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ABSTRACT

In 1959, Richard Feynman, a renowned physicist, shared the idea of micro-machines at the

yearly American Physical Society meeting. Today, it is worth reconsidering these forecasts to

see that reality has exceeded imagination. Conversely, this journey to today’s ultrathin devices

is not expected to continue unabated. Already, designers of mechanics, electronic and computer

devices are feeling the bottleneck they have reached. Unexpectedly, the bottleneck is not elec-

tronic or mechanical but thermal. The movement towards machines that operate at increasing

speed results in greater and greater heat flow. Remarkably, the problem of heat dissipation is

not only a microscale but also a macroscale issue. The problem of heat transfer is similar in

controlled bioreactors, high- and medium-temperature fuel cells, and large transport vehicles.

Consequently, the cooling requirements of cutting-edge technologies necessitate a radical new

approach at this pivotal moment in heat transfer technology’s history.

Because refrigerants are such poor heat conductors, all previous efforts to develop cooling

technology have been, in a nutshell, "penny wise and pound stupid." This is because, while every

effort has been made to advance transport processes. This inherent insufficiency of coolants

indicates that it is expected that the current level of heat removal can be significantly improved by

designing more conductive fluids. Particles in nanofluids are so small and make up such a small

percentage of the total volume that they don’t interact with one another, so they’re completely

stable and don’t cause any issues with heat transfer. This finding sparked a flurry of research

in the area, with scientists primarily using experimentation to back up the huge potential of

nanofluids and also making theoretical attempts to explain the phenomenon.

The enthusiasm of the research community in the nanofluid area was evident from the num-

ber of papers published. The main focus of the current research is on nanofluids. Some relevant

articles or kinds of literature, which are studied, explored and reviewed cautiously, have been

arranged in Chapter 1. Some elementary information and introductory text have been incor-

porated in Chapter 2 describing non-Newtonian nanofluids, giving an adequate background in
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these areas. The other important issue is the incorporation of basic numerical techniques to solve

BVPs. The rest of chapters 3-6 are the discussions of some nanofluid models incorporating non-

Newtonian viscoelastic phenomena. The large number of references related to this thesis has

been organised as an appendix which can assist as a glossary for the research community.
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

The study of fluid motion is known as fluid dynamics. Gases, liquids, and ionised gases (plasma)

are all considered fluids. As a branch of plasma physics and continuum mechanics, Magneto-

hydrodynamics (MHD) combines the study of the flow of liquids called hydrodynamics and

the study of electromagnetism. Although the concepts of magnetism and fluid dynamics were

developed early in the 20th century, MHD did not emerge as a distinct field of study until the

late 1930s and early 1940s. Thus, while physicists like Faraday [1] conducted a few unique

experiments in the 19th century attempting to measure the voltage across the Thames persuaded

by its wave through the earth’s magnetic field, the subject lagged until the turn of the century

when astrophysicists appreciated how pervasive magnetic fields and plasmas are throughout the

earth. In his classic paper published in 1942, engineer-astrophysicist Alfvén [2] devised the

term MHD, heralding the birth of a fully formed MHD. He found MHD waves emanating from

the sun. These waves are the result of disturbances that travel through a conducting fluid and a

magnetic field at the same time.

The current development for applying magnetofluid dynamics is towards a strong magnetic

field (so that the influence of the electromagnetic force is noticeable) and towards a low gas

density (as in spaceflight and nuclear fusion research). At roughly the same time, geophysicists

began to hypothesise (first proposed by Larmor [3] in 1919) that the earth’s magnetic field was

created by a dynamo action within the liquid metals of its core. Ostrach [4], the originator

of the convection flow theory, used an integral approach for the similarity solution of transient

free convection flow over a semi-infinite perpendicular wall and wrote a technical note about it.

Goody [5] considered the influence of radiative transfer on a neutral fluid. For incompressible
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constant property flat plate boundary layer flow, Rossow [6] published the first academic work on

the topic. His research showed that applying a transverse magnetic field to the fluid significantly

decreased skin friction and heat transmission.

Sakiadis [7] studied the flow of a boundary layer over a moving solid wall. The entrainment

of ambient fluid makes this boundary layer flow situation very different from the classical Blasius

problem of boundary flow over a semi-infinite plane plate. Crane [8] seemed to initiate the study

of boundary layer flow due to an elongating plate in an ambient fluid. By extending a flat

sheet with a velocity that varies linearly with distance from a fixed point, he provided a closed

analytical form of a similarity solution for the steady boundary layer flow. Sparrow and Chess

[9] described a parameter called the Rosseland approximation for describing the radiation heat

flux in the energy equation. The MHD forced and free convection past a vertical porous plate

was analysed by Soundalgekar et al. [10]. Using numerical methods, Raptis and Perdikis [11]

investigated free convection flow in a porous medium bounded on all sides by a vertical, semi-

infinite porous plate. Laminar boundary layer flow with suction/injection was investigated by

Mansour [12] over a horizontal, continuously moving sheet with mixed convection and thermal

radiation interacting. Heat transfer from a burgeoning exterior with a varying heat flux was

precisely solved by Lin and Chen [13].

Jha [14] investigated how a homogeneous transverse magnetic field interacts with natural

convection to produce an unsteady Couette flow. Pop et al. [15] investigated the flow over a

stretching sheet near a stagnation point, taking the effect of thermal radiation. Ferdows et al.

[16] showed a similarity solution for MHD flow through the vertical porous plate with suction.

They applied a uniform magnetic field normal to the plate and investigated the effect of various

parameters on the velocity and temperature fields across the boundary layer. Jordán [17] stud-

ied radiation and dissipation effects on MHD unsteady free convection over the vertical porous

plate using the Network Simulation Method. Samad and Mohebujjaman [18] examined the re-

lationship between mass transfer and MHD boundary layer flow in a porous medium subjected

to a constant heat flux from an adjacent vertical wall. In the presence of a magnetic field and
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convective heat exchange at the plate with the surroundings, Makinde [19] researched the MHD

boundary layer flow with heat and mass transfer past an advancing erected plate.

Efficient, accurate and stable numerical methods for solving fluid flow problems, heat and

mass transfer processes, chemical reactions and turbulent phenomena are highly important in

many industrial applications. Nowadays, computer-based computation of complex issues may

provide a cost-effective, quick and sufficiently reliable method in many cases. Sometimes, the

computational approaches may also be an alternative or a complement to experimental inves-

tigations. Pavar et al. [20] discussed the convective MHD flow carried over a permeable ex-

ponentially prolonging surface, giving importance in clinical and medical research to generate

3D anatomical images from nuclear magnetic resonance signals. Li et al. [21] investigated the

axisymmetric transient squeezing MHD flow of the Newtonian non-conducting fluid through a

porous system retaining the slip condition at the plate boundary.

Ultrahigh-performance cooling in engineering and industrial technologies is a vital part of

the imperative issues in research today. With the mounting demand for resourceful cooling sys-

tems, more effective coolants are essential to maintaining the temperature of heat-generating

engines and engineering devices such as electronic machinery below protected limits. Most

common industrial fluids such as water, ethylene, glycol, toluene or oil generally have poor heat

transfer characteristics owing to their low thermal conductivity [22]. As competition grows on

a global scale, industries will need to upgrade modern heat transfer fluids to have much higher

thermal conductivities than are currently on the market. Nanofluids are newly invented industrial

fluids with developed thermal conductivity at deficient particle concentrations than conventional

fluids [23]. These artificial fluids are made by stably suspending and uniformly dispersing a

few metallic or nonmetallic particles, which are ultrafine and nanostructured, in ordinary heat

transferal fluids. The most important point is that nanostructured materials exhibit different and

unique thermal properties as compared to bulk materials with the same compositions [24]. Choi

[25] first established the concept of nanofluids in 1995 to generate engineering fluids with en-

hanced transport properties and higher heat transfer performance. Undoubtedly, the nanofluids
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have superior wetting, spreading, and dispersal properties on a solid surface and are more stable

than conventional fluids [26]. Many researchers have investigated nanofluids for thermal con-

ductivity enhancement [27, 28, 29, 30]. An experimental study conducted by Lomascolo et al.

[31] revealed that the thermal conductivity also depends on the concentration, size, shape and

material of the nanoparticles.

In recent times, the flow analysis of nanofluids has been the topic of extensive research due to

its characteristic of increasing thermal conductivity in the heat transfer process. Consequently,

a new advanced branch of science, called Nanoscience, is revealed by discussing the materials

on an atomic or molecular scale by synthesis, characterisation, exploration or exploitation of

nanostructured materials [32, 33, 34, 35]

In general, the heat transfer features of nanofluids can be predicted by employing two main

approaches, namely the single-phase model (e.g., homogeneous nanofluid model) and the two-

phase mixture model (e.g., non-homogeneous nanofluid model). In the case of the single-phase

model proposed by Tiwari and Das [36], the homogenous distribution of volume fraction for

nanofluids express their thermos-physical features as functions of the thermo-physical properties

of the base fluids and the nanoparticles [37, 38]. Hence, this model provides the solutions to the

conservation equations for nanofluids. Moreover, the nanoparticles are assumed to be in thermal

equilibrium with the base fluid, distributed uniformly within the base fluid and move with the

same velocity, in which the nanoparticle dynamics are neglected completely. Furthermore, the

single-phase model adopts the momentum and energy balance equations of the base fluid as

those of the nanofluid, only with the modification of thermo-physical properties caused by the

nanoparticles [39, 40].

In Buongiorno, two-phase non-homogeneous model [41], the significant enhancement in the

heat transfer rate is due to the improvement of the thermal conductivity, caused by the combined

influence of fluid particle slip mechanisms, Brownian diffusion and thermophoresis. In the two-

phase approach, the particle relations are added to the fluid conservation equations in which the

nanofluid can be treated as a two-component non-homogeneous mixture, including the base fluid
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and the nanoparticles. [42, 43, 44, 45]. Various purposes of nanofluids originated in industrial

and engineering premises, primarily in the heat conversation devices design, accelerators, MHD

generators, etc. [46, 47, 48].

Fluids that do not obey Newton’s law of viscosity are called non-Newtonian fluids. A fas-

cinating and unsettled tribological subject entails the viscoelasticity impact on thin-film flows.

The preparation of mixing polymers with mineral lubricants, known as multi-grade lubricants,

has been renowned since the mid-1990s [49, 50, 51]. These mixtures drive the consequential

oils to behave like non-Newtonian fluids by performing a viscosity dependency on the shear

rate. The classic Newtonian prototype covering the Navier-Stokes equations is unable to exhibit

the extremely non-linear bondings between tangential stress and strain rate of non-Newtonian

lubricants. Oldroyd [52], Beard and Walters [53], and Rajagopal et al. [54] are the pioneers

of second-grade viscoelastic fluid models. They have developed the boundary layer theory for

second-grade fluids and have motivated researchers to explore these kinds of fluids with various

conditions and situations. Rajagopal et al. [55] presented an investigation of incompressible

second-order fluid flow over a stretching plate. The problem had a bearing on some polymer

processing applications, such as the continuous extrusion of a polymer sheet from a die.

A study of the series solution of unsteady 2nd-grade nanofluid towards a stretching plate is

prepared by Ramzan, and Bilal [56], taking the effects of mixed convection and thermal radiation

into account. It was observed that temperature and solutal distributions show similar behaviour

for the thermophoresis diffusion, but the opposite tendency is noted in the case of Brownian mo-

tion diffusion. Majeed et al. [57] analysed the Soret and Dufour effects on the two-dimensional

flow of second-grade fluid due to stretching cylinder subjected to thermal radiation. Yavuz et al.

[58] proposed a qualitative study for the fractional second-grade fluid described by the classical

Caputo fractional operator.

Lie group symmetry analysis is an effective technique to find similarity solutions to given

model equations. m independent variables of a PDE are reduced to (m − 1) independent vari-

ables using Lie group analysis. Norwegian mathematician Sophus Lie (1842-1899) developed
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a classic Lie group transformation scheme to discover invariant and similarity solutions [59]. A

power-law fluid’s transient flow was analysed by Akgül and Pakdemirli [60] using Lie group

symmetry. The boundary layer flow of a Powell-Eyring fluid was characterised by Jalil and As-

ghar [61] using the Lie group symmetry analysis. To analyse the heat and mass transfer in a

Powell-Eyring fluid flow across a stretched wall, Rehman et al. [62] used the scaling group of

transformations, a special case of the Lie group symmetry. Researchers Afify and El-Aziz [63]

looked into the scaling group for the flow and heat transfer behaviour in a power-law nanofluid.

Roşca et al. [64] examined MHD double-diffusive convection through a vertically stretching and

contracting permeable sheet using the Lie group symmetry approach. Ogunseye et al. [65] in-

vestigated the heat transfer in a Powell–Eyring nanofluid flow over an elongating plate using the

nanofluid viscosity and thermal conductivity models derived from experimental data, applying

Lie group analysis to reduce the model equations to a system of coupled differential equations.

1.2 Research Objective

Researchers have examined nanofluids and viscoelastic fluids in a wide variety of geometries,

including flat, porous, and stretching sheets. However, to our knowledge, a few research works

have been found on the nanofluids flow in a squeezing parallel plate. Therefore, the main

objective of the recent thesis is a theoretical investigation of non-linear elastico-viscous pul-

satile nanofluid boundary layer flow and heat transfer over a porous squeezing channel having a

stretching wall in the presence of a magnetic field.

Aims:

The specific aims of the study are as follows:

• To investigate the unsteady, laminar, incompressible nanofluid flow.

• To incorporate:

i) magnetic field effect

ii) viscoelastic non-Newtonian fluid
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iii) convective boundary surface

iv) Brownian motion and thermophoresis diffusion

v) Cattaneo-Christov heat flux

vi) pulsatile pressure

vii) unsteady squeezing channel.

• To construct the physical model considering Cartesian coordinates.

• To derive mathematical models with different flow geometries for viscoelastic nanofluids

by considering the impact of MHD.

• To introduce Lie group transformation.

• To apply the methods of shooting and finite difference and bvp4c function available in

MATLAB for the numerical solution of the governing mathematical models.

• To express the graphical presentation derived from numerical data with the help of the

Tecplot 360.

• To determine the effects of the flow control parameters on fluid velocity, temperature, and

nanoparticle concentration distributions.

• To analyse the numerical outcomes of the flow control parameters on fluid velocity, tem-

perature, and nanoparticle concentration distributions.

• To work out the dynamics of important physical quantities like the drag coefficient, heat

transfer rate, mass transfer rates and density number for different physical scenarios.

1.3 Thesis Framework

The title of the current thesis is “Study on Nonlinear Elastico-Viscous Pulsatile Nanofluid Slip

Flow over Porous Channel Stretching Sheet”. Besides of introduction in Chapter 1 and the
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literature review in Chapter 2, the major part of the thesis consists of six chapters, in which

a precise problem is modelled and researched. Chapter 1 provides a brief analysis arranged

from numerous research articles, journals, proceedings, and books concerning the current thesis

materials.

In Chapter 2, the theoretical review is arranged to achieve knowledge of the basic concepts

of nanofluid dynamics. It is an essential part of the study to better understand the behaviour of a

particle in flow. This chapter covers definitions and a brief discussion of MHD and nanofluids,

their important applications, heat transfer, Lie group analysis, and magnetic field. The solution

techniques, the Finite difference method (FDM) and the shooting method have been described

in detail. The boundary value problem solver bvp4c function technique in MATLAB is revised

here. Obviously, this chapter provides a solid foundation for the next chapters to come.

Chapter 3 is titled “Magneto Hall Effect on Unsteady Elastico-Viscous Nanofluid Slip Flow

in a Channel in Presence of Thermal Radiation and Heat Generation with Brownian motion”. In

this chapter, the parametric behavior of magneto-hydrodynamic flow of elastico-viscous nanofluid

in a channel with slip condition in the presence of dynamic effects of Hall current, thermal ra-

diation, heat generation and Brownian motion is studied. In order to get primary and secondary

velocities, temperatures, nanoparticle volume fraction, and concentration distributions within

the boundary layer entering the issue, we solve the governing equations numerically using the

implicit Finite Difference Method (FDM). [66]

Chapter 4 is titled “Numerical Study of the Effect of Variable Viscosity on Unsteady Pulsatile

Nanofluid Flow through a Couette Channel of Stretching Wall with Convective Heat Transfer”.

In this analysis, the nanofluid flow is motivated by the pressure gradient. The objective is to

analyse the temperature-dependent viscosity effect on pulse-driven nanofluid flow’s heat and

mass transfer characteristics. Solutions have been carried out employing the finite difference

method (FDM), and the results have been displayed graphically and in tabular form with the

significant agreement. [67]

Chapter 5 is titled “Analysis for Viscoelastic Nanofluid Flow in a Channel Integrating Ther-
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mal Relaxation Time Using Two Parameters Lie Group Transformation”. The current research

aims to explore the flow flux of the time-dependent Maxwell viscoelastic nanofluid pressed into

two parallel walls with stretched porous surfaces by integrating the CCHF theory to describe the

thermal temporal relaxation factor. The model equations combined with the boundary conditions

are solved numerically using the collocation method developed by a MATLAB package known

as bvp4c. [Submitted]

Chapter 6 is titled “Effect of Brownian diffusion on squeezing elastico-viscous Maxwell

nanofluid flow with Cattaneo-Christov heat flux model in a channel in the presence of double

slip effect”. The current work aims to analyze the effect of the thermal relaxation factor on the

flow flux of time-dependent Maxwell viscoelastic nanofluid squeezed in rotating parallel plates

with a porous stretched surface incorporating the Cattaneo-Christov heat flux model. Equations

combined with the boundary conditions are solved numerically using finite difference code de-

veloped by a MATLAB boundary value problem solver known as bvp4c. [68]

The bibliography section arranges all the references cited throughout the thesis.
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CHAPTER 2

RESEARCH BACKGROUND

The main content of this section is to review the terminologies concerned by the current thesis.

A detailed review of MHD, nanofluid and viscoelastic fluid is quantitatively prepared. The

governing principles of physical aspects, dimensional analysis and numerical techniques are

precisely synthesized. The problem statement, goals and objectives, and methodology are also

presented.

2.1 Fluid Terminologies

2.1.1 Fluids

In nature, matter exists in either of three states: solid, liquid, or gaseous states. Solids have

a specific shape and a significant degree of rigidity. From the strength of materials, we know

that sufficiently large forces may measurably deform solids. A liquid placed into a container

will take the shape of that container except for the top surface. If gas is allowed to flow into an

evacuated container, it will entirely fill the container. It takes a relatively large force to change

the total volume of a liquid. Both gases and liquids are classified as fluids [69].

A fluid will deform continuously under shearing (tangential) stresses, no matter how small

the stress. The magnitude of the stress depends on the rate of angular deformation.

It takes little more than a quick glance to realize that the fluid dynamics is one of the most

vital areas of physical science: life, as it is known, would not exist without fluids and the be-

haviour that fluids exhibit. The air for breathing and the water for drinking (most of the human

body mass) are fluids. Air movement makes it comfortable in a warm chamber, and air provides

the oxygen needed to support life.It is crucial for human health that these fluids move freely

throughout the body, all the way down to the cellular level.
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It’s obvious that engineers need some familiarity with fluid behaviour in order to perform

thorough analyses of many, if not most, of the systems they’ll encounter. In this introductory

chapter, we will begin by further emphasising the significance of fluid dynamics by providing

concrete examples from the pure sciences and from technology in which knowledge of this field

is essential to comprehending the physical phenomena (and, thus, the beginnings of a predictive

capability, e.g., the weather) and the capability of designing and controlling devices such as in-

ternal combustion engines. We then list and explain why we will be focusing on three distinct

theoretical approaches to fluid dynamics: (i) theoretical, (ii) experimental, and (iii) computa-

tional. The purpose of these lecture notes is to help students gain a better grasp of fluid motion,

including its applications, dangers, and analytical and predictive capabilities.

Importance of Fluids Fluids’ general significance can be divided into two groups: (i) the physi-

cal and natural sciences and (ii) the technological sciences. However, in today’s era of emphasis

on interdisciplinary studies, the more scientific and mathematical aspects of fluid phenomena

are becoming increasingly important, and the second is often of more interest to an engineering

student.

Fluids in the natural sciences: This is by no means an exhaustive list, but it does include some

examples of fluid phenomena studied by physicists, astronomers, biologists, and others who are

not directly involved in device design and analysis. The figures in this section shed light on a

few of these features.

• Atmospheric sciences: (a) global circulation, (b) mesoscale weather patterns:

• Oceanography: (a) ocean circulation patterns, (b) effects of pollution on living organisms

• Geophysics: (a) convection (thermally-driven fluid motion) in the earth’s mantle, (b) con-

vection in the earth’s molten core

• Astrophysics: (a) galactic structure and clustering, (b) stellar evolution

• Biological sciences: (a) circulatory and respiratory systems in animals, (b) cellular pro-

cesses
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Fluids in technology: Since fluids are used in so many technological tools, it is obvious that

compiling a comprehensive list of their uses would be extremely difficult. From an engineering

perspective, the following examples are both fascinating and necessary.

• Internal combustion engines – all types of transportation systems

• Turbojet, scramjet, rocket engines – aerospace propulsion systems

• Waste disposal: (a) chemical treatment, (b) incineration, (c) sewage transport and treat-

ment

• Spread of pollution – both in the air (as smog) and on land, water, and air

• Power plants that use steam, gas, or wind turbines, or hydroelectric facilities to produce

electricity

• Pipelines: (a) transportation of crude oil and natural gas, (b) irrigation systems, and (c)

plumbing in commercial and residential buildings and homes

• Fluid/structure interaction: (a) the design of high-rise buildings; (b) oil rigs on the con-

tinental shelf; (c) dams, bridges, etc.; and (d) aircraft and launch vehicle airframes and

control systems

• Heating, ventilating and air-conditioning (HVAC) Systems

• High-density electronic device cooling systems: personal computers (PCs) to supercom-

puters (supercomputers) in the digital realm

• Solar heat and geothermal heat utilisation

• Artificial hearts, kidney dialysis machines, insulin pumps

• Automobile, truck, and other vehicle spray painting, container filling, operation of various

hydraulic devices, chemical vapour deposition, drawing of synthetic fibres, wires, rods,

etc., and many more are all examples of manufacturing processes.

12



As we can see from the preceding examples, fluids permeate virtually every facet of our

daily lives. Therefore, engineers need to have the ability to foresee the behaviour of fluids. In

particular, even though most engineers are not fluid dynamicists, they will still need to inter-

act with those who are quite frequently on a technical basis, and having even a foundational

understanding of fluid dynamics will make those interactions more fruitful.

2.1.2 Boundary Layer Concept

Historically, researchers may thank Ludwig Prandtl (1874-1953), a professor at the University

of Gottingen, for developing the idea of a boundary layer in a fluid’s movement across a surface.

On 12th August 1904 at the third International Mathematical Congress in Heidelberg, Germany,

Ludwig Prandtl presented a paper entitled ’Über Flüssigkeitsbewegung bei sehr kleiner Reibung’

[70] (English) ’On fluid flow with very little friction’, which formed the foundation for future

work on skin friction, heat transfer, and flow separation from the surface of the body.

General fluid equations had been known for many years, but the solutions to the equations

did not adequately describe observed flow effects (such as wing stalls). L. Prandtl was the first

to realise that the relative magnitude of the forces of inertia and viscosity shifted from a layer

very close to the surface to a region far from the surface. He first came up with the interactive

coupled, two-layer solution, which properly models many flow problems. He subsequently made

fundamental contributions to finite wing theory and compressibility effects.

Prandtl explained that fluid viscosity plays a vital role in a thin layer adjacent to the surface,

which he called ’Üebergangsschicht’ or ’Grenzschicht’. The English terminology is boundary

layer or shear layer. He also simplified the equations for fluid flow by dividing the flow field

into two zones: one within the boundary layer, dominated by viscosity and creating most of the

drag realised by the boundary surface; and one outer the boundary layer, where viscosity can be

ignored without significant effect on the solution.

For fluids having relatively small viscosity, the effect of internal friction, Due to viscous

shearing, in a fluid flow is experienced only in a narrow region surrounding the fluid boundary.
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Figure 2.1: Boundary layer at a flat plate at zero incidences (schematic).

Hence, the liquid layer near the external surface becomes adhered to the surface, and the fluid

velocity is zero in this region (that wets the body). The "no slip requirement" is mentioned in

this context. This results in a sharp increase in speed when one moves from the edge into the

flow. This velocity gradient in a fluid creates shear forces close to the border, slowing the flow

rate to that of the boundary. Surface fluid layers are in motion. Thus, shearing occurs among

the liquid’s layers. Wall shear stress, represented by τw, is the shear stress applied between the

wall and the first moving layer adjacent to it. The boundary layer refers to the thin layer of

fluid immediately adjacent to the surface of a solid barrier, such as a body or a hedge (or shear

layer). The fluid’s velocity, u, increases as a function of height, y. Distance from the surface

to the height above the surface at which the velocity develops 99% of the free-stream velocity

is the boundary layer thickness δ. The Reynolds number describes the balance between inertial

and viscous forces, and so determines the boundary layer thickness. The whole boundary layer

is governed by viscous forces at low Reynolds numbers, and the flow is laminar. Nevertheless,

inertial forces dominate the boundary layer for high Reynolds numbers, and the fluid develops

turbulent.

Usually, hydrodynamic (velocity) and thermal are two types of boundary layers. When a

fluid’s velocity drops from its free-flow value to zero at a body’s surface, that transition zone

is called the hydrodynamic boundary layer. Heat is transferred by conduction, convection, or

radiation when a fluid moves past a body that is either being heated or cooled. When a temper-

ature difference exists between a body and the fluid next to it, heat energy will flow from the
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Figure 2.2: Boundary layer formulation.

body to the fluid; this is because, like the fluid’s velocity, which rises from zero at the surface

to the free stream, the temperature also rises from the boundary to the free stream. As a result,

it is reasonable to assume that the temperature of the fluid next to the wall is the same as the

temperature of the wall at the interface and hence, is also identical to the temperature of the bulk

fluid at some point in the fluid. The term "thermal boundary layer" refers to the extremely thin

layer of air just below the skin’s surface. We can investigate a single or multiple boundary layers

depending on the characteristics of the fluid flow.

Velocity boundary layer (δ1): When in contact with a fixed surface, fluid particles have no

tangential velocity. Particles in a fluid that come into contact with a moving surface will also

move at the same rate. The term "no-slip condition" describes this phenomenon in the field

of fluid dynamics. A fluid’s flow results in shear stress due to the net transfer of momentum

from regions of high to low velocity. The skin friction of a fluid is a key parameter that can be

calculated using the velocity boundary layer.

Thermal boundary layer (δ2): Temperature differences between the surface and the free stream

zone cause the formation of the thermal boundary layer. The rate of heat transfer via convection

is heavily dependent on the thermal boundary layer.

Concentration boundary layer (δ3): The presence of concentration gradients between the sur-
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face and the free stream leads to the formation of a concentration boundary layer in a fluid region.

This boundary layer is crucial because it controls the speed of mass transfer via convection.

Methods of boundary layer control

Several methods of controlling boundary layers have been developed experimentally and are

also based on theoretical considerations. These can be classified as follows:

• The motion of the solid wall.

• Acceleration of the boundary layer (blowing).

• Suction.

• Injection of different gases (binary boundary layer).

• Prevention of transition to turbulent flow by the provision of suitable shapes.

• Cooling of the wall

• Variable viscosity

2.1.3 Magnetohydrodynamics (MHD)

When discussing the motion of fluids that conduct electricity in a magnetic field, the term "mag-

netohydrodynamics" (MHD) is often used. The letters MHD stand for magneto, hydro, and dy-

namic, all of which refer to magnetic fields, fluids, and movement, respectively. Hydromagnetic

and magnetohydrodynamic are both synonyms for MHD. Saltwater, liquid metals (such as mer-

cury, gallium, and molten iron), and ionised gases or plasmas all fall under the category of "flu-

ids" (such as the solar atmosphere). Swedish physicist Hannes Alfvén (1908-1995) founded the

field of magnetohydrodynamics (MHD), for which he was awarded the Nobel Prize in Physics

in 1970. MHD has since found fruitful applications in many areas of plasma physics[71].

MHD describes events in which the velocity field V and the magnetic field B are coupled in

an electrically conducting fluid. In a conducting fluid subjected to a magnetic field, an electric
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current with a density of J is produced (electromagnetism). The magnetic field is altered, and the

induced current pushes the liquid. Each volume of watery materials exposed to a magnetic field

B experiences a magnetohydrodynamic (MHD) force equal to J×B, also known as the Lorentz

force. Navier-Stokes equation of fluid dynamics and Maxwell’s equation of electromagnetism

are coupled to form the standard equations that describe MHD flows.

2.1.4 Application of MHD

There are lots of natural phenomena and engineering problems amenable to MHD analysis.

Electrically conductive fluids are abundant in nature, although their conductivities vary widely.

As magnetic fields are everywhere, it follows that MHD processes must occur anytime conduc-

tive fluids are present in natural marvels. On the other hand, MHD is of particular technical

importance due to its frequency in many industrial applications.

MHD Pump: The pumping system is a real-world application of the MHD force, as it directly

converts electrical energy into mechanical force on the working liquid. There have been EM

pumps for a long time, and several successful systems have been designed and industrialised. In

1907, a prototype magnetically driven (MHD) pump was created [72].

MHD Generators: Michael Faraday manufactured the first MHD generator in 1831. This gen-

erator converts a magnetic field and an electrically conductive fluid into usable electricity. It

may convert mechanical or thermal energy into electrical power. Obtaining electrical conductiv-

ity using an MHD generator may be done in a few different ways. Since 1959, researchers all

around the world have been working hard to perfect this method of increasing the efficiency of

electric conversion, and reduce emissions from coal and gas plants [73, 74].

MHD Flow Meters: An electromagnetic flow measurement method exposes a flow to a mag-

netic field and measures the force acting on the magnetic field generating system. Another
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standard MHD device is the EM flow meter. In 1832 Michael Faraday endeavoured to regulate

the velocity of the Thames river [75]. The theory of inductive flowmeter has been developed and

comprehensively summarised by [76]. MHD can also be used to build a flowmeter for blood,

initiated by Kolin [77].

Metallurgy: More recently, MHD devices have been used to agitate, levitate, and control liq-

uid metal flows for metallurgical processing [78]. High-level requirements for metallurgy pro-

duction determine a transition to a tangibly advanced level of primary processing performance

technology of semi-finished, poured and cast products. Therefore, the task of metal ingots and

the quality of blanks must be solved comprehensively; that is, the quality of the alloy must be

controlled at the preparation stage, intermediate processing and pouring.

MHD Propulsion: MHD is smart because it has no moving parts, so a good design can be quiet,

reliable, efficient, and inexpensive. MHD propulsion is a method of propelling sea vessels using

only electric and magnetic fields with no moving parts by means of MHD. The first ship to be

powered was the Yamoto, built by Mitsubishi in 1991.

2.1.5 Heat Transfer

Heat transfer is one of the central mechanical processes. The inception of higher heat flow in au-

tomated processes has necessitated new equipment to develop heat transfer. Heat transfer must

be managed efficiently in any industrial facility by adding, removing, or moving within/through

the relevant sectors. For instance, microprocessors have frequently become smaller and more

powerful, and heat flow necessities have progressively boosted over time, leading to new chal-

lenges in thermal management. Besides, there is growing attention to advancing the efficiency

of existing heat transfer processes. An example is automotive systems, where improved heat

transfer could lead to smaller heat exchangers for cooling, resulting in reduced vehicle weight.
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Temperature differences between boundaries or between an edge and the ambient fluid can

cause temperature differences within the fluid itself. Also contributing to temperature shifts are

processes like radioactivity, the absorption of thermal radiation, and the release of latent heat as

vaporised fluid condenses. To put it simply, heat transfer is the process by which thermal energy

and heat are created, converted, and communicated between physical arrangements as a result

of a temperature gradient. Heat transfer describes the exchange of thermal energy and often

occurs in engineering systems and everyday life. Conduction, convection and radiation are three

approaches to heat transfer.

Convection

Convection states the heat transfer that occurs between a moving body and fluid having different

temperatures. The fluid’s random molecular and bulk mobility inside the boundary layer keeps

the convection method of heat transfer active. The convective heat of a fluid is affected by

the fluid’s viscosity, thermal conductivity, specific heat, and density. The fluid’s viscosity also

modifies its velocity profile. There is a wide range of practical uses for heat transmission, from

maximising it, as in heat exchangers, to minimising it, as in steam pipes. Today’s technology

makes extensive use of heat transfer in power plants, heat exchangers, and nuclear power plants.

There are many methods available to improve heat transfer in mechanical processes. The

flow of heat can be estimated using Newton’s Law of Cooling,

Q = −h A ∆T

Here Q is the heat flow, h is the heat transfer coefficient, A is the heat transfer region, and

∆T is the temperature variance [79]. We can see from this equation that increased heat transfer

can be achieved by:

• increasing ∆T

• increasing A
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• increasing h

1. Heat flow can be increased by creating a more significant temperature difference ∆T ;

however, ∆T is often limited by the materials’ properties or by mechanical processes. To

avoid a meltdown and runaway reactions, a nuclear reactor’s maximum temperature, for

instance, must be kept below a particular value. As a result, increasing ∆T requires de-

creasing the coolant temperature. Nuclear reaction rate and mechanical process efficiency

would both suffer as a result.

2. One common technique for enhancing heat transfer is to increase the area of contact, or

A. Radiators and plate-and-frame heat exchangers are two examples of heat exchangers

that aim to maximise this heat transfer area [80]. However, due to the inherent limitations

of the region, this policy is inapplicable to microprocessors and microelectromechanical

systems (MEMS). Increasing the size of the heat exchanger, which could result in unwel-

come weight gains, is sometimes the only option for expanding the heat transfer area in

aerospace and automotive technologies.

3. Finally, improvements in heat transfer can be achieved by either (a) employing more ef-

ficient heat transfer methods or (b) enhancing the transport properties of the heat transfer

material, both of which increase the heat transfer coefficient , h. Forcing a gas to circulate

through a system increases the heat transfer coefficient compared to a system that uses

natural convection alone. Heat transfer devices often make use of fluids as heat carriers or

coolants.

Additives to liquid coolants improve the specific properties. For example, glycols are mixed

with water to lower their freezing point and raise their boiling point. Otherwise, the heat transfer

coefficient can be increased by enhancing the properties of the coolant for a given method of

heat transfer.

Traditional heat transfer fluids have a low thermal conductivity, so despite extensive prior

R & D on heat transfer enhancement, little progress has been made in cooling proficiencies.
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During this era of intensifying global competition, industries must develop and implement heat

transfer fluids with significantly higher thermal conductivities than those currently on the market

[79]. It is common knowledge now that the thermal conductivity of a solid metal is many times

higher than that of a liquid at room temperature. At room temperature, copper’s (Cu) thermal

conductivity is presumably 3000 times higher than motor oil’s and 700 times higher than water’s.

Once again, metallic liquids have superior thermal conductivities compared to non-metallic liq-

uids. Therefore, compared to standard heat transfer fluids, it is expected that fluids containing

suspended solid metallic particles will have significantly higher thermal conductivity [80]. In

the case of nano-sized particles, the resulting dispersion is identified as a nanofluid [25].

Thus, actual uses of heat transfer fluids include vehicular and avionics cooling systems in

the transportation industry, hydraulic heating and cooling systems in buildings, petrochemical,

textile, food, pulp, paper, and other industrial processing. For these manufacturing purposes,

the thermal conductivity of fluids performs a dynamic role in improving energy-efficient heat

transfer technologies.

2.1.6 Nanofluids

In the early century, a common issue was the difficulty of combining conduction and convection.

Because ingredients that conduct heat evenly (such as metals) do not flow perfectly, materials

that flow uniformly (such as water and air) do not conduct heat ideally. Heating metals into liquid

form was one option but was considered impractical due to the extensive energy required to

reach the essential temperatures. In 1873 Maxwell [81] recommended a different mechanism by

adding micron-sized particles of highly-conductive solids to the base fluid to enhance the thermal

properties. For over a century, it was the only possible way to develop the thermal properties

by adding these particles in diameters as small as millimetres and micrometres. Unfortunately,

several adverse effects were also raised in the fluid. These concerns of rapid settling, erosion in

their containers, blockage of tiny passages, and considerable pressure fall denied the heat transfer

benefits of the liquid. These problems were highly undesirable in many practical applications.
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If particles settle down rapidly like micro-particles, supplementary particles must mix to swap

the steady particles, causing degradation in the heat transfer development. There is a solid

motivation to develop innovative heat transfer fluids with significantly higher conductivities to

enrich thermal characteristics to overwhelm the difficulty.

To address these issues, nanofluids were the first to successfully suspend nanometer-sized

particles in fluids, rather than micrometre-sized particles. Nanoparticles have a much larger sur-

face area than larger particles and can remain suspended for much longer. Nanoparticles can

efficiently absorb and transfer heat because about 20% of their atoms are located near the sur-

face. Conversely, micro-particles have most of their atoms deep within, making them incapable

of conducting heat. Furthermore, the suspended particles increase the surface area of the fluid

and its heat capacity. When compared to using larger particles, using smaller suspended particles

(nanometer-sized particles) significantly improves effective thermal conductivity (micrometre-

sized particles).

Synthesis of Nanofluids

The single-step method, in which nanoparticles are vaporised directly into the base fluid, and the

two-step method, in which nanoparticles are first equipped by either the inert gas-condensation

technique or chemical vapour deposition method before being dispersed into the base fluid, are

the two procedures used in the invention of nanofluids.

Two-step method: The most common approach to making nanofluids is a two-stage process.

Dry powders of nanoparticles, nanotubes, nanofibers, or other nanomaterials are first created,

usually by the condensation of an inert gas [82]. In a second processing stage, the nano-sized

powder is disseminated in a fluid with the use of intensive magnetic force agitation, ultrasonic

agitation, high-shear mixing, homogenising, and ball milling to reduce particle aggregation and

enhance dispersion behaviour. Furthermore, carbon multi-walled nanotubes and other materials

for nanofluids have been manufactured by chemical vapour deposition (CMWNT) [83]. Surface
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surfactants are added to the fluids to enhance the stability of nanoparticles in fluids. Yet, high-

temperature applications raise further concerns about the surfactants’ performance.

The two-step method is the most economical method to produce nanofluids on a huge scale

because nanopowder synthesis techniques have already been scaled to industrial production lev-

els. In some cases, the two-step process works well, such as nanofluids consisting of oxide

nanoparticles dispersed in deionised water [27]. Less success has been discovered when produc-

ing nanofluids containing heavier metal nanoparticles. A fundamental problem with two-step

processes is that the nanoparticles are in an aggregated state after several hours of sonication.

Due to the difficulty of preparing stable nanofluids by the two-step method, several advanced

techniques have been industrialised to produce nanofluids, including the one-step method.

One-Step Method: The formulation of nanofluids using a single stage of physical vapour con-

densation was developed to lessen the buildup of nanoparticles. The particles are created in the

same step that they are dispersed across the basic fluid. This preparation technique prevents

nanoparticles from agglomerating throughout the drying, storage, transportation, and dispersal

processes, hence increasing fluid stability [84]. Nanoparticles are produced in a single process

and are suspended evenly and securely in the base fluid. Nevertheless, only low vapour pres-

sure fluids are properly matched with the procedure, and the leftover reactants are left in the

nanofluids after a one-step approach due to incomplete reaction or stabilisation.

In nanofluids, spherical particles are the norm. Nanoparticles of various shapes are eaten,

including rods, tubes, cylinders, and discs. The heat transfer characteristics and transport prop-

erties of the base fluid are altered by the suspended metallic or non-metallic nanoparticles. The-

oretically, at normal temperatures, it’s easy to see that solid metals have greater thermal con-

ductivity than liquids. Compared to non-metallic liquids, metallic liquids have exceptional heat

conductivity. It follows that the thermal conductivities of fluids containing metallic nanoparti-

cles should be dramatically improved. Experimental results show that the thermal conductivities

of both the base fluid and the nanoparticles affect the thermal conductivities of the resulting
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nanofluid. The advantages of well-organised nanofluids are expected to include

• higher heat conduction,

• more stability

• microchannel cooling without clogging

• reduced chances of erosion and

• reduction in pumping power [85].

2.1.7 Thermal Transport Properties of Nanofluids

The ground-breaking research with nanofluids showed that nanofluids have new thermal trans-

port phenomena that demonstrates remarkable enhancement in thermal conductivity, viscosity,

and convective heat transfer coefficients compared to those of traditional base fluids. Precise

mathematical explanation of nanofluid properties are one of the enthusiastic trends.

Thermal Conductivity of Nanofluids

Since roughly the time of Maxwell, who was one of the first people to study conduction analyti-

cally through suspension particles, there has been a significant amount of theoretical interest in

the investigation of the transport properties of heterogeneous mixtures. Maxwell [81] ignored

the interactions between the particles in his hypothetical highly dilute suspension of spherical

particles. The term "effective thermal conductivity" was coined by him denoted as κeff and

given by

κeff = κf
(κs + 2κf )− 2ϕ(κf − κs)
(κs + 2κf ) + ϕ(κf − κs)

Eastman et al. [86] reported that the thermal conductivity of ethylene-glycol increased 40%

with 0.3 vol % copper nanoparticles of 10nm diameters.

To account for non-spherical particles, Hamilton and Crosser [87] introduced a shape fac-

tor that can be determined experimentally for various materials, extending Maxwell’s study of

spherical particles.
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Heterogeneous two-component systems have a value for thermal conductivity, according to

Hamilton and Crosser, given by

κeff = κbf
(κs + (n− 1)κf )− (n− 1)ϕ(κf − κs)

(κs + (n− 1)κf ) + ϕ(κf − κs)

where the empirical shape factor, n is defined by n = 3/Ψ and Ψ (ratio surface area and vol-

ume) is the sphericity of the particle. The Hamilton-Crosser model yields the Maxwell model

when Ψ = 1. This model is valid as long as the conductivity of the particles is larger than the

conductivity of the continuous phase at least by a factor of 100.

Thermal conductivity and particle volume fraction: The thermal conductivity of a nanofluid

has been demonstrated to be affected by the particle volume fraction or the volumetric concen-

tration of the nanoparticle in the nanofluid. The thermal conductivity of nanofluids with low

nanoparticle volume fractions was shown to be considerably higher in experiments than that of

the base fluid. Das et al. [28] observed 10 − 25% thermal conductivity increases linearly in

water with 1 − 4 vol % alumina nanoparticles. In their studies, Lee and Choi [27] showed that

the thermal conductivity enhancement increases linearly with particle volume fraction.

Thermal conductivity and particle material: When the bulk temperature of the nanofluid

increases, T , the molecules and nanoparticles inside it become more active due to improved

Brownian motion, allowing for a greater rate of energy transfer between locations in a given

amount of time. Das et al. [28] tested Al2O3-water nanofluids at temperatures ranging from 21

to 51◦C. They found that the thermal conductivity enhancement rose from 2% at 21◦C to 10.8%

at 51◦C for 1 vol. % Al2O3-water nanofluid, and from 9.4% at 21◦C to 24.4% at 51◦C for 4 vol

%.

Thermal conductivity and base fluid: According to the Maxwell thermal conductivity model

[81], as thermal conductivity of a mixture’s base fluid decreases, the thermal conductivity ratio of

nanofluid’s thermal conductivity increases. Wang et al. [88] usedAl2O3 and CuO nanoparticles

to prepare nanofluids with several base fluids; water, ethylene glycol, vacuum pump fluid, and
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engine oil. Al2O3-EG nanofluid had the highest thermal conductivity ratio.

Thermal conductivity and particle size: The particle size/diameter is recognised to be an es-

sential characteristic of the thermal conductivity of nanofluids, and a wide range of nanoparticles

is created, from 5 to 100nm. Nanofluids containing various nanoparticles were used by Chop-

kar et al. [89] to investigate the impact of particle size on heat conductivity. The base fluids

were distilled water and ethylene glycol (EG). The sizes of the nanoparticles ranged from 30 to

120nm. Enhancement in thermal conductivity was shown to increase with decreasing particle

size for all four types of nanofluids.

Thermal conductivity and particle shape: Nanofluids’ thermal conductivity can be affected

by the form of their particles. The thermal conductivity of a SiC-water nanofluid was investi-

gated by Xie et al. [90] utilising both spherical particles with an average diameter of 26nm and

cylindrical particles with an average diameter of 600nm. Longer than they are wide, cylindri-

cal particles are the norm. The thermal conductivity of water-based nanofluids with spherical

particles was found to be increased by 15.8%, while that of nanofluids with cylindrical particles

was found to be increased by 22.9% when both particle shapes were used. To sum up, spherical

particles exhibit somewhat less improvement than nanorods.

Viscosity of nanofluids

Atypical viscosity of nanofluids enhances relative to the base fluids. For nanoparticle concentra-

tions not above 4%, Brinkman [91] formula is as follows:

µnf =
µf

(1− ϕ)2.5

Pak and Cho [92] estimated that at 1− 10 vol % of nanoparticles of alumina and titania in pure

water, viscosity is much higher than that of regular water.

Density of Nanofluids

Computation of the effective density of nanofluids is straightforward and can be valued by the

physical principle of the mixture rule showing very good agreement with some experimental
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data. Nanofluids as a mixture of consisting of a continuous base fluid and solid nanoparticles

implies the correlation of density as

ρnf = (1− ϕ) ρf + ϕρs

Specific Heat of Nanofluids

The specific heat is the extent of heat per unit mass expected to increase the temperature by 1◦C.

The correlation between heat and temperature change is frequently expressed by the the specific

heat CP. The specific heat of nanofluids can be defined as

(ρ cp)nf = (1− ϕ)(ρ cp)f + ϕ(ρ cp)s

Electric Conductivity of Nanofluids:

The Wiedemann-Franz law states that a metal’s thermal conductivity follows the same metal’s

electrical conductivity very closely due to the free motion of valence electrons [93]. Maxwell’s

definition of static electric conductivity states that σ is proportional to the phase volumetric

fraction ϕ as
σnf
σf

= 1 +
3(σs/σf − 1)ϕ

(σs/σf + 2)− (σs/σf − 1)ϕ

The electrical conductivity of the alumina nanoparticles in water was conducted by Ganguly

et al. [94] and a linear dependence of electrical conductivity on volumetric concentration has

been observed.
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Table 2.1: Thermo-physical properties of base fluids and nanoparticles

Materials ρ CP κ β σ

Water 997.1 4179 0.613 21E-05 5.5E-06

Ethylene glycol 1115 2415-2430 0.253 57E-05 1.07E-06

Kerosene 780 2090 0.149 9.9E-04 5.0E-11

Engine Oil 884 1909 0.145 70E-05 1.00E-07

Mineral Oil 920 1670 0.138 64E-05 1.00E-07

Blood 1063 3594 0.492 0.18E-05 6.67E-01

Copper (Cu) 8933 385 401 1.67E-05 5.96E+07

Silver (Ag) 10500 235 429 1.89E-05 6.3E+07

Iron 7870 460 80 58E-05 1.00E+07

Aluminium 2701 902 237 2.31E-05 3.50E+07

Cobalt 8900 420 100 1.3E-05 1.7E+07

Alumina (Al2O3) 3970 765 40 0.85E-05 3.69E+07

Titanium Oxide (TiO2) 4250 686.2 8.9538 0.90E-05 2.38E+06

CuO 6510 540 18 0.85E-05 5.96E+07

Fe3O4 5180 670 80.4 20.6E-05 1.12E+05

ZnO 5610 495.04 29 4.7E-05 7.261E-05

Table 2.2: Dynamical viscosity of base fluids

Base fluids µ

Water 0.001003

Ethylene glycol 0.0162

Kerosene 0.00164

Blood 0.00287
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2.1.8 Application of Nanofluids

Increase in thermal conductivity at low nanoparticle concentrations; high temperature-dependent

thermal conductivity; non-linear increase in thermal conductivity with nanoparticle concentra-

tion; and escalation in boiling critical heat flux are four characteristics sought in energy systems

(fluid and thermal systems), and all four are present in nanofluids. Industrial coolants, smart

fluids, nuclear reactor coolants, geothermal energy extraction, nanofluids in automotive fuels,

brake fluids, coolants in car radiators, cooling of microelectronics, and the bio and pharmaceu-

tical industry are all examples of areas where these unique properties could be put to use to

improve heat transfer and energy efficiency [95, 96, 97].

Heat Transfer Applications

Several articles have emphasised the potential of nanofluids in heat transfer applications since

the invention of nanofluids approximately two decades ago [98, 99]. The use of nuclear power

plants and geothermal energy extraction are further examples.

Industrial Cooling Application: Routbort claims that switching to nanofluids for industrial

cooling will dramatically cut energy consumption and pollution levels [100]. In tyre plants, for

instance, the inability to efficiently cool the rubber during processing limits the productivity of

many industrial processes, necessitating large quantities of heat transfer fluids. Tire manufactur-

ers can increase their profit margins and decrease their production costs by switching to nanoflu-

ids based on water. Most often, industrial coolants are used in HVAC systems in buildings, as

well as in the public utility sector, the oil and gas business, the food and beverage processing

sector, the chemicals and plastics sector, the solar energy conversion sector, and the plastics sec-

tor. For the US industry, replacing cooling and heating water with nanofluids can conserve 1

trillion Btu of energy [100]. Polyalphaolefin nanofluids containing exfoliated graphite nanopar-

ticle fibres were studied in a flow-loop experiment by Nelson et al. [101], who found that their

specific heat was 50% greater, and their convective heat transfer was boosted by 10% compared
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to those of the polyalphaolefin.

Smart Fluid: The proliferation of battery-powered electronics like cellphones and laptops dur-

ing this age of energy conservation has highlighted the importance of careful technological man-

agement of power supplies. The properties of smart materials can be altered in significant ways;

e.g., smart materials with variable viscosity may turn from a fluid which flows effortlessly to a

solid. Nanofluids have been demonstrated to handle this role in some instances as smart fluids.

Heat transfer may be decreased or increased on demand by using nanofluids as a smart mate-

rial functioning as a heat valve. Magneto-rheostatic (MR) materials, in particular, are nanofluids

made of extremely small iron particles dispersed in oil. Car shocks, washing machine vibration

damping, prosthetic limbs, workout equipment, and machine component cleaning are just some

of the industrial applications being developed for MR fluids.

Nuclear Reactors: A nuclear reactor is a device for containing and managing nuclear chain

reactions that can last for an extended period of time. Aside from producing electricity and

medical isotopes for imaging and cancer treatment, reactors are also used to propel aircraft

carriers and submarines.

Heavy atomic fuel is loaded into a reactor vessel where neutrons are produced. This gen-

erates a great deal of thermal energy. The coolants are heated up by the heat transfer and then

sent to spin a turbine, which in turn spins a generator to create electricity. As a result, people

are no longer trapped by their reliance on polluting fossil fuels, and can instead pursue a more

sustainable lifestyle. Kim et al. [102], at MIT’s Nuclear Science and Engineering Department,

conducted feasibility studies on employing nanofluids in the nuclear energy business as an alter-

native to enhancing the water-cooled nuclear system’s heat removal. PWRs can increase power

and economic performance by using nanofluids as core reactor coolants. Nanofluids can also

be utilised in PWR and boiling water reactor emergency core cooling systems (ECCs) to cool

hot surfaces faster and increase power plant safety. If the nanofluid has a greater post-CHF heat
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transfer rate, the ECC system accumulators and safety injection can enhance peak-cladding-

temperature margins in the nominal-power core or maintain them in uprated cores.

Nanofluids might prevent serious incidents in which the core melts and sinks to the reactor

vessel. In such incidents, eliminating decay heat via the vessel wall keeps the molten fuel within.

Nanofluid can boost nuclear reactors’ in-vessel retention by 40%, but CHF on the vessel’s exte-

rior surface limits this process [103].

Geothermal Power Extraction: Nanofluids can be highly specialised drilling fluids with supe-

rior performance in high-temperature drilling. Nanofluids can be used to cool the pipes used to

extract energy from the earth’s crust, which can be anywhere from 5 to 10 kilometres in length

and 500 to 1000 degrees Celsius in temperature. It has been proposed that nanofluids, as a type

of fluid superconductor, might be employed as a working fluid in a pressurised water reactor

(PWR) power plant system to collect energy from the earth’s core and convert it into useful

work energy [104].

Electronic Applications: Microfluidic applications, such as those found in computers, rely on

nanofluids for cooling the microchips that power the devices. Current electronic systems pro-

duce a great deal of heat because of the fast growth of modern technology, which hinders the

performance of the devices and reduces their dependability [104].

Cooling of Personal Computers and Microchips: Heat dissipation limits smaller high-density

microchips. High heat generation and limited heat removal surface area make thermal manage-

ment difficult for advanced electronic equipment. Nanofluids can cool computer processors due

to their excellent thermal conductivity and heat transfer coefficient. Jang and Choi [105] found

that a microchannel heat sink using nanofluids might be the next-generation ultrahigh heat flux

cooling technology.

Nanofluids using silver or titanium nanoparticles can efficiently cool high-energy-density
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devices. Heat pipes with nanofluids containing gold nanoparticles have far lower thermal resis-

tance than water at the same charge volume [106].

Nanofluid-based optical filter optimisation for PV/T systems: Specialised nanoparticle sus-

pensions, such as nanofluid-based filters for hybrid solar photovoltaic/thermal (PV/T) applica-

tions, can be used to fabricate optical filters. Since nanofluids may function as both a volumetric

solar absorber and a flowing heat transmission medium, they are well-suited for this specific

application. Savings on both electrical and thermal energy costs may be substantial with well-

designed PV/T systems for use in homes and businesses.

Automotive Applications: Coolants, gasoline additives, lubricants, shock absorbers, and re-

frigerants are just some of the ways that cars have incorporated nanofluids. Vehicle radiators

and hybrid electric vehicle power electronics frequently employ nanofluids for cooling. Con-

ventional vehicle thermal systems—including radiators, engines, heating, ventilation, and air

conditioning (HVAC)—use synthetic high-temperature heat transfer fluids with poor heat trans-

fer qualities, such as engine oils, automatic transmission fluids, coolants, lubricants, and more.

Nanofluids’ superior heat conductivity might be useful in such applications.

Nanofluid Coolant: Manufacturers need to decrease the amount of energy required to over-

come wind resistance on the road in order to improve the aerodynamic designs of vehicles and,

in turn, the fuel economy. Smaller and lighter parts in a nanofluid engine would reduce fuel use,

which would save money for drivers and keep the environment safer. As a researcher at Argonne

National Laboratory analysing the potential of nanofluids in transportation, Singh et al. [107]

found that by adding high-thermal-conductive nanofluids to radiators, the radiator’s frontal area

can be reduced by as much as 10%. This new aerodynamic automotive design minimises the

aerodynamic drag, leading to a fuel saving of up to 5% and reducing emissions. Nanofluid use

also reduces friction and wear, reduces parasitic losses, and operates components such as pumps
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and compressors, hence more than 6% fuel savings.

Nanofluid in Fuel: Due to pure aluminium’s strong oxidation activity, plasma arc-produced alu-

minium nanoparticles are coated in thin coatings of aluminium oxide, which increases water in-

teraction and hydrogen breakdown during burning. Alumina works as a catalyst, and aluminium

nanoparticles break down water to produce hydrogen during burning. Exhaust emissions from a

diesel engine using diesel fuel mixed with aqueous aluminium nanofluid were found to increase

total combustion heat while decreasing smoke and nitrous oxide concentrations [85, 97].

Brake and Other Vehicular Nanofluids: There is a growing need for braking systems like

brake nanofluid, which have enhanced heat dissipation mechanisms, and properties as vehicle

aerodynamics are improved, and drag forces are reduced. Nanofluids will enhance heat transfer

performance and eliminate safety concerns caused by brake oil’s sensitivity to the heat generated

during braking [104].

Heating Buildings and Reducing Pollution: In frigid climates, heat transfer fluids include

ethylene or propylene glycol combined with water. Kulkarni et al. [24] found that nanofluids

in heat exchangers reduced volumetric and mass flow rates, saving pumping power. Smaller

heating units consume less electricity and produce less liquid and material waste, reducing envi-

ronmental pollutants.

Magnetic Drug Targeting: Metabolism requires magnetism. Haemoglobin, an iron complex,

is magnetic. Magnetite, Fe3O4, is one of the most widely utilised biomaterials for cell separa-

tion, drug administration, and hyperthermia [98]. Chemotherapy typically fails because of the

inability to accurately administer and concentrate medications in damaged regions. Failing to

focus locally increases harmful effects on neighbouring organs and tissues. Magnetic medicine

delivery might target precisely. Biocompatible magnetic particles (ferrofluids) carry medicine
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into circulation. An external magnetic field reduces blood flow in particular locations. Here,

magnetic carriers gently release the medication.

In localised tumour treatment, magnetic fluids reduce adverse effects and improve efficacy

[95]. Hence, magnetically targeted drugs can replace huge amounts of freely circulating med-

ication. Drug concentrations in the targeted location will be much greater than with systemic

distribution. Magnetic drug targeting has shown promise in advanced cancer and sarcoma pa-

tients [85]. MHD equations and Finite Element analysis study blood magnetic particle-external

magnetic field interactions. Such therapies’ effectiveness can be measured. Injectable magnetic

fluids may be able to restore all retinal damage, prompting new uses. Due to the magnetic fluid’s

ability to drive towards hard-to-reach eye locations, the researchers believe a magnetised silicone

fluid approach might improve tissue repairs and precision.

Nano-drug Delivery: Modern technology has led to the development of bio-micro electrome-

chanical systems (MEMS), such as an electronically activated drug delivery microchip [99], a

controlled delivery system via silicon and electroactive polymer technologies, a MEMS-based

DNA sequence developed by Cepheid [108], and in-plane and out-of-plane hollow micro-needles

for dermal/transdermal drug delivery [85]. Micro- or nano-drug administration allows target-cell

responses to medicinal stimuli to be monitored and controlled, improving biological cell activity

and medication development. Microdevices provide precise implanted and transdermal med-

ication delivery. Nano-drug delivery (ND) methods release drugs slowly. Consequently, the

therapeutic window will maintain medication concentration.

Nanocryosurgery: Nano-cryosurgery may improve tumour therapy. Cryosurgery freezes un-

wanted tissues. Due to its therapeutic benefits, cryosurgery is becoming a preferred cancer

therapy choice. Yan and Liu’s calculations showed that intentionally loading target tissues with

high-thermal-conductivity nanoparticles can lower the ultimate temperature, increase the max-

imum freezing rate, and increase the ice volume [109]. Nanoparticle-enhanced freezing might
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also allow traditional cryosurgery to manipulate ice ball size, shape, image, and direction. Due

to their biocompatibility, magnetite (Fe3O4) and diamond are the most common and effective

freezing enhancers [96].

2.1.9 Mass Transfer

The mass transfer includes molecular diffusion and convective mass transport. A mixture’s

species concentration differential causes mass transfer. Like the temperature gradient, the species

concentration gradient in a mixture drives mass transfer. Thermal diffusion can cause the mass

transfer. Concentration gradients can also cause temperature gradients and heat transfer. These

phenomena are connected.

Mass transfer activities in the industry include distillation columns, scrubbers, activated car-

bon beds, and liquid-liquid extraction. Industrial cooling towers combine mass transfer with

other transport methods. Several technological applications combine heat and mass transport.

2.1.10 Newton’s Law of Viscosity

Viscosity, the retardance to flow of a fluid, is a fluid property arising from collisions between

neighbouring particles in a fluid that is moving at different velocities. Viscosity acts against the

motion of any solid object through the fluid and against the fluid’s movement past stationary

obstacles. Viscosity also acts internally on the fluid between slower- and faster-moving adjacent

layers. The fluid viscosity is the extent of its resistance to slow deformation by shear stress. For

liquids, it corresponds to the colloquial term ’thickness’. For example, oil has a much higher

viscosity than water.

Let an element of fluid experience stress exerted on it by other aspects of the fluid which

surround it. The stress on the element surface is resolved into two components: normal and

tangential to the surface, which are called ‘pressure’ and ‘share stress’, respectively. Pressure is

applied whether the fluid is moving or at rest, but share stress occurs only in moving fluids.
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Figure 2.3: Geometrical configuration of viscosity

Consider two parallel plates placed at a distance y0 apart. The space between in is filled

with fluid. The lower plate is stationary, and a force F is functional to the upper body, which is

moving relative to the lower one with velocity U . Let A is the area of the upper plate. The ratio

of the force per unit extent to the velocity decrease in the distance y0 is expressed as,

F

A
∝ U

y0

⇒ F = µ
AU

y0

(2.1)

And the frictional or tangential, or shear stress τ employed by the fluid at the upper plate is

τ =
F

A
= µ

U

y0

(2.2)

In the case of the differential unit, U
y0

is considered as the velocity gradient is vertical to the

direction of shear or the rate of angular deformation, du
dy

. Hence the shearing stress is

τ = µ
du

dy
(2.3)

This relationship is known as Newton’s Law of Viscosity. The proportionality constant µ is the

coefficient of dynamic molecular viscosity, simply the viscosity of the fluid. The CGS unit of µ

is poise, such that. 1− poise = (dyne− s)/(cm2); i.e. [µ] = [ ML−1T−1]
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A fluid is viscous when normal stress and shearing stress exist. Syrup, honey, oil, etc.,

are regarded as viscous fluids. All fluids are composed of molecules discretely spaced and in

continuous motion. For Mechanical analysis, a fluid is treated as a continuum.

If τ = 0, then µ = 0, and the fluid is ideal or perfect. Especially if the viscosity is constant

and the fluid is incompressible through the liquid flow, the equation governing the shear stress

in the Cartesian coordinate system is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

Kinematic viscosity ν: The ratio of the viscosity coefficient (µ) to the fluid density (ρ) is

called the kinematic viscosity and is denoted by ν, which has a unit m2/s. Thus

ν =
µ

ρ
(2.5)

The CGS unit of ν is stoke, such that 1− stoke = (cm2)/sec; i.e. [ ν] = [ L2T−1]

2.1.11 Newtonian Fluids

Sir Isaac Newton (1642 - 1726) first described the fluids’ flow behaviour, expressing the rela-

tion between shearing stress and shear rate. According to his description, those fluids are called

Newtonian if shear stress is directly proportional to the angular deformation rate starting with

zero stress and zero deformation, i.e. the relation between the shear stress and the strain rate is

linear in a Newtonian fluid. Newtonian fluids include air, water, honey, organic solvents, and

mercury, whose viscosities depend only on pressure and temperature and are independent of the

fluid’s motion-time. In these cases, the constant of proportionality is defined as the absolute or

dynamic viscosity directly related to molecular interactions. So, it is a thermodynamic prop-

erty of a natural fluid in the macroscopic sense, which generates shear stress between two fluid

elements.
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2.1.12 Non-Newtonian Fluids

Non-Newtonian fluids assist in understanding the wide variety of fluids in the physical world. In

comparison to Newtonian fluids, non-Newtonian fluids reveal either

• shear thinning or thickening (a non-linear correlation between shear stress and shear rate)

• or yield stress below which no flow occurs

• or deformation history (Rheopectic and Thixotropic), i.e., viscosity depends on the length

of time of exposure to stress

• or a combination of elastic and viscous effects, i.e. viscoelastic effect

• or a combination of all of the above.

Non-Newtonian behaviour of fluids can be caused by several factors related to the structural

reorganization of the fluid molecules due to flow.

i) A fluid is shear thickening (Dilatants) if the fluid viscosity improves as the shear rate in-

creases. A typical example of shear-thickening fluids is a mixture of cornstarch and water. Fluids

are shear thinning (Pseudo plastics) if the viscosity falls as the shear rate increases. Shear thin-

ning fluids are universal in industrial and biological processes. Usual examples include ketchup,

paints and blood. In polymer melts and solutions, the alignment of the highly anisotropic chains

results in decreased viscosity. In colloids, the segregation of the different phases in the flow

causes a shear-thinning behaviour.

ii) A Bingham plastic fluid like Casson fluid has yield stress (minimum stress to be applied

before they flow) which must be outstripped before it will turn to flow like a liquid. As a result,

the viscosity drops with increasing tension. These are precisely non-Newtonian fluids, but once

the flow begins, they perform effectively as Newtonian fluids (i.e. shear stress is proportionate

to shear rate). Toothpaste, mayonnaise and tomato ketchup are specimens of such products.

iii) Non-Newtonian fluids may depend on the length of time of exposure to stress. Rheopec-

tic fluids or Anti-Thixotropic fluids oblige a steadily increasing shear stress to preserve a constant
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Figure 2.4: Newtonian and Non-Newtonian Fluid

strain rate, e.g., synovial fluid, printer ink, and gypsum paste. Thixotropic fluids exert dynamic

viscosity decreased with the time for which the shearing forces are applied, e.g. jelly, yoghurt,

peanut butter, and paints.

iv) Viscoelastic or elastico-viscous non-Newtonian fluids may exhibit elasticity and vis-

cosity mechanical characteristics simultaneously. Examples of viscoelastic fluids are polymers,

paints, latex, honey, ceramics and liquid metals.

Power-law fluid model: When the shear stress τ of a Non-Newtonian fluid is a non-linear

function of the rate of deformation is called power-law fluid (also called the Ostwald–de Waele

relationship). The model, considering the power-law index n, is expressed as

τ = µ

(∣∣∣∣dudy
∣∣∣∣n−1

du

dy

)
(2.6)
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The value on n determines the class of the fluid as

• n < 1 for Shear-thinning fluid (Pseudo plastics)

• n = 1 for Newtonian fluid

• n > 1 for Shear-thickening (Dilatants fluids)

For n < 1 or n > 1 represents the non-Newtonian fluid.

2.2 Governing Principles of Physical Aspects

From the basis of studying Magneto Fluid Dynamics (MFD) for a boundary layer, heat and

mass transfer of the flow of an electrically conducting viscous nanofluid is approximately neu-

tral with thermal diffusion, viscous dissipation, Brownian motion, and thermophoresis. Three

fundamental principles govern the physical aspects of any fluid, i.e. conservation of (i) mass,

(ii) momentum, and (iii) energy, with a combination of Brownian and thermophoresis diffusions.

Equation of Continuity: The mass conservation law is the basis for the continuity equation,

also known as the mass conservation equation. Fluid mass entering a given section of the flow

region is equal to fluid mass leaving that same section. In a way that prevents the addition or

subtraction of any mass. The vector form of the continuity equation is derived for a turbulent

flow of nanofluids, and it looks like this

∂ρ

∂t
+∇ · (ρV ) = 0 (2.7)

Momentum equation: According to the principle of conservation of momentum, the amount

of momentum in a given region remains constant. According to Newton’s laws of motion, the

action of forces can only alter momentum; it cannot create or destroy any new momentum.

According to Newton’s second law of motion, the net sum of the forces acting on a body is equal

to the rate of change of momentum of that body. The equation of momentum of nanofluid flow
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becomes:

ρ
dV

dt
= F +∇ · τ (2.8)

Energy equation: Based on energy conservation, the equation states that energy is neither pro-

duced nor shattered but can be transformed from one form to another. It is derived from the

first law of thermodynamics. Considering the Brownian motion and thermophoresis effects on

nanofluid, the energy equation is

ρCP
dT

dt
= ∇ · (κ∇T ) + µΦ− (CP )sJs · ∇T (2.9)

Concentration Equation: Based on the principle of mass conservation for all components of a

fluid mixture, the concentration equation (also known as the diffusion equation) is established.

The mass of a species entering a control volume, minus the mass of the same species leaving

the volume, equals the mass stored in the volume at a constant rate in the absence of chemical

reactions. In this case, the concentration equation having combined effects of Brownian motion

and thermophoresis is given as

dC

dt
= − 1

ρs
∇ · Js (2.10)

Here d
dt

= ∂
∂t

+V ·∇ is the material derivative; V = (u, v, w) is the three-dimensional velocity of

the viscous fluid; τ is the Cauchy stress tensor; Φ is the viscous dissipation term that describes

the conversion of mechanical energy to heat; Js is the sum of Brownian and thermophoresis

diffusions.

Buongiorno [5] disclosed the combination of Brownian and thermophoresis diffusions given

by

Js = −ρsDB∇C − ρsDT
∇T
Ta

(2.11)

41



Here, DB is the Brownian diffusion coefficient, DT is the thermal diffusion coefficient, and Ta

is the reference temperature.

2.2.1 Formation of the Model Equations

The unsteady laminar course of an incompressible fluid rotating with a uniform angular velocity

Ω is considered to establish the governing equations. A uniform magnetic field B is imposed.

The MHD energy equation for a viscous incompressible electrically conducting nanofluid con-

sists of mass diffusions and Joule heating. The MHD species equation represents the nanofluid

volume fraction.

∇ · V = 0

∂V

∂t
+ (V · ∇)V + 2Ω× V =

1

ρ
∇ · τ +

1

ρ
(J ×B)

∂V

∂t
+ (V · ∇)T =

1

ρCP
∇ · (κ∇T ) +

(ρCP )s
ρCP

(
DB∇C · ∇T +

DT

Ta
∇T · ∇T

)
+
J · J
ρCP

∂V

∂t
+ (V · ∇)C = ∇ ·

(
DB∇C +

DT

Ta
∇T
)

To arrange a 3D model corresponding to the coordinates (x, y, z), let V = (u, v, z) is the

velocity vector; F = (Fx, Fy, Fz) is the body force; J = (Jx, Jy, Jz) is the current density

vector; B = (Bx, By, Bz) is the magnetic field vector; Ω = (Ωx,Ωy,Ωz) is the angular vorticity

vector; and ∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

is a vector operator. And the viscous dissipation function is

given by

Φ = 2

[(∂u
∂x

)2

+
(∂v
∂y

)2

+
(∂w
∂z

)2
]

+
(∂u
∂y

+
∂v

∂x

)2

+
(∂v
∂z

+
∂w

∂y

)2

+
(∂w
∂x

+
∂u

∂z

)2

− 2

3

(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)2
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2.2.2 Magnetic Field Effect

A uniform magnetic field vector B = (Bx, By, Bz) = (0, B0, 0) is imposed on the horizon-

tal plate along the y-axis surrounded by an electrically non-conducting fluid. The equation of

conservation of electric charge is

∇ · J = 0or,
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= 0

∂Jy
∂y

= 0

which implies that Jy = constant. Assume Jy = 0 everywhere in the flow.

From the MHD generalized Ohm’s law, it is obtained:

J = σ(E + V ×B)

σ is the electric conductivity of the material. When an electric field is absent, the MHD general-

ized Ohm’s law becomes:

J = σ(V ×B) = σ

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

u 0 0

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= σB0uk̂

Now

J ×B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 0 σB0u

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= −σB0uî

=⇒ (J ×B)x = −σB0u

Again, there arises a magnetohydrodynamic effect, named the joule heating effect due to
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MHD, in the thermal energy distribution of a nanofluid represented by the term J ·J
σ

, where

J · J = σB0uk̂ · σB0uk̂ = σ2B2
0u

2.

Magnetic field effect along the y-axis for 2D-Flow (u,w):

J = σ(V ×B)

So

J = σ(V ×B) = σ

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

u 0 w

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= −σB0wî+ σB0uk̂

Now

J ×B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

−σB0w 0 σB0u

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= −σB2

0uî− σB2
0wk̂

=⇒ J ×B = (−σB2
0u, 0,−σB2

0w) = (Hx, 0, Hz)

2.2.3 Hall Current Effect

The Hall current has an effect on an electrically conducting fluid in the presence of a magnetic

field applied along the y-axis. The effect of magneto-Hall current gives rise to a force in the

z-direction, which induces a cross-flow in the z-direction, and hence the flow becomes three-

dimensional. Since Hall term is considered, the current density J is given by the generalized

Ohm’s law

J = σ[E + V ×B − γ(J ×B)]
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Here, γ = Hall factor = 1/e ne; e = charge electron; ne = mass of electron; E = applied electric

field; m = σγB) = Hall parameter; B = (0, B0, 0) is applied along y-axis.

If electric field is absent,

J = σ(V ×B − γ(J ×B)) =⇒ J + σγ(J ×B) = σ(V ×B)

=⇒

∣∣∣∣∣∣∣∣∣∣
Jx

0

Jz

∣∣∣∣∣∣∣∣∣∣
+ σγ

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

Jx 0 Jz

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= σ

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

u 0 w

0 B0 0

∣∣∣∣∣∣∣∣∣∣
=⇒ [Jxî 0 Jzk̂] + σγ[−îJzB0 0 k̂JxB0] = σ[−îwB0 0 k̂uB0]

=⇒

 Jx − σγJzB0 = −σwB0

Jz + σγJxB0 = σuB0

=⇒

 Jx −mJz = −σB0w

Jz +mJx = σB0u

Let m = σγB0. Solving for Jx and Jz, we get

 Jx = σB0

1+m2 (mu− w)

Jz = σB0

1+m2 (u+mw)

=⇒ J = [Jx 0 Jz] =
[ σB0

1 +m2
(mu− w) 0

σB0

1 +m2
(u+mw)

]

The Lorentz force is given by

J ×B =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

σB0

1+m2 (mu− w) 0 σB0

1+m2 (u+mw)

0 B0 0

∣∣∣∣∣∣∣∣∣∣
= î
−σB2

0

1 +m2
(u+mw) + k̂

−σB2
0

1 +m2
(w −mu)
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J ×B =
( −σB2

0

1 +m2
(u+mw), 0,

−σB2
0

1 +m2
(w −mu)

)
= (Hx, 0, Hz) (2.12)

J · J
σ

=
σB2

0

(1 +m2)
(u2 + w2) (2.13)

Here, J ·J
σ

is the expression for the Joule heating effect.

2.3 Viscoelastic Fluid Model

Some fluids have elastic properties, which allow them to spring back when shear stress is re-

leased, e.g. egg white. These fluids cannot be described satisfactorily by the theory of elasticity

or viscosity, but a combination of viscosity-elasticity fluid models can design viscoelastic fluids.

Some of the features that are commonly observed in viscoelastic fluids are:

• the shear rate dependence; the viscosity decreases with increasing shear rate;

• the normal stress effects, unequal normal stresses in different directions;

• the high elasticity recovery in shear.

Because of the diversity in the physical structure of non-Newtonian fluids, it is impossible

to describe their mechanical behaviour by a single constitutive equation. For this reason, many

constitutive equations have been proposed.

2.3.1 Second-Grade Fluid Model:

The Rivlin-Ericksen model [110] and Noll’s simple fluid model [111] are among those that have

received considerable attention from both experimentalists and theorists. Coleman and Noll

[112] proposed the constitutive equation of the second-grade fluid in 1961, where the stress

tensor is the totality of all tensors. It can be moulded from the velocity field with up to two

derivatives. So that an incompressible second-order fluid has a constitutive equation based on
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the postulate given:

τ = −P I + µA1 + α1A2 + α2A
2
1

Here, I is the identity tensor; µ is the zero shear viscosity;A1,A2 are the Rivlin-Ericksen tensors;

α1, α2 are the material contents; the symmetric fragment of the velocity gradient tensor is ∇V .

Second-grade rheological model is to be thermodynamically compatible; the Clasius-Duhem

inequality should hold together with the Helmholtz free energy being at its minimum whenever

the fluid is locally at rest. Thermodynamically constraints put some restrictions on the sign and

magnitude of the material moduli: µ ≥ 0, α1 ≥ 0; α1 + α2 = 0.

The symmetric portion of the velocity gradient tensor∇V is given by

A1 = ∇V + (∇V )tr

And A2 is expressed as

A2 =
∂A1

∂t
+ (V · ∇)A1 + A1 · ∇V + (∇V )tr · A1

The material contents α1 and α2 are related to the first and second normal stress coefficients Ψ1

and Ψ2, and∇V is the velocity gradient tensor written as

∇V =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂v
∂w

∂w
∂y

∂w
∂z


Following all the relations mentioned above, the stress tensor can be expressed as

τ = −P I + µA1 + α1

(
∂A1

∂t
+ (V · ∇)A1 + A1 · ∇V + (∇V )tr · A1 − A2

1

)
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Hence, the stress tensor τ along the x- and y-direction can be written as

τxx = −P + 2µ
∂u

∂x
+ α1

(
2
∂2u

∂t∂x
+ 2u

∂2u

∂x2
+ 2v

∂2u

∂x∂y
−
(∂u
∂y

)2

+
(∂v
∂x

)2
)

τxy = τyx = µ
(∂u
∂y

+
∂v

∂x

)
+ α1

(
∂2u

∂t∂y
+

∂2v

∂t∂x
+ v

∂2u

∂y2
+ u

∂2v

∂x2

+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+ u

∂2u

∂x∂y
+ v

∂2v

∂x∂y
− ∂u

∂x

∂v

∂x
− ∂u

∂y

∂v

∂y

)
τxy = −P + 2µ

∂v

∂y
+ α1

(
2
∂2v

∂t∂y
+ 2v

∂2v

∂y2
+ 2u

∂2v

∂x∂y
+
(∂u
∂y

)2

−
(∂v
∂x

)2
)

Finally,

div τ = ∇ · τ =

[
∂
∂x

∂
∂y

]
·

τxx τxy

τyx τyy

 =

[
∂τxx
∂x

+ ∂τxy
∂y

∂τyx
∂x

+ ∂τyy
∂y

]

yields div τ along the x-axis:

div τ |x =
∂τxx
∂x

+
∂τxy
∂y

= −∂P
∂x

+ 2µ
∂u2

∂x2
+ µ

∂u2

∂y2
+ µ

∂2v

∂x∂y

+α1

(
∂3u

∂t∂y2
+ 2

∂3u

∂t∂x2
+

∂3v

∂t∂x∂y
+ v

∂3u

∂y3
+ 2u

∂3u

∂x3
+ u

∂3v

∂x∂y2

+u
∂3v

∂x2∂y
+ v

∂3v

∂x∂y2
+ 2v

∂3u

∂x2∂y
+ 2

∂v

∂x

∂2v

∂x2
+ 2

∂v

∂y

∂2v

∂x∂y
+ 2

∂u

∂x

∂2u

∂x2

+
∂u

∂y

∂2v

∂x2
+
∂v

∂x

∂2v

∂y2
+
∂u

∂x

∂2u

∂y2
+
∂v

∂x

∂2u

∂x∂y
− ∂u

∂x

∂2v

∂x∂y
− ∂u

∂y

∂2v

∂y2

)

and div τ along the y-axis:

div τ |y =
∂τyx
∂x

+
∂τyy
∂y

= −∂P
∂y

+ µ
∂v2

∂x2
+ 2µ

∂v2

∂y2
+ µ

∂2u

∂x∂y

+α1

(
∂3v

∂t∂x2
+ 2

∂3v

∂t∂y2
+

∂3u

∂t∂x∂y
+ u

∂3v

∂x3
+ 2v

∂3v

∂y3
+ v

∂3v

∂x2∂y

+v
∂3u

∂x∂y2
+ u

∂3u

∂x2∂y
+ 2u

∂3v

∂x∂y2
+ 2

∂u

∂y

∂2u

∂y2
+ 2

∂u

∂x

∂2u

∂x∂y
+ 2

∂v

∂y

∂2v

∂y2

+
∂v

∂x

∂2u

∂y2
+
∂u

∂y

∂2u

∂x2
+
∂v

∂y

∂2v

∂x2
+
∂u

∂y

∂2v

∂x∂y
− ∂v

∂y

∂2u

∂x∂y
− ∂v

∂x

∂2u

∂x2

)
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2.3.2 Upper Convected Maxwell (UCM) Fluid Model

The elastico-viscous behaviour will be realized if elastic stress is applied to the fluid, and the

resulting strain will be time-dependent and characterized by relaxation time [1]. The constitutive

equation considering time-dependent stress relaxation is

ρa = ρ
dV

Dt
= F +∇ · τ + (J× B) (2.14)

a is the acceleration vector; τ is the Cauchy stress tensor for UCM fluid given by

τ = −P I + S (2.15)

The extra stress tensor S is defined by

S + λs
dS

dt
= µA1 (2.16)

Here λS > 0 is the stress relaxation time factor where λS = 0 describes the Newtonian

fluids, and A1 is the Rivlin-Ericksen tensor. In addition, when the magnetic field is present, four

more laws are considered as follows:

∇ · E =
ρc
εp

(Gauss′s Law)

∇× E = −∂B
∂t

(Faraday′s Law)

∇×B = µ0J + µ0εp
∂E

∂t
(Ampere′s Law withMaxwell′s!correction)
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∇ ·B = 0 (Gauss′s Law for magnetism)

Here, J = σ(E + V ×B) is the current density; εp is the permittivity of free space, µ0 is the

magnetic permeability; σ is the fluid electrical conductivity; E is the electric field; B(0, B0, 0)

is the magnetic flux; B0 is the applied magnetic field strength along the y-axis.

The following equations are used for the two-rank tensor S, a vector b and a scalar function

ψ, respectively.

dS

dt
=
∂S

∂t
+ (V · ∇)S− LS− SLtr

db

dt
=
∂b

∂t
+ (V · ∇)b− Lb

dψ

dt
=
∂ψ

∂t
+ (V · ∇)ψ

Combining 2.14 and 2.15, the momentum equation for UCM fluid model takes the form

ρa = −∇P +∇ · S + J ×B (2.17)

The electromagnetic body force ignoring induced magnetic field takes the form

J ×B = σ[(V ×B)×B]

To eliminate S, apply the operator (1 + λS
d
dt

) onto eqn. 2.14 to get

ρ
(
1 + λS

d

dt

)
a = −

(
1 + λS

d

dt

)
∇P +

(
1 + λS

d

dt

)
∇ · S +

(
1 + λS

d

dt

)
J ×B (2.18)
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Eqn. 2.18 in view of the result d
dt
∇· = ∇ · d

dt
given by Harris [49] is

ρ
(
a + λS

da

dt

)
= −

(
1 + λS

d

dt

)
∇P +∇ ·

(
1 + λS

d

dt

)
S +

(
1 + λS

d

dt

)
J ×B

Eqn. 2.16 gives

ρ
(
a + λS

da

dt

)
= −

(
1 + λS

d

dt

)
∇P + µ∇ · A1 +

(
1 + λS

d

dt

)
J ×B (2.19)

The first Rivlin-Ericksen tensor is given by

A1 =

 2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y


And the vector a is given by

da

dt
=
∂a

∂t
+ (V · ∇)a− La

along with

a =

((∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
,
(∂v
∂t

+ u
∂v

∂x
+ v

∂v

∂y

)
, 0

)
= (ax, ay, 0)

Now,

∂ax
∂t

=
∂

∂t

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=
∂2u

∂t2
+ u

∂2u

∂t∂x
+
∂u

∂t

∂u

∂x
+ v

∂2u

∂t∂y
+
∂v

∂t

∂u

∂y

And

(V · ∇)ax =
(
u
∂

∂x
+ v

∂

∂y

)(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
= u

∂2u

∂t∂x
+ u
(∂u
∂x

)2

+ u2∂
2u

∂x2
+ 2uv

∂2u

∂x∂y
+ u

∂v

∂x

∂u

∂y
+ v

∂2u

∂t∂y
+ v

∂u

∂x

∂u

∂y
+ v2∂

2u

∂y2
+ v

∂u

∂y

∂v

∂y
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La =

∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y
,
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

=

(
∂u

∂t

∂u

∂x
+ u
(∂u
∂x

)2

+ v
∂u

∂x

∂u

∂y
+
∂u

∂y

∂v

∂t
+ u

∂u

∂y

∂v

∂x
+ v

∂u

∂y

∂v

∂y
,

∂u

∂t

∂v

∂x
+ u

∂u

∂x

∂v

∂x
+ v

∂u

∂y

∂v

∂x
+
∂v

∂t

∂v

∂y
+ u

∂v

∂x

∂v

∂y
+ v
(∂v
∂y

)2
)

And

La
∣∣
x

=
∂u

∂t

∂u

∂x
+ u
(∂u
∂x

)2

+ v
∂u

∂x

∂u

∂y
+
∂u

∂y

∂v

∂t
+ u

∂u

∂y

∂v

∂x
+ v

∂u

∂y

∂v

∂y

Therefore, da
dt

along the x-axis is defined as

dax
dt

=
∂ax
∂t

+ (V · ∇)ax − La
∣∣
x

=
∂2u

∂t2
+ u

∂2u

∂t∂x
+
∂u

∂t

∂u

∂x
+ v

∂2u

∂t∂y
+
∂v

∂t

∂u

∂y

+u
∂2u

∂t∂x
+ u
(∂u
∂x

)2

+ u2∂
2u

∂x2
+ 2uv

∂2u

∂x∂y
+ u

∂v

∂x

∂u

∂y
+ v

∂2u

∂t∂y
+ v

∂u

∂x

∂u

∂y
+ v2∂

2u

∂y2
+ v

∂u

∂y

∂v

∂y

−
(∂u
∂t

∂u

∂x
+ u
(∂u
∂x

)2

+ v
∂u

∂x

∂u

∂y
+
∂u

∂y

∂v

∂t
+ u

∂u

∂y

∂v

∂x
+ v

∂u

∂y

∂v

∂y

)

So,

dax
dt

=
∂2u

∂t2
+ 2u

∂2u

∂t∂x
+ 2v

∂2u

∂t∂y
+ 2uv

∂2u

∂x∂y
+ u2∂

2u

∂x2
+ v2∂

2u

∂y2
(2.20)

Also, the divergence of a tensor

∇ · A1 =

[
∂
∂x

∂
∂y

]
·

 2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y

 =

[
2∂

2u
∂x2

+ ∂2u
∂y2

+ ∂2v
∂x∂y

2∂
2v
∂y2

+ ∂2v
∂x2

+ ∂2u
∂x∂y

]
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Hence,

∇ · A1

∣∣
x

= 2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y
(2.21)

Hall current effect due to the magnetic field along y-axis: Since Hall term is considered and

the current density is J then

J ×B =
( −σB2

0

1 +m2
(u+mw), 0,

−σB2
0

1 +m2
(w −mu)

)
= (Hx, 0, Hz)

Now

(
1 + λS

d

dt

)
J ×B = (J ×B) + λS

d

dt
(J ×B)

= (J ×B) + λS

( ∂
∂t

+ (V · ∇)− L
)

(J ×B)

= (Hx, 0, Hz) + λS

( ∂
∂t

(Hx, 0, Hz) + (V · ∇)(Hx, 0, Hz)− L(Hx, 0, Hz)
)

= (Hx, 0, Hz) + λS

((∂Hx

∂t
, 0,

∂Hz

∂t

)
+
(
u
∂

∂x
+ v

∂

∂y

)
(Hx, 0, Hz)−

(
Hx

∂u

∂x
, 0, Hx

∂w

∂x

))

Then along the x-axis,

(
1 + λS

d

dt

)
J ×B

∣∣
x

= Hx + λS

(
∂Hx

∂t
+ u

∂Hx

∂x
+ v

∂Hx

∂y
−Hx

∂u

∂x

)
=
−σB2

0

(1 +m2)

(
u+mw + λS

(∂u
∂t

+ v
∂u

∂y
+m

(∂w
∂t

+ u
∂w

∂x
+ v

∂w

∂y
− w∂u

∂x

)))
(2.22)

Similarly, along the z-axis,

(
1 + λS

d

dt

)
J ×B

∣∣
z

=

σB2
0

(1 +m2)

(
mu− w + λS

(
m
(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y
+ w

∂w

∂x

)
− ∂w

∂t
− v∂w

∂y

))
(2.23)
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Finally, the required UCM model under the Hall effect is expressed as

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ λs

(∂2u

∂t2
+ 2u

∂2u

∂t∂x
+ 2v

∂2u

∂t∂y
+ 2uv

∂2u

∂x∂y
+ u2∂

2u

∂x2
+ v2∂

2u

∂y2

))
= −∂P

∂x
+ µ

∂2u

∂y2
− σB2

0

(1 +m2)

(
u+mw + λS

(∂u
∂t

+ v
∂u

∂y
+m

(∂w
∂t

+ u
∂w

∂x
+ v

∂w

∂y
− w∂u

∂x

)))
(2.24)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ λs

(∂2w

∂t2
+ 2u

∂2w

∂t∂x
+ 2v

∂2w

∂t∂y
+ 2uv

∂2w

∂x∂y
+ u2∂

2w

∂x2
+ v2∂

2w

∂y2

))
= µ

∂2w

∂y2
+

σB2
0

(1 +m2)

(
mu− w + λS

(
m
(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y
+ w

∂w

∂x

)
− ∂w

∂t
− v∂w

∂y

))
(2.25)

Cattaneo–Christov Model: Cattaneo–Christov model is proposed by adding thermal relaxation

time in Fourier’s Law, also called the modified Fourier heat conduction law, presented by

q + λT

(
∂q

∂t
+ V · ∇q− q.∇V + (∇ · V )q

)
= −κ∇T

Here, κ is the thermal conductivity and λT > 0 is the thermal relaxation time parameter for

the heat flux where λT = 0 simplifies the expression (7) to classical Fourier’s law.

2.3.3 Couette Parallel Flow

Two parallel plates of very long dimensions in the x and z directions. Top plate moves at a

velocity U and is at temperature T . Bottom plate is stationary i.e. velocity = 0. Distance

between plates = L.

2.4 Dimensional Analysis

Dimensional analysis is unique in mathematics and the physical sciences for ambiguity sur-

rounding a well-used term’s meaning. This analysis is a mathematical technique commonly
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used to determine the relationships between several physical variables that influence the flow in

fluid mechanics, heat transfer in thermodynamics, and so forth. Dimensional analysis mentions

the fundamental technique of relating finite characteristics within a system or between systems

using the fact that the value of a unit of measurement stays unaffected regardless of the quantity

or the method for which it is used. In detail, scientific perception in fluid mechanics is quan-

titatively based on concepts of physical phenomena, each of which is a unit of measurement

that has been assigned. The quantities in SI or MKS units are adopted to obtain a numerical

solution. It is appropriate to adopt a dependable dimensional scheme composed of the smallest

number of dimensions in terms of which all the physical entities may be expressed. The funda-

mental dimensions of the procedure are length [ L] , time [ T] , mass [ M] , and force[ F] , related

by Newton’s second law of motion, F = ma Dimensionally, the law may also be written as,

[ F] =

[
ML

T2

]
=⇒

[
FT2

ML

]
= 1

Clearly, when three of the dimensions are well-known, the fourth can be stated in terms of

the other three. Consequently, three autonomous dimensions are adequate for any physical phe-

nomenon found in Newtonian technicalities. They are usually chosen as [ MLT] (mass, length,

time) or [ FLT] (force, length, time). For example, the specific mass (ρ) may be expressed ei-

ther as [ ML−3] or as [ FT2L−4] , and fluid pressure (P ), which is commonly described as force

per unit area [ FL−2] , may also be expressed as [ MLT−2] using the (mass, length, time) sys-

tem. A summary of some of the entities frequently used in fluid mechanics, together with their

dimensions in both systems, is given in Table 2.3.

Practicality of Dimensional Analysis

Dimensional analysis is a potent tool in many disciplines, not just in fluid mechanics. It provides

a technique to plan and carry out experiments and enables one to scale up results from the model

to the prototype. Purpose:

• To verify an equation complies with the principle of homogeneity of dimensions.
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Table 2.3: Entities commonly used in fluid mechanics and their dimensions

Entity MLT System
Mass (m) M

Length (L) L
Time (t) T
Area (A) L2

Volume (V ) L3

Velocity (v) LT−1

Acceleration (a) LT−2

Force (F ) and Weight (W ) MLT−2

Specific weight (γ = F/V ) ML−2T−2

Pressure (P = F/A) and stress (τ ) ML−1T−2

Energy (E) and work (w) ML2T−2

Momentum (mv) MLT−1

Specific mass/ density (ρ) ML−3

Dynamic viscosity (µ) ML−1T−1

Kinematic viscosity (ν) L2T−1

• To renovate from one system of units to another.

• To determine or derive a relationship between two physical characteristics.

• To determine or derive a relationship between two quantities.

• To express one attribute in terms of another.

Usefulness:

• Offering and interpreting experimental data.

• Tackling problems not amenable to a direct theoretical solution.

• Examination of equations.

• Establishing the relative importance of particular physical phenomena.

• Physical modelling.

Methods for dimensional analysis: i) Rayleigh Method ii) Buckingham Π Theorem:
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2.5 Boundary–Layer Approximation

With the concept of the MHD boundary layer phenomena, let δ be the non-dimensional boundary

layer thickness which is considered to be very small everywhere, where

δ =
Original boundary layer thickness

L

Now it is assumed that δ << 1 be the order of magnitude of δ, i.e. O(δ) = ε. Then it can

be written in the order of magnitude of y, v and B0 are equal to ε, i.e. O(y) = ε, O(v) = ε and

O(B0) = ε. Also, it is considered that the order of magnitude of ν, i.e. order of µ
ρ

is ε2, which

implies that O(ν) = O(µ/ρ) = ε2.

Now determine the order of magnitude of each term in considering the order of u, x and t

are equal to one, i.e. O(u) = 1, O(x) = 1 and O(t) = 1. Hence O(∂u
∂x

) = 1 and O(∂
2u
∂x2

) = 1;

O(∂u
∂t

) = 1; O(∂u
∂y

) = 1
ε
; O(∂

2u
∂y2

) = 1
ε2

; O(∂v
∂t

) = ε; O( ∂v
∂x

) = ε; O(∂v
∂y

) = 1; O( ∂
2v
∂x2

) =

ε; O(∂
2v
∂y2

) = 1
ε

within the boundary layer.

The viscous forces in the boundary layer can become of the same order of magnitude as the

inertia forces only if the Reynolds number is of the order of 1/ε2 i.e. O(Re) = 1
ε2

2.6 Dynamic Similarity Analysis

The theory of dynamic similarity can be stated as follows:

When the model and prototype are geometrically similar (that is, the model is a perfect scale

duplicate of the prototype), and if each independent dimensionless factor for the scheme is equal

to the corresponding separate dimensionless parameter for the prototype, then the conditional di-

mensionless parameter for the prototype will be similar to the analogous dependent dimension-

less parameter for the model. In fluid mechanics, dynamic similarity is when two geometrically

similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip,

centre-line velocity) and the same Reynolds and Womersley numbers, the fluid flows will be

identical. It can be seen from inspection of the underlying Navier-Stokes equation, with geo-
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metrically similar bodies, equal Reynolds and Womersley Numbers, the functions of velocity

(u′, v′, w′) and pressure (P ′) for any variation of flow.

2.6.1 Lie Symmetry Analysis

Some basics of Lie symmetry methods for solving differential equations are discussed below,

Olver (1986) [113]; Ovsiannikov (1982) [114]; Bluman et al. (1988) [115].

Symmetry transformations of differential equations: A symmetry transformation of a differ-

ential equation is one in which the equation does not undergo any changes.

Consider a kth-order k ≥ 1 system of differential equations

Fα(x, u, u(1), · · · , u(k)) = 0; α = 1, · · · ,m (2.26)

where u = (u1, · · · , um) is the dependent variable, function of the independent variable x =

(x1, · · · , xn); and u(1), · · · , u(k) are the collection of all first, second up to kth-order derivatives

of u.

A transformation of the variables x and u, viz.

x̄i = f i(x, u), ūα = gα(x, u); i = 1, · · · , n; α = 1, · · · ,m (2.27)

is called a symmetry transformation of the system (2.26) if it is invariant with the new variables

x̄ and ū, that is

Fα(x̄, ū, ū(1), · · · , ū(k)) = 0; α = 1, · · · ,m (2.28)

Lie symmetry method for partial differential equations: In this article, the classical Lie

symmetry approach to solving a system of partial differential equations is discussed. Let us

consider a pth-order system of partial differential equations in n independent variables x =
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(x1, · · · , xn); and m dependent variables u = u1, · · · , um, viz.

E(x, u, u(1), · · · , u(p)) = 0 (2.29)

where u(k); 1 ≤ k ≤ p denotes the set of all kth-order derivatives of u with respect to the

independent variables defined by

uα(k) =
∂ku

∂xi1, · · · , ∂xik
(2.30)

With 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

For finding the symmetries of Eq. (2.30), we first construct the group of invertible transfor-

mations depending on the actual parameter a; which leaves Eq. (2.30) invariant, namely

x̄1 = f 1(x, u, a), · · · , x̄n = fn(x, u, a), ūα = gα(x, u, a) (2.31)

The initial set of transformations is said to form a one-parameter group because it possesses

the closure property, is associative, and allows for inverses and identity transformation. Given

that an is a negligibly small parameter, the expansion of the transformations (2.31) can be written

as

x̄1 = x̄+ aξ1(x, u) +O(a2), · · · , x̄n = x̄+ aξn(x, u) +O(a2) (2.32)

ū1 = ū+ aξ1(x, u) +O(a2), · · · , ūn = ū+ aξn(x, u) +O(a2) (2.33)

The transformations (2.33) are the infinitesimal transformations and the finite transformations

are found by solving the Lie equations

ξ1(x̄, ū) =
dx̄1

da
, · · · , ξn(x̄, ū) =

dx̄n
da

, η(x̄, ū) =
dū

da
(2.34)
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with the initial conditions

x̄1(x̄, ū, a)|a=0 = x1, · · · , x̄n(x̄, ū, a)|a=0 = xn (2.35)

ū1(x̄, ū, a)|a=0 = u1, · · · , ūn(x̄, ū, a)|a=0 = un (2.36)

where x̄ = (x̄1, · · · , x̄n) and ū = (ū1, · · · , ūn).

2.7 Dimensionless Parameters

Reynolds Number (Re)

The ratio of the force of inertia to viscous forces is generally known as the Reynolds number. It

is named after Osborne Reynolds. This is arguably the most significant dimensionless number

in fluid dynamics. The mathematical formulation is as follows

Re =
Inertia force

Viscous force
=
ρU2

0 l
2

µU0l
=
U0l

ν

If the viscous forces are dominant, then the Reynolds number is low. For example, heavy

oils, grease, blood etc. On the other hand, if the inertial forces are dominant, this gives large

Reynolds number values. Air and water are prominent examples. In making the flow equations

non-dimensional, the Reynolds number appears in the equation. The flow types depend on the

Reynolds number to a large extent. At the low Reynolds number, the flow remains laminar. As

the Reynolds number increases, the stability of the flow starts to decrease, and, at a very high

Reynolds number, the flow becomes turbulent. Typical values of Re are:

• Re < 2000 for laminar flow

• 2000 ≤ Re ≤ 4000 for tangential flow

• Re > 4000 for turbulent flow
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Prandtl Number (Pr)

The Prandtl number Pr is a non-dimension quantity approaching the ratio of momentum diffusiv-

ity (kinematic viscosity) and thermal diffusivity. Prandtl number is reliant only on the fluid-fluid

state. It is defined as

Pr =
viscous diffusion rate
thermal diffusion rate

=
ν

α
=
µcp
κ

The values of ν = µ
ρ

demonstrate the effects of the viscosity of the fluid. The value of

α = κ
ρCP

shows the thermal diffusivity due to heat conduction. Thus the Prandtl number shows

the relative importance of heat conduction and viscosity of a fluid. Pr = ν
α

= viscous diffusion

rate/thermal diffusion rate.

Typical values of Pr are:

• Around 0.16-0.7 for mixtures of noble gases

• 0.63 for oxygen

• 0.71 for air at 20◦C

• 1.38 for gaseous ammonia

• Around 7 for water (at 20◦C )

• Around 11.47 for water (at 4◦C )

• Between 100 and 40,000 for engine oil

• Around 1×1025 for Earth’s mantle

Pr is roughly constant for most gases at various temperatures and pressures. Hence, it may adjust

gas thermal conductivity at high temperatures, which is difficult to quantify experimentally due

to convection currents.

Small Pr means heat diffusion is faster than momentum diffusion (velocity). Thermal bound-

ary layers are substantially thicker than velocity boundary layers. The Prandtl number Pr as-

sesses momentum and heat diffusion efficiency in velocity and thermal boundary layers. Gases
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have a near-unity Prandtl number. Hence diffusion transfers energy and momentum. Energy

and momentum diffusion rates are much higher in liquid metals. Hence, liquid metals have a

significantly thicker thermal boundary layer than the velocity boundary layer. Oils for Pr >> 1

are the opposite. From this understanding, Pr greatly impacts the relative development of the

velocity and thermal boundary layers.

Grashof Number (Gr)

The Grashof number Gr is dimensionless in fluid dynamics and heat transfer which approxi-

mates the buoyancy ratio to the viscous force acting on a watery material. It is defined as,

Gr =
gβL3∆T

ν2

This number is of great importance for natural convection flow, and is similar to the Reynolds

number. A critical value of Gr is used to indicate transition from laminar to turbulent flow in

free convection.

The Modified Grashof number due to the solutal state of the fluid is defined as,

Gm =
gβ∗L3∆C

ν2

Magnetic parameter (M )

The Magnetic parameter is obtained from the ratio of the magnetic force to the inertia force and

is defined as,

M =
Magnetic force

Inertia force
=
σB2

0ν

ρU2
0
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Eckert Number (Ec)

The Eckert numberEc is a dimensionless number which provides a measure of the kinetic energy

of the flow relative to the enthalpy difference across the thermal boundary layer. It plays a vital

role in high-speed flows for which viscous dissipation is significant. It is defined as:

Ec =
kineticenergy

enthalpy
=

U2
0

Cp∆T

Suction Parameter (fw)

The Section parameter is defined as,

fw =
v0

U0

Thermal radiation Parameter (R)

The thermal Radiation parameter is defined as,

R =
16σ1T

3
∞

3κ1κ

Thermal radiation is sometimes an essential mechanism of heat transfer. The rate at which a

perfect emitter, called a blackbody since it absorbs all incident thermal radiation, emits energy

by the mechanism of thermal radiation. Examples of processes in which radiative transport plays

a significant role are heat transfer from spacecraft, in the fireboxes of boilers of central electrical

generating plants, and warming of solar collectors by the sun.

Schmidt Number

The Schmidt number, named after the German engineer Ernst Heinrich Wilhelm Schmidt, is a
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dimensionless quantity. The Schmidt number is expressed as the ratio of the momentum diffu-

sivity (kinematic viscosity) and the mass diffusivity. It may characterize the fluid flows in which

there are simultaneous diffusion convection processes of the momentum and mass. The Schmidt

number labels mass momentum transfer given below:

Sc =
momentum diffusivity
molecular diffusivity

=
ν

DT

=
µ

ρDT

Typical values of Sc are:

• 0.22 correspond to hydrogen at temperature 25◦C and pressure 1 atm.

• 0.6 correspond to water vapour at temperature 25◦C and pressure 1 atm.

• Around 1.0 for methanol (at 25◦C)

• The heat transfer along the Schmidt number is the Prandtl number.

Schmidt number Sc measures the relative effectiveness of momentum and mass transport by

diffusion in the velocity and concentration boundary layers, respectively.

Soret number (Sr)

Thermodiffusion (thermophoresis/thermomigration/Soret effect) is a fact perceived in mixtures

of moving particles where different types of particles reveal dissimilar responses to the force

of a temperature gradient. Thermophoresis is most often applied to aerosol mixtures but can

also refer to the singularity in all phases of matter. The Soret effect is usually applied to liquid

mixtures, which behave by different and less well-known mechanisms than gas mixtures. Ther-

mophoresis may not apply to term migration in solids, especially in multiphase alloys. The Soret

number is defined as,

Sr =
DT∆T

ν∆C

The Soret effect is the diffusion of substance in an asymmetrically heated mixture of gases or a

solution caused by a temperature gradient in the arrangement. The Swiss scientist J. Soret was
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the first to discover thermo-diffusion (1879).

Dufour effect (Du)

The Dufour effect refers to the energy flux connecting to the mass concentration gradient arising

as a coupled effect of irreversible processes. It is the common phenomenon of the Soret effect.

The concentration gradient results in a temperature change. The Dufour effect is usually con-

sidered negligible for binary liquid mixtures, whereas the effect can be significant in binary gas

mixtures. A Swiss physicist first observed the result. The Dufour number is defined as,

Du =
DT∆C

ν∆T

Nusselt Number (Nu)

The proportion of convective to conductive heat transfer across the boundary within a fluid is

called the Nusselt number (Nu). The conductive module is assessed under similar conditions as

the heat convection but with a (hypothetically) stationary fluid. The Nusselt number is defined

as

Nu =
q′′w convection
q′′w conduction

=
hL

κ

where L is the characteristic length, κ is the thermal conductivity of the fluid and h is the

convection heat transfer coefficient.

A Nusselt number close to unity, namely convection and conduction of similar magnitude,

is characteristic of laminar flow. A larger Nusselt number relates to more dynamic convection,

with the turbulent flow usually in the 100-1000 range.

Sherwood Number (Sh)

The Sherwood number, usually written as Sh, is a dimensionless number operated in the mass-
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transfer operation. It signifies the ratio of convective mass transport to diffusive mass transport

between the wall and bulk fluid. It is defined as

Sh =
h∗L

DT

h∗ is the convective mass transfer coefficient and DT is the mass diffusivity coefficient.

2.8 Numerical Technique

The world is distinguished by arrangement in space and time, and it is forever fluctuating in

complex ways that cannot be exactly resolved. Therefore, the numerical solutions of PDEs lead

to some of the most imperative and computationally intensive tasks in all of the numerical anal-

yses. When formulated into mathematical models, many physical phenomena in applied science

and engineering fall into a category of systems known as non-linear coupled partial differential

equations. Most of these problems can be formulated as second-order partial differential equa-

tions. A system of non-linear coupled partial differential equations with boundary conditions is

complicated to solve analytically. Advanced numerical methods have been employed to obtain

the solution to such problems. Hence two numerical procedures have been adopted to obtain

solutions. The usual transformation transforms the governing equations into a non-dimensional

system of non-linear coupled partial differential equations with initial and boundary conditions.

Hence the solution to our problem would be based on advanced numerical methods.

The Finite Difference Method, Nachtsheim-Swigert shooting method and boundary value

problem solver bvp4c package in MATLAB are the numerical approaches used to solve the

coupled governing model equations.

2.8.1 Finite Difference Method (FDM)

The finite difference method is used to solve the boundary value problem by discretizing the con-

tinuous solution domain, approximating the exact derivatives by finite difference approximation,
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and substituting it into the boundary value problem to obtain the finite difference equation.

The approximations developed by Strikwerda that make it possible to replace differential

equations with finite difference equations are the foundation upon which the finite difference

techniques are built in 1989 [116, 117]. Algebraic forms are used in their finite difference

approximations, and the solutions are connected to grid nodes. Hence, there are three stages to

a finite difference solution:

1. Organizing the answer using grids of notes.

2. Finite difference equivalency, which maps solutions to grid points, is used to generate

approximations to the given differential equation.

3. Fixing the boundary and/or starting conditions and solving the difference equations is the

item.

Let us consider a two-dimensional region to solve the governing partial differential equations

by the finite difference method, as shown in Fig.2.5. A rectangular grid with a grid spacing ∆x

and ∆y in x and y directions covers it. Mesh points, lattice points, or nodal points are where

parallel lines connect to calculate dependent variable values. Discretizing the governing partial

differential equations over the region of interest yields essentially similar algebraic equations.

The discretization replaces each derivative of the partial differential equation at a mesh location

with a finite difference approximation based on the dependent variable values at the mesh point

and its near neighbours and boundary points. Algebraic equations result.
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Figure 2.5: Space-Time index notation

To construct standard finite difference approximations to common partial derivatives, sup-

pose that U is a function of two special coordinates, x and y, and time t. Let the subscripts i and

j represent x and y coordinates, respectively, and superscript n represents time. Let the mesh

spacing in x and y directions are denoted by ∆x and ∆y, respectively, the time step by ∆t. The

partial derivatives of U will be approximated with respect to x. As t and y are held constant U is

effectively a function of the single variable x, Taylor’s formula can be used, where the ordinary

derivative terms are partial derivatives, and the arguments are (t, x, y) instead of x. Finally, the

step size h will be replaced by ∆x to indicate the change of x so that,

U(t, x0 + ∆x, y0) = U(t, x0, y0) + ∆xUx(t, x0, y0) +
∆x2

2!
Uxx(t, x0, y0)+

· · · · · ·+ ∆xn−1

(n− 1)!
U(n−1)(t, x0, y0) +O(∆xn)
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Now with truncating error of order O(∆x2) and higher then, we have

U(t, x0 + ∆x, y0) = U(t, x0, y0) + ∆xUx(t, x0, y0) +O(∆x2) (2.37)

Rearranging the above equation, we get

Ux(t, x0, y0) =
U(t, x0 + ∆x, y0)− U(t, x0, y0)

∆x
− O(∆x2)

∆x

Ux(t, x0, y0) =
U(t, x0 + ∆x, y0)− U(t, x0, y0)

∆x
−O(∆x)

Above equation holds at any point (t, x0, y0). In numerical schemes for solving PDEs there

are restrictions to a grid of discrete x values x1, x2, · · · , xN and discrete t levels t1, t2, · · · , tN .

Assume a constant grid spacing ∆x in x so that xi+1 = xi+∆x. Evaluating for a point (tn, xi, yi)

on the grid gives

Ux(tn, xi, yj) =
U(tn, xi+1, yj)− U(tn, xi, yj)

∆x
−O(∆x)

Using common subscript/superscript notation,

Un
i,j = U(tn, xi, yj)

So dropping the term O(∆x), the first-order forward difference approximation to Ux(tn, xi, yj)

becomes,

Ux(tn, xi, yj) =
Un
i+1,j − Un

i,j

∆x
(2.38)
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Replacing ∆x by −∆x in Eqn. (2.37),

U(t, x0 −∆x, y0) = U(t, x0, y0)−∆xUx(t, x0, y0) +O(∆x2)

Evaluation of the above equation at (tn, xi, yi) and rearrangement like previous manners

gives the first-order backward difference approximation to Ux(tn, xi, yj),

Ux(tn, xi, yj) =
Un
i,j − Un

i−1,j

∆x
(2.39)

Subtraction of the expression (2.39) from (2.40) evaluated at (tn, xi, yj) gives the first-order

central difference approximation Ux(tn, xi, yj)

Ux(tn, xi, yj) =
Un
i+1,j − Un

i−1,j

2∆x
(2.40)

For second-order or higher-order partial derivatives, Eqn. (2.40) needs to derive higher ap-

proximations,

U(t, x0 + ∆x, y0) = U(t, x0, y0) + ∆xUx(t, x0, y0) +
∆x2

2!
Uxx(t, x0, y0) (2.41)

+
∆x3

3!
Uxxx(t, x0, y0) +O(∆x4) (2.42)

Replace ∆x by −∆x in (2.42) to get

U(t, x0 −∆x, y0) = U(t, x0, y0)−∆xUx(t, x0, y0) +
∆x2

2!
Uxx(t, x0, y0) (2.43)

−∆x3

3!
Uxxx(t, x0, y0) +O(∆x4) (2.44)

Adding (2.42) and (2.44) gives
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U(t, x0 + ∆x, y0) + U(t, x0 −∆x, y0) = 2U(t, x0, y0) + ∆x2Uxx(t, x0, y0) +O(∆x4) (2.45)

Using the discrete notation at the point (t, x0, y0) and dropping the term O(∆x4) yields the

second-order central difference approximation to Uxx(t, x0, y0),

Uxx(t, x0, y0) =
Un
i+1,j − 2Un

i,j + Un
i−1,j

∆x2
(2.46)

The expressions for mixed derivatives can be obtained by differentiating for each variable,

in turn. Thus, for example,

Uxy(t, x0, y0) =
Un
i+1,j+1 − Un

i+1,j−1 − Un
i−1,j+1 + Un

i−1,j−1

4∆x∆y
(2.47)

Higher-order derivatives can be discretised by proceeding with a similar technique. Time-

independent finite difference approximation can also be conducted.

Figure 2.6: Finite difference space grid
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2.8.2 Boundary Value Problem Solver bvp4c in MATLAB

Boundary value difficulties associated with the model are solved using a computer method

(BVPs). The approach yields precise solutions to boundary layer equations, and it is well-

described in the literature. The equations of the BVP are solved by the bvp4c package by apply-

ing the appropriate algorithm. The entire computation procedure is executed using a program

which uses the symbolic and computational computer language MATLAB. The system of non-

linear ordinary differential equations (ODEs) has been solved numerically using the boundary

value problem solver, bvp4c function technique in MATLAB by Shampine and Thompson [118].

The equations are incorporated numerically as an IVP to a given terminal point. All these sim-

plifications are done using the MATLAB package. The numerical procedure of bvp4c followed

is:

• Nonlinear PDEs are reduced to 1st order ODEs

• Associated boundary conditions and initial guesses for these functions

• bvp4c returns the solution as a structure called sol

• Mesh selection is generated and returned in the field sol.x

• Solution can be fetched from array sol.y corresponding to sol.x

• let y(a) be the left boundary, y(b) be the right boundary

• Integrate the solution to get the required results

Consider a dummy system of non-linear coupled governing equations:

f ′′′(η) + c1f
′′(η)f(η) + c2f

′(η) + c3f(η)3 − c4θ(η) = gc (2.48)

θ′′(η) + d1θ
′(η) + d2θ(η) = hd (2.49)
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Boundary conditions are:

f = a1; f ′ = a2; θ = c3 at η = la (2.50)

f ′ = b2; θ = b3 at η = lb (2.51)

The transformed governing equations of third and second order must be reduced to a system

of first-order differential equations. The equations now define new variables

f = y1; f ′ = y′1 = y2; f ′′ = y′2 = y3; θ = y4; θ′ = y′4 = y5 (2.52)

Thus, the two coupled higher-order differential equations and the corresponding boundary

conditions can be transformed into five equivalent first ODEs subject to related boundary condi-

tions. The system of first-order ODEs is as follows:

f ′ = y′1 = y2 (2.53)

f ′′ = y′2 = y3 (2.54)

f ′′′ = −c1f
′′(η)f(η)− c2f

′(η)− c3f(η)3 + c4θ(η) + gc (2.55)

θ′ = y′4 = y5 (2.56)

θ′′ = −d1θ
′(η)− d2θ(η) + hd (2.57)

And the boundary conditions are given by

y1(la) = a1; y2(la) = a2; y3(la) = Ra; y4(la) = c3; y4(la) = Sa; (2.58)

The Classical Newton shooting method is applied for the refinement of initial guesses Ra and

Sa subjected to the given tolerance to solve the initial value problem.
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Figure 2.7: Finite difference space grid

2.8.3 Nachtsheim-Swigert Shooting Method

Boundary value difficulties are an inevitable consequence of many important physical problems

(BVPs). When it comes to solving boundary value problems (BVPs) for ordinary differential

equations, the shooting technique is among the most popular and powerful numerical algorithms.

Due to its many benefits, including its generalizability, small storage footprint, and amenability

to automation, we opted to use the shooting approach to tackle the boundary value problem in our

research. The shooting technique is an iterative procedure that reframes the original boundary

value issue as a set of linked initial value problems (IVPs) with suitable initial conditions. To

solve the new issue, the IVP must be applied using initial conditions that are chosen arbitrarily

but are close approximations to the boundary conditions at the ends. The operation is repeated

with a new set of initial conditions until the desired precision is attained or a limit to the iteration

is reached if the boundary conditions are not satisfied with the required accuracy. The resulting

IVP is numerically solved using a method suitable for linear, ordinary differential equations.

A convergence between the IVP and BVP solutions is expected. The 4th-order Runge-Kutta
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method is used here because of the precision it offers. The Maple programming language is

used to implement the aforementioned procedure’s algorithm. Graphical representations of the

calculated results are provided.

The differential equation is integrated numerically as an IVPs from the beginning of the

interval (where the initial conditions are not specified) to the end. This is known as a shooting

method. The validity of the assumed missing initial condition is then evaluated by contrasting the

expected and observed values of the dependent variable at the endpoint. If there’s a discrepancy,

it’ll be necessary to assume yet another value for the missing starting condition, and the process

will be iterative. This procedure is repeated until there is an acceptable degree of agreement

between the calculated and specified conditions at the terminal point. For such an iterative

approach, one may wonder if there is a standardised means of determining the missing starting

condition’s next (assumed) value.

The asymptotic class of the boundary conditions for non-linear ODEs has two points. Values

of the dependent variable are given for two values of the independent variable in two-point

boundary conditions. The dependent variable’s first derivative (and higher derivatives of the

boundary layer equation, if it exists) will tend towards zero when the outer stated value of the

independent variable is approached if an asymptotic boundary condition is specified. So, it’s

important to talk in-depth about the Nachtsheim-Swigert iteration method.

To get over these problems, Nachtsheim and Swigert [119] came up with an iterative ap-

proach. The system of equations and the boundary conditions can be easily treated by extending

the Nachtsheim-Swigert iteration approach. In governing equations , there are three asymptotic

boundary conditions

f ′′(0), g′(0), θ′(0)

within the context of the initial-value method and Nachtsheim-Swigert iteration technique the
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outer boundary conditions may be functionally represented as

f ′(ηmax) = f ′(f ′′(0), g′(0), θ′(0)) = δ1 (2.59)

g(ηmax) = g(f ′′(0), g′(0), θ′(0)) = δ2 (2.60)

θ(ηmax) = θ(f ′′(0), g′(0), θ′(0)) = δ3 (2.61)

with the asymptotic convergence criteria given by

f ′′(ηmax) = f ′′(f ′′(0), g′(0), θ′(0)) = δ4 (2.62)

g′(ηmax) = g′(f ′′(0), g′(0), θ′(0)) = δ5 (2.63)

θ′(ηmax) = θ′(f ′′(0), g′(0), θ′(0)) = δ6 (2.64)

choosing f ′′(0) = g1, g
′(0) = g2, θ

′(0) = g3 and expanding in a first order Taylor’s series,

f ′(ηmax) = f ′cal(ηmax) +
∂f ′

∂g1

∆g1 +
∂f ′

∂g2

∆g2 +
∂f ′

∂g3

∆g3 = δ1 (2.65)

g(ηmax) = gcal(ηmax) +
∂g

∂g1

∆g1 +
∂g

∂g2

∆g2 +
∂g

∂g3

∆g3 = δ2 (2.66)

θ(ηmax) = θcal(ηmax) +
∂θ

∂g1

∆g1 +
∂θ

∂g2

∆g2 +
∂θ

∂g3

∆g3 = δ3 (2.67)

f ′′(ηmax) = f ′′cal(ηmax) +
∂f ′′

∂g1

∆g1 +
∂f ′′

∂g2

∆g2 +
∂f ′′

∂g3

∆g3 = δ4 (2.68)

g′(ηmax) = g′cal(ηmax) +
∂g′

∂g1

∆g1 +
∂g′

∂g2

∆g2 +
∂g′

∂g3

∆g3 = δ5 (2.69)

θ′(ηmax) = θ′cal(ηmax) +
∂θ′

∂g1

∆g1 +
∂θ′

∂g2

∆g2 +
∂θ′

∂g3

∆g3 = δ6 (2.70)

The subscript cal indicates the value of the function at ηmax determined from the trial integration.
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Solution of these equations in a least-squares sense required determining the minimum value of

E = δ2
1 + δ2

2 + δ2
3 + δ2

4 + δ2
5 + δ2

6 (2.71)

Now differentiating E with respect to g1 yields,

δ1
∂δ1

∂g1

+ δ2
∂δ2

∂g1

+ δ3
∂δ3

∂g1

+ δ4
∂δ4

∂g1

+ δ5
∂δ5

∂g1

+ δ6
∂δ6

∂g1

= 0

Using the relations 2.65 to 2.70 we get,

(
f ′cal +

∂f ′

∂g1

∆g1 +
∂f ′

∂g2

∆g2 +
∂f ′

∂g3

∆g3

)
∂f ′

∂g1

+

(
gcal +

∂g

∂g1

∆g1 +
∂g

∂g2

∆g2 +
∂g

∂g3

∆g3

)

∂g

∂g1

+

(
θcal +

∂θ

∂g1

∆g1 +
∂θ

∂g2

∆g2 +
∂θ

∂g3

∆g3

)
∂θ

∂g1

+

(
f ′′cal +

∂f ′′

∂g1

∆g1 +
∂f ′′

∂g2

∆g2+

∂f ′′

∂g3

∆g3

)
∂f ′′

∂g1

+

(
g′cal +

∂g′

∂g1

∆g1 +
∂g′

∂g2

∆g2 +
∂g′

∂g3

∆g3

)
∂g′

∂g1

+

(
θ′cal +

∂θ′

∂g1

∆g1+

∂θ′

∂g2

∆g2 +
∂θ′

∂g3

∆g3

)
∂θ′

∂g1

= 0

After some rearrangement to get

[(
∂f ′

∂g1

)2

+

(
∂g

∂g1

)2

+

(
∂θ

∂g1

)2

+

(
∂f ′′

∂g1

)2

+

(
∂g′

∂g1

)2

+

(
∂θ′

∂g1

)2
]

∆g1+(
∂f ′

∂g1

∂f ′

∂g2

+
∂g

∂g1

∂g

∂g2

+
∂θ

∂g1

∂θ

∂g2

+
∂f ′′

∂g1

∂f ′′

∂g2

+
∂g′

∂g1

∂g′

∂g2

+
∂θ′

∂g1

∂θ′

∂g2

)
∆g2+(

∂f ′

∂g1

∂f ′

∂g3

+
∂g

∂g1

∂g

∂g3

+
∂θ

∂g1

∂θ

∂g3

+
∂f ′′

∂g1

∂f ′′

∂g3

+
∂g′

∂g1

∂g′

∂g3

+
∂θ′

∂g1

∂θ′

∂g3

)
∆g3 =

−
[
f ′cal

∂f ′

∂g1

+ gcal
∂g

∂g1

+ θcal
∂θ

∂g1

+ f ′′cal
∂f ′′

∂g1

+ g′cal
∂g′

∂g1

+ θ′cal
∂θ′

∂g1

]
(2.72)
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Again differentiating E with respect to g2 and rearranging we obtain,

(
∂f ′

∂g1

∂f ′

∂g2

+
∂g

∂g1

∂g

∂g2

+
∂θ

∂g1

∂θ

∂g2

+
∂f ′′

∂g1

∂f ′′

∂g2

+
∂g′

∂g1

∂g′

∂g2

+
∂θ′

∂g1

∂θ′

∂g2

)
∆g1+[(

∂f ′

∂g2

)2

+

(
∂g

∂g2

)2

+

(
∂θ

∂g2

)2

+

(
∂f ′′

∂g2

)2

+

(
∂g′

∂g2

)2

+

(
∂θ′

∂g2

)2
]

∆g2+(
∂f ′

∂g2

∂f ′

∂g3

+
∂g

∂g2

∂g

∂g3

+
∂θ

∂g2

∂θ

∂g3

+
∂f ′′

∂g2

∂f ′′

∂g3

+
∂g′

∂g2

∂g′

∂g3

+
∂θ′

∂g2

∂θ′

∂g3

)
∆g3 =

−
[
f ′cal

∂f ′

∂g2

+ gcal
∂g

∂g2

+ θcal
∂θ

∂g2

+ f ′′cal
∂f ′′

∂g2

+ g′cal
∂g′

∂g2

+ θ′cal
∂θ′

∂g2

]
(2.73)

Finally differentiating E with respect to g3 and rearranging we obtain,

(
∂f ′

∂g1

∂f ′

∂g3

+
∂g

∂g1

∂g

∂g3

+
∂θ

∂g1

∂θ

∂g3

+
∂f ′′

∂g1

∂f ′′

∂g3

+
∂g′

∂g1

∂g′

∂g3

+
∂θ′

∂g1

∂θ′

∂g3

)
∆g1+(

∂f ′

∂g2

∂f ′

∂g3

+
∂g

∂g2

∂g

∂g3

+
∂θ

∂g2

∂θ

∂g3

+
∂f ′′

∂g2

∂f ′′

∂g3

+
∂g′

∂g2

∂g′

∂g3

+
∂θ′

∂g2

∂θ′

∂g3

)
∆g2+[(

∂f ′

∂g3

)2

+

(
∂g

∂g3

)2

+

(
∂θ

∂g3

)2

+

(
∂f ′′

∂g3

)2

+

(
∂g′

∂g3

)2

+

(
∂θ′

∂g3

)2
]

∆g3 =

−
[
f ′cal

∂f ′

∂g3

+ gcal
∂g

∂g3

+ θcal
∂θ

∂g3

+ f ′′cal
∂f ′′

∂g3

+ g′cal
∂g′

∂g3

+ θ′cal
∂θ′

∂g3

]
(2.74)

We can write equations 2.72−2.74 in a system of linear equations as follows:

a11∆g1 + a12∆g2 + a13∆g3 = b1

a21∆g1 + a22∆g2 + a23∆g3 = b2

a31∆g1 + a32∆g2 + a33∆g3 = b3

(2.75)

Where,

a11 =

(
∂f ′

∂g1

)2

+

(
∂g
∂g1

)2

+

(
∂θ
∂g1

)2

+

(
∂f ′′

∂g1

)2

+

(
∂g′

∂g1

)2

+

(
∂θ′

∂g1

)2

a12

(
∂f ′

∂g1

∂f ′

∂g2
+ ∂g

∂g1

∂g
∂g2

+ ∂θ
∂g1

∂θ
∂g2

+ ∂f ′′

∂g1

∂f ′′

∂g2
+ ∂g′

∂g1

∂g′

∂g2
+ ∂θ′

∂g1
∂θ′

∂g2

)
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a13

(
∂f ′

∂g1

∂f ′

∂g3
+ ∂g

∂g1

∂g
∂g3

+ ∂θ
∂g1

∂θ
∂g3

+ ∂f ′′

∂g1

∂f ′′

∂g3
+ ∂g′

∂g1

∂g′

∂g3
+ ∂θ′

∂g1
∂θ′

∂g3

)

b1 = −
[
f ′cal

∂f ′

∂g1
+ gcal

∂g
∂g1

+ θcal
∂θ
∂g1

+ f ′′cal
∂f ′′

∂g1
+ g′cal

∂g′

∂g1
+ θ′cal

∂θ′

∂g1

]

a21 = a12

a22 =

(
∂f ′

∂g2

)2

+

(
∂g
∂g2

)2

+

(
∂θ
∂g2

)2

+

(
∂f ′′

∂g2

)2

+

(
∂g′

∂g2

)2

+

(
∂θ′

∂g2

)2

a23 =

(
∂f ′

∂g2

∂f ′

∂g3
+ ∂g

∂g2

∂g
∂g3

+ ∂θ
∂g2

∂θ
∂g3

+ ∂f ′′

∂g2

∂f ′′

∂g3
+ ∂g′

∂g2

∂g′

∂g3
+ ∂θ′

∂g2
∂θ′

∂g3

)

b2 = −
[
f ′cal

∂f ′

∂g2
+ gcal

∂g
∂g2

+ θcal
∂θ
∂g2

+ f ′′cal
∂f ′′

∂g2
+ g′cal

∂g′

∂g2
+ θ′cal

∂θ′

∂g2

]

a31 = a13

a32 = a23

a33 =

(
∂f ′

∂g3

)2

+

(
∂g
∂g3

)2

+

(
∂θ
∂g3

)2

+

(
∂f ′′

∂g3

)2

+

(
∂g′

∂g3

)2

+

(
∂θ′

∂g3

)2

b3 = −
[
f ′cal

∂f ′

∂g3
+ gcal

∂g
∂g3

+ θcal
∂θ
∂g3

+ f ′′cal
∂f ′′

∂g3
+ g′cal

∂g′

∂g3
+ θ′cal

∂θ′

∂g3

]

By using Cramer’s rule we can solve the system of equations (2.75) as follows

∆g1 =
detA1

D
; ∆g2 =

detA2

D
; ∆g3 =

detA3

D
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where

D = detA =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 detA1 =


b1 a12 a13

b2 a22 a23

b3 a32 a33



detA2 =


a11 b1 a13

a21 b2 a23

a31 b3 a33

 detA3 =


a11 a12 b1

a21 a22 b2

a31 a32 b3


Then we obtain the missing (unspecified) values g1, g2 and g3 from equations (2.72)− (2.74) are

as follows:

g1
∼= g1 + ∆g1

g2
∼= g2 + ∆g2

g3
∼= g3 + ∆g3

(2.76)

Figure 2.8: Algorithm of Nachtsheim-Swigert shooting method
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CHAPTER 3

MAGNETO HALL EFFECT ON UNSTEADY ELASTICO-VISCOUS NANOFLUID SLIP

FLOW IN A CHANNEL IN PRESENCE OF THERMAL RADIATION AND HEAT GEN-

ERATION WITH BROWNIAN MOTION

Abstract. The present note investigates the magneto hall effect on the unsteady flow of an

elastico-viscous nanofluid in a channel with a slip boundary, considering the presence of thermal

radiation and heat generation with Brownian motion. Numerical results are achieved by solving

the governing equations by the implicit Finite Difference Method (FDM), obtaining primary and

secondary velocities, temperature, nanoparticle volume fraction and concentration distributions

within the boundary layer entering the problem. The influences of several interesting parame-

ters, such as elastico-viscous parameter, magnetic field, hall parameter, heat generation, thermal

radiation and Brownian motion parameters on velocity, heat and mass transfer characteristics of

the fluid flow, are discussed with the help of graphs. Also, the effects of the pertinent parame-

ters, which are of physical and engineering interest, such as the Skin friction parameter, Nusselt

number and Sherwood number, are sorted out. It is found that these parameters significantly

influence the flow field and other quantities of physical concern.

3.1 Introduction

Most common fluids such as water, ethylene-glycol (EG), toluene or oil generally have poor heat

transfer characteristics owing to their low thermal conductivity. A recent technique introduced

by Choi [25] to improve the thermal conductivity of these fluids is to suspend nano-sized (di-

ameter less than 100 nm) metallic particles such as aluminum, titanium, gold, copper, iron or

their oxides in the fluid to enhance its thermal properties. In recent times, the flow analysis of

nanofluids has been the topic of extensive research due to its characteristic in increasing ther-
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mal conductivity in heat transfer process. Undoubtedly, the nanofluids are advantageous in the

sense that they are more stable and have an acceptable viscosity and better wetting, spreading

and dispersion properties on a solid surface (Buongiorno [41]; Khan and Pop [120]; Kuznetsov

and Nield [121]; Gorla et al. [122]). Nanofluids are potential heat transfer fluids with enhanced

thermo-physical properties and heat transfer performance can be applied in many devices and

engineering applications such as microelectronics, micro-fluidics, transportation, biomedical,

solid-state lighting and manufacturing for better performances. Matin et al. [123] considered

the entropy generation minimization of the flow of air based nanofluid with Al2O3, Cu and Ti

nanoparticles with different volume fraction in MHD channel formed by two parallel isothermal

plates and found Hartman and Peclet numbers. Haroun et al. [124] investigated heat and mass

transfer in an unsteady MHD nanofluid boundary layer and Rahman et al. [125] numerically

solved the problem of steady boundary layer flow of a nanofluid past a permeable exponentially

shrinking surface using the Buongiorno’s mathematical nanofluid model. Moreover, the current

trend for the application of magneto-hydrodynamics is towards a strong magnetic field; so that

the influence of electromagnetic force is noticeable, Sutton and Sherman [126]; Ali et al. [127]

and many other researchers show that the Hall current has a marked effect on the magnetic force

term. Now these days, elastico-viscous nanofluid has industrial importance since base fluids in

realistic process exhibit dual properties. Some examples of elastico-viscous nanofluids include

Al2O3-EG, CuO-EG and ZnO-EG. Recently, several authors [128, 129, 130, 131] are ana-

lyzing the natural convection flow considering elastico-viscous nanofluids due to its important

industrial applications [132].

In this paper, the parametric behavior of magneto-hydrodynamic flow of elastico-viscous

nanofluid in a channel with slip condition in the presence of dynamic effects of Hall current,

thermal radiation, heat generation and Brownian motion is studied.
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3.2 Mathematical Formulation

We consider flow of elastico-viscous incompressible and electrically conducting nanofluid with

a velocity U0 between two insulating infinite permeable plates separated by a distance h. The x-

axis is taken along the plates and y-axis is taken normal to the plates setting the lower stretching

plate at y = 0 with partial slip and the upper at y = h. The Hall current has an effect on an

electrically conducting fluid in the presence of a magnetic field applied along the y-axis. The

effect of magneto-Hall current gives rise to a force in the z-direction, which induces a cross-

flow in the z-direction and hence the flow becomes three dimensional. The plates are assumed

to be infinite in x- and z-directions which make the physical quantities not to change in these

directions. Because of this, the conservation of mass takes the form, i.e., div v̄velocity(t, y) = 0

and due to the uniform suction the velocity component v̄velocity(t, y) = 0 is assumed to have a

constant value v0 in the y-direction.

The constitutive equation for the incompressible second order fluid is

S = −pI + µ1A1 + µ2A2 + µ3(A1)2 (3.1)

Here S is the stress tensor, p is the hydrostatic pressure, An, n = 1, 2 are the kinematic Rivlin-

Ericksen tensors, µ1, µ2, µ3 are the material coefficients describing the viscosity, elastico- vis-

cosity and cross-viscosity respectively, where µ1 and µ3 are positive and µ2 is negative (Coleman

and Noll [133]; Markovitz and Coleman [134]).
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Figure 3.1: Physical model

Using the Buongiorno [41] nanofluid model, the governing equations for momentum, energy,

nanoparticle volume fraction and nanoparticle concentration distributions are represented by

∂u

∂t
+ v0

∂u

∂y
= νf

∂2u

∂y2
+
µ2

ρf

( ∂3u

∂t∂y2
+ v0

∂3u

∂y3

)
− B0

ρf
Jz

+
g0

ρf

(
ρf (1− φh)

(
βT (T − Th) + βC(C − Ch)

)
− (ρnf − ρf )(φ− φh)

)
(3.2)

∂w

∂t
+ v0

∂w

∂y
= νf

∂2w

∂y2
+
µ2

ρf

( ∂3w

∂t∂y2
+ v0

∂3w

∂y3

)
+
B0

ρf
Jx (3.3)

∂T

∂t
+ v0

∂T

∂y
= αf

∂2T

∂y2
+ τnf

(
DB

(∂T
∂y

∂φ

∂y

)
+
DT

Tm

(∂T
∂y

)2
)

+
σµeB

2
0λ

(ρCP )f (1 +m2λ2)
(u2 + w2)

+
Q∗

(ρCP )f
(T − Th)−

1

(ρCP )f

∂qr
∂y

(3.4)

∂φ

∂t
+ v0

∂φ

∂y
= DB

∂2φ

∂y2
+
DT

Tm

∂2T

∂y2
(3.5)

∂C

∂t
+ v0

∂C

∂y
= DS

∂2C

∂y2
+DCT

∂2T

∂y2
(3.6)
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Here (u, v, w) are the fluid velocity components in the x, y and z-directions, respectively. T, φ

and C are the Temperature, nanoparticle volume fraction and concentration within the boundary

layer, respectively. Subscripts nf and f denote nanoparticle and the base fluid properties respec-

tively. Here ν is the kinematic viscosity; ρ is the density; µ2 is the elastico-viscous parameter;

B0 is the uniform magnetic field strength; Jx = σµeB0λ
1+m2λ2

(mλu−w) and Jz = σµeB0λ
1+m2λ2

(u+mλw)

are the currents only to x- and z-axes, respectively, where σ is the electric conductivity; µe is the

viscosity of fluid; B0 is the uniform magnetic field strength; m is the hall parameter; λ = Cosαe

where αe is the angle between the direction of the strong uniform magnetic field B0 and the

plane transverse to the plates which are assumed to be electrically non-conducting; g0 is the

acceleration due to gravity; βT , βC are the volumetric coefficients of thermal and concentration

expansions, respectively; αf is the thermal diffusivity; τnf =
(ρCp)nf
(ρCp)f

is the ratio of effective heat

capacity of nanoparticles and that of the base fluid; Cp is the specific heat at constant pressure;

DB is the Brownian diffusion coefficient; DT is the thermophoretic diffusion coefficient; Tm is

the mean temperature; Q∗ is the volumetric rate of heat generation/absorption; qr is the radiative

heat flux; DS is the solutal diffusivity of concentration and DCT is the Soret diffusivity. Finally

subscript h is for the parameters at the upper plate at y = h.

Rosseland diffusion approximation [9] yields qr = −4σ1
3κ1

∂T 4

∂y
for thermal radiation, where σ1

is the Stefan-Boltzmann constant and κ1 is the mean absorption coefficient. Expanding T 4 in a

Taylor series about T∞ and neglecting higher-order terms, we get ∂q
∂y

= −16σ1T 3
∞

3κ1
∂2T
∂y2

. Thus the

energy equation takes the form

∂T

∂t
+ v0

∂T

∂y
= αf

∂2T

∂y2
+ τnf

(
DB

(∂T
∂y

∂φ

∂y

)
+
DT

Tm

(∂T
∂y

)2
)

+
σµeB

2
0λ

(ρCP )f (1 +m2λ2)
(u2 + w2)

+
Q∗

(ρCP )f
(T − Th) +

1

(ρCP )f

16σ1T
3
∞

3κ1

∂2T

∂y2
(3.7)
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For t ≥ 0, boundary conditions (Chen and Zhu [135]; Srinivas [136]) are

u = δU0 +
√
k
ε
∂u
∂y
, v = v0, w = 0, T = T0; φ = φ0, C = C0 at y = 0

u = 0, w = 0, T = Th, φ = φh, C = Ch at y = h

 (3.8)

Here δ is the stretching parameter, k is the permeability of the porous walls, ε is slip coefficient

at the surface of the porous walls. We introduce the dimensionless variables as follows:

Y =
y

h
; U =

u

U0

; V =
v0

U0

; W =
w

U0

; τ =
tU0

h
;

θ =
T − Th
T0 − Th

; F =
φ− φh
φ0 − φh

; ψ =
C − Ch
C0 − Ch

(3.9)

And the parameters, Reynolds number Re = U0h
νf

=
ρfU0h

µ
, elastico-viscous parameter K =

−µ2U0

µh
, magnetic field parameterM =

σµeB2
0h

ρfU0
, mixed convection parameter γ = g0(1−φh)βT h(T0−Th)

U2
0

,

buoyancy ratio NC = βC(C0−Ch)
βT (T0−Th)

, nanofluid buoyancy ratio NR =
(ρnf−ρf )(φ0−φh)

ρf (1−φh)βT (T0−Th)
, Prandtl

number Pr = ν
α

= µCp
κ

, Brownian motion parameter NB =
τnfDB(φ0−φh)

νh
, thermophoresis pa-

rameter NT =
τnfDT (T0−Th)

νfTmh
, heat generation parameter Q = Q∗h

U0(ρCp)f
, thermal radiation param-

eter R = κ1κ
4σ1T 3

∞
, Eckert number Ec =

U2
0

Cp(T0−Th)
, nanofluid Lewis number Le =

νf
DB

, Schmidt

number Sc = ν
DS

, and Soret number Sr = DCT (T0−Th)ν
(C0−Ch)

.

The dimensionless governing equations can be written as follows:

∂U

∂τ
+ V

∂U

∂Y
=

1

Re

∂2U

∂Y 2
− K

Re

( ∂3U

∂τ∂Y 2
+ V

∂3U

∂Y 3

)
− Mλ

(1 +m2λ2)
(U +mλW )

+γ
(
θ +NCψ −NRF

)
(3.10)

∂W

∂τ
+ V

∂W

∂Y
=

1

Re

∂2W

∂Y 2
−K

( ∂3W

∂τ∂Y 2
+ V

∂3W

∂Y 3

)
+

Mλ

(1 +m2λ2)
(mλU −W ) (3.11)
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∂θ

∂τ
+ V

∂θ

∂Y
=
(

1 +
4

3R

) 1

Pr Re

∂2θ

∂Y 2
+NB

( ∂θ
∂Y

∂F

∂Y

)
+NT

( ∂θ
∂Y

)2

+
M Ec λ

(1 +m2λ2)
(U2 +W 2) +Qθ (3.12)

∂F

∂τ
+ V

∂F

∂Y
=

1

Le Re

∂2F

∂Y 2
+

NT

Le Re NB

∂2θ

∂Y 2
(3.13)

∂ψ

∂τ
+ V

∂ψ

∂Y
=

1

Sc Re

∂2ψ

∂Y 2
+
Sr

Re

∂2θ

∂Y 2
(3.14)

together with the appropriate boundary conditions

U = δU0 + γ ∂U
∂Y
, V = fw, W = 0, θ = 1; F = 1, ψ = 1 at Y = 0

U = 0, W = 0, θ = 0, F = 0, ψ = 0 at Y = 1

 (3.15)

where γ =
√
k

ε h
is the first order slip at the wall Y = 0. Then the quantities of practical interest in

this study are the skin friction coefficients Cfx, Cfz, the local Nusselt numberNu and Sherwood

number Sh which are defined as

Cfx ∝
∂U

∂Y

∣∣∣
Y=0

; Cfz ∝
∂W

∂Y

∣∣∣
Y=0

; Nu ∝ − ∂θ
∂Y

∣∣∣
Y=0

; Sh ∝ − ∂ψ
∂Y

∣∣∣
Y=0

(3.16)

3.3 Results and Discussion

Grid-independence studies show that the computational domain 0 < τ < ∞ and 0 < Y < 1

can be divided into intervals with step sizes ∆τ = 0.0001 and ∆Y = 0.015 for time and

space, respectively. Convergence of the scheme is assumed when the values of every one of the

unknowns U, W, θ, F, ψ and their gradients differ by less than 10−5 for the last two time steps

for all values of Y .
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Figure 3.2: Primary velocity profile for K Figure 3.3: Secondary velocity profile for K

As demonstrated in the above model, the angle between the direction of the strong uniform

magnetic field and the plane transverse to the plate is zero i.e.,αe = 0◦, hence the value of

the parameter λ is set at 1. The value of buoyancy ratio parameter γ = 3.0 is taken to be

positive to represent cooling of the plates. The Prandtl number Pr = 5.784 is chosen arbitrarily

corresponding to water-copper nanofluid; Sc = 0.94 is taken for Carbon-Dioxide and fw = 1

is taken positive for uniform suction. In addition, numerical computations have been carried out

considering δ = 0.001, Re = M = Ec = 1, NR = 3.0, NC = 0.1, NT = 0.5, Le = 2 and

Sr = 1.0. The effect of several variables such as elastico-viscous parameter K, Hall current

parameter m, radiation parameter R, heat source parameter Q, slip parameter α and Brownian

motion parameter NB on the primary velocity, secondary velocity, temperature, nanoparticle

volume fraction and concentration profiles are displayed in Fig. 3.2 – 3.13 while rest of the

parametric effects are not substantial.

Figures 3.2 and 3.3 show the effect of elastico-viscous parameter K on the evolution of

fluid motion and subsequent on the primary and secondary velocity profiles across the plates as

time evolve, respectively. From these plots it is evident that increasing values of K opposes the

motion of the fluid. It is observed from Fig. 3.4, the temperature field increases with the increase

of heat source parameter Q. The heat source parameter has negative effect on nanoparticle
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volume fraction shown in Fig. 3.5. Figure 3.6 depicts the primary velocity distribution for

different values of the slip parameter α and for the no-slip parameter α = 0. It can be observed

that the velocity decreases slightly with an increase of α and the maximum is at the center of the

channel. Figure 3.7 shows the significant effect of the Hall current parameterm on the secondary

velocity distribution which is shaped reversely with the increase of m.

Figure 3.4: Temperature profile for Q

Figure 3.5: Volume fraction profile for Q

Figure 3.6: Primary velocity profile for α

Figure 3.7: Secondary velocity profile for m
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From Fig. 3.8 it is seen that radiation R has increasing effect on the temperature field with

the increase of R. The effect of R on the concentration profile is downbeat with the increase

of R shown in Fig. 3.9. An increase in the Brownian motion of the nanoparticles leads to a

decrease in the primary velocity at a large extent, shown in Fig. 3.10. It is examined form Fig.

3.11, the Brownian motion of the nanoparticles increases thermal transport which is an important

mechanism for the enhancement of thermal conductivity of nanofluids.

Figure 3.8: Temperature profile for R

Figure 3.9: Volume fraction profile for R

Figure 3.10: Primary velocity profile for NB

Figure 3.11: Temperature profile for NB
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Figures 3.12 and 3.13 demonstrate that the raising Brownian motion parameter NB reduces

the mass volume fraction of nanoparticle and the concentration of fluid considerably.

Figure 3.12: Volume fraction profile for NB Figure 3.13: Concentration profile for NB

Table 3.1: Skin friction coefficients Cfx, Cfz, the local Nusselt number Nu and Sherwood

number Sh for several parameters.

α K m Q R NB Cfx Cfz Nu Sh

0.1 0.5 0.5 1 1 0.5 0.039713 -0.00163 0.105346 1.386077

0.3 0.093062 -0.00159 0.105350 1.386081

0.7 0.064333 -0.00065 0.105393 1.386132

1 0.039645 -0.00102 0.105370 1.386108

3 0.048306 -0.00148 -0.60894 1.813578

2 0.043865 -0.00156 -0.23700 1.593531

0.3 0.014683 -0.00254 0.243965 1.300188
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3.4 Conclusions

The effect of magneto-Hall current in a elastico-viscous nanofluid layer in a channel with a slip

plate is studied using finite difference method (FDM) employing a model that incorporates the

effects of elastico-viscosity, Hall current, radiation, heat source, slip condition and Brownian

motion. From this study, significant effect of the elastico-viscous parameter, heat source and

Brownian motion is found.

92



CHAPTER 4

NUMERICAL STUDY OF THE EFFECT OF VARIABLE VISCOSITY ON UNSTEADY

PULSATILE NANOFLUID FLOW THROUGH A COUETTE CHANNEL OF STRETCH-

ING WALL WITH CONVECTIVE HEAT TRANSFER

Abstract. The current article desires to discover the pulse-driven Couette flow of Ag-water-

based nanofluid restrained between two parallel plates with convective heat exchange with the

ambient surrounding at the upper wall beneath the combined effects of thermophoresis, Brown-

ian motion and temperature-dependent viscosity. The Buongiorno model is considered to illus-

trate the current flow analysis effectively. In this analysis, water as the base fluid and silver (Ag)

as nanoparticles are exercised. The governing flow equations are generalised with the help of

boundary layer approximations. Momentum, energy, and nanoparticle concentration equations

are generated numerically using the finite difference method. The findings of non-dimensional

parameters like Brownian motion parameter, Biot number, viscosity variation parameter, stretch-

ing velocity parameter, steady pressure gradient, phase angle, and amplitude are conferred graph-

ically. As a final point, skin friction and Nusselt number are anticipated in numeric form with

an excellent agreement. The achieved outcomes show that the velocity is directly proportional

to the pulsatile pressure gradient.

4.1 Introduction

Ultrahigh-performance cooling in engineering and industrial technologies is a vital part of the

imperative issues in research today. With the mounting demand for resourceful cooling systems,

more effective coolants are essential to maintaining the temperature of heat-generating engines

and engineering devices such as electronic machinery below protected limits. Choi [25] first

established the concept of nanofluids which are engineered by stably suspending and uniformly
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dispersing a small amount of nanometer-sized (between 1 and 100 nm in diameter) ultrafine

metallic, nonmetallic or ceramic particles in ordinary heat transfer fluids to generate fluids with

enhanced transport properties and higher heat transfer performance.

Nanofluids encompassing extraordinary characteristics of providing unique physical and

chemical properties, dominate enormous potential of applications to improve heat transfer, en-

hance efficiency, save energy and reduce emissions in several areas of engineering and industry,

including vehicular cooling in transportation, power generation, defence, nuclear, space, micro-

electronics equipment, Wong and Leon [96]; Sridhara and Satapathy [137]. Moreover, nanotech-

nology has offered the possibility of imaging cancer and delivering drugs on specific cells using

nanoparticles, Farokhzad and Langer [138]; Uddin et al. [139]. Consequently, nanofluids are

attracting significant interest from many scientists and researchers due to their enormous appli-

cations. Recent explorers Kuznetsov and Nield [121] discussed the study of the nanofluid flow

passing stretching sheet. Following the Buongiorno nanofluid model [41], Karim et al. [66]

described unsteady nanofluid slip flow in a channel Brownian motion. Wang [140] and Bestman

[141] conferred the velocity distribution and shear stresses in an infinite channel. At present

days, researchers are paying attention to investigating the nanofluid flow taking the effects of

temperature-dependent viscosity into account (Ali and Makinde [142]; Mkwizu and Makinde

[143]).

In this analysis, the nanofluid flow is motivated by the pressure gradient. The objective

is to analyse the temperature-dependent viscosity effect on pulse-driven nanofluid flow’s heat

and mass transfer characteristics. Here a comparison study is prepared to take the fluid flow

driven by a pulsatile and steady pressure gradient. In this study, Silver (Ag) nanoparticles are

hosted in water-based nanofluids. Solutions have been carried out employing the finite difference

method, and the results have been displayed graphically and in tabular form with the significant

agreement.
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4.2 Mathematical Model

Figure 4.1: Physical configuration and coordinate system

An Unsteady, laminar, incompressible flow of nanofluid is retained in two parallel plates, which

are considered a channel in the current work following Buongiorno Model [41]. In this anal-

ysis, the physical properties of water as the base fluid and silver (Ag) as nanoparticles are im-

plemented. The fluid’s viscosity is considered temperature-dependent, and a magnetic field is

present in an upward direction that is normal to the lower plate. To arrange the model geometry,

the x-axis is taken along the plate, and the y-axis is taken normal to the plates. The lower plate

having stretching velocity U0 is at y = 0, and the upper plate with convective cooling at y = h

is moving at velocity Uh. The depth of the channel (h) is assumed small compared with the

channel length (L), so that d = h/L << 1 [141]. As a result, the flow is considered fully devel-

oped, which makes the physical quantities not change in the flow direction. Because of this, the

conservation of mass takes form, i.e. div q̄velocity(t, x) = 0, hence ∂u/∂x = 0. And the upper

wall of the channel exchanges heats with the ambient surroundings. And this flow is driven by a

pulsatile pressure gradient applied across the ends of the channel given by [140, 141]

−∂P
∂x

= A0 + A1Cos(ωpt) = A0(1 + εCos(ωpt)) 0 ≤ x ≤ L (4.1)
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HereA0 is the steady component of pressure gradient,A1 is the amplitude of pulsatile component

of pressure gradient, ωp = 2πfp is the angular frequency, and ε = A1/A0 is the non-dimensional

amplitude of the pulse. Following the Buongiorno [41] mathematical model for a fully developed

flow of nanofluids in the presence of the Brownian diffusion and thermophoresis diffusion, the

governing equations for continuity, momentum, energy and nanoparticle concentration are given

by the following equations:

ρnf
∂u

∂t
= −∂P

∂x
+

∂

∂y

(
µnf (T )

∂u

∂y

)
− σB2

0u (4.2)

∂T

∂t
= αnf

∂2T

∂y2
+
αnfµnf (T )

κnf

(∂u
∂y

)2

+ τnf

[
DB

(∂T
∂y

∂C

∂y

)
+
DT

Ta

(∂T
∂y

)2
]

(4.3)

∂C

∂t
= DB

∂2C

∂y2
+
DB

Ta

∂2T

∂y2
(4.4)

The dynamic viscosity is assumed to be an exponentially decreasing function of temperature

given by [142, 143]

µf (T ) = µ0e
−m(T−T0) (4.5)

Assuming the upper wall of the channel exchanges heat with the ambient surroundings fol-

lowing Newton’s law of cooling [143] and having no mass flux, the boundary conditions are

preferred as

u = U0; T = T0; C = C0 at y = 0

u = Uh; − κnf ∂T∂y = hf (T − Ta); DB
∂C
∂y

= −DT
Ta

∂T
∂y

at y = h

 (4.6)

Here U0 is the stretching velocity of the lower plate, Uh is the velocity of the upper plate, Ta is the
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ambient temperature, P is the nanofluid pressure, C0 is the nanoparticles’ initial concentration,

DB is the Brownian diffusion, DT is the thermophoretic diffusion, µ0 is the nanofluid dynamic

viscosity at the initial temperature T0 and m is the viscosity variation parameter, hf is the heat

transfer coefficient that describes the heat transferred from the heat plate to the surrounding

nanofluids. Here the nanoparticle volume fraction is represented by ϕ. Also, ρ, κ, α and Cp are

the density, thermal conductivity, thermal diffusivity and, heat capacitance, respectively. And

the suffices f, s and nf represent the base fluid, solid nanoparticles and nanofluid, respectively.

Relations among the physical properties of nanofluids are given by [144, 145]

µnf =
µf

(1− ϕ)2.5
, αnf =

κnf
(ρ cp)nf

, (ρ cp)nf = (1− ϕ)(ρ cp)f + ϕ(ρ cp)s

κnf
κf

=
(κs + 2κf )− 2ϕ(κf − κs)
(κs + 2κf ) + ϕ(κf − κs)

, ρnf = (1− ϕ) ρf + ϕρs, (4.7)

Table 4.1: Thermophysical properties of water as the base fluid and silver as the nanoparticles

Materials ρ Cp κ

Water 997.1 4179 0.613

Silver 10500 235 429

To minimise the complexity of the governing equations, the following non-dimension vari-

ables and parameters are initiated in the present research.

X =
x

h
; Y =

y

h
; U =

u

Uh
=
hu

νf
; τ =

tνf
h2

; θ =
T − T0

Ta − T0

; F =
C

C0

;

P̄ =
h2

ρfν2
f

P ; Bi =
hfh

κf
; A =

hA0

ρfνfωp
; Ω =

ωph
2

νf
; β = m(Ta − T0);

NB =
τnfDBC0

αf
; Nt =

τnfDT (Ta − T0)

αfTa
; Pr =

νf
αf

; Le =
νf
DB

;

Ec =
ν2
f

Cp(Ta − T0)h2
; M =

σB2
0h

2

µf
; (4.8)
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The non-dimensional transformed equations, together with the boundary conditions, can be

written as:

∂U

∂τ
=

ρf
ρnf

AΩ(1 + εCos(Ωτ)) +
ρfµnf
ρnfµf

e−βθ
(∂2U

∂Y 2
− β ∂θ

∂Y

∂U

∂Y

)
− ρf
ρnf

MU (4.9)

∂θ

∂τ
=

κnf (ρCp)f
κf (ρCp)nfPr

∂2θ

∂Y 2
+
µnf (ρCp)f
µf (ρCp)nf

e−βθEc
(∂U
∂Y

)2

+
Nb

Pr

( ∂θ
∂Y

∂F

∂Y

)
+
Nt

Pr

( ∂θ
∂Y

)2

(4.10)

∂F

∂τ
=

1

Le

[
∂2f

∂Y 2
+
Nt

NB

∂2θ

∂Y 2

]
(4.11)

with the corresponding dimensionless boundary conditions,

U = γ; θ = 0; F = 1 at Y = 0

U = 1; ∂θ
∂Y

= − κf
κnf

Bi(θ − 1); ∂F
∂Y

= −Nt
Nb

∂θ
∂y

at Y = 1

 (4.12)

Here A, Ω, β, M, Nb, Nt, Pr, Le, Ec, γ and Bi are the dimensionless steady pressure

gradient, phase angle, non-dimensional viscosity variation parameter, magnetic field parame-

ter, Brownian motion parameter, thermophoresis diffusion parameter, Prandtl number, Lewis

number, Eckert number, the stretching parameter, and Biot number, respectively. The physical

attentions in the existing study are the skin friction coefficient Cf and the local Nusselt number

Nu, defined at wall as

Cf =
e−βθµnf
µf

∂U

∂Y
and Nu = −κnf

κf

∂θ

∂Y
(4.13)

Here the lower plate is at Y = 0 and the upper plate is at Y = 1.
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4.3 Numerical Analysis

Equations (4.9)−(4.12) are clearly a system of nonlinear boundary value problem (BVP) and

can be solved numerically using the discretisation of the forward finite difference method. Grid-

independence studies show that the computational domain 0 ≤ Y ≤ 1 is partitioned into equal

parts, and the grid size is given as ∆Y = 1/N with the grid points Yj = (j − 1)∆Y, 1 ≤

j ≤ N + 1. The discretisation is based on a linear Cartesian mesh and uniform grid on which

finite differences are taken. The first and second spatial derivatives in equations (4.9)−(4.11)

are approximated with second order forward finite differences. Convergence of the scheme is

assumed when the values of every one of the unknowns U, θ, F and their gradients differ by

less than 10˘5 for the last two time steps for all values of Y .

Let U(Yj, t), θ(Yj, t), F (Yj, t) are approximated by Uj, θj, Fj , respectively. Then consid-

ering superscript n+ 1 as a new time approximation, the finite difference system for the current

problem becomes

Un+1
j − Un

j

∆τ
=

ρf
ρnf

AΩ(1 + εCos(Ωτ)) +
ρfµnf
ρnfµf

e−βθ
n
j
Un
j+1 − 2Un

j + Un
j−1

∆Y 2

−ρfµnf
ρnfµf

βe−βθ
n
j

(θnj+1 − θnj
∆Y

Un
j+1 − Un

j

∆Y

)
− ρf
ρnf

MUn
j (4.14)

θn+1
j − θnj

∆τ
=

κnf (ρCp)f
κf (ρCp)nfPr

θnj+1 − 2θj
n + θnj−1

∆Y 2
+
µnf (ρCp)f
µf (ρCp)nf

e−βθEc
(Un

j+1 − Un
j

∆Y

)2

+
nb
Pr

(θnj+1 − θnj
∆Y

F n
j+1 − F n

j

∆Y

)
+
nt
Pr

(θnj+1 − θnj
∆Y

)2

(4.15)

F n+1
j − F n

j

∆τ
=
F n
j+1 − 2Fj

n + F n
j−1

Le∆Y 2
+

nt
Le nB

θnj+1 − 2θj
n + θnj−1

∆Y 2
(4.16)

Corresponding to the grid points, the difference equations are customised to represent the
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boundary conditions as follows

U1 = γ; θ1 = 0; F1 = 1

UN+1 = 1; θN+1 = θN − κf
κnf

Bi∆Y (θN − 1); FN+1 = FN − Nt
Nb

(θN+1 − θN)

 (4.17)

Finally, discretisation in space can be made based on backward finite difference approxima-

tion to obtain the skin friction and Nusselt number and results can be estimated at Y = 0 for the

lower plate as follows

Cf =
e−βθ1µnf

µf

(Un
2 − γ)

∆Y
and Nu = −κnf

κf

θn2
∆Y

(4.18)

Consequently, for the upper plate at Y = 1

Cf =
e−βθN+1µnf

µf

(Un
N+1 − Un

N)

∆Y
and Nu = −κnf

κf

(θnN+1 − θnN)

∆Y
(4.19)

Table 4.2: Comparison of different values of Bi and β taking ϕ = 0, ε = 0, γ = 0, M = 0

τ Bi β
Skin Friction Cf Nusselt number Nu

[142] Present work [142] Present work

10 1 0.1 0.397 0.395 0.512 0.511

10 1 0.5 0.145 0.146 0.223 0.221

10 3 0.1 0.406 0.405 0.79 0.784

4.4 Results and Siscussion

This study considers pure water as base fluid and water-based Newtonian nanofluids containing

silver (Ag) as nanoparticles. The Prandtl number of the base fluid (water) is kept constant at 6.2,

and the effect of solid volume fraction is investigated in the range of 0 ≤ ϕ ≤ 0.3. To obtain
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ϕ = 0.1% volume fraction of Wf = 100ml water-based nanofluid, Ws = 1.0541gm silver

(Ag) is to be mixed in the base fluid where rs = 10500kg/m3 and rf = 997.1kg/m3 which is

measured from the following equation [145]

ϕ =
( Ws/ρs
Ws/ρs +Wf/ρf

)
× 100 (4.20)

Table 4.3: Physical properties of Ag-water nanofluid for different ϕ

ϕ ρnf (ρCp)nf κnf µnf

0.1 1947.39 3.9959×106 0.816 0.001340

0.2 2897.68 3.8249×106 1.070 0.001799

0.3 3847.97 3.6539×106 1.396 0.002512

Numerical solutions for the representative velocity field, temperature field, concentration

field, skin friction, and Nusselt number have been carried out by assigning arbitrary chosen

specific values to various thermophysical parameters controlling the flow system (see Figures

4.2−4.13).

Figures 4.2−4.5 illustrate the parametric effects on the nanofluid velocity profiles where

solid and dash lines represent the fluid flow driven by pulsatile and steady pressure gradients,

respectively. Figure 4.2 shows the velocity profiles against time at different spaces across the

channel. All the quantities have attained their steady state for a steady pressure gradient at τ = 5.

From the Table 4.3, it is seen that there is a rise in the density ρnf as well as the dynamic viscosity

µnf of nanofluid when nanoparticles volume fraction ϕ increases.
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Figure 4.2: Velocity profiles for τ at different

space

Figure 4.3: Velocity profiles for different ϕ

Figure 4.4: Velocity profiles for different β Figure 4.5: Velocity profiles for different γ

Higher nanofluid viscosity results in a falling environment in the fluid velocity profiles,

which are precisely found in figure 4.3 from this present research. The temperature-dependent

viscosity is the phenomenon of a fluid by which viscosity reduces as its temperature enhances.

When the temperature rises, the molecular interchange enlarges as molecules move faster in

higher temperatures; consequently, the fluid becomes lighter and flows more quickly.
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Figure 4.6: Temperature profiles for different

ϕ

Figure 4.7: Temperature profiles for different β

Figure 4.8: Temperature profiles for different

Bi

Figure 4.9: Temperature profiles for different γ

In figure 4.4, for constant pressure gradient, we discover that the velocity profiles of the

nanofluid increase with the decreasing viscosity due to the enhancement of viscosity variation

parameter β. But because of pulsatile flow, the environment reverses, and the velocity decreases

with the increase of β. The effects of stretching parameter γ are plotted in figure 4.5. As
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γ increases, the thickness of the momentum boundary layer increases for both pulsatile and

constant pressure gradients.

Figure 4.10: Concentration profiles for differ-

ent ϕ

Figure 4.11: Concentration profiles for differ-

ent β

Figure 4.12: Concentration profiles for differ-

ent Bi

Figure 4.13: Concentration profiles for differ-

ent γ

When nanoparticles volume fraction ϕ increases, there is a rise in the thermal conductiv-

ity κnf of nanofluid, for which increasing nanoparticle volume fraction results in an enhanced
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environment in the fluid temperature profiles, which are found in figure 4.6 obtained from this

present research for both pulsatile and constant pressure gradient. With the increase of β, the

nanofluid viscosity decreases; as a result, the kinetic viscosity of nanoparticles increases and a

rise in the temperature is examined, as shown in Fig. 4.7. Figure 4.8 depicts that the tempera-

ture profile decreases across the channel with the increasing convective cooling as Biot number

increases at the upper channel wall due to increasing heat loss toward the ambient surrounding

from the walls. Figure 4.9 demonstrates that the temperature profile decreases across the channel

with the rising stretching parameter γ at the lower channel wall. Figures 4.10-4.13 illustrate the

various parametric effects on concentration profiles. When nanoparticle volume fraction ϕ in-

creases, nanofluid concentration profiles fall, as shown in figure 4.10, where rising situations are

detected for increasing viscosity variation parameter β, Biot numberBi and stretching parameter

γ at the lower wall displayed in figures 4.11−4.13, respectively.
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Table 4.4: Skin Friction and Nusselt Number with parameters variations: Pr = 6.2, Le =

1, Nb = 0.4, Nt = 0.16, Ec = 1, Bi = 1, M = 0.5, γ = 0.1, A = 2, ε = 2, Ω = 15◦ for

different values of ϕ and β for pulsatile pressure gradient

Pulsatile pressure gradient Steady pressure gradient

ϕ CfY=0
NuY=0 CfY=0

NuY=1 CfY=0
NuY=0 CfY=0

NuY=1

0 1.1154 4.0607 0.5921 0.3597 1.6866 5.5547 0.0402 0.2152

0.1 1.269 4.9001 0.7693 0.6525 1.8242 6.2485 0.2439 0.4514

0.2 1.4731 6.0915 0.9977 1.0759 2.0112 7.3167 0.504 0.8253

0.3 1.7472 7.811 1.2958 1.701 2.2672 8.9351 0.8401 1.41

β CfY=0
NuY=0 CfY=0

NuY=1 CfY=0
NuY=0 CfY=0

NuY=1

0 1.3893 5.4507 0.9015 0.7868 1.93 6.7194 0.3606 0.5592

0.1 1.269 4.9001 0.7693 0.6525 1.8242 6.2485 0.2439 0.4514

0.5 0.9914 3.6385 0.4672 0.317 1.5584 5.1722 -0.0329 0.2004

1 0.823 2.8954 0.2843 0.1002 1.3665 4.6064 -0.2127 0.0849

4.5 Conclusions

From the overall analysis, we can conclude that the nanoparticles volume fraction ϕ has a de-

creasing effect on velocity and nanofluid concentration while increasing impact on temperature.

Again viscosity variation parameter β has an increasing outcome on momentum for steady pres-

sure gradient, whereas it has a reverse effect for pulsatile pressure gradient. Moreover, the Biot

number significantly impacts temperature and concentration, and the consequence of stretching

parameter γ is very considerable.
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CHAPTER 5

ANALYSIS FOR ELASTICO-VISCOUS NANOFLUID FLOW IN A CHANNEL INTE-

GRATING THERMAL RELAXATION TIME USING TWO PARAMETERS LIE GROUP

TRANSFORMATION

Abstract. The present research is an arrangement of heat transfer investigation of the unsteady

viscoelastic nanofluid slip flow in a porous channel that incorporates stress and thermal relax-

ation time factors. The Lie group analysis of two parameters, which provides an appropriate

method to address non-linear equations, is carried out to transform the mathematical model into

a system of non-linear ODEs that are numerically solved. The consequences of flow control

parameters are studied for the momentum, temperature and diffusion profiles, taking the shear

stress and heat transfer into account. The domino effects are finally described from the material

point of view. A comparison of the Cattaneo-Christov heat flux (CCHF) model and Fourier’s

law is an exciting feature of this homework. The CCHF model introduced the thermal relaxation

phase in the manifestation of the energy distribution in preference to the conventional Fourier’s

law. In addition, a noteworthy conclusion of the current research can be expressed by stating

that the stress relaxation parameter improves the nanofluid viscosity that resists flow while the

heat transfer is enhanced. In contrast, thermal relaxation depreciates heat transfer.

Keywords: Maxwell parameter, Nanofluid, Lie group analysis, Elastico-viscous fluid, Convec-

tive surface

5.1 Introduction

An attractive and highly uncertain tribological substance concerns the elastico-viscosity effect

on lubrication features in thin film flows. The addition of polymers to crystal oils, recognised

as multi-grade oils, has been familiar since the mid-1990s [146, 52, 50, 147]. These accom-
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paniments reinforce the consequential lubricants to convert non-Newtonian and viscoelastic,

employing a shear rate-dependent viscosity [51, 148, 149]. The actual non-linear affiliation con-

cerning shear stress and strain rate of elastico-viscous liquids could anticipate time-dependent

effects. Still, the conventional Newtonian fluid model attaching Navier-Stokes equations is un-

able to establish this relationship [150, 151]. Polymer solutions, paints, colloidal solutions, clay,

blood, melt, mud, condensed milk, glues, printing ink, soaps, emulsions, shampoos, and tomato

paste are the models of the non-Newtonian liquids and contain both elasticity and viscosity char-

acteristics. But the central obstruction is to model a particular constitutive equation that exposes

all the salient properties of such viscoelastic fluids. For this reason, investigators have projected

several viscoelastic fluid models integrating different characteristics of non-Newtonian liquids

[152, 153, 154]. The elastico-viscous fluid Models, together with second-order fluids, are per-

fect for the slow indication of low elastic solutions [155]. However, these types of fluids with

a high Deborah number that measure the time-dependent effects do not give significant results

for highly viscoelastic polymers, so the weight of these fluid models is limited for the polymer

industry [156, 157]. The Maxwell model, the most representative and practical elastico-viscous

model, should be taken into account for efficient analysis to carry out operative and hypothetical

work in the industrial sector [158]. Elastico-Viscous fluids are generally classified as differential-

, integral- and rate-type fluids. The Maxwell model is a simple feature of rate-type viscoelastic

material that possesses the physiognomies of the relaxation phase of fluid, namely the viscosity

ratio to the modulus of elasticity. It eradicates the multifaceted effects of shear-reliant viscosity

and permits someone to emphasise the fluids’ elasticity influence on its boundary layer physiog-

nomies [159]. Harris [49] initially established the constitutive equation of the upper convected

Maxwell (UCM) model to exert the lubricant behaviour of the elastico-viscous fluid. Plastic

manufacturing, food processing, paper production, and aerodynamic extrusion of plastic films

are the applications of elastico-viscous fluids in industrial, bioengineering, and production proce-

dures. Because of escalating usage, academics have paid greater attention to studying boundary

layer flows of non-Newtonian fluids [160, 161].
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Heat transfer phenomena captivate the researcher’s attention because they influence technical

and industrial purposes, including conserving space and nuclear apparatuses, biomedical pro-

cesses, heat transmission in tissues, pasteurisation of milk, and the magnetic direction of drugs,

etc. Fourier [162] recommended a heat flux feature, heat conduction law, to portray heat transfer

behaviour. However, the classical Fourier’s law yields a parabolic thermal equation that supports

an immediate modification in the energy transport of the deliberated scheme at the start of any

procedure. The principle of causality in the continuum is therefore denied, which is visible in the

transient problems in a particularly short phase of time, a shallow temperature or an extremely

high heat flux. To conquer this matter, Cattaneo [163] hosted the thermal relaxation phase to

construct the hyperbolic thermal energy equation, allowing heat transfer through thermal waves’

transmission with finite speed. The concept of Cattaneo was again enhanced by Christov [164],

who swapped the time derivative in Cattaneo’s model with Oldroyd’s upper–convective deriva-

tive that maintained the material-invariant construction and finally converted to the renowned

Cattaneo-Christov heat flux model. The strength and exceptionality of the CCHF model clari-

fication are evaluated by Ciarletta and Straughan [165]. The thermal moderation phase can be

understood by the time phase required to gather the energy to form heat flux. In other words,

it represents an evaluation of the thermal inertial of a material. This factor means the resistive

environment of the changed system, instigated by the external temperature gradient applied, thus

causing a thermal delay in the model structure. The thermal inertial in heat transfer affects the

heat transfer in nanofluids and various spaces of ballistics and astrophysics [166, 167, 168].

There are excellent practical applications of heat transmission designed by the CCHF model,

such as demonstration of skin burns injury [169, 170, 171].

The squeeze flow problem is an acute transient flow problem for channels where contain-

ment surfaces possess a transverse motion. Stefan [172] introduced this ground-breaking work

and formulated the flow phenomena. So far, the exploration of the squeeze flow progression is

getting extensive attention from researchers because of its purposes in chemical engineering and

biomechanics. Reciprocating engine bearing performance, injection and compression mould-
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ing, polymer processing, food processing, modelling of synthetics transportation inside living

bodies, and modelling of lubrication systems are realistic applications of squeezing flows [173,

174, 175, 176]. Nanofluids are the new-generation heat transfer fluids with higher thermal con-

ductivity at deficient particle concentrations than conventional fluids. They are engineered by

stably suspending and uniformly dispersing a small amount of nanometer-sized (between 1 and

100 nm in diameter) ultrafine metallic, nonmetallic or ceramic particles in ordinary heat transfer

fluids. Choi [25] first established the concept of nanofluid. Recent researchers have identified

that substituting usual coolants with nanofluids may be advantageous in improving heat trans-

fer efficiency in nuclear space and engineering, domestic refrigerators/freezers, and cooling of

engines and micro-electronics, Wong and Leon [96]. Moreover, electromagnetic nanoparticles

play an essential role in bio-medicinal applications compared to other metallic particles because

these can be used to control and manipulate the nanofluid through magnetic force, Uddin et al.

[139, 121]. As a part of these researches, Buongiorno [41] composed a mathematical scheme

to describe the convective heat transfer in nanofluids, taking two crucial effects, namely the

Brownian and thermophoretic diffusions, into account.

The boundary velocity, proportional to the shearing stress at the solid surface, plays a vi-

tal role in boundary value problems. The dimension of the proportionality constant, known as

the slip parameter, is the length. For viscoelastic fluids, the slip condition is considerably sig-

nificant [177]. This feature has many medical science applications, such as polishing artificial

heart valves [178]. Several situations include polymer fluids with high-weight molecules, heavy

suspensions, and lubrication problems flowing through multiple interfaces. Navier [179] ini-

tially proposed the general boundary condition, illustrating the surface’s fluid slip. Moreover,

magneto-hydrodynamics (MHD) is the relation between the conducting fluids and electromag-

netic fields. It has plentiful applications in science, manufacturing and engineering, mainly in the

design of heat exchanger devices, MHD accelerators and generators, thermal insulation systems,

plasma confinement and others [180, 181].

Norwegian mathematician Sophus Lie developed a classic scheme called the Lie group trans-
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formation to discover invariants and similarities of solutions [182, 183, 184, 185]. Lie group

analysis provides an appropriate method to address non-linear equations. The Lie group trans-

formation proposes a precise mathematical interpretation of perceptive thoughts of symmetry

and offers beneficial techniques for the analytical resolution of non-linear ODEs. Lie group

analysis is an emergent field of mathematics with many applications [186, 187, 188].

So far, few efforts have been formulated to review the heat and mass transfer through com-

pression flow. Therefore, the current research aims to explore the flow flux of the time-dependent

Maxwell viscoelastic nanofluid pressed into two parallel walls with stretched porous surfaces by

integrating the CCHF theory to describe the thermal temporal relaxation factor.

5.2 Model Equations

The viscoelastic activities will be gathered if elastic stress is functional to the liquid. The resul-

tant strain will be time-dependent, regarded as the relaxation phase. The constitutive equation

considering unsteady stress relaxation [159] is

ρ
dV
dt

= −∇p+∇.S (5.1)

Here the extra stress tensor S follows the UCM model [189] given by

S + λS

(
dS
dt

+ V.∇S− LS− SLtr

)
= µ

(
L + Ltr

)
(5.2)

Here Ltr = ∇V is the velocity gradient, and the superscript tr indicates a transpose, Lij =

∂ui/∂xj , λS > 0 is the stress relaxation time of non-Newtonian fluids, and λS = 0 provides

Newtonian fluids. The CCHF model is anticipated by hosting the thermal relaxation phase in

Fourier’s model, also called the modified Fourier heat conduction law, offered by [175]

q + λT

[
∂q
∂t

+ V.∇q− q.∇V + (∇.V )q
]

= −κnf∇T (5.3)
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Figure 5.1: Physical model

Here λT = 0 converts the expression (5.3) to conventional Fourier’s law.

The liquid flow is laminar, unsteady and three-dimensional to express the physical model.

An incompressible (∇.V = 0), electrically conducting Maxwell nanofluid is clutched between

two parallel walls. The Cartesian coordinate system explains the physical configuration so that

the x-axis is taken along the plate surface, and the y-axis is vertical to the plates. An identical

magnetic field of strength B0 is functional along the y-direction, and the exterior electric field is

assumed to be zero, as shown in Fig.5.1. Moreover, the viscous dissipation effect is preserved,

and thermal resistance may also be associated with heat transfer by convection at the surface.

The governing model equations consisting of conservation of mass, momentum and energy are

given by

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (5.4)

∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ λS

(
∂2ū

∂t̄2
+ 2ū

∂2ū

∂t̄∂x̄
+ 2v̄

∂2ū

∂t̄∂ȳ
+ū2∂

2ū

∂x̄2
+ v̄2∂

2ū

∂ȳ2

+2ūv̄
∂2ū

∂x̄∂ȳ

)
= − 1

ρnf

∂p̄

∂x̄
+νnf

∂2ū

∂ȳ2
− σnfB0

2

ρ

(
ū+ λS

(
∂ū

∂t̄
+ v̄

∂ū

∂ȳ

))
(5.5)
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∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
+ λT

(
∂2T̄

∂t̄2
+ 2ū

∂2T̄

∂t̄∂x̄
+ 2v̄

∂2T̄

∂t̄∂ȳ
+ ū2∂

2T̄

∂x̄2
+ v̄2∂

2T̄

∂ȳ2

+2ūv̄
∂2T̄

∂x̄∂ȳ
+
∂ū

∂t̄

∂T̄

∂x̄
+
∂v̄

∂t̄

∂T̄

∂ȳ
+

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
∂T̄

∂x̄
+

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
∂T̄

∂ȳ

)
=

κnf
(ρ cp)nf

∂2T̄

∂ȳ2
+

µnf
(ρ cp)nf

(
∂ū

∂ȳ

)2

(5.6)

Newton’s cooling law in convection, describing the thermal resistance at the lower surface,

is a restatement of the differential equation given by Fourier’s law. So, assuming convective

feature at the lower plate, the boundary conditions are prescribed as

ū = ul + uslip, v̄ = vl, T̄ = Tl + Tslip at ȳ = l

ū = 0, v̄ = 0, −κnf ∂T̄∂ȳ = hf (Tf − T̄ ) at ȳ = 0

 (5.7)

Here λS is the stress relaxation time factor; p is the nanofluid pressure; λT is the thermal

relaxation time factor; ul = uwγh is the stretching velocity; uslip = δu
∂ū
∂ȳ

is the slip velocity; vl is

the suction velocity; Tslip = δT
∂T̄
∂ȳ

is the thermal slip; Tf = Tl + (T0−Tl) x
(1−t)2 is the convective

temperature supposed to vary along the surface and in time; hf is the coefficient of convective

heat transfer. Relations among the nanofluids’ physical properties are given by

µnf =
µf

(1− ϕ)2.5
, αnf =

κnf
(ρ cp)nf

, (ρ cp)nf = (1− ϕ)(ρ cp)f + ϕ(ρ cp)s

κnf
κf

=
(κs + (n− 1)κf )− (n− 1)ϕ(κf − κs)

(κs + (n− 1)κf ) + ϕ(κf − κs)
,

ρnf = (1− ϕ) ρf + ϕρs,
σnf
σf

= 1 +
3(σs/σf − 1)ϕ

(σs/σf + 2)− (σs/σf − 1)ϕ
(5.8)

Here the nanoparticles volume fraction is represented by ϕ. Here n = 3 is the nanopar-

ticle spherical shape factor for thermal conductivity, defined by Maxwell [139, 81, 87]. The
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thermophysical features of water and various solid nanoparticles [139] are given in Table 5.1.

Table 5.1: Thermophysical properties of water and different nanoparticles

Materials ρ cp κ σ

Water 997.1 4179 0.613 0.05

Ag 10500 235 429 6.3× 107

Cu 8933 386 401 5.96× 107

Al2O3 3970 765 40 1.0× 10−10

TiO2 4250 686.2 8.9538 1.0× 10−12

Now to find the approximate solutions to the model, it is essential to make the model equa-

tions dimensionless using the following non-dimensional variables [174]

t =
t̄uw
h
, x =

x̄

h
, y =

ȳ

h
, u =

ū

uw
, v =

v̄

uw
p =

p̄

p0

, T =
T̄ − Tl
T0 − Tl

(5.9)

Then the dimensionless PDE model is given by the following equations

∂u

∂x
+
∂v

∂y
= 0 (5.10)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ βSx

(
∂2u

∂t2
+ 2u

∂2u

∂t∂x
+2v

∂2u

∂t∂y
+ u2∂

2u

∂x2
+ v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y

)
= − p0

u2
wρnf

∂p

∂x
+
νnf
νf

1

Re

∂2u

∂y2
− σnfρf
σfρnf

Mx

(
u+ βSx

(
∂u

∂t
+ v

∂u

∂y

))
(5.11)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ βTx

(
∂2T

∂t2
+ 2u

∂2T

∂t∂x
+ 2v

∂2T

∂t∂y
+ u2∂

2T

∂x2

+v2∂
2T

∂y2
+ 2uv

∂2T

∂x∂y
+
∂u

∂t

∂T

∂x
+
∂v

∂t

∂T

∂y
+

(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y

)
=

κnf (ρ cp)f
κf (ρ cp)nfPrRe

∂2T

∂y2
+
µnf (ρ cp)fEcx
µf (ρ cp)nfRe

(
∂u

∂y

)2

(5.12)

Here Re = uwh
νf

is the Reynolds number; βsx = uwλS
h

is the Maxwell parameter; Mx =
σfB

2
0 h

ρf uw

is the magnetic field parameter; Pr =
νf (ρ cp)f

κf
is the Prandtl number; Ecx = u2w

(cp)f (Tw−Tl)
is the

Eckert number.

Let ψ be the stream function. Set u = ∂ψ
∂y

and v = −∂ψ
∂x

in the above equations to get

∂2ψ

∂t∂y
+
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
+ βSx

(
∂3ψ

∂t2∂y
+ 2

∂ψ

∂y

∂3ψ

∂t∂x∂y
− 2

∂ψ

∂x

∂3ψ

∂t∂y2
+

(
∂ψ

∂y

)2
∂3ψ

∂x2∂y

+

(
∂ψ

∂x

)2
∂3ψ

∂y3
− 2

∂ψ

∂x

∂ψ

∂y

∂3ψ

∂x∂y2

)
= − p0

u2
wρnf

∂p

∂x
+

νnf
Reνf

∂3ψ

∂y3
− σnfρf
σfρnf

Mx

.

(
∂ψ

∂y
+ βSx

(
∂2ψ

∂t∂y
− ∂ψ

∂x

∂2ψ

∂y2

))
(5.13)

∂T

∂t
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
+ βTx

(
∂2T

∂t2
+ 2

∂ψ

∂y

∂2T

∂t∂x
− 2

∂ψ

∂x

∂2T

∂t∂y

+

(
∂ψ

∂y

)2
∂2T

∂x2
+

(
∂ψ

∂x

)2
∂2T

∂y2
− 2

∂ψ

∂y

∂ψ

∂x

∂2T

∂x∂y
+
∂2ψ

∂t∂y

∂T

∂x
+

(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
∂T

∂x

− ∂2ψ

∂t∂x

∂T

∂y
+

(
∂ψ

∂x

∂2ψ

∂x∂y
− ∂ψ

∂y

∂2ψ

∂x2

)
∂T

∂y

)
= C1

∂2T

∂y2
+ C2

(
∂2ψ

∂y2

)2

(5.14)

Here C1 =
κnf (ρ cp)f

κf (ρ cp)nfPrRe
and C2 =

µnf (ρ cp)fEcx
µf (ρ cp)nfRe

.

Dimensionless prescribed surface temperature (PST) boundary conditions are given by
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at y = l
h

:

∂ψ
∂y

= γh + εuh
∂2ψ
∂y2

, ∂ψ
∂x

= −fwh, T = εTh
∂T
∂y

at y = 0 :

∂ψ
∂y

= 0, ∂ψ
∂x

= 0, ∂T
∂y

= − κf
κnf

Bih

(
x

(1−t)2 − T
)


(5.15)

Here γh is the stretching parameter; fwh is the suction parameter; εuh = δu
h

is the momentum

slip parameter; εTh = δT
h

is the thermal slip parameter; Bih =
hfh

κf
is the Biot numbers for

convective heat transfer.

5.3 Method of Transformations

The significance of similarity solutions in many areas of research is limitless. Looking for a

universal symmetric approach that can be useful to specific mathematical models is obligatory.

The Lie group analysis transformation procedure is a sound technique for the theory of the

continuous symmetry of numerical structures, which is immensely functional for various fields

of contemporary modern mathematical physics. This analysis is anticipated to deliver a new

methodology for studying the continuous symmetries of model equations governing the heat

transfer fluxes in Maxwell nanofluids. In the process, this theory trims down the number of

independent parameters of the governing PDEs considered for the physical model and maintains

the invariant structure of the model with the corresponding initial and boundary conditions. Due

to the unsteady flow (0 < t < 1) of fluid in a channel, the following two parameters linear

groups of transformations are to consider for the Lie group analysis [188]:
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Γ : t̂ = (1− t)eα1 , x̂ = xeβ1 , ψ̂ = ψeα2eβ2 , ŷ = yeα3eβ3 , T̂ = Teα4eβ4 , p̂ = peα5eβ5 ,

M̂x = Mx e
α6eβ6 , β̂Sx = βSx e

α7eβ7 , Êc = Ecx e
α8eβ8 , β̂Tx = βTx e

α9eβ9 ,

l̂ = leα10eβ10 , γ̂h = γh e
α11eβ11 , f̂wh = fwh e

α12eβ12 , ε̂uh = εuh e
α13eβ13

ε̂Th = εTh e
α14eβ14 , B̂ih = Bih e

α15eβ15 (5.16)

Here αi, βi (i = 1, 2, ..., 15) are constants. We seek the values of αi, βi such that the forms of

Eqns. (5.2) – (5.15) are invariant under the transformations connected by the following relations

α2 = −1
2
α1, α3 = 1

2
α1, α4 = −2α1, α5 = −2α1, α6 = −α1, α7 = α1, α8 = 0

α9 = α1, α10 = 1
2
α1, α11 = −α1, α12 = −1

2
α1, α13 = 1

2
α1, α14 = 1

2
α1, α15 = −1

2
α1,

β2 = β1, β3 = 0, β4 = β1, β5 = β1, β6 = 0, β7 = 0, β8 = −β1, β9 = 0,

β10 = 0, β11 = β1, β12 = 0, β13 = 0, β14 = 0, β15 = 0 (5.17)

With these relationships of αi and βi, Eqn. (5.3) turns into

Γ : t̂ = (1− t)eα1 , x̂ = xeβ1 , ψ̂ = ψe−
1
2
α1eβ1 , ŷ = ye

1
2
α1 , T̂ = Te−2α1eβ1 , p̂ = pe−2α1e2β1 ,

M̂x = Mx e
−α1e0, β̂Sx = βSx e

α1e0Êc = Ecx e
0e−β1 , β̂Tx = βTx e

α1e0,

l̂ = le
1
2
α1e0, γ̂h = γh e

−α1eβ1 , f̂wh = fwh e
− 1

2
α1e0, ε̂uh = εuh e

1
2
α1e0,

ε̂Th = εTh e
1
2
α1e0, B̂ih = Bih e

− 1
2
α1e0 (5.18)
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From the absolute invariants, the similarity parameters are described as

η = (1− t)−
1
2y, ψ = (1− t)−

1
2xf(η), T = (1− t)−2xθ(η), p = (1− t)−2x2pη,

Mx = (1− t)−1M, βSx = (1− t)βS, Ecx = (x)−1Ec, βTx = (1− t)βT ,

l =
√

1− th, γh = (1− t)−1xγ, fwh = (1− t)−
1
2fw, εuh =

√
1− tεu,

εTh =
√

1− tεT , Bih = (1− t)−
1
2Bi (5.19)

Using the above similarity transformations into Eqns. (5.2)−(5.15), we obtain the following

similarity equations,

(
νnf
νfRe

− βS
4

(η2 − 4ηf + 4f 2)

)
f iv − 1

2
(ηf ′′′ + 3f ′′ + 2f ′f ′′ − 2ff ′′′)

−βS
4

(
9ηf ′′′ + 4ηf ′′

2 − 16f f ′′′ + 8f ′ f ′′ −8f f ′′
2 − 8f ′

2
f ′′ + 15f ′′

)
− σnfρf
σfρnf

M

×
(
f ′′ +

βS
2

(ηf ′′′ + 3f ′′ − 2ff ′′′ − 2f ′f ′′)

)
= 0 (5.20)

(
κnf (ρ cp)f

κf (ρ cp)nfRe Pr
− βT

4
(η2 − 4ηf + 4f 2)

)
θ′′ −

(η
2
θ′ + 2θ + f ′θ − fθ′

)
+
µnf (ρ cp)f Ec

µf (ρ cp)nfRe
f ′′2

−βT
4

(2ηf ′θ′ + 2ηf ′′θ + 9ηθ′ + 20f ′θ −22fθ′ + 4f ′2θ − 4ff ′θ′ − 4ff ′′θ + 24θ
)

= 0 (5.21)

Following a similar procedure, the PCB boundary conditions take the form

f ′ = γ + εuf
′′, f = fw, θ = εT θ

′ at η = 1

f ′ = 0, f = 0, θ′ = − κf
κnf

Bi(1− θ) at η = 0

 (5.22)

Finally, the physical attentions in the existing study are the skin friction coefficient Cf and

the local Nusselt number Nu defined as
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Cf ∝
µnf
µf

f ′′ and Nu ∝ −κnf
κf

θ′ (5.23)

5.4 Numerical Method

Equations (5.3)−(5.3) (7.20)−(7.21) combined with the boundary conditions (5.22) are solved

numerically using the collocation method. The analysis is prepared for various influences like

nanoparticle volume fraction parameter ϕ, Maxwell parameter βS , magnetic field parameter M ,

Prandtl number Pr, Eckert number Ec, thermal relaxation parameter βT , stretching parameter γ,

suction parameter fw, velocity slip parameter εu and thermal slip parameter εT . The mesh size is

η = 0.01, and the tolerance factor is 10−6. Based on the present model, we are considering [0, 1]

as the domain of the channel problem. First, an assessment of the current analysis is arranged

with Raza et al. [190], shown in Table 5.2, when Pr = 6.2, M = 0.5, Re = 4, fw = 1, εu =

0.1, εT = 0.1, and all others are zero.

Table 5.2: Comparison of local Nusselt number for several values ofϕ

Raza et al.[190] Present work

ϕ θ′(0) θ′(0)

0.01 −4.964682800390394 −4.965132

0.03 −4.795613667915525 −4.796557

0.05 −4.629249877087038 −4.629878

5.5 Results and Discussion

The renovation of the model equations trims down the mathematical work extensively. Graphical

representations of consequences are very constructive in discussing the physical features offered
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by the solutions.

Figure 5.2: Temperature profiles for different

water-based nanofluids

Figure 5.3: Temperature profiles for nanoparti-

cle shape factor n

Figure 5.4: Temperature profiles for nanoparti-

cle volume fraction ϕ

Figure 5.5: Velocity profile for Maxwell num-

ber βS

First, the energy distribution analysis is prepared for water-based viscoelastic nanofluid host-

ing Ag and TiO2 solid nanoparticles, separately, flowing in a parallel plate incorporating the
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CCHF model, portrayed in Fig. 5.2. The temperature distribution profile is higher for Ag-water

compares other water-based nanofluids. Figure 5.3 displays the thermal distributions, taking dif-

ferent shape factors of solid nanoparticles, for 4% Ag-water (solid line) and TiO2-water (dashed

line) nanofluids, respectively. The impacts of solid nanoparticles of spherical shape (n = 3) [87]

are prominent for Ag-water (solid line) and TiO2-water (dashed line) nanofluids near the lower

surface. But away from the lower surface after η = 0.23 these profiles reverse the trend for both

nanofluids. The nanoparticle volume fraction effect on Ag-water (solid line) and TiO2-water

(dashed line) nanofluids are represented in Fig. 5.4 for a range of volume fractions from 0%

to 3%. The temperature profile rises with the increasing ϕ. It is a vital phenomenon that the

nanoparticle volume fraction improves the thermal transport in the traditional fluid.

Figure 5.6: Temperature profile for Maxwell

number βS

Figure 5.7: Velocity profile for magnetic field

parameter M

When the elastic stress is functional in a liquid, the time during which it achieves stability is

the relaxation phase, which is more significant for highly viscous fluids. The Maxwell number/

Deborah number (βS) trades with the fluid relaxation phase to its characteristic time scale. Here

βS = 0 gives the result for a Newtonian viscous incompressible fluid. The fluid with a trivial
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Deborah number exhibits liquid-like activities, but a large Deborah number communicates with

solid-like materials able to conduct and retain heat better. Therefore, it is found that progres-

sively increasing the Maxwell parameter raises the fluid viscosity, which improves resistance to

flow. Consequently, the hydrodynamic boundary layer thickness for Maxwell fluid declines, as

shown in Fig. 5.5, for both 4% Ag-water (solid line) and TiO2-water (dashed line) nanofluids.

Additionally, it is realised that the momentum contour ofAg-water (solid line) is more controlled

than that of TiO2-water (dashed line) nanofluid.

Figure 5.6 shows the enhanced consequence of βS on the thermal boundary layer near the

convective lower wall mutually for conventional Fourier heat flux (βT = 0) and βT = 0.3. A

different fact is seen at η = 0.19 where there is no parametric effect due to the variation of βS

on the energy profile, and after η = 0.19 the temperature profiles decrease. From this probe, it

is established that the elastic force endorses the energy transfer in Maxwell fluid.

Figure 5.8: Temperature profile for magnetic

field parameter M

Figure 5.9: Velocity profile for momentum slip

parameter εu

It is detected in Fig. 5.7 that an acceleration in the magnetic parameter (M) diminishes

the momentum distribution profile. This reduction is introduced by the magnetic field effect
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imposed on an electrically conductive fluid, which generates a drag force termed Lorentz force

against the flow route along the wall to slow down velocity. The consequential fact is that the

magnetic field is accountable for reducing velocity. Figure 5.8 depicts that the thermal contours

are affected proportionally by the increase of M for classical Fourier heat flux (βT = 0) and

CCHF (βT = 0.3).

The outcome of Fig. 5.9 expresses that the momentum increases with the mounting rate

of the slip parameter εu in the opposite track to the flow. In Fig. 5.10, it is established that

the temperature increases with the higher slip parameter εu for both classical Fourier heat flux

(βT = 0) and CCHF (βT = 0.3).

Figure 5.10: Temperature profile for momen-

tum slip parameter εu

Figure 5.11: Temperature profile for thermal

slip parameter εT

The consequence of Fig. 5.11 expresses that the thermal energy increases with the escalating

rate of the thermal slip parameter εT for CCHF (βT = 0.3). The convective parameter as Biot

number comes up only in the lower surface boundary condition (5.22) [θ′(0) = − κf
κnf

Bi(1 −

θ(0))]. When Bi = 0, an insulated boundary condition is attained at the surface. It is motivating

to remind that if Bi is higher, the thermal energy profiles are improved, as seen in Fig. 5.12. The
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uniform temperature boundary condition is achieved. Convective boundary condition arises in

some factual situations, such as the nanofluid flow around the micro-electromechanical system

(MEMS) [191].

Figure 5.12: Temperature profile for Biot number Bi

Parametric effects on Nusselt number at the boundaries: Nusselt numbers (Nu) for some

different values of Maxwell number (βS) and thermal relaxation parameter (βT ) considering

ϕ = 4%; n = 3; M = 1; Re = 1; Ec = 0.1; fw = 0.5; γ = 0.1; εu = −0.1; εT = 0.3; Bi = 1

are displayed in Table 5.3 for Ag-water and 5.4 for TiO2-water nanofluids, respectively..
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Table 5.3: Heat transfer (Nu) in Ag-water nanofluid for different values of βS and βT

βS βT η = 0 η = 1

0.1 0.3 0.686497 −0.136659

0.3 0.686001 −0.136231

0.5 0.685488 −0.135799

0.7 0.684961 −0.135364

0.1 0.2 0.668544 −0.16676

0.1 0.644361 −0.218067

0 0.608476 −0.323434

Table 5.4: Heat transfer (Nu) in TiO2-water nanofluid for different values of βS and βT

βS βT η = 0 η = 1

0.1 0.3 0.700083 −0.136228

0.3 0.699665 −0.135883

0.5 0.699234 −0.135534

0.7 0.698793 −0.135182

0.1 0.2 0.681731 −0.16589

0.1 0.657041 −0.216224

0 0.620503 −0.318984

From these tabular data, an assessment of the CCHF model (βT 6= 0) and Fourier’s model

(βT = 0) is presented graphically in Figure 5.13 for the lower plate and Figure 5.14 for the upper

plate, respectively. The impact of the thermal relaxation parameter (βT ) on the Nusselt number at

the edges are calculated for water-based nanofluid hosting silver and Titania solid nanoparticles,
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as revealed in Figures 5.13 and 5.14. Here Ag-water and TiO2-water nanofluids are indicated

by the solid line and dashed line, respectively. The Nusselt number correlates with the energy

transmission rate at the boundary. The energy transmission rates of both nanofluids at the lower

convective surface (η = 0) are upward with the enlarged βT . An outstanding assessment of the

CCHF model (βT 6= 0) and Fourier’s model (βT = 0), a noteworthy feature of recent research,

is also portrayed in the above diagrams.

Figure 5.13: Nusselt number at η = 0 for ther-

mal relaxation parameter (βT )

Figure 5.14: Nusselt number at η = 1 for ther-

mal relaxation parameter (βT )

Figure 5.15: Temperature profile for thermal relaxation parameter (βT )

The higher βT parameter creates a resistive environment of the changed system, as shown in

Figure 5.15, thus causing a thermal delay through a higher energy transmission rate. Therefore,
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silver-water nanofluid can play an essential role in developing the mechanical systems of various

spaces of ballistics and astrophysics.

5.6 Conclusions

The recent analysis illustrates the flow feature of time-dependent Maxwell viscoelastic water-

based nanofluids squeezed in parallel surfaces with the stretched upper surface. All the precise

results are deliberated from the physical perspective, and the major findings of the research can

be listed as follows:

1. Silver–water nanofluid provides comparatively higher energy transport.

2. The higher nanoparticle volume concentration enhances the energy transport.

3. The consequence of spherical-shaped solid nanoparticles with thermal slip is outstanding

for thermal energy transfer.

4. Maxwell viscoelasticity parameter improves heat transfer.

5. CCHF delays energy transmission.

6. The combined influence of Maxwell viscoelasticity and Magnetic strength parameters with

the velocity slip feature shows noteworthy control on the velocity profiles.

In conclusion, it can be affirmed that this model presenting phenomena of velocity control and

enhancement of the transfer of heat in the Ag-water nanofluid can be an excellent opportunity to

extend the mechanical systems’ cooling performances.
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CHAPTER 6

EFFECT OF BROWNIAN DIFFUSION ON SQUEEZING ELASTICO-VISCOUS NANO-

FLUID FLOW WITH CATTANEO-CHRISTOV HEAT FLUX MODEL IN A CHANNEL

WITH DOUBLE SLIP EFFECT

Abstract. The present study deals with the analysis of heat transfer of the unsteady Maxwell

nanofluid flow in a squeezed rotating channel of a porous extensile surface subject to the veloc-

ity and thermal slip effects incorporating the theory of heat flow intensity of Cattaneo-Christov

model for the expression of the energy distribution in preference to the classical Fourier’s law.

A set of transformations is occupied to renovate the current model in a system of nonlinear or-

dinary differential equations that are numerically decoded with the help of MATLAB integrated

function bvp4c. The effects of various flow control parameters are investigated for the momen-

tum, temperature and diffusion profiles, as well as for the wall shearing stress and the heat and

mass transfer. The results are finally described from the material point of view. A comparison of

heat flux models of Cattaneo-Christov and Fourier is also performed. An important result from

the present work is that the squeezing parameter is strong enough in the middle of the channel

to retard the fluid flow.

Keywords: Maxwell fluid model; squeezing flow; elastico-viscous; nanofluid; channel; rotation.

6.1 Introduction

The heat transfer phenomena is of great concern because of its impact on industrial applica-

tions, including cooling of space and nuclear reactors, heat conduction in tissues pasteurization

of milk, magnetic targeting of drugs, etc. Fourier [162] proposed a heat flux model, named

as heat conduction law that produces a parabolic energy equation that advocates an instanta-

neous change in the temperature of considered system at the beginning of any process. Cattaneo
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[163] introduced thermal relaxation time so as to produce the hyperbolic energy equation which

permitted the heat transport through the transmission of thermal waves with finite speed. The

theory of Cattaneo was further improved by Christov [164] who replaced the time derivative

in the Cattaneo’s model by the Oldroyd’s upper–convective derivative [192] that preserved the

material-invariant formulation and that became prominent as Cattaneo-Christov heat flux. Cia-

rletta and Straughan [165] analyzed the stability and uniqueness of the solution of the energy

equation for Cattaneo–Christov heat flux model. Thermal relaxation time can be interpreted

physically as the time needed for accumulating the thermal energy essential for generating heat

flux [167, 168]. Inclusion the thermal inertial in heat prorogation has effects in the heat transport

in nano-material, nanofluids and many areas of ballistics and astrophysics [169, 170, 171].

The practice of adding polymers to mineral oils, known as multi-grade oils, has become rec-

ognized since the middle of 1990s [146, 52, 50]. These additions force the resulting lubricants

to become non-Newtonian and viscoelastic exerting shear-rate dependent viscosity [148, 149].

The highly non-linear relationship between shear stress and strain rate of non-Newtonian fluids

cannot be demonstrated by the classical Newtonian fluid model enclosing Navier-Stokes equa-

tions [150, 151]. The non-Newtonian fluids include polymer solutions, certain lubricants and

oils, suspension and colloidal solutions, blood, melts, condensed milk, emulsions, soaps, sham-

poos, tomato paste, and many others containing the properties of both elasticity and viscosity.

Researchers have proposed several viscoelastic fluid models incorporating different features of

non-Newtonian fluids [55, 153, 154]. Models of viscoelastic fluids, including second-order flu-

ids and / or Walter-B fluids, are ideal for slow motion of low elastic fluids [155]. To carry out

an effective theoretical work in the industrial sector, the most realistic and practical viscoelastic

fluid models, such as the Maxwell fluid or the Oldroyd-B fluid, should be considerable for effi-

cient analysis [156, 193]. The Maxwell fluid, a simple class of rate- type viscoelastic material,

eliminates the complex effects of shear-reliant viscosity and accordingly permits one to high-

light the influence of fluids elasticity on the characteristics of its boundary layer [159]. Harris

[49] first developed the constitutive equation of upper convected Maxwell (UCM) fluid to model
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the lubricant behavior of the non-Newtonian fluid. Due to the rising practical applications in

industrial and manufacturing procedures, researchers have paid their attention to the study of

boundary layer flow of non-Newtonian fluids [161, 160].

Nanofluids are the new-generation heat transfer fluids which containing higher thermal con-

ductivity at very low particle concentrations than the conventional fluids. This idea of nanofluid

was first developed by Choi [25]. Recent researchers have identified that the substitution of

usual coolants with nanofluids may be advantageous in processes like improving heat transfer

efficiency in nuclear space and engineering, domestic refrigerators/freezers; and cooling of en-

gine and micro-electronics [96]. Moreover, electromagnetic nanoparticles are playing important

role in bio-medicinal applications as compared to other metallic particles because these can be

used to control and manipulate the nanofluid through magnetic force[139, 121]. As a part of

these researches, Buongiorno [41] composed a mathematical model to study the convective heat

transfer in nanofluids taking two important effects, namely the Brownian and thermophoresis

diffusions into account.

While Stefan [172] carried out this pioneering work and basic formulations on flow phenom-

ena, so far the analysis of the compression flow process is receiving considerable attention by

the researchers because of its purposes in the fields of biomechanics and chemical engineering

[173]. Reciprocating engine bearing performance, injection and compression molding, poly-

mer processing, and modeling of lubrication system are realistic applications of squeezing flows

[174, 175].

The boundary velocity, proportional to the shearing stress at the solid surface, is playing an

important role in boundary value problems. For viscoelastic fluids, the slip condition is con-

siderably important [177]. This feature has many applications in medical science, for example,

polishing artificial heart valves [178]. There are several situations that include polymer fluids

with high weight molecules, heavy suspensions, and lubrication problems flowing through mul-

tiple interfaces. Navier [179] initially proposed the general boundary condition which illustrates

the fluid slip at the surface.
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So far, few attempts have been made to study the transfer of heat and mass through a three-

dimensional compression flow in a rotating channel, and therefore, the objective of the current

work is to analyze the effect of thermal relaxation factor on the flow flux of time dependent

Maxwell viscoelastic nanofluid that is squeezed in rotating parallel plates with porous stretched

surface incorporating Cattaneo-Christov heat flux model.

6.2 Mathematical Model

The governing model equations consisting of conservation of mass, momentum, energy and

concentration are given by
∂ρ

∂t
+∇ · (ρV) = 0 (6.1)

ρ
dV

dt
= ∇ · τ (6.2)

ρcp
dT

dt
= −∇ · q− p∇ ·V − cpJs · ∇T + Φ + SQ (6.3)

dC

dt
= −1

ρ
∇ · Js (6.4)

Here, V = (u, v ,w) is the three-dimensional velocity of the viscous fluid, τ is the Cauchy

stress tensor, T is the temperature of the fluid, q is the heat flux, Φ is the viscous dissipation

term that describes the conversion of mechanical energy to heat. Also, SQ represents the heat

sources, Js is the sum of Brownian and thermophoresis diffusions, ρ and cp are the density and

specific heat respectively.

The elastico-viscous behavior of fluid will be realized if elastic stress is applied to the fluid,

and the resulting strain will be time dependent characterized by relaxation time. The constitutive
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equation considering time dependent stress relaxation is [173]

τ = −pI + S (6.5)

The extra stress tensor S satisfies the upper convected Maxwell model given by

S + λS

(
dS

dt
+ V · ∇S− LS− SLtr

)
= µ

(
L + Ltr

)
(6.6)

Here, Ltr = ∇V (i.e., Lij = ∂ui/∂xj) is the velocity gradient and the superscript tr indicates a

transpose, µ is the viscosity, λS > 0 is the stress relaxation time where λS = 0 describes the

Newtonian fluids.

Cattaneo–Christov model is proposed by adding thermal relaxation time in Fourier’s Law,

also called the modified Fourier heat conduction law, presented by [168]

q + λT

(
∂q

∂t
+ V · ∇q− q · ∇V + (∇ ·V)q

)
= −κ∇T (6.7)

Here, κ is the thermal conductivity and λT is the thermal relaxation time parameter for the heat

flux where λT = 0 simplifies the expression (7) to classical Fourier’s law.

Buongiorno [41] disclosed the combination of Brownian and thermophoresis diffusions given

by

Js = −ρDB∇C− ρDT
∇T

Ta
(6.8)

Here, DB is the Brownian diffusion coefficient, DT is the thermal diffusion coefficient and Ta is

the reference temperature.

To demonstrate the physical model of present analysis, it is considered that the flow is lam-

inar, unsteady and three dimensional. An incompressible (∇ ·V = 0), electrically conducting

elastico-viscous Maxwell nanofluid is being squeezed between two infinite parallel plates ro-

tating about y−axis. To explain the physical configuration, the Cartesian coordinate system is

introduced such a way that x−axis is measured along the plate surface and y−axis is perpendic-
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ular to the plates, shown in Fig. 6.1. There is a vital consideration that fluid properties will not

deviate of in the z−direction i.e., ∂
∂z

= 0. The gap width between those plates in the minimal

separation region is taken as time dependent given by h (t) = l
√

1− αt, where l is the steady

gap width and α is a constant having dimension time˘1. For α > 0 the two plates are squeezed

until they touch t = 1/α and for α < 0 the two plates are always separated. The upper plate

placed at y = h (t) is squeezing towards the lower plate with a vertical velocity vh = dh(t)
dt

. This

plate is stretched with a velocity uh = αhx/ (1− αt) in the positive x− direction with velocity

slip parameter r1 and thermal slip parameter r2. The lower plate is fixed at y = 0 assumed to be

porous in which the fluid flows with suction velocity v0 = −V0/(1 − αt). A uniform magnetic

field of density B0 is applied to along y− direction and the external electric field is assumed

zero.

Figure 6.1: Physical model

The boundary conditions of the present physical models are

u− r1
∂u
∂y

= uh, v = vh, w = 0, T − r2
∂T
∂y

= TH , C = CH at y = h(t)

u = 0, v = v0, w = 0, T = 0, C = 0, at y = 0

 (6.9)

Now in order to find the approximate solutions of the model it is essential to make the model
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equations dimensionless using the following non-dimensional variables [174, 175]:

η =
y

l(1− αt)
1
2

, u =
αx

2(1− αt)
f ′, v =

−αl
2(1− αt)

1
2

f,

w =
αx

2(1− αt)
g, T = THθ, C = CHF (6.10)

Using the above transformations, the equation (6.1) is satisfied and the equations (6.2)-(6.4)

are reduced to

(
1− SqβS

(
η2 − 2ηf + f 2

))
f iv − SqβS

(
9ηf ′′′ + 2ηf ′′

2 − 2f f ′′
2 − 2f ′

2
f ′′

−8f f ′′′ + 4f ′ f ′′ + 15f ′′)−M (f ′′ + βS (ηf ′′′ + 3f ′′ − f f ′′′ − f ′ f ′′))

−Sq (ηf ′′′ + 3f ′′ + f ′ f ′′ − f f ′′′ + 2ω g′) = 0 (6.11)

(
1− SqβS

(
η2 − 2ηf + f 2

))
g′′ − SqβS (7ηg′ + 2ηf ′g′ + 4f ′g − 6fg′ − 2f f ′ g′ + 8g)

−Sq (ηg′ + 2g + f ′g − fg′ − 2ω f ′)−M (g + βS (ηg′ + 2g − fg′)) = 0 (6.12)

(
1− PrSqβT

(
η2 − 2ηf + f 2

))
θ′′ − Sq Pr (ηθ′ − fθ′)

−Sq Pr βT (3ηθ′ − ηf ′θ′ − 3fθ′ + ff ′θ′) + Pr
(
NBθ

′F ′ +NT θ
′2
)

+EcPr
(

4δ2f ′
2

+ f ′′
2

+ g′
2

+ δ2g2
)

= 0 (6.13)

F ′′ − Sq Le (ηF ′ − f F ′) +
Nt

Nb
θ′′ = 0 (6.14)
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The dimensionless boundary conditions are

f = 1, f ′ = γu + εuf
′′, g = 0, θ = 1 + εuθ

′, F = 1, at η = 1

f = fw, f ′ = 0, g = 0, θ = 0, F = 0 at η = 0

 (6.15)

Here, ω = 2(1−αt)
α

Ω is the rotation parameter; βS = λSα
2(1−αt) is the Maxwell parameter; Sq = αl2

2ν

is the squeeze number; M = σB0
2h2

µ
is the Magnetic field parameter; Pr = νρCp

κf
is the Prandtl

number; Ec = ρua2

ρCpTH
is the Eckert number; γu = αh

α
is the stretching parameter; εu = r1

h
is the

velocity slip parameter; εT = r2
h

is the thermal slip parameter; δ = h
x

is the characteristic length

ratio; fw = 2V0
αh

is the suction parameter.

Finally, the physical attentions in the existing study are the skin friction coefficient Cf ,the

local Nusselt number Nu and the Sherwood number (Sh) defined as

Cf ∝ f ′′, Nu ∝ −θ′ & Sh ∝ −F ′ (6.16)

6.3 Numerical Method

Equations (6.11)-(6.14) combined with the boundary conditions (6.15) are solved numerically

using finite difference code developed by a MATLAB boundary value problem solver, known

as bvp4c. The analysis is made for various values of the pertinent parameters such as Brown-

ian motion parameter NB, squeezing parameter Sq, Maxwell parameter βS , thermal relaxation

parameter βT , rotation parameter ω, stretching parameter γu, velocity slip parameter εu and ther-

mal slip parameter εT . The step size is taken as η = 0.01 and the tolerance criteria are set to

10−6. On the basis of the present model, [0, 1] is measured as the domain of a channel. First of

all, comparison of the current model is arranged with [174], shown in Table 6.1.
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Table 6.1: Comparison for skin friction coefficient, local Nusselt number and local Sherwood

numbers for different values of Sq when Pr = Ec = γu = 1.0, δ = 0.1.

Mustafa et al. [174] Present work

Pr −f ′(1) −θ′(1) F ′ −f ′(1) −θ′(1) F ′

-1.0 3.026324 3.02632355855 3.026323 2.170091 3.319899 0.804559

-0.5 5.98053 5.98053039715 5.98053 2.617404 3.129491 0.781402

0.01 14.43941 14.4394132325 14.439411 3.007133 3.047091 0.761225

0.5 1.513162 1.51316180648 1.513161 3.336448 3.026327 0.744224

2.0 3.631588 3.63158826816 3.631587 4.167387 3.118553 0.701813

6.4 Results and Siscussion

Figures 6.2(a) and 6.2(b) are devoted to the analysis of the impact of the Brownian motion pa-

rameterNB on the temperature and concentration profiles, respectively. These figures allow us to

conclude that the temperature and concentration distributions are enhanced with NB. The Brow-

nian motion parameter illustrates a significant variation in temperature profiles, while compared

to concentration profiles. These outcomes express a similar result remarkable with the work of

Reddy et al. [194]. These figures also reveals that the temperature of the fluid is lifted and the

concentration is reduced for thermal relaxation parameter βT .

Figures 6.3(a), 6.3(b) and 6.4(a), 6.4(b) express the behavior of squeezing parameter Sq.

When plates are coming closer the values of Sq are considered positive. Figure 6.3(a) shows

that, with the increase of the values of Sq fluid velocity decreases. Clearly the flow velocity

decreases in the channel when fluid is clutched inside. But the secondary velocity profiles in-

crease with Sq, shown in Fig. 6.3(b). Furthermore, there is no variation in velocity profiles due

to the classical Fourier’s heat flux model (βT = 0) and the Cattaneo-Christov heat flux model

(βT = 0.3). Figures 6.4(a) and 6.4(b) demonstrate the influence of Sq parameter on the heat

and solutal distributions respectively. From the above representations, it can be revealed that
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the deviation of the fluid properties for the classical Fourier and Cattaneo-Christov heat fluxes

approaches for the higher value of squeezing parameter.

Figure 6.2: NB effect on the profiles of (a) temperature and (b) concentration

Figure 6.3: Sq effect on the profiles of (a) primary velocity and (b) transverse velocity.

When the elastic stress is applied to the non-Newtonian fluid, the time during which the

fluid achieves its stability is the relaxation time, which is greater for highly viscous fluids. The

Maxwell parameter βS deals with the fluid relaxation time to its characteristic time scale. Here

βS = 0 gives the result for Newtonian viscous incompressible fluid. The fluid with a small
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Maxwell parameter exhibits liquid-like activities but large Maxwell parameter communicates

with solid-like materials able to conduct and retain heat better. Therefore, it is observed phys-

ically that gradually increasing the Maxwell parameter can increase the fluid viscosity, which

enhances resistance to flow and, as a result, the hydrodynamic boundary layer thickness reduces

for Maxwell fluid, as shown in Fig. 6.5(a). There is also declining effect of βS on the secondary

velocity, displayed in Fig. 6.5(b).

Figure 6.4: Sq effect on the profiles of (a) temeperature and (b) concentration.

Figure 6.5: βS effect on the profiles of (a) primary velocity and (b) secondary velocity.
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Figure 6.6(a) presents the significant effect of rotation parameter ω on secondary velocity.

The rotation of the plates generates higher z−momentum. Figures 6.6(b) and 6.7(a), 6.7(b)

depict the stretching parameter γu effects on x−momentum, z−momentum and energy distribu-

tions, respectively. From Fig. 6.6(b), it is observed that the stretching velocity enhances strength

to the fluid velocity to increase the x−momentum distribution with the increase of stretching ef-

fect γu at the stretching upper surface. Figure 6.7(a) expresses that the z−momentum decreases

with the higher values of stretching parameter γu. Figure 6.7(b) exhibits the fact that The energy

distribution is an increasing function of γu.

The result found from Fig. 6.8(a) expresses the fact that the velocity increases with the

mounting value of velocity slip parameter εu but after the cross flow situated at η = 0.656 the

velocity reverses the flow tendency and decreases at the upper wall indicated in the Fig. 6.8(a).

In Fig. 6.8(b), it is found that the secondary velocity increases with the positive values of slip

parameter εu. A significant depiction, portrayed from the above observations, the fluid velocity

is higher for the velocity slip parameter εu. The energy distribution rises with the velocity slip

parameter εu, found in Fig. 6.9(a). But Fig. 6.9(b) shows that the temperature profile is a

decreasing function of the thermal slip parameter εT .

Figure 6.6: (a)εu effect on transverse velocity profile and (b)γu effect on primary velocity pro-

file.
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Figure 6.7: γu effect on the profiles of (a) transverrse velocity and (b) temperature.

Finally, from the point of view of physical interest, the skin friction coefficient is useful

to estimate the total frictional drag exerted on the surface. The Nusselt Number is used to

characterize the heat flux from a heated solid surface to a fluid. Additionally, Table 6.2 displays

the skin friction (Cf ) for squeezing parameters and Maxwell parameter at the upper (η = 1)

and lower (η = 0) plates for classical Fourier (βT = 0) and Cattaneo-Christov (βT = 0.3) heat

fluxes. The effect of squeezing parameter Sq and Maxwell parameter βT on the local Nusselt

number Nu and are arranged in the Table 6.3 classical Fourier (βT = 0) and Cattaneo-Christov

(βT = 0.3) heat fluxes considering M = 1; ω = 2; δ = 0.1; Pr = 6.838; Ec = 0.02; γu =

0.1; εu = 0.1.
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Figure 6.8: εu effect on the profiles of (a) primary velocity and (b) secondary velocity.

Figure 6.9: (a) εu effect on the temperature profile and (b) εT effect on the temperature profile.
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Table 6.2: Skin friction (Cf ) for different values of Sq and βS at the upper (η = 1) and lower

(η = 0) plates for classical Fourier (βT = 0) and Cattaneo Christov (βT = 0.3) heat fluxes

βT = 0 βT = 0.3

Sq βS Cfη=1 Cfη=0 Cfη=1 Cfη=0

0.1 0.5 -4.659543 4.056332 -4.659543 4.056332

0.2 -4.757606 4.214218 -4.757606 4.214218

0.3 -4.861431 4.377962 -4.861431 4.377962

0.6 -4.921623 4.486911 -4.921623 4.486911

0.7 -4.983358 4.598035 -4.983358 4.598035

Table 6.3: Nussult number (Nu) for different values of Sq and βS at the upper (η = 1) and lower

(η = 0) plates for classical Fourier (βT = 0) and Cattaneo Christov (βT = 0.3) heat fluxes

βT = 0 βT = 0.3

Sq βS Nuη=1 Nuη=0 Nuη=1 Nuη=0

0.1 0.5 0.253098 -4.942629 0.261092 -5.325179

0.2 0.269455 -5.387022 0.283571 -6.271893

0.3 0.286328 -5.861222 0.304701 -7.396247

0.6 0.290002 -5.867768 0.308438 -7.405840

0.7 0.293886 -5.874447 0.312386 -7.415598

6.5 Conclusions

The present paper is to study the effect of thermal relaxation factor on the flow of Maxwell

nanofluid squeezing in the parallel rotating plates with porous stretched surface incorpo-

rating Cattaneo-Christov heat flux model. The major outcomes drawn from the study of

the present model can be summarized as follows:
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1. The thermal boundary layer thickness rises for the Brownian motion parameter,

squeezing parameter, stretching parameter and velocity slip parameter.

2. The thermal boundary layer thickness decreases for the thermal slip parameter.

3. The hydrodynamic boundary layer thickness is reduced for the squeezing parameter,

Maxwell parameter and stretching parameter.

4. The velocity distributions are higher for the velocity slip parameter.

5. The concentration is elevated for Brownian motion parameter and squeezing param-

eter.

In conclusion of the current study, it can be argued that the squeezing parameter and

the stretching parameter that have the velocity control phenomena, can improve the heat

transfer in the nanofluid. This study will provide a great opportunity to develop the

cooling performance of mechanical system like automotive radiators and nuclear reactors.
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CHAPTER 7

CONCLUSION

7.1 Summary

Throughout this thesis, the dynamics of a nanofluid boundary layer flowing over a con-

vectively heated surface are investigated. After considering the complex dynamic between

the electrical conductivity of the conventional base fluids and that of the nanoparticles,

the resulting dimensionless nonlinear differential equations are solved numerically with the

help of the well-known finite difference method and a MATLAB package. This is done

in order to take into account the complex dynamic that occurs between the two things

being considered. Similarity transformation is used to generate the governing equations for

mass, momentum, and energy and then turn them into non-similar equations. Effects of

relevant parameter settings on velocity and temperature profiles, skin-friction coefficient,

and Nusselt number are investigated and graphically shown using numerical data.

Compared to ordinary base fluids, our findings showed that nanofluids are incredibly

susceptible to the influence of magnetic fields due to the complicated interaction of the

electrical conductivity of nanoparticles with that of the base fluid. A magnetic field effect

on nanofluids plays an essential role in both the cooling and heating processes, as an

increase in the nanoparticle volume fraction and magnetic strength causes the temperature

to rise and the velocity to fall.

This research is crucial because it shows how essential nanofluids are for a wide variety

of fields, including heat transmission, cleaning, medicine, and biomedicine. Engineering

applications where heat augmentation is crucial include next-generation solar film collec-

tors, heat exchanger technology, geothermal energy storage, and many more. Heat transfer,

chemical and bioprocessing, medicine (drug administration and functional tissue cell inter-
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action), and many more are only some of the many uses for nanofluids. Nanofluid research

has the potential to greatly advance the current state-of-the-art in nanotechnology due to

its interdisciplinary character.

7.2 Future study

Nanofluid thermal conductivity data is inconsistent. These inconsistencies must be over-

come to use nanofluids in heat transfer devices. Clustering, pH value, and ultrasonic

vibration affect thermal conductivity, although little is known about their effects. The rel-

ative importance of thermal conductivity enhancement techniques in nanofluid theoretical

investigations is unknown. New theoretical models incorporating the impacts of many en-

hancement processes and comparing their predictions with systematic experimental data

will help explain anomalous thermal conductivity enhancement with nanofluids.

Nanofluid convective heat transport is analysed using several theoretical methods. Nu-

merical studies on this topic are insufficient to assess approach accuracy. Numerical evalua-

tions of the offered methodologies help determine their validity. However, forced convection

heat transfer of nanofluids has little experimental data, making comparing computational

results with actual results challenging.

Like thermal conductivity, convective heat transmission of nanofluids is governed by

particle volume fraction, particle size, particle material, temperature, and base fluid type.

Most of these parameters have not been tested for heat transfer effects. Comprehensive

investigations of nanofluid heat transfer will help optimise nanofluid heat transfer enhance-

ment.

Finally, the influence of a magnetic field on hybrid nanofluid flow in industrial tubes

or pipes needs more study.
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APPENDIX A

NOMENCLATURE

A

A Unsteadiness parameter

A1 Rivlin Ericksen tensor

B

b Initial stretching rate

bf Base fluid

B Magnetic field applied normal to the

surface

B0 Magnetic field strength

Bi Biot number for convective heat

transfer

Bih Biot number

Bi∗ Biot number for convective mass

transfer

C

Cf Skin friction coefficient

cp Heat capacitance

C0 Concentration at the bottom plate

Cl Concentration at the upper plate

Cw Concentration at surface

C∞ Concentration apart from surface

D

DB Brownian diffusion coefficient

DT Thermophoresis diffusion coefficient

E

E Electromagnetic strength

Ec Eckert number

F

f Dimensionless velocity

F Dimensionless concentration

fw Suction parameter

H

hf Convective heat transfer coefficient

h∗f Convective mass transfer coefficient

K

k Relaxation time > 0
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k0 Initial relaxation time at t = 0

L

Le Lewis number

Ltr Velocity gradient

M

M Magnetic field parameter

N

Nb Brownian motion parameter

Nt Thermophoresis parameter

n Nanoparticles shape factor

N Slip variation constant

Nu Nusselt number

P

p Pressure

Pr Prandtl number

R

Re Reynolds number

R Chemical reaction

S

S Stress tensor

Sh Sherwood number

T

T0 Temperature at bottom the plate

Tl Temperature at the upper plate

t Time

Tw Initial surface temperature

T∞ Free stream temperature

Tslip Thermal slip

Tf Convective temperature

U-Z

ul Stretching velocity

uslip Slip velocity

uw Surface velocity

Ua Fluid flow

V Velocity Vector

vl Suction velocity

(x, y) 2D-Cartesian Coordinates

Greek

α Thermal diffusivity

β Deborah number

βS Deborah number/Maxwell number

γh Stretching parameter
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λS Stress relaxation time factor > 0

λT Thermal relaxation time factor > 0

µ Viscosity of the nanofluid

µ0 Dynamic viscosity

δu Velocity slip ratio

δT Temperature slip ratio

ε Local electromagnetic field parame-

ter

εuh Velocity slip parameter

εTh Thermal slip parameter

η Dimensionless length

ϕ Nanoparticle volume fraction pa-

rameter

κ Thermal conductivity

κcr Chemical reaction parameter

ν Kinematic viscosity

θ Dimensionless temperature

ρ Density

σ Electrical conductivity

ψ Stream function

Ψ Shape factor

CCHF Cattaneo-Christov Heat Flux

UCM Upper convected Maxwell

Sub/Superscript

f Base fluid

nf Nanofluid

s Solid nanoparticles

tr Transpose of a matrix
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APPENDIX B

RESEARCH CONTRIBUTION FROM THE CURRENT THESIS

List of published papers:

1. M. E. Karim, M. A. Samad, & M. Ferdows (2017, June). Magneto hall-effect on

unsteady elastico-viscous nanofluid slip flow in a channel in presence of thermal ra-

diation and heat generation with Brownian motion. In AIP Conference Proceedings

(Vol. 1851, No. 1, p. 020052). AIP Publishing LLC. DOI: 10.1063/1.4984681

2. M. E. Karim, M. A. Samad, & M. Ferdows (2019, July). Numerical study of the effect

of variable viscosity on unsteady pulsatile nanofluid flow through a Couette channel

of stretching wall with convective heat transfer. In AIP Conference Proceedings (Vol.

2121, No. 1, p. 070005). AIP Publishing LLC. DOI: 10.1063/1.5115912

3. M. E. Karim, & M. A. Samad (2020, February). Numerical Study on Time De-

pendent Maxwell Nanofluid Slip Flow over Porous Stretching Surface with Chemical

Reaction. Research Journal of Applied Sciences, Engineering and Technology, 17(1):

24-34. DOI: 10.19026/rjaset.17.6031

4. M. A. Samad & M. E. Karim (2020, January). Effect of Heat Generation and

Thermal Radiation on the Slip Flow of Time Dependent Elastico-viscous Maxwell

Nanofluid Flow over a Porous Stretching Inclined Surface. Dhaka Univ. J. Sci.

68(1): 19- 28.

5. M. E. Karim, & M. A. Samad (2020). Effect of Brownian Diffusion on Squeez-

ing Elastico-Viscous Nanofluid Flow with Cattaneo-Christov Heat Flux Model in a

Channel with Double Slip Effect. Applied Mathematics, 11(4), 277-291.

DOI: 10.4236/am.2020.114021

6. M. E. Karim, & M. A. Samad (2020). Lie group analysis for Elastico-viscous Maxwell

nanofluid flow in a channel of stretching surface with convective boundary condition.

AIJR Proceedings, 34-44. DOI: 10.21467/proceedings.100.4
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List of attending conferences:

1. 21st BMS International Mathematics Conference 2019, Department of Applied Math-

ematics, University of Dhaka, Dhaka-1000, Bangladesh. December 6–8, 2019

2. International Conference on Applied Mathematics and Computational Sciences (icamcs-

2019), Department of Mathematics, DIT University, Dehradun-248009, India. Oc-

tober 17–19, 2019

3. 8th BSME International Conference on Thermal Engineering, BUET, Dhaka-1000,

Bangladesh. December 19–21, 2018

4. 7th BSME International Conference on Thermal Engineering, BUET, Dhaka-1000,

Bangladesh. December 22–24, 2016

5. 2nd International Bose Conference: Recent trends in physical sciences, University of

Dhaka, Dhaka-1000, Bangladesh. December 3–4, 2015

6. 19th BMS International Math Conference, Department of Mathematics and Natural

Sciences BRAC University, 66 Mohakhali, Dhaka-1212, Bangladesh. December 18–

20, 2015

List of departmental seminars:

1. Title of the 1st seminar: "Pulsatile Nanofluid Flow Through a Couette Channel

Stretching Sheet with Convective Heat Transfer", Dated: 16 May 2018.

2. Title of the 2nd seminar: "Numerical Analysis of Elastico-viscous Ethylene Glycol

Based Nanofluid Slip Flow between Rotating and Squeezing Channel", Dated: 21

March, 2022.
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