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Modified Inferential Methods on Restricted Parameters in Multivariate Regression 

Analysis: Applications in Socio-demographic Research 

 

Abstract 

Efficient and significant empirical estimate of the multivariate regression parameters will be 

helpful for the policymaker to make the right decisions about sophisticated interrelated issues in 

the dynamic world. Since the end of the twentieth century, statisticians are going forward to 

develop unique working methodology for estimating and testing restricted parameters. This study 

reviews existing methods and proposed modified maximum likelihood estimator (MMLE), 

modified multivariate 𝑡 statistic and modified joint confidence regions to get efficient estimates 

and test statistic for exact linear restricted parameters of multivariate regression with continuous 

responses. The proposed estimator is unbiased, consistent and relatively efficient than classical 

maximum likelihood estimator. Likelihood ratio test, modified Akaike information criterion are 

applied to select the related predictors of multivariate responses.  We also proposed a modified 

maximum likelihood estimator for restricted parameters of multivariate regression with mixed 

responses and evaluate the performance of the proposed estimation method based on relative 

efficiency criterion. A Monte Carlo experiment is conducted to examine relative performance of 

the modified methods. 

 

We also proposed a modified two parameter weighted estimator (MTPWE) to estimate the 

stochastic linear restricted parameters in multivariate regression analysis. The study has revealed 

theoretically and numerically that the proposed MTPWE is consistent based on mean square 

error criterion and relatively efficient than conventional multivariate least square (MLSE) and 

weighted mixed estimator (MMWME) in multivariate extension. Moreover, A Monte Carlo 
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simulation experiment has done to ensure a comparison of the MTPWE to the MLSE and 

MMWME for different restricted parameters of the various levels of correlation and sample size.  

 

The proposed inferential approach has been also applied to detect the numerical nexus among 

socio-demographic determinants, food expenditure and total monthly expenditure in “Haor” 

areas of Bangladesh by using Household Income Expenditure Survey (HIES) dataset 2016. The 

study reveals that logarithm form of total monthly expenditure and food expenditure as 

multivariate continuous responses are significantly related to total operating land, logarithm form 

of family size and total monthly income (𝑝 < 0.01) considering a restriction on the parameters 

at 5% level of significance. Based on the simulation study and empirical application, the 

performance of the modified inferential approach is deemed more realistic than the existing 

methodology.   
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Chapter 1 

Introduction 

 

1.1 Prelude 

Inferential statistics is a wide-ranging discipline based on mathematics, empirical science, and 

philosophy used to draw a conclusion about a particular parameter of population using sample 

data. Efficient and significant empirical estimate of population parameters will be helpful for the 

policymaker to take the right decisions about sophisticated issues in the dynamic world. 

Sometimes in real-life, parameter originates from the complex domain and covered by different 

sorts of restriction. The nature of restrictions can be exact linear, stochastic or inequality 

constraints.  Since the end of the twentieth century, statisticians are going forward to develop a 

unique working methodology for estimating and testing the restricted parameters mathematically 

as well as statistically in the contemplated decision-making process. Constraint statistical 

inference (CSI) has grown out for cause and effect analysis of survey or experimental data in 

various interdisciplinary fields especially, where restrictions are attached with parameters of a 

statistical model.   

 

Multivariate regression analysis (MRA) a methodology of the statistical modeling used to assess 

the effect of the predictor variables on the interrelated responses. It can also be used for 

predicting response variables from a collection of predictor variables. MRA has scope to fortify 

its applications in almost all walks of life and science. However, in the dynamic world, 

multivariate regression models are difficult due to a complex network of restriction either in the 

unknown parameter space in a parametric way or even in the sample space of the random 

observations. Hence, every tire of the statistical modeling says model specification, parameter 
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estimation, the test of significance of the parameters, criterion of appropriate model selection fall 

in the new challenge. Now, it became necessary to modify the inferential methods for compatible 

developments in statistical decision theory and thereby need to regulate the appropriate 

methodology to meet the demand of the vast interdisciplinary fields of applications. 

 

1.2 Background of the Study 

Multivariate techniques have emerged as a powerful inferential tool to analyze relationship 

among multiple variables at a time. It plays a vital role in developing multivariate estimator for 

estimating the parameter vector and to evaluate the estimated parameter mostly by testing 

significance of the parameters. However, statisticians have faced crux when the prior knowledge 

about the nature of parameters is predefined and multicollinearity problem is raised among the 

predictors in cause and effect analysis. Ordinary least square or maximum likelihood methods 

are not efficient to estimate the parameters in such situations. 

 

When the researchers are going to test the parameter jointly in multivariate regression or in 

multivariate analysis of variance (MANOVA), the test statistics available in existing literature 

are Likelihood Ratio, Wilks’ lambda, Pillai’s trace, Hotelling-Lawley trace and Roy’s greatest 

root (Johnson and Wichern, 2013).The power of general Likelihood Ratio or Wilks’ lambda test 

to test the parameters jointly in multivariate regression is also weak (Silvapulle,2006). Generally, 

the distribution of the error term of multivariate multiple regression models is multivariate 

normal (Anderson, 2003). But most of the time, the demographic variables may be qualitative or 

quantitative. One example of the response vectors may be that it consists of desired family size, 

contraceptive use, marital status which comprises both qualitative and quantitative variables, 
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may not be multivariate normal. Hence, multivariate regression analysis faces a labyrinth to 

estimate regression parameters or testing it.   

 

1.3 Statement of the Problem 

Multivariate regression analysis is getting increasing attention among the socio-demographers 

due to the complex nature of the interdependence of the response variables. It is more efficient 

than regression analysis for each dependent variable separately when the correlation structure 

among the dependent variables is present (Hartung and Knapp, 2014). MRA allows a researcher 

to answer several questions, such as whether there is a significant relationship between the 

criterion and predictor variables, whether a given subset of predictors is really important to the 

relationship or not, and whether the predictors are able to explain a significant amount of the 

total variation among the criterion variable (Kshirsagar and Ravindra, 2014). The multivariate 

linear regression has been discussed in both theoretical and applied statistics (Anderson, 1951; 

Johnson and Wichern, 2013; Bilodeau and Brenner; 1999, Rencher, 2002). This empirically, 

statistically and mathematically mature method is needed to deal with big data challenge in the 

digital world. In the complex domain, the multivariate regressions are generally not so simple 

due to a complex network of constraints in the space of the unknown parameters in a parametric 

way. There is therefore a growing need for statistical inference to cope with such constrained 

environments. However, very little research has addressed the problem of i) estimating 

multivariate regression parameters considering exact or stochastic linear restriction and ii) testing 

the restricted parameters individually. Detection of the critical value(s) for the test statistic 

related to the restricted hypothesis is not smooth due to the complex nature of the exact null 

distribution. Though several information criterions are used to investigate the best model after 
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selecting the appropriate number of variables, the need to develop a consistent model selection 

criterion considering parameter restriction remains unanswered.  

 

Bangladesh has experienced promising improvements in its overall economic, social and health 

conditions but the progress is not up to the mark in Haor areas. The socio-economic condition of 

day laborers and other workers in Haor areas are volatile where predictors may follow some 

restrictions (linear or stochastic) leading to one-sided hypothesis testing in modeling exercise. 

This study has tried to apply multivariate regression with restricted parameter for detecting major 

predictors, like family size, access to safety-net program, income and operating land, of monthly 

food consumption and overall expenditure. 

 

However, the concept of multivariate regression faces hurdles when response matrix is 

categorical or mix of both categorical and numerical variables (and both continuous and ordered 

discrete variables), which is a common scenario in socio-economic and demographic analysis. 

The way of estimating the joint distribution of mixed responses in multivariate regression is 

complex and unknown in most of the cases. Consequently, parametric methods to estimate the 

parameters have still not been established and testing procedure to test the significance of the 

regression coefficients are needed to be modified.  

 

So, a big challenge for social statisticians is to develop appropriate model by addressing these 

issues and seek out efficient estimation and powerful hypothesis testing procedure to fit model 

correctly and predict about future phenomenon. 
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1.4 Objectives of the Study 

The main objective of the study is to develop modified inferential approach on restricted 

parameters in multivariate regression analysis and its applications in socio-demographic 

research.  

The specific objectives of the study are to- 

i. develop  appropriate estimation strategy for exact restricted parameters of multivariate 

regression with continuous responses; 

ii. develop suitable testing procedure for multivariate regression parameters of continuous 

responses under exact restricted alternatives; 

iii. construct modified estimators of  multivariate regression parameters with continuous 

responses under stochastic restrictions; 

iv. construct modified estimators of  multivariate regression parameters with mixed 

responses; 

v. conduct Monte-Carlo simulation to check the adequacy and appropriateness of the 

suggested methods; and 

vi. apply the modified approach to socio-demographic real life data. 

 

1.5 Functional Definition and Notation of Important Terminologies 

Constraint Statistical Inference: Statistical models in real-life interest as well as in 

interdisciplinary research are generally complex in their designs, sampling methodology, 

associated probability laws, which in turn are often constrained by exact or stochastic 

restrictions, order, functional, shape or other restraints. In such situations, constrained statistical 
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inference is a branch of decision theory; used for parameter estimation and hypothesis testing 

considering the parameter restrictions, in the process.  

 

Linear Regression: Linear regression is a statistical technique which is useful for predicting one 

set of response variables from another set of predictor variables. The response variables will be 

discrete, continuous or mixed. The model of linear regression is given as 

     𝒀 = 𝑿𝜷 + 𝜺        (1.1) 

where, 𝒀 is the 𝑛 × 𝑝 matrix of response variables and 𝑿 is the 𝑛 × (𝑘 + 1) predictors. 𝜷 is a 

(𝑘 + 1) × 𝑝 matrix of unknown parameters and 𝜺 is 𝑛 × 𝑝 matrix of random disturbances. 
 

Restricted Parameter Space: The parameter space ℬ is the space of possible parameter values 

that reflects the feasible states of nature relative to the unknown parameters matrix 𝜷 in linear 

regression. If the prior or non-sample information that reflects knowledge other than that derived 

from the statistical investigation is amalgamated with unknown parameters, parameter space is 

defined as restricted parameter space. 

 

Exact Linear Restriction: If the exact information on the particular parameter or linear 

combination of the parameters in a linear regression model is available by the investigator, the 

restriction is called exact linear equality restrictions. The form of exact linear equality 

restrictions: 

                                                                   𝑹𝜷 = 𝝃        (1.2) 

where 𝑹 is a 𝑞 × (𝑘 + 1) 𝑎𝑛𝑑 𝑞 < 𝑘 known prior information design matrix that expresses the 

structure of the information on the individual parameters or some linear combination  of the 

elements of known elements 𝜷 matrix and 𝝃 is a matrix of known elements of order 𝑞 × 𝑝.   
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Stochastic Linear Restriction: The restrictions may be called stochastic linear restrictions, if 

uncertainty exists about the prior or non-sample information specification in equation (1.2). The 

form of stochastic linear restriction can be expressed as 

                                                                   𝑹𝜷 + 𝝂 = 𝝃    (1.3) 

𝝂 is a 𝑞 × 𝑝 unobservable normally distributed random vector with mean vector 𝛿 and covariance 

𝚿. 

 

Inequality Restriction: In applied research, there exists in many cases prior information 

concerning the non-negativity or non-positivity of a regression parameter or linear combination 

of parameters, or that a parameter or a linear combination of parameters lies between certain 

upper and lower bounds or that functions are monotonic, convex or quasi-convex. When 

information of this form is available, it can be presented by the inequality restrictions. The form 

of inequality restrictions is given by 

𝑹𝜷 ≥ 𝝃      (1.3) 

 

Uniformly Minimum Variance Unbiased Estimator: Uniformly minimum variance unbiased 

estimator (UMVUE) is an unbiased estimator that has minimum variance than any other 

unbiased estimator for all possible observable values of the parameters.  

The modified estimator of regression parameter 𝜷  is called UMVUE if and only if 1) modified 

estimator is unbiased and 2) the variance of modified estimator is minimum compared to that of 

any other unbiased estimator. 

 

Relative Efficiency: The relative efficiency of modified estimators is the ratio of the variance of 

modified estimator and the variance of other estimator. 
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Relative Effeciency =
Variance of modi ied estimator of 𝜷

Variance of existing estimator of 𝜷
 

The value of relative efficiency is greater than 1 indicates that modified estimator is preferable. 

 

Coverage Probability: The coverage probability of a technique for calculating confidence 

interval is the proportion of time that the interval contains the true value of interest. Confidence 

interval with shortest length and high coverage probability is better than others. 

 

Restricted Hypothesis: If  ∁ and 𝓜 are subsets of an Euclidian space, then restricted hypotheses 

are 

Type A: ℋ : 𝜷 ∈ 𝓜 against  ℋ : 𝜷 ∈ ∁  and 𝜷 ∉ 𝓜 

Type B: ℋ : 𝜷 ∈ ∁ against  ℋ : 𝜷 ∉ ∁ . 
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1.6 Conceptual Framework of the Study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Conceptual Framework for Developing Modified Inferential Methods for MRA 
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1.7 Source of Data 

The multivariate data have been simulated from multivariate normal, multivariate Bernoulli 

distribution and mixed distribution to achieve specific objectives I to VI. The Household Income 

Expenditure Survey (HIES) data 2016 have been collected and partially used for achieving 

specific objective VII. 

 
1.8 Statistical Computation 

Numerical computation is a challenging task for modifying statistical methodology. Complex 

statistical modeling faces computational obstacles about Monte Carlo methods, random number 

generation, big data management, numerical optimization in statistical inference for estimating 

and testing parameters. Programming language R (graphical user interface, RStudio), statistical 

software (IBM SPSS Statistics, Stata), Spreadsheet (Microsoft Excel) have been used for the 

purpose of statistical computation.  

 

1.9 Synoptic View of the Study 

This chapter introduces the background of the study, statement of the problem upon which the 

study is based. The study objectives are defined and relevant concepts are delineated. 

Contributions of the study are discussed. Operational terminologies and concepts, statistical 

computation of this study are defined. Chapter II reviews the relevant literature to multivariate 

regression with continuous, categorical and mixed responses. Estimation and testing procedures 

related to multivariate regression are discussed. The theoretical background and previous 

conceptual and empirical research findings are discussed. Chapter III (for objectives I, II and VI) 

discusses modified inferential approach for multivariate regression with continuous responses 

considering parameter restriction. Monte Carlo simulation and real life applications of the 
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methods are also presented in this chapter. Chapter IV (for objectives III, V and VI) presents a 

detailed discussion on multivariate regression with continuous responses, model specification for 

stochastic restricted parameters, modified estimation and testing methods. Monte Carlo 

experiments are conducted to evaluate the performance of modified techniques. Chapter V (for 

objectives IV and V) documented the methodology of estimating and testing the parameter of 

multivariate regression with mixed responses. Again, Monte Carlo study is performed to evaluate 

the proposed estimating and testing methods. Chapter VI (for objective VII) presents a real life 

application of constraint statistical inference. Chapter VII conclusions and the implications of the 

research are delineated and future research directions are presented. 
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PART II 

Multivariate Continuous Responses with Restricted Parameters 
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Chapter 2 

Literature Review of Multivariate Continuous Responses 

 

2.1 Introduction 

Linear regression is a statistical methodology used to predict one set of response variables from 

another set of predictor variables. Both univariate and multivariate regression plays a pivotal role 

to find significant predictors in decision-making problems. Multivariate linear regression 

attempts to investigate any significant relationship among responses and predictors; to diagnosis 

which predictors have dominant effect on the relationship and finally find the answer to the 

question whether the significant amount of total variation among the response variables can be 

explained through the predictors (Kshirsagar and Ravindra, 2014).  

 

The nature of the response variables in classical multivariate regression model must be 

continuous. The multivariate linear regression has been discussed in both theoretical and applied 

statistics (Anderson, 1951; Johnson and Wichern, 2013; Bilodeau and Brenner, 1999; and 

Rencher, 2002).  

 

In this chapter, we review the different aspects of multivariate regression for continuous 

responses considering different parameter constraints. Section 2.1.1 defines the concept and 

notation of multivariate regression for normal variates. In Section 2.2, we describe the estimation 

technique of the restricted parameters for univariate regression. Section 2.3 reveals the overall 

testing procedure of the restricted parameters. Sections2.4 and 2.5 have mentioned the individual 

testing procedure and joint confidence interval of the restricted parameters respectively. In 
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section 2.6, we conclude the chapter by outlining what we will investigate in the next chapters 

for continuous responses. 

 

2.1.1 Classical Multivariate Regression with Continuous Responses 

Classical univariate regression analyses can assess the relationship among univariate response 

variable and a set of explanatory variables. But, multivariate regression is used to explain the 

relationship between more than one quantitative response variables and a set of quantitative 

explanatory variables. When a correlation structure among the response variables is present, a 

multivariate regression model is considered as more efficient than regressions analysis for each 

response variable separately. So, MRA is employed to make inference about correlated response 

variables based on parsimonious number of predictors when both predictors and correlated 

response variables are quantitative in nature (Hartung and Knapp, 2014). 

 

Let 𝒀 be an 𝑛 × 𝑝 observation matrix of 𝑝 continuous multivariate response variable and 𝑿 be a 

design matrix of  𝑛 × (𝑘 + 1) nonstochastic predictor variables with rank 𝑘 ≤ 𝑛 where 𝑛 is the 

sample size. A multivariate regression model is given as 

𝒀 = 𝒇(𝑿) + 𝜺 = 𝑿𝜷 + 𝜺 

Here, the distribution of random disturbances is multivariate normal, 𝜺~𝑀𝑁𝐷(Ο × , Σ × ).   𝜷 , 𝚺 

are the unknown parameters where 𝜷 is a (𝑘 + 1) × 𝑝 matrix of regression co-efficient (Johnson and 

Wichern, 2013). 

 

Estimating unknown parameters of the MRA is one of the challenging issues. The first need of 

MRA is to fit model from the observed data considering number of assumptions through 

estimating unknown parameters using maximum likelihood estimator when the distribution of 
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the responses is multivariate normal or by using least-squares approach when no distributional 

assumptions are made. But, the multivariate regressions are generally not so simple due to a 

complex network of constraints in the space of the unknown parameters in a parametric way. 

Hence, there is a growing need for statistical inference to cope with these sorts of constrained 

environments. Ordinary least square or maximum likelihood methods are not efficient to 

estimate the restricted parameters. Different studies were conducted separately for estimating the 

restricted parameters and testing the overall significance of restricted parameters for classical 

multiple linear regression (Atiqullah, 1969; Nancy, 2014; Speed, 2014; Silvapulle, 2006).  

 

2.2 Estimating Technique of the Restricted Parameters 

 Statistical inference problem in which stochastic model faces several types of restriction 

especially, exact linear restriction, stochastic linear restriction, inequality restriction. Ordinary 

least square or maximum likelihood methods do not take challenges to find standard results of 

the restricted parameter of the regression model where the distribution of the random error is 

normal (Silvapulle, 2006). Atiqullah (1969) described a restricted least square estimator for 

general linear model considering exact linear parameter restriction.  

 

2.2.1 Restricted Least Square Estimator 

Let 𝒀 be a 𝑛 × 1vector of observations and 𝑿 be a full rank design matrix of  𝑛 × 𝑘 

nonstochastic predictor variables where 𝑛 is the sample size. Consider a general linear model as 

𝒀 = 𝑿𝜷 + 𝜺, with prior restriction 𝑹𝜷 = 𝝃   

The method of Sweep-Out is used to obtain computing formulas for calculating the least squares 

estimator and its variance matrix in the linear models not necessary of full rank, in which certain 

restrictions may hold on the actual parameters (Atiqullah, 1969). 
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𝜷 = 𝜷 − 𝑪 𝑹 (𝑹𝑪 𝑹 ) 𝑹𝜷 − 𝝃  𝑤ℎ𝑒𝑟𝑒 𝑿𝑡𝑿 = 𝑪 

𝑬 𝜷 = 𝜷 

 𝑽 𝜷 = 𝜎 (𝑪 − 𝑪 𝑹 (𝑹𝑪 𝑹𝒕) 𝑹𝑪 ) 

 

2.2.2 Restricted Maximum Likelihood Estimation 

Restricted maximum likelihood estimation (REML) is an approach to estimation that maximizes 

likelihood over a restricted parameter space (Nancy, 2014). Parameters in dispersion matrices 

can be estimated by using restricted maximum likelihood estimation (REML) method which can 

be taken as a substitute to its main contender profile maximum likelihood because, use of profile 

likelihood may lead to badly biased estimators of parameters of interest when there are a large 

number of nuisance parameters whereas REML considers degrees of freedom lost in estimating 

parameters in a model for expected values and gives estimators of the remaining parameters with 

less bias and better consistency properties (Speed, 2014).  

 

In a general linear model with normal error distribution, REML is an unbiased estimator when 

the distribution of the response variable is normal. The method has been applied to situations 

where the parameters satisfy order restrictions (Nancy, 2014). In the multiple linear regression 

analysis, the linear model is given below 

𝒀 = 𝑿𝜷 + 𝒁𝒃 + 𝜺 

 where𝒀 is an 𝑛 × 1 observed data vector, 𝜷 is a (𝑘 + 1) × 1 vector of fixed effect parameters with 𝑿 

be a design matrix of  𝑛 × (𝑘 + 1), 𝑏 is a 𝑙 × 1 vector of random effects, Z is a design matrix with 

dimension 𝑛 × 𝑙and 𝜺 is an 𝑛 × 1 vector of error terms which are independent and distributed as  

𝑁(0, 𝑅). The variance of  𝒀 is 𝑽 = 𝒁𝑫𝒁𝒕 + 𝑹. The elements of D and R may be taken to be 

functions of an unobservable parameter vector. The REML estimators of 𝜷 and its variance are 
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𝜷 = 𝑿 𝑽𝑹 𝑿 𝑿 𝑽𝑹 𝒀 

and 

𝑽(𝜷𝑹) = 𝑿 𝑽𝑹 𝑿  where 𝑽𝑹 = 𝒁𝑫𝑹𝒁 + 𝑹𝑹 

 

2.3 Overall Testing Procedure of Restricted Parameters  
 

After estimating the restricted parameters of the regression model, the researcher is usually 

inquisitive in testing one or more linear hypotheses about individual restricted parameters or 

linear combination thereof. The Lagrange multiplier test (LM), Likelihood Ratio test (LR) and 

Wald test (W) are frequently used statistic for testing parametric restrictions in the linear 

regression model (Wolak, 1989). The first document on this issue seems to be due to Gourieroux 

et al. (1982), succeeded by the celebrated paper by Self and Liang (1987). Based on the first two 

documents, Mukerjee and Tu (1995) published a paper related to the exact small sample LRT 

and also discussed its properties in the case of a classical simple linear regression model with the 

non-negativity restriction. Multivariate linear regressions are broadly used statistical technique in 

many applications to model the associations between multiple related responses and a set of 

predictors. Likelihood ratio test (LRT) is again one of the most popular methods to test the 

structure of regression coefficient in such cases (Fujikoshi, 1974). Let a classical multivariate 

linear regression model is  

𝒀 = 𝑿𝜷 + 𝜺 where 𝜷 =

𝜷(𝟏)

⋯ ⋯
𝜷(𝟐)

 

and the functional form of likelihood ratio test statistic will be 

Λ =
𝑚𝑎𝑥 𝜷(𝟏),𝚺 𝐿(𝜷( ), 𝚺)

𝑚𝑎𝑥(𝜷,𝚺)𝐿(𝜷, 𝚺)
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So, the likelihood ratio test is based upon the difference between the maximum of the likelihood 

under the null and under the alternative hypothesis. The restricted likelihood ratio test is 

uniformly more powerful than the global version for the entire restricted parameter space in 

many cases (Tsai, 1992). 

 

The exact knowledge of the null distribution of the hypothesis test statistic is essential for the 

reasonable use of the test statistic. The distribution of two-sided LR tests follows asymptotically 

central Chi-square (Johnson, 2013) under the null hypothesis. However, in a socio-demographic 

study, the hypothesis is not always exactly two-sided. A relevant theory related to inequality 

constraints is scattered in the prior literature under different names especially order restricted 

inference or one-sided testing. A mixture distribution was applied to multivariate LR tests by 

different researches where the asymptotic null distribution of the tests was explained to be a 

mixture of different chi-squared type distribution with binomial mixing probabilities (Silvapulle, 

2006). 

 

Silvapulle (2006) addressed and reviewed a substantive number of research related to LRT for 

testing constrained parameters in different situations. But, the complexity of the procedure has 

been raised for different reasons, i) most of the times the dispersion matrix of the error is 

unknown, ii) matching the null distribution of the test statistic for complex hypothesis is difficult. 

Fonseca et al. (2015) has given a path for testing linear inequality constraint on the regression 

coefficient of univariate model and developed the LRT for unknown error variance which is in 

the same line as in Mukerjee and Tu (1995). 
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2.4 Individual Testing Procedure of Restricted Parameters 

The classical theory of the statistical inference is primarily flourished on the assumptions that the 

distributions of target variables are normal. But, most of the times several estimators of socio-

economic and business data exhibit fat-tailed distributions. Recently many authors have 

investigated as to how inferences are affected if the distributional pattern of the statistic departs 

from normality (Kibria and Joarder, 2006).  The suitability of the application of 𝑡 statistic in real 

life was assessed by Blettberg and Conedes (1974). The multivariate 𝑡 statistic is a natural 

generalization of the univariate Student 𝑡 statistic which is a more viable alternative to test the 

significance of the parameter vector. Kelker (1970), Cambanis, Huang and Simons (1981), Fang 

and Anderson (1990), Kotz and Nadarajah (2004) also discussed the significance of this 

argument. A 𝑝 dimensional random vector 𝑻 = 𝑇 , 𝑇 , … , 𝑇  is said to have the 𝑝 variate 𝑡 

distribution with degree of freedom 𝑣, mean vector 𝝁,  covariance matrix 𝚺 and correlation 

matrix𝝆, if the statistic can be expressed as  

𝑻 − 𝝁 =
𝒀

𝒖
   , 

Where 𝒀 is a 𝑝 variate normal random vector with mean zero and covariance matrix 𝚺,  and if 𝒖 

is a chi-square variate with degree of freedom 𝑣. The functional form of probability density 

function of T with parameters 𝚺, 𝝁 and 𝑣 is given by 

𝑓(𝐓) =
Γ

( )

Γ( )𝑣 Π |Σ|
𝟏 +

1

𝑣
(𝐓 − 𝛍)𝒕𝚺 (𝐓 − 𝛍)

(𝒗 𝒑)

𝟐

 

where 𝚺 is the covariance matrix if 𝑣 ≥ 2 (Kotz and Nadarajah, 2004). 

The ultimate target of decision-makers is to improve the power of the test statistic in different 

circumstances. But, sometimes researchers faced the problem of power loss when testing the 
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hypothesis of linear equality against the hypothesis of linear inequality in linear regression 

models. The study of one tail alternatives hypothesis testing was originally addressed by 

Bartholomew (1959) for independent linear models considering normality assumption and 

extended by Kudo (1963) for multivariate linear models. Nuesch (1966) also treated this study 

for the classical linear model while Perlman (1969) expanded the outcomes for a more general 

class of multivariate normal models. 

 

Gourieroux et al. (1982) discussed the asymptotic null distribution of the one-sided test statistics 

in multivariate normal models when the variance-covariance matrix may depend on a finite 

number of unknown parameters. Wolak (1987) proposed exact one-tail tests for classical 

multivariate linear models and Wolak (1989) extended the results from Gourieroux et al. (1982) 

for restricted hypotheses. Kodde and Palm (1986) presented a Wald-type test that may be used 

for testing equality and inequality restrictions in general multivariate regression models and 

Silvapulle (2006) described a score-type test for assessing one-tail alternatives in general 

regression models that may include correlated observations also. The score test and Wald test 

statistics which are asymptotically distributed as a mixture of chi-square distributions where the 

weights may depend on the correlations but not depend on the null parameters. Application of 

multivariate 𝑡 statistics is a very promising approach in multivariate analysis. If the distribution 

of Y follows multivariate normal with a certain mean vector, then the critical region of the test 

statistic follow non-central multivariate 𝑡 distribution. Kshirsagar's (1961), Siotani's (1976), 

Arellano-Valle and Bolfarine's (1995), Fang et al. (2002), Gupta (2000) and Jones' (2002) 

proposed and modified functional approach of non-central multivariate 𝑡 in different 

circumstances. 
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2.5 Joint Confidence Region of Restricted Parameters 

Joint confidence intervals (JCI) construct a joint confidence region (JCR) for a vector of 

parameters, comprising individual intervals for the separate components, with a coverage 

confidence level of the simultaneous correctness of all the statements involved (Chen and Hoppe, 

2017). Joint confidence regions are numerically analyzed by comparison for regression, the mean 

value of multiple responses, regression coefficients and individual observation (Belov, 2018). 

Confidence intervals are used in socio-economic research to indicate the degree of uncertainty in 

estimates due to random error. It is reasonably well-known that one can get a statistical 

significance test by constructing confidence interval around an obtained statistic and seeing 

whether or not the corresponding hypothesized parameter is “captured” by the interval (Knapp, 

2017). Since the distributions of the regression parameter of classical multivariate regression 

with continuous responses are multivariate normal. This study has been derived joint confidence 

regions for the regression vector with a specified coverage probability. 

 

Many methods are used to computing JCI for fitted values and linear combination of regression 

coefficients. The commonly used procedures are the Scheffe ́, Duncan, Tukey and the Bonferroni 

method. In the multivariate setting, it is difficult to find the exact joint confidence regions in 

balanced or unbalanced models. In order to respond to the problem, different approximation 

procedures are used to obtain good approximate joint confidence regions. A quantitative way of 

obtaining the critical value that determines the joint confidence region of a given level has been 

applied to overcome this sort of problem (Belov, 2018). The effective method to construct joint 

confidence regions with prescribed coverage probability for the regression parameters evaluated 

at different settings of the predictor variables, which are narrower than bounds obtained without 

using the predictor constraints. 
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2.6 Model Selection Technique 

Model selection is an important task of any statistical analysis for selecting a well fitted 

stochastic model from a candidate set of models that fits the input data.  Kullback and Leibler 

(1951) derived information measure known as the Kullback-Leibler (K-L) distance. Later, the K-

L distance defined as a directed distance between two models which is the most fundamental of 

all information measures and it is the logical basis for model selection. In general statistical 

models, it is called model selection (Linhart and Zucchini, 1986) and especially, in the regression 

model, it is well-known as a variable selection (Miller, 1990). 

 

Akaike information criterion (AIC), which was proposed by Akaike (1973) and is an estimator of 

risk based on the Kullback–Leibler (K–L) information between the true model and the candidate 

model, is being used universally in selecting variables. Akaike (1973) evaluated AIC under the 

assumption that the distribution of candidate models corresponds to the true distribution. Hence a 

correction term for the bias of risk in AIC is fixed for any distribution, even if its risk is changed 

by the true distribution. Akaike Information Criterion is defined by 

AIC = −2{maximum log likelihood − no. of unknown parameter} 

        =  𝑛𝑙𝑛 𝛴 + 𝑛𝑝(𝑙𝑛2𝜋 + 1) + 2{𝑘𝑝 +
1

2
𝑝(𝑝 + 1)} 

The AIC is considered as an approximately unbiased estimator for R(x), but in the case of over 

specified candidate model and for small sample size, AIC drastically underestimate the R(x) in 

multivariate normal regression model (Hurvich and Tsai, 1989). AIC was modified by Satoh 

(1997) using Corrected AIC (CAIC) and the modified AIC became unbiased estimator for both 

under specified and over specified models. Modified AIC (MAIC) is written below:- 

MAIC =  CAIC + 2𝑘𝑡𝑟( ∧− 𝐼 ) −   {𝑡𝑟( ∧− 𝐼 )} − 𝑡𝑟{( ∧−  𝐼 ) } ,  
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where, CAIC =  𝑛ln 𝛴 + 𝑛𝑝ln2𝜋 +  
( )

 

and ∧=  Σ Σ  . 

Inequality constraints or order restrictions is not considered in AIC to select model. Traditionally 

AIC does not incorporate order restriction to select appropriate model, but simple order 

restriction is included by Anraku (1999) in Order Restricted Information Criterion (ORIC), 

−2{𝑙(𝜃, 𝜎) − 𝑖𝑛𝑓 ,  𝐵(𝜃, 𝜎)}. The simple closed form of penalty term (optimum 

bias)inf , 𝐵(𝜃, 𝜎) is {1 + ∑ 𝑖𝑤 (𝑝, 𝑊, 𝐶)} for the restriction 𝑅𝜃 > 0, which is applicable for 

simple order and tree ordered restriction (Silvapulle and Sen, 2005). 

 

Generalized Order Restricted Information Criterion (GORIC) proposed by (Kuiper, Hoijtink and 

Silvapulle, 2011) is GORIC =  −2{𝑙 (𝜃, 𝜎)  − 1 − ∑ 𝑖𝑤 (𝑝, 𝑊, 𝐶)} ,  

where, l(θ, σ) is the maximum log likelihood and penalty term is the nonnegative constants; 

known as chi-bar square weights which arises naturally in constrained statistical inference and 

defined in the chi-bar square distribution, 𝑝𝑟(𝑋 𝑊 𝑋  ≤ 𝑐)  =  ∑ 𝑤 (𝑝, 𝑊, 𝐶)𝑝𝑟(𝜒  ≤ 𝑐) 

(Silvapulle and Sen, 2005) and (Silvapulle, 1996). 

 

For simple order restriction GORIC reduces to Anraku (1999) model and when no inequality 

constraints imposed on 𝜃, then for w  (p,W,C)=1, w (p, W, C) = 0; i < p the GORIC reduces to 

AIC. Probability of choosing correct model using GORIC approaches is unity when sample size 

tends to infinity(∞). 
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Chapter 3 

Modified Inferential Approach for Multivariate Continuous Responses with Exact 

Restrictions 

 

3.1 Multivariate Regression Analysis for Continuous Responses (MRACR) 

 

Classical multivariate regression analysis emphasizes the use of sample information in making 

inferences about the unknown parameters (matrix of regression coefficients) ignoring any non-

sample information that may exist about the individual parameters or relationships among the 

unknown parameters. But, nexus among non-sample information and unknown parameters in the 

model can develop such statistical decision which accountable for the creation of inefficient 

improvement policy. Appropriate model specification, efficient estimation technique and 

powerful hypothesis testing method are needed in these circumstances. Recognizing different 

constraint of unknown parameters, we consider a modified approach for MRA with continuous 

responses where can be considered both sample and non-sample information. 

 

In this chapter, different aspects of multivariate regression with exact linear restriction have been 

described (Sayem and Hossain, 2022). Section 3.1; define the specification of the multivariate 

regression model with the description of exact linear restriction in subsection 3.2.1. In section 3.3 

and subsection 3.3.1 have been explained the modified maximum likelihood estimator and its 

properties. Section 3.4 reviewed the likelihood ratio test for overall regression parameters 

whereas section 3.5 described the modified t test for individual regression parameters with exact 

linear restriction. A modified joint confidence interval for individual regression parameters with 

exact linear restriction is explained in section 3.6. In section 3.7, Monte Carlo experiment has 
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been conducted to evaluate the performance of modified methods and finally in section 3.8 has 

been recorded the overall conclusion.    

 

3.2 Model Specification for MRACR 

 

Let 𝒀 be an 𝑛 × 𝑝 observation matrix of 𝑝 continuous multivariate response variable and 𝑿 be a 

design matrix of  𝑛 × (𝑘 + 1) nonstochastic predictor variables with rank 𝑘 ≤ 𝑛 where 𝑛 is the 

sample size. Consider the following multivariate regression model  

𝒀 = 𝑓(𝑿) + 𝜺, where 𝜺 is a𝑛 × 𝑝 matrix of random error. 

Multivariate regression model sometimes faces the challenge of exact linear restriction, 

stochastic linear restriction and inequality restriction on the parameters. 

 

3.2.1 Exact Linear Restriction in Multivariate Regression with Continuous Responses 

 

There may be precedents in applied research when the researcher has exact information on a 

particular parameter or linear combination of the parameters. If exact information is available, a 

multivariate regression model with exact linear restriction is given as 

 

𝒀 = 𝑿𝜷 + 𝜺,  with prior restriction   𝑹𝜷 = 𝝃 or 𝑹𝜷 ≥ 𝝃  (3.1) 

Assumptions: 

a) The values of predictor variables of the design matrix are fixed. 

b) The distribution of random disturbances is multivariate normal i.e.𝜺~𝑀𝑁𝐷(𝚶, 𝚺). 

c) 𝜷, 𝚺 are the unknown parameters where 𝜷 is a (𝑘 + 1) × 𝑝 matrix of regression coefficient. 

d) The exact linear restriction exists among the subset of the parameters which is believed to 

be true for each response. 
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3.3 Modified Maximum Likelihood Estimator (MMLE) 

 

On the parameter space of the regression coefficient, consider the following restriction 

𝑹𝜷 = 𝝃,                  (3.2) 

Where 𝑹 is a matrix of order 𝑞 × (𝑘 + 1)and 𝑞 < 𝑘of known elements and 𝝃 is a matrix of 

known elements of order 𝑝 × 𝑝.  In case of no restrictions, the probability density function of 

multivariate response becomes 

𝑓(𝑦|𝜷, 𝚺) = (2Π) |𝚺| exp − tr[(𝒀 − 𝑿𝜷) (𝒀 − 𝑿𝜷)𝚺 ]  , t is a symbol of transpose. 

In order to estimate the regression coefficient, the following log-likelihood function is needed to 

be maximized 

ℓ(𝜷, 𝚺) = ∑ − {ln|𝚺| + (𝒀 − 𝑿𝜷) 𝚺 (𝒀 − 𝑿𝜷)}.                                            (3.3) 

Using equation (3.3), the maximum likelihood estimator (MLE) of 𝜷 is 𝜷 = (𝑿 𝑿) 𝑿 𝒚. 

 

To take the restriction “equation 3.2” into account of the inferential procedure, a modified 

maximum likelihood estimator (MMLE) for multivariate regression is proposed in a similar 

manner as used in univariate regression by imposing restrictions on the log-likelihood function 

(3.3), the objective functions to be maximized, thus becomes 

ℒ(𝜷, 𝝀) = ℓ(𝜷) + 𝜆 (𝑹𝜷 − 𝝃)         (3.4) 

where 𝜆 is a vector of Lagrangian multipliers and t is the symbol of matrix transpose. Method of 

Lagrange multipliers is a strategy for finding the maximum and minimum of the function 

subjected to the constraints (Hoffmann, Laurence, Bradley and Gerald, 2004). If the prior 

information of active constraints were known at the solution to the optimization problem, the 

solution would be a local maximum point of the problem defined by ignoring the inactive 
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constraint and treating all active constraint as equality constraints (Luenberger, 2003; Silvapulle, 

2006) which reflects that changing the right-hand side by a small amount will not affect the 

optimal solution. To maximize the objective function, firstly need to differentiate (3.4) with 

respect to 𝜷 and 𝜆 and setting 
ℒ

𝜷
 and 

ℒ
 equals zero, we derive the modified maximum likelihood 

estimator of 𝜷 as 

𝜷 = 𝜷 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷 − 𝝃).        (3.5)        

 

          for  𝜆 =  −2[𝑹(𝑿 𝑿) 𝑹 ] (𝝃 − 𝑹𝜷 ) 

 

3.3.1 Properties of Modified Maximum Likelihood Estimator (MMLE) 

 

The expected value of modified maximum likelihood estimator (MMLE) is given below 

𝐸 𝜷𝒎𝒎𝒍𝒆 = 𝐸[𝜷𝐦𝐥𝐞 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷𝐦𝐥𝐞 − 𝝃)] 

                           = 𝐸[𝜷𝐦𝐥𝐞] − 𝐸[(𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷𝐦𝐥𝐞 − 𝝃)] 

               = 𝜷 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝐸[𝜷𝐦𝐥𝐞] − 𝝃) 

Since maximum likelihood is unbiased (Johnson and Wichern, 2013)and𝑹𝜷 = 𝝃, 

𝐸 𝜷𝒎𝒎𝒍𝒆 = 𝜷 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷 − 𝝃) = 𝜷  

 

Corollary 3.3.1(a): MMLE is an unbiased estimator i.e. 𝐸 𝜷 = 𝜷 . 

 

The covariance matrix of modified maximum likelihood estimator (MMLE) is given as 

𝐸 𝜷 − 𝜷 𝜷 − 𝜷 = 𝐸[(𝑴(𝑿 𝑿) 𝑿 𝜺)(𝑴(𝑿 𝑿) 𝑿 𝜺) ] 

                                                             = 𝑴(𝑿 𝑿) 𝑿 (𝑴(𝑿 𝑿) 𝑿 ) ⨂𝐸[𝜺𝜺𝒕] 

                                                   = 𝑴(𝑿 𝑿) 𝑿 (𝑴(𝑿 𝑿) 𝑿 ) ⨂𝚺 

                                                 = 𝑴(𝑿 𝑿) 𝑿 𝑿(𝑴(𝑿 𝑿) ) ⨂𝚺 
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                         = 𝑴(𝑴(𝑿 𝑿) ) ⨂𝚺 

𝐶𝑜𝑣(𝜷𝒎𝒎𝒍𝒆) = (𝑿 𝑿) ⊗ 𝚺 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] 𝑹(𝑿 𝑿) ⊗ 𝚺 

Where 𝜷𝒎𝒎𝒍𝒆 − 𝜷 = 𝑴(𝑿 𝑿) 𝑿 𝜺 

𝑴 = 𝑰 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] 𝑹 

 

Corollary 3.3.1(b): The covariance matrix of MMLE is smaller than MLE because of 

𝐶𝑜𝑣(𝜷𝒎𝒍𝒆) = (𝑿 𝑿) ⊗ 𝚺. 

 

3.4 Likelihood Ratio Test (LRT) for Overall Regression Parameters with Exact Linear 

Restriction 

Let 𝒀 be a matrix of 𝑝 continuous multivariate response variables from 𝑀𝑁𝐷(𝑿𝜷 × , 𝚺 × ) where 

𝚺is unknown. 𝑿 be a design matrix of  𝑛 × (𝑘 + 1) nonstochastic predictor variables with rank 

𝑘 ≤ 𝑛 where 𝑛 is the sample size. 

i) 𝓗𝟎: 𝑹𝜷 = 𝟎   against  𝓗𝟏: 𝑹𝜷 ≥ 𝟎 

Since Σ is unknown, the log likelihood discarding the constant is given by 

ℓ(𝜷, 𝚺) = −
1

2
{ln|𝚺| + (𝒀𝒊 − 𝑿𝜷) 𝚺 (𝑌 − 𝑋𝜷)}. 

Hence the likelihood ratio can be obtained as 

𝐿𝑅𝑇 = 2 max 𝜷 𝟎{ℓ(𝜷, 𝚺)} − max𝑹𝜷 𝟎{ℓ(𝜷, 𝚺)} where𝚺 > 𝟎 and𝚺 is positive de inite.The 

estimator of 𝚺 will be 𝚺 = 𝑛 𝒀 − 𝑿𝜷 𝒀 − 𝑿𝜷  .  

 

ii) 𝓗𝟎: 𝑹𝜷 = 𝟎   against   𝓗𝟏: 𝑹𝟏𝜷 ≥ 𝟎 
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If 𝒀~𝑀𝑁𝐷(𝑿𝜷, 𝚺)where 𝚺 is positive definite matrix but unknown, 𝑅 be matrix of order 

𝑞 × 𝑝, rank(𝑅) = 𝑞 < 𝑝, and let 𝑅  be a sub matrix of 𝑅 of order 𝑟 < 𝑝. Then, the LRT for 

testing the hypothesis is given below 

𝐿𝑅𝑇 = 2 max {ℓ(𝜷, 𝚺)} − max {ℓ(𝜷, 𝚺)} . 

To find the sampling distribution of LRT under the null hypothesis is a challenging issue. The 

common approach of identifying null distribution is to 

Pr(𝐿𝑅𝑇 ≤ 𝑐|ℋ ) = ∑ 𝑤 (𝑟, 𝑅 Σ𝑅 )Pr (𝜒 ≤ 𝑐) where 𝑤  is the weight (Silvapulle, 

2006), suggested an estimation method for these weights but that still have room to 

improvements. 

 

3.5 Modified 𝒕 test (𝒕𝐦𝐨𝐝) for Individual Regression Parameters with Exact Linear 

Restriction 

With underlying assumption of normality, the joint distribution of 𝛽and Σ in classical 

multivariate regression are 𝜷~MND(𝜷, (𝑿 𝑿) ⊗ 𝚺)and (𝑛 − 𝑘)𝚺~𝑊 (𝑛 − 𝑘, 𝚺)  where 𝜷 

and 𝚺  are independent.  

 

Hence, the test statistic for testing the hypothesis ℋ : 𝛽 = 0   against ℋ : 𝛽 ≠ 0 is 𝑡 = 𝑆𝐸(𝛽) ×

(𝛽 − 𝛽) which follows the multivariate 𝑡 distribution (Kotz and Nadarajah, 2004).  

 

But, the difficulty is higher if the regression parameters are restricted and the hypotheses related 

to the parameters are one sided. The hypothesis under consideration is 

ℋ : 𝛽 = 0   against ℋ : 𝛽 > 0 𝑜𝑟 ℋ : 𝛽 < 0.   

 

A𝑡 statistic modified for testing the above hypothesis can be given as 
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       𝒕𝐦𝐨𝐝 =
𝜷 𝜷

𝑺𝑬(𝜷 )
          (3.6) 

 

where 𝜷 = 𝜷 − (𝑿 𝑿) 𝑅 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷 − 𝝃) and the standard error of each 

𝛽 ( ) is the square root of the diagonal element of the variance covariance matrix- 

 

Cov 𝛽 ( ), 𝛽 ( ) = (𝑿 𝑿) ⊗ 𝚺 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] 𝑹(𝑿 𝑿) ⊗ 𝚺.  

 

While the distribution of 𝑡  in equation 3.6 does not match with any conventional distribution, 

a Monte Carlo simulation is used to generate the simulated critical value of 𝑡 and to compare 

the power of 𝑡   and multivariate 𝑡  test.   

 

3.6 Joint Confidence Region for Regression Parameters with Exact Linear Restriction  

Joint confidence regions constitute confidence intervals for a vector of parameters, comprising 

individual intervals for the separate components, with a coverage probability of the simultaneous 

correctness of all the statements involved. The exact distribution function of the restricted 

statistic is not always attainable, and then quantile of the statistic can be calculated by using 

Monte Carlo Simulation. The length of modified joint confidence interval using quantile points 

will be shorter than conventional methods and maintain highest coverage probability.  

The modified joint confidence regions with (1 − 𝛼)% level of confidence for multiple 

comparisons of restricted parameters in multivariate regression with continuous responses are 

derived as 

 

𝑃𝑟 𝛽 ( ) − 𝑞( )(𝑡mod) × SE(𝛽 ( )) ≤ 𝛽 ≤ 𝛽 ( ) + 𝑞( )(𝑡mod) × SE(𝛽 ( )) = 1 − 𝛼 

 

where 𝜷 = 𝜷 − (𝑿 𝑿) 𝑅 [𝑹(𝑿 𝑿) 𝑹 ] (𝑹𝜷 − 𝝃) , 

𝑞( )(mod 𝑡) = (1 − 𝛼)% quantile of modi ied multivariate t statistic, and 
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Cov 𝛽 ( ), 𝛽 ( ) = (𝑿 𝑿) ⊗ 𝚺 − (𝑿 𝑿) 𝑹 [𝑹(𝑿 𝑿) 𝑹 ] 𝑹(𝑿 𝑿) ⊗ 𝚺, and 

SE(𝛽 ( )) refers to the square root of the ith diagonal element ofCov 𝛽 ( ), 𝛽 ( ) . 

 

3.7 Monte Carlo Experiments 

Monte Carlo experiments have been conducted to evaluate the performance of the modified 

statistic for estimating and testing the restricted parameters of the multivariate regression model 

with continuous responses.  

The study considered a multivariate regression model with bivariate responses (𝑝 = 2). The 

multivariate linear model was- 

𝒀( ) 𝒀( ) = 𝑿𝜷 + 𝜺where, 𝜷 = 𝜷( ) 𝜷( ) , 𝜺 = [𝜺( )|𝜺( )]~𝑀𝑁𝐷(𝟎, 𝚺) 

 

Assumptions: 

a) The predictor variable’s values of the design matrix are fixed. 

b)  The exact linear restriction exists among the subset of the parameters which is believed 

to be true for each response. 

c)  The distribution of 𝑌 is multivariate normal (MND) with mean 𝑋𝛽 and the covariance 

matrix 𝚺 = 𝜎 for all 𝑖, 𝑗.    

 

Since the application of multivariate regression analysis depends on the correlation among the 

response variables, the different trials have been conducted for different arbitrary value of 

correlation coefficient namely, 𝜌 = 0.00, 0.25, 0.75, 0.80, 0.90 where 𝜎 = 100 𝑎𝑛𝑑 𝜎 = 81 

including sample sizes of different order, 𝑛 = 25,50,100, 200, 400 and 1000. 
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The generation of multivariate response variables also depends on the parameter values of the 

regression coefficients taken to be 

𝜷( ) 𝜷( ) =

𝛽
𝛽

𝛽
𝛽

𝛽
𝛽

𝛽
𝛽

=

25
3.5

175
2.5

−1.75
−1.5

−1.25
−1.25

where restriction matrix will be  

 

𝑖) 𝑹 = [0   1   2   0]    2) 𝑹 =
0 1 2 0
0 1 0 1

 for 𝝃 = [0   0] 𝑎𝑛𝑑 𝝃 =
0 0
1 1

respectively. 

The simulated performance of modified maximum likelihood (MMLE) estimate and maximum 

likelihood estimator (MLE) depends on the number of iteration of the trials. Sample size and 

information of the test increase for increasing number of iteration, and then the estimated error 

will be reduced (Koçak, 2020).  So, it is important to estimate the required number of iteration. 

Hence, we determine the minimum number of iteration required using the following formula 

given by Banks et.al. (2001) for vector valued parameter considering minimum loss of 

information 

Number of iteration ≥
×  

  
. 

 

Theoretically, it is proved in section 3 that modified maximum likelihood estimate is unbiased 

and the variance of MMLE is lower than general maximum likelihood estimate. But the 

experiment has been revealed that simulated expected value of the modified maximum likelihood 

estimate is not exactly equal to their parameter value. Table 3.1 reveals that the amount of bias 

will be reduced if correlation among the response variables is high which may also true for 

increased sample size. 
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Table 3.1: Measuring Bias of Modified Maximum Likelihood Estimate for Different 

𝝆 𝐚𝐧𝐝 𝒏 

Sample 
Size, 𝒏 

𝝆𝟏𝟐
* Relative Bias (RB**) of Modified Maximum Likelihood Estimate 

  

25 

  

  

  

  

  
𝛽  
(25) 

𝛽  
(3.5) 

𝛽  
(-1.75) 

𝛽  
(-1.5) 

𝛽  
(175) 

𝛽  
(2.5) 

𝛽  
(-1.25) 

𝛽  
(-1.25) 

0.00 6.6404 0.1473 0.1473 0.5377 -5.2375 -1.203 -0.1803 -4.6609 

0.25 24.2352 0.5605 0.5605 1.8764 -3.3801 -0.7833 -0.3889 -2.9772 

0.75 18.942 0.436 0.436 1.4745 -1.292 -0.3064 -0.4245 -1.1068 

0.80 17.7314 0.4075 0.4075 1.3824 -1.0514 -0.2513 -0.4235 -0.8919 

0.90 14.6055 0.3341 0.3341 1.1446 -0.4734 -0.1189 -0.4173 -0.376 

50 

  

  

  

  

0.00 17.6768 0.4008 0.4008 1.5293 0.2276 0.0957 4.5037 -0.8778 

0.25 14.9969 0.324 0.324 1.6292 1.6676 0.4046 2.7583 0.8496 

0.75 16.2572 0.3575 0.3575 1.6354 2.1768 0.5016 0.9044 1.7582 

0.80 16.483 0.3638 0.3638 1.6318 2.2066 0.5063 0.6935 1.836 

0.90 16.9722 0.3777 0.3777 1.6151 2.2581 0.513 0.1891 2.0042 

100 

  

  

  

  

0.00 15.99 0.3236 0.3236 1.6247 -1.7463 -0.4463 -2.5659 -0.9345 

0.25 20.3877 0.4482 0.4482 1.7313 0.0391 -0.0674 -3.4087 0.9011 

0.75 19.4129 0.4175 0.4175 1.7377 1.1954 0.1975 -3.0772 1.867 

0.80 19.142 0.4095 0.4095 1.7339 1.3065 0.2238 -3.0057 1.9498 

0.90 18.3708 0.3875 0.3875 1.7161 1.5579 0.2842 -2.8108 2.1287 

200 

  

  

  

  

0.00 4.1745 0.1015 0.1015 0.5722 -0.7765 -0.1531 -2.5992 0.2477 

0.25 6.443 0.1453 0.1453 0.437 -0.2311 -0.031 -2.6131 0.7515 

0.75 5.8412 0.1342 0.1342 0.4928 0.185 0.0567 -1.946 0.8862 

0.80 5.6924 0.1313 0.1313 0.5035 0.2278 0.0656 -1.8514 0.8904 

0.90 5.2918 0.1236 0.1236 0.5279 0.3271 0.0859 -1.6116 0.8929 

400 

0.00 -4.5287 -0.0874 -0.0874 -0.144 1.32 0.3049 0.9239 0.9663 

0.25 -8.6586 -0.1868 -0.1868 -0.4181 0.6102 0.157 0.0942 0.5851 

0.75 -7.4883 -0.1581 -0.1581 -0.3366 -0.0114 0.0198 -0.4721 0.1847 

0.80 -7.2108 -0.1514 -0.1514 -0.3178 -0.0784 0.0047 -0.5279 0.1393 

0.90 -6.4791 -0.1337 -0.1337 -0.2692 -0.2363 -0.0309 -0.6551 0.0307 
*𝜌  refers the correlation among responses   ** 𝑅𝐵 = × 100 
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The relative efficiency Table 3.2 sorts out that variance of modified maximum likelihood 

estimate (MMLE) are smaller than that of maximum likelihood estimate (MLE) for each 𝜌which 

fulfill the property of minimum variance unbiased estimate (MVUE). 

Table 3.2: Relative Efficiency of MMLE on MLE 

Sample 
Size, 𝒏 

𝝆𝟏𝟐
* Relative Efficiency (RE**) of Modified Maximum Likelihood Estimate 

 

25 

 

 

 

 

  

𝛽  

(25) 

𝛽  

(3.5) 

𝛽  

(-1.75) 

𝛽  

(-1.5) 

𝛽  

(175) 

𝛽  

(2.5) 

𝛽  

(-1.25) 

𝛽  

(-1.25) 

0.00 1.679558 1.447613 11.088879 1.026724 1.613201 1.49928 11.281796 1.014476 

0.25 1.657591 1.463613 11.143086 1.022805 1.652568 1.47003 11.17942 1.021568 

0.75 1.666887 1.456668 11.11863 1.024485 1.676913 1.450689 11.10538 1.02611 

0.80 1.668688 1.455341 11.11404 1.024808 1.678341 1.449482 11.10042 1.026386 

0.90 1.672776 1.452357 11.10391 1.025538 1.680607 1.447465 11.09164 1.026835 

50 

0.00 2.136489 1.529128 14.739342 1.071524 2.077175 1.540895 14.564368 1.06151 

0.25 2.12429 1.52299 14.58073 1.070763 2.103163 1.546549 14.795936 1.064258 

0.75 2.130568 1.52401 14.631702 1.071479 2.12754 1.538789 14.825957 1.068817 

0.80 2.131671 1.524366 14.6432 1.071578 2.12943 1.537682 14.821051 1.069247 

0.90 2.133976 1.52546 14.672225 1.071731 2.13309 1.534996 14.803747 1.070162 

100 

0.00 2.225337 1.455111 14.14655 1.096848 2.215036 1.450167 13.996744 1.09577 

0.25 2.228641 1.456161 14.174738 1.097077 2.21285 1.449773 13.989252 1.095685 

0.75 2.228311 1.456145 14.175223 1.097074 2.218804 1.452457 14.069438 1.09627 

0.80 2.228139 1.456099 14.174059 1.097063 2.219587 1.452789 14.079184 1.096342 

0.90 2.227555 1.455916 14.169174 1.097024 2.221451 1.453565 14.101883 1.096511 

200 

 

 

 

 

0.00 2.202896 1.394682 13.25396 1.108771 2.209436 1.365277 12.8409 1.116077 

0.25 2.230978 1.401563 13.49708 1.11162 2.174876 1.362831 12.63286 1.111277 

0.75 2.223106 1.401294 13.45411 1.110467 2.180418 1.378635 12.89957 1.108743 

0.80 2.22117 1.400971 13.43966 1.110238 2.182329 1.380608 12.93893 1.108615 

0.90 2.216049 1.399761 13.39599 1.109709 2.18767 1.385256 13.03577 1.10844 

400 

 

 

 

 

0.00 1.969029 1.448207 12.7128 1.062011 1.992177 1.444276 12.7798 1.065618 

0.25 1.945278 1.445951 12.53647 1.058923 2.017806 1.447845 12.98951 1.068841 

0.75 1.950422 1.446752 12.57995 1.05956 1.998552 1.448951 12.89688 1.066053 

0.80 1.951913 1.446922 12.59151 1.059751 1.995402 1.448952 12.87861 1.065614 

0.90 1.956184 1.447337 12.62338 1.060306 1.987509 1.448861 12.83125 1.064523 
*𝜌  refers the correlation among responses ** 𝑅𝐸 =

( )
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After estimating the parameters, testing the significance of individual regression coefficient are 

essential. Multivariate 𝑡 statistic can be used to test the regression coefficient. But, the Table 3.3 

and figure 3.1 demonstrate that 𝑡  is more powerful than multivariate 𝑡 statistic for each 𝜌 and 

sample size.  

 

Table 3.3: Power of the test statistics in different sample size and 𝝆 

𝑛* Test Statistic** 𝜌 = 0.00 𝜌 = 0.25 𝜌 = 0.50 𝜌 = 0.75 𝜌 = 0.80 𝜌 = 0.85 𝜌 = 0.90 𝜌 = 0.95 

25 
𝑡

 0.4531 0.4465 0.4486 0.4617 0.4683 0.481 0.501 0.5465 

Multivariate 𝑡 0.3393 0.3374 0.3371 0.3387 0.3426 0.3425 0.3551 0.380 

200 

𝑡  0.6759 0.6967 0.7302 0.7978 0.8241 0.8558 0.900 0.9532 

Multivariate 𝑡 0.6308 0.6474 0.6709 0.7331 0.7551 0.7863 0.831 0.8939 

400 

𝑡  0.7326 0.7667 0.8133 0.8875 0.9102 0.9429 0.972 0.9946 

Multivariate 𝑡 0.6965 0.7197 0.7618 0.8378 0.8621 0.8948 0.9335 0.9751 

1000 

𝑡  0.8459 0.879 0.9231 0.9757 0.9874 0.9955 0.9987 0.9999 

Multivariate 𝑡 0.7972 0.8354 0.8788 0.9533 0.9688 0.9837 0.9951 0.9998 

* 𝑛, **𝑡  and 𝜌 refer sample size, modified 𝑡 statistic and population correlation coefficient among responses, respectively  

 

It is need to address that the power of the modified test will be increased for increasing sample 

size and also increasing correlation among response variables. The simulated critical values for  

𝑡  at different levels are given in appendix 1.  

 

 
 
 
 
 



 

Figure 3.1: Power Comparison between
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between𝑡 and multivariate 𝑡 statistic  

 

 

 

 

 

 

 



 

Table 3.4 reveals that the modified joint confidence 

(modi ied joint con idence interval

variables from small to large sample where multivariate t intervals are slightly better for 

uncorrelated responses with small sample. 

 

Table 3.4: Evaluation of modified joint confidence interval with multivariate 

Sample 

Size 
𝝆𝟏𝟐 

𝛽  

(3.5)

25 

0 1.693398

0.75 0.771601

0.9 0.551472

200 

0 0.009438

0.75 0.010051

0.9 0.010317

400 

0 0.129823

0.75 0.142323

0.9 0.146152

1000 

0 0.068795

0.75 0.000244

0.9 0.146152
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reveals that the modified joint confidence regions provide shorter intervals

interval/length of multivariate t interval) for correlated response 

variables from small to large sample where multivariate t intervals are slightly better for 

uncorrelated responses with small sample.  

Evaluation of modified joint confidence interval with multivariate 𝑡 interval

 

) 

𝛽  

(-1.75) 

𝛽  

(-1.5) 

𝛽  

(2.5) 

𝛽  

(-1.25

1.693398 2.869468 0.453826 1.505744 2.551487

0.771601 1.30748 0.206787 0.765985 1.297964

0.551472 0.934471 0.147793 0.550375 0.932612

0.009438 0.018844 0.005731 0.009523 0.019014

0.010051 0.02007 0.006103 0.010632 0.021229

0.010317 0.020599 0.006264 0.010715 0.021394

0.129823 0.239941 0.05763 0.128323 0.237168

0.142323 0.263045 0.063179 0.14708 0.271835

0.146152 0.27012 0.064878 0.149512 0.27633

0.068795 0.133994 0.038015 0.068979 0.134353

0.000244 0.219251 0.061231 40.53882 0.05751

0.146152 0.27012 0.064878 0.149512 0.27633

 
shorter intervals 

for correlated response 

variables from small to large sample where multivariate t intervals are slightly better for 

interval 

 

1.25) 

𝛽  

(-1.25) 

2.551487 0.403535 

1.297964 0.205282 

0.932612 0.147499 

0.019014 0.005783 

0.021229 0.006456 

0.021394 0.006506 

0.237168 0.056964 

0.271835 0.06529 

0.27633 0.06637 

0.134353 0.038116 

0.05751 0.11379 

0.27633 0.06637 
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3.8 Conclusion 

Parameter estimation and significant variable selection are two important goals in multivariate 

analysis. This chapter reviewed systematically the previous research and proposed-i) a minimum 

variance unbiased estimator namely modified MLE, ii) modified multivariate𝑡 test statistic whose 

power is comparatively better than traditional multivariate 𝑡 test statistic  and iii) modified joint 

confidence region considering exact linear restriction of multivariate regression parameters for 

small to big data. Monte Carlo simulation has been used to evaluate the performance of proposed 

modified methods and construct the quantile values of 𝑡 test statistic.  
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Chapter 4 

Modified Inferential Approach for Multivariate Continuous Responses with 

Stochastic Linear Restrictions 

 

4.1 Multivariate Continuous Responses with Stochastic Linear Restrictions 

The prior information's about the population parameter in linear regression analysis is well 

known to provide more efficient estimators of regression coefficients. Such prior information can 

be obtainable in different forms from different sources especially past experience of the 

researcher or similar kind of researches conducted in the past. When the prior information is 

available in the form of stochastic restrictions, then in many practical situations a systematic bias 

can arise, due to various reasons like personal judgments of the person involved in the 

experiment, in the testing of general linear hypothesis in linear models when the null hypothesis 

is rejected or in missing values imputation through regression approach. Another problem in 

multiple linear regression models, close linear dependency among the predictors causes the 

problem of multicollinearity, which reduces the efficiency of the ordinary least squares (OLS) 

estimator. Total inferential procedure both estimation technique and testing procedure need to be 

addressed these shorts of phenomena in multivariate regression model to give best policy 

options. Whatever, addressing stochastic constraint of unknown parameters and multicollinearity 

of the predictors, we consider a modified approach for MRA with continuous responses where 

can be considered both sample and non-sample information in this chapter.  

 

4.2 Model Specification  

The exact linear restrictions assume that there is no randomness involved in the prior 

information. Sometimes in real life, the truthfulness of this assumption can be suspected and 
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accordingly an element of uncertainty can be introduced within the parameters. Stochastic 

restrictions on unknown parameters are one of the alternative techniques in the linear regression 

model to tackle the multicollinearity among the predictors. 

 

A multivariate multiple linear regression model is considered in the form 

                                                  𝒀 = 𝑿𝜷 + 𝜺       (4.1) 

where 𝒀~𝑀𝑁𝐷(𝑿𝜷, 𝚺 ⊗ 𝑰) is 𝑛 × 𝑝 random matrix (observation matrix) of 𝑝 continuous 

multivariate responses, 𝒀 = 𝒀 , 𝒀 , … , 𝒀 , 𝒀 ∼ 𝑵𝑫(𝑿𝜷 , 𝜎 𝑰𝒏 ), 𝑖 = 1,2, … , 𝑝, 𝜷 =

𝜷 , 𝜷 , … , 𝜷 , 𝑪𝒐𝒗 𝒀 , 𝒀 = 𝜎 𝑰 ,𝚺 =

𝜎
𝜎
…

𝜎

𝜎
𝜎
…

𝜎

…
…
…
…

𝜎
𝜎
…

𝜎

and 𝑿𝜷is the mean of the observation 

matrix 𝐸(𝒀) = 𝑿𝜷, 𝑿is an 𝑛 × (𝑘 + 1) design matrix of  nonstochastic predictor variables with 

𝑘 ≤ 𝑛 where 𝑛 is the sample size. 𝜷is a (𝑘 + 1) × 𝑝 matrix of unknown parameters. 𝚺 ⊗ 𝑰is the 

covariance matrix of the observation vector 𝑣𝑒𝑐(𝒀) = (𝒀 , 𝒀 , ⋯ , 𝒀 ) .  

 

In addition to model (4.1), it is supposed that there some prior information about 𝜷in the form of 

a set of independent stochastic linear restrictions  

                                     𝝃 = 𝑹𝜷 + 𝑽         (4.2) 

where 𝝃 is a vector of known elements, 𝑹 is a full rank matrix with known elements and 𝑽 is a 

vector of stochastic elements assumed to be distributed with zero mean and variance-covariance 

matrix Ψ with known elements. It is also assumed that the element of 𝑽 are stochastically 

independent of the elements of 𝜺.  
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4.3 Parameter Estimation of Multivariate Regression with Stochastic Linear Restrictions 

The least squares estimator of multivariate regression (MLSE) of the parameter, 𝜷 in model (4.1) 

is given by 

𝜷 = (𝑿 𝑿) 𝑿 𝒀 where 𝑡 is the symbol of transpose     (4.3) 

by minimizing the objective function (Johnson and Wichern, 2013) 

Φ = tr[(𝒀 − 𝑿𝜷) (𝒀 − 𝑿𝜷)]        (4.4) 

The MLSE estimator is the widely known estimator of the coefficients in a linear regression 

model since it is unbiased and has the minimum variance among all linear unbiased estimator 

(Wu, 2014). When the stochastic linear restriction as prior information on the unknown 

parameters assumed to be held, Schafrin and Toutenberg (1990) introduced the method of 

weighted mixed regression and developed the weighted mixed estimator (WME) where sample 

information and the prior information are not equally likely based on some extraneous 

consideration in the estimation of regression parameters. Considering sample information in 

equation (4.1) and the prior information in equation (4.2), the form of objective function for 

minimization is given as 

Φ = tr[(𝒀 − 𝑿𝜷) (𝒀 − 𝑿𝜷)] + 𝑤(𝝃 − 𝑹𝜷) Ψ (𝝃 − 𝑹𝜷)    (4.5) 

where𝑤 is a nonstochastic and nonnegative scalar weight.  Since 𝑤is 0 ≤ 𝑤 ≤ 1, the value of 𝑤 

specifies an estimator in which the prior information receives less weight in comparison to the 

sample information (Liu, Yang and Wu, 2013). 

Differentiating of equation (4.5) with respect to 𝜷lead to the normal equations  

𝑿 𝑿𝜷 − 𝑿 𝒀 + 𝑤𝑹 𝚿 𝑹𝜷 − 𝑤𝑹 𝚿 𝝃 = 𝟎,      (4.6) 

From equation (5.6), the estimator of 𝜷is as follows- 

𝜷 = (𝑿 𝑿 + 𝑤𝑹 𝚿 𝑹) (𝑿 𝒀 + 𝑤𝑹 𝚿 𝝃),     (4.7) 
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And observing  

(𝑿 𝑿 + 𝑤𝑹 𝚿 𝑹) = (𝑿 𝑿) − 𝑤(𝑿 𝑿) 𝑹 (𝚿 + 𝑤𝑹𝚿 𝑹 ) 𝑹(𝑿 𝑿)  

and ((𝑿 𝑿) − 𝑤(𝑿 𝑿) 𝑹 (𝚿 + 𝑤𝑹𝚿 𝑹 ) 𝑹(𝑿 𝑿) )𝑤𝑹 𝚿 𝝃 = 𝑤(𝑿 𝑿) 𝑹 (𝚿 +

𝑤𝑹𝚿 𝑹 ) 𝝃,  

After simplification of equation (4.7), the modified multivariate extension of the weighted mixed 

estimator is 

𝜷 = 𝜷 + 𝑤(𝑿 𝑿) 𝑹 (𝚿 + 𝑤𝑹(𝑿 𝑿) 𝑹𝒕) (𝝃 − 𝑹𝜷 )   (4.8) 

The regression model faces the challenge to handle multicollinearity problems in real life 

experiment. When the problem of multicollinearity is present, the MLSE estimator may be 

statistically insignificant with wrong sign and large variances; hence the biased estimation as an 

alternative to the MLSE estimator is recommended in order to obtain some reduction in variance 

(Özkale, 2014; Özbay and Kaçiranlar, 2017). Özkale and Kaçiranlar (2007) introduced two 

parameter estimators to overcome the problem of multicollinearity for univariate regression. The 

objective function of multivariate multiple regression 

Φ = tr[(𝒀 − 𝑿𝜷) (𝒀 − 𝑿𝜷)] + 𝚱 𝜷 − 𝐝𝜷
𝒕

𝜷 − 𝐝𝜷 − 𝑪     (4.9) 

Where 𝚱 is the Lagrangian multiplier, 𝑪 is a constant and 𝐝 is a Liu (Li and Yang, 2010) biasing 

parameter lies between 0 < 𝐝 < 1. Differentiating both sides with respect to 𝜷and𝚱 for 

minimizing the objective function (4.9) 

𝑿 𝑿𝜷 − 𝑿 𝒀 + 𝚱 𝜷 − 𝐝𝜷 = 𝟎            (4.10) 

By solving the equation (4.10), the multivariate approach of the two-parameter estimator is given 

as 

𝜷 = (𝑿 𝑿 + 𝚱⨂𝐈) (𝑿 𝒀 + 𝚱𝐝𝜷)(4.11) 
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Combining the objective function Φ  in equation (4.5) and  Φ  in equation (4.9), the modified 

objective function  

Φ = tr[(𝒀 − 𝑿𝜷) (𝒀 − 𝑿𝜷)] + 𝚱 𝜷 − 𝐝𝜷
𝒕

𝜷 − 𝐝𝜷 − 𝑪 + 𝑤(𝝃 − 𝑹𝜷) Ψ (𝝃 − 𝑹𝜷), 

(4.12) 

where 𝚱, 𝐝, 𝑤 are Lagrangian multiplier, biasing parameter and nonstochastic scalar respectively. 

Differentiating both sides with respect to 𝜷and𝚱 for minimizing the objective function (4.12) 

and putting 
𝜷

= 0 and 
𝑲

= 0 

𝑿 𝑿𝜷 − 𝑿 𝒀 + 𝚱 𝜷 − 𝐝𝜷 + 𝑤𝑹 𝚿 𝑹𝜷 − 𝑤𝑹 𝚿 𝝃 = 𝟎    (4.13) 

𝜷 − 𝐝𝜷
𝒕

𝜷 − 𝐝𝜷 − 𝑪 = 𝟎        (4.14) 

The simplified form of equation (4.13) is 

𝑿 𝑿𝜷 + 𝚱𝜷 + 𝑤𝑹 𝚿 𝑹𝜷 = 𝑿 𝒀 + 𝚱𝐝𝜷 + 𝑤𝑹 𝚿 𝝃 

𝜷 = (𝑿 𝑿 + 𝚱⨂𝐈 + 𝑤𝑹𝚿 𝑹 ) (𝑿 𝒀 + 𝚱𝐝𝜷 + 𝑤𝑹 𝚿 𝝃)   (4.15) 

And observing  

(𝑿 𝑿 + 𝑤𝑹 𝚿 𝑹) = (𝑿 𝑿) − 𝑤(𝑿 𝑿) 𝑹 (𝚿 + 𝑤𝑹𝚿 𝑹 ) 𝑹(𝑿 𝑿)  (4.16) 

((𝑿 𝑿) − 𝑤(𝑿 𝑿) 𝑹 (𝚿 + 𝑤𝑹𝚿 𝑹 ) 𝑹(𝑿 𝑿) )𝑤𝑹 𝚿 𝝃 = 𝑤(𝑿 𝑿) 𝑹 (𝚿 +

𝑤𝑹𝚿 𝑹 ) 𝝃          (4.17) 

Using (4.16) and (4.17) in (4.15); 

𝜷 = 𝜷(𝚱, 𝐝) + 𝑤(𝑿 𝑿 + 𝚱⨂𝐈) 𝑹 (𝚿 + 𝑤𝑹(𝑿 𝑿 + 𝚱⨂𝐈) 𝑹𝒕) (𝝃 − 𝑹𝜷(𝚱, 𝐝)) 

 (4.18) 

Assumptions: 

e) The predictor variables’ values of the design matrix are fixed. 
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f) The distribution of random disturbances is multivariate normal i.e. 

𝜺~𝑀𝑁𝐷(𝚶 × , 𝚺 × ). 

g) 𝜷, 𝚺 are the unknown parameters where 𝜷 is a (𝑘 + 1) × 𝑝 matrix of regression 

coefficient. 

h)  The exact linear restriction exists among the subset of the parameters which is believed 

to be true for each response. 

 

4.3.1 Optimum Value of  𝒌 and 𝒅 

In multivariate regression, orthogonal transformation is used to convert classical regression 

model to canonical form.  

𝑦 = 𝑍𝑄+  ∈ 

Where 𝑍=𝑋𝐴, Q= 𝐴 𝐵and A is a orthogonal matrix such that 𝑍 𝑍 = 𝐴 𝑋 𝑋𝐴 = Λ =

dies (𝜆 , 𝜆 , ⋯ , 𝜆 )  = Λ dies (𝜆 ,𝜆 , ⋯,𝜆 ) where 𝜆 ≥ 𝜆 ≥ ⋯ ≥ 𝜆 > 0 where 𝜆  are the 

ordered eigen value of 𝑋 X.The selection of the estimators of the parameters 𝑑 and 𝑘 in  𝛽(𝑘, 𝑑) 

can be obtained by applying the following literature procedure- 

Step 1: Calculate 𝑑 where 𝑑 < 𝑚𝑖𝑛  

𝜃 ,  𝜎   are the unbiased estimate of 𝜃 and 𝜎  

 Step2: Estimate 𝐾  by using 𝑑 in step 1 then 

𝐾 =
1

𝑝

𝜎

𝜃 −  𝑑( + 𝜃
 

It is supposed that 𝑋 X and 𝑅 𝑊 𝑅 are commutative (Liu, Yang and Wu, 2013), then 

𝑄 𝑅 𝑊 𝑅𝑄 = Ψ = 𝑑𝑖𝑎𝑔 𝜉 , … , 𝜉  for 𝑘 > 0. Since the value of 𝑤 is weight level to the 
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sample information and the prior information, the formula to choose optimum w for the fixed 

value of 𝐾  is 

𝑤 =

∑ ℎ + 8(∑ ℎ ) − ∑ ℎ

∑ 4ℎ
 

Where ℎ = 𝜎 𝜉 (𝜆 + 𝐾 )  and ℎ = 2𝜎 𝜆 (𝜆 + 2𝐾 ) + 2𝐾 𝜆 𝛽 − 𝜎 𝜉 (𝜆 + 𝐾 )   

 

Step 3: Obtain 𝑑  by using the optimum value of 𝑘 

𝑑 =

(𝐾𝜃 − 𝜎 )
(𝜆 + 𝑘)

( )

 ( )

 

Step 4: If 𝑑  is negative used 𝑑 = 𝑑. 𝑑  is always less than one, but is bigger than zero. 

 

4.4 Monte Carlo Experiment  

In this section, the Monte Carlo simulation study has been conducted to examine the 

performance of three estimation methods described in the previous section.  First, the study has 

been compared to relative bias by looking at the average parameter estimates over the 

replications. Second, the study also has been examined the relative efficiency of three modified 

statistics with a number of restricted parameters used in the simulation estimates.  

 

The study planned a multivariate regression model with bivariate continuous responses (𝑝 = 2). 

Four different sets of correlation coefficients𝜌 = 0.25, 0.75, 0.80, 0.9 have been considered to 

examine the consistency and efficiency of the estimators where 𝜎 = 100 𝑎𝑛𝑑 𝜎 = 81 

including sample sizes of different order, 𝑛 = 25, 50, 100, 200, 400. The response matrix were 

generated by multivariate regression model with continuous responses which is given below 
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𝒀( ) 𝒀( ) = 𝑿𝜷 + 𝜺 where, 𝜷 = 𝜷( ) 𝜷( ) , 𝜺 = [𝜺( )|𝜺( )]~𝑀𝑁𝐷(𝟎, 𝚺) 

Where 𝜺 are independent normal pseudo-random numbers with mean 0 and constant variance𝚺. 

 

The simulation study has been continued considering the following three assumptions. 

a) The predictor variable’s values of the design matrix are fixed. 

b)  The stochastic linear restriction exists among the subset of the parameters which is 

believed to be true for each response. 

c)  The distribution of 𝑌 is multivariate normal distribution (MND) with mean 𝑿𝜷and the 

covariance matrix𝚺 = 𝜎  for all 𝑖, 𝑗.    

For each choice of 𝜌 and 𝑛, the multivariate continuous responses have been generated which 

also depends on the parameter values of the regression coefficients taken to be 

𝜷( ) 𝜷( ) =

𝛽
𝛽

𝛽
𝛽

𝛽
𝛽

𝛽
𝛽

=

25
3.5

175
2.5

−1.75
−1.5

−1.25
−1.25

 

The study has been also considered the arbitrary value of restriction matrix, 𝑅 = [0   1   2   0]for 

stochastic restriction, 𝝃 = 𝑹𝜷 + 𝑽 in the multivariate regression where𝑽is a vector of stochastic 

elements assumed to be distributed with zero mean and variance-covariance matrix Σ (Yang, 

Chang and Liu, 2009; Li and Yang, 2010). The weight of the prior information 𝑤 is chosen as 

0.20, 0.50 and 0.50. Further for the Lagrangian multiplier,𝛫 and the biasing parameter, 𝑑 some 

selected values are chosen that 0 ≤ 𝑘 ≤ 1and 0 ≤ 𝑑 ≤ 1. The simulated performance of 

Multivariate Least Squares Estimate (MLSE) estimate, Modified Restricted Least Squares Estimate 

(MRLE), Multivariate Weighted Mixed estimator and Multivariate Two Parameter Weighted 

Estimator depends on the number of iteration of the trials. The experiment is repeated 10000 
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times by generating new pseudo-random numbers before determining the minimum number of 

iteration required using the following formula given by Banks et.al. (2001) 

Number of iteration ≥
×  

  
. 

Theoretically, the ordinary least square (OLS) estimator is the best linear unbiased estimator 

(Montgomery and Peck, 1992).Sometimes stochastic linear restrictions exhibit the instability of 

the estimate. The Monte Carlo experiment has been revealed that simulated expected value of the 

MLSE is not exactly equal to their parameter value. Table 4.1 and 4.2 reveals that the amount of 

bias for both multivariate least squares estimate and modified restricted least squares estimate will 

be reduced if correlation among the response variables is high. 
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Table 4.1: Measuring Relative Bias (RB) of Multivariate Least Squares Estimate (MLSE) for 

Different 𝜌 and 𝑛 
 

Sample 
Size, 𝑛 𝜌

* 

RB
**

 of MLSE 

𝛽  
(25) 

𝛽  
(3.5) 

𝛽  
(-1.75) 

𝛽  
(-1.5) 

𝛽  
(175) 

𝛽  
(2.5) 

𝛽  
(-1.25) 

𝛽  
(-1.25) 

25 

0.25 32.8218 0.3964 -0.2084 -1.8764 3.8295 0.6991 -0.3889 -2.9772 

0.75 26.556 0.2904 -0.2458 -1.4745 1.1574 0.3316 -0.4245 -1.1068 

0.80 25.1104 0.2665 -0.2533 -1.3824 0.8552 0.2881 -0.4235 -0.8919 

0.90 21.3593 0.205 -0.2707 -1.1446 0.1334 0.1826 -0.4173 -0.376 

50 

0.25 47.7633 0.189 -2.286 -1.6292 1.3476 0.8672 -2.7583 -0.8496 

0.75 43.743 0.0728 -1.8318 -1.6354 1.6609 0.5808 -0.9044 -1.7582 

0.80 42.7352 0.0472 -1.7273 -1.6318 1.9668 0.5431 -0.6935 -1.836 

0.90 40.0004 0.0172 -1.4566 -1.6151 2.6731 0.4493 -0.1891 -2.0042 

100 

0.25 35.343 0.2392 -0.6761 -1.7313 4.5744 0.6886 -3.4087 -0.9011 

0.75 39.0907 0.1425 -1.0618 -1.7377 5.6402 0.4113 -3.0772 -1.867 

0.8 39.7899 0.1209 -1.1427 -1.7339 5.69 0.3765 -3.0057 -1.9498 

0.9 41.3584 0.0663 -1.3406 -1.7161 5.7588 0.2912 -2.8108 -2.1287 

200 

0.25 5.4331 0.1587 -0.2196 -0.437 3.3508 0.4989 -2.6131 -0.7515 

0.75 9.2037 0.0893 -0.1132 -0.4928 2.9632 0.3061 -1.946 -0.8862 

0.8 9.9979 0.074 -0.1854 -0.5035 2.887 0.2818 -1.8514 -0.8904 

0.9 11.9459 0.0349 -0.3658 -0.5279 2.682 0.2217 -1.6116 -0.8929 

500 

0.25 11.4336 0.1409 -0.8269 -0.2682 0.0497 0.2768 -0.7302 -0.4779 

0.75 10.8005 0.1679 -0.8753 -0.2053 0.6137 0.2980 -1.0410 -0.1997 

0.80 10.6300 0.1733 -0.8833 -0.1910 0.6782 0.2968 -1.0625 -0.1673 

0.90 10.1513 0.1860 -0.899 -0.1541 0.8251 0.2915 -1.1042 -0.0893 

*
𝜌  refers the correlation among responses and **𝑅𝐵 = × 100 
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Table 4.2: Measuring Relative Bias of Modified Restricted Least Squares Estimator(MRLE) for 

Different 𝜌 and 𝑛 

Sample 
Size, 𝑛 𝜌

* 
RB

**
 of MRLE 

𝛽  
(25) 

𝛽  
(3.5) 

𝛽  
(-1.75) 

𝛽  
(-1.5) 

𝛽  
(175) 

𝛽  
(2.5) 

𝛽  
(-1.25) 

𝛽  
(-1.25) 

25 

0.25 32.8676 0.3955 -0.2125 1.8771 -3.7991 -0.7048 -0.4155 -2.9724 

0.75 26.4615 0.2922 -0.2374 1.4732 -1.1245 -0.3378 -0.4534 -1.1017 

0.80 24.931 0.2699 -0.2372 1.3800 -0.8107 -0.2964 -0.4626 -0.8849 

0.90 21.1273 0.2094 -0.2499 1.1415 -0.0928 -0.1902 -0.4529 -0.3696 

50 

0.25 47.5621 -0.1859 -2.2700 1.6256 -1.3192 0.8629 2.7362 0.8556 

0.75 43.3734 -0.067 -1.8024 1.6287 1.7071 0.5737 0.8683 1.7679 

0.80 42.2954 -0.0404 -1.6923 1.6239 2.0235 0.5344 0.6493 1.8479 

0.90 39.3567 0.0273 -1.4053 1.6035 2.7606 0.4359 0.1207 2.0226 

100 

0.25 35.3263 0.2395 -0.6748 1.7310 4.5649 -0.6873 -3.4017 0.8988 

0.75 39.0945 0.1424 -1.0621 1.7378 5.6294 -0.4098 -3.0692 1.8645 

0.80 39.7982 0.1208 -1.1434 1.7341 5.6788 -0.3750 -2.9974 1.9471 

0.90 41.3897 0.0659 -1.3429 1.7167 5.7440 -0.2891 -2.7998 2.1251 

200 

0.25 5.4405 0.1586 0.2190 0.4371 3.3465 -0.4983 -2.6100 0.7504 

0.75 9.2301 0.0890 -0.1151 0.4933 2.9570 -0.3053 -1.9415 0.8846 

0.80 10.0303 0.0735 -0.1877 0.5042 2.8800 -0.2808 -1.8463 0.8887 

0.90 11.9952 0.0343 -0.3695 0.5290 2.6723 -0.2204 -1.6047 0.8905 

500 

0.25 11.4300 -0.1408 -0.8266 0.2681 -0.0499 -0.2768 -0.7301 -0.4780 

0.75 10.7977 -0.1678 -0.8751 0.2053 0.6134 -0.2980 -1.0408 -0.1997 

0.80 10.6272 -0.1732 -0.8830 0.1909 0.6780 -0.2968 -1.0623 -0.1673 

0.90 10.1484 -0.1859 -0.8988 0.1541 0.8249 -0.2915 -1.1041 -0.0893 

*
𝜌  refers the correlation among responses and **𝑅𝐵 = × 100 
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Table 4.3: Relative Efficiency (RE) of Modified Restricted Least Squares Estimator (MRLE) 

with respect to MLSE for Different 𝝆 𝐚𝐧𝐝 𝒏 
 

Sample 
Size, 𝒏 𝝆𝟏𝟐

* 

RE
**

 of MRLE 
𝛽  
(25) 

𝛽  
(3.5) 

𝛽  
(-1.75) 

𝛽  
(-1.5) 

𝛽  
(175) 

𝛽  
(2.5) 

𝛽  
(-1.25) 

𝛽  
(-1.25) 

25 

0.25 1.007884 1.006286 1.018122 1.000488 1.009729 1.007614 1.022311 1.000552 

0.75 1.007895 1.00648 1.018142 1.000542 1.009815 1.007727 1.022314 1.000628 

0.80 1.0078951 1.006512 1.01843 1.000527 1.009843 1.007757 1.022334 1.000645 

0.90 1.00796 1.00655 1.018433 1.000578 1.009848 1.007758 1.022638 1.000691 

50 

0.25 1.005096 1.003302 1.008901 1.000634 1.006222 1.004111 1.011007 1.000729 

0.75 1.005127 1.003381 1.00891 1.00065 1.006256 1.004103 1.010866 1.000737 

0.80 1.00514 1.003381 1.008989 1.000654 1.006280 1.004096 1.01082 1.000798 

0.90 1.005148 1.00339 1.008991 1.000666 1.006874 1.004081 1.0107 1.000798 

100 

0.25 1.002603 1.001461 1.004403 1.000416 1.003206 1.001818 1.005452 1.000507 

0.75 1.002609 1.001467 1.004407 1.000422 1.003212 1.001839 1.005473 1.000508 

0.80 1.002616 1.001469 1.004481 1.000426 1.00322 1.001848 1.00548 1.0005081 

0.90 1.002625 1.001469 1.00482 1.000432 1.003223 1.001852 1.00548 1.000509 

200 

0.25 1.001131 1.000595 1.001912 1.000203 1.00135 1.000697 1.002356 1.000241 

0.75 1.001137 1.000596 1.001915 1.000205 1.001351 1.0007 1.002357 1.000241 

0.80 1.001138 1.000598 1.001916 1.000206 1.001351 1.0007 1.002358 1.000241 

0.90 1.001147 1.000599 1.001927 1.000208 1.001352 1.0007 1.0023581 1.000242 

500 

0.25 1.000379 1.000244 1.000722 1.000042 1.00048 1.000305 1.000894 1.000054 

0.75 1.000374 1.000246 1.000723 1.000044 1.000489 1.000307 1.000902 1.000056 

0.80 1.000372 1.000247 1.00073 1.000045 1.000491 1.000307 1.000905 1.000056 

0.90 1.000366 1.000249 1.000731 1.000049 1.000499 1.000308 1.000914 1.000058 

*
𝜌  refers the correlation among responses and **𝑅𝐸 =

( )
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In Table 4.3, the performance of modified restricted least squares estimator (MRLE) is relatively 

more efficient than MLSE for different sample size where the stochastic restriction presents in 

regression parameters of the multivariate regression model. 

Table 4.4: Relative Efficiency (RE) of Modified Multivariate Weighted Least Square 

(MMWLS) Estimate with respect to MLSE for Different ρ, W and n 

Sample 

Size, 𝑛 
𝜌

* 
𝑊

** 

RE
**

 of MMWLS 

𝛽  

(25) 

𝛽  

(3.5) 

𝛽  

(-1.75) 

𝛽  

(-1.5) 

𝛽  

(175) 

𝛽  

(2.5) 

𝛽  

(-1.25) 

𝛽  

(-1.25) 

25 

0.25 

 

0.2 1.001557 1.001266 1.003617 1.000084 1.001962 1.001537 1.004453 1.000112 

0.5 1.003883 1.003156 1.009049 1.000209 1.004889 1.003829 1.011141 1.000279 

0.8 1.006197 1.005037 1.01449 1.000333 1.007799 1.006105 1.017839 1.000443 

0.75 

 

0.2 1.001494 1.001308 1.00363 1.00007 1.00199 1.00151 1.004463 1.000128 

0.5 1.003721 1.003258 1.009074 1.000173 1.00495 1.003752 1.011139 1.000318 

0.8 1.005931 1.005196 1.014516 1.000275 1.007879 1.005966 1.017792 1.000505 

0.80 

 

0.2 1.001483 1.001316 1.003635 1.000067 1.002002 1.001502 1.004463 1.000132 

0.5 1.00369 1.003278 1.009079 1.000166 1.004974 1.003726 1.011124 1.000327 

0.8 1.005877 1.005224 1.014513 1.000263 1.007908 1.005916 1.017744 1.000519 

0.90 

 

0.2 1.001439 1.001336 1.003627 1.000058 1.002036 1.001568 1.004444 1.000143 

0.5 1.003567 1.003316 1.009026 1.000143 1.005028 1.003731 1.011002 1.000353 

0.8 1.005658 1.005266 1.014376 1.000225 1.007945 1.00594 1.017429 1.000557 

50 

 

0.25 

 

0.2 1.001021 1.000662 1.001798 1.000127 1.001247 1.000825 1.002198 1.000147 

0.5 1.00255 1.001654 1.004499 1.000318 1.003115 1.00206 1.005497 1.000366 

0.8 1.004079 1.002643 1.007202 1.000508 1.00498 1.003291 1.008802 1.000584 

0.75 

 

0.2 1.001028 1.000659 1.001796 1.000131 1.001217 1.000826 1.002176 1.000143 

0.5 1.002567 1.001644 1.00449 1.000326 1.003038 1.00206 1.005437 1.000356 

0.8 1.004104 1.002627 1.007186 1.000521 1.004851 1.003287 1.008696 1.000567 

0.80 0.2 1.001031 1.000659 1.001798 1.000132 1.00121 1.000826 1.00217 1.000141 
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 0.5 1.002575 1.001645 1.004495 1.000328 1.003017 1.002058 1.005419 1.000351 

0.8 1.004115 1.002627 1.007191 1.000524 1.004814 1.003283 1.008662 1.00056 

0.90 

 

0.2 1.001037 1.000654 1.001793 1.000134 1.001193 1.000829 1.002163 1.000137 

0.5 1.002585 1.00163 1.004477 1.000335 1.002965 1.00206 1.005386 1.000339 

0.8 1.004125 1.002599 1.007152 1.000534 1.004717 1.003277 1.008583 1.000538 

100 

 

0.25 

 

0.2 1.000521 1.000297 1.00088 1.000083 1.000642 1.000364 1.001089 1.000102 

0.5 1.001302 1.000741 1.0022 1.000208 1.001604 1.00091 1.002724 1.000254 

0.8 1.002083 1.001185 1.003521 1.000333 1.002565 1.001455 1.00436 1.000407 

0.75 

 

0.2 1.000522 1.000294 1.000877 1.000085 1.000644 1.000369 1.001095 1.000102 

0.5 1.001305 1.000734 1.002193 1.000211 1.001608 1.000921 1.002737 1.000254 

0.8 1.002088 1.001174 1.003509 1.000338 1.002571 1.001472 1.004378 1.000406 

0.80 

 

0.2 1.000524 1.000293 1.000876 1.000085 1.000643 1.000371 1.001097 1.000101 

0.5 1.001309 1.000731 1.002191 1.000213 1.001606 1.000926 1.002742 1.000252 

0.8 1.002093 1.001168 1.003505 1.000341 1.002567 1.00148 1.004385 1.000403 

0.90 

 

0.2 1.000527 1.000291 1.000876 1.000087 1.00064 1.000373 1.001096 1.0001 

0.5 1.001315 1.000725 1.002188 1.000217 1.001595 1.00093 1.002736 1.000248 

0.8 1.002102 1.001158 1.003498 1.000346 1.002546 1.001484 1.00437 1.000395 

200 

 

0.25 

 

0.2 1.000226 1.000119 1.000382 1.000041 1.00027 1.00014 1.000471 1.000048 

0.5 1.000565 1.000298 1.000956 1.000102 1.000675 1.000349 1.001177 1.000121 

0.8 1.000905 1.000476 1.00153 1.000163 1.00108 1.000558 1.001884 1.000193 

0.75 

 

0.2 1.000227 1.000118 1.000383 1.000041 1.00027 1.00014 1.000466 1.000048 

0.5 1.000569 1.000296 1.000957 1.000103 1.000676 1.00035 1.001164 1.00012 

0.8 1.00091 1.000474 1.001532 1.000164 1.001081 1.00056 1.001863 1.000192 

0.80 

 

0.2 1.000228 1.000118 1.000383 1.000041 1.00027 1.00014 1.000465 1.000048 

0.5 1.000569 1.000296 1.000958 1.000103 1.000676 1.00035 1.001162 1.00012 

0.8 1.000911 1.000473 1.001533 1.000165 1.00108 1.00056 1.001858 1.000193 

0.90 

 

0.2 1.00023 1.000118 1.000386 1.000042 1.000269 1.00014 1.000461 1.000048 

0.5 1.000574 1.000296 1.000964 1.000104 1.000671 1.000349 1.001151 1.000119 

0.8 1.000918 1.000473 1.001542 1.000167 1.001073 1.000558 1.001841 1.000191 
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500 

0.25 

0.2 1.000076 1.000049 1.000144 1.000008 1.000096 1.000061 1.000179 1.000011 

0.5 1.00019 1.000122 1.000361 1.000021 1.00024 1.000153 1.000447 1.000027 

0.8 1.000303 1.000195 1.000577 1.000033 1.000384 1.000244 1.000716 1.000043 

0.75 

0.2 1.000075 1.000049 1.000142 1.000008 1.000098 1.000061 1.00018 1.000011 

0.5 1.000187 1.000121 1.000356 1.00002 1.000245 1.000153 1.000451 1.000028 

0.8 1.000299 1.000194 1.00057 1.000033 1.000391 1.000245 1.000722 1.000045 

0.80 

0.2 1.000074 1.000048 1.000142 1.000008 1.000098 1.000061 1.000181 1.000011 

0.5 1.000186 1.000121 1.000355 1.00002 1.000246 1.000153 1.000452 1.000028 

0.8 1.000298 1.000194 1.000568 1.000032 1.000393 1.000245 1.000724 1.000045 

0.90 

0.2 1.000073 1.000048 1.00014 1.000008 1.0001 1.000062 1.000183 1.000012 

0.5 1.000183 1.000121 1.000351 1.00002 1.000249 1.000154 1.000457 1.000029 

0.8 1.000293 1.000193 1.000561 1.000031 1.000399 1.000246 1.000731 1.000046 
*

𝜌  refers the correlation among responses,**𝑊 refers nonnegative scalar weight and***𝑅𝐸 =
( )

 

 

Table 4.4 has been represented that the modified multivariate weighted mixed estimator 

(MMWME) is shows better performance rather than MLSE. It is also stated in the simulation 

experiment that if the correlation between predictors inflates, then the estimated relative 

efficiency values of the modified multivariate weighted mixed estimator (MMWME) also 

increase. 
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Table 4.5: Relative Efficiency (RE) of modified two parameters weighted mixed estimator 

(MTPWME) with respect to MLSE for Different 𝜌, 𝑊 and 𝑛 

Sample 

Size, 𝒏 
𝝆𝟏𝟐

* 𝑊** 

RE
***

 of Modified Multivariate Two Parameter Weighted 

Estimator 

𝛽  

(3.5) 

𝛽  

(-1.75) 

𝛽  

(-1.5) 

𝛽  

(2.5) 

𝛽  

(-1.25) 

𝛽  

(-1.25) 

25 

0.25 

0.2 2.487068 2.469872 1.910375 2.554078 2.560669 1.912374 

0.5 2.487264 2.470203 1.91036 2.554253 2.561108 1.912318 

0.8 2.48746 2.470534 1.910345 2.554429 2.561547 1.912262 

0.75 

0.2 2.692266 2.68273 1.920508 2.769392 2.749747 1.918376 

0.5 2.692476 2.683073 1.920498 2.769546 2.750175 1.918321 

0.8 2.692686 2.683417 1.920488 2.769701 2.750604 1.918266 

0.80 

0.2 2.739507 2.730736 1.926606 2.820264 2.797978 1.924713 

0.5 2.739724 2.731085 1.926598 2.820411 2.798404 1.924657 

0.8 2.73994 2.731435 1.926589 2.820558 2.79883 1.924602 

0.90 

0.2 2.877911 2.870047 1.95087 2.969743 2.94189 1.949232 

0.5 2.878164 2.870423 1.950869 2.969849 2.942297 1.94917 

0.8 2.878416 2.870799 1.950869 2.969954 2.942705 1.949108 

50 

0.25 

 

0.2 2.601416 2.407231 2.027656 2.703683 2.532185 1.98785 

0.5 2.601578 2.407415 2.027644 2.703838 2.532463 1.987793 

0.8 2.60174 2.407599 2.027631 2.703993 2.532741 1.987737 

0.75 

0.2 2.828575 2.572447 2.035532 2.957099 2.679187 2.003298 

0.5 2.828755 2.572634 2.035524 2.957232 2.679439 2.003245 

0.8 2.828935 2.572822 2.035517 2.957365 2.679691 2.003192 

0.8 

0.2 2.881635 2.610218 2.041818 3.017018 2.716301 2.010998 

0.5 2.881824 2.610409 2.041813 3.017144 2.716548 2.010945 

0.8 2.882013 2.610599 2.041808 3.017269 2.716794 2.010892 

0.9 

0.2 3.034665 2.72106 2.065738 3.192632 2.82745 2.039173 

0.5 3.0349 2.721268 2.065742 3.192718 2.827681 2.039113 

0.8 3.035135 2.721476 2.065746 3.192803 2.827912 2.039053 

100 

0.25 

0.2 2.326808 2.262891 1.980358 2.50151 2.501585 1.901793 

0.5 2.326914 2.263014 1.980352 2.501609 2.501805 1.901749 

0.8 2.32702 2.263136 1.980346 2.501708 2.502025 1.901704 

0.75 

0.2 2.479874 2.428602 1.963829 2.683715 2.629919 1.918062 

0.5 2.479999 2.428733 1.963831 2.683787 2.630118 1.918016 

0.8 2.480125 2.428863 1.963833 2.683858 2.630317 1.917971 

0.8 0.2 2.516164 2.46414 1.965517 2.727515 2.660732 1.923332 
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0.5 2.516297 2.464274 1.965522 2.727579 2.660927 1.923286 

0.8 2.51643 2.464407 1.965526 2.727643 2.661122 1.923239 

0.9 0.2 2.619273 2.564953 1.977005 2.852575 2.750268 1.942597 

0.9 0.5 2.619448 2.565104 1.97702 2.852599 2.750452 1.942541 

0.9 0.8 2.619623 2.565255 1.977036 2.852623 2.750636 1.942486 

200 

0.25 

0.2 1.931704 1.998775 1.869967 2.048222 2.329264 1.721134 

0.5 1.931773 1.99886 1.869965 2.048285 2.329439 1.721106 

0.8 1.931842 1.998946 1.869963 2.048348 2.329615 1.721079 

0.75 

0.2 2.011653 2.159665 1.826335 2.179246 2.434512 1.730851 

0.5 1.000296 1.000957 1.000103 1.00035 1.001164 1.00012 

0.8 2.011827 2.15986 1.82635 2.179322 2.434828 1.730783 

0.8 

0.2 2.030232 2.190971 1.822922 2.209592 2.457739 1.734727 

0.5 2.030326 2.191072 1.822932 2.209623 2.457895 1.734691 

0.8 2.03042 2.191173 1.822942 2.209654 2.458051 1.734655 

0.9 

0.2 2.081067 2.274436 1.819145 2.292133 2.52014 1.747612 

0.5 2.081193 2.274554 1.819167 2.292132 2.520295 1.747562 

0.8 2.08132 2.274671 1.819189 2.29213 2.52045 1.747513 

500 

0.25 

0.2 1.520573 1.660035 1.711523 1.613199 1.988925 1.48605 

0.5 1.520622 1.660098 1.711529 1.613244 1.989041 1.486038 

0.8 1.52067 1.660161 1.711534 1.61329 1.989156 1.486026 

0.75 

0.2 1.543241 1.788547 1.641626 1.663116 2.028195 1.483066 

0.5 1.543302 1.788622 1.64164 1.663145 2.028305 1.483045 

0.8 1.543363 1.788698 1.641655 1.663174 2.028415 1.483024 

0.8 

0.2 1.548852 1.80998 1.632819 1.675161 2.037024 1.483189 

0.5 1.548917 1.810059 1.632836 1.675185 2.037134 1.483165 

0.8 1.548983 1.810137 1.632854 1.675209 2.037244 1.483141 

0.9 

0.2 1.562962 1.862002 1.612019 1.704516 2.053631 1.483965 

0.5 1.563049 1.862093 1.61205 1.704516 2.053745 1.483924 

0.8 1.563136 1.862184 1.61208 1.704516 2.05386 1.483884 
*

𝜌  refers the correlation among response, **𝑊 refers nonnegative scalar weight and***𝑅𝐸 =
( )

 

According to table 4.5, it is observed that the modified two parameters weighted mixed estimator 

(MTPWME) is superior to the MLSE. It is also seen that an increase in 𝑊 generally increase the 

relative efficiency of MTPWME, which leads to the results that an increment to the weight of the 

prior information increases the dominance of the modified two parameters weighted mixed 

estimator (MTPWME) over the MLSE which is true for small to large sample size. 
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4.5 Conclusion 

In this chapter, multivariate two-parameter weighted (MTPWE) estimator has been proposed for 

the estimation of multivariate regression models with stochastic linear regression. Moreover, a 

Monte Carlo simulation is done to ensure a comparison of the proposed multivariate two-

parameter weighted (MTPWE) estimator to the other modified methods for different sample size 

and various levels of different parameters. Based on the Monte Carlo simulation, the study 

reveals that the MTPWE always outperforms for multicollinearity aspects.  
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Chapter 5 

Modified Inferential Approach for Multivariate Mixed Responses 

 

5.1 Introduction 

In applied research especially socio-demographic, epidemiological and agricultural study, the 

researcher needs to find out the influential factors for the target multivariate responses where the 

response variables may follow the mixed distribution and the parameters of the model may be 

restricted. However, the concept of multivariate regression faces hurdles when the response 

matrix is a combination of both categorical and numerical variables which is a common scenario 

in socio-economic and demographic analysis.  

Hence, multivariate regression analysis faces a problem to estimate regression parameters or 

testing it because of the error distribution may not be multivariate normal. One example of the 

response vectors may be that it consists of desired family size, mothers weight and contraceptive 

use whereas, covariate matrix consists of age, income, education, sex, number of children, 

employment status, migration status etc. Hence, the challenge for the social statistician is to 

develop the appropriate model by addressing challenging issues and seek out powerful 

estimation and hypothesis testing procedure to fit model correctly and predicting or forecasting 

about the future phenomenon. In this chapter, the study has been tried to propose an estimation 

technique for the restricted parameters of multivariate regression with mixed responses. Here, the 

multivariate multiple regression models is as follows- 

𝑌 × = 𝑍 ×( )𝛽( )× + 𝜖 ×  

𝐸 ∈( ) = 0,    𝐶𝑜𝑣 ∈( ), ∈( ) = 𝜎 𝐼   ;    𝑖. 𝑘 = 1,2, … , 𝑝 



59 
 

where, 𝑌 ×  is the vector of the n measurements of the mixed variables; 𝛽( )× refers the 

matrix of regression coefficients with restriction; 𝜖 × is the vector of error which follows 

multivariate mixed distribution; and 𝑍 ×( )is the design matrix. 

 

5.2 Review of Literature 

When categorical and continuous responses occur simultaneously then influential factors on 

responses can’t be assessed jointly through separate analysis of those responses (Cox and 

Wermuth, 1992). Furthermore, the separate analysis gives biased estimates for the parameters 

and misleading inference. So, for multivariate mixed categorical and continuous responses, a 

joint model with appropriate distribution pattern is necessary for precise analysis (Samani and 

Ganjali, 2008). Heckman (1978) was initiated to develop a general model for simultaneously 

analyzing two mixed correlated responses. The joint model considers that categorical responses 

are inter-correlated and also are dependent on continuous responses. Simultaneous modeling of 

categorical and continuous variables can be described in terms of a correlated multivariate 

normal distribution for the underlying latent variables of ordinal responses and continuous 

responses (Samani and Ganjali, 2008). 

 

Though very little research has been addressed the problem of estimating joint density function 

with mixed categorical and continuous responses; but still established parametric or 

Semiparametric procedure are not available to estimate joint density functions for mixed 

responses, calculating the multivariate regression coefficients for mixed responses, model 

specification test, and the test of the individual parameters. In this study, a modified maximum 

likelihood estimator has been proposed to estimate the restricted parameters of multivariate 

regression with continuous responses. 
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5.3 Proposed Approach of Parameter Estimation in Multivariate Regression with Mixed 

Responses 

5.3.1 Model Specification 

Let 𝒀 be an 𝑛 × 2 observation matrix of mixed response variables and 𝑿 be a design matrix of 

𝑛 × (𝑘 + 1) nonstochastic predicted variables with rank 𝑘 ≤ 𝑛 where 𝑛 is the sample size. A 

multivariate regression model with linear restriction is given as 

𝒀 = 𝑿𝜷 + 𝜺 with prior restriction 𝑹𝜷 = 𝝃  and 𝑹𝜷 = 𝝃  

where 𝒀 =

𝑌 𝑌
𝑌 𝑌
… …

𝑌 𝑌

 is the mixed response  with categorical response  𝒀 =
1, success
0,   failure

   and 

continuous response 𝒀  which lies between −∞ to + ∞. Here, the design matrix, disturbance 

term and matrix of regression coefficient are  𝑿 =

𝑋 𝑋 … 𝑋
𝑋 𝑋 … 𝑋
… …        … …
𝑋 𝑋 … 𝑋

, 𝜺 =

𝜀 𝜀
𝜀 𝜀
… …

𝜀 𝜀

, 

𝜷 =

𝛽 𝛽
𝛽 𝛽
… …

𝛽 𝛽

 respectively. The restricted parameters are 𝑹 =
𝑅 𝑅 … 𝑅
… … … …

𝑅 𝑅 … 𝑅
and 

𝝃𝒊 = (𝜉 𝜉 ) . 

The model considered the following assumption to estimate the parameters. 

i) The sample observation for each unit is independent. 

ii) Each restriction is same for both dependent variables. 

 

5.3.2 Parameter Estimation 

The random component identifies the probability distribution function of response variable. The 

joint distribution of the response variables 𝒀𝟏and 𝒀𝟐 given the design matrix 𝑿 without 

restriction is given below 
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𝑓(𝑌 , 𝑌 |𝑋 , … , 𝑋 ) =  
√

⋯    ⋯  

  ⋯   

            (5.1) 

So, the likelihood function of the parameters for 𝒀𝟏and 𝒀𝟐 given 𝑿 is 

𝐿 𝛽 , 𝛽 = ∏
√

⋯    ⋯  

  ⋯  (5.2) 

for 𝑗 = 1,2, … 𝑘 

Taking logarithm both sides in equation (5.2), the log likelihood function will be 

𝐿𝑛 𝐿 = 𝑙𝑛
1

𝜎√2𝜋

𝑒 ⋯ 𝑒
(    ⋯  )

[1 +  𝑒 ⋯ ]
 

In order to estimate the regression coefficient, the following log-likelihood function will be    

𝐿𝑛 𝐿 =

∑ 𝑌 (𝛽 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 𝛾 𝑌 ) − ∑ 𝑙𝑛 1 +  𝑒 ⋯ −

 ∑ (𝑌 −  𝛽 −  𝛽 𝑋  − ⋯ −  𝛽 𝑋 ) + 𝑛𝑙𝑛
√

    (5.3) 

 

Though the link functions play a vital role of linking the random component with systemic 

component for exponential family but the link function of the joint distribution containing binary 

and continuous responses will be mixed, namely logit link and identity link bridging by an 

association parameters (Islam and Chowdhury, 2017). Here, 𝛾  is the association parameter.  

 

Consider the following restrictions on the parameter space of the coefficient vector β,𝑅𝛽 = 𝜉  

and 𝑅𝛽 = 𝜉 , the modified maximum likelihood estimate is proposed by imposing restriction 
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on the log likelihood function (5.3). Therefore, the following objective function should be 

maximized. 

ℓ 𝛽 , 𝛽 , 𝜆 , 𝜆 = 𝐿𝑛 𝐿 + 𝜆 𝑅𝛽 − 𝜉 + 𝜆 𝑅𝛽 −  𝜉     (5.4) 

where 𝜆  and 𝜆  are two Lagrangian multipliers for different restrictions, respectively. 

 

Using matrix approach in equation (5.4) and taking differentiation with respect to 𝛽  to find the 

first normal equation (5.5) 

ℓ
=  𝑋 𝑌 −  +  𝑅 𝜆 = 0     (5.5) 

 

Hence, Newton-Raphson method has been used to estimate the parameters for categorical 

response given design matrix 𝑿and continuous response𝒀 . 

𝛽 ( )
( )

= 𝛽 ( ) + (𝑋′𝑋) 𝑅 [𝑅(𝑋′𝑋) 𝑅 ] 𝜉 −  𝑅𝛽 ( )  

𝛽 ( )= 𝛽 ( ) − (𝑋′𝑋) 𝑅 [𝑅(𝑋′𝑋) 𝑅 ] 𝑅𝛽 ( ) −  𝜉    (5.6) 

 

Using matrix approach in equation (5.4) and taking differentiation with respect to𝛽  to find the 

second normal equation (5.7).  

ℓ
=  −2 𝑋 𝑌 + 2𝑋 𝑋 𝛽 ( ) +  𝑅 𝜆 = 0      (5.7) 

 

Now, restriction 𝑅𝛽 − 𝜉 = 0 has been used to estimate the parameters of 𝛽 , Hence, 

minimization of the objective function with respect to  𝛽  and 𝜆 , we derived the modified 

likelihood estimate for  𝛽  . 
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𝛽 ( ) = 𝛽 ( ) − (𝑋 𝑋) 𝑅 [𝑅(𝑋 𝑋) 𝑅 ] 𝑅𝛽 ( ) −  𝜉    (5.8) 

 

Now, differentiating both sides with respect to𝛾  for obtain (Islam and Chowdhury, 2017) 

the normalized equation (5.9) 

ℓ
= ∑ 𝑌 𝑌 −  

  

   
= 0      (5.9) 

Since𝑝 = 𝜋 =  
 

   
, the equation (4.9) has been reduced as 

∑ 𝑌 [𝑌 − 𝑃 ] = 0, hence iterative weighted least square has been used to find out the 

modified maximum likelihood estimate for 𝛾 . 

𝛾
( )

=  𝛾 + 𝑌 𝑊 𝑌 𝑌 𝑌 −  𝑃         (5.10) 

where 𝑃  is the estimated value of 𝑃  using 𝛽  and𝑊  = diag 𝑃 1 −  𝑃  such that 𝑃  in the 

𝑗 element of the 𝜋 .Again, differentiating both sides with respect to 𝜎  and putting the function 

equal zero for measuring 𝜎  . 

ℓ
= − + ∑ 𝑌 − 𝑋𝛽 𝑌 − 𝑋𝛽       (5.11) 

𝜎 =  
1

𝑛
𝑌 − 𝑋𝛽 𝑌 − 𝑋𝛽  

 

5.4 Monte Carlo Experiment 

Monte Carlo experiments have been conducted to examine the performance of the newly 

proposed modified maximum likelihood estimator for estimating and testing the restricted 

parameters of the multivariate regression model with mixed responses. The study considered a 

multivariate regression model with mixed responses (𝑝 = 2) where categorical response  

𝒀 =
1, success
0,   failure

   and continuous response 𝒀  lies between −∞ to + ∞. 
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Since the application of multivariate regression analysis depends on the correlation among the 

response variables, the different trials have been conducted for different arbitrary value of 

correlation coefficient namely, 𝜌 = 0.00, 0.25, 0.75, 0.80, 0.90 where 𝜎 = 100 𝑎𝑛𝑑 𝜎 = 81 

including sample sizes of different order, 𝑛 = 25,50,100, 200, 400 . The generation of 

multivariate responses also depends on the parameter values of the regression coefficients taken 

to be 

 𝛽 = [25 3.5 −1.75 −1.5] and 𝛽 = [175 2.5 −1.25 −1.25 5.5] 

𝑖)𝑹𝟐 = [0   1   2   0]    2)   𝑹𝟏 = [0   1   2   0 0] for 𝝃 = [0   0] respectively. 

 

The relative efficiency (RE) has been used to diagnosis the simulated performance of modified 

maximum likelihood estimate and maximum likelihood estimator for restricted coefficients of 

multivariate regression with continuous responses. Hence, the study used 10,000 times iteration 

to find the results. 
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Table 5.1: Relative Efficiency (RE) of MMLE on MLE for Multivariate regression with mixed 

responses 

 

Sample 
Size, 𝒏 

𝝆𝟏𝟐
* Relative Efficiency (RE**) of Modified Maximum Likelihood Estimate 

 

 

25 

  
𝛽  
(25) 

𝛽  
(3.5) 

𝛽  
(-1.75) 

𝛽  
(-1.5) 

𝛽  
(175) 

𝛽  
(2.5) 

𝛽  
(-1.25) 

𝛽  
(-1.25) 

𝛾 
(5.5) 

0.00 1.6132 1.4993 11.2818 1.0145 3.1512 0.4455 19.9002 1.2766 0.8789 

0.25 1.6526 1.47 11.1794 1.0216 1.7119 1.449 11.5114 1.0388 1.0753 

0.75 1.6769 1.4507 11.1054 1.0261 1.722 1.4028 10.8732 1.0445 1.0893 

0.80 1.6783 1.4495 11.1004 1.0264 1.1873 2.3213 12.0493 1.7593 1.9428 

0.90 1.6806 1.4475 11.0916 1.0268 2.25 12.2113 16.6991 1.848 1.958 

50 

0.00 2.0772 1.5409 14.5644 1.0615 61.4582 0.0007 17.8633 2.1534 1.9384 

0.25 2.1032 1.5465 14.7959 1.0643 2.0753 2.9331 18.6844 2.7262 1.9616 

0.75 2.1275 1.5388 14.826 1.0688 2.2655 3.0195 18.7296 2.7251 1.9896 

0.80 2.1294 1.5377 14.8211 1.0692 9.3336 6.1609 18.8757 2.762 1.9964 

0.90 2.1331 1.535 14.8038 1.0702 3.5262 4.0497 18.8803 2.3288 1.0543 

100 

0.00 2.215 1.4502 13.9967 1.0958 1.2048 1.168 4.2097 1.1962 1.9932 

0.25 2.2129 1.4498 13.9893 1.0957 1.3984 1.3585 1.6842 1.4101 1.9797 

0.75 2.2188 1.4525 14.0694 1.0963 1.8569 1.3765 3.7339 1.8469 1.9953 

0.80 2.2196 1.4528 14.0792 1.0963 1.8784 1.9254 4.9135 1.85321 1.9755 

0.90 2.2215 1.4536 14.1019 1.0965 1.9008 1.6353 7.3219 1.2576 1.9109 

200 

0.00 2.2094 1.3653 12.8409 1.1161 1.6232 1.1627 2.884 1.2841 1.0535 

0.25 2.1749 1.3628 12.6329 1.1113 1.4371 1.2263 3.8123 1.294 1.0927 

0.75 2.1804 1.3786 12.8996 1.1087 1.596 2.7186 6.2365 1.7699 1.098 

0.80 2.1823 1.3806 12.9389 1.1086 2.6294 2.7918 6.6784 2.1096 1.0937 

0.90 2.1877 1.3853 13.0358 1.1084 1.6509 2.6491 7.4321 2.7842 1.0979 

400 

0.00 1.9922 1.4443 12.7798 1.0656 1.6509 2.6491 1.4321 2.7842 1.0179 

0.25 2.0178 1.4478 12.9895 1.0688 1.4389 2.7429 2.891 1.1362 1.0019 

0.75 1.9986 1.449 12.8969 1.0691 1.6897 2.7864 43.4435 1.5493 1.0098 

0.80 1.9954 1.449 12.8786 1.0696 1.7795 2.7957 6.4671 1.3749 1.0068 

0.90 1.9875 1.4489 12.8313 1.0699 1.8718 2.4598 41.9685 1.321 1.0054 
*
𝜌  refers the correlation among response, and **𝑅𝐸 =

( )
 

According to Table 5.1, it is observed that the modified maximum likelihood estimate is superior 

to the MLE for the restricted parameters of multivariate regression with mixed responses.  
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Theorem 5.1: Let 𝑌 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑃 )and 𝑌 ~𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇, 𝜎 ) are to be random variables which 

are interrelated. 𝑌  and 𝑌  are the categorical and continuous variables respectively and 

𝑋 , 𝑋 , … , 𝑋  are the explanatory variables. Hence the joint density function of 𝑌 and 𝑌  given 

the explanatory variables 𝑋 , 𝑋 , … , 𝑋  is 

𝑃[𝑌 , 𝑌 |𝑋 , 𝑋 , 𝑋 , … 𝑋 ]

=
1

𝜎√2𝜋

[exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]] × exp [− (𝑦 − 𝛽 − 𝛽 𝑥 − ⋯ − 𝛽 𝑥 ) ]

1 + exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]
 

 

Let 𝑌  is a continuous random variable with density function 

𝑃[𝑌 = 𝑦 |𝑋 = 𝑥 , 𝑋 = 𝑥 , … 𝑋 = 𝑥 ] =
√

exp [− (𝑦 − 𝛽 − 𝛽 𝑥 − ⋯ − 𝛽 𝑥 )  whose 

distribution is normal with expectation 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥  and variance 𝜎 . 

𝑃[𝑌 |𝑌 , 𝑋 , … , 𝑋 ] = 𝑃[𝑌 = 𝑦 |𝑌 = 𝑦 , 𝑋 = 𝑥 , … 𝑋 = 𝑥 ] = 𝑃 (1 − 𝑃 )  

where𝑃 =
 [ ⋯ ]

 [ ⋯ ]
  (Bel et. al., 2018). 

𝑃[𝑌 |𝑌 , 𝑋 , 𝑋 , 𝑋 , … 𝑋 ]

=
exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]

1 + exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]

1

1 + exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]
 

=
[  [ ⋯ ]]

 [ ⋯
 

The mathematical approach to formulate joint distribution function of 𝑌 and 𝑌  given a set of 

explanatory variables (Islam and Chowdhury, 2017) is  

𝑃(𝑌 , 𝑌 |𝑋 , 𝑋 , … , 𝑋 ) = 𝑃(𝑌 |𝑌 , 𝑋 , … , 𝑋 ) 𝑃(𝑌 |𝑋 , … , 𝑋 ). Hence, the joint distribution of 

two correlated variables 𝑌 and 𝑌  given a set of explanatory variables is formulated as 
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𝑃[𝑌 , 𝑌 |𝑋 , 𝑋 , 𝑋 , … 𝑋 ]

=
1

𝜎√2𝜋

[exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]] × exp [− (𝑦 − 𝛽 − 𝛽 𝑥 − ⋯ − 𝛽 𝑥 ) ]

1 + exp [𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝛾 𝑦 ]
 

 

5.5 Conclusion  

This study is the initial initiative to find out a uniform approach for estimating the restricted 

parameter of multivariate regression with mixed responses especially the mixed of binary and 

continuous responses. Based on the Monte Carlo simulation, the study reveals that the variance 

of modified maximum likelihood estimator is lower and relative efficiency is higher than current 

methods.  
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Chapter 6 
 

Socio-economic Determinants of Households Food Expenditure in Haor Areas of 

Bangladesh: A Restricted Multivariate Regression Approach 

 

6.1 Background 

Bangladesh has experienced positive improvements in social, economic, and health sectors. Still, 

the progress is not up to the mark in Haor areas. Haors are wetland ecosystem located in the 

northeastern region of Bangladesh which is physically a bowl or saucer-shaped shallow 

depressions. Haor is particularly low lying basin area below the level of the flood plain. These 

areas are also similar to swampland covered by water almost six months of a year starting from 

the monsoon. The total number of 373 Haors situated in the districts of Sunamganj, Habiganj, 

Maulabibazar, Sylhet, Mymensingh, Bramanbaria and kishorganj which covered 1.99 million ha. 

of areas. 

Table 6.1: Descriptions of the Haor Areas in Bangladesh 

District Total Area of the District (in ha.) Haor Area (in ha.) No. of Haor 

Sunamganj 367,000 268,531 95 

Sylhet 349,000 189,909 105 

Habiganj 263,700 109,514 14 

Maulvibazar 279,900 47,602 3 

Netrokona 274,400 79,345 52 

Kishoreganj 273,100 133947 97 

Brahmanbaria 192700 29616 7 

Total 1999800 858,460 373 

Source: Report on Classification of Wetlands of Bangladesh, Department of Bangladesh Haorand Wetlands Development, Ministry of Water 
Resources, Bangladesh, 2016 



 

Figure 6.1: Study Areas (Haor Areas) in Bangladesh
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because of increasing input cost in the cereal production and dramatic rise in the prices of food 

throughout the world. This chapter has been tried to find out the implication of applying a 

restricted multivariate regression approach for finding socio-economic determinants of 

household’s food consumption in Haor Areas of Bangladesh. 

 

6.2 Sources of Data 

Bangladesh Household Income Expenditure Survey (HIES) 2016 data set has been used to detect 

the consequence of proposed inferential approach for multivariate regression analysis. The study 

has been selected socio-economic data namely social safety net programme, wage employment, 

food and non-food expenditure data of 2280 agriculture and nonagricultural workers in Haor 

regions (Sunamganj, Habiganj, Maulabibazar, Sylhet, Mymensingh, Bramanbaria and kishorganj 

districts) as a target sample.  

 

6.3 Variable Selection  

The variables have been selected based on the review of the literature and field experience. 

Monthly food consumption, total monthly expenditure, family size, age, employment status, 

marital status and educational attainment of household head are logically interrelated variables 

(Shekhampu, 2012). The study has been assumed that household total expenditure and food 

consumption to be function of total monthly income, family size, total operating land and other 

predictors. The description of the explanatory variables is given below.  

 

Total monthly income: Total monthly income of a respondent was measured by summing of all 

income earned by a respondent and other member of the family in a month from agriculture 

sector (crop farming, livestock rearing, fisheries, farm labour, homestead forestry sector) and 

nonagricultural sector (service, business, social benefits scheme, relief and driving boat) which 



71 
 

expressed in taka. The study assumes that food expenditure is positively and significantly 

influenced by household income (Babalola and Isitor, 2014).   

 

Family size: Family size of the respondent is the total members of the family including the 

respondent himself, spouse, children and other dependants who use to live, eat and act together 

in a family. The expected sign of the relationship between family size and food consumption is 

positive (Alam, Alam and Mustaq, 2018). 

 

Total operating land: Total operating land is the most important factor in agricultural sector. 

Access of total operating land is considered the key determinant of the livelihood strategy of 

rural low income people by influencing household's crop production capacity leading to increase 

food availability and also enhance extra income from marketing the surplus production. Again, 

the expected sign of the relationship between family size and food consumption is positive 

(Alam, Alam and Mustaq, 2018). 

 

The Logarithm functional form is used to explain responses in household total and food 

expenditure socio-economic predictors. The logarithmic transformed variables are given below.  

TME=Logarithm of Total Monthly Expenditure 

MFC= Logarithm of Monthly Food Consumption 

FS= Logarithm of Family Size 

TMI= Logarithm of Total Monthly Income as a Worker 

TOL=Total Operating Land 
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Table 6.2: Association among logarithm function of monthly total expenditure, food expenditure 

and socio-economic predictors 

 

Pearson Correlation 
Coefficient (𝒓) 

TME MFC FS TMI TOL 

TME 
 

.960** 
(.000) 

.487** 
(.000) 

.346** 
(.000) 

.056** 
(.000) 

MFC 
.960** 
(.000)  

.503** 
(.000) 

.302** 
(.000) 

.039 
(.060) 

FS 
.487** 
(.000) 

.503** 
(.000)  

.090** 
(.000) 

.035 
(.091) 

TMI .346** 

(.000) 
.302** 

(.000) 
.090** 

(.000)  
-.004 
(.840) 

TOL .056** 

(.007) 
.039 
(.060) 

.035 
(.091) 

-.004 
(.840)  

 

Food consumption and household income are positively correlated (Talukder and Chile, 2013). 

Though logarithm functional form of total monthly expenditure and monthly food consumption 

are highly(𝑟 = 0.96) and significantly (𝑝 < 0.00) correlated, “TME” and “MFC” can be used as 

a multivariate response variable.  

Sensitivity analysis is important to quantify how the uncertainty in the output of a model is 

related to the uncertainty in its inputs (Salciccioli, Crutain, Komorowski and Marshall, 2016). 

The previous literature reveals that household total and food expenditure is positively influenced 

by family size, total household income and total operating land. It also found out that the 

influence of family size is higher than household income on food expenditure as well as family 

income. Scatter matrix (figure A1 in appendix A) as a method of sensitivity analysis (Bells, 

Alary, Laguerre, Fanke, 2018) and correlation matrix is also support this conditions. FS, TMI 

and TOL are significantly related to both “TME” and “MFC”. This study has considered FS, 

TMI and TOL as the predictors. 
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6.4 Multivariate Analysis 

Multivariate data analysis is the statistical methodologies that allow simultaneous investigation 

of more than two interrelated variable. It attempts to explain or predict the multiple response 

variables on the basis of fixed predictors. The challenge in this regard is to develop a logical 

frame of the multivariate regression model.  

 

6.4.1 Model Selection 

Multivariate regression model has been used to find the degree of dependency among 

multivariate response and predictors. The two different models are assumed of these issues. 

Model 1:[𝐓𝐌𝐄 ⋮ 𝐌𝐅𝐂] = [𝟏𝐅𝐒 𝐓𝐌𝐈 𝐓𝐎𝐋] ×

𝛽 𝛽
𝛽 𝛽
𝛽 𝛽
𝛽 𝛽

+ [𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂] 

Assumptions: 

1. The random disturbance [𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂]   follows multivariate normal distribution with 

𝐸[𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂] = [𝟎 ⋮ 𝟎] and covariance matrix, Σ =
𝜎𝐓𝐌𝐄 𝜎𝐓𝐌𝐄,𝐌𝐅𝐂

𝜎𝐓𝐌𝐄,𝐌𝐅𝐂 𝜎𝐌𝐅𝐂
. 

2. The observations in different trials are independent. 

3. 𝜷 and 𝚺 are unknown parameters of the design matrix [𝐅𝐒 𝐓𝐌𝐈 𝐓𝐎𝐋]. 

 

Model 2: [𝐓𝐌𝐄 ⋮ 𝐌𝐅𝐂] = [𝟏𝐅𝐒 𝐓𝐌𝐈 𝐓𝐎𝐋] ×

𝛽 𝛽
𝛽 𝛽
𝛽 𝛽
𝛽 𝛽

+ [𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂] 

with respect to [𝑅 𝑅 𝑅 𝑅 ] ×

𝛽 𝛽
𝛽 𝛽
𝛽 𝛽
𝛽 𝛽

= [𝑟 𝑟 ] 
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The restriction [𝑅 𝑅 𝑅 𝑅 ] = [0 1 −2 0] and [𝑟 𝑟 ] = [0 0] considered 

subjectively on the basis of prior information. 

 

Assumptions: 

1. The random disturbance [𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂]   follows multivariate normal distribution with 

𝐸[𝜺𝐓𝐌𝐄 ⋮ 𝜺𝐌𝐅𝐂] = [𝟎 ⋮ 𝟎] and covariance matrix, Σ =
𝜎𝐓𝐌𝐄 𝜎𝐓𝐌𝐄,𝐌𝐅𝐂

𝜎𝐓𝐌𝐄,𝐌𝐅𝐂 𝜎𝐌𝐅𝐂
. 

2. The observations in different trials are independent. 

3. 𝜷 and 𝚺 are unknown parameters of the design matrix [𝐅𝐒 𝐓𝐌𝐈 𝐓𝐎𝐋]. 

4. The restriction of the model is exact linear. 

 

6.4.2 Parameter Estimation and Testing Methods 

Both maximum likelihood and modified maximum likelihood method are used to estimate the 

parameters of the model 1 and model 2. Model 2 is the modification of the model 1 on the basis 

of prior information.  

 

Modified restricted likelihood ratio test has been used to evaluate the relative performance of the 

two models. Proposed modified multivariate 𝑡 test has been applied to test the individual 

parameter of the required model. Modified confidence intervals are used to obtain interval 

estimation of the parameters. Stata 14 and R program are used for computing the datasets. 

 

6.5 Results and Discussion   

The value of restricted likelihood ratio test for comparing model 1 to model 2 is 1.030216 with 

p − value(Lr statistic) = 0.09481 which indicate that model 2 is better at 10% level of 

significance. 
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Table 6.3: Parameter estimation and testing of model 1 
 

Model 1 Coefficient Std. Err. t P>t 

95% Conf. Interval 

LCL UCL 

TME 

FS 0.588836 0.022123 26.62 0.000 0.5455 0.6322 

TMI 0.270384 0.015293 17.68 0.000 0.2404 0.3004 

TOL 0.002279 0.000949 2.4 0.016 0.00042 0.00413 

_cons 6.949503 0.136465 50.93 0.000 6.6819 7.2171 

MFC 

FS 0.602938 0.021871 27.57 0.000 0.56005 0.6458 

TMI 0.22565 0.015119 14.93 0.000 0.1960 0.2554 

TOL 0.001279 0.000938 1.36 0.173 -0.00056 0.0031 

_cons 7.131675 0.134908 52.86 0.000 6.86712 7.3962 

 

The results of the multivariate regression model on the factors that affect household food 

consumption are shown in the Table 6.3. The results of the study shows that total monthly 

income, family size, total operating land have a significant influence on monthly food 

expenditure.  

These predictors were found to exert a positive impact on both food consumption and total 

monthly expenditure. The study reveals that logarithm form of total monthly expenditure and 

food consumption as multivariate continuous responses are significantly related to total operating 

land, logarithm form of family size and total monthly income (𝑝 < 0.01) considering a 

restriction on the parameters at 5% level of significance. 
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Table 6.4: Parameter Estimation and Testing of Model 2 
 

Model 2 Coefficient 
Std. 
Err. 𝒕𝒎𝒐𝒅 p>𝒕𝒎𝒐𝒅 

95% Modified Confidence 
Interval 

TME     LCL UCL 
Constant 6.7813693 0.090 75.30593 0 6.6077 6.95499 

FS 0.5489785 0.014 39.57764 0.00 0.5198 0.57819 
TMI 0.2744892 0.013 21.86325 0.00 0.2599 0.2891 
TOL 0.0013737 0.000 56.14568 0.00 -0.00024 0.00299 
MFC 

      
Constant 6.8384578 0.091 75.29916 0 6.6634 7.0136 

FS 0.5717308 0.014 40.87016 0.00 0.5423 0.6012 
TMI 0.2858654 0.013 22.57726 0.00 0.2711 0.3006 
TOL 0.0023087 0.000 93.56499 0.00 0.00068 0.0039 

 

6.6 Conclusion 
 

The proposed inferential approach has been also used to detect the numerical nexus among 

socio-demographic predictors, food expenditure and total monthly expenditure in Haor regions 

of Bangladesh. An increase in monthly household income, household size and total operating 

land of the household is associated with a positive increase in household food expenditure and 

total expenditure. 
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Chapter 7 

Conclusions and Further Research 

 

The aim of this dissertation was to search appropriate inferential approach for analyzing 

multivariate regression considering prior information about the parameters. The appropriate 

inferential approach was proposed after checking the utility of different conventional parameter 

estimation and testing methods, and modifying and developing new techniques or methods if 

necessary. This chapter summarizes the overall work in this thesis, highlighting the key findings, 

and outlining possible areas of interest for future research. 

 

7.1 Multivariate Regression with Exact Linear Restriction 

Parameter estimation and significant variable estimation are two important goals in regression 

modeling. In chapter 2, related published scientific papers have been reviewed for finding the 

research gap, justification of the study, developing the objectives and the framework to fulfill the 

objectives. In chapter 3, Modified maximum likelihood estimator has been proposed to estimate 

the exact restricted parameters of multivariate regression with continuous responses. The 

proposed estimator is unbiased, consistent and relatively efficient than the classical maximum 

likelihood estimator. In chapter 5, Modified maximum likelihood estimator has been proposed to 

estimate the exact restricted parameters of multivariate regression with mixed responses. The 

performance of modified estimator is relatively efficient than the maximum likelihood estimator. 

In chapter 3, modified likelihood ratio test, modified Akaike information criterion has been 

applied to select the related variables of multivariate responses. Modified multivariate ′𝑡′ test has 

been proposed to check the significance of individual restricted parameters. Modified joint 
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confidence region has been developed to obtain joint confidence interval for restricted 

parameters. Based on the simulation study, this research concludes that the proposed estimation 

technique and hypothesis testing methods are more appropriate for multivariate regression with 

exact linear restriction. 

 

The proposed modified inferential approach has been also applied to detect the numerical nexus 

among socio-demographic determinants, food expenditure and total monthly expenditure in 

“Haor” areas of Bangladesh. The study has been revealed that total monthly expenditure and 

food expenditure are significantly related to total operating land, family size and total monthly 

income (𝑝 < 0.01) considering restricted parameters. Based on the simulation study and 

empirical application, the performance of the modified inferential approach is better than the 

existing methodology.   

 

7.2 Multivariate Regression with Stochastic Restriction 

Most of the situations in real life, the prior information of the parameter of multivariate 

regression model are not exact. In chapter 4, modified restricted least squares estimator 

(MRLSE), modified multivariate weighted least squares (MMWLS), modified two parameters 

weighted mixed estimator (MTPWME) have been proposed to estimate the stochastic linear 

restricted parameters. The study has revealed that the proposed estimator MRLSE is relatively 

unbiased, consistent and relatively efficient than multivariate ordinary least square. However, to 

overcome the multicollinearity problems arise in the classical ordinary least squares estimation 

procedure, the MTPWME has been proposed. Moreover, A Monte Carlo simulation experiment 

has been done to create confirms comparison of the MTPWME to the MMWLS, MRLSE and 

MLSE for the various levels of different parameters. The simulation study has recommended that 
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the MTPWME always shows better performance towards the MMWLS and MRLSE with the 

given stochastic restrictions and multicollinearity for the multivariate regression model. 

 

7.3 Limitations and Directions for Further Research 

There are numerous ways in which the results developed in this thesis can be extended.  

i) In socio-demographic research, many of the times response matrices are categorical. 

Multivariate logit models are widely used to describe the correlated binary decision 

data. If there have been any prior information regarding the degree of dependency 

among response matrix and predictors or multicollinearity has been attained in the 

model, the proposed modified statistic can be extended to find the relative efficient 

estimators. So, the proposed modified statistics can be extended for multivariate 

regression with categorical (either ordinal or nominal) responses. 

ii) Sometimes, statistically, the problem introduced by the presence of multicollinearity 

in the data matrix and also the existence of the stochastic restrictions in the 

parameters, modified multivariate two-parameter weighted estimate can be used to 

estimate the parameter. However, the opportunity is still there to research further for 

finding out the individual and overall test of the parameters. 

iii) Nowadays, big data is another issue for the statisticians. The modified inferential 

approach can be used or extended to estimate the restricted parameters in big data and 

also for missing data. 

iv) The proposed modified approach can also be used or extended for restricted 

parameters of multivariate regression for mixed responses. The powerful testing 

procedure for the restricted parameters is also needed to be developed. 
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7.4 Concluding Remarks 

Complex natures of real life data have widened the scope of devising estimators with restrictions. 

This comes with the complex nature and structure of data and mixed type of the response vectors 

in regression analysis. Furthermore, these pose serious challenge to the existing hypothesis 

testing methodology. This thesis has tried to shed light on such aspects and suggested a way 

forward to solve complex estimation and testing problems. More should be done in this area, and 

inferential statistics should be ready to deal with emerging complex problems, especially with 

the emergence of big data sets on various fields. 
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Appendix A 

 

Appendix A.1: Simulated Quantile (Critical Value) point for  𝑡  at different level 

 

Sample Size, 
n 

𝝆𝟏𝟐 0.9 0.95 0.975 0.985 0.99 0.9975 

25 

0 4.822417 7.155769 8.322446 8.905784 9.022451 9.372454 

0.25 2.953842 3.165833 3.271828 3.324825 3.335425 3.367224 

0.75 2.860572 3.067135 3.170417 3.222058 3.232386 3.26337 

0.8 2.832061 3.036853 3.139249 3.190448 3.200687 3.231406 

0.9 2.747137 2.946526 3.046221 3.096068 3.106037 3.135946 

200 

0 2.145359 2.552059 2.755409 2.857085 2.87742 2.93842 

0.25 2.315094 2.380149 2.412676 2.428939 2.432192 2.44195 

0.75 2.686368 2.846584 2.926693 2.966747 2.974757 2.99879 

0.8 2.732407 2.881341 2.955808 2.993042 3.000489 3.0228 

0.9 2.829456 2.942884 2.999598 3.027956 3.033627 3.050641 

400 

0 2.455515 2.771747 2.929863 3.008921 3.024732 3.072167 

0.25 2.275267 2.469454 2.566547 2.615094 2.624803 2.653931 

0.75 2.871769 2.875078 2.876732 2.877559 2.877725 2.878221 

0.8 2.916904 2.918396 2.919143 2.919516 2.91959 2.919814 

0.9 3.000161 3.007663 3.011415 3.013291 3.013666 3.014791 

1000 

0 0.9548702 1.009798 1.037262 1.050994 1.053741 1.06198 

0.25 0.9665599 1.177758 1.283358 1.336157 1.346717 1.378397 

0.75 0.9566973 1.148151 1.243878 1.291741 1.301314 1.330032 

0.8 0.9444962 1.131594 1.225143 1.271917 1.281272 1.309337 

0.9 0.981476 1.119708 1.188824 1.223382 1.230294 1.251029 

 

 

 

 

 

 



89 
 

Appendix A.2: Measuring Relative Bias of Multivariate Weighted Mixed estimator Estimate for 

Different 𝜌 and 𝑛 

Sample 
Size, 𝒏 

𝝆𝟏𝟐 
W Relative Bias of Multivariate Weighted Mixed estimator Estimate 

𝜷𝟎𝟏 𝜷𝟏𝟏 𝜷𝟐𝟏 𝜷𝟑𝟏 𝜷𝟎𝟐 𝜷𝟏𝟐 𝜷𝟐𝟐 𝜷𝟑𝟐 

25 0 0.2 11.7059 0.0504 -0.3064 0.5378 -6.3991 -0.9853 -0.1835 -4.6603 

25 0 0.5 11.7237 0.0501 -0.3079 0.5381 -6.3937 -0.9863 -0.1883 -4.6594 

25 0 0.8 11.7402 0.0498 -0.3094 0.5383 -6.3883 -0.9873 -0.193 -4.6586 

25 0.25 0.2 32.8316 0.3962 -0.2093 1.8766 -3.8233 -0.7003 -0.3943 -2.9762 

25 0.25 0.5 32.8457 0.3959 -0.2105 1.8768 -3.8141 -0.702 -0.4024 -2.9748 

25 0.25 0.8 32.8591 0.3957 -0.2117 1.8769 -3.805 -0.7037 -0.4103 -2.9734 

25 0.75 0.2 26.5371 0.2908 -0.2441 1.4742 -1.1507 -0.3329 -0.4304 -1.1058 

25 0.75 0.5 26.5088 0.2913 -0.2416 1.4738 -1.1408 -0.3347 -0.4391 -1.1042 

25 0.75 0.8 26.4804 0.2919 -0.2391 1.4735 -1.131 -0.3366 -0.4477 -1.1027 

25 0.8 0.2 25.0745 0.2672 -0.25 1.3819 -0.8462 -0.2898 -0.4314 -0.8905 

25 0.8 0.5 25.0206 0.2682 -0.2452 1.3812 -0.8328 -0.2923 -0.4432 -0.8884 

25 0.8 0.8 24.9668 0.2692 -0.2404 1.3805 -0.8195 -0.2948 -0.4549 -0.8863 

25 0.9 0.2 21.3125 0.2059 -0.2665 1.144 -0.1251 -0.1842 -0.4245 -0.3747 

25 0.9 0.5 21.2427 0.2072 -0.2603 1.143 -0.1129 -0.1865 -0.4353 -0.3728 

25 0.9 0.8 21.1733 0.2085 -0.254 1.1421 -0.1008 -0.1887 -0.4459 -0.3709 

50 0 0.2 32.2452 0.1728 -0.7596 1.5289 -5.4107 0.9608 4.497 -0.876 

50 0 0.5 32.214 0.1732 -0.7571 1.5284 -5.3979 0.9589 4.4871 -0.8734 

50 0 0.8 32.1827 0.1737 -0.7546 1.5278 -5.3852 0.9569 4.4772 -0.8707 

50 0.25 0.2 47.7231 -0.1884 -2.2828 1.6285 -1.342 0.8664 2.7539 0.8508 

50 0.25 0.5 47.6628 -0.1875 -2.278 1.6274 -1.3334 0.8651 2.7473 0.8526 

50 0.25 0.8 47.6024 -0.1865 -2.2732 1.6263 -1.3249 0.8637 2.7406 0.8544 

50 0.75 0.2 43.6691 -0.0716 -1.826 1.6341 1.6701 0.5794 0.8972 1.7601 

50 0.75 0.5 43.5583 -0.0699 -1.8171 1.6321 1.684 0.5773 0.8864 1.763 

50 0.75 0.8 43.4474 -0.0682 -1.8083 1.6301 1.6978 0.5751 0.8755 1.7659 

50 0.8 0.2 42.6473 -0.0459 -1.7203 1.6302 1.9781 0.5414 0.6847 1.8384 

50 0.8 0.5 42.5154 -0.0438 -1.7098 1.6279 1.9951 0.5388 0.6714 1.8419 

50 0.8 0.8 42.3834 -0.0417 -1.6993 1.6255 2.0121 0.5362 0.6581 1.8455 

50 0.9 0.2 39.8718 0.0192 -1.4463 1.6128 2.6906 0.4467 0.1754 2.0079 
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50 0.9 0.5 39.6787 0.0222 -1.4309 1.6093 2.7168 0.4426 0.1549 2.0134 

50 0.9 0.8 39.4855 0.0253 -1.4156 1.6059 2.7431 0.4386 0.1344 2.0189 

100 0 0.2 43.9731 -0.0675 -1.7801 1.6244 1.1296 -0.8401 -2.565 -0.9348 

100 0 0.5 43.9559 -0.0672 -1.7788 1.6241 1.1276 -0.8399 -2.5635 -0.9352 

100 0 0.8 43.9388 -0.067 -1.7775 1.6237 1.1257 -0.8396 -2.5621 -0.9357 

100 0.25 0.2 35.3397 0.2393 -0.6758 1.7313 4.5725 -0.6883 -3.4073 0.9007 

100 0.25 0.5 35.3346 0.2393 -0.6754 1.7312 4.5696 -0.6879 -3.4052 0.9 

100 0.25 0.8 35.3296 0.2394 -0.675 1.7311 4.5668 -0.6875 -3.4031 0.8993 

100 0.75 0.2 39.0915 0.1424 -1.0619 1.7378 5.6381 -0.411 -3.0756 1.8665 

100 0.75 0.5 39.0926 0.1424 -1.062 1.7378 5.6348 -0.4105 -3.0732 1.8658 

100 0.75 0.8 39.0937 0.1424 -1.0621 1.7378 5.6315 -0.4101 -3.0708 1.865 

100 0.8 0.2 39.7916 0.1209 -1.1429 1.7339 5.6878 -0.3762 -3.004 1.9492 

100 0.8 0.5 39.7941 0.1209 -1.143 1.734 5.6844 -0.3758 -3.0015 1.9484 

100 0.8 0.8 39.7966 0.1208 -1.1432 1.734 5.681 -0.3753 -2.999 1.9476 

100 0.9 0.2 41.3646 0.0662 -1.341 1.7162 5.7559 -0.2908 -2.8086 2.128 

100 0.9 0.5 41.374 0.0661 -1.3417 1.7164 5.7514 -0.2902 -2.8053 2.1269 

100 0.9 0.8 41.3834 0.0659 -1.3425 1.7166 5.747 -0.2895 -2.802 2.1258 

200 0 0.2 16.3149 -0.0603 -0.7915 0.5721 2.616 -0.5962 -2.5986 0.2475 

200 0 0.5 16.3114 -0.0603 -0.7913 0.572 2.6148 -0.596 -2.5977 0.2472 

200 0 0.8 16.3078 -0.0602 -0.791 0.572 2.6136 -0.5959 -2.5969 0.2469 

200 0.25 0.2 5.4345 0.1587 0.2194 0.437 3.35 -0.4988 -2.6125 0.7513 

200 0.25 0.5 5.4368 0.1587 0.2193 0.437 3.3486 -0.4986 -2.6116 0.751 

200 0.25 0.8 5.439 0.1586 0.2191 0.4371 3.3473 -0.4984 -2.6106 0.7506 

200 0.75 0.2 9.209 0.0893 -0.1136 0.4929 2.962 -0.306 -1.9451 0.8858 

200 0.75 0.5 9.2169 0.0892 -0.1141 0.4931 2.9601 -0.3057 -1.9437 0.8854 

200 0.75 0.8 9.2248 0.0891 -0.1147 0.4932 2.9582 -0.3055 -1.9424 0.8849 

200 0.8 0.2 10.0043 0.0739 -0.1858 0.5036 2.8856 -0.2816 -1.8504 0.8901 

200 0.8 0.5 10.0141 0.0737 -0.1866 0.5038 2.8835 -0.2813 -1.8488 0.8896 

200 0.8 0.8 10.0238 0.0736 -0.1873 0.504 2.8814 -0.281 -1.8473 0.889 

200 0.9 0.2 11.9558 0.0348 -0.3666 0.5281 2.68 -0.2214 -1.6103 0.8924 

200 0.9 0.5 11.9706 0.0346 -0.3677 0.5285 2.6771 -0.2211 -1.6082 0.8917 

200 0.9 0.8 11.9853 0.0344 -0.3687 0.5288 2.6743 -0.2207 -1.6061 0.891 
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500 0 0.2 8.708 -0.2114 -0.9117 0.0606 -1.0454 -0.1348 0.0346 -0.7145 

500 0 0.5 8.7069 -0.2114 -0.9116 0.0606 -1.0454 -0.1348 0.0346 -0.7145 

500 0 0.8 8.7057 -0.2114 -0.9115 0.0606 -1.0454 -0.1348 0.0346 -0.7145 

500 0.25 0.2 11.4329 -0.1408 -0.8268 0.2682 -0.0497 -0.2768 -0.7302 -0.4779 

500 0.25 0.5 11.4318 -0.1408 -0.8267 0.2682 -0.0498 -0.2768 -0.7302 -0.4779 

500 0.25 0.8 11.4307 -0.1408 -0.8266 0.2681 -0.0499 -0.2768 -0.7301 -0.4779 

500 0.75 0.2 10.7999 -0.1679 -0.8753 0.2053 0.6136 -0.298 -1.0409 -0.1997 

500 0.75 0.5 10.7991 -0.1679 -0.8752 0.2053 0.6136 -0.298 -1.0409 -0.1997 

500 0.75 0.8 10.7983 -0.1678 -0.8752 0.2053 0.6135 -0.298 -1.0408 -0.1997 

500 0.8 0.2 10.6295 -0.1733 -0.8832 0.191 0.6782 -0.2968 -1.0624 -0.1673 

500 0.8 0.5 10.6286 -0.1732 -0.8832 0.191 0.6781 -0.2968 -1.0624 -0.1673 

500 0.8 0.8 10.6278 -0.1732 -0.8831 0.191 0.6781 -0.2968 -1.0623 -0.1673 

500 0.9 0.2 10.1507 -0.186 -0.899 0.1541 0.825 -0.2915 -1.1042 -0.0893 

500 0.9 0.5 10.1498 -0.1859 -0.8989 0.1541 0.825 -0.2915 -1.1041 -0.0893 

500 0.9 0.8 10.149 -0.1859 -0.8988 0.1541 0.8249 -0.2915 -1.1041 -0.0893 
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Appendix A.3: Measuring Relative Bias of Multivariate Two Parameter Weighted Estimator 

Estimate for Different 𝜌 and 𝑛 

Sample 
Size, 𝒏 

𝝆𝟏𝟐 
W Relative Bias of Multivariate Two Parameter Weighted Estimator  

𝜷𝟎𝟏 𝜷𝟏𝟏 𝜷𝟐𝟏 𝜷𝟑𝟏 𝜷𝟎𝟐 𝜷𝟏𝟐 𝜷𝟐𝟐 𝜷𝟑𝟐 

25 0 0.2 -11.37272 -27.06629 -71.57447 -38.42419 -31.77158 -25.65577 -56.80517 -57.4178 

25 0 0.5 -11.37273 -27.06455 -71.56967 -38.42184 -31.77158 -25.65439 -56.80134 -57.41558 

25 0 0.8 -11.37273 -27.06281 -71.56487 -38.41949 -31.77158 -25.653 -56.79752 -57.41337 

25 0.25 0.2 7.977683 -27.229025 -72.76695 -37.867542 -29.69459 -25.68563 -57.67678 -56.48681 

25 0.25 0.5 7.97768 -27.22739 -72.76244 -37.86533 -29.69459 -25.68482 -57.67453 -56.4855 

25 0.25 0.8 7.977677 -27.225757 -72.75794 -37.863123 -29.69459 -25.684 -57.67228 -56.4842 

25 0.75 0.2 41.01671 -29.5614 -80.23684 -39.81449 -31.2368 -27.55408 -62.1332 -60.28908 

25 0.75 0.5 41.0167 -29.55862 -80.22918 -39.81073 -31.2368 -27.55566 -62.13753 -60.29161 

25 0.75 0.8 41.0167 -29.55585 -80.22152 -39.80697 -31.2368 -27.55723 -62.14186 -60.29413 

25 0.8 0.2 45.98043 -30.0742 -81.79102 -40.33483 -31.87679 -28.00758 -63.11206 -61.33818 

25 0.8 0.5 45.98042 -30.07087 -81.78185 -40.33033 -31.87679 -28.01001 -63.11874 -61.34208 

25 0.8 0.8 45.98042 -30.06754 -81.77268 -40.32583 -31.87679 -28.01243 -63.12542 -61.34598 

25 0.9 0.2 59.49417 -31.50447 -86.11373 -41.79917 -33.90442 -29.31022 -65.85101 -64.44126 

25 0.9 0.5 59.49416 -31.49835 -86.09686 -41.79089 -33.90442 -29.3169 -65.86944 -64.45202 

25 0.9 0.8 59.49414 -31.49223 -86.07999 -41.78262 -33.90441 -29.32359 -65.88788 -64.46278 

50 0 0.2 -7.635661 -27.952472 -73.766003 -39.68146 -33.16646 -25.99221 -56.93009 -58.79376 

50 0 0.5 -7.635663 -27.95148 -73.763306 -39.6801 -33.16646 -25.99126 -56.92753 -58.79221 

50 0 0.8 -7.635664 -27.950489 -73.76061 -39.67874 -33.16646 -25.99031 -56.92496 -58.79066 

50 0.25 0.2 15.62719 -28.22495 -75.34713 -39.14749 -30.46805 -26.05206 -58.07295 -57.64649 

50 0.25 0.5 15.62718 -28.22403 -75.34464 -39.14624 -30.46805 -26.05152 -58.07149 -57.64561 

50 0.25 0.8 15.62718 -28.22311 -75.34214 -39.14498 -30.46805 -26.05099 -58.07004 -57.64474 

50 0.75 0.2 46.86404 -30.32095 -82.09825 -40.84675 -31.76755 -28.11262 -63.04917 -61.70493 

50 0.75 0.5 46.86403 -30.31927 -82.09371 -40.84445 -31.76755 -28.11368 -63.05203 -61.70666 

50 0.75 0.8 46.86403 -30.31759 -82.08916 -40.84214 -31.76755 -28.11473 -63.05489 -61.70839 

50 0.8 0.2 51.50635 -30.78653 -83.51099 -41.31576 -32.45009 -28.56571 -63.99821 -62.78091 

50 0.8 0.5 51.50634 -30.78448 -83.50544 -41.31295 -32.45009 -28.56734 -64.00263 -62.78358 

50 0.8 0.8 51.50634 -30.78244 -83.4999 -41.31014 -32.45009 -28.56897 -64.00704 -62.78626 

50 0.9 0.2 63.8518 -32.07753 -87.40668 -42.63816 -34.60208 -29.81943 -66.52759 -65.8802 

50 0.9 0.5 63.85179 -32.07361 -87.39605 -42.63276 -34.60208 -29.82396 -66.53987 -65.88764 

50 0.9 0.8 63.85179 -32.06969 -87.38542 -42.62736 -34.60208 -29.82849 -66.55215 -65.89507 

100 0 0.2 1.672889 -27.008333 -71.489211 -38.054342 -27.89175 -25.95942 -58.47291 -56.49156 

100 0 0.5 1.672888 -27.007623 -71.487297 -38.053358 -27.89175 -25.95862 -58.47078 -56.49025 

100 0 0.8 1.672887 -27.006913 -71.485383 -38.052375 -27.89175 -25.95783 -58.46866 -56.48894 

100 0.25 0.2 3.178136 -26.929186 -71.373138 -37.863089 -26.16888 -25.89567 -58.90841 -55.60537 

100 0.25 0.5 3.178135 -26.928552 -71.371427 -37.862211 -26.16888 -25.89518 -58.90711 -55.60457 
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100 0.25 0.8 3.178134 -26.927918 -71.369717 -37.861332 -26.16888 -25.8947 -58.90581 -55.60377 

100 0.75 0.2 42.51916 -28.97808 -78.28393 -39.18461 -29.54313 -27.32587 -61.45764 -59.5666 

100 0.75 0.5 42.51916 -28.97687 -78.28066 -39.18292 -29.54313 -27.32664 -61.4597 -59.56787 

100 0.75 0.8 42.51916 -28.97565 -78.2774 -39.18124 -29.54313 -27.32741 -61.46176 -59.56914 

100 0.8 0.2 48.83766 -29.41007 -79.66599 -39.54216 -30.45841 -27.67537 -62.04692 -60.5768 

100 0.8 0.5 48.83766 -29.40858 -79.66197 -39.54008 -30.45841 -27.67658 -62.05017 -60.5788 

100 0.8 0.8 48.83766 -29.40709 -79.65796 -39.53801 -30.45841 -27.67779 -62.05342 -60.58081 

100 0.9 0.2 65.05775 -30.57638 -83.36543 -40.541 -33.13212 -28.6569 -63.66369 -63.46185 

100 0.9 0.5 65.05774 -30.57343 -83.35752 -40.53691 -33.13212 -28.66037 -63.673 -63.4676 

100 0.9 0.8 65.05774 -30.57049 -83.34961 -40.53282 -33.13212 -28.66384 -63.68232 -63.47334 

200 0 0.2 -13.85445 -23.24759 -61.3082 -33.1827 -27.49176 -22.46651 -49.64615 -50.27287 

200 0 0.5 -13.85445 -23.24707 -61.3068 -33.18198 -27.49176 -22.46594 -49.64462 -50.27192 

200 0 0.8 -13.85445 -23.24655 -61.30541 -33.18125 -27.49176 -22.46536 -49.64309 -50.27097 

200 0.25 0.2 -11.3304 -23.35796 -61.68373 -33.24403 -26.77865 -22.3795 -49.68011 -49.79613 

200 0.25 0.5 -11.3304 -23.35749 -61.68247 -33.24338 -26.77865 -22.37916 -49.6792 -49.79557 

200 0.25 0.8 -11.3304 -23.35701 -61.6812 -33.24272 -26.77865 -22.37881 -49.67829 -49.795 

200 0.75 0.2 26.57132 -24.86055 -67.12676 -33.83547 -30.99382 -23.39827 -50.8146 -53.46699 

200 0.75 0.5 26.57131 -24.85963 -67.12431 -33.8342 -30.99382 -23.39891 -50.8163 -53.46804 

200 0.75 0.8 26.57131 -24.85872 -67.12187 -33.83293 -30.99382 -23.39954 -50.818 -53.4691 

200 0.8 0.2 32.51279 -25.17157 -68.18105 -34.03397 -31.9384 -23.65976 -51.15797 -54.34445 

200 0.8 0.5 32.51279 -25.17045 -68.17804 -34.0324 -31.9384 -23.66073 -51.16058 -54.34606 

200 0.8 0.8 32.51279 -25.16932 -68.17502 -34.03084 -31.9384 -23.66171 -51.16319 -54.34768 

200 0.9 0.2 47.63424 -25.97664 -70.89957 -34.55841 -34.58161 -24.37416 -52.07312 -56.77064 

200 0.9 0.5 47.63423 -25.9744 -70.89357 -34.55529 -34.58161 -24.37688 -52.08041 -56.77516 

200 0.9 0.8 47.63423 -25.97216 -70.88758 -34.55217 -34.58161 -24.3796 -52.0877 -56.77968 

500 0 0.2 -22.0819 -17.72896 -46.34055 -25.75307 -30.28171 -17.06643 -34.15259 -42.60725 

500 0 0.5 -22.0819 -17.72862 -46.33966 -25.75261 -30.28171 -17.06615 -34.15184 -42.60679 

500 0 0.8 -22.0819 -17.72829 -46.33877 -25.75214 -30.28171 -17.06587 -34.15109 -42.60632 

500 0.25 0.2 -5.819548 -17.688937 -46.851264 -25.047696 -29.15708 -17.08936 -34.64839 -42.11162 

500 0.25 0.5 -5.819548 -17.688619 -46.850414 -25.047251 -29.15708 -17.08921 -34.648 -42.11138 

500 0.25 0.8 -5.819549 -17.6883 -46.849564 -25.046806 -29.15708 -17.08907 -34.64761 -42.11114 

500 0.75 0.2 25.93832 -18.46847 -50.13209 -24.87271 -31.83975 -17.73834 -35.3846 -44.44087 

500 0.75 0.5 25.93831 -18.46786 -50.13044 -24.87185 -31.83975 -17.73883 -35.3859 -44.44168 

500 0.75 0.8 25.93831 -18.46724 -50.1288 -24.87099 -31.83975 -17.73931 -35.3872 -44.44249 

500 0.8 0.2 30.71173 -18.60849 -50.68602 -24.87847 -32.51126 -17.8745 -35.4976 -44.9808 

500 0.8 0.5 30.71173 -18.60774 -50.68401 -24.87742 -32.51126 -17.87521 -35.49949 -44.98198 

500 0.8 0.8 30.71173 -18.60699 -50.682 -24.87637 -32.51126 -17.87592 -35.50138 -44.98316 

500 0.9 0.2 43.02567 -18.89748 -51.9228 -24.79201 -34.31055 -18.1798 -35.64152 -46.32838 

500 0.9 0.5 43.02567 -18.89601 -51.91889 -24.78996 -34.31055 -18.18164 -35.64643 -46.33144 

500 0.9 0.8 43.02566 -18.89455 -51.91497 -24.7879 -34.31055 -18.18347 -35.65133 -46.3345 
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Table A.4: Measuring Relative Efficiency of Multivariate Two Parameter Weighted Estimator 

Estimate for Different 𝜌 and 𝑛 

Sample 
Size, 𝒏 

𝝆𝟏𝟐 
W Relative Efficiency of Multivariate Two Parameter Weighted Estimator 

𝜷𝟎𝟏 𝜷𝟏𝟏 𝜷𝟐𝟏 𝜷𝟑𝟏 𝜷𝟎𝟐 𝜷𝟏𝟐 𝜷𝟐𝟐 𝜷𝟑𝟐 

25 0 0.2 1.757071 2.458332 2.420542 1.898276 1.783417 2.525884 2.537792 1.926081 

25 0 0.5 1.757071 2.458517 2.420863 1.898257 1.783417 2.526071 2.538231 1.926029 

25 0 0.8 1.757071 2.458702 2.421183 1.898238 1.783417 2.526259 2.538671 1.925977 

25 0.25 0.2 1.770389 2.487068 2.469872 1.910375 1.769599 2.554078 2.560669 1.912374 

25 0.25 0.5 1.770389 2.487264 2.470203 1.91036 1.769599 2.554253 2.561108 1.912318 

25 0.25 0.8 1.770389 2.48746 2.470534 1.910345 1.769599 2.554429 2.561547 1.912262 

25 0.75 0.2 1.756908 2.692266 2.68273 1.920508 1.743657 2.769392 2.749747 1.918376 

25 0.75 0.5 1.756908 2.692476 2.683073 1.920498 1.743657 2.769546 2.750175 1.918321 

25 0.75 0.8 1.756908 2.692686 2.683417 1.920488 1.743657 2.769701 2.750604 1.918266 

25 0.8 0.2 1.758128 2.739507 2.730736 1.926606 1.744138 2.820264 2.797978 1.924713 

25 0.8 0.5 1.758128 2.739724 2.731085 1.926598 1.744138 2.820411 2.798404 1.924657 

25 0.8 0.8 1.758128 2.73994 2.731435 1.926589 1.744138 2.820558 2.79883 1.924602 

25 0.9 0.2 1.768865 2.877911 2.870047 1.95087 1.75316 2.969743 2.94189 1.949232 

25 0.9 0.5 1.768865 2.878164 2.870423 1.950869 1.75316 2.969849 2.942297 1.94917 

25 0.9 0.8 1.768865 2.878416 2.870799 1.950869 1.75316 2.969954 2.942705 1.949108 

50 0 0.2 1.892117 2.580916 2.36801 2.037584 1.878182 2.701369 2.549141 1.999127 

50 0 0.5 1.892117 2.581082 2.368193 2.037571 1.878182 2.701534 2.549433 1.999072 

50 0 0.8 1.892117 2.581248 2.368376 2.037558 1.878182 2.701699 2.549724 1.999017 

50 0.25 0.2 1.891122 2.601416 2.407231 2.027656 1.864124 2.703683 2.532185 1.98785 

50 0.25 0.5 1.891122 2.601578 2.407415 2.027644 1.864124 2.703838 2.532463 1.987793 

50 0.25 0.8 1.891122 2.60174 2.407599 2.027631 1.864124 2.703993 2.532741 1.987737 

50 0.75 0.2 1.877665 2.828575 2.572447 2.035532 1.843793 2.957099 2.679187 2.003298 

50 0.75 0.5 1.877665 2.828755 2.572634 2.035524 1.843793 2.957232 2.679439 2.003245 

50 0.75 0.8 1.877665 2.828935 2.572822 2.035517 1.843793 2.957365 2.679691 2.003192 

50 0.8 0.2 1.879115 2.881635 2.610218 2.041818 1.844573 3.017018 2.716301 2.010998 

50 0.8 0.5 1.879115 2.881824 2.610409 2.041813 1.844573 3.017144 2.716548 2.010945 

50 0.8 0.8 1.879115 2.882013 2.610599 2.041808 1.844573 3.017269 2.716794 2.010892 

50 0.9 0.2 1.890589 3.034665 2.72106 2.065738 1.854574 3.192632 2.82745 2.039173 

50 0.9 0.5 1.890589 3.0349 2.721268 2.065742 1.854574 3.192718 2.827681 2.039113 

50 0.9 0.8 1.890589 3.035135 2.721476 2.065746 1.854575 3.192803 2.827912 2.039053 

100 0 0.2 1.923627 2.312587 2.242411 1.982694 1.86866 2.52942 2.511451 1.910002 

100 0 0.5 1.923627 2.312691 2.242533 1.982687 1.86866 2.52953 2.511674 1.90996 

100 0 0.8 1.923627 2.312795 2.242655 1.98268 1.86866 2.529639 2.511897 1.909919 

100 0.25 0.2 1.925052 2.326808 2.262891 1.980358 1.868779 2.50151 2.501585 1.901793 

100 0.25 0.5 1.925052 2.326914 2.263014 1.980352 1.868779 2.501609 2.501805 1.901749 
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100 0.25 0.8 1.925052 2.32702 2.263136 1.980346 1.868779 2.501708 2.502025 1.901704 

100 0.75 0.2 1.912153 2.479874 2.428602 1.963829 1.858907 2.683715 2.629919 1.918062 

100 0.75 0.5 1.912153 2.479999 2.428733 1.963831 1.858907 2.683787 2.630118 1.918016 

100 0.75 0.8 1.912153 2.480125 2.428863 1.963833 1.858907 2.683858 2.630317 1.917971 

100 0.8 0.2 1.91274 2.516164 2.46414 1.965517 1.858608 2.727515 2.660732 1.923332 

100 0.8 0.5 1.91274 2.516297 2.464274 1.965522 1.858608 2.727579 2.660927 1.923286 

100 0.8 0.8 1.91274 2.51643 2.464407 1.965526 1.858608 2.727643 2.661122 1.923239 

100 0.9 0.2 1.921193 2.619273 2.564953 1.977005 1.863804 2.852575 2.750268 1.942597 

100 0.9 0.5 1.921193 2.619448 2.565104 1.97702 1.863804 2.852599 2.750452 1.942541 

100 0.9 0.8 1.921193 2.619623 2.565255 1.977036 1.863804 2.852623 2.750636 1.942486 

200 0 0.2 1.916736 1.910708 1.978683 1.873374 1.816132 2.048215 2.281368 1.731134 

200 0 0.5 1.916736 1.910774 1.978767 1.873372 1.816132 2.04829 2.281544 1.731109 

200 0 0.8 1.916736 1.910839 1.978851 1.87337 1.816132 2.048365 2.28172 1.731083 

200 0.25 0.2 1.910528 1.931704 1.998775 1.869967 1.82054 2.048222 2.329264 1.721134 

200 0.25 0.5 1.910528 1.931773 1.99886 1.869965 1.82054 2.048285 2.329439 1.721106 

200 0.25 0.8 1.910528 1.931842 1.998946 1.869963 1.82054 2.048348 2.329615 1.721079 

200 0.75 0.2 1.898524 2.011653 2.159665 1.826335 1.801331 2.179246 2.434512 1.730851 

200 0.75 0.5 1.000569 1.000296 1.000957 1.000103 1.000676 1.00035 1.001164 1.00012 

200 0.75 0.8 1.898524 2.011827 2.15986 1.82635 1.801331 2.179322 2.434828 1.730783 

200 0.8 0.2 1.89848 2.030232 2.190971 1.822922 1.798975 2.209592 2.457739 1.734727 

200 0.8 0.5 1.89848 2.030326 2.191072 1.822932 1.798975 2.209623 2.457895 1.734691 

200 0.8 0.8 1.89848 2.03042 2.191173 1.822942 1.798975 2.209654 2.458051 1.734655 

200 0.9 0.2 1.90232 2.081067 2.274436 1.819145 1.796264 2.292133 2.52014 1.747612 

200 0.9 0.5 1.90232 2.081193 2.274554 1.819167 1.796264 2.292132 2.520295 1.747562 

200 0.9 0.8 1.90232 2.08132 2.274671 1.819189 1.796264 2.29213 2.52045 1.747513 

500 0 0.2 1.914487 1.547322 1.648532 1.761425 1.692166 1.627719 1.991869 1.494697 

500 0 0.5 1.914487 1.54737 1.648592 1.76143 1.692166 1.62777 1.991988 1.494687 

500 0 0.8 1.914487 1.547417 1.648652 1.761435 1.692166 1.62782 1.992107 1.494677 

500 0.25 0.2 1.895905 1.520573 1.660035 1.711523 1.699139 1.613199 1.988925 1.48605 

500 0.25 0.5 1.895905 1.520622 1.660098 1.711529 1.699139 1.613244 1.989041 1.486038 

500 0.25 0.8 1.895905 1.52067 1.660161 1.711534 1.699139 1.61329 1.989156 1.486026 

500 0.75 0.2 1.879919 1.543241 1.788547 1.641626 1.666859 1.663116 2.028195 1.483066 

500 0.75 0.5 1.879919 1.543302 1.788622 1.64164 1.666859 1.663145 2.028305 1.483045 

500 0.75 0.8 1.879919 1.543363 1.788698 1.641655 1.666859 1.663174 2.028415 1.483024 

500 0.8 0.2 1.876881 1.548852 1.80998 1.632819 1.660052 1.675161 2.037024 1.483189 

500 0.8 0.5 1.876881 1.548917 1.810059 1.632836 1.660052 1.675185 2.037134 1.483165 

500 0.8 0.8 1.876881 1.548983 1.810137 1.632854 1.660052 1.675209 2.037244 1.483141 

500 0.9 0.2 1.867854 1.562962 1.862002 1.612019 1.642194 1.704516 2.053631 1.483965 

500 0.9 0.5 1.867854 1.563049 1.862093 1.61205 1.642194 1.704516 2.053745 1.483924 

500 0.9 0.8 1.867854 1.563136 1.862184 1.61208 1.642194 1.704516 2.05386 1.483884 
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Figure A.1: Scatter Matrix among TME, MFC, FS, TMI and TOL 
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Appendix B 

 

 

Appendix B.1: # Monte Carlo Simulation of Multivariate Regression with Continuous Responses for Stochastic 

Restriction# 

it<-10000                                             # Number of iterations 
p<-2                                                   # Number of responses 
n<-500     #Sample size 
rho<-0.9                                # Value of correlation coefficient among responses 
sigma11<-100                               # Variance of First response variable   
sigma22<-81                                # Variance of Second response variable 
sigma12<-rho*sqrt(sigma11)*sqrt(sigma22)  # Covariance between First and Second responses variables 
sigma21<-sigma12                          # Covariance between Second and First responses variables 
 

b01<-matrix(data=NA, nrow = it, ncol = 1)  
b11<-matrix(data=NA, nrow = it, ncol = 1) 
b21<-matrix(data=NA, nrow = it, ncol = 1) 
b31<-matrix(data=NA, nrow = it, ncol = 1) 
b02<-matrix(data=NA, nrow = it, ncol = 1) 
b12<-matrix(data=NA, nrow = it, ncol = 1) 
b22<-matrix(data=NA, nrow = it, ncol = 1) 
b32<-matrix(data=NA, nrow = it, ncol = 1) 
 

rb01<-matrix(data=NA, nrow = it, ncol = 1) 
rb11<-matrix(data=NA, nrow = it, ncol = 1) 
rb21<-matrix(data=NA, nrow = it, ncol = 1) 
rb31<-matrix(data=NA, nrow = it, ncol = 1) 
rb02<-matrix(data=NA, nrow = it, ncol = 1) 
rb12<-matrix(data=NA, nrow = it, ncol = 1) 
rb22<-matrix(data=NA, nrow = it, ncol = 1) 
rb32<-matrix(data=NA, nrow = it, ncol = 1) 
 

library (MASS) 
for (i in 1:it) { 
mu<- matrix(c(0,0),nrow=2,ncol=1) 
sigma<- matrix(c(sigma11,sigma12,sigma21,sigma22),nrow=p,ncol=p) 
set.seed(950+i) 
error<- mvrnorm(n,mu,sigma) 
set.seed(950) 
  X1<-round(abs(rnorm(n,mean=1000,sd=60)),0) 
set.seed(950) 
  X2<-round(abs(rnorm(n,mean=375,sd=30)),0) 
set.seed(950) 
  X3<-round(abs(rnorm(n,mean=500,sd=20)),0) 
xbeta<-matrix(c((25+3.5*(X1)-1.75*(X2)-2.5*(X3)),(175+2.5*(X1)-1.25*(X2)-1.5*(X3))),nrow=n,ncol=p) 
 
  X0<-matrix(c(1), nrow = n, ncol = 1) 
  X<-cbind(X0,X1,X2,X3)                # Design matrix  
  Y<-xbeta+error    # Response Matrix  
 
estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y) 
b01[i]<-estbeta[1,1] 
b11[i]<-estbeta[2,1]  
b21[i]<-estbeta[3,1] 
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b31[i]<-estbeta[4,1] 
b02[i]<-estbeta[1,2] 
b12[i]<-estbeta[2,2] 
b22[i]<-estbeta[3,2] 
b32[i]<-estbeta[4,2] 
  xbeta1<-X%*%estbeta 
 

est_error<-(Y-xbeta1) 
est_sigma<-(1/n)*(t(est_error)%*%est_error) 
 

  R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE) 
set.seed(950+i) 
  V <- mvrnorm(n,mu,est_sigma) 
beta<-(matrix(c(25,3.5,-1.75,-2.5,175,2.5,-1.25,-1.5),nrow=4,ncol=2)) 
 r<-R%*%beta+colMeans(V) 
  A<-((R%*%estbeta)-r) 
  A2<-(solve(t(X)%*%X)) 
  B1<-(A2%*%t(R)) 
  B2<-(R%*%B1) 
  B21<-matrix(c(B2),nrow=2,ncol=2,byrow=TRUE)+est_sigma 
  B3<-solve(B21) 
  C<-((solve(t(X)%*%X))%*%t(R)) 
restbeta<-estbeta-(C%*%(A%*%B3)) 
rb01[i]<-restbeta[1,1] 
rb11[i]<-restbeta[2,1]  
rb21[i]<-restbeta[3,1] 
rb31[i]<-restbeta[4,1] 
rb02[i]<-restbeta[1,2] 
rb12[i]<-restbeta[2,2] 
rb22[i]<-restbeta[3,2] 
rb32[i]<-restbeta[4,2] 
} 
rbols<-matrix(c(abs(mean(b01)-25)/25*100,abs(mean(b11)-3.5)/3.5*100,abs(mean(b21)-(-1.75))/(-
1.75)*100,abs(mean(b31)-(-2.5))/(-2.5)*100,abs(mean(b02)-175)/175*100,abs(mean(b12)-
2.5)/2.5*100,abs(mean(b22)-(-1.25))/(-1.25)*100,abs(mean(b32)-(-1.5))/(-1.5)*100),nrow=4,ncol=2) 
 
rbrols<-matrix(c((mean(rb01)-25)/25*100,(mean(rb11)-3.5)/3.5*100,(mean(rb21)-(-1.75))/(-
1.75)*100,(mean(rb31)-(-2.5))/(-2.5)*100,(mean(rb02)-175)/175*100,(mean(rb12)-2.5)/2.5*100,(mean(rb22)-(-
1.25))/(-1.25)*100,(mean(rb32)-(-1.5))/(-1.5)*100),nrow=4,ncol=2) 
 
varols<-matrix(c(var(b01),var(b11),var(b21),var(b31),var(b02),var(b12),var(b22),var(b32)),nrow=4,ncol=2) 
varrols<-matrix(c(var(rb01),var(rb11),var(rb21),var(rb31),var(rb02),var(rb12),var(rb22),var(rb32)),nrow=4,ncol=2) 
re<-varols/varrols 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



99 
 

Appendix B.2:# Simulation of Multivariate Regression with Continuous Responses with exact restriction # 
library (MASS) 
p<-2 
n<-400 
it<-10000 
rho<-0.9 
sigma11<-100 
sigma22<-81 
sigma12<-rho*sqrt(sigma11)*sqrt(sigma22) 
sigma21<-sigma12 
b01<-matrix(data=NA, nrow = it, ncol = 1) 
b11<-matrix(data=NA, nrow = it, ncol = 1) 
b21<-matrix(data=NA, nrow = it, ncol = 1) 
b31<-matrix(data=NA, nrow = it, ncol = 1) 
b02<-matrix(data=NA, nrow = it, ncol = 1) 
b12<-matrix(data=NA, nrow = it, ncol = 1) 
b22<-matrix(data=NA, nrow = it, ncol = 1) 
b32<-matrix(data=NA, nrow = it, ncol = 1) 
rb01<-matrix(data=NA, nrow = it, ncol = 1) 
rb11<-matrix(data=NA, nrow = it, ncol = 1) 
rb21<-matrix(data=NA, nrow = it, ncol = 1) 
rb31<-matrix(data=NA, nrow = it, ncol = 1) 
rb02<-matrix(data=NA, nrow = it, ncol = 1) 
rb12<-matrix(data=NA, nrow = it, ncol = 1) 
rb22<-matrix(data=NA, nrow = it, ncol = 1) 
rb32<-matrix(data=NA, nrow = it, ncol = 1) 
for (i in 1:it) { 
mu<- matrix(c(0,0),nrow=2,ncol=1) 
sigma<- matrix(c(sigma11,sigma12,sigma21,sigma22),nrow=p,ncol=p) 
set.seed(950+i) 
error<- mvrnorm(n,mu,sigma) 
set.seed(950) 
  X1<-round(abs(rnorm(n,mean=1000,sd=60)),0) 
set.seed(950) 
  X2<-round(abs(rnorm(n,mean=375,sd=30)),0) 
set.seed(950) 
  X3<-round(abs(rnorm(n,mean=500,sd=20)),0) 
xbeta<-matrix(c((25+3.5*(X1)-1.75*(X2)-2.5*(X3)),(175+2.5*(X1)-1.25*(X2)-1.5*(X3))),nrow=n,ncol=p) 
  Y<-xbeta+error 
  X0<-matrix(c(1),nrow = n,ncol = 1) 
  X<-cbind(X0,X1,X2,X3) 
estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y) 
b01[i]<-estbeta[1,1] 
b11[i]<-estbeta[2,1]  
b21[i]<-estbeta[3,1] 
b31[i]<-estbeta[4,1] 
b02[i]<-estbeta[1,2] 
b12[i]<-estbeta[2,2] 
b22[i]<-estbeta[3,2] 

Anis
Typewritten text
Dhaka University Institutional Repository



100 
 

b32[i]<-estbeta[4,2] 
  R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE) 
  r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE) 
  A<-((R%*%estbeta)-r) 
  A2<-(solve(t(X)%*%X)) 
  B1<-(A2%*%t(R)) 
  B2<-(R%*%B1) 
  B3<-solve(B2) 
  C<-((solve(t(X)%*%X))%*%t(R)) 
restbeta<-estbeta-(C%*%(B3%*%A)) 
rb01[i]<-restbeta[1,1] 
rb11[i]<-restbeta[2,1]  
rb21[i]<-restbeta[3,1] 
rb31[i]<-restbeta[4,1] 
rb02[i]<-restbeta[1,2] 
rb12[i]<-restbeta[2,2] 
rb22[i]<-restbeta[3,2] 
rb32[i]<-restbeta[4,2] 
  } 
####### Properties of the Modified Maximum Likelihood Estimator   ####### 
bols<-matrix(c((mean(b01)-25)/25*100,(mean(b11)-3.5)/3.5*100,(mean(b21)-(-1.75))/(-1.75)*100,(mean(b31)-(-
2.5))/(-2.5)*100,(mean(b02)-175)/175*100,(mean(b12)-2.5)/2.5*100,(mean(b22)-(-1.25))/(-1.25)*100,(mean(b32)-
(-1.5))/(-1.5)*100),nrow=4,ncol=2) 
rbrls<-(matrix(c((mean(rb01)-25)/25*100,(mean(rb11)-3.5)/3.5*100,(mean(rb21)-(-1.75))/(-1.75)*100,(mean(rb31)-
(1.5))/(1.5)*100,(mean(rb02)-175)/175*100,(mean(rb12)-2.5)/2.5*100,(mean(rb22)-(-1.25)/(-
1.25)*100),(mean(rb32)-(1.75)/(1.75)*100)),nrow=4,ncol=2)) 
varianceoLs<-matrix(c(var(b01),var(b11),var(b21),var(b31),var(b02),var(b12),var(b22),var(b32)),nrow=4,ncol=2) 
varianceMLE<-
matrix(c(var(rb01),var(rb11),var(rb21),var(rb31),var(rb02),var(rb12),var(rb22),var(rb32)),nrow=4,ncol=2) 
re<-varianceoLs/varianceMLE 
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Appendix B.3: # Monte Carlo Simulation of testing the power of the modified test 
 
library (MASS) 
p<-2 
n<-25 
it<-10000 
rho<-0.9 
alpha<-.99 
sigma11<-100 
sigma22<-81 
iv<-3 
sigma12<-rho*sqrt(sigma11)*sqrt(sigma22) 
sigma21<-sigma12 
beta<-matrix(c(25,3.5,-1.75,-2.5,175,2.5,-1.25,-1.5), nrow = 4, ncol = 2) 
beta1<-matrix(c(0),nrow=4,ncol=2,byrow=TRUE) 
b01<-matrix(data=NA, nrow = it, ncol = 1) 
b11<-matrix(data=NA, nrow = it, ncol = 1) 
b21<-matrix(data=NA, nrow = it, ncol = 1) 
b31<-matrix(data=NA, nrow = it, ncol = 1) 
b02<-matrix(data=NA, nrow = it, ncol = 1) 
b12<-matrix(data=NA, nrow = it, ncol = 1) 
b22<-matrix(data=NA, nrow = it, ncol = 1) 
b32<-matrix(data=NA, nrow = it, ncol = 1) 
rb01<-matrix(data=NA, nrow = it, ncol = 1) 
rb11<-matrix(data=NA, nrow = it, ncol = 1) 
rb21<-matrix(data=NA, nrow = it, ncol = 1) 
rb31<-matrix(data=NA, nrow = it, ncol = 1) 
rb02<-matrix(data=NA, nrow = it, ncol = 1) 
rb12<-matrix(data=NA, nrow = it, ncol = 1) 
rb22<-matrix(data=NA, nrow = it, ncol = 1) 
rb32<-matrix(data=NA, nrow = it, ncol = 1) 
t01<-matrix(data=NA, nrow = it, ncol = 1) 
t11<-matrix(data=NA, nrow = it, ncol = 1) 
t21<-matrix(data=NA, nrow = it, ncol = 1) 
t31<-matrix(data=NA, nrow = it, ncol = 1) 
t02<-matrix(data=NA, nrow = it, ncol = 1) 
t12<-matrix(data=NA, nrow = it, ncol = 1) 
t22<-matrix(data=NA, nrow = it, ncol = 1) 
t32<-matrix(data=NA, nrow = it, ncol = 1) 
o01<-matrix(data=NA, nrow = it, ncol = 1) 
o11<-matrix(data=NA, nrow = it, ncol = 1) 
o21<-matrix(data=NA, nrow = it, ncol = 1) 
o31<-matrix(data=NA, nrow = it, ncol = 1) 
o02<-matrix(data=NA, nrow = it, ncol = 1) 
o12<-matrix(data=NA, nrow = it, ncol = 1) 
o22<-matrix(data=NA, nrow = it, ncol = 1) 
o32<-matrix(data=NA, nrow = it, ncol = 1) 
oo01<-matrix(data=NA, nrow = it, ncol = 1) 
oo11<-matrix(data=NA, nrow = it, ncol = 1) 
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oo21<-matrix(data=NA, nrow = it, ncol = 1) 
oo31<-matrix(data=NA, nrow = it, ncol = 1) 
oo02<-matrix(data=NA, nrow = it, ncol = 1) 
oo12<-matrix(data=NA, nrow = it, ncol = 1) 
oo22<-matrix(data=NA, nrow = it, ncol = 1) 
oo32<-matrix(data=NA, nrow = it, ncol = 1) 
beta<-matrix(c(0,0),nrow=4,ncol=2) 
ttt01<-matrix(data=NA, nrow = it, ncol = 1) 
ttt11<-matrix(data=NA, nrow = it, ncol = 1) 
ttt21<-matrix(data=NA, nrow = it, ncol = 1) 
ttt31<-matrix(data=NA, nrow = it, ncol = 1) 
ttt02<-matrix(data=NA, nrow = it, ncol = 1) 
ttt12<-matrix(data=NA, nrow = it, ncol = 1) 
ttt22<-matrix(data=NA, nrow = it, ncol = 1) 
ttt32<-matrix(data=NA, nrow = it, ncol = 1) 
 
for (i in 1:it) { 
mu<- matrix(c(0,0),nrow=2,ncol=1) 
sigma<- matrix(c(sigma11,sigma12,sigma21,sigma22),nrow=p,ncol=p) 
set.seed(950+i) 
error<- mvrnorm(n,mu,sigma) 
set.seed(950) 
  X1<-round(abs(rnorm(n,mean=1000,sd=60)),0) 
set.seed(950) 
  X2<-round(abs(rnorm(n,mean=375,sd=30)),0) 
set.seed(950) 
  X3<-round(abs(rnorm(n,mean=500,sd=20)),0) 
xbeta<-matrix(c((25+3.5*(X1)-1.75*(X2)-2.5*(X3)),(175+2.5*(X1)-1.25*(X2)-1.5*(X3))),nrow=n,ncol=p) 
  Y<-xbeta+error 
  X0<-matrix(c(1),nrow = n,ncol = 1) 
  X<-cbind(X0,X1,X2,X3) 
estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y) 
b01[i]<-estbeta[1,1] 
b11[i]<-estbeta[2,1] 
b21[i]<-estbeta[3,1] 
b31[i]<-estbeta[4,1] 
b02[i]<-estbeta[1,2] 
b12[i]<-estbeta[2,2] 
b22[i]<-estbeta[3,2] 
b32[i]<-estbeta[4,2] 
  R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE) 
  r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE) 
  A<-(R%*%estbeta)-r 
  A2<-(solve(t(X)%*%X)) 
  B1<-(A2%*%t(R)) 
  B2<-(R%*%B1) 
  B3<-solve(B2) 
  C<-((solve(t(X)%*%X))%*%t(R)) 
restbeta<-estbeta-(C%*%(B3%*%A)) 
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rb01[i]<-restbeta[1,1] 
rb11[i]<-restbeta[2,1]  
rb21[i]<-restbeta[3,1] 
rb31[i]<-restbeta[4,1] 
rb02[i]<-restbeta[1,2] 
rb12[i]<-restbeta[2,2] 
rb22[i]<-restbeta[3,2] 
rb32[i]<-restbeta[4,2] 
 
  xrbeta<-
matrix(c((restbeta[1,1]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]*(X3)),(restbeta[1,2]+restbeta[2,2]*(X1
)+restbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2) 
rerror<-(Y-xrbeta) 
rsigma<-(1/(n-iv-1))*(t(rerror)%*%rerror) 
  cr1<-A2%*%t(R)%*%B3%*%R%*%A2 
  sig1<-kronecker(rsigma,A2) 
  sig2<-kronecker(rsigma,cr1) 
varrbeta<-sig1-sig2 
ttt<-matrix(c((diag(varrbeta))),nrow=4,ncol=2) 
varsqt<-sqrt(ttt) 
  s<-(restbeta-beta1)/varsqt 
t01[i]<-s[1,1] 
t11[i]<-s[2,1]  
t21[i]<-s[3,1] 
t31[i]<-s[4,1] 
t02[i]<-s[1,2] 
t12[i]<-s[2,2] 
t22[i]<-s[3,2] 
t32[i]<-s[4,2] 
 
cl<-(restbeta)-quantile(s, probs = c(alpha))*varsqt 
cu<-(restbeta)+quantile(s, probs = c(alpha))*varsqt 
  #bb<-(qmvt(0.90, df = n,corr=rho, tail = "both")$quantile) 
  #cl<-restbeta-bb*varsqt 
  #cu<-restbeta+bb*varsqt 
out<-ifelse(beta1<cl|beta1>cu,1,0) 
o01[i]<-out[1,1] 
o11[i]<-out[2,1]  
o21[i]<-out[3,1] 
o31[i]<-out[4,1] 
o02[i]<-out[1,2] 
o12[i]<-out[2,2] 
o22[i]<-out[3,2] 
o32[i]<-out[4,2]  
 
  xebeta<-
matrix(c((estbeta[1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2) 
oerror<-(Y-xebeta) 
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osigma<-(1/(n-iv-1))*(t(oerror)%*%oerror) 
  sig01<-kronecker(osigma,A2) 
varols<-sqrt(matrix(c((diag(sig01))),nrow=4,ncol=2)) 
os<-(estbeta-beta1)/varols 
ttt01[i]<-os[1,1] 
ttt11[i]<-os[2,1]  
ttt21[i]<-os[3,1] 
ttt31[i]<-os[4,1] 
ttt02[i]<-os[1,2] 
ttt12[i]<-os[2,2] 
ttt22[i]<-os[3,2] 
ttt32[i]<-os[4,2] 
cll<-estbeta-quantile(os, probs = c(alpha))*varols 
cuu<-estbeta+quantile(os, probs = c(alpha))*varols 
outt<-ifelse(beta1<cll|beta1>cuu,1,0) 
oo01[i]<-outt[1,1] 
oo11[i]<-outt[2,1]  
oo21[i]<-outt[3,1] 
oo31[i]<-outt[4,1] 
oo02[i]<-outt[1,2] 
oo12[i]<-outt[2,2] 
oo22[i]<-outt[3,2] 
oo32[i]<-outt[4,2] 
   } 
power1<-max(mean(o01),mean(o11),mean(o21),mean(o31),mean(o02),mean(o12),mean(o22),mean(o32)) 
power2<-max(mean(oo01),mean(oo11),mean(oo21),mean(oo31),mean(oo02),mean(oo12),mean(oo22),mean(oo32)) 
power<-c(power1,power2) 
View(t(power)) 
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Appendix B.4: # Monte Carlo Simulation for comparing modified joint confidence region  

 
library (MASS) 
library(expm) 
p<-2 
n<-25 
it<-10000 
rho<-.90 
sigma11<-100 
sigma22<-81 
sigma12<-rho*sqrt(sigma11)*sqrt(sigma22) 
sigma21<-sigma12 
lr<-matrix(data=NA, nrow = it, ncol = 1) 
pvalue<-matrix(data=NA, nrow = it, ncol = 1) 
chi<-matrix(data=NA, nrow = it, ncol = 1) 
b01<-matrix(data=NA, nrow = it, ncol = 1) 
b11<-matrix(data=NA, nrow = it, ncol = 1) 
b21<-matrix(data=NA, nrow = it, ncol = 1) 
b31<-matrix(data=NA, nrow = it, ncol = 1) 
b02<-matrix(data=NA, nrow = it, ncol = 1) 
b12<-matrix(data=NA, nrow = it, ncol = 1) 
b22<-matrix(data=NA, nrow = it, ncol = 1) 
b32<-matrix(data=NA, nrow = it, ncol = 1) 
rb01<-matrix(data=NA, nrow = it, ncol = 1) 
rb11<-matrix(data=NA, nrow = it, ncol = 1) 
rb21<-matrix(data=NA, nrow = it, ncol = 1) 
rb31<-matrix(data=NA, nrow = it, ncol = 1) 
rb02<-matrix(data=NA, nrow = it, ncol = 1) 
rb12<-matrix(data=NA, nrow = it, ncol = 1) 
rb22<-matrix(data=NA, nrow = it, ncol = 1) 
rb32<-matrix(data=NA, nrow = it, ncol = 1) 
for (i in 1:it) { 
mu<- matrix(c(0,0),nrow=2,ncol=1) 
sigma<- matrix(c(sigma11,sigma12,sigma21,sigma22),nrow=p,ncol=p) 
set.seed(950+i) 
error<- mvrnorm(n,mu,sigma) 
set.seed(950) 
  X1<-round(abs(rnorm(n,mean=1000,sd=60)),0) 
set.seed(950) 
  X2<-round(abs(rnorm(n,mean=375,sd=30)),0) 
set.seed(950) 
  X3<-round(abs(rnorm(n,mean=500,sd=20)),0) 
xbeta<-matrix(c((25+3.5*(X1)-1.75*(X2)-2.5*(X3)),(175+2.5*(X1)-1.25*(X2)-1.5*(X3))),nrow=n,ncol=p) 
  Y<-xbeta+error 
  X0<-matrix(c(1),nrow = n,ncol = 1) 
  X<-cbind(X0,X1,X2,X3) 
estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y) 
b01[i]<-estbeta[1,1] 
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b11[i]<-estbeta[2,1]  
b21[i]<-estbeta[3,1] 
b31[i]<-estbeta[4,1] 
b02[i]<-estbeta[1,2] 
b12[i]<-estbeta[2,2] 
b22[i]<-estbeta[3,2] 
b32[i]<-estbeta[4,2] 
  R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE) 
  r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE) 
  A<-((R%*%estbeta)-r) 
  A2<-(solve(t(X)%*%X)) 
  B1<-(A2%*%t(R)) 
  B2<-(R%*%B1) 
  B3<-solve(B2) 
  C<-((solve(t(X)%*%X))%*%t(R)) 
restbeta<-estbeta-(C%*%(B3%*%A)) 
rb01[i]<-restbeta[1,1] 
rb11[i]<-restbeta[2,1]  
rb21[i]<-restbeta[3,1] 
rb31[i]<-restbeta[4,1] 
rb02[i]<-restbeta[1,2] 
rb12[i]<-restbeta[2,2] 
rb22[i]<-restbeta[3,2] 
rb32[i]<-restbeta[4,2] 
  xrbeta<-
matrix(c((restbeta[1,1]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]*(X3)),(restbeta[1,2]+restbeta[2,2]*(X1
)+restbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2) 
rerror<-(Y-xrbeta) 
rsigma<-(1/n)*(t(rerror)%*%rerror) 
  xbeta<-
matrix(c((estbeta[1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2) 
olserror<-(Y-xbeta) 
olssigma<-(1/n)*(t(olserror)%*%olserror) 
lr[i]<-det(rsigma)/det(olssigma) 
chi[i]<-dchisq(lr[i], 2) 
pvalue[i]<-pchisq(lr[i], 2, lower.tail=TRUE) 
} 
xrbeta<-
matrix(c((restbeta[1,1]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]*(X3)),(restbeta[1,2]+restbeta[2,2]*(X1
)+restbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2) 
rerror<-(Y-xrbeta) 
rsigma<-(1/n)*(t(rerror)%*%rerror) 
cr1<-A2%*%t(R)%*%B3%*%R%*%A2 
cr11<-A2-cr1 
varrbeta<-kronecker(rsigma,cr11) 
varrbetasqr<-matrix(c(sqrt(diag(varrbeta))),nrow=4,ncol=2) 
t<-restbeta/varrbetasqr 
rucl<-(restbeta)+(qt(0.95, 21))*varrbetasqr 
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rull<-(restbeta)-(qt(0.95, 21))*varrbetasqr 
xbeta<-
matrix(c((estbeta[1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2) 
olserror<-(Y-xbeta) 
olssigma<-(1/n)*(t(olserror)%*%olserror) 
olsvarrbeta<-kronecker(olssigma,A2) 
lr<-det(rsigma)/det(olssigma) 
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