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Abstract

Hepatitis B is a life-threatening liver infection due to the hepatitis B virus. Hepatitis B

virus (HBV) infection is one of the predominant public health challenges globally. We

develop a deterministic model to understand the underlying dynamics of HBV infection at

the population level. The model, which incorporates the vaccination and treatment of

individuals, the re-infections of infected classes, is rigorously analyzed to gain insight into

its dynamical features. The mathematical analysis reveals that the model exhibits a

backward bifurcation due to exogenous re-infection. It is shown that, in the absence of

re-infection, the model has a disease-free equilibrium (DFE) which is globally

asymptotically stable using Lyapunov function and LaSalle Invariance Principle whenever

the associated reproduction threshold is less than unity. Further, the model has a positive

unique endemic equilibrium (EEP) which is globally asymptotically stable (GAS) when the

associated threshold quantity is greater than one. Next, we incorporate optimal control

strategies as vaccination and creating awareness in the model. A system of differential

equations with control variables is considered and Pontryagin’s Maximum Principle is

applied to characterise the optimal controls. In the optimal control system, the main focus

is to minimize the cost of two controls as well as to decrease the disease burden. The

numerical simulations indicate that the optimal control strategy is effective not only to

minimize the infection but also the most successful way to control the infection.

Furthermore, we have extended the model considering dose-structured vaccination for

assessing the impact of vaccines among the population. Here we have analysed the stability

of equilibria and threshold analysis for imperfect vaccine impact on population-level. The

local sensitivity analysis is done and observed that some parameters play a prominent role

to determine the magnitude of the threshold. Latin Hypercube sampling-PRCC analysis

illustrates that disease transmission rate, the fraction of the acutely infected individuals
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who developed the chronic infection, development rate of symptomatic chronic carriers and

disease complications are the most influential parameters in the disease dynamics.

Additionally, we have formulated and rigorously analysed a new basic model for HBV in

vivo to attain insight into its qualitative aspects. The numerical analyses reveals that the

model has a globally-asymptotic stable (GAS) virus-free equilibrium (VFE) and a positive

virus persistent equilibrium (VPE) when the basic reproduction number is less than and

greater than one, respectively. Finally, the basic HBV model is extended incorporating the

effect of immune systems namely cell-mediated and humoral immune responses. Numerical

simulations show that the humoral immune system is more effective (to control HBV

burden in vivo) than the cell-mediated immune system because of the increasing antibody

level within the host due to vaccine impact.
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Chapter 1

Introduction

1.1 Hepatitis B Virus

A virus that created disease is a small infectious particle that could simply replicate inside

into the cells of an organ. Hepatitis B virus, abbreviated HBV, is partially a DNA virus, a

species of Orthohepadnavirus. It is a member of the hepadnavirus family [1]. Hepatitis B is

an infectious disease because of the HB virus that affects the liver, that is called viral

hepatitis [2]. The disease has two stages, such as, acute phase and chronic carrier phase.

Many people do not have any symptoms at the beginning of the infection. At the acute

infection phase, a few people may also increase illness with vomiting, yellowish skin,

weakness, dark yellow urine and both lower and upper abdominal ache. It can take 30 to

180 days for symptoms to start [3].

Persistent liver infection that means chronic infection of the liver can keep people at high

risk of death from liver cirrhosis or liver cancer [4]. The virus enters the body and reaches

the liver through the bloodstream. When the virus is in the liver, it releases a large

number of new viruses into the bloodstream. The hepatitis B virus can survive for a

minimum of 7 days outside of the human body. But by this time, the virus can cause

infection if it enters the body of someone who is not immunized by the vaccine. The

incubation period is approximately 75 days but it can vary from 30 to 180 days for

hepatitis B virus [3]. The virus can be detected between 30 to 60 days after infection and

can persist and progress to chronic infection [3]. The infection with the virus becomes

1
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chronic if the virus persists within-host at least more than 6 months. Within the age of 6

years, 30%− 50% infected children become chronic carriers of the infection [3]. 20%− 30%

of adults who are chronic carriers will progress to liver cirrhosis or liver cancer [3].

Figure 1.1: Structure of Hepatitis B Virus (Source:[32]).

1.2 Transmission of HBV

The hepatitis B virus is usually transmitted by the contaminated blood or infected body

fluids of an infected individual and perinatally from mother to baby for the duration of

childbirth and from person to person. HBV also can be transmitted through unprotected

sex, used needles and syringes by an infected individual and during transfusion of blood [5].

Hepatitis B infection can also be caused by sharing inanimate objects with infected blood,

such as washcloths, towels, razors or toothbrushes. Other risk factors for transmitting HBV

to others are if someone working in healthcare, dialysis, living together with an infected

individual, travel in those countries with high infection rates. The hepatitis B virus cannot

outspread by holding hands, kissing, hugging, coughing, sneezing, or breastfeeding and the

faecal-oral route [6, 7]. HBV can be transmitted along with the mucous membrane of

infectious blood and body fluids of an infected person containing contaminated blood.
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Figure 1.2: Transmission of Hepatitis B Viral infection (Source:[32]).

1.3 Public health and Socio-economic Impact

Hepatitis B is one of the common infectious diseases and public health concerns in the

world. Hepatitis B is the main reason for chronic liver disease and is a substantial public

health problem. The World Health Organization (WHO) reported that more than 250

million people have a chronic liver infection and more than 800,000 people die worldwide

each year due to hepatitis B, and its prevalence is the highest in sub-Sahara Africa and

East Asia [13]. The disease is common in sub-Saharan Africa and East Asia, wherein

5% − 10% of the adult has the persistent (chronic) infection. Such chronic infections are

also observed in the Amazon and central Europe. About 2% − 5% of the general

population is chronically infected in the Middle East and some Indian subcontinent [11].

Viral hepatitis is the most typical liver infection in Bangladesh. Since Bangladesh is a

country of the Asia Pacific region, it is considered a high-risk country for both hepatitis A

and B [17]. In Bangladesh, this infection becomes a public health issue and there are about

10 million population are chronically infected with the hepatitis B virus [18]. A proportion

of them is hepatitis B carriers and another proportion is affected by the long-standing

consequences of this infection. Those who have long term infections can also progress to

chronic hepatitis eventually leading to liver cirrhosis and hepatocellular carcinoma. Early

detection of HBsAg can save many lives from the dangerous complications of cirrhosis and

hepatocellular carcinoma by proper treatment. The HBV vaccination program has proved
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to be constructive to enhance long term immunity against hepatitis B infection and is

suggested for decreasing HBV-related disease burden [14]. Understanding the significance

of HBV vaccination, WHO approved the inclusion of HBV vaccination at the birth time in

the country wide immunization programs [15]. There are some social and economic factors

that affect hepatitis B prevalence, such as, age, gender, migration, education, employment,

training and awareness [16]. It is important to identify which factors are affecting HBV

prevalence of the disease. The most crucial policy for controlling the factors is increasing

obligatory immunization programmes for all. Vaccination for all is acceptable based on

economic evaluation. Increasing the level of education, increasing awareness of society

people and gathering knowledge about the disease also helps us to decrease the spread of

HBV [16].

1.4 Control Strategies against HBV

To prevent HBV infection a safe and effective vaccine is must for all age groups. The

vaccine is introduced for the prevention of the disease in 1982 [8]. The hepatitis B vaccine

consists of an antigen that stimulates the body to make preventative antibodies [10]. For

the full effect of vaccination, two or three doses are required for a person. Including

scheduled infant vaccination, 150 countries or more than have vaccine immunization

programs [19].

For controlling the disease progression and to stop viral replication, efficient therapy is very

important. It is predicted that without taking treatment, who are chronically infected,

among them approximately 15% − 25% could progress liver cirrhosis and Hepatocellular

carcinoma at the last stage of infection [20]. With long-term virological response in a

patient, it is evident that antiviral therapy can develop liver histology by giving indirect

support and possibly can control liver damage [21, 22].

About 95% acutely hepatitis B infected individuals need no treatment because of their own

immune system and can clear the virus within by six months [9]. From the opposite aspect,

treatment of chronic carriers may be essential to reduce the risk of liver cirrhosis and liver

cancer. Chronic carriers are usually used antiviral medication, namely tenofovir or

interferon [3]. Liver replacement is sometimes required for liver cirrhosis. Some antiviral
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drugs, namely, lamivudine, adefovir, tenofovir, telbivudine and entecavir, and

interferon-alpha immune system can also control the disease complications. But these

regular drugs can not properly clear the infection. They are able to only prevent viral

replication and suppress liver cirrhosis and cancer. But, some infected people are much

more likely to respond than others and this is probably due to the genotype of the virus.

The primary motives for analyzing infectious diseases is to develop control techniques and

to get rid from the infection. The optimal control strategy is such a technique of

mathematics that is broadly used to control the outspread of infectious diseases. It is an

important mathematical tool that can help us to make resolutions related to complicated

biological situations [24].

1.5 Literature Review

Mathematical models are developed and used for finding the mechanism insight into the

transmission dynamics of hepatitis B at a population level. Many of the models in the

literature are formed using a deterministic system of continuous-time differential equations.

A number of mathematical models, notably by G. F. Medley et. al. [25–28] developed a

simple SIR model of hepatitis B to describe the transmission of HBV dynamics. Without

considering vaccinated individuals separately, I. K. Dontwi et. al. [29] considered a SIR

model of Kermack and Mckendrickand for hepatitis B with vaccine parameter. Jianhua

Pang et. al. [30] used a model to investigate the effect of vaccination and other controlling

system for the HBV infection. In [26, 27], a compartmental mathematical model (SECIR)

is constructed at the population level considering age classes. They focused to eliminate

HBV in New Zealand using control strategies. They also estimated that the vaccination

campaign has substantially reduced the value of basic reproduction number below one. K.

Wang et. al. [31] considered a diffusion model and analysed the properties of hepatitis B

virus infection.



Chapter 1. Introduction 6

1.6 Thesis Outline

This thesis is comprised of seven self-contained chapters and they are organized as follows:

Chapter 1 presents an introduction about HBV transmission including control strategies

against HBV infection, literature reviews and the outline of the thesis. In Chapter 2, we

have presented some elementary mathematical preliminaries (related to the thesis) which

will be required to analyze the models in different chapters of the thesis. In Chapter 3, a

basic HBV transmission model at a population level is formulated and analyzed

mathematically and numerically. HBV dynamics in vivo is rigorously analyzed

qualitatively and numerically in Chapter 4. In chapter 5, we have considered the model of

HBV using optimal control technique and presented the analysis of the behavior of the

disease dynamics. Chapter 6 is contained the HBV vaccination model. Finally, the main

mathematical and epidemiological implications of the models in this thesis are presented in

Chapter 7.



Chapter 2

Preliminaries

Necessary definitions, theorems and epidemiological preliminaries from [24, 33, 34], which

are related to the thesis, are presented here in this chapter.

2.1 Equilibria of System

Let

ẋ = g (x, t;α) , x ∈ P ⊂ Rn, t ∈ R1, and α ∈ Q ⊂ Rp. (2.1)

where, P , Q are respectively the open sets in Rn, Rp and α is a parameter. The above

equation is an ordinary differential equation (ODE) and g is a vector field. A

non-autonomous system is explicitly depends on time whereas an autonomous system

does not depend explicitly on time.

Let the system be

ẋ = g (x) , x ∈ Rn. (2.2)

Definition 2.1. [33]. The number x is known as equilibrium point of above ODE (2.2),

which has an equilibrium solution x = x ∈ Rn if g(x) = 0.

Theorem 2.1. (Existence and Uniqueness Theorem [33]). If g(t, w) and dg
dw

are continuous

functions of t and w in the region R(a1, a2) of Rn × Rn, where,

R(a1, a2) = {(t, w) : |t− t0| ≤ a1, |w − w0| ≤ a2} ,

7
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there exists a unique solution w(t) to the following IVP:

ẇ = g(t, w), w(t0) = w0.

on

|t− t0| ≤ h ≤ a1, h = min
(
a1,

a2

M

)
, M = max

(t,w)∈R
g(t, w).

Definition 2.2. [33]. The Jacobian matrix of g at x is given by

Df(x) =


∂g1
x1

(x) · · · ∂g1
xn

(x)
...

...
...

∂gn
x1

(x) · · · ∂gn
xn

(x)

 .

2.2 Stability analysis

Definition 2.3. [34]. The equilibrium x(t) is stable if for any E > 0, ∃ a δ = δ(E) > 0 3
for any arbitrary solution u(t) of (2.2), the inequality

|x(t0)− u(t0)| < δ ⇒ |x(t)− u(t)| < E , ∀ t > t0, t0 ∈ R holds.

Definition 2.4. [34]. If the solution x(t) of (2.2) is stable then it is called asymptotically

stable and ∃ a constant quantity δ0 > 0 3 for arbitrary solution u(t) of (2.2) satisfy the

condition |x(t0)− u(t0)| < δ0, then

lim
t→∞
|x(t)− u(t)| = 0.

Definition 2.5. [34]. The equilibrium x(t) of (2.2) is unstable when it is not stable.

Theorem 2.2. [34]. If all the eigenvalues of the Jacobian matrix have negative real parts

then the equilibrium solution of (2.2) is LAS (locally asymptotically stable) and the solution

is unstable if at least one of the eigenvalues has a positive real part.

Theorem 2.3. (Castillo-Chavez and Song [60]). Let the ordinary differential equations

with a parameter ξ

dx
dt

= h(x, ξ), h : Rn × R→ Rnandh ∈ C2(Rn × R),

where, 0 is the equilibrium point of the system (h(0, ξ) ≡ 0 ∀ ξ)



Chapter 2. Preliminaries 9

1. B = Dxh(0, 0) =

(
∂hi
∂xj

(0, 0)

)
is a linearization matrix of the ordinary differential

equations system around 0 with ξ estimated at the equilibrium point 0;

2. 0 is a eigenvalue of B and all other eigenvalues have -ve real parts;

3. Matrix B has corresponding right and left eigenvectors (w and v) to the simple

eigenvalue, 0.

Let hr be the rth component of h and

a1 =
n∑

r,i,j=1

vrwiwj
∂2hr
∂xi∂xj

(0, 0),

b1 =
n∑

r,i=1

vrwi
∂2hr
∂xi∂ξ

(0, 0).

(2.3)

By the signs of a1 and b1 we can illustrate the local dynamics of the required system around

the point 0. On the other hand, if a1 > 0 and b1 > 0, there exists a backward bifurcation

that occurs at ξ = 0.

(i) a1 > 0, b1 > 0. When ξ < 0 with | ξ |≤ 1 then the equilibrium point is LAS and ∃ a

positive unstable equilibrium point, when 0 < ξ ≤ 1, the equilibrium point is unstable

and ∃ a negative LAS equilibrium;

(ii) a1 < 0, b1 < 0. When ξ < 0 with | ξ |≤ 1 then the equilibrium point is unstable, when

0 < ξ ≤ 1, the equilibrium point is LAS and ∃ a positive unstable equilibrium;

(iii) a1 > 0, b1 < 0. When ξ < 0 with | ξ |≤ 1 then the equilibrium point is unstable and

∃ a LAS negative equilibrium , when 0 < ξ ≤ 1, the equilibrium point is stable and a

positive unstable equilibrium occurs;

(iv) a1 < 0, b1 > 0. When ξ changes from negative to positive, the equilibrium point

changes its stability and a -ve unstable equilibrium point becomes +ve and is locally

asymptotically stable (LAS).
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2.3 Methods for LAS of Equilibria

There are two standard methods for the local stability analysis around the equilibria. The

methods are discussed below:

2.3.1 Linearization

To establish the stability of x̄(t) we have to understand the behavior of solutions near x̄(t).

Consider

x = x̄(t) + ε, (2.4)

Substitute (2.4) in (2.2) and g is two times differentiable function. The expression of Taylor

series around the equilibrium gives

ẋ = ẋ(t) + ε̇ = Dg(x̄(t))ε+O(|ε|2) (2.5)

where, |.| denotes norm. Therefore,

ε̇ = Dg(x̄(t))ε+O(|ε|2) (2.6)

The above expression (2.6) represents the evaluation of orbits in the neighbourhood of x̄(t).

The solution’s behavior close to x̄(t) is obtained by the associated linear system

ε̇ = Dg(x̄(t))ε, (2.7)

Here if x̄(t) is an equilibrium then Dg(x̄(t)) = Dg(x̄) is a Jacobian matrix with constant

entries and the solution ((2.7)) through the point ε0(t) ∈ Rn at t = 0 gives

ε(t) = exp(Dg(x̄(t)))ε0, (2.8)
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Theorem 2.4. [34]. If all the eigenvalues of Dg(x) have -ve real parts then the equilibrium

x = x of (2.2) is LAS(locally asymptotically stable) and if at least one eigenvalue has

positive real part then x = x is unstable.

Example 2.1. Let we have the following ODE system

ẋ = g1(x, u) = u3 − 2x, u̇ = g2(x, u) = x2 − 4u.

Suppose x̄ = (0, 0) is the equilibrium point. The Jacobian matrix J can be expressed as

J(x, y) = Dg(x) =

∂g1
∂x

∂g1
∂u

∂g2
∂x

∂g2
∂u

 =

−2 3u2

2x −4

 ;

Evaluating J at x̄ gives

J(0, 0) =

−2 0

0 −4


Here, the eigenvalues of J(0, 0) are λ1 = −2, λ2 = −4. Since the eigenvalues have negative

real parts so the equilibrium x̄ = (0, 0) is asymptotically stable.

2.3.2 The Next Generation Operator Method

The above linearization method is applied to analyze the local stability of an equilibrium

point. But to establish the local asymptotic stability of (DFE ), another linearization

technique, which is known as next-generation method, is also used. The method was first

proposed by Diekmann and Heffernan et al.[35, 36] and applied for different epidemic

models by van den Driessche and Watmough [37].

Assume the epidemic disease model, with positive initial conditions and can be represented

as:

ẋj = g(xj) = Fj(x)− Vj(x), j = 1, . . . , n, (2.9)

where, Vj = V −j − V +
j and the function g satisfy the following properties.

Xs = {x ≥ 0|xj = 0, j = 1, . . . ,m}



Chapter 2. Preliminaries 12

is represented non-infected state variables as well as the disease-free states of the model,

where, the number of individuals of the model is denoted by x = (x1, . . . , xn)t, xi ≥ 0.

(1) if x ≥ 0, then Fj, V
+
j , V

−
j ≥ 0 for j = 1, . . . ,m,

(2) if xj = 0 then V −j = 0. Particularly, if x ∈ Xs then V −j = 0 when j = 1, . . . ,m,

(3) if Fj = 0 for j > m,

(4) if x ∈ Xs then Fj(x) = 0 and V +
j (x) = 0 when j = 1, . . . ,m,

(5) If F (x) is set to zero, then all eigenvalues of Dg(x0) have negative real part.

Here, Fj(x) represents the new infection terms in different compartments j; whereas V +
j (x)

denotes the rate of transfer of individuals into compartment j by all other means, and V −j (x)

denotes the rate of transfer of individuals out from compartment j. It is assumed that these

functions are at least two times continuously differentiable [37].

Definition 2.6. An n× n matrix such as, V is said to be an M -matrix if and only if every

off-diagonal elements of V is negative and the diagonal elements are all positive.

Lemma 2.1. (van den Driessche and Watmough [37]). If x̄ is a DFE of (2.9) and the

function g satisfy (1)-(5), then the derivatives DF (x̄) and DF (x̄) are given as

DF (x̄) =

 F 0

0 0

 , DF (x̄) =

 V 0

J3 J4

 ,

where F and V are the m×m matrices such as,

F =
[

∂Fj(x̄)

∂xk

]
, V =

[
∂Vj(x̄)

∂xk

]
with 1 ≤ j, k ≤ m

Further, F is a positive matrix and V is a non-singular M-matrix, J3andJ4 are matrices

associated with the transition terms of the epidemic model and all eigenvalues of J4 have

positive real parts.

Theorem 2.5. (van den Driessche and Watmough [37]). Let (2.9) is the disease transmission

model with g(x) satisfying properties (1)-(5). The DFE (x̄) is locally asymptotically stable

if R0 = ρ(FV −1) < 1 (where ρ is dominant eigenvalue of matrix), but unstable if R0 > 1.
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2.4 Global Asymptotic Stability (GAS)of Equilibrium

Point

If x∗ is an equilibrium that attracts all the solutions of a feasible region containing that

equilibrium then it is LAS. Otherwise, the equilibrium is globally asymptotically stable

(GAS). There are different techniques for analysing the global asymptotic stability of

equilibrium. One of the important techniques is constructed by the Lyapunov function and

LaSalle’s Invariance Principle and this is discussed below.

Figure 2.1: (2.1A) illustrating LAS and (2.1B) GAS of equilibria (Source: [33]).

2.4.1 The Lyapunov functions and LaSalle’s Invariance Principle

The Lyapunov Functions

Lyapunov functions are such functions that decrease along trajectories [38].

Theorem 2.6. [34]. Let us consider

ẋ = g (x) , x ∈ Rn. (2.10)

Suppose that x is an equilibrium of the above system (2.10) and let S : T → R is a C1

function defined on some neighborhood T of equilibrium (x) such that

1) S is positive

2) Ṡ (x) ≤ 0 in T\ {x} then the equilibrium (x) is stable.

3) Ṡ (x) < 0 in T\ {x} then the equilibrium (x) is asymptotically-stable.
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If S satisfies the above conditions is called a Lyapunov function[34, 35]. If T = Rn, then the

equilibrium (x) is GAS whenever (1) and (3) hold.

Example 2.2. [33].: Let

ẋ = 3y − 2x3,

ẏ = −3x− 2y3.

Suppose the system has a solution at (x, y) = (0, 0). Let S(x, y) = x2 + y2. It is clear that

S(0, 0) = 0 and S(x, y) > 0 in any deleted neighborhood of (0, 0). Further,

Ṡ (x) = 2xẋ+ 2yẏ

= 2x(3y − 2x3) + 2y(−3x− 2y3)

= −4(x4 + y4) < 0.

Hence, Ṡ < 0 if (x, y) 6= (0, 0). Therefore, by the above Theorem 2.6, the equilibrium solution

(0, 0) is asymptotically-stable.

Invariance Principle

Since the epidemiology models are constructed on human populations, it is necessary to

consider that associated population sizes are always positive.

Definition 2.7. [34]. Suppose S ⊂ Rn is a non empty set. Then, S is called invariant under

vector field ẋ = g(x) if for arbitrary x0 ∈ S, we get x(t, 0, x0) ∈ S ∀ t ∈ R.

If we restrict for positive times (i.e., t ≥ 0), then S is a positively-invariant set. That

means, all solutions in a positively-invariant set remain there for all time. If we go backward

in time then the set is known as negatively-invariant .

Theorem 2.7. (LaSalle’s Invariance Principle [39, 40]). Let V : Rn → R is a continuously

differentiable, positive definite, and unbounded function such that

∂V

∂x
(x− x)f(x) ≤ W (x) ≤ 0, ∀ x ∈ Rn.

Then, the equilibrium, x is GAS. The solution x(t) converges to the largest invariant set S

contained in B = {x ∈ Rn : W (x) = 0} .
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2.5 Epidemiological Preliminaries

2.5.1 The Incidence Functions

Disease incidence is defined as the number of new infections in that community is

generated per unit of time. In the disease models, the incidence is generally characterized

by an incidence function. Different types of incidence functions [41] have been used in

epidemic models.

Let X(t), Y (t) and N(t) respectively denote the number of susceptible, infected and the

total number of population at time t. Suppose the effective contact rate per person is

β(N). Then β(N)Y/N is the average number of contacts with infected individuals that

makes a susceptible individual infected at time t. Thus, the newly infected individuals

move from the susceptible individuals (X) at the rate λX, where λ = β(N)Y/N is called

the force of infection. If we consider β(N) = β, then λX is known as a standard incidence

function.

2.5.2 The Basic Reproduction Threshold

The basic reproductive threshold is used to calculate the potential of the disease to repeat

and is represented by R0. That is expressed because of the expected quantity of secondary

cases reproduced by the infection of one infected person in his or her total infectious

period. While R0 < 1, every infected person can produce on average less than one new

infected individual throughout his or her total infectious duration. In this case, the disease

will no longer persist among the population and may be eliminated. But when R0 > 1,

every infected individual during the total infectious period can be able to produce more

than one new infection among the population. In this situation, the disease can persist for

a long time among the population.

The dynamical behaviour of the disease models are generally determined by a threshold,

R0 [41]. Generally, when R0 < 1, then the infected individuals will not create large

outbreaks and the disease can eradicate (when the associated DFE is LAS. Again, if

R0 > 1 then the disease will persist ( where EEP is stable and exists). At forward
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bifurcation, R0 = 1 the DFE and an EEP exchange their stability. Figure 2.2 illustrate

forward bifurcation phenomenon.

For disease transmission models forward bifurcation exhibits, R0 < 1 is the necessary and

Figure 2.2: Forward bifurcation diagram (Source: [42]).

sufficient condition for disease elimination. We can say that the number of infectives

depends on R0.

Some studies have established that R0 < 1 is only necessary but not sufficient for disease

elimination. Again when a stable EEP exists with a stable DFE for R0 < 1 then the

backward bifurcation occurs.

Figure 2.3: Backward bifurcation diagram.(Source: [42]).
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2.6 Basic Definitions and Theorems related to optimal

control

The following definitions and necessary related theorems and results are presented from

[24]:

Definition 2.8. [24] A function m(t) is called concave on [a1, a2] when

θm(t1) + (1− θ)m(t2) ≤ m(θt1 + (1− θ)t2)

∀ 0 ≤ θ ≤ 1 and arbitrarily a1 ≤ t1, t2 ≤ a2.

Definition 2.9. [24] A function m(t) is called convex on [a1, a2] when

θm(t1) + (1− θ)m(t2) ≥ m(θt1 + (1− θ)t2)

∀ 0 ≤ θ ≤ 1 and arbitrarily a1 ≤ t1, t2 ≤ a2.

2.6.1 Method of Optimality

For an optimal control problem of ODE, generally we use u(t) for the control parameter

and the state variable is denoted by x(t). The state variable which is depends on control

parameter satisfies the following system of differential equation :

x
′
(t) = f(t, x(t), u(t)).

here, x
′

denotes derivative of the function w.r.t. to time t. Both the control parameter

(u(t)) and state variable (x(t)) contribute to the optimality problem, as the control function

changes then the behave of the solution of the differential equation is also changed. The basic

optimal control problem consists of the control parameter (u(t)) and the corresponding state

variable (x(t)) that either maximize or minimize the given objective functional. The basic
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optimal control problem can be defined as follows:

max
u

∫ t1

0

g(t, x(t), u(t))dt

subject to theconstraint x
′
(t) = f(t, x(t), u(t))

where, x(t0) = x0 and x(t1) isfree.

(2.11)

Theorem 2.8. Pontryagin’s Maximum Principle: If u∗(t) and x∗(t) are optimal pair,

then there is a piecewise differentiable adjoint variable λ(t) as

H(t, x∗, u(t), λ(t)) ≤ H(t, x∗, u∗(t), λ(t))

for each control u at time t, where the Hamiltonian H is given by

H = g(t, x(t), u(t)) + λ(t)f(t, x(t), u(t)),

and

λ
′
(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(T ) = 0.

Here, g represents the integrand of the objective function and f represents the right hand

side of the dynamical system. The optimal control variable u∗ must maximize the

Hamiltonian.

2.6.2 Existence Theorem

Several proofs are required for determining control parameters in an optimality problem.

At first, we have to prove by using theorem the existence of a control parameter of a given

system and the associated objective functional. To prove existence, we use theory from

Fleming and Rishel [44].

Theorem 2.9. Let

x̄(t) =


x1(t)

...

xn(t)

 .
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be a system of n state variables and u(t) is a control variable satisfying the differential

equation system x
′
i(t) = fi(t, xi(t), u(t)) where i = 1, . . . n, with corresponding objective

functional

MaximizeG(u) =

∫ t2

t1

(g(t, x̄(t), u(t))dt

There exists an optimal control minimizing G(u) if the conditions are hold:

(i) The system is non-empty.

(ii) The set of controls must be closed and convex.

(iii) The system of state variables must be continuous and bounded above by a linear

combination of the control and the state.

(iv) The integrand of the objective functional is convex and is bounded below by

−B1 +B1(u)χ with B1 > 0 and χ > 1.

To prove that the system of control parameters with associated state is non-empty, here we

used a result in Boyce and DiPrima ([45]., Theorem 7.1.1): and by the following theorem.

Theorem 2.10. Suppose that G1, . . . , Gn and their partial derivatives

∂G1

∂x1
, . . . ∂Gn

∂x1
, . . . , ∂Gn

∂x1
, . . . , ∂Gn

∂xn
are continuous in a feasible region Φ of t. x1x2, . . . , xn is

denoted by γ < t < η, γ1 < x1 < η1, . . . , , γn < x1 < ηn, and consider (t0, . . . , x
0
1, x

0
2, . . . , x

0
n)

be in Φ. Thus there is an interval [t, t0] < δ and ∃ a unique solution

x1 = ψ1(t), . . . , xn = ψn(t) of the differential equations system

x
′

1 = G1(t, x1, . . . , xn),

x
′

2 = G2(t, x1, . . . , xn),

...,

x
′

n = Gn(t, x1, . . . , xn), (2.12)

also satisfies the initial conditions

x1(t0) = x0
1, x2(t0) = x0

2, . . . , xn(t0) = x0
n. (2.13)
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All the numerical calculations including detecting the eigenvalues, inverse and Jacobian

matrices, are done by using Maple, Mathematica and MATLAB software. These packages

are also used for numerical simulations in this thesis.



Chapter 3

The Dynamics of Mathematical

Modeling on HBV

3.1 Introduction

Hepatitis B virus (HBV) is a part of the Hepadnaviridae family of viruses. HBV is caused

by toxins that are responsible for human liver inflammation [48]. There are different routes

for transmitting the hepatitis B virus. This disease especially spreads through physical

contact, during transfusion of blood, percutaneous and mucous membrane exposures to

infectious blood and some body fluids that contain contaminated blood and from the

affected mother to their child to born at the time of pregnancy [46, 47]. Globally, Hepatitis

B Infection is one of the most deadly infectious diseases and it is affecting the whole world

greatly [13]. It is commonly categorized as acute (when the virus persists for less than 6

months) and chronic (when the virus persists for more than 6 months). Acute hepatitis

may cure without causing any major damage to the liver whereas chronic hepatitis can

cause cirrhosis [9]. Those who have had the infection for a long time can develop chronic

infection and that gradually leads to hepatocellular carcinoma. Chronic infection puts

people at high risk of liver cancer at the late stage of liver disease [3]. So, early detection of

HBsAg among the healthy population can save many lives from the dangerous

complications of cirrhosis and hepatocellular carcinoma by proper treatment. The infection

has also been preventable by vaccination since 1982 [8, 11]. For getting the full effect of the

21
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vaccine, two or three doses are required in the life of every person.

In this chapter, we develop a deterministic model to understand the dynamics of HBV

infection at population level. The model, which incorporates the vaccination and treatment

of individuals, the re-infection of latent, carrier and recovery individuals, is rigorously

analysed to gain insight into its dynamical features [12]. We have studied the stability

analysis of disease free equilibrium (DFE ) and endemic equilibrium (EE ). Numerical

analysis of the model are carried out and presented in this chapter along with conclusion.

3.2 Formulation of the Model

To assess the transmission disease dynamics and prevalence of HBV we have designed a

deterministic model based on the model of [25]. In [25], the author considered five

epidemiological classes (Susceptible, Latent, Acute infection, Carrier and Protective

immunity) and in our model we have added the recovered and vaccinated classes. Some

studies (such as [74] and [50]) considered heterogeneous mixing with age and sexual

activity in their HBV transmission model. In [27], the author considered the model [25] to

predict chronic hepatitis B infection in New Zealand. In our model, we consider that the

latent, carrier and recovered individuals may become re-infected at any time by the contact

of HBV infected individuals. Some studies [52–55] have shown that nowadays the hepatitis

B acute infection found in newborns from infected mothers.

The total homogeneously-mixing population at time t, is denoted by N(t), is sub-divided

into six epidemiological groups; such as the susceptible individuals (X(t)), individuals who

are protective immunized by vaccination Y (t), infected but not yet infectious (latent)

individuals (L(t)), acute infected individuals (I(t)), chronic HBV carriers (C(t)) and

recovered individuals (R(t)) and so that

N(t) = X(t) + Y (t) + L(t) + I(t) + C(t) +R(t).

The susceptible population is decreased by the force of infection λ, where,

λ =
β(I + ηC)

N
. (3.1)
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In (3.1), β is the contact rate and η is modification parameter, where, 0 < η < 1 and the

infectiousness of chronic carriers is less than acute infections.

The susceptible individuals increased by the unprotective immunized newborn carriers to

carrier mothers (at a rate µω(1 − νC)), unsuccessful vaccination (at a rate (1 − σ)) and

decreased by vaccination (at a rate σ) and natural death of individuals, at the rate, µ1.

Thus the rate of change of the susceptible population is given by

dX

dt
= µω(1− νC)− λX − σX + (1− σ)Y − µ1X. (3.2)

The protective immunized individual is increased by the recruitment of successfully

immunized newborns at rate µ(1-ω)and vaccinated susceptible individuals (at a rate σ) and

decreased by unsuccessful vaccination or vaccine waning (at a rate (1-σ)) and natural

death (at a rate µ1). So the rate of change of protective immunized population is given by

dY

dt
= µ(1− ω) + σX − (1− σ)Y − µ1Y. (3.3)

Here, ν represents the portion of unvaccinated children who are born to carrier mothers.

They get infection perinatally during the birth time and enter to the latent class. ξ is the

fraction of newly infected individuals with no clinical disease symptoms. These individuals

are slow progressors and moved to latent class (L). The other fraction, 1-ξ, of the newly

infected individuals with immediate disease symptoms, known as fast progressors and

forwarded to the acute class (I). Exposed or latent individuals are decreased by the

progression (at a rate ε1) to acute HBV class by a fraction (at a rate ω1) who develop

symptoms. These individuals are also reduced by the transmission probability, β1, with

transfer rate ε2 to carrier class, by the reinfection at a rate ω2ψeλ, (where, ω2 is the

fraction of re-infected latent individuals who are detected) and by natural death (at a rate

µ1). Thus
dL

dt
= µωνC + ξλX − ω1ε1L− β1ε2L− ω2ψeλL− µ1L. (3.4)

The population of acute HBV is increased by the symptomatic infection (at the rate (1−ξ)λ)

and symptomatic latent individuals (at the rate ω1ε1). This class is also increased by the

re-infection of latent individuals (at the rate ω2ψeλ) and chronic carriers (at the rate ω3ψcλ,

where, ω3 is the portion of re-infected detected carriers). The acute HBV individuals are
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decreased by the transmission probability, β2, with the transfer rate ε3 from acute to carrier

class and by getting treatment (at the rate t1) the individuals are transmitted with the

probability, β3, from acute to recover class and by disease-related death rate, µ2. Thus the

governing equation is

dI

dt
= (1− ξ)λX + ω1ε1L+ ω2ψeλL+ ω3ψcλC − β2ε3I − β3t1I − µ2I. (3.5)

The population of chronic carriers are increased by the transfer rate, β1ε2, from latent

class and the transfer rate, β2ε3, from acute class and re-infection of recovered individuals

(at the rate ω4ψrλ, here, ω4 is the portion of re-infected detected recovered individuals).

These individuals are decreased by re-infection of carriers (at the rate ω3ψcλ) and by getting

treatment (at the rate t1), with the transmission probability, β4, from carriers to recovered

individuals. It is further reduced by natural death (at a rate µ1) and disease related death

(at the rate µ2). Hence

dC

dt
= β1ε2L+ β2ε3I − ω3ψcλC − β4t1C − µ1C − µ2C + ω4ψrλR. (3.6)

Recovery means recovery from illness but can get infected at any time. These individuals

are increased by getting treatment (at the rate t1) with transmission probabilities, β3, and

β4, from acute and carriers, respectively. But recovery rate is negligible and after some times

these individuals can get re-infection and go back to the carrier class (at the rate ω4ψrλ)

and decreased by the natural death rate, µ1. Hence

dR

dt
= β3t1I + β4t1C − ω4ψrλR− µ1R. (3.7)

Considering all the above mentioned aspects and based on the characteristics of HBV

transmission dynamics the diagram and system of non-linear differential equations of the

model are given below. The description of variables and parameters are also presented in
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Table 3.1 and Table 3.2 respectively.

dX

dt
= µω(1− νC)− λX − σX + (1− σ)Y − µ1X,

dY

dt
= µ(1− ω) + σX − (1− σ)Y − µ1Y,

dL

dt
= µωνC + ξλX − ω1ε1L− β1ε2L− ω2ψeλL− µ1L,

dI

dt
= (1− ξ)λX + ω1ε1L+ ω2ψeλL+ ω3ψcλC − β2ε3I − β3t1I − µ2I,

dC

dt
= β1ε2L+ β2ε3I − ω3ψcλC − β4t1C − µ1C − µ2C + ω4ψrλR,

dR

dt
= β3t1I + β4t1C − ω4ψrλR− µ1R.

(3.8)

Figure 3.1: Model diagram of HBV vaccination model.

The main properties of the model (3.8) are summarized below:

(i) disease can be transmited by the individuals in the latent (L), acute (I) and carrier

(C) classes;
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(ii) latent individuals show their disease symptoms (at the rate ω1) and move to the acute

class;

(iii) re-infection of latent, carrier and recovered individuals (at the rates ψeλ, ψcλ, ψrλ

respectively);

(iv) disease progression rates of the latent class and acute classes are ξλ and (1 − ξ)λ,

respectively;

(v) re-infection individuals who develop symptoms (due to re-infection of disease) into the

acute and carrier classes ;

(vi) allows for the treatment (at a rate t1), temporarily release from the disease into acute

and carrier classes and moves to recovered class and can get re-infection at any time.

The model (3.8) extends some of the previous studies in [27, 28, 30, 50, 51] by including

treatment to the infected individuals. Furthermore it extends the study [28, 30] using

standard incidence function and considering re-infection. Additionally, the model

incorporates the slow and fast progression rates of HBV disease in the latent (L) and

acutely infected (C) classes. Here we consider the unprotective immunized newborn carrier

from chronic carrier to latent class [30].

3.3 Model Analysis

Lemma 3.1. The closed set K =

{
(X, Y, L, I, C,R) ∈ R6

+ : N ≤ µ

µ1

}
is positively-invariant

with respect to the extended model (3.8).

Proof. By adding all the equations of the model (3.8), we get the rate of change of the total

population is
dN

dt
= µ− µ1N − µ1I − µ2C (3.9)

If N >
µ

µ1

then
dN

dt
< 0. Further, since

dN

dt
≤ µ − µ1N , it is clear that N(t) ≤ µ

µ1

if

N(0) ≤ µ

µ1

. Therefore, for all t > 0 all the solutions of the model with initial conditions in

K remains in K. Hence, the w-limit sets of the system (3.8) are contained in K. Thus, K is
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Variables Description

µ birth rate
ω proportion of birth rate without protective immunity
(1− ω) proportion of birth rate with protective immunity
σ vaccination rate
(1− σ) unsuccessful vaccination rate
µ1 natural mortality rate
µ2 mortality rare due to HBV
λ rate of force of infection
β effective contact rate for HBV infection
η rate of infectiousness of carrier relative to acute infections
ε1 transfer rate from latent to acute
ε2 transfer rate from latent to carrier
ε3 transfer rate from acute to carrier
β1 transmission probability from latent to carrier
β2 transmission probability from acute to carrier
β3 transmission probability from acute to recovered acquiring treatment
β4 transmission probability from carrier to recovered acquiring treatment
t1 rate of treatment
(1− ξ) fast progression rate to display immediate disease symptoms
ψeλ reinfection rate, latent individuals have reduced infection rate in comparison

to wholly susceptible individuals
ω1 fraction of latent individuals who develop symptoms are infected
ω2 a fraction of latent individuals who are re-infected
ω3 a fraction of carrier individuals who are re-infected
ω4 a fraction of recovered individuals who are re-infected

Table 3.1: Variable’s description of the model (3.8)

positively-invariant and attracting. So, the model is epidemiologically and mathematically

well-proposed within the region K [62].

Disease Free Equilibrium (DFE):

DFE (ε0) is given by

ε0 = (X∗, Y ∗, L∗, I∗, C∗, R∗) = (
µ(1− σ) + µµ1ω

µ1 + µ2
1

,
µσ + µµ1(1− ω)

µ1 + µ2
1

, 0, 0, 0, 0). (3.10)

The stability analysis of the DFE, ε0, is done by the method of next generation [49]. The

matrices F and V are as follows:
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Parameters Values Reference

µ 0.0247 [61]
ω [0,1] [28]
(1− ω) 0.995 [61]
σ 0.98 [61]
(1− σ) 0.3 [variable]
µ1 0.008 [61]
µ2 0.31 [61]
β 0.95-20.49 [28]
η [0,1] [variable]
ε1

6
365

[28]
ε2

8
365

[variable]
ε3

4
365

[28]
β1 0.1 [variable]
β2 0.1 [variable]
β3 0.99 [variable]
β4 0.98 [variable]
t1 0.025 [28]
ξ 0.67 [variable]
ψe, ψc, ψr 10 [variable]
ω1 0.045 [variable]
ω2 0.4 [variable]
ω3 0.6 [variable]
ω4 0.6 [variable]
ν 0.11 [28]

Table 3.2: Values of the parameters of the model (3.8)

F =


0 ξβX∗

N
ξβηX∗

N

0 (1−ξ)βX∗
N

(1−ξ)βηX∗
N

0 0 0

 ,

V =


k1 0 −µων
−ω1ε1 k2 0

−β1ε2 −β2ε3 k3

 ,
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where, k1 = ω1ε1 + β1ε2 + µ1, k2 = β2ε3 + β3t1 + µ2 and k3 = β4t1 + µ1 + µ2

and X∗ = µ(1−σ)+µµ1ω

µ1+µ21
. The reproduction number, R0, is defined by R0 = ρ(FV −1), where

R0 =
βX∗(1− ξ)k1k3 + βX∗ηβ2(1− ξ)k1 + βX∗ξηk4 + βX∗ξω1k3 +Nµωνk4

Nk1k2k3 + β1(1− ξ)βX∗µων (3.11)

with,

k1 = ω1ε1 + β1ε2 + µ1, k2 = β2ε3 + β3t1 + µ2, k3 = β4t1 + µ1 + µ2, k4 = β1k2 + ω1β2.

Hence, the following result is established from Theorem 2 of [49] .

Lemma 3.2. If R0 < 1, then the DFE, ε0 is locally asymptotically stable (LAS) otherwise

unstable (i.e. if R0 > 1).

The epidemiological implication of the above statement (Lemma 3.2) is, the spread of HBV

infection burden may be managed within the community (while the threshold quantity,

R0 < 1) if the initial sizes of the populations are in the basin of attraction of the DFE

(varepsilon0) of the model.

Here we consider the HBV model with re-infection in some stages. Usually, the model with

re-infections is often shown the backward bifurcation (where a stable DFE and a stable

EEP co-exists) when R0 < 1. It is also an indication to determine whether or not the

model (3.8) exhibits this dynamical feature [12]. The result is explored here.

Theorem 3.1. The model undergoes a backward bifurcation at R0 = 1 if the inequality

(3.15) holds.

Proof. By using the centre manifold theory [56] we can proof the theorem. For convenience

letX = x1, Y = x2, L = x3, I = x4, C = x5 andR = x6, so thatN = x1+x2+x3+x4+x5+x6.

Further, by introducing the vector notation x = (x1, x2, x3, x4, x5, x6)T , the model (3.8) can
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be written in the form dx
dt

= F (x), where F = (f1, f2, f3, f4, f5, f6)T , as follows:

dx1

dt
= f1 = µω(1− νx5)− β(x4 + ηx5)x1

x1 + x2 + x3 + x4 + x5 + x6

− σx1 + (1− σ)x2 − µ1x1,

dx2

dt
= f2 = µ(1− ω) + σx1 − (1− σ)x2 − µ1x2,

dx3

dt
= f3 = µωνx5 +

ξβ(x4 + ηx5)x1

x1 + x2 + x3 + x4 + x5 + x6

− ω1ε1x3 − β2ε2x3

− ω2ψeβ(x4 + ηx5)x3

x1 + x2 + x3 + x4 + x5 + x6

− µ1x3

dx4

dt
= f4 =

(1− ξ)β(x4 + ηx5)x1

x1 + x2 + x3 + x4 + x5 + x6

+ ω1ε1x3 − β2ε3x4 − β3t1x4

+
ω2ψeβ(x4 + ηx5)x3

x1 + x2 + x3 + x4 + x5 + x6

+
ω3ψcβ(x4 + ηx5)x5

x1 + x2 + x3 + x4 + x5 + x6

− µ2x4,

dx5

dt
= f5 = β1ε2x3 + β2ε3x4 −

ω3ψcβ(x4 + ηx5)x5

x1 + x2 + x3 + x4 + x5 + x6

− β4t1x5 +
ω4ψrβ(x4 + ηx5)x6

x1 + x2 + x3 + x4 + x5 + x6

− (µ1 + µ2)x5,

dx6

dt
= f6 = β3t1x4 + β4t1x5 −

ω4ψrβ(x4 + ηx5)x6

x1 + x2 + x3 + x4 + x5 + x6

− µ1x6.

(3.12)

where, λ = β(x4+ηx5)
N

. The Jacobian matrix of the system (3.12) evaluated at the DFE (ε0)

is

J(E0) =



−(σ + µ1) 1− σ 0 −A −(µων +B) 0

σ −(1− σ + µ1) 0 0 0 0

0 0 −k1 ξA µων + βB 0

0 0 ω1ε1 (1− ξ)A− k2 (1− ξ)B 0

0 0 β1ε2 β2ε3 −k3 0

0 0 0 β3t1 β4t1 −µ1


,

where A =
βx∗1
x∗1+x∗2

; B =
βηx∗1
x∗1+x∗2

; k1 = ω1ε1 + β1ε2 + µ1; k2 = β2ε3 + β3t1 + µ2

and k3 = β4t1 + µ1 + µ2.

Now when R0 = 1, consider a bifurcation parameter (β). Hence solving (3.11) for R0 = 1,

so we have

β = β∗ =
N∗k1k2k3 + β1x

∗
4µων(1− ξ)

x∗4k1k3(1− ξ) + x∗4ηk1β2(1− ξ) + x∗4ξηk4 + x∗4ξω1k3 +N∗µωνk4
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where k1 , k2 , k3 , k4 , x
∗
4 and N

∗ are mentioned earlier in Section 3.3. The linearized

system of (3.12) with β = β∗, has a zero eigenvalue. Therefore, the Centre Manifold theory

[56] can be used to analyze the dynamics of (3.12) near β = β∗.

Eigenvectors of J(E0)|β=β∗

We have to find the eigenvalues for analysing the dynamics of (3.12) at DFE. The jacobian

matrix has a right eigenvector of the form: V=(v1, v2, v3, v4, v5, v6)T , where,

v1 = 0,

v2 = 0,

v3 =
ω1ε1v4 + β1ε2v5

k1

,

v4 = free,

v5 = free,

v6 = = 0

and a left eigenvector of the form: W=(w1, w2, w3, w4, w5, w6)T ,

where,

w1 =
((1− σ) + µ1)w2

σ
,

w2 = free,

w3 =
ξAw4 + (µων + ξB)w5

k1

,

w4 = free,

w5 = free,

w6 =
β3t1w4 + β4t1w5

µ1

Computations of a and b

Using Theorem in [60], a and b are defined by

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

(3.13)
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For the partial derivatives for a is given by:

a =
6∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

,

=
−2β∗(w5η + w4)

(x∗1 + x∗2)2
[(1− ξ)(v4w5x

∗
1 + v4w2x

∗
1 + v4w4x

∗
1 + v4w3x

∗
1

+ v4w6x
∗
1 + v4w1x

∗
2) + (x∗1 + x∗2)(v4w5ω3ψc − v5w5ω3ψc + v4w3ω2ψe

+ v5w6ω4ψr − v3w3ω2ψe)− v3w5ξx
∗
1 − v3w2ξx

∗
1 − v3w4ξx

∗
1 − v3w1ξx

∗
2

+ v3w6ξx
∗
1 + v3w3ξx

∗
1],

(3.14)

from which it can be shown that a > 0 if

B1 > B2 (3.15)

where, B1 = v3ξx
∗
1(w3 + w6) + (x∗1 + x∗2)(v4w5ω3ψc + v4w3ω2ψe + v5w6ω4ψr) ,

B2 = v4x
∗
1[(1− ξ)(w1 + w2 + w3 + w4 + w5 + w6)] + v3ξx

∗
1(w2 + w4 + w5) + v3w1ξx

∗
2

+ (x∗1 + x∗2)(v5w5ω3ψc + v3w3ω2ψe).

For the sign of b it can be shown that

b =
6∑

k,i=1

vkwi
∂2fk
∂xi∂β∗

=
x∗1[v3ξ + (1− ξ)v4](w5η + w4)

x∗1 + x∗2
> 0 .

Therefore, at R0 = 1 we expect that the transformed system of the model (3.8) undergoes

backward bifurcation. This analysis is summarised below.

Theorem 3.2. The model (3.8) exhibits backward bifurcation at R0 = 1 whenever B1 > B2.
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Figure 3.2: Backward Bicurcation diagram of HBV vaccination model.

In the absence of re-infection terms (i.e. when ψe = ψc = ψr = 0), the backward bifurcation

co-efficient, a in the expression (3.14) reduces to

a =
−2β(w5η + w4)

(x∗1 + x∗2)2
[(v4x

∗
1(1− ξ) + v3ξx

∗
1)(w2 + w3 + w4 + w5 + w6)

+ w1(v4x
∗
2(1− ξ) + v3ξx

∗
2)] < 0,

All the parameters and the eigenvectors w and v are positive or zero and 0 < ξ < 1 so, in

the absence of re-infection the model will not have backward bifurcation at R0 = 1.

Lemma 3.3. In the absence of re-infection (when ψe = ψc = ψr = 0), the model (3.8) does

not undergo backward bifurcation at R0 = 1.
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3.4 Global Stability analysis of DFE

From the above Lemma we can say that the DFE, E0, of the model (3.8), is

globally-asymptotically stable (GAS) if R0 < 1 and ψe = ψc = ψr = 0. This is explored

below.

Theorem 3.3. The DFE, E0, of the model (3.8) with ψe = ψc = ψr = 0, is GAS in K if

R0 < 1.

Proof. Let us consider the following Lyapunov function

F = f1L+ f2I + f3C

where,

f1 = ω3k3 + ηω1β2 + ηβ1k2,

f2 = K1k3 − β1µων + ηk1β2,

f3 = µωνω1 + ηk1k2

Now

Ḟ = f1L̇+ f2İ + f3Ċ,

= f1[µωνC + ξλX − ω1ε1L− β1ε2L− µ1L] + f2[(1− ξ)λX + ω1ε1L− β2ε3I − β3t1I − µ2I]

+ f3[β1ε2L+ β2ε3I − β4t1C − µ1C − µ2C],

=
I

N
[Nk1k2k3 + βX∗µων(1− ξ)](

βX∗(1− ξ)k1k3 + βX∗ηβ2(1− ξ)k1 + βX∗ξηk4 + βX∗ξω1k3 +Nµωνk4

Nk1k2k3 + β1(1− ξ)βX∗µων
− 1

)
+

1

N
ηC[Nk1k2k3 + βX∗µων(1− ξ)](

βX∗(1− ξ)k1k3 + βX∗ηβ2(1− ξ)k1 + βX∗ξηk4 + βX∗ξω1k3 +Nµωνk4

Nk1k2k3 + β1(1− ξ)βX∗µων
− 1

)
,

= [k1k2k3 +
βX∗

N
β1(1− ξ)µων][R0 − 1](I + ηC),

Thus, Ḟ < 0 if R0 < 1 with Ḟ = 0 if and only if I = C = 0, where, λ = β[I+ηC]
N

= 0. So

from the LaSalle’s Invariance Principle[40], it is clear that I → 0, C → 0 as t→∞.
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3.5 Existence of Endemic Equilibrium Point (EEP) for

a special case

For the existence and stability of positive endemic equilibrium point (EEP) of the model

(3.8), where, any infectious component may be non-zero and we consider the case of no

re-infection (i.e., ψe = ψc = ψr = 0).

Let E1 = (X∗∗, Y ∗∗, L∗∗, I∗∗, C∗∗, R∗∗) represents any arbitrary endemic equilibrium of the

model (3.8) with ψe = ψc = ψr = 0, where,

X∗∗ =
x0

R0

Y ∗∗ =
1

(1− σ + µ1)2
[µ(1− ω) +

x0σ

R0

]

L∗∗ =
µ(1− σ + ωµ1)[R0 − 1]

R0(1− σ + µ1)

[
β2µων(1− ξ) + k2k3ξ + µωνk4(1− ξ)

k1k2k3 + µωνk1β2(1− ξ)

]
I∗∗ =

µ(1− σ + ωµ1)[R0 − 1]

R0(1− σ + µ1)

[
k1k3(1− ξ) + ξω1k3 + µωνk4(1− ξ)

k1k2k3 + µωνk1β2(1− ξ) + µωνβ1(1− ξ)

]
C∗∗ =

µ(1− σ + ωµ1)[R0 − 1]

R0(1− σ + µ1)

[
k1β2(1− ξ) + ξk4 + µωνk4(1− ξ)

k1k2k3 + µωνk1β2(1− ξ)

]
R∗∗ =

β3

µ1

I∗∗ +
β4

µ1

C∗∗.

(3.16)

So, we have positive endemic equilibrium points only where R0 > 1. At the endemic steady

state, λ∗∗ is given by

λ∗∗ =
β(I∗∗ + ηC∗∗)

N∗
. (3.17)

Lemma 3.4. The model (3.8) with ψe = ψc = ψr = 0 has a unique endemic equilibrium, E1,

whenever R0 > 1.

3.6 Local Stability analysis of EEP for a special case

The local stability of the unique EEP, E1, will now be explored for the special case where the

disease-related mortality rate µ2 = 0 is negligible, no fast progression disease symptoms (i.e.,
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Figure 3.3: Illustrates the total number of infected individuals for R0 = 0.8680 < 1,
where, β = 0.95 and other parameter values are given in Table 3.2.

Figure 3.4: Illustrates the total number of infected individuals for R0 = 2.3339 > 1,
where, β = 1.59 and other parameter values are given in Table 3.2.

ξ = 1) and re-infection does not occur (so that, ψe = ψc = ψr = 0). Using the substitution
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X = N∗ − Y − L− I − C −R and ξ = 1 in the model (3.8), the reduced model is:

dY

dt
= µ(1− ω) + σ[N∗ − Y − L− I − C −R]− (1− σ)Y − µ1Y,

dL

dt
= µωνC +

β(I + ηC)

N
[N∗ − Y − L− I − C −R]− ω1ε1L− β2ε2L− µ1L,

dI

dt
= ω1ε1L− β2ε2I − β3t1I,

dC

dt
= β1ε2L+ β2ε3I − β4t1C − µ1C,

dR

dt
= β3t1I + β4t1C − µ1R,

(3.18)

We have easily shown that the system has a positive unique EEP, E2 = E1|µ2=ψe=ψc=ψr=0,ξ=1,

whenever R01 > 1. We claim the following:

Theorem 3.4. If R01 > 1 then the reduced model has a LAS positive unique endemic

equilibrium point, E2.

Proof. To proof of the above theorem here we consider the technique in [62] (see also [12,

58, 63]), which is known as Krasnoselskii sub-linearity trick. This approach showing that

the linearization of the system (3.18), around the equilibrium E2, has solutions of the form

Z̄(t) = Z̄0e
θt, (3.19)

Around the equilibrium, E2, substitute (3.19) in the system of linearization of (3.18) we have

θZ1 = (−b− σ)Z1 − σ(Z2 + Z3 + Z4 + Z5),

θZ2 = −a1Z1 + (−a1 − k1)Z2 + (a2 − a1)Z3 + (µων + ηa2 − a1)Z4 − a1Z5,

θZ3 = ω1Z2 − k2Z3,

θZ4 = β1Z2 + β2Z3 − k3Z4,

θZ5 = β3Z3 + β4Z4 − µ1Z5.

(3.20)

where, b = 1 − σ + µ1, ω1ε1 = ω1, β1ε2 = β1, β2ε3 = β2, β3t1 = β3, β4t1 = β4, k1 =

ω1 + β1 + µ1, k2 = β2 + β3, k3 = β4 + µ1, a1 = β(I+ηC)
N

, a2 = βX
N

At first, consider all the negative terms in the last three equations of the system (3.20) and

shift them to the left hand sides of the equations. Solving these equations of (3.20) and
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substituting the result into the remaining equations and simplifying,

Z1[1 + F1(θ)] + Z2[1 + F2(θ)] =
a2

k1

Z3 +
µων + ηa2

k1

Z4,

Z3[1 + F3(θ)] =
ω1

k2

Z2,

Z4[1 + F4(θ)] =
β1

k3

Z2 +
β2

k3

Z3,

Z5[1 + F5(θ)] =
β3

µ1

Z3 +
β4

µ1

Z4,

(3.21)

where,

F1(θ) =
θ + σ

b
+
a1

k1

,

F2(θ) =
θ

b
+
θ + a1

k1

+ [
σ

b
+
a1

k1

][
ω1

θ + k2

+
β1(θ + k2) + ω1β2

(θ + k3)(θ + k2)
] +

β1ω1(θ + k3) + β1β4(θ + k2) + ω1β2β4

(θ + k3)(θ + k2)(θ + µ1)
,

F3(θ) =
θ

k2

,

F4(θ) =
θ

k3

,

F5(θ) =
θ

µ1

,

(3.22)

with,

M =



0 0 0 0 0

0 0 a2
k1

µων+ηa2
k1

0

0 ω1

k2
0 0 0

0 β1
k3

β2
k3

0 0

0 0 β3
µ1

β4
µ1

0



,

Here, the notation M(Z̄)i for i = 1, 2, 3, 4, 5 represents the ith coordinate of the vector M(Z̄).

The matrix M has positive or zero elements and E2 satisfies E2 = ME2. Furthermore, if the
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system (3.21) has a solution Z̄, then there exists a minimal positive real number s such that

|| Z̄ ||≤ sE2, (3.23)

where, || Z̄ ||= (|| Z1 ||, || Z2 ||, || Z3 ||, || Z4 ||, || Z5 ||) with the lexicographic order, and

|| · || is a norm in C.

We need to prove Re(θ) < 1. Suppose that Re(θ) ≥ 0. Now we have two cases: θ = 0 and

θ 6= 0. At first assume the case (i.e., θ = 0). Then, (3.20) is a homogeneous linear system of

Zi (i = 1, 2, 3, 4, 5). The determinant of the system (3.20) evaluated at E2,

M= −A1 + µ1(b+ σ)(k1k2k3 − µωνk4)

[
R01

X∗

N∗
− 1

]
, (3.24)

where, A1 = bµ1a1k4 + ba1ω1β3k3 + ba1µ1k2k3 + ba1µ1ω1k3 + ba1β4k4 and k1k2k3−µωνk4 > 0

(we proved in section 3.3).

It can be shown that X∗

N∗
= 1

R01
and then M< 0. Consequently, the system (3.20) can only

have the trivial solution Z̄ = 0̄ (which corresponds to the DFE, E0). Now considering the

case θ 6= 0. In this case, Re(Fi(θ)) ≥ 0 (i = 1, 2, 3, 4, 5) since, by assumption, Re(θ) ≥ 0. It

is easy to see that this implies | 1 + Fi(θ) |> 1 for all i. Define F (θ) = min | 1 + Fi(θ) |> 1

; (for i = 1, 2, 3, 4, 5). Then, F (θ) > 1. Hence, s
F (θ)

< s. The minimality of s implies that

|| Z̄ ||> s
F (θ)
E2. On the other hand, taking norms of both sides of the third equation of

(3.21), and using the fact that the matrix M is non-negative, gives

F (θ) || Z3 ||≤M(|| Z ||)3 ≤ s(M || ε2 ||)3 ≤ sI∗∗. (3.25)

Then we have || Z3 ||≤ s
F (θ)

I∗∗, which contradicts our assumption that Re(Fi(θ)) ≥ 0,

therefore only Re(θ) < 0. Hence the endemic equilibrium, E2, is locally asymptotically

stable (i.e. LAS) for R01 > 1.
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3.7 Global Stability analysis of EEP for a special case

The global asymptotic stability of EEP, E2, of the reduced model (3.18) is considered for a

special case when after taking vaccine some people get complete immunity. At this situation,

putting σ = 1 into the reduced model (3.18), and using the substitution β0 = β
N∗

, it can be

shown that the reproduction threshold of the reduced model (3.18) with ξ = 1 and σ = 1,

denoted by R02, is given by

R02 =
ηβ0X

∗k4 + µωνk4 + β0X
∗ω1k3

k1k2k3

, (3.26)

where X∗, k1, k2, k3 are defined in Section 3.3. Furthermore, using the same technique given

in Section 3.4, it can be shown that the reduced system (3.18), where, σ = 1, has a unique

EEP, of the form

E3 = E2|(1−σ)=0 = (X∗∗, Y ∗∗, L∗∗, I∗∗, C∗∗, R∗∗),

where, X∗∗ > 0, Y ∗∗ > 0, L∗∗ > 0, I∗∗ > 0, C∗∗ > 0, R∗∗ > 0 whenever R02 > 1.

Theorem 3.5. The unique EEP, E3, of the reduced model (3.18) when σ = 1, is globally

asymptotic stable (GAS) in K \ K0 if R02 > 1.

Proof. Let σ = 1 and R02 > 1. Let the non-linear Lyapunov function is:

L =

(
X −X∗∗ −X∗∗ln X

X∗∗

)
+

(
L− L∗∗ − L∗∗ln L

L∗∗

)

+
β0X

∗∗[(µ1 + β4) + ηβ2]

(µ1 + β4)(β2 + β3)

(
I − I∗∗ − I∗∗ln I

I∗∗

)

+
β0ηX

∗∗

µ1 + β4

(
C − C∗∗ − C∗∗ln C

C∗∗

)
,

(3.27)
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Now Lyapunov derivative is:

L̇ =

(
1− X∗∗

X

)
Ẋ +

(
1− L∗∗

L

)
L̇+

β0X
∗∗[(µ1 + β4) + ηβ2]

(µ1 + β4)(β2 + β3)

(
1− I∗∗

I

)
İ +

β0ηX
∗∗

µ1 + β4

(
1− C∗∗

C

)
Ċ,

=

(
1− X∗∗

X

)
[µωνC∗∗ + β0I

∗∗X∗∗ + β0ηC
∗∗X∗∗ + σX∗∗ + µ1X

∗∗ − µωνC − β0IX

− β0ηCX − σX + µ1X] +

(
1− L∗∗

L

)
[µωνC + β0IX + β0ηCX − ω1L− β1L− µ1L]

+
β0X

∗∗[(µ1 + β4) + ηβ2]

(µ1 + β4)(β2 + β3)

(
1− I∗∗

I

)
[ω1L− β2I − β3I] +

β0ηX
∗∗

µ1 + β4

(
1− C∗∗

C

)
[β1L+ β2I − β4C − µ1C],

= µωνC∗∗ + β0I
∗∗X∗∗ + β0ηC

∗∗X∗∗ + σX∗∗ + µ1X
∗∗ − σX − µ1X − µωνC∗∗

X∗∗

X
− β0I

∗∗X∗∗
X∗∗

X

− β0ηC
∗∗X∗∗

X∗∗

X
− σX∗∗X

∗∗

X
− µ1X

∗∗X
∗∗

X
+ µωνC

X∗∗

X
+ β0IX

∗∗ + β0ηCX
∗∗ + σX∗∗ + µ1X

∗∗

− (ω1 + β1 + µ1)L− µωνCL
∗∗

L
− β0IX

L∗∗

L
− β0ηCX

L∗∗

L
+ (ω1 + β1 + µ1)L∗∗

+
β0ω1

β2 + β3

[LX∗∗ − LX∗∗ I
∗∗

I
]− β0IX

∗∗ + β0I
∗∗X∗∗ +

ηω1β0β2

(µ1 + β4)(β2 + β3)
[LX∗∗ − LX∗∗ I

∗∗

I
]

+
ηβ0β2

µ1 + β4

[I∗∗X∗∗ −X∗∗I] +
β0β1η

µ1 + β4

[LX∗∗ − LX∗∗C
∗∗

C
] +

β0β2η

µ1 + β4

[IX∗∗ − IX∗∗C
∗∗

C
]

− β0ηCX
∗∗ + β0ηC

∗∗X∗∗,

= µωνC∗∗ + β0I
∗∗X∗∗ + β0ηC

∗∗X∗∗ + σX∗∗ + µ1X
∗∗ − σX − µ1X − µωνC∗∗

X∗∗

X
− β0I

∗∗X∗∗
X∗∗

X

− β0ηC
∗∗X∗∗

X∗∗

X
− σX∗∗X

∗∗

X
− µ1X

∗∗X
∗∗

X
− β0I

∗∗X∗∗
X∗∗

X

C

C∗∗
− β0ηCX

∗∗X
∗∗

X
+ µωνC∗∗

C

C∗∗
X∗∗

X

+ β0I
∗∗X∗∗

C

C∗∗
X∗∗

X
+ β0ηC

∗∗X∗∗
C

C∗∗
X∗∗

X
+ σX∗∗ + µ1X

∗∗ − µωνC∗∗ L
L∗∗
− β0I

∗∗X∗∗
L

L∗∗

− β0ηC
∗∗X∗∗

L

L∗∗
− µωνCL

∗∗

L
− β0IX

L∗∗

L
− β0ηCX

L∗∗

L
+ µωνC∗∗ + β0I

∗∗X∗∗ + β0ηC
∗∗X∗∗

+
β0I

∗∗

L∗∗
[LX∗∗ − LX∗∗ I

∗∗

I
] + β0I

∗∗X∗∗ +
β0ηC

∗∗

L∗∗
[LX∗∗ − LX∗∗ I

∗∗

I
] +

β0ηC
∗∗

I∗∗
[I∗∗X∗∗ −X∗∗I]

+
β0ηC

∗∗

L∗∗
[LX∗∗ − LX∗∗C

∗∗

C
] +

β0ηC
∗∗

I∗∗
[IX∗∗ − IX∗∗C

∗∗

C
] + β0ηC

∗∗X∗∗,
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= σX∗∗[2− X

X∗∗
− X∗∗

X
] + µ1X

∗∗[2− X

X∗∗
− X∗∗

X
] + β0I

∗∗X∗∗[3− X∗∗

X
− L

L∗∗
I∗∗

I
− X

X∗∗
L∗∗

L

I

I∗∗
]

+ β0ηC
∗∗X∗∗[4− X∗∗

X
− L

L∗∗
C∗∗

C
− I

I∗∗
C∗∗

C
− X

X∗∗
L∗∗

L

C

C∗∗
+

L

L∗∗
− L

L∗∗
I∗∗

I
]

+ µωνC∗∗[2− X∗∗

X
+

C

C∗∗
X∗∗

X
− L

L∗∗
− L∗∗

L
],

= σX∗∗[2− X

X∗∗
− X∗∗

X
] + µ1X

∗∗[2− X

X∗∗
− X∗∗

X
] + µωνC∗∗[2− L

L∗∗
− L∗∗

L
]

+ β0I
∗∗X∗∗[3− X∗∗

X
− L

L∗∗
I∗∗

I
− X

X∗∗
L∗∗

L

I

I∗∗
] + β0ηC

∗∗X∗∗[4− X∗∗

X
− L

L∗∗
I∗∗

I
− I

I∗∗
C∗∗

C
− X

X∗∗
L∗∗

L

C

C∗∗
],

Since the arithmetic mean exceeds the geometric mean, then it follows that

2 − X

X∗∗
− X∗∗

X
≤ 0,

2 − L

L∗∗
− L∗∗

L
≤ 0,

3 −X
∗∗

X
− L

L∗∗
I∗∗

I
− X

X∗∗
L∗∗

L

I

I∗∗
≤ 0,

4 −X
∗∗

X
− L

L∗∗
I∗∗

I
− I

I∗∗
C∗∗

C
− X

X∗∗
L∗∗

L

C

C∗∗
≤ 0,

Again, from the above expression we have,

β0ηC
∗∗X∗∗

[
L

L∗∗
− L

L∗∗
C∗∗

C

]
+ µωνC∗∗

[
−X

∗∗

X
+

C

C∗∗
X∗∗

X

]
= β0ηC

∗∗X∗∗
L

L∗∗

(
1− C∗∗

C

)
− µωνC∗∗X

∗∗

X

(
1− C

C∗∗

)

Here, if we consider C
C∗∗
≤ 1, then the sign of µωνC∗∗X

∗∗

X

(
1− C

C∗∗

)
is positive and the sign

of β0ηC
∗∗X∗∗ L

L∗∗

(
1− C∗∗

C

)
is negative. So that L̇ < 0 for R02 > 1. Thus, using L (Lyapunov

function) and the LaSalle’s Invariance Technique [40], every solutions of the reduced model

(3.18) tends to E3 as t→∞ when R02 > 1.

3.8 Numerical Illustrations and Discussions

In this section, we have presented some graphical representations using parameter values from

Table 3.2. In Figure 3.5, prevalence slowly decreases with vaccination, when R0 = 0.8595
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and also decreases without vaccination, when R0 = 0.8611. In Figure 3.6, prevalence is very

high when R0 = 1.1204 in the absence of vaccination and prevalence is gradually increasing

when R0 = 1.1101 in the presence of vaccination. In Figure 3.7, total infection decreases

when R0 = 0.8611 in the absence of vaccination and also decreases and reduces to zero when

R0 = 0.8595 in the presence of vaccination. In Figure 3.8, total infection is increased without

vaccination when R0 = 1.1204 and with vaccination, at the beginning disease increasing and

smoothly increases when R0 = 1.1101. So that, it is clear that the vaccine has a positive

impact for the reduction of infection in comparison to the case when the vaccination is not

used.

Figure 3.5: The figure illustrates the prevelence in the presence and absence of
vaccination for R0 < 1.

Figure 3.6: Simulation of the model (3.8) shows the prevalence considering the presence
and absence of a vaccine for R0 > 1.
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Figure 3.7: The total number of infected individuals considering the presence and absence
of a vaccine for R0 < 1.

Figure 3.8: Total number of infected individuals considering the presence and absence
of a vaccine for R0 > 1.

3.9 Summary of Analysis

In this chapter, a new deterministic HBV model among population is formulated. Qualitative

as well as quantitative analysis have done rigorously. We can summarize some of the results

of the study as follows:

(i) The model has a locally-asymptotically stable disease free equilibrium (Lemma 3.2)

when the associated basic reproduction number R0 < 1. By Lyapunov function and

LaSalle Invariance Principle, the DFE is GAS whenever R0 < 1.

(ii) The model has a locally stable unique endemic equilibrium point whenever R0 > 1.

And EEP is GAS where the vaccine is fully effective (Theorem 3.5).
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(iii) The model exhibits backward bifurcation when R0 < 1.

(iv) When there is no re-infection, the model does not undergo backward bifurcation.



Chapter 4

HBV Dynamics in vivo

4.1 Introduction

Here, we have presented a mathematical model of immune responses to HBV infection. This

study focuses on how to control the infection by using immune responses, such as innate

and adaptive immunity. There may be little evidence that humoral immunity performs

a major role in viral clearance from infected hosts. But cell-mediated immune responses,

especially cytotoxic T-lymphocytes (CTLs) are very vital for viral clearance [64, 65]. At

the time of HBV infection, hepatocellular damage and viral clearance both occure by the

host immune responses. But in this process, the innate immune response does not play a

significant role. The adaptive immune response such as, cytotoxic T lymphocytes (CTLs),

contributes the liver injuries related to HBV infection. In an unvaccinated person, the

hepatitis B virus causes the chronic diseases. Nowadays alum adsorbed hepatitis B vaccine is

used for prophylactic immunization and that effectively increases humoral immune response.

It is evident that cell-mediated immune response is also a major component to control

the disease burden in vivo [66]. HBV infection is still the leading killer among diseases.

Our mathematical model describes the production of antibodies depends on the life span of

short-lived and chronically infected cells. We expect that sufficient levels of antibodies, either

pre-present in vaccinated people, can control the infection as well as the viral clearance. But,

while the antibody levels are not sufficient, cell-mediated immune responses are needed to

control the virus. Also antibodies work in late stages to reduce viral clearance [67]. Immune

46
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responses such as cell-mediated and humoral both are very important for HBV infection

clearance. Even though it is evident that the immune responsibilities for clearing viruses are

not fully understood.

The goal of this chapter is to understand better the dynamics of HBV in the infected host and

what is the role of the immune system on HBV disease dynamics in vivo. Some mathematical

models [68, 69] have been constructed and used to study the transmission disease dynamics

of HBV in vivo in the population level . Here, we explore the dynamics of hepatitis B in vivo

through mathematical formulation. This chapter is organised by giving model formulation,

basic properties, local stability analysis of virus-free equilibrium point (VFE) and virus

present equilibrium point (VPE). Numerical simulations are presented at the end of the

chapter.

Figure 4.1: Graphical representation of HBV in host (Source:[66]).

4.2 Formulation of Model

The formulation of the model is based on the characteristics of transmission dynamics of

HBV in vivo. In this model, the total host population at time t, is represented by N(t).

The host population, N(t) is sub-individual into six epidemiological groups: the uninfected

target host cells H(t), the short-lived infected cells I(t), the chronically infected cells C(t),

the concentration of free virus particles V (t), the density of HBV specific antibodies A(t),

which is humoral immune response and the density of CTLs cells Z(t), produced by the

cell-mediated immune response, so

N(t) = H(t) + I(t) + C(t) + V (t) + A(t) + Z(t).
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The uninfected host cell is reduced by infection, which can be acquired by effective contact

with free virus particles, at a rate λ, where,

λ =
βV

1 + αV
(4.1)

where, β is the rate of infection and α > 0 is saturation incidence rate.

The uninfected target cell (H) is increased by a constant recruitment rate (Π) of uninfected

healthy cells. It is decreased by the rate λ(1 − σ) and σ (0 ≤ σ ≤ 1) is the vaccination

efficacy. Short-lived infected hepatocytes (I) can be cured at a rate ρ and move to the target

host cell (H). This class is also reduced by the natural death of cells at a rate µ. So

dH

dt
= Π− µH − (1− σ)βHV

1 + αV
+ ρI

The short-lived infected cells (I) is generated by the infection rate of uninfected healthy

host cells at β(1 − σ)(1 − ξ), where, 0 < ξ < 1 is the fraction of infection depends on the

short-lived and chronically infected cells. This class is decreased by the death rate (δ), cured

rate (ρ), the cell-mediated immune response for short-lived infected cells at a rate p and by

the progression rate (η). So the governing equation is

dI

dt
=

(1− ξ)(1− σ)βHV

1 + αV
− δI − ρI − pIZ − ηI

The chronically infected cells (C) is produced by the infection of healthy cells at a rate

β(1 − σ)ξ and the progression rate of short-lived infected cells at η. They are further

decreased by the death rate (a) and the cellular immune response for chronically infected

cells at the rate p. Therefore

dC

dt
=
ξ(1− σ)βHV

1 + αV
− aC − pCZ + ηI

The free virus particles (V ) is generated by the number of virus production during the

life span of short-lived and chronically infected cells. Note that, the chronically infected

cells produce much smaller amounts of viruses and die at a slower rate than the short-lived

infected cells [71]. Further, it is reduced by the virus clearance (at the rate γ), by the

antibody neutralization rate q and the response of cell-mediated immune system for virus
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particles at the rate p. Hence

dV

dt
= NIδI +NCaC − γV − qV A− pV Z

The humoral immune response produced by the production rate of antibodies (αA), where,

αA is proportional to the number of short-lived and chronically infected cells. It is also

decreased by the loss of the antibodies (at a rate µA). Thus

dA

dt
= αA(I + C)− µAA

The cell-mediated immune response consists of constant recruitment of CTL cells from the

thymus (at a rate b) and also expanded by the viral antigen which is derived from the infected

cells (at a rate c1(I +C)), where, c1 is CTL response stimulation rate. This is decreased by

the loss of CTL (at a rate µZ). Therefore, the governing equation is

dZ

dt
= b+ c1(I + C)− µZZ

Considering the characteristics of HBV transmission within the host, the non-linear

differential equations of the system (description of variables and parameters are given in

Table 4.1) are given below:

dH

dt
= Π− µH − (1− σ)βHV

1 + αV
+ ρI,

dI

dt
=

(1− ξ)(1− σ)βHV

1 + αV
− δI − ρI − pIZ − ηI,

dC

dt
=
ξ(1− σ)βHV

1 + αV
− aC − pCZ + ηI,

dV

dt
= NIδI +NCaC − γV − qV A− pV Z,

dA

dt
= αA(I + C)− µAA,

dZ

dt
= b+ c1(I + C)− µZZ.

(4.2)

The main features of the model (4.2) are:

(i) Cell-mediated immune response against the infection of HBV: for infected cells and for

virus particle (at a rate p);
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(ii) Humoral immune response against the infection of HBV (at a rate q),where q is the

antibody nutralization rate;

(iii) Two viral ifected classes: one short-lived infected class (I) and the other chronically

infected class(C);

(iv) HBV transmitted from cell to cell (at a rate β);

(v) Short-lived infected cells becomes chronically infected cells (at a rate η);

(vi) Production rate of antibody (at a rate αA) which is proportional to the short-lived and

chronically infected cells;

(vii) HBV specific CTL stimulation (at a rate c1);

(viii) HBV infected hepatocytes can be cured (at a rate ρ) and move to the target healthy

cells [47];

The model (4.2), in the absence of immune response (p = q = αA = b = c1 = 0), reduces to

the following:

dH

dt
= Π− µH − (1− σ)βHV

1 + αV
+ ρI,

dI

dt
=

(1− ξ)(1− σ)βHV

1 + αV
− δI − ρI − ηI,

dC

dt
=
ξ(1− σ)βHV

1 + αV
− aC + ηI,

dV

dt
= NIδI +NCaC − γV.

(4.3)

4.3 Model without Immune Response

4.3.1 Positivity of solutions of the Reduced Model (4.3)

For the epidemiologically well proposed, we have to prove that the solutions of the reduced

model (4.3), with nonnegative initial condition, will remain nonnegative for t > 0.



Chapter 4. Model for HBV Dynamics in vivo 51

Parameters Description Baseline values

π Constant rate of production of healthy host cells 10mm−3d−1 [69]
µ Natural death rate of healthy cells 0.01d−1 [69]
σ The vaccination efficacy [0,1] [assumed]
β The infection rate 0.001mm3d−1 [69]
µZ The lost rate of CTL cells 0.1d−1 [69]
αA Production rate of antibodies 0.9 [assumed]
ρ Cured rate of infected hepatocytes 0 [67]
µA The lost rate of antibodies 0.43d−1 [assumed]
ξ The fraction of infection depends on the short lived

and chronically infected cells [0,1] [assumed]
δ short-lived infected cell’s death rate 0.0494d−1 [67]
η Progression rate of short lived to chronically infected cell [0,1] [assumed]
p Cell-mediated immune response 0.005mm3d−1 [69]
a chronically infected cell’s death rate 0.1d−1 [69]
γ The free virus clearance rate 0.67d−1 [67]
q The antibody neutralization rate 0.01mm3d−1 [69]
b Constant recruitment rate of CTL cells from the thymus 0.12 [assumed]
NI The average number of virus particles produced during the

life span of short lived infected cell 10 [69]
NC The average number of virus particles produced during the

life span of chronically infected cell 5 [69]
c1 HBV specific CTL stimulation rate 0.5 [assumed]
H0 Target host cells at initial time 13.6× 106 per ml [67]
I0 Short-lived infected cells at initial time 0 [67]
C0 Chronically infected cells at initial time 0 [assumed]
V0 Free virus particle at initial time 0.33 per ml [67]

Table 4.1: Parameter description of the model (4.2)

Theorem 4.1. Let us consider the initial condition is H(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0 and

V (0) ≥ 0. Then, the solutions (H, I, C, V ) of the reduced model (4.3) are positive or zero

for all time t > 0.

Proof. Assume that, T = sup{t > 0 : H(t) > 0, I(t) > 0, C(t) > 0, V (t) > 0}. Then for

T > 0, the first equation of (4.3) can be written as follows:

dH

dt
+ [λ(t) + µ]H = Π + ρI(t), where λ(t) =

(1− σ)βV (t)

1 + αV (t)
.
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Thus,

d

dt

{
H(t) exp

[∫ T

0

λ(u)du+ µT

]}
= (Π + ρI(t) exp

[∫ T

0

λ(u)du+ µT

]
,

so that,

H(T ) exp

[∫ T

0

λ(u)du+ µT

]
−H(0) =

∫ T

0

(Π + ρ

∫ x

0

I(u)du exp

[∫ x

0

λ(u)du+ µx

]
.

Hence,

H(T ) = H(0) exp

{
−
[∫ T

0

λ(u)du+ µT

]}
+ exp

{
−
[∫ T

0

λ(u)du+ µT

]}
×
∫ T

0

(Π + ρ

∫ x

0

I(u)du exp

[∫ x

0

λ(u)du+ µx

]
> 0.

Similarly, it can also be proved that I(t) > 0, C(t) > 0 and V (t) > 0 for all time t > 0.

Therefore, all the solutions of the reduced model (4.3) remains non-negative for all initial

conditions.

4.4 Existence and Stability analysis of Equilibria

4.4.1 Local stability analysis of virus-free equilibrium (VFE)

The reduced model (4.3) has a VFE of the form,

E0 = (H∗, I∗, C∗, V ∗) =

(
Π

µ
, 0, 0, 0

)
. (4.4)

For analysing the stability of E0, here we consider the next generation operator method [37].

Considering the new infection terms and transfer terms from the model equations, we have

the following F and Q matrices, respectively,
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F =



0 0 βΠ(1−ξ)(1−σ)
µ

0 0 βΠξ(1−σ)
µ

0 0 0


,

and,

Q =



δ + ρ+ η 0 0

−η a 0

−NIδ −NCa γ


.

Thus,

R0 = ρ(FQ−1) =
βΠ(1− σ)(ξCδ + ξNCρ+ ηNC +NIδ(1− ξ))

µ(δ + ρ+ η)γ
, (4.5)

Hence, the following result is established [37].

Lemma 4.1. If R0 < 1 then the VFE, E0, of the reduced model (4.3) of the form given in

(4.4) is locally-asymptotically stable (LAS), and otherwise unstable (i.e. if R0 > 1).

The above threshold quantity, R0, is the basic reproduction number of the model. The

epidemiological meaning of Lemma 4.1 is that HBV infection in vivo can be controlled when

R0 < 1. To establish that, whenever R0 < 1, the viral clearance is independent of the

sub-populations of the model. For which it is very important to show that the VFE is

globally-asymptotically stable (GAS).

4.4.2 Global stability analysis of VFE

Theorem 4.2. The VFE, E0, of the reduced model (4.3), is globally asymptotically stable

(GAS) for R0 < 1.
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Proof. Consider the following Lyapunov function

F = f1I(t) + f2C(t) + f3V (t),

where,

f1 =
ηNC + δNI

δ + ρ+ η
,

f2 = NC ,

f3 = 1,

now Lyapunov derivative is

Ḟ = f1İ(t) + f2V̇C(t) + f3L̇V (t),

= f1[
(1− ξ)(1− σ)βH(t)V (t)

1 + αV (t)
− δI(t)− ρI(t)− ηI(t)]

+ NC [
ξ(1− σ)βH(t)V (t)

1 + αV (t)
− aC(t) + ηI(t)]

+ 1[NIδI(t) +NCaC(t)− γV (t)],

=
(ηNC +NIδ)(1− ξ)(1− σ)βΠV

µ(δ + ρ+ η)(1 + αV )
− δI(ηNC +NIδ)

δ + ρ+ η

− ρI(ηNC +NIδ)

δ + ρ+ η
− ηI(ηNC +NIδ)

δ + ρ+ η
+
ξNC(1− σ)βπV

µ(1 + αV )
+ ηINC +BIδI − γV,

=
1

µ(δ + ρ+ η)(1 + αV )
× [βΠV (1− σ)(ηNC +NIδ)− βΠV ξ(1− σ)(ηNC +NIδ)

− γV µ(δ + ρ+ η)(1 + αV ) + ξNC(1− σ)βΠV (δ + ρ+ η)],
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which can be simplified to

Ḟ =
γV

1 + αV

[
ξNC(1− σ)βΠδ + ξNC(1− σ)βΠρ+ βΠ(1− σ)ηNC + βΠ(1− σ)NIδ − βΠξ(1− σ)NIδ

µ(δ + ρ+ η)γ

− (1 + αV )

]

=
γV

1 + αV

[
R0 − 1

]
− γV

1 + αV
αV

≤ γV

1 + αV
(R0 − 1).

Here, all the parameters and variables of the model are positive for all time t > 0 (Theorem

4.1), so it follows that Ḟ < 0 for R0 < 1 and only if V (t) = 0 then Ḟ = 0. Thus, we have

V → 0 as t→∞ (by using Lasalle Invariance Principle [40]).

The epidemiological significance of Theorem 4.2 is that the threshold, R0 is less than unity

(i.e. R0 < 1) is necessary and sufficient condition for HBV clearance from an infected host.

Figure 4.2 reveals the solution trajectories of the reduced model (4.3) for R0 < 1, which

shows convergence of the total infected hepatocytes cells to VFE, E0(Theorem 4.2).

Figure 4.2: Figure illustrates the total density of the infected hepatocytes cells, where,
R0 = 0.8521 < 1, β = 0.01 and other parameters are taken from Table 4.1.
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4.5 Existence of virus present equilibrium point (VPE)

In this section, we want to show the existence and stability analysis of positive virus present

equilibria of the model (4.3) in the absence of immunity (p = q = αA = b = c1 = 0). Let

E1 = (H∗∗, I∗∗, C∗∗, V ∗∗) be any arbitrary endemic equilibrium point. Consider

λ∗∗ =
βV ∗∗

1 + αV ∗∗
. (4.6)

which is the forces of infection of the reduced model (4.3) at steady-state. To find the

conditions for the existence of the VPE, we have to solve the model equations (4.3) in terms

of force of infection, which gives

H∗∗ =
Π + ρI∗∗

µ+ (1− σ)λ∗∗
,

I∗∗ =
(1− ξ)(1− σ)λ∗∗H∗∗

(δ + ρ+ η)
,

C∗∗ =
[ξ(1− σ)(δ + ρ+ η) + η(1− ξ)(1− σ)]λ∗∗H∗∗

a(δ + ρ+ η))
,

V ∗∗ =
NIδ(1− ξ)(1− σ) +NC [{ξ(1− σ)(δ + ρ+ η) + η(1− ξ)(1− σ)}]λ∗∗H∗∗

γ(δ + ρ+ η)
.

(4.7)

Substituting (4.7) into the expression for λ∗∗ in (4.6), gives

λ∗∗(1 + αV ∗∗) = βV ∗∗. (4.8)
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Substituting the non-zero VPE in the above expression and simplify:

λ∗∗ [γ(δ + ρ+ η) + ((1− σ) {ξNCδ + ξNCρ+NCη +NIδ(1− ξ)})αλ∗∗H∗∗]

= β {(1− σ)(1− ξ)NIδ + ξNCδ(1− σ) + ξNCρ(1− σ) +NCη(1− σ)}λ∗∗H∗∗

⇒ λ∗∗ [γ(δ + ρ+ η) + [(1− σ) {ξNCδ + ξNCρ+NCη +NIδ(1− ξ)}]αλ∗∗H∗∗]

= β {(1− σ) {ξNCδ + ξNCρ+NCη +NIδ(1− ξ)}}λ∗∗H∗∗

⇒

[
1 +

(1− σ) {ξNCδ + ξNCρ+NCη +NIδ(1− ξ)}
γ(δ + ρ+ η)

αλ∗∗H∗∗

]

=
β {(1− σ) {ξNCδ + ξNCρ+NCη +NIδ(1− ξ)}}

γ(δ + ρ+ η)
λ∗∗H∗∗

⇒ αR0

β
λ∗∗

2

+ λ∗∗ −R0λ
∗∗ = 0

⇒ λ∗∗ =
β

α

(
1− 1

R0

)
> 0.

Lemma 4.2. The model (4.3) with (p = q = αA = b = c1 = 0) has a positive unique

endemic equilibrium, E1 when R0 > 1.

4.6 Local Stability analysis of VPE

Using the substitutionH∗∗ = N∗∗−I−C−V in the model (4.3) with p = q = αA = b = c1 = 0

we get the reduced model:

dI

dt
=

(1− ξ)(1− σ)βV

1 + αV
[N∗∗ − I − C − V ]− (δ + ρ+ η)I,

dC

dt
=
ξ(1− σ)βV

1 + αV
[N∗∗ − I − C − V ]− aC + ηI,

dV

dt
= NIδI +NCaC − γV,

(4.9)

To show the system has a positive unique VEP, E1, whenever R0 > 1, we claim the following:

Theorem 4.3. If R0 > 1 then the reduced model has a LAS positive unique endemic

equilibrium, E1.
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Proof. Here we use Krasnoselskii sub-linearity trick [58, 63]. We linearilize the system (4.9)

around the eqilibrium E1 and obatin the given of solution

Z̄(t) = Z̄0e
θt, (4.10)

Substitute the above solution form in the system (4.9) around the equilibrium E1 and we get

the following linear system

θZ1 = (−ma1 − k1)Z1 + (−ma1)Z2 +m(a2 − a1)Z3,

θZ2 = (−na1 + η)Z1 + (−na1 − a)Z2 + n(a2 − a1)Z3,

θZ3 = NIδZ1 +NCaZ2 − γZ3.

(4.11)

where, m = (1− ξ)(1− σ), n = ξ(1− σ), k1 = δ + ρ+ η, a1 = βV ∗∗

1+αV ∗∗
, a2 = βH∗∗

1+αV ∗∗
.

Solving the equations of (4.11) and after simplification

[1 +G1(θ)]Z1 + [1 +G2(θ)]Z2 =

[
η

a
+
na2NIδ

a(θ + γ)
+

ma2NIδ

k1(θ + γ)

]
Z1

+

[
na2NC

(θ + γ)
+
ma2NCa

k1(θ + γ)

]
Z2,

[1 +G3(θ)]Z3 =
NIδ

γ
Z1 +

NCa

γ
Z2.

(4.12)

where,

G1(θ) =
θ

k1

+
ma1

k1

+
ma1NIδ

k1(θ + γ)
+
na1

a
+
na1NIδ

a(θ + γ)
,

G2(θ) =
θ

a
+
na1

a
+
na1NC

θ + γ
+
ma1

k1

+
ma1NCa

k1(θ + γ)
,

G3(θ) =
θ

γ
.

(4.13)
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with,

M =



ma2NIδ
γk1

ma2NCa
γk1

0

η
a

+ na2NIδ
γa

na2NC

γ
0

NIδ
γ

NCa
γ

0


,

The above form M(Z̄)i (with i = 1, 2, 3) represents the ith coordinate of the vector M(Z̄).

Here, M has positive or zero entries, and the endemic equilibrium E1 = (H∗∗, I∗∗, C∗∗, V ∗∗)

satisfies the expression E1 = ME1. Since E1 is positive, so system (4.12) has a solution Z̄, if

only there exists a minimal positive real number s such that

|| Z̄ ||≤ sE1, (4.14)

where, || Z̄ ||= (|| Z1 ||, || Z2 ||, || Z3 ||) with the lexicographic order, and consider the norm

in C.

Now, we want to establish that Re(θ) < 0. Let us assume Re(θ) ≥ 0. Then we have the

cases θ = 0 and θ 6= 0. For θ = 0 the system (4.11) is a linear with Zi, where i = 1, 2, 3.

Determinant of (4.11) evaluated at E1, is given by

M= A+ γ(δ + ρ+ η)(R0M)
µ

Π
> 0. (4.15)

where, A = (1− ξ)(1− σ)Mδa+ (1− σ)ξδγM + (1− σ)ξργM > 0 and

M = aγ(δ+ρ+η)
(1−σ){γa(1−ξ)+NIδa(1−ξ)+(ξδ+ξρ+η)(γ+NCa)} > 0.

From the above expression (4.15), it is clear that M> 0. So, the system (4.11) has only the

trivial solution Z̄ = 0̄ which is also the VFE. Next, we consider θ 6= 0. Since Re(θ) ≥ 0, in

this case, Re(Gi(θ)) ≥ 0 for i = 1, 2, 3. Thus | 1 + Gi(θ) |> 1 for all i. If

G(θ) = min | 1 + Gi(θ) |> 1 for i = 1, 2, 3. then G(θ) > 1. Hence, s
G(θ)

< s. For the real

positive number s implies || Z̄ ||> s
G(θ)
E1. On the other hand, taking norms in the third
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equation of (4.11) and using the non-negative M matrix gives

G(θ) || Z3 ||≤M(|| Z ||)3 ≤ s(M || E1 ||)3 ≤ sV ∗∗. (4.16)

Then, it follows from the above inequality that || Z3 ||≤ s
G(θ)

V ∗∗, which contradicts our

assumption that Re(Gi(θ)) ≥ 0 . Therefore, Re(θ) < 0, so that if R0 > 1, then E1, is

LAS.

From the epidemiological aspects of Theorem 4.3, we can say that the disease will persist in

the infected body ifR0 > 1. HenceR0 > 1 is the necessary condition for the HBV persistence

within the infected hepatocytes cells for our reduced model (4.3). Figure (4.3) portrays the

solution trajectories of the reduced model (4.3) for R0 > 1, which shows convergence of the

healthy cells, infected hepatocytes cells and virus cells density to the VPE, E1.

Figure 4.3: Plot illustrates the density of healthy and infected hepatocytes cells and
virus particles using different initial conditions, where R0 = 1.89 > 1 and β = 0.05. The
corellation of the virus concentration of (0-7) days and (8-15) days after acute infection.

The parameters values are given in Table 4.1.

4.7 Global stability analysis of VPE

Theorem 4.4. If R0 > 1 then the unique VPE, E1, of the reduced model (4.3) is globally

asymptotically stable (GAS).
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Proof. Let us consider the following non-linear Lyapunov function:

L =

(
H −H∗∗ −H∗∗ln H

H∗∗

)
+ a1

(
I − I∗∗ − I∗∗ln I

I∗∗

)
+ a2

(
C − C∗∗ − C∗∗ln C

C∗∗

)
+ a3

(
V − V ∗∗ − V ∗∗ln V

V ∗∗

)
,

(4.17)

where, a1 = ρ
k1
, a2 = 0 and a3 = 0. with Lyapunov derivative given by,

L̇ =

(
1− H∗∗

H

)
Ḣ +

ρ

k1

(
1− I∗∗

I

)
İ

=

(
1− H∗∗

H

)[
µH∗∗ +

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗
− ρI∗∗ − µH − (1− σ)βHV

1 + αV
+ ρI

]

+
ρ

k1

(
1− I∗∗

I

)[
(1− ξ)(1− σ)βHV

1 + αV
− k1I

]

= µH∗∗ +
(1− σ)βH∗∗V ∗∗

1 + αV ∗∗
− ρI∗∗ − µH − (1− σ)βHV

1 + αV
+ ρI

− µ(H∗∗)2

H
− (1− σ)β(H∗∗)2V ∗∗

H(1 + αV ∗∗)
+
ρH∗∗I∗∗

H
+ µH∗∗ +

(1− σ)βH∗∗V

1 + αV

− ρH∗∗I

H
+

ρ

k1

[
(1− ξ)(1− σ)βHV

1 + αV
− k1I −

(1− ξ)(1− σ)βHV I∗∗

I(1 + αV )
+ k1I

∗∗

]
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗
− (1− σ)βHV

1 + αV
− (1− σ)β(H∗∗)2V ∗∗

H(1 + αV ∗∗)
+
ρH∗∗I∗∗

H

+
(1− σ)βH∗∗V

1 + αV
− ρH∗∗I

H
+
ρ(1− ξ)(1− σ)βHV

k1(1 + αV )
− ρ(1− ξ)(1− σ)βHV I∗∗

I(1 + αV )
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗
−

[
µH∗∗ +

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗
− ρI∗∗

]
+ µH∗∗

− ρI∗∗ − (1− σ)β(H∗∗)2V ∗∗

H(1 + αV ∗∗)
+
ρH∗∗I∗∗

H
+

(1− σ)βH∗∗V

1 + αV
− ρH∗∗I

H
+ ρI∗∗ − ρk1(I∗∗)2

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
− (1− σ)βH∗∗V ∗∗

1 + αV ∗∗
· H

∗∗

H
+ ρI∗∗ · H

∗∗

H
+

(1− σ)βH∗∗V

1 + αV
− ρI · H

∗∗

H

+ ρI∗∗ − ρk1(I∗∗)2

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
− (1− σ)βH∗∗V ∗∗

1 + αV ∗∗
· H

∗∗

H
+ ρI∗∗ · H

∗∗

H
+

[
Π− µH∗∗ + ρI∗∗

]
· H

∗∗

H

− ρI · H
∗∗

H
+ ρI∗∗ − ρk1I

∗∗ · I
∗∗

I
,
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= 2µH∗∗ − µH − µ(H∗∗)2

H
+

[
−Π + µH∗∗ + +

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗

]
· I
∗∗

I
· H

∗∗

H

− ρI · H
∗∗

H
+ ρI∗∗ − ρk1I

∗∗ · I
∗∗

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+ ρI∗∗ · I

∗∗

I
· H

∗∗

H
−

[
−Π + µH∗∗ +

(1− σ)βH∗∗V ∗∗

1 + αV ∗∗

]
· H

∗∗

H

+ ρI∗∗ − ρk1I
∗∗ · I

∗∗

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+ ρI∗∗ · I

∗∗

I
· H

∗∗

H
− ρI∗∗ · H

∗∗

H
+ ρI · I

∗∗

I
− ρk1I

∗∗ · I
∗∗

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+ ρI∗∗ · I

∗∗

I
· H

∗∗

H
− ρI∗∗ · H

∗∗

H
+

[
−Π + µH∗∗

+
(1− σ)βH∗∗V ∗∗

1 + αV ∗∗

]
· I
∗∗

I
− ρk1I

∗∗ · I
∗∗

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
+ ρI∗∗ · I

∗∗

I
· H

∗∗

H
− ρI∗∗ · H

∗∗

H
+ ρI∗∗ · I

∗∗

I
− ρk1I

∗∗ · I
∗∗

I
,

= 2µH∗∗ − µH − µ(H∗∗)2

H
− ρI∗∗ · H

∗∗

H

(
1− I∗∗

I

)
− ρI∗∗ · I

∗∗

I

(
k1 − 1

)
,

< µH∗∗
(

2− H

H∗∗
− H∗∗

H

)
.

The following expression occurs when the arithmetic mean exceeds the geometric mean.

2 − H

H∗∗
− H∗∗

H
≤ 0,

Here, L̇ < 0 for R0 > 1. Hence, by using LaSalle’s Invariance Principle [40], we can say that

every solution of the reduced model (4.9) approaches to E1 as t→∞ for R0 > 1.

From the epidemiological view point, Theorem 4.4 implies (whenR0 > 1) that HBV infection

will persist within the infected host.

In summary, we have the following:

(i) If R0 < 1 then the reduced model (4.3) has a VFE, E0, which is GAS;

(ii) The reduced model (4.3) has a unique VPE, E1.
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(iii) If R0 > 1 then the reduced model (4.3) has a positive unique VPE, E1 and the infection

will persist within the infected host.

4.8 Analysis of the Model with Immune Response

4.8.1 Basic Properties of the Model (4.2)

4.8.1.1 Positivity of solutions

To prove the following theorem here we use the same approach described in Subsection 4.3.1.

Theorem 4.5. Let us consider the initial condition be H(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0,

V (0) ≥ 0, A(0) ≥ 0 and Z(0) ≥ 0. Then, the solutions (H, I, C, V,A, Z) of the model (4.2)

are positive for all time t > 0.

4.8.2 Existence and Stability analysis of Equilibria

4.8.2.1 Local Stability analysis of VFE (with immune response)

The model (4.2) has a VFE of the form

E01 = (H∗, I∗, C∗, V ∗, A∗, Z∗) =

(
Π

µ
, 0, 0, 0, 0, 0

)
. (4.18)

Using the next generation method the matrices F1 and Q1 from the model (4.2) are

respectively given by:
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F1 =



0 0 βΠ(1−ξ)(1−σ)
µ

0 0

0 0 βΠξ(1−σ)
µ

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



,

and,

Q1 =



δ + ρ+ η 0 0 0 0

−η a 0 0 0

−NIδ −NCa γ 0 0

0 0 0 µA 0

0 0 0 0 µZ



,

so that,

R01 = ρ(F1Q
−1
1 ) = R0. (4.19)

Hence, it follows, from Theorem 2 of [37], that:

Lemma 4.3. If R01 < 1 then the model (4.2) has a LAS VFE, E01 and otherwise unstable.

4.8.2.2 Global stability of VFE (with immune response)

Theorem 4.6. The VFE, E01, of the model (4.2), is GAS if R01 < 1.
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Proof. Consider the following Lyapunov function

F = f1I(t) + f2C(t) + f3V (t) + f4A(t) + f5Z(t),

where,

f1 =
NIδ +NCη

δ + ρ+ η
,

f2 = NC ,

f3 = 1,

f4 = 0,

f5 = 0,

Now Lyapunov derivative with respect to t is

Ḟ = f1İ(t) + f2Ċ(t) + f3V̇ (t) + f4Ȧ(t) + f5Ż(t),

=
NIδ +NCη

δ + ρ+ η

[
(1− ξ)(1− σ)βHV

1 + αV
− (δ + ρ+ η)I − pIZ

]
+NC

[
ξ(1− σ)βHV

1 + αV
− aC − pCZ + ηI

]

+ 1

[
NIδI +NCaC − γV − qAV − pV Z

]

Which can be simplified according to the approach in Subsection 4.4.2 to prove the following

result.

Ḟ =
γV

1 + αV

[
R01 − 1

]
− γV

1 + αV
· αV

<
γV

1 + αV

[
R01 − 1

]

Since all the parameters and variables of the model are positive for all time t > 0 (Theorem

4.1), therefore Ḟ < 0 for R01 < 1 and Ḟ = 0 if and only if V (t) = 0. Thus, by using the

Lasalle Invariance Principle [40], it is clear that V → 0 as t→∞. Thus, for arbitrary ε > 0

there exists a te > 0 such that if t > te, then I(t) < ε, C(t) < ε, V (t) < ε,A(t) < ε and

Z(t) < ε. Consequently, for t > te we get the following expression from the first equation of
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the model (4.2)

H(t) ≥ Π

λε+ µ
. (4.20)

where λ = βHV
1+αV

so that, by a comparison theorem [72], since ε > 0 is very small so let ε→ 0

in (4.20) gives

lim inf
t→∞

H(t) =
Π

µ
,

so that,

lim
t→∞

H(t) =
Π

µ
.

Hence,

lim
t→∞

(H(t), I(t), C(t), V (t), A(t), Z(t)) =

(
Π

µ
, 0, 0, 0, 0, 0

)
= E01.

Therefore, every solution of the model (4.2) approaches to the VFE, E01, as t → ∞, for

R01 < 1.

The result of Theorem 4.6 implies that if R01 < 1 then HBV infection will be removed from

the infected host.

4.8.2.3 Existence of VPE for a special case

For the existence of VPE we consider a special case where the response of cell-mediated

immunity is very low due to alum adsorb HBsAg vaccine (i.e. p = 0) and the response of

humoral immunity (q) is comparatively better than the response of cell-mediated immunity

[66]. Let,

E2 = (H∗∗∗, I∗∗∗, C∗∗∗, V ∗∗∗, A∗∗∗, Z∗∗∗),

be any arbitrary positive equilibrium point of (4.2). Assume that

λ∗∗∗1 =
βV ∗∗∗

1 + αV ∗∗∗
, λ∗∗∗2 = qA∗∗∗, (4.21)
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where λ∗∗∗1 be the force of infection. Solving the model equations (4.2) we have the following

VPE with immune response. The VPE are

H∗∗∗ =
Π(δ + ρ+ η)

µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)
,

I∗∗∗ =
Πλ∗∗∗1 (1− σ)(1− ξ)

µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)
,

C∗∗∗ =
Πλ∗∗∗1 (1− σ)(ξδ + ξρ+ η)

a {µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)}
,

V ∗∗∗ =
Πλ∗∗∗1 {(1− σ)(NCξρ+NCξδ +NCη +NIδ(1− ξ))}
(γ + λ∗∗∗2 ) {µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)}

,

A∗∗∗ =
αAΠλ∗∗∗1 {(1− σ)((η + ξρ+ ξδ) + a(1− ξ))}
a {µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)}µA

,

Z∗∗∗ =
λ∗∗∗1 bµ(1− σ)(δ + ρ+ η)[ba(δ + ξρ+ η) + c1Π {(η + ξδ + ξρ) + a(1− ξ)}]

{µ(δ + ρ+ η) + λ∗∗∗1 (1− σ)(δ + ξρ+ η)}µZ
.

(4.22)
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Substituting (4.22) into the expression for λ∗∗∗1 in (4.21), gives,

λ∗∗∗1 =
βV ∗∗∗

1 + αV ∗∗∗

⇒ λ∗∗∗1 (1− σ)(γδaµA + γρξaµA + αΠNCξρaµA + αΠNCηaµA + αΠNCξδaµA − αΠNIδξaµA

+ αΠNIδaµA + qαAΠρξ + qαAΠη + δqαAΠξ − qαAΠaξ + qαAΠa+ γηaµA) + γµaµA(δ + ρ+ η)

= βΠaµA {(1− σ)(NCξρ+NCξδ +NCη +NIδ(1− ξ))}

⇒ λ∗∗∗1 (1− σ)[γaµA(δ + η + ξρ) + qαAΠa(1− ξ) + αΠNIδaµA(1− ξ)

+ αΠNCaµA(η + ξδ + ξρ) + qαAΠ(η + ξδ + ξρ)]

= βΠaµA {(1− σ)(NCξρ+NCξδ +NCη +NIδ(1− ξ))} − γµaµA(δ + ρ+ eta)

⇒ λ∗∗∗1 (1− σ)[γaµA(δ + η + ξρ) + (1− ξ)(qαAΠa+ αΠNIδaµA)

+ (η + ξδ + ξρ)(αΠNCaµA + qαAΠ)] = aµA[βΠ(1− σ)(NCξρ+NCξδ +NCη +NIδ(1− ξ))

− γµ(δ + ρ+ η)]

⇒ λ∗∗∗1

[
(1− σ)(γaµA(δ + η + ξρ) + (1− ξ)(qαAΠa+ αΠNIδaµA) + (η + ξδ + ξρ)(αΠNCaµA

+ qαAΠ))

]
− aµA

[
γ(δ + ρ+ η)µ

βΠ(1− σ)(NCξρ+NCξδ +NCη +NIδ(1− ξ))
γ(δ + ρ+ η)η

− 1

]
= 0

⇒ λ∗∗∗1

[
(1− σ)(γaµA(δ + η + ξρ) + (1− ξ)(qαAΠa+ αΠNCδaµA) + (η + ξδ + ξρ)(αΠNCaµA

+ qαAΠ))

]
− aµA

[
γ(δ + ρ+ η)µ(R01 − 1)

]
= 0

⇒ a1λ
∗∗∗
1 − a0 = 0

⇒ λ∗∗∗1 =
a0

a1

> 0.

(4.23)

since a0 = aµA[γ(δ + ρ+ η)µ(R01)] > 0 where R01 > 1 and

a1 = (1− σ)[γaµA(δ + η + ξρ) + (1− ξ)(qαAΠa+ αΠNIδaµA) + (η + ξδ + ξρ)(αΠNCaµA +

qαAΠ)] > 0.

The model (4.2) with immunity system has a positive unique virus present equilibrium

(VPE), when R01 > 1.

Theorem 4.7. If R01 > 1 then the model (4.2) has a positive unique VPE, E2.
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4.9 Local Stability of virus present equilibrium point

(VPE) with immune response

Now the local stability analysis of the positive unique VEP, E2 is established for a case p = 0

in the model (4.2). Using the substitution H∗∗∗ = N∗∗∗ − I − C − V − A− Z in the model

(4.2) we get the following reduced model:

dI

dt
=

(1− ξ)(1− σ)βV

1 + αV
[N∗∗∗ − I − C − V − A− Z]− (δ + ρ+ η)I,

dC

dt
=
ξ(1− σ)βV

1 + αV
[N∗∗ − I − C − V − A− Z]− aC + ηI,

dV

dt
= NIδI +NCaC − γV − qV A,

dA

dt
= αA(I + C)− µAA,

dZ

dt
= b+ c1(I + C)− µZZ,

(4.24)

It can be easily shown that the system has a positive unique VEP, E2 whenever R01 > 1.

Theorem 4.8. The unique virus present equilibrium point, E2, of the reduced model is

locally asymptotically stable when R01 > 1.

Proof. The proof is similar to theorem 4.3. This approach shows that the linearization of

the system (4.24), around E2 has the following form of solutions

Z̄(t) = Z̄0e
θt, (4.25)

Substitute the above solution into the linearized system of (4.24), around E2, we get the

reduced following linear system

θZ1 = (−ma1 − k1)Z1 + (−ma1)Z2 +m(a2 − a1)Z3 −ma1Z4 −ma1Z5,

θZ2 = (−na1 + η)Z1 + (−na1 − a)Z2 + n(a2 − a1)Z3 − na1Z4 − na1Z5,

θZ3 = NIδZ1 +NCaZ2 − (γ + qA)Z3 − qV Z4,

θZ4 = αAZ1 + αAZ2 − µAZ4,

θZ5 = c1Z1 + c1Z2 − µZZ5.

(4.26)
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where, m, n, k1, a1 and a2 are mentioned earlier in section 4.6. Solving and simplifying the

equations of (4.26):

[1 + F1(θ)]Z1 + [1 + F2(θ)]Z2 + [1 + F3(θ)]Z3 =
η +NIδ

k1

Z1 +
NCa

a
Z2 +

a2(m+ n)

γ
Z3,

[1 + F4(θ)]Z4 =
αA
µA

Z1 +
αA
µA

Z2,

[1 + F5(θ)]Z5 =
c1

µZ
Z1 +

c1

µZ
Z2.

(4.27)

where,

F1(θ) =
θ

k1

+
a1(m+ n)

k1

+
qV ∗∗∗αA
k1(θ + µA)

+
αAa1(m+ n)

k1(θ + µA)
+
c1a1(m+ n)

k1(θ + µZ)
,

F2(θ) =
θ

a
+
a1(m+ n)

a
+
qV ∗∗∗αA
a(θ + µA

+
αAa1(m+ n)

a(θ + µZ)
+
c1a1(m+ n)

a(θ + µZ)
,

F3(θ) =
θ

γ
+
qA∗∗∗

γ
+
a1(m+ n)

γ
,

F4(θ) =
θ

µA
,

F5(θ) =
θ

µZ
.

(4.28)

with,

R =



η
k1

0 a2
a1

0 0

η+NIδ
k1

NC
a2(m+n)

γ
0 0

NIδ
γ

NCa
γ

0 0 0

αA

µA

αa

µA
0 0 0

c1
µZ

c1
µZ

0 0 0



,

The above matrix R(Z̄)i for i = 1, 2, 3, 4, 5 represents the ith coordinate of the vector R(Z̄).

It is clear that all entries of the matrix R are positive and E2 satisfies E2 = ME2. Hence, for
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the solution, Z̄ of (4.27) there exists a minimal positive real number l

|| Z̄ ||≤ lE2, (4.29)

where, || Z̄ ||= (|| Z1 ||, || Z2 ||, || Z3 ||, || Z4 ||, || Z5 ||) with the lexicographic order. Our aim

is to prove Re(θ) < 0. Let us consider Re(θ) ≥ 0. There are two cases: θ = 0, θ 6= 0.

If θ = 0 then the linear system (4.27) is homogeneous. The determinant of the system (4.27)

evaluated at E2 is

M= aµZ(1− ξ)f1 + µZf2 {ηξ(δ + ρ)} −R < 0. (4.30)

where, f1 = µANIδ − αAqV ∗∗∗ < 0, f2 = aµANC − αAqV ∗∗∗ < 0 and

R = αAµA(1− σ)qV ∗∗∗ [a(1− ξ) + η + ξδ + ξρ] > 0.

Since M< 0. So the system (4.27) has only the trivial solution Z̄ = 0̄, which is the VFE.

Next if we consider the case θ 6= 0 then Re(Fi(θ)) ≥ 0 (fori = 1, 2, 3, 4, 5). If

F (θ) = min | 1 + Fi(θ) |> 1; (for i = 1, 2, 3, 4, 5), then F (θ) > 1. Hence, l
F (θ)

< l. For the

minimal positive number, l implies that || Z̄ ||> l
F (θ)
E2. Taking norms in the fourth

equation of (4.28) and also using the positive matrix R,

F (θ) || Z4 ||≤ R(|| Z ||)4 ≤ l(R || E2 ||)4 ≤ lA∗∗∗. (4.31)

Then, from the above inequality || Z4 ||≤ l
F (θ)

A∗∗∗, that contradicts our assumption

Re(Fi(θ)) ≥ 0. Therefore, Re(θ) < 0 and the virus present equilibrium (VPE), E2, is LAS

when R01 is bigger than unity.

4.10 Model Validitation

There are many statistical techniques for model validation. One of the most popular method

is Non Linear Least Square Method. This method demonstrate the least error between the

simulated data and the real data.
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4.10.1 Non Linear Least Square Method

The least-squares technique is a statistical technique to discover the suitable fit for fixed

data records by minimizing the sum of the residuals of points from the plotted curve. Least

squares regression is used to expect the conduct of dependent variables.

Here we expect that the time coordinates of the real data are exact, but their corresponding

virions data of a patient in the y-coordinate may be deformed. We adjust the solution curve

through the real data such that the sum of the squares of the vertical distances from the

real data points to the points on the solution curve is the lowest possible. This distance is

generally known as the least square error.

4.10.2 Parameter Estimation

Certain parameters are taken directly from the Table 4.1 and remaining parameters θ = (γ,

β, δ, ρ, η) are estimated from the set of data of a patient’s sample obtained from [70] at

the acute stage of HBV infection. Using initial guess θ0 = (0.67, 0.001, 0.0494, 0, 0 − 1) for

the parameters from Table 4.1 and with initial conditions (H0, I0, C0, V0, A0, Z0) = (13.6 ×
106, 0, 0, 0.33, 0, 0), we obtained most credible estimated parameters using above method in

the following table:

Parameters Description Value

γ The free virus clearance rate 0.61d−1 [Estimated]
β The rate of infectionn 0.005mm3d−1 [Estimated]
δ short-lived infected cell’s death rate 0.0124d−1 [Estimated]
ρ Cured rate of infected hepatocytes 0.4 [Estimated]
η Progression rate of short lived to chronically infected cell 0.012 [Estimated]

Table 4.2: Parameter best estimates of model (4.2)

From Figure 4.4, we can see that the virus and the fitting curve behave exactly as expected

for R0 = 1.9962. Upon initialization of infection, the virus particles increase significantly

until it reaches the peak of viral load. It is also clear from the figure that the high viral

peak was observed during the patient’s acute infection phase. Moreover, the best estimates

predict that virus clearance occurs following infection in the patient after 40 days. It is
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Figure 4.4: Figure illustrating (4.4A) solution curve of virus cells with R0 = 1.9962 > 1
and (4.4B) fitting curve of V (t) as given by the model (solid line) to a patient’s data

(dot)(Source: [70]).

also predicted from the figure that the virus clearance rate decreases due to developing high

antibody levels in the patient for vaccination.

4.11 Numerical Results and Discussions

In this section, using different parameter values given in Table 4.1, we have numerically

analysed the model (4.2) with immune system to know the impact of immune system on

HBV dynamics in vivo. It is mentioned that real data of the parameters are not available

so the chosen parameter values for simulation may not be biologically realistic.

4.11.1 Humoral immune system strategy

The model (4.2) is considered only in the presence of humoral immune system only (when

the cell-mediated immune system is absent p = 0). For numerical simulation we consider

different levels of effectiveness of humoral immune system and contact rates.

The following arbitrarily levels of effectiveness are observed:

(i) humoral immune response at low level (i.e. q = 0.09);

(ii) humoral immune response at moderate level (i.e. q = 0.06);
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(iii) humoral immune response at high level (i.e. q = 0.03);

When the effective contact rate is decreased from β = 0.5 to 0.005, the number of short-lived

infected cells increases at a slower rate. In all the cases, the number of infected cells increases

initially and become constant after some time.

However, when the effective contact rate is β = 0.5, the number of infected cells increases

to a maximum value and becomes constant. On the other hand for β = 0.005, the number

of infected cells slight decreases. In all three cases, the number of infected cells decreases at

a slow rate when the humoral immune response shows a high effectiveness rate. (See Figure

4.5)

So from Figure 4.5, it is obvious that a smaller contact rate and a higher response of humoral

immune system helps to decrease the infection rate of healthy cells. However, the high

effective level of the humoral immune system strategy has a significant role to reduction of

HBV burden in vivo.

Figure 4.5: Plot illustrates the total density of the short lived infected cells with p = 0,
different humoral immune response (q = 0.03, 0.06, 0.09) and β = 0.5, 0.05, 0.005. Other

parameters value are taken from Table 4.1.

4.11.2 Cell-mediated immune system strategy

In this scenario, different level of cell-mediated immune system is considered (i.e. p =

0.005 = 0.007 = 0.009). Also, for numerical simulation here we consider different levels of

effectiveness of immune response and contact rate.

The following arbitrary effectiveness levels of cell-mediated immune system are considered:
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(i) cell-mediated immune response at low level (i.e. p = 0.005);

(ii) cell-mediated immune response at moderate level (i.e. p = 0.007);

(iii) cell-mediated immune response at high level (i.e. p = 0.009);

When the effective contact rate is decreased from β = 0.5 to 0.005, the number of short-lived

infected cells initially increases and after some days gradually decreases to a constant value.

However, if the effective contact rate is β = 0.5 then the number of infected cells increases

to a maximum value and becomes constant after some time. On the other hand for β =

0.005, the number of infected cells behave as in the previous case , but at a slower rate. In

all three cases the number of short-lived infected cells increases initially but after some days

decreases at a slow rate when the cellular immune system shows a high rate of effectiveness.

(See Figure 4.6)

So from Figure 4.6, it is observed that a smaller contact rate and a higher presence rate of

cell- mediated immune system helps to decrease the infection rate of cells. Therefore, the

high effective level of the cell-mediated immune system strategy also plays a significant role

to reduce the HBV burden in vivo.

Figure 4.6: Plot illustrates the total density of the short lived infected cells with
q = 0, different cell-mediated immune response (i.e. p = 0.005, 0.007, 0.009) and

β = 0.5, 0.05, 0.005. Other parameters value are taken from Table 4.1.

Figure 4.7 show that the absence of cell-mediated immune response and effective level of

humoral immune response with a high level of contact rate brings the number of short-

lived infected cells to a constant rate quickly. Again, when only the cell-mediated response
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is effective with a high level of contact rate then the number of short-lived infected cells

increases unboundedly. Moreover, a similar scenario is seen in Figure 4.8 that without

immune response the number of infected cells increases gradually than with immune response.

Moreover, the rate of contact and both the immune response will lessen HBV infection in

vivo if they are comparatively low and high respectively.

Figure 4.7: Plot illustrates the total density of the short lived infected cells with β = 0.5
and R0 > 1. Model simulation considering only humoral immune response (p = 0 and q =
0.005) and only cell-mediated immune response (p = 0.005 and q = 0). Other parameters

value are taken from Table 4.1.

Figure 4.8: Plot illustrates the total density of the short lived infected epithelial cells
without and with immune response(i.e.p = q = 0 and p = q = 0.005) with high contact

rate β = 0.5 and R0 > 1. Other parameters value are taken from Table 4.1.
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4.12 Summary of Contributions

A new basic (without immune response) deterministic model for the transmission disease

dynamics of HBV in vivo is constructed and numerically analysed. The basic model is

extended for cell-mediated and humoral immunity systems against HBV in vivo. The major

findings are itemized below:

Mathematical Aspect:

(i) If R0 < 1 then the reduced model (4.3) has a globally asymptotically stable VFE ;

(ii) The reduced model (4.3) has at least one locally asymptotically stable VPE, E1,

whenever R0 > 1. In this situation the infection persist in vivo);

(iii) The extended model incorporating immune system (4.2) has a GAS VFE when R01 <

1;

(iv) The extended model with immune system (4.2) has also at least one VPE, E2, for

R01 > 1, which is also locally asypmtotically stable (and the infection will persist in

vivo under this situation;

(v) An HBV vaccine is fully effective for reducing disease burden in vivo when it increases

the rate of humoral immune response such as antibody level against HBV infection.

Epidemiological Importance:

(i) The humoral immune response with high effective level has a positive impact with low

contact rate in reducing HBV burden in vivo;

(ii) Due to vaccine impact, the humoral immune strategy is more effective than the cell-

mediated immune strategy for controlling HBV burden;

(iii) The high effective level of both immune system strategies provides the greatest

reduction of HBV burden in vivo;

(iv) The low contact rate can also reduce the life threat of HBV in vivo.



Chapter 5

Optimal Control of Vaccination and

Awareness in Hepatitis B Virus

(HBV) Infection

5.1 Introduction

Hepatitis B infection is a life long liver disease. The disease has two stages namely the

acute phase and the chronic phase. Persistent liver inflammation can put a human’s life at

excessive risk of death from liver cirrhosis or liver cancer.[4]. The virus enters the body

through the contaminated blood or body fluid of an infected person and reaches the liver

through the bloodstream, where it replicates itself, releasing a large number of new viruses

into the bloodstream. Most infectious diseases can be controlled reasonably within the

community if some precautions such as vaccination, treatment, awareness and educational

campaign etc. are taken in a timely manner. However, many of these infectious diseases

become endemic in our society due to the lack of such effective measures and timely taken

steps. So, it is important to identify the causes of epidemic and effective mechanisms to

control the transmission of the infection.

Mathematical modelling technique plays an important role for analyzing the spread and

control of infectious diseases. Mathematical models have been used for planning,

comparing, optimizing various detection for implementation, prevention, therapy, in order

78
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to minimize costs for control measures and control programs [73]. Mathematical modelling

has contributed to the analysis of epidemiological surveys, suggested crucial data that

should be collected, identified trends, made general forecasts, and estimated the

uncertainty in forecasts [41]. The theory and application of Pontryagin’s Maximum

Principle [43] may apply to measure the optimal controls in dynamics of hepatitis B virus

infection mathematically. Treatment is not needed for acute hepatitis B infection and most

of the acutely infected adults can recover thanks to their own immune response [23]. Less

than 1% patients who are immuno compromised need antiviral treatment at the chronic

stage of infection. However, this treatment is essential to reduce the risk of liver cirrhosis

and cancer.

Mathematical models can help us to optimize the use of limited resources or simply to

target control measures more efficiently. Anderson et al. [74] constructed a simple

mathematical model to describe the effects of carriers on the transmission of HBV. Medley

et al. [25] developed a Hepatitis B virus mathematical model to establish a strategy for

eliminating HBV in New Zealand [27, 75]. Wang et al. [31] presented and analyzed a

diffusion model of hepatitis B virus infection. Xu and Ma [76] proposed a HBV model with

spatial diffusion and saturation response of the infection rate was investigated. Zou et al.

[28] also used a mathematical model to understand the transmission dynamics and

prevalence of HBV in China. In [30], Pang et al. constructed a model to find out the

vaccine impact of HBV infection.

In our study, we have applied the technique of optimal control to determine the vaccination

impacts and awareness among the population for the eradication of the disease.

5.2 Optimal Control Method

The state variable x(t) which depends on the control variable u(t) and satisfies a differential

equation such as:

x
′
(t) = g(t, x(t), u(t)).

Here, x
′

denotes the derivative with respect to time t. We consider u(t) as a piecewise

continuous function and the given objective functional is maximised or minimized by the
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state variable, x(t). We assume the following:

Maximize J(u) =

∫ T

0

f(t, x(t), u(t))dt

subject to x
′
(t) = g(t, x(t), u(t))

x(0) = x0 and x(T ) free.

(5.1)

The main objective of the optimal control problem is to solve a set of necessary conditions

that x(t) and u(t) must satisfy. Pontryagin’s Maximum Principle provides necessary

conditions for the optimal control using the Hamiltonian [24].

5.3 Formulation of Model

The total population, N(t) is divided into sub compartments of homogeneously mixing

individuals who are unvaccinated susceptible (S(t)), vaccinated V (t)), acutely infected

individuals (A(t)), asymptomatic chronic carriers (Cn(t)), symptomatic chronic carriers

(Cs(t)), individuals with disease complications (Dc(t))and recovered individuals (R(t)), so

that

N(t) = S(t) + V (t) + A(t) + Cn(t) + Cs(t) +Dc(t) +R(t)

The population of unvaccinated susceptible individuals is increased at a rate Π(1−p) into the

community, where, Π is the birth rate and p is the proportion of newborns vaccinated. It is

also increased due to waning of the vaccine (at a rate ω) in the vaccinated individuals. This

class is decreased by the administration of vaccine dose (at a rate ψ), natural death (which

is assumed to occur in all compartments at a rate µ) and by the acquisition of infection at

a rate λ, where, β means the probability of infection acquisition per contact, while λ is the

rate of infection, and is given by

λ = β(A+ ηnCn + ηsCs + ηcDc). (5.2)

Here ηn, ηs, ηc are the modification parameters which account for differences in transmission

rates from the infected individuals with respect to the acutely infected individuals. Since

the infectiousness of symptomatic chronic carriers is higher relative to that of asymptomatic

chronic carriers, we assume that ηs > ηn. Similarly, we consider that the individuals with
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disease complications are more infectious than the acutely infected individuals, so that,

ηc > 1. The population of vaccinated individuals, V , increases with the vaccination rate ψ

and decreases due to infection acquisition (at a reduced rate rλ, where, 0 < r < 1 is the

vaccine efficacy), vaccine waning (at the rate ω) and by natural death.

f is a fraction of the newly infected individuals to show no disease symptoms initially. The

other fraction (1−f), of the newly infected individuals who are assumed to display immediate

disease symptoms. The population of acutely infected individuals is generated at the rate

λ (for unvaccinated susceptible individuals) and rλ (for the vaccine dose recipients). This

class of population is decreased by progression to the chronic carriers (at a rate φ) and by

natural death.

The chronic carrier with no clinical disease symptoms is increased by transferred fraction f

of individuals from A(t) and reduced by recovery (at the rate γ) and the progression to the

symptomatic chronic carriers (at the rate ξ) and natural death (at the rate µ). Similarly, the

chronic carrier with symptoms is increased by transferred individuals from A(t) and Cn(t)

and decreased by recovery rate due to effective treatment (at the rate θt) where, θt > 1

and progression to disease complications (at the rate ν), natural death (at the rate µ) and

disease induced death (at the rate δ).The individuals of complicated disease symptoms is

increased by the transferred individuals from Cs(t) at the rate ν and decreased by natural

death rate, µ and disease related death rate, δ. The population of recovered individuals,

R(t) is generated by the recovered asymptomatic and symptomatic chronic carriers (at the

rate γ) and the population is decreased by natural death (at the rate µ), (it is assumed that

recovered individuals do not lose their immunity and become susceptible to HBV infection).

We assume two control variables, u1 and u2. The two control strategies are : (i) cost of

vaccination and (ii) cost of awareness. Generally, it is evident that the vaccines are not

100% effective, so only a portion of vaccinated individuals are protected by the vaccine and

individuals in this class can be infected by the contact with infected individuals and move

to the infectious classes. The control function u1(t), with 0 ≤ u1(t) ≤ 1 represents the

proportion of susceptible individuals that requires vaccination. When u1(t) is close to 1, the

failure rate of vaccination is very low but then the implementation costs are high. Similarly,

u2(t) is the proportion of susceptible that is aware of the transmission probability of HBV

per unit time.
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After applying control strategy, the differential equations of the HBV model are given below:

dS

dt
= Π(1− p) + ωV − λS − ψS − µS − u1S − u2S

dV

dt
= Πp+ ψS − rλV − ωV − µV + u1S

dA

dt
= λS + rλV − φA− µA

dCn
dt

= φfA− γCn − ξCn − µCn
dCs
dt

= φ(1− f)A+ ξCn − θtγCs − νCs − µCs − δCs
dDc

dt
= νCs − µDc − δDc

dR

dt
= γCn + θtγCs − µR + u2S

(5.3)

with initial conditions,

S(0) = S0 ≥ 0, V (0) = V0 ≥ 0, A(0) = A0 ≥ 0, Cn(0) = Cn0 ≥ 0, Cs(0) = Cs0 ≥ 0,

Dc(0) = Dc0 ≥ 0, andR(0) = R0 ≥ 0.

(5.4)

We consider the following objective function [78]:

Minimize J(u1(t), u2(t)) =

∫ T

0

a0A(t) + a1Cn(t) + a2Cs(t) + a3Dc(t) +
1

2
(B1u1

2 +B2u2
2)dt

where, a0, a1, a2, a3, b1, b2 > 0. We want to minimize the infected individuals

(A(t), Cn(t), Cs(t), Dc(t)) by keeping the cost of vaccination(u1(t)) and cost of

awareness(u2(t)) low. The terms a0A(t), a1Cn(t), a2Cs(t), a3Dc(t) represents the infected

individuals with the positive weight parameters, while the terms
b1u21(t)

2
and

b2u22(t)

2

represents the cost of vaccination and awareness at the time t.

The aim of our study is to find out the optimal controls, u∗1 and u∗2, such that

J(u∗1, u
∗
2) = min

u1,u2∈U
J(u1, u2) (5.5)

where, U = {(u1(t),u2(t)): 0≤ u1(t) ≤ 1 ,0 ≤ u2(t) ≤ 1, t ∈ [0, T ]}
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5.4 Equilibria of the System

The disease free equilibrium point (DFE) of the model is

ε∗0 = (S∗, V ∗, A∗, C∗n, C
∗
s , D

∗
c , R

∗) = (S∗, V ∗, 0, 0, 0, 0, R∗) (5.6)

with, S∗ =
Π(pω + k3(1− p))

k1k3 − ωk2

, V ∗ =
Π(k2(1− p) + k1p)

k1k3 − ωk2

and R∗ =
Πu2(ωp+ k3(1− p))

µ(k1k3 − ωk2)
where, k1 = ψ + µ + u1 + u2, k2 = ψ + u1,k3 = ω + µ,k4 = φ + µ , k5 = γ + ξ + µ,

k6 = θtγ + µ+ δ, k7 = µ+ δ and k1k3 − ωk2 > 0. Considering the new infection terms from

the model equations, the matrix P and the non-singular matrix Q are respectively as

P =


β(S∗ + rV ∗) βηn(S∗ + rV ∗) βηs(S

∗ + rV ∗) βηc(S
∗ + rV ∗)

0 0 0 0

0 0 0 0

0 0 0 0

 ,

Q =


k4 0 0 0

−φf k5 0 0

−φ(1− f) −ξ k6 0

0 0 −ν k7

 ,

The associated reproduction threshold is given by R0 = ρPQ−1),

where,

R0 =
β(S∗ + rV ∗){(1− f)(νφηck5 + φηsk5k7)(fνφξηc + fφξηsk7 + fφηnk6k7 + k5k6k7)}

k4k5k6k7

Hence, we have the following lemma [49].

Lemma 5.1. If R0 < 1 then the disease free equilibrium point (DFE) of the model (5.3) is

locally asymptotically stable (LAS) and otherwise unstable (i.e. if R0 > 1).
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5.5 Existence of the Optimal Control

5.5.1 Existence of the State

Here we consider the following control system:

min J(u1, u2) =

∫ T

0

{a0A(t) + a1Cn(t) + a2Cs(t) + a3Dc(t) +
1

2
(b1u1

2 + b2u2
2)}dt

dS

dt
= Π(1− p) + ωV (t)− (λ+ ψ + µ+ u1 + u2)S(t)

dV

dt
= Πp+ (ψ + u1)S(t)− (rλ+ ω + µ)V (t)

dA

dt
= λS(t) + rλV (t)− (φ+ µ)A(t)

dCn
dt

= φfA(t)− (γ + ξ + µ)Cn(t)

dCs
dt

= φ(1− f)A(t) + ξCn(t)− (θtγ + ν + µ+ δ)Cs(t)

dDc

dt
= νCs(t)− (µ+ δ)Dc(t)

dR

dt
= γCn(t) + θtγCs(t)− µR(t) + u2S(t)

(5.7)

with initial conditions,

S(0) = S0 ≥ 0, V (0) = V0 ≥ 0, A(0) = A0 ≥ 0, Cn(0) = Cn0 ≥ 0, Cs(0) = Cs0 ≥ 0,

Dc(0) = Dc0 ≥ 0, and R(0) = R0 ≥ 0.

Theorem 5.1. Given initial conditions are S(0) = S0 ≥ 0, V (0) = V0 ≥ 0, A(0) = A0 ≥
0, R(0) = R0 ≥ 0, and the solutions (S(t), V (t), A(t), Cn(t), Cs(t), Dc(t), R(t)) are positively

invariant ∀ t > 0.

Let Z = Sup(t > 0 | S > 0, V > 0, A > 0, Cn > 0, Cs > 0, Dc > 0, R > 0)

for the first equation,

dS

dt
= Π(1− p) + ωV − λS − ψS − µS − u1S − u2S
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From the above equation we have,

ds

dt
+ (λ+ ψ + µ+ u1 + u2)S ≥ Π(1− p) + ωV

The integrating factor is,

exp(λ+ ψ + µ+ u1 + u2)t

Multiplying the above expression by the integrating factor we have

dS

dt
(exp(λ+ ψ + µ+ u1 + u2)t) ≥ (Π(1− p) + ωV ) exp(λ+ ψ + µ+ u1 + u2)t

Solving this inequality,we obtain

S(t)× exp(λ+ψ+µ+u1 +u2)t−S(0) ≥
∫ T

0

(Π(1− p) + ωV )× exp(λ+ψ+µ+u1 +u2)tdt

Therefore, S(t) becomes

S(t) ≥ S(0)× exp (−(λ+ ψ + µ+ u1 + u2)t) + exp (−(λ+ ψ + µ+ u1 + u2)t)

×
∫ T

0

(Π(1− p) + ωV )× exp(λ+ ψ + µ+ u1 + u2)tdt > 0.

Similarly, it can be shown for the other states that they all are positive respectively.

5.5.2 Boundedness of the solution of the model

Theorem 5.2. All solutions (S(t), V (t), A(t), Cn(t), Cs(t), Dc(t), R(t) of the model are

bounded.

Proof. The model refers that the total population N(t) = S(t) + V (t) + A(t) + Cn(t) +

Cs(t) + Dc(t) + R(t). Adding all the states we have S
′
+ V

′
+ A

′
+ C

′
n + C

′
s + D

′
c + R

′
=

Π− µ(S + V + A+ Cn + Cs +Dc +R)− δ(Cs +Dc)
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implies

S
′
+ V

′
+ A

′
+ C

′

n + C
′

s +D
′

c +R
′ ≤ Π− µ(S + V + A+ Cn + Cs +Dc +R)

and so
dN(t)

dt
≤ Π− µN(t)

Then we have,

N(t) ≤ Π

µ
+N(0)e−t; t ∈ [0, T ]

Thus it follows from above that as t → ∞, then N(t) ≤ Π
µ

. Therefore all the solutions of

the model are bounded.

Hence all the feasible solutions enter into the region U = ((S, V,A,Cn, Cs, Dc, R) ∈ R7
+ :

N ≤ Π
µ
, as t→∞).

5.5.3 Existence of the objective Functional

To prove the existence of the optimal control technique we have to reveal the existence of

the objective functional which is obtained by using a result of Fleming and Rishel in [44].

Theorem 5.3. Cosider the control problem with system (5.5). Then there exists optimal

controls (u∗1, u
∗
2) that minimize J(u1, u2) over the control set U . i.e.,

J(u∗1, u
∗
2) = min

u1,u2∈U
J(u1, u2) (5.8)

To use an existence result in [44], we must follow the following properties from [77].

1. The set of controls and state variables is nonempty.

2. The control set U is convex and closed.

3. The right side of the state system is bounded by a linear function in the state and

control variables.

4. The integrand of the objective functional is convex on U and is bounded below by

−k2 + k1| (u1, u2) |η with k1 > 0, k2 > 0 and η > 1 .
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Proof of (i): Consider
dS

dt
= F1(t, S, V, A, Cn, Cs, Dc, R)

dV

dt
= F2(t, S, V, A, Cn, Cs, Dc, R)

dA

dt
= F3(t, S, V, A, Cn, Cs, Dc, R)

dCn
dt

= F4(t, S, V, A, Cn, Cs, Dc, R)

dCs
dt

= F5(t, S, V, A, Cn, Cs, Dc, R)

dDc

dt
= F6(t, S, V, A, Cn, Cs, Dc, R)

dR

dt
= F7(t, S, V, A, Cn, Cs, Dc, R)

where, F1, F2, F3 ,F4 , F5 , F6 and F7 are expressed the right side of the model equation.

Let u1(t) = C1 and u2(t) = C2 where C1 and C2 are constants. F1, F2, F3 ,F4 ,F5, F6

and F7 are linear and continuous everywhere. Moreover, the partial derivatives of Fi, (for

i = 1, 2, . . . , 7) with respect to the states are constants and continuous everywhere.

So by using the theorem 5.4, we can say that a unique solution exists of the form S = σ1(t),

V = σ2(t), A = σ3(t), Cn = σ4(t), Cs = σ5(t), Dc = σ6(t), R = σ7(t) satisfies the initial

conditions. Hence, the set of control parameters and associated state variables is non-empty.

therefore condition (i) is satisfied.

Proof of (ii): Let U is closed. Take any controls u1, u2 ∈ U , θ ∈ [0, 1] and observed that

θu1 ≤ θ , (1− θ)u2 ≤ (1− θ). Then

θu1 + (1− θ)u2 ≤ θ + (1− θ) = 1.

Hence, 0 ≤ θu1 + (1− θ)u2 ≤ 1 for all u1, u2 ∈ U and θ ∈ [0, 1]. Therefore, U is convex, and

condition (ii) of the Theorem 5.4 is satisfied.

Proof of (iii):

Let us consider,

F1 ≤ ωV − u1S − u2S

F2 ≤ ψS + u1S

F3 ≤ φA
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F4 ≤ φfA

F5 ≤ φ(1− f)A+ ξCn

F6 ≤ νCs

F7 ≤ γCn + θtγCs + u2S

The state system is given below:

dS

dt
= F1(t, S, V, A, Cn, Cs, Dc, R)

dV

dt
= F2(t, S, V, A, Cn, Cs, Dc, R)

dA

dt
= F3(t, S, V, A, Cn, Cs, Dc, R)

dCn
dt

= F4(t, S, V, A, Cn, Cs, Dc, R)

dCs
dt

= F5(t, S, V, A, Cn, Cs, Dc, R)

dDc

dt
= F6(t, S, V, A, Cn, Cs, Dc, R)

dR

dt
= F7(t, S, V, A, Cn, Cs, Dc, R)

we can rewrite the system in matrix form:

F̄ (t, X̄, u1, u2) ≤ m̄


t,



S

V

A

Cn

Cs

Dc

R




X̄(t) + n̄


t,



S

V

A

Cn

Cs

Dc

R





 u1(t)

u2(t)

 (5.9)
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where,

m̄


t,



S

V

A

Cn

Cs

Dc

R




=



0 ω 0 0 0 0 0

ψ 0 0 0 0 0 0

0 0 φ 0 0 0 0

0 0 φf 0 0 0 0

0 0 φ(1− f) ξ 0 0 0

0 0 0 0 ν 0 0

0 0 0 γ θtγ 0 0


(5.10)

and

n̄


t,



S

V

A

Cn

Cs

Dc

R




=



−(S + S)

+S

0

0

0

0

+S


(5.11)

which gives us a linear function of the controls u1 and u2 with coefficients determined by

time and state variables. So we can write,

| F̄ (t, X̄, u1, u2) | ≤
∣∣∣∣ | m̄ | ∣∣∣∣ | X̄ |+ | S̄ | | (u1(t), u2(t)) |

≤ p

(
| X̄ |+ | (u1(t), u2(t)) |

)
where, S̄ is bounded above and p is upper bound of the above constant matrix. Hence, the

right side of the system is bounded by a sum of controls and the state variables. Therefore,

condition (iii) is also satisfied.

Proof of (iv):

To proof the condition (iv) of the Theorem 5.4 we use the result of [44]. It is clear that the

state variables and controls are positive and non-empty. For the minimization problem, the

convexity of the objective functional in U is satisfied and the control variables u1,u2 ∈ U are

convex and closed.
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Now we want to prove J(u1, u2) ≥ −k2 + k1| (u1, u2) |η with k1 > 0, k2 > 0 and η > 1 .

Here,

J(u1, u2) =

∫ T

0

(
a0A(t) + a1Cn(t) + a2Cs(t) + a3Dc(t) + b1

u2
1

2
+ b2

u2
2

2

)
dt

To verify the convexity of the integrand of the objective functional, J , we need to reveal that

J(t,X, (1− ε)u+ εv) ≥ (1− ε)J(t,X, u) + εJ(t,X, v)

for arbitrarily small ε such that 0 < ε < 1 and

J(t,X, u) = a0A(t) + a1Cn(t) + a2Cs(t) + a3Dc(t) + b1
u2

1

2
+ b2

u2
2

2

Now,

a0A+ a1Cn + a2Cs + a3Dc +
b1

2
((1− ε)u1 + εv1)2 +

b2

2
((1− ε)u2 + εv2)2

− (1− ε)
[
a0A+ a1Cn + a2Cs + a3Dc +

b1

2
u2

1 +
b2

2
u2

2

]
− ε
[
a0A+ a1Cn + a2Cs + a3Dc +

b1

2
v2

1 +
b2

2
v2

2

]
=
b1

2

[
((1− ε)u1 + εv1)2 − (1− ε)u2

1 − εv2
1

]
+
b2

2

[
((1− ε)u2 + εv21)2 − (1− ε)u2

2 − εv2
2

]
= −b1

2

[
(1− ε)u2

1 + εv2
1 − ((1− ε)u1 + εv1)2

]
− b2

2

[
(1− ε)u2

2 + εv2
2 − ((1− ε)u2 + εv2)2

]
=
b1

2
(
√
ε(1− ε)u1 −

√
ε(1− ε)v1)2 − b2

2
(
√
ε(1− ε)u2 −

√
ε(1− ε)v2)2

= −b1

2
ε(1− ε)(u1 − v1)2 − b2

2
ε(1− ε)(u2 − v2)2 6 0

⇒ −
(
b1

2
ε(1− ε)(u1 − v1)2 +

b2

2
ε(1− ε)(u2 − v2)2

)
6 0

⇒ b1

2
ε(1− ε)(u1 − v1)2 +

b2

2
ε(1− ε)(u2 − v2)2 > 0

Since b1 and b2 both are positive, J(t,X, u) is convex.

We need to show that

J(u1, u2) > −k1 + k2|(u1, u2)|η
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where, k1, k2 > 0 and η > 1. Now

J(u1, u2) = a0A+ a1Cn + a2Cs + a3Dc +
b1

2
u2

1 +
b2

2
u2

2

⇒ J(u1, u2) > −
(
a0A+ a1Cn + a2Cs + a3Dc +

b1

2
u2

1 +
b2

2
u2

2

)
J(u1, u2) > − (a0A+ a1Cn + a2Cs + a3Dc)−

(
b1

2
u2

1 +
b2

2
u2

2

)
⇒ J(u1, u2) > − (a0A+ a1Cn + a2Cs + a3Dc) +

b1 + b2

2
| − (u1, u2)|2

⇒ J(u1, u2) > − (a0A+ a1Cn + a2Cs + a3Dc) +
B

2
|(u1, u2)|2

where, k2 = b1 + b2 = B > 0 that is constant and depends on upper bounds of the infected

classes and η = 2 > 1, k1 > 0. Hence, condition (iv) is satisfied. Therefore, the existence of

the objective functional is established.

Theorem 5.4. Let xi = Fi(t, x1, . . . , xn) for i ∈ [1, n] is a n− th order differential equation

with initial conditions xi(t0) = xi0 for i ∈ [1, n]. If F1, . . . , Fn and their partial derivatives

∂F1

∂x1
, . . . ∂F1

∂xn
, . . . , ∂Fn

∂x1
, . . . , ∂Fn

∂xn
are continuous in Rn+1, then ∃ a unique solution of the form

x1 = σ1(t), . . . , xn = σn(t), satisfies the given initial conditions.

5.5.4 Characterization of the Optimal Cotrol

The following Hamiltonian is derived by using Pontraygin’s Maximum principle [43]

H = a0A+ a1Cn + a2Cs + a3Dc + b1
u2

1

2
+ b2

u2
2

2
+ λs[Π(1− p) + ωV − λS − (ψ + µ+

u1 + u2)S] + λV [Πp+ (ψ + u1)S − (rλ+ ω + µ)V ] + λA[λS + rλV − (φ+ µ)A)

+ λCn(φfA− (γ + ξ + µ)Cn] + λCs [φ(1− f)A+ ξCs − (θtγ + ν + µ

+ δ)Cs] + λDc [νCs − (µ+ δ)Dc] + λR[γCn + θtγCs + u2S − µR]

Where, λS, λV , λA , λCn , λCs , λDc and λR are the associated adjoints for the respective

states. The adjoints are obtained by differentiating the Hamiltonian H with respect to the
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respective state variables. Therefore, the given adjoint system is,

λ
′

S = (λ+ ψ + µ+ u+ 1 + u2)λS − (ψ + u1)λV − λλA − u2λR

λ
′

V = −ωλS + (rλ+ ω + µ)λV − rλλA

λ
′

A = −a0 + βSλS + rβV λV − βSλA − rβV λA + (φ+ µ)λA − φfλCn − φ(1− f)λCs

λ
′

Cn
= −a1 + βηnSλS + rβηnV λV − βηnSλA − rβηnV λA + (γ + ξ + µ)λCn − ξλCs − γλR

λ
′

Cs
= −a2 + βηsSλS + rβηsV λV − βηsSλA − rβηsV λA + (θtγ + ν + µ+ δ)λCs − νλDc − θtγλR

λ
′

Dc
= −a3 + βηcSλS + rβηcV λV − βηcSλA − rβηcV λA + (µ+ δ)λDc

λ
′

R = µλR

(5.12)

and the transversality conditions,

λi(T ) = 0, i = 1, 2, 3, · · · , 7 and λ = β(A+ ηnCn + ηsCs + ηcDc)

For the control u1 we have from, ∂H
∂u1
|u1=u∗1

= 0

=⇒ b1u
∗
1 − SλS + SλV = 0

=⇒ u∗1 = S(λS−λV
b1

Again, for the control u2 we have from,

∂H
∂u2
|u2=u∗2

= 0

=⇒ b2u
∗
2 − SλS + SλR = 0

=⇒ u∗2 = S(λS−λR)
b2

Thus the controls u∗1 and u∗2 satisfies the following optimality conditions

u∗1 = min
(
max

(
0, S

∗(λS−λV )
b1

)
, 1
)

u∗2 = min
(
max

(
0, S

∗(λS−λR)
b2

)
, 1
)

5.6 Numerical Simulations and Discussion

The optimality is formed by the system (5.5) with the adjoints (5.12) with corresponding

time conditions. At first, we solve the model for the optimal system and represent the

diagrams of the state variables without and with controls separately. Then we observe how

the result changes after imposing a control strategy. Here, we also consider that the two

controls will not be 100% effective. So the upper bounds for the two controls u1 and u2 is
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between 0 and 1. The weight parameters in the objective function are a0, a1, a2, a3, b1, b2.

For varying weight parameters, we can find how the controls are related to the respective

weight parameters. Here, the values of the paremeters in the simulations are given in Table

5.2.

Variables Description

S(t) unvaccinated susceptible individuals
V (t) vaccine dose recipients
A(t) acutely infected individuals
Cn(t) asymptomatic chronic carriers
Cs(t) symptomatic chronic carriers
Dc(t) individuals with disease complications
R(t) recovered individuals

Table 5.1: Variable’s description of the HBV model (5.3)

Parameters Description Baseline values

π Birth rate 0.0121 [28]
p Proportion of newborns vaccinated 0.3 [variable]
β Transmission rate 0.8-20.49 [28]
ω vaccine waning rate 0.1 [28]
ψ Rate of administration of vaccine dose 0.885 [varialbe]
µ Natural death rate 0.00693 [28]
δ HBV related mortality rate 0.002 [28]
f The fraction of acutely-infected people become asymptomatic

chronically infected 0.7 [variable]
r Efficacy of vaccine dose 0.09 [variable]
φ the rate at which acutely-infected people become

chronically-infected 0.885 [28]
γ Recovery rate of chronically-infected individuals 0.06 [79]
ξ Rate at which asymptomatic chronically-infected individuals

become symptomatic chronically-infected 0.12 [Variable]
θt Modified parameter for the assumed decrease of the recovery

rate of symptomatic chronically-infected individuals in comparison
to non-symptomatic chronically-infected individuals 0.0936 [79]

ν Rate at which symptomatic chronically-infected individuals
develop disease complications 0.2323 [79]

Table 5.2: Parameter’s description of the HBV model (5.3)
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Figure 5.1: HBV basic model without control parameters

From Figure 5.1, we can see that before applying any control strategy, the infected

individuals start to grow up. Since the acutely infected individuals can recovered by their

own immunity response, so recovered individuals grow up at a consistent rate.

We subsequently solve the optimality system with two controls. The two controls are

vaccination and creating awareness. Then we show how these controls affect the recovery

rate of the infected individuals. Since HBV acutely infected individuals may be recovered

Figure 5.2: HBV model with control parameters

within 6 months, so here we consider the time period for 1 year. We observed from Figure
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5.2 that for the first three months the controls are so much effective. As a result, the

recovered individuals increases for the first 3 months. After that, the change of recovery

rate is in a stable situation. After 3 months the effectiveness of the controls start to

decrease and for this, the infectious individuals start to increase gradually. Because of this

control strategy, the increasing rate of infected individuals is smaller than those who are

not using controls.

Now for with and without control, we will monitor the effectiveness of controls of the

model by placing the graphs on the identical co-ordinate axes. From the comparison Figure

Figure 5.3: HBV model with and without control

5.3, it is seen that using optimal control we are able to control the disease over the finite

time interval. It is also clear from the figure that the growth rate of recovered individuals is

smooth after using control. The acutely infected population is also decreased after

introducing control strategies. Since the chronic carriers carry the virus for life long, so

after applying controls their increasing rate is smaller than without control.
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Figure 5.4: Total infection with different transmission rate using different controls

From the Figure 5.4, for a long time interval, we see that for different transmission rate

(β = 0.8, 0.99, 1.28, 1.49, 1.98) and the use of controls (u1 = 0, 0.5, 0.95, 0.98, 1 = u2), the

total infected individuals eventually decreases. For a high transmission rate with R0 > 1,

the infection can be controlled by using different values of controls.

Numerically, we examine the impact of the controls u1 and u2 on the basic reproduction

number. We choose u1 and u2 in such a way that R0 is less than unity. We demonstrate

this situation by a surface plot and a contour plot in the following figure.

We can see from Figure 5.5 that for u1 = 0 and u2 = 0 the value of R0 attains its maximum

Figure 5.5: Contour plot of R0
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Figure 5.6: Surface plot of R0

value, which is R0 = 2.39. We choose the value from 0 to 1 for u1 and u2 and also observed

the value of R0, which is gradually decrease. From Figure 5.6 of the surface plot, it is clear

that u1 is a more effective control than u2 to reduce the value of R0 as well as the disease

burden. This, in reality, reflects the effect of the efficacies of the control to clear the infection.

5.7 Conclusion

There are some numerical findings such as:

(i) Combination of with and without control strategy is consodered. The control

parameters are much more effective to reduce the infected individuals and control the

disease dynamics.

(ii) The controls are needed to be effective for a long time interval with a high transmission

rate.

(iii) The optimal control is also effective for minimizing the infected individuals as well as

the cost of the two controls.

(iv) From the simulation, it is monitored that vaccination is very prominent for disease

elimination.



Chapter 6

Qualitative Dynamics of HBV

Vaccination Model

6.1 Introduction

The liver is an essential part of the human body. Infections in the liver can arise through

distinct diseases. Hepatitis B is a liver infection causing an eruption of the liver. The virus

can not do direct damage to the epithelial cell, however, the immune mechanism leads to

the eruption of the liver. [80]. At the same time as hepatitis B virus enters the human

body and infects the cells of the liver, then it is known as hepatocytes. [81]. Hepatitis B

infection has two stages namely acute phase and chronic phase. The acute hepatitis B

phase is the first six months of the disease after the respective virus enters the human body

of an infected person [82]. At the acute phase, the immunity response is generally

responsible for removing a virus from the human body and for which that person may be

completely cured of the disease within a few months. Chronic infection of hepatitis B refers

to the infection when the virus remains in the human body for a long time interval and

progress to critical physical problems. People with persistent hepatitis frequently do not

have any history of acute symptoms. But at the late stage, it can cause liver failure and

liver cancer [83]. Most HBV carriers are asymptomatic during the stage of acute infection,

but some people have experience of acute illness that can last for several days.

Hepatitis B vaccine can prevent hepatitis B infection. Usually, three-dose Hepatitis B

98
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vaccine series is recommended to the individuals intramuscularly. The successive doses are

given during the birth time within 24 hours, then by the age of 1 month and six months.

Successful timely completion of three doses vaccine may ensure protection against infection

and reduce the risk of liver cancer. More than 90% of infants and approximately 50% of

unvaccinated young children who are infected with Hepatitis B will have lifelong infections

(by the reference of Hepatitis B foundation). Around the age of 40, after 1st dose, the

protective antibody response is approximately 30% − 55%, after 2nd dose, it is

approximately 75% and after 3rd dose, it increases > 90% [85]. It is evident that there is

no major effect on immunogenicity if the minimum spacing of the first two doses is 4

weeks, the second and third doses is 8 weeks and the first and booster doses is 16 weeks.

But if the interval between the first 2 doses is increased then there is a little affect on

immunogenicity or antibody concentration [86]. After the third dose, the maximum level of

protection is appeared for getting optimal long-term protection [87].

In this chapter, we construct a model with vaccination administered at three different

stages at different times for describing the dynamics of HBV transmission. The model can

also be used for predicting the long-term effectiveness of the immunization.

6.2 Formulation of the Model

The model is constracted by splitting the total population N(t) at time t into didderent

compartments of individuals such as unvaccinated susceptible (S(t)), vaccinated

susceptible who received the first dose of vaccine (V1(t)), vaccinated susceptible who

received the 2nd dose of vaccine (V2(t)) and vaccinated susceptible who received the 3rd

dose as a booster dose of vaccine (V3(t)), acutely infected individuals (A(t)), chronically

infected individuals with no clinical disease symptoms of HBV(Cn(t)), chronically infected

individuals with clinical disease symptoms of HBV(CS(t)), individuals with disease

complications (DC(t))and recovered individuals (R(t)), so that

N(t) = S(t) + V1(t) + V2(t) + V3(t) + A(t) + Cn(t) + CS(t) +DC(t) +R(t).

Here, we consider acutely infected individuals are moved to the two chronic classes with

clinical symptoms and without clinical symptoms. Approximately 0.5% adults of
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unvaccinated susceptible individuals and a smaller number of children with chronic HBV

infection will clear the infection and develop anti-HBs annually [54]. Many patients do not

develop symptoms, particularly when the infection occurs in both infants and children.

The population of unvaccinated susceptible individuals is increased by the constant

recruitment at the rate Π(1− p) into the community, where Π is the birth rate and p is the

proportion of children born with maternal immunity and also by waning of first vaccine

dose (at a rate ω1). It is decreased by the administration of the first vaccine dose (at a rate

ψ1), natural death (at a rate µ) and by the force of infection λ, where λ is given by,

λ =
β(A+ ηnCn + ηSCS + ηCDC)

N
(6.1)

β is the effective contact rate, ηn, ηS and ηC are the modification parameters, the

infectiousness of chronic carriers relative to acute infection. We assume that 0 < ηn < 1

and ηS > 1, ηC > 1. The population of individuals who received the first vaccine dose

increases by the administration of the first vaccine dose (at a rate ψ1) and waning of the

second vaccine dose (at the rate ω2). The class of population is further decreased by

infection (at a rate r1λ, where, 0 < r1 < 1 is the vaccine efficacy of the first vaccine dose),

vaccine waning (at the rate ω1) and administration of second vaccine dose of the

individuals ( at a rate ψ2) and natural death. The second vaccine dose recipients is

increased at a rate ψ2, due to lack of immune protection in the V3 class (for taking booster

dose of vaccine in the appropriate time interval) move back to the V2 class (at a rate ω3).

The population is decreased by infection (at a reduced rate r2λ; with 0 < r2 < 1 is the

efficacy of second vaccine dose) and administration of booster dose (at a rate ψ3) and

natural death.

The population of individuals who received the booster dose in V3 class increases at a rate

ψ3 and decreased by infection (at a rate r3λ; with 0 < r3 < 1 is the efficacy of booster

dose), reverted individuals to V2 class (at the rate ω3) and natural death.

The population of acutely infected individuals is generated at the rate λS (for

unvaccinated susceptible individuals), r1λ (for the 1st vaccine dose recipients), r2λ (for the

2nd vaccine dose recipients) and r3λ (for the booster dose vaccine recipients). This

population is decreased by the progression rate of the asymptomatic chronic infectious

phase (at a rate φ) and the symptomatically chronic infection carrier phase and natural

death. At the stage of acute infection, treatment is not needed and the patient will get



Chapter 6. Qualitative Dynamics of HBV Vaccination Model 101

cure normally. But individuals with chronic hepatitis B need treatment to reduce the risk

of liver disease and to prevent from passing the infection to others [88].

The chronic carrier with no clinical disease symptoms is increased by transferred

individuals from A(t) and decreased by recovery (at the rate γ) and the progression rate

(at the rate ξ ) of symptomatic chronic carriers and natural death. Similarly, The chronic

carrier with symptoms is increased by transferred individuals from A(t) and Cn(t) and

decreased by recovery rate due to effective treatment (at the rate θt > 1), due to the

progression (at the rate ν) of disease complications, natural death and disease related

death (at the rate δ). The individuals of complicated disease symptoms is increased by the

transferred individuals from CS(t) at the rate ν and decreased by natural death and disease

related death (at the rate δ). The recovered individuals is generated at the rate γ and the

population is decreased by natural death (it is assumed that recovered individuals become

completely susceptible to HBV infection).

Combining all the assumptions in the model for the transmission disease dynamics of HBV

at population level and considering dose-dependent vaccination and treatment, a

deterministic model of non-linear differential equations, a flow diagram of the model in

Figure 6.1 and the description of variables and parameters are in Table 6.1 and Table 6.2

are given below:

Figure 6.1: Model diagram of HBV vaccination model.
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Variables Description

S(t) unvaccinated susceptible individuals
V1(t) first vaccine dose recipients
V2(t) second vaccine dose recipients
V3(t) booster dose recipients
A(t) acutely infected individuals
Cn(t) Population of chronic carriers with no clinical disease symptoms of HBV
CS(t) Population of chronic carriers with clinical disease symptoms of HBV
DC(t) individuals with disease complications
R(t) Population of recovered individuals

Table 6.1: Variable’s description of the HBV vaccination model (6.2)

dS

dt
= Π(1− p) + ω1V1 − λS − k1S

dV1

dt
= Πp+ ψ1S + ω2V2 − r1λV1 − k2V1

dV2

dt
= ψ2V1 + ω3V3 − r2λV2 − k3V2

dV3

dt
= ψ3V2 − r3λV3 − k4V3

dA

dt
= λS + r1λV1 + r2λV2 + r3λV3 − k5A

dCn
dt

= φfA− k6Cn

dCS
dt

= φ(1− f)A+ ξCn − k7CS

dDC

dt
= νCS − k8DC

dR

dt
= νCn + θtγCS − µR

(6.2)

where,

k1 = ψ1 + µ, k2 = ω1 + ψ2 + µ, k3 = ω2 + ψ3 + µ, k4 = ω3 + µ, k5 = φ+ µ,

k6 = γ + ξ + µ, k7 = θtγ + ν + µ+ δ and k8 = µ+ δ.
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Parameters Description Baseline values

Π Birth rate 0.0121 [89]
p Proportion of newborns vaccinated [0,1] [variable]
β Transmission rate 0.95-20.49 [89]
ω1 first dose vaccine waning rate 0.1 [89]
ψ1 Rate of administration of first vaccine dose 0.885 y−1 [90]
µ Natural (continuous) mortality rate 0.00693 [89]
δ HBV- related mortality rate 0.002 [89]
f Fraction of the acutely infected individuals

who become chronically infected [0,1] [variable]
r1 the first vaccine dose efficacy [0,1] [variable]
r2 the second vaccine dose efficacy [0,1] [variable]
r3 the booster vaccine dose efficacy [0,1] [variable]
ψ2 administration rate of the second vaccine dose 0.925 y−1 [90]
ω2 second vaccine dose waning rate (and reversion of V1) [0,1] [variable]
ω3 the booster vaccine dose waning rate (and reversion of V2) [0,1] [variable]
ψ3 administration rate of the booster dose 0.879 y−1 [90]
φ The rate at which acutely-infected people become chronically

infected 4 [89]
ξ Rate at which asymptomatic chronically-infected individuals

become symptomatic chronically-infected 0.12 [variable]
γ Recovery rate of chronically-infected individuals 0.06 [91]
θt Modified parameter for the assumed decrease of the recovery

rate of symptomatic chronically-infected individuals in
complication to non-symptomatic chronically-infected individuals 0.0936 y−1 [91]

ν Rate at which symptomatic chronically-infected individuals
develop disease complications 0.2323 y−1 [91]

Table 6.2: Parameter’s description of the HBV vaccination model (6.2)

6.3 Analysis of the Vaccination Model

6.3.1 Basic Properties of the Vaccination Model

Here we prove the positivity and boundedness of the solutions to the model (6.2).

Lemma 6.1. The closed set Ω =

{
(S, V1, V2, V3, A, Cn, CS, DC , R) ∈ R9

+ : N ≤ Π

µ

}
is

positively-invariant and attracting with respect to the model (6.2).

Proof. At first consider the biologically–feasible region, Ω. To establish the positive

invariance of Ω (which means for t > 0 all solutions in Ω remain in Ω) here we follow the
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following steps. Adding all the equations of the model (6.2) we get the rate of change of

total population
dN

dt
= Π− µN − δCS − δDC (6.3)

If N >
Π

µ
then

dN

dt
< 0. Further, since

dN

dt
≤ Π − µN from (6.3), a standard Comparison

theorem [72] can be used to show that N(t) ≤ N(0)e−µt + Π
µ

(1− e−µt). From which we find

that N(t) ≤ Π

µ
if N(0) ≤ Π

µ
. Again, if N >

Π

µ
then either the solution enters Ω in finite

time, or N(t) approaches to Π
µ

and the respective variables

V1(t), V2(t), V3(t), A(t), Cn(t), CS(t), DC(t) and R(t) approaches to zero. Hence, all solutions

of the model in Ω for t > 0. Therefore, Ω is attracting and positively-invariant. Thus the

model within the region Ω is mathematically and epidemiologically well-proposed [62].

6.3.2 The Disease Free Equilibrium (DFE) of the model

The model (6.2) has a positive DFE, is defined by

E∗0 = (S∗, V ∗1 , V
∗

2 , V
∗

3 , A
∗, C∗n, C

∗
S, D

∗
C , R

∗) = (S∗, V ∗1 , V
∗

2 , V
∗

3 , 0, 0, 0, 0, 0) (6.4)

with,

S∗ =
Π[µψ2(1− p)b11 + a11(µ(1− p) + ω1)]

µa11(µ+ ω1 + ψ1) + µψ2(µ+ ψ1)b11

,

V ∗1 =
Πa11(pµ+ ψ1)

µa11(µ+ ω1 + ψ1) + µψ2(µ+ ψ1)b11

,

V ∗2 =
Πψ2(µ+ ω3)(pµ+ ψ1)

µa11(µ+ ω1 + ψ1) + µψ2(µ+ ψ1)b11

,

V ∗3 =
Πψ2ψ3(pµ+ ψ1)

µa11(µ+ ω1 + ψ1) + µψ2(µ+ ψ1)b11

.

where, a11 = µ2 + µω3 + µψ3 + µω2 + ω2ω3, b11 = µ+ ω3 + ψ3.
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6.3.3 Stability analysis of DFE

To show the stability of the DFE, ε∗0, here we consider the next generation method [49]. The

positive matrix F and the non-singular matrix V are as follows:

F =


βT
N∗

βηnT
N∗

βηST
N∗

βηCT
N∗

0 0 0 0

0 0 0 0

0 0 0 0


where, T = S∗ + r1V

∗
1 + r2V

∗
2 + r3V

∗
3 and S∗, V ∗1 , V

∗
2 , V

∗
3 are at DFE.

and

V =


k5 0 0 0

−φf k6 0 0

−φ(1− f) −ξ k7 0

0 0 −ν k8


where,

k5 = φ+ µ, k6 = ξ + γ + µ, k7 = δ + ν + µ+ θtγ, k8 = δ + µ.

The associated basic reproduction threshold is given by R0 = ρ(FV −1), where ρ represents

the dominant eigenvalue of the next generation matrix. It follows that

R0 =
βT

N∗k5k6k7k8

[(1− f)(ηCνφk6 + ηSφk6k8) + ηnφfk7k8+

ηSφk8ξf + ηCφνξf + k6k7k8].

Therefore, the following result is established from Theorem 2 of [49].

Lemma 6.2. If R0 < 1, then the disease free equilibrium (DFE) of the model (6.2) is locally

asymptotically stable (LAS), and otherwise unstable.

For disease elimination, we need to check the global stability of the DFE whenever R0 < 1.

Which is done below.
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6.3.4 The Global stability of the DFE of the model

Theorem 6.1. If we assume S(t) ≤ S∗ , V1(t) ≤ V ∗1 , V2(t) ≤ V ∗2 , V3(t) ≤ V ∗3 for all t > 0 then

the DFE, E∗0 of the model (6.2) is globally-asymptotically stable (GAS) whenever R0 < 1 .

Proof. Consider the following Lyapunov function

F = f1A+ f2Cn + f3CS + f4DC

where,

f1 =
fηCνφξ − fηCνφk6 + fηSφξk8 + fηnφk7k8 − fηSφk8k6 + ηCφνk6 + φηSk6k8 + k6k7k8

ηCk5k6k7

,

f2 =
ηCνξ + ηSξk8 + ηnk7k8

ηCk6k7

,

f3 =
ηCν + ηSk8

ηCk7

,

f4 = 1.

Now Lyapunov derivative with respect to t is given by

Ḟ = f1Ȧ+ f2Ċn + f3ĊS + f4ḊC ,

=
fηCνφξ − fηCνφk6 + fηSφξk8 + fηnφk7k8 − fηSφk8k6 + ηCφνk6 + φηSk6k8 + k6k7k8

ηCk5k6k7

(λS + r1λV1

+ r2λV2 + r3λV3 − k5A) +
ηCνξ + ηSξk8 + ηnk7k8

ηCk6k7

(φfA− k6Cn)

+
ηCν + ηSk8

ηCk7

(φ(1− f)A+ ξCn − k7CS) + 1(νCS − k8DC).

For simplification, we first consider the coefficient of A:

1
ηCk5k6k7N

β(S+r1V1+r2V2+r3V3)[(1−f)(ηCνφk6+ηSφk6k8)+fηCφνξ+fηSφk8ξ+fηnφk7k8+

k6k7k8]−Nk5k6k7k8

= Nk5k6k7k8
ηCk5k6k7N

[
β(S+r1V1+r2V2+r3V3)[(1−f)(ηCνφk6+ηSφk6k8)+fηCφνξ+fηSφk8ξ+fηnφk7k8+k6k7k8]

Nk5k6k7k8
− 1
]

≤ Nk5k6k7k8
ηCk5k6k7N

[
βT [(1−f)(ηCνφk6+ηSφk6k8)+fηCφνξ+fηSφk8ξ+fηnφk7k8+k6k7k8]

N∗k5k6k7k8
− 1
]

where,

T = S∗ + r1V
∗

1 + r2V
∗

2 + r3V
∗

3 .

≤ k8
ηC

[R0 − 1],
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and the similar expressions come for the coefficients of ηnCn, ηSCS and ηCDC . Thus we

have,

Ḟ ≤ k8

ηC
(R0 − 1)(A+ ηnCn + ηSCS + ηCDC)

Since S(t) ≤ S∗ , V1(t) ≤ V ∗1 , V2(t) ≤ V ∗2 , V3(t) ≤ V ∗3 for all t > 0. If R0 < 1 , then Ḟ < 0

. If Ḟ = 0 if and only if A = Cn = CS = DC = 0(note that k8 = µ + δ > 0 ). Thus by

Lasalle Invariance Principle it follows that A → 0 , Cn → 0,CS → 0 ,DC → 0 as t → ∞.

Further, substituting A = Cn = CS = DC = 0 in the model equation we get the DFE

(S∗, V ∗1 , V
∗

2 , V
∗

3 ). This established that the disease free equilibrium point (DFE) is globally

stable for R0 < 1.

The epidemiological aspect shows that if R0 < 1 then the disease will be eliminated from

the community . Using various initial conditions the result of Theorem 6.1 is simulated

numerically for R0 < 1. The solution trajectories converges to the DFE (E∗0 ),as depicted in

Figure 6.2, which is GAS when R0 < 1.

Figure 6.2: Figure 6.2 illustrates Theorem 6.1 and represents the total number of infected
individuals for R0 = 0.8479 < 1, where, β = 0.49 and other parameter values are given in

Table 6.2.
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Figure 6.3: Figure 6.3 illustrates Theorem 6.3 and represents the total number of infected
individuals for R0 = 1.8385 > 1, where, β = 1.49 and other parameter values are given in

Table 6.2.

6.3.5 Existence of the EEP of the model

Here, we can find possible existence of positive EEP of (6.2) (where, at least one of the

infected components is non-zero).
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Let E1 = (S∗∗, V ∗∗1 , V ∗∗2 , V ∗∗3 , A∗∗, C∗∗n , C
∗∗
S , D

∗∗
C , R

∗∗) be any arbitrary endemic equilibrium

point (EEP) of the model (6.2). Then we have from (6.2)

S∗∗ =
Π(1− p) + ω1V

∗∗
1

λ∗∗ + k1

V ∗∗1 =
Πp+ ψ1S

∗∗ + ω2V
∗∗

2

r1λ∗∗ + k2

V ∗∗2 =
ψ2V

∗∗
1 + ω3V

∗∗
3

r2λ∗∗ + k3

V ∗∗3 =
ψ3V

∗∗
2

r3λ∗∗ + k4

A∗∗ =
λ∗∗S∗∗ + r1λ

∗∗V ∗∗1 + r2λ
∗∗V ∗∗2 + r3λ

∗∗V ∗∗3

k5

C∗∗N =
φf [λ∗∗S∗∗ + r1λ

∗∗V ∗∗1 + r2λ
∗∗V ∗∗2 + r3λ

∗∗V ∗∗3 ]

k5k6

C∗∗S =
[k6φ(1− f) + ξφf ]A∗∗

k6k7

D∗∗C =
[νk6φ(1− f) + νξφf ]A∗∗

k6k7k8

R∗∗ =
γC∗∗N + θtγC

∗∗
S

µ

where, k1 = ψ1 + µ, k2 = ω1 + ψ2 + µ, k3 = ω2 + ψ3 + µ, k4 = ω3 + µ, k5 = φ+ µ,

k6 = γ + ξ + µ, k7 = θtγ + ν + µ+ δ, k8 = µ+ δ.

Existence of EEP: From λ∗∗ =
β(A∗∗+ηnC∗∗n +ηSC

∗∗
S +η∗∗C DC)

N∗∗
we have the following polynomial:

G(λ∗∗) = a0(λ∗∗)5 + a1(λ∗∗)4 + a2(λ∗∗)3 + a3(λ∗∗)2 + a4λ
∗∗ = 0

=⇒ λ∗∗ {a0(λ∗∗)4 + a1(λ∗∗)3 + a2(λ∗∗)2 + a3λ
∗∗ + a4} = 0

If λ∗∗ = 0 then we get the DFE, otherwise

a0(λ∗∗)4 + a1(λ∗∗)3 + a2(λ∗∗)2 + a3λ
∗∗ + a4 = 0

It should be noted that a0 is always positive but the signs of a1, a2, a3 and a4 are unknown.

So the possible real roots of the above polynomial depends on the signs of a1, a2, a3, and a4

and possible combinations of the coefficients are explored below in Table 6.3.

Thus we have the following statement:
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Cases a0 a1 a2 a3 a4 Possible or NOT Number of Sign Change
1 + + + + + N -
2 + + + + − Y 1
3 + + + − + N -
4 + + − + + N -
5 + − + + + N -
6 + + + − − Y 1
7 + + − − + N -
8 + − − + + N -
9 + + − + − N -
10 + − + + − N -
11 + − + − + N -
12 + + − − − Y 1
13 + − + − − N -
14 + − − + − N -
15 + − − − + N -
16 + − − − − Y 1

Table 6.3: Sign of the coefficients of the polynomial.

Theorem 6.2. If there is at least one sign change occurs in the coefficients then the model

has a unique EEP and otherwise no EEP.

6.3.6 Local Stability analysis of EEP

Theorem 6.3. If B1 > B2 and R0 > 1 then the model has a unique endemic equilibrium

point, E1, which is LAS.

Proof. The proof of the local stability of the unique EEP, E1, using central manifold theory

[56] will now be explored below. Let R0 > 1. For convenience let change of variables:

S = x1, V1 = x2, V2 = x3, V3 = x4, A = x5 , Cn = x6,CS = x7, DC = x8 and R = x9 and

also use the vector notation X = (x1, x2, x3, x4, x5, x6, x7, x8, x9)T . Thus the model (6.2) can

be reduced by the form dX
dt

= F (X), where F = (f1, f2, f3, f4, f5, f6, f7, f8, f9)T .
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dx1

dt
= f1 = Π(1− p) + ω1x2 −

β(x5 + ηnx6 + ηSx7 + ηCx8)x1

N
− k1x1

dx2

dt
= f2 = Πp+ ψ1x1 + ω2x3 −

r1β(x5 + ηnx6 + ηSx7 + ηCx8)x2

N
− k2x2

dx3

dt
= f3 = ψ2x2 + ω3x4 −

r2β(x5 + ηnx6 + ηSx7 + ηCx8))x3

N
− k3x3

dx4

dt
= f4 = ψ3x3 −

r3β(x5 + ηnx6 + ηSx7 + ηCx8)x4

N
− k4x4

dx5

dt
= f5 =

β(x5 + ηnx6 + ηSx7 + ηCx8)x1

N
+
r1β(x5 + ηnx6 + ηSx7 + ηCx8)x2

N

+
r2β(x5 + ηnx6 + ηSx7 + ηCx8)x3

N
+
r3β(x5 + ηnx6 + ηSx7 + ηCx8)x4

N
− k5x5

dx6

dt
= f6 = φfx5 − k6x6

dx7

dt
= f7 = φ(1− f)x5 + ξx6 − k7x7

dx8

dt
= f8 = νx7 − k8x8

dx9

dt
= f9 = γx6 + θtγx7 − µx9

(6.5)

The Jacobian matrix of the reduced system (6.5) evaluated at the DFE (E∗0 ), which is

J =



−k1 ω1 0 0 −m1 −m1ηn −m1ηS −m1ηC 0

ψ1 −k2 ω2 0 −n1 −n1ηn −n1ηS −n1ηC 0

0 ψ2 −k3 ω3 −m2 −m2ηn −m2ηS −m2ηC 0

0 0 ψ3 −k4 −n2 −n2ηn −n2ηS −n2ηC 0

0 0 0 0 n1 +m2 +m1 + n2 + k5 mηn mηS mηC 0

0 0 0 0 φf −k6 0 0 0

0 0 0 0 φ(1− f) ξ −k7 0 0

0 0 0 0 0 0 ν −k8 0

0 0 0 0 0 ν θtγ 0 −µ



.

with

m1 =
β∗x∗1

x∗1+x∗2+x∗3+x∗4
, n1 =

β∗r1x∗2
x∗1+x∗2+x∗3+x∗4

m2 =
β∗r2x∗3

x∗1+x∗2+x∗3+x∗4
, n2 =

β∗r3x∗4
x∗1+x∗2+x∗3+x∗4

m = m1 +m2 + n1 + n2.
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Assume that the bifurcation parameter is β and solving from R0 = 1 we get

β∗ =

N∗

8∏
i=5

ki

β(S∗+V ∗1 +V ∗2 +V ∗3 )[(1−f)(ηCνφk6+ηSφk6k8)+ηnφfk7k8+ηSφk8ξf+ηCφνξf+k6k7k8]

where, S∗, V ∗1 , V
∗

2 , V
∗

3 are the DFE.

The transformed system (6.5) with β = β∗ has a simple eigenvalue with zero real part, and

all other eigenvalues have negative real part. Hence, for analysing the dynamics of the

system near β = β∗ we can use the Centre Manifold theory.

Eigenvectors of J(ε∗0)|β=β∗ = Jβ∗ :

The Jacobian of (6.5) at β = β∗ has a right eigenvector (correlated with the zero

eigenvalues) which is considered by w = (w1, w2, w3, w4, w5, w6, w7, w8, w9)T , where

w1 = − 1

k6k7k8[k3k4(k1k2 − ω1ψ1)− ω3ψ3(k1k2 − ω1ψ1)− k1k4ω2ψ2]

× [(k2k3k4m1 − k2m1ω3ψ3 + k3k4n1ω1 − k4m1ω2ψ2 + k4m2ω1ω2 − n1ω1ω3ψ3 + n2ω1ω2ω3)(fηCφνξ

− fηCνφk6 + fηSφk8ξ + fηnφk7k8 − fηSφk6k8 + ηCνφk6 + ηSφk6k8 + k6k7k8)]w5 < 0

w2 = − 1

[k1k2k3k4 − k1k2ω3ψ3 − k1k4ω2ψ2 − k3k4ω1ψ1) + ω1ψ1ω3ψ3]

× [(k1k3k4n1 + k1k4m2ω2 − k1n1ω3ψ3 + k1n2ω2ω3 + k3k4m1ψ1 −m1ω3ψ1ω3)(fηCφνξ − fηCνφk6

+ fηSφk8ξ + fηnφk7k8 − fηSφk6k8 + ηCνφk6 + ηSφk6k8 + k6k7k8))]w5 < 0

w3 = − 1

k6k7k8[k1k2k3k4 − k1k2ω3ψ3 − k1k4ω2ψ2 − k3k4ω1ψ1) + ω1ψ1ω3ψ3]

× [(k1k2k4m2 + k1k2n2ω3 + k1k4n1ψ2 + k4m1ψ1ψ2 − k4m2ω1ψ1 − n2ω1ψ1ω3)(fηCφνξ − fηCνφk6

+ fηSφk8ξ + fηnφk7k8 − fηSφk6k8 + ηCνφk6 + ηSφk6k8 + k6k7k8)]w5 < 0

w4 = − 1

k6k7k8[k1k2k3k4 − k1k2ω3ψ3 − k1k4ω2ψ2 − k3k4ω1ψ1 + ω1ψ1ω3ψ3]

× [(k1k2k3n2 + k1k2m2ψ3 + k1n1ψ2ψ3 − k1n2ω2ψ2 − k3n2ω1ψ1 +m1ψ1ψ2ψ3 +m2ω1ψ1ψ3)(fηCφνξ

− fηCνφk6 + fηSφk8ξ + fηnφk7k8 − fηSφk6k8 + ηCνφk6 + ηSφk6k8 + k6k7k8)]w5 < 0
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w5 = free

w6 = φfw5

k6

w7 = φ(1−f)K6+ζφf
k6k7

w5

w8 = νφ(1−f)k6+νξφf
k6k7k8

w5

w9 = νφfk7+θtνφ(1−f)k6+θtνξφf
µk6k7

w5.

Additionally, the Jacobian Jβ∗ , has a left eigenvector (correlated with the zero eigenvalue)

which is considered by v = (v1, v2, v3, v4, v5, v6, v7, v8, v9)T

v1 =
ψ1ψ2ψ3v4

k1k2k3 − k1ω2ψ2 − k3ω1ψ1

v2 =
v4ψ2ψ3k1

k1k2k3 − k1ω2ψ2 − k3ω1ψ1

v3 =
ψ3(k1k2 − ω1ψ1)v4

k1k2k3 − k1ω2ψ2 − k3ω1ψ1

v4 = free

v5 =
1

k5k6k7k8(k1k2k3 − k1ω2ψ2 − k3ω1ψ1)(mR0 − 1)
× [v4(n2(k1k2k3 − k1ω2ψ2 − k3ω1ψ1)

+m2ψ3(k1k2 − ω1ψ1) + k1n1ψ2ψ3 +m1ψ1ψ2ψ3)((1− f)(ηCνφk6 + ηSφk6k8)

+ fνφξηC + fφξηsk8 + fφηnk7k8 + k6k7k8)]

v6 =
1

k5k6k7k8(k1k2k3 − k1ω2ψ2 − k3ω1ψ1)(mR0 − 1)
× [k5v4(νξηC + ξηSk8 + ηnk7k8)(n2(k1k2k3

− k1ω2ψ2 − k3ω1ψ1) +m2ψ3(k1k2 − ω1ψ1) + k1n1ψ2ψ3 +m1ψ1ψ2ψ3)]

v7 =
k5k6ν4(νηC + ηSk8)[η2(k1k2k3 − k1ω2ψ2 − k3ω1ψ1) +m2ψ3(k1k2 − ω1ψ1)+k1η1ψ2ψ3 +m1ψ1ψ2ψ3]

k5k6k7k8(k1k2k3 − k1ω2ψ2 − k3ω1ψ1)(mR0 − 1)

v8 =
k5k6k7ηCv4[η2(k1k2k3 − k1ω2ψ2 − k3ω1ψ1) +m2ψ3(k1k2 − ω1ψ1)+k1η1ψ2ψ3 +m1ψ1ψ2ψ3]

k5k6k7k8(k1k2k3 − k1ω2ψ2 − k3ω1ψ1)(mR0 − 1)
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v9 = 0

Computation of b:

b =
x∗2r1(v5−v2)+x∗3r2(v5−v3)+x∗4r3(v5−v4)+x∗1(v5−v1)(ηcw8+ηnw6+ηSw7+w5)

x∗1+x∗2+x∗3+x∗4

The coefficient b is positive provided v5 > v1, v2, v3, v4.

Computation of a:

a = −2β(ηcw8+ηnw6+ηSw7+w5)
(x1+x2+x3+x4)2

[−x1r1w2(v5 − v2) − x1r2w3(v5 − v3) − x1r3w4(v5 − v4) + (w1 +

w2 +w3 +w4 +w5 +w6 +w7 +w8 +w9)x2r1(v5 − v2)− x3r1w2(v5 − v2)− x2r2w3(v5 − v3)−
x2r3w4(v5− v4) + (w1 +w2 +w3 +w4 +w5 +w6 +w7 +w8 +w9)x3r2(v5− v3)− x4r1w2(v5−
v2) − x4r2w3(v5 − v3) − x3r3w4(v5 − v4) + (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +

w9)x4r3(v5 − v4)− w1(v5 − v1)(x2 + x3 + x4)]

⇒ a =
−2β(ηcw8 + ηnw6 + ηSw7 + w5)

(x1 + x2 + x3 + x4)2
[−x1r1w2(v5 − v2)− x1r2w3(v5 − v3)−

x1r3w4(v5 − v4) + (w5 + w6 + w7 + w8 + w9)x2r1(v5 − v2)− x3r1w2(v5 − v2)−

x2r2w3(v5 − v3)− x2r3w4(v5 − v4) + (w5 + w6 + w7 + w8 + w9)x3r2(v5 − v3)−

x4r1w2(v5 − v2)− x4r2w3(v5 − v3)− x3r3w4(v5 − v4)+

(w5 + w6 + w7 + w8 + w9)x4r3(v5 − v4) + x1(w5 + w6 + w7 + w8 + w9)(v5 − v1)−

w1(v5 − v1)(x2 + x3 + x4) + ((w1 + w3 + w4)x2r1(v5 − v2) + (w1 + w2 + w4)x3r2(v5 − v3)+

(w1 + w2 + w3)x4r3(v5 − v4) + x1(w2 + w3 + w4)(v5 − v1))]

if a < 0 and b > 0 then the EEP of the model will be locally asymptotically stable.

From the above expression it can be shown that a < 0 if

B1 > B2 (6.6)

where B1 = −x1r1w2(v5 − v2)− x1r2w3(v5 − v3)− x1r3w4(v5 − v4)

+ (w5 + w6 + w7 + w8 + w9)x2r1(v5 − v2)− x3r1w2(v5 − v2)− x2r2w3(v5 − v3)

− x2r3w4(v5 − v4) + (w5 + w6 + w7 + w8 + w9)x3r2(v5 − v3)− x4r1w2(v5 − v2)
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− x4r2w3(v5 − v3)− x3r3w4(v5 − v4) + (w5 + w6 + w7 + w8 + w9)x4r3(v5 − v4) +

x1(w5 + w6 + w7 + w8 + w9)(v5 − v1)− w1(v5 − v1)(x2 + x3 + x4) and

B2 = (w1 + w3 + w4)x2r1(v5 − v2) + (w1 + w2 + w4)x3r2(v5 − v3)

+ (w1 + w2 + w3)x4r3(v5 − v4) + x1(w2 + w3 + w4)(v5 − v1).

Thus, using Central Manifold theory, the endemic equilibrium point is LAS under some

condition (B1 > B2).

6.4 Vaccination Impact

In this section, the impact of the HBV vaccine is analysed on the threshold, R01. First of

all, let us consider R0 as a function of susceptible individuals vaccinated at steady-state (i.e.

at P1 = V ∗

N∗
). For mathematical simplification, we assume that V ∗ = V ∗1 +V ∗2 +V ∗3 and their

efficacy are equal. That is,

R0 = R0(P1) =
β((1− P1) + rP1)[(1− f)(ηCνφk6 + ηSφk6k8) + ηnφfk7k8 + ηSφk8ξf + ηCφνξf + k6k7k8]

k5k6k7k8

=
β((1− P1) + rP1)A11

k5k6k7k8

where, A11 = (1 − f)(ηCνφk6 + ηSφk6k8) + ηnφfk7k8 + ηSφk8ξf + ηCφνξf + k6k7k8.

Differentiating R0(P1) partially with respect to P1 gives

R01 =
∂R0(P1)

∂P1

= − βA11

k5k6k7k8

(1− O) (6.7)

with O = rβA11

A11β
.

It follows from (6.7), if O < 1 then ∂R01

∂P1
< 0. That is R0 is a decreasing function of P1, when

O < 1. Moreover, reduction in reproduction number means reduction in disease burden.

So, the analysis shows that an imperfect HBV vaccine has a positive effect in reducing the

burden of disease if O < 1, and has no impact for other cases. The is summarized as:

Lemma 6.3. The imperfect vaccine will have

(i) a positive impact in reducing disease burden if O < 1 ;
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Figure 6.4: The prevelance considering the presence and absence of a vaccine, where,
β = 3.09 (so that O = 0.55 , R0 = 2.34 > 1 and R01 = 2.68 > 1) and the parameter values

are given in Table 6.2.

(ii) no impact in reducing disease burden if O = 1 ;

(iii) increase disease burden if O > 1.

The above result is done by simulating the vaccination model (6.2) using the value of the

parameters in Table 6.2. The above Figure 6.4 illustrate that prevalence as a function of

time. From the figure we see that with O = 0.55 < 1 (corresponding to the vaccine efficacy

of 65%, 55%, 87%, where, r1 = 0.65, r2 = 0.55, r3 = 0.87 respectively) vaccine has a positive

impact, since it reduces disease burden than that of the case when vaccine is not used.

A contour plot of R0, as a function of the first vaccine dose efficacy and administration

rate of first dose. Figure 6.5 shows that with the expected minimum 65% efficacy of the first

vaccine dose, administrating 75% to the susceptible population with the first vaccine dose

may be sufficient to control the spread of Hepatitis B infection. However, form Figure 6.6,

it is clear that same effective control may also be obtained if 60% of the first vaccine dose

recipients take the second dose.



Chapter 6. Qualitative Dynamics of HBV Vaccination Model 117

Figure 6.5: Contour plots of R0 as a function of the first dose of vaccination rate (ψ1)
and vaccine efficacy (r1) with β = 0.93.

Figure 6.6: Contour plots of R0 as a function of the second dose of vaccination rate (ψ2)
and vaccine efficacy (r2) with β = 0.85.

6.5 Sensitivity Analysis of the parameters

The analysis of the sensitive parameters is done to decide which of the parameters have vital

importance in the disease transmission dynamics. We calculate the sensitivity indices of the

threshold, R0, to the parameters defined in (6.2), to decide which of the parameters have

an essential effect on R0 and consequently responsible for the transmission of disease among

the population. Here we use the method described in [92, 93]. Sensitivity indices estimate

the relative change in the state while a parameter is also changed. The normalized forward
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sensitivity index of a variable to a parameter is the ratio of the relative change of the variable

to the relative change of the respective parameter.

6.5.1 Definition

The normalized sensitivity index of a variable, v, that depends differentiably on a parameter,

r, is given by:

χvr =
r

v
× ∂v

∂r

6.5.2 Sensitivity Indices of Effective Reproduction Number (R0)

Since we have a formula for R0 , we can derive an analytical expression for the sensitivity

of R0 ,

χR0
r =

r

R0

× ∂R0

∂r

We can see from the Table 6.4 that all the parameters of the model have either positive or

negative impact on R0. We observed from the Table 6.4 that the parameters β, r3 and ηC

are the most positively sensitive parameters with vaccine effect. This implies that the

increased values of those parameters, R0 will also increase.

Again we can see that the parameters, p, ψ1, ψ2, ω3 and δ are the most negatively sensitive

parameters. This implies that if the values of these parameters increased then R0 will be

decreased and vice versa.

Further, the parameters β, ηS and ηC are positively sensitive when vaccine is not used and

the parameters p , f , µ, δ and θt are the most negative sensitive parameters for the same

case.

Therefore, Local sensitivity analysis (LAS) shows that the negatively influential parameters

are the proportion of the newborn’s vaccination rate (p), fraction of the acutely infected

individuals who become chronically infected (f), natural death rate (µ), HBV- related

mortality rate (δ) and modification parameter for the assumed decrease of the recovery

rate of symptomatic chronically-infected individuals in complication to non-symptomatic

chronically-infected individuals (θt) and positively sensitive parameters are the
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Parameter Base value Sensitivity index of R0 Sensitivity index of R0

with vaccine without vaccine

Π 0.0121 too small (positive) too small (positive)
p [0,1] -0.000773 -1.85714
β 0.95− 20.49 0.9999 ≈ 1
ω1 0.1 0.000131 −
ω2 [0,1] 0.00001183 -
ω3 [0,1] -0.0008107 -
f [0,1] -0.036512 -0.006965
ψ1 0.885 y−1 -0.000543 -
ψ2 0.925 y−1 -0.0004195 -
ψ3 0.879 y−1 0.003619 -
µ 0.00693 -0.7855 -0.782081
δ 0.002 -0.224904 -0.225013
r1 [0,1] 0.007909 -
r2 [0,1] 0.006305 -
r3 [0,1] 0.98167 -
φ 4 0.0001416 0.0001868
ξ 0.12 0.023439 0.006476
γ 0.06 -0.044202 -0.028612
θt 0.0936 y−1 -0.022703 -0.022713
ν 0.2323 y−1 0.029029 0.0290437
ηn (0,1) 0.0005437 0.000137
ηS 1.2 0.029772 0.029787
ηC 1.5 0.968096 0.968567

Table 6.4: Sensitivity index of R0 to some parameters of the HBV vaccination model
(6.2)

infectiousness of symptomatic chronic carriers (ηS), infectiousness of the disease

complicated individuals (ηC)and disease transmission rate (β). However, LAS does not

accurately assess the uncertainty and sensitivity of the parameters in the system. To avoid

this difficulty Latin Hypercube sampling-partial rank correlation coefficient (PRCC)

technique is the most popular method for global sensitivity analysis.
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6.5.3 PRCC Analysis for Global Sensitivity

A statittical technique for sensitivity analysis named PRCC, which calculates the partial

rank correlation coefficient for the parameters of the model (with the help of Latin hypercube

sampling technic)[94, 95]. The calculated values of PRCC for parameters lies are between

-1 and 1 and they are comparable between distinct model inputs. The positive or negative

sign of the PRCC values of parameters gives the relationship between the model input and

output. A positive value of PRCC means that if the corresponding model input parameters

increase then the output will also increase. Similarly, the negative value of PRCC indicates

a negative correlation. The constant value of PRCC measures the significant change of the

model input and contribute to the associated model output[94, 95].

Figure 6.7: Sensitivity of some parameters of HBV vaccination model as indicated by
the PRCC

For the HBV vaccination model (6.2), the PRCC index illustrates that disease transmission

rate (β), fraction of the acutely infected individuals who are gradually chronically infected

(f), at the rate when acutely-infected people become chronically infected (φ), rate at which

asymptomatic chronically-infected individuals become symptomatic chronically-infected (ξ)

and rate at which symptomatic chronically-infected individuals develop disease complications

(ν) and the respective PRCC indices are 0.5305, -0.5870, 0.5318, 0.5612, 0.7865 respectively,

and their p-values are illustrated in Figure 6.7. The entire result illustrates that if the

transmission rate (β) increases unexpectedly, then the spread of the disease is unbounded

and it is very difficult to control. In comparison, the proportion of acutely infected individuals
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who become chronically infected (f) can be the most sensitive parameter for controlling the

spread of infectious disease transmission.

6.5.4 Contour Plot Analysis

In this section, we find the correlation between the most sensitive parameters through some

contour plot analysis. Figure 6.8 illustrates that there is a positive correlation between

the transmission rate (β) and the reproduction number, R0, similarly, the same correlation

occurs between the infectiousness of disease complications (ηC) and R0.

Figure 6.8: Figure of contour plot in terms of the two sensitive parameters: β
(transmission rate)and ηC(infectiousness of disease complications).

Figure 6.9 illustrates that there is a negative relation between the recovery rate of

symptomatic chronic carriers (θt) and R0, whereas there is a positive correlation between

the rate of symptomatic chronic carriers (ξ) and R0.

6.6 Conclusions

A deterministic model, assessing imperfect dose-dependent vaccination of HBV

transmission dynamics at the population level, is constructed and analysed

(mathematically and numerically). Some mathematical and epidemiological findings are

given below:
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Figure 6.9: Figure of contour plot in terms of the two sensitive parameters: θt(recovery
rate of symptomatic chronic carriers) and ξ (rate of symptomatic chronic carriers).

(i) The HBV vaccination model has a locally and globally asymptotically stable disease

free equilibrium (DFE) when the corresponding threshold quantity, known as, R0 < 1.

(ii) The model has also a locally asymptotically stable unique endemic equilibrium point

(EEP) under some condition.

(iii) An imperfect HBV vaccine have positive, negative and no effect on population

depending on O.

(iv) Local sensitivity analysis of the parameters show that disease transmission rate (β),

infectious rate of disease complication (ηC), the development rate of disease

complication (ν) are the positive sensitive parameters and proportion of the

newborns vaccination rate (p), recovery rate of chronically infected individuals (γ)

are the negative sensitive parameters of the model on threshold quantity.

(v) Using Latin hypercube sampling for partial rank correlation coefficient (PRCC) of

global sensitive parameters shows that disease transmission rate (β), fraction of the

acutely infected individuals who developed chronic infection (f), the rate at which

acutely-infected people become chronically infected (φ), development rate of the

asymptomatic chronic carriers to be symptomatic (ξ),the development rate of disease

complication (ν) are highly sensitive parameters that effect the disease dynamics of

HBV among individuals.
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(vi) Furthermore, contour plot analysis between the sensitive parameters show that disease

can be controlled if the disease burden is reduced.



Chapter 7

Contributions of the Thesis

In this thesis, a number of deterministic mathematical models related to HBV transmission

disease dynamics are formulated and analyzed rigorously (mathematically and numerically)

and presented in different chapters. Some mathematical and epidemiological findings are as

follows:

(i) In Chapter 3 , a new deterministic model for the transmission disease dynamics of

HBV among the population is formulated numerical simulations is rigorously

analyzed. The model has a locally-asymptotically stable (LAS) DFE for R0 < 1. By

Lyapunov function and LaSalle Invariance Principle, the model has a

globally-asymptotically stable DFE whenever R0 < 1. The model has a unique

endemic equilibrium (EEP) for R0 > 1. Sublinearity trick is used for stability

analysis of EEP and using nonlinear Lyapunov function the global stability of EEP is

shown, whenever, the threshold R0 > 1. If re-infection is considered then backward

bifurcation occurs, where an asymptotic stable DFE and an unstable EEP co-exists

when R0 < 1.

(ii) In Chapter 4 , a new basic (without immune response) deterministic model for the

transmission disease dynamics of HBV in vivo is constructed and numerically

analysed. Then the model is extended for immune responses namely cell-mediated

and humoral against HBV in vivo. The basic model (4.3) has a GAS VFE and also

124
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has at least one locally asymptotically positive virus present equilibrium (VPE), E1

whenever R0 > 1. The reduced model of the immune system has a GAS VFE if

R01 < 1 and a positive unique locally asymptotically stable VPE whenever R01 > 1.

Due to vaccine impact, the humoral immune response such as antibody level is

always more effective than the cell-mediated immune response in reducing HBV

infection. The high effective level of immune response with a low contact rate can

reduce the HBV burden in vivo.

(iii) In Chapter 5 , the dynamics of hepatitis B virus infection, subject to optimal

control strategies with vaccination and creating awareness as controls are designed

and analysed. The numerical simulations show that the optimal strategies of

vaccination and awareness are much more effective not only to minimize the infection

as well as to control hepatitis B virus infection. A combination of with and without

control strategies is considered. The control parameters are much more effective to

reduce the infected individuals and controlling the disease dynamics. The controls

are needed to be effective for a long time interval with a high transmission rate. The

control strategy is also effective in minimising the infection of infected individuals

and the cost of the two controls. The numerical results illustrate that vaccination

plays an essential role in disease elimination.

(iv) In Chapter 6 , A deterministic model, assessing imperfect dose-dependent

vaccination of HBV transmission dynamics at the population level, is considered and

analysed (mathematically and numerically). The HBV vaccination model has a

disease free equilibrium (DFE) which is locally and globally asymptotically stable

when the associated threshold quantity, known as R0, is less than unity. The model

has a unique endemic equilibrium point (EEP) which is LAS under certain

conditions. An imperfect HBV vaccine could have positive or negative or no

population-level impact depending on O, which is either less than or equal to or

greater than unity. Local sensitivity analysis of the parameters shows that disease

transmission rate (β), infectious rate of disease complication (ν) are the most

positively sensitive parameters. On the other hand, the proportion of the newborn’s

vaccination rate (p), the recovery rate of chronically infected individuals (γ) are the
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most negatively sensitive parameters on the epidemic threshold. For evaluating the

partial rank correlation coefficient (PRCC) of global sensitive parameters we use

Latin hypercube sampling, which shows that disease transmission rate (β), fraction of

the acutely infected individuals who developed chronic infection (f), the rate of the

acutely-infected people who become chronically infected (φ), development rate of the

asymptomatic chronic carriers to be symptomatic (ξ), the development rate of

disease complication (ν) are highly influential sensitive parameters that affect the

disease dynamics of HBV among individuals. Furthermore, contour plot analysis

between the sensitive parameters shows that disease can be controlled if the disease

burden is reduced.
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