or in 2nd Region***

 for (d = dmax1; d <= dmax2; d++){

 sum = 0;

 for(i =- ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 if(((m+i+d)>=0) && ((m+i+d)<size_x)){

 v_left = image_left.pixel[m+i][n+j];

 v_right= image_right.pixel[m+i+d][n+j];

 sum += abs(v_left - v_right);

 }

 }

 }

 Mtemp[d + dmax].pixel[m][n] = sum;

 }

 image_disp.pixel[m][n] = minimum(Mtemp,m,n,ws1);

 }

 }

 t1 = clock();

 total_time = (t1-t0);

 // ----- Accuracy Measurement steps -------.

 for(n = k1; n < size_y-k1; n++){

 for(m = k2; m <size_x-k2; m++){

 if(abs(image_disp.pixel[m][n]-image_tdisp.pixel[m][n])==0)

 correct1[w1]++;

 if(abs(image_disp.pixel[m][n]-image_tdisp.pixel[m][n])<=2)

 correct2[w1]++;

 }

 }

 }

 // ----- Writing the output data for different Masks-------.

 if(w1 == 3)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 5)

printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

137

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 7)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 9)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 11)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 13)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 else if(w1 == 15)

 printf(" %d x %d %.1lf %% %.1lf %% %d\n", w1, w2,

 (correct1[w1]/totaldata)*100, (correct2[w2]/totaldata)*100,

 total_time);

 printf("___\n");

 time_dmax = total_time / 3;

}

image_t allocate_image(const int imagesize_x, const int imagesize_y){

 image_t result;

 int x = 0, y = 0;

 result.imagesize_x = imagesize_x;

 result.imagesize_y = imagesize_y;

 result.pixel = (int **) calloc(imagesize_x, sizeof(int*));

 for(x = 0; x < imagesize_x; x++){

 result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int));

 for(y = 0; y < imagesize_y; y++){

 result.pixel[x][y] = 0;

 }

 }

 return result;

}

//**Finding the best window cost and its co-ordinate distance**

int minimum(const image_t temp[2*dmax+1],int x, int y,int ws){

 int i,j = 1, mu, a;

 double min;

 int len = 2 * dmax + 1;

 if(flag != 0)

 len = dmax + 1;

138

 for(i = 0;i < len; i++){

 if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 }

 if(j < 20)

 flag = -1; // set 1st region.

 else

 flag = 1; // set 2nd region.

 mu = abs(j - dmax);

 return (mu);

}

139

Appendix-D:

 Source Code for SGSC Algorithm

Anis
Typewritten text
Dhaka University Institutional Repository

140

#include <stdio.h>

#include <stdlib.h>

#include<conio.h>

#include<time.h>

#include<math.h>

#define size_x 384

#define size_y 288

#define dmax 10

#define k1 18

#define k2 18

#define w1 11

#define w2 11

typedef struct{

 int imagesize_x, imagesize_y;

 int **pixel;

}image_t;

image_t allocate_image(const int imagesize_x, const int imagesize_y);

int minimum(const image_t temp[2*dmax+1], int x, int y, int ws);

int flag=0;

image_t image_left,image_right,image_disp;

int main(){

 image_t Mtemp[2*dmax + 1];

 int m, n, v_left, v_right, temp, temp1;

 int i, j, d, ws1, ws2;

 int sum;

 clock_t t0,t1;

 FILE *cpp, *cpp1, *cpp2;

 char dummy[50] = "";

 cpp = fopen("imL.pgm", "r+");// open input images.

 cpp1 = fopen("imR.pgm", "r+");

 cpp2 = fopen("td_SGSC.pgm", "w");// open dense disparity file.

 fgets(dummy, 50, cpp);

 do{

 fgets(dummy, 50, cpp); // all comments lines are moved to dummy.

 }while(dummy[0] =='#');

 fgets(dummy, 50, cpp);

 fgets(dummy, 50, cpp1);

 do{

 fgets(dummy, 50, cpp1);

 }while(dummy[0] == '#');

 fgets(dummy, 50, cpp1);

 fprintf(cpp2,"P2\n%d %d\n255\n",348,252);// write file header info.

Anis
Typewritten text
Dhaka University Institutional Repository

141

 // ******** Memory Allocation ************

 image_left = allocate_image(size_x,size_y);

 image_right = allocate_image(size_x,size_y);

 image_disp = allocate_image(size_x,size_y);

 for(d = 0;d <= 2*dmax; d++){

 Mtemp[d] = allocate_image(size_x, size_y);

 }

 // ------ Scanning the input images ----------

 for (n = 0; n < size_y; n++){

 for (m = 0; m <size_x; m++){

 fscanf(cpp,"%d", &temp);

 fscanf(cpp1,"%d", &temp1);

 image_left.pixel[m][n] = temp;

 image_right.pixel[m][n] = temp1;

 }

 }

 t0 = clock();

 //--- Dividing the searching zone --------

 ws1 = (w1/2); ws2=(w2/2);

 for (m = k1; m < size_x-k1; m++){

 for (n = k2; n < size_y-k2; n++){

 int dmax1, dmax2;

 if(flag == 0){

 dmax1 = -dmax;

 dmax2 = dmax;

 }

 else if(flag < 0){ // 1st Zone.

 dmax1 = -dmax;

 dmax2 = 0;

 }

 else{ // 2nd Zone.

 dmax1 = 1;

 dmax2 = dmax;

 }

 //** Window cost calculation either in 1st or in 2nd Zone using SAD**

 for (d = dmax1; d <= dmax2; d++){

 sum = 0;

 for(i = -ws1; i <= ws1; i++){

 for(j = -ws2; j <= ws2; j++){

 v_left = image_left.pixel[m+i][n+j];

 v_right = image_right.pixel[m+i+d][n+j];

 sum += abs(v_left - v_right);

 }

 }

 Mtemp[d + dmax].pixel[m][n] = sum;

 }

Anis
Typewritten text
Dhaka University Institutional Repository

142

 // Save the best window cost using minimum function.

 image_disp.pixel[m][n]=minimum(Mtemp, m, n, ws1);

 }

 }

 t1 = clock();// time calculation.

 printf(" Total time = %d Microseconds\n",(t1-t0));

 //***** writing the output dense disparity image*******

 for (n = k1; n < size_y-k1 ; n++){

 for (m = k2; m < size_x-k2 ; m++){

 fprintf(cpp2,"%d ", (image_disp.pixel[m][n]));

 }

 }

}

// **** Memory Allocation ***

image_t allocate_image(const int imagesize_x, const int imagesize_y){

 image_t result;

 int x = 0, y = 0;

 result.imagesize_x = imagesize_x;

 result.imagesize_y = imagesize_y;

 result.pixel = (int **) calloc(imagesize_x, sizeof(int*));

 for(x = 0; x < imagesize_x; x++){

 result.pixel[x] = (int*) calloc(imagesize_y, sizeof(int));

 for(y = 0; y < imagesize_y; y++){

 result.pixel[x][y] = 0;

 }

 }

 return result;

}

// ***Finding the best window cost i.e. minimum window cost***

int minimum(const image_t temp[2*dmax+1],int x, int y, int ws){

 int i, j = 1, mu, a, Th=5;

 double min;

 int len = 2*dmax+1;

 if(flag != 0)

 len = dmax+1;

 for(i = 0; i < len; i++){

 if(temp[i].pixel[x][y] < temp[j].pixel[x][y])

 j = i;

 }

 mu = abs(j - dmax);

 // --- Applying Threshold technique in active Zone----

 if(abs(image_disp.pixel[x][y-1]- mu) <= Th)

 flag = -1; // Set 1st Zone as active.

 else

 flag = 1; // Set 2nd Zone as active.

 return (mu);

}

Anis
Typewritten text
Dhaka University Institutional Repository

