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Modified Inferential Methods on Restricted Parameters in Multivariate Regression

Analysis: Applications in Socio-demographic Research

Abstract

Efficient and significant empirical estimate of the multivariate regression parameters will be
helpful for the policymaker to make the right decisions about sophisticated interrelated issues in
the dynamic world. Since the end of the twentieth century, statisticians are going forward to
develop unique working methodology for estimating and testing restricted parameters. This study
reviews existing methods and proposed modified maximum likelihood estimator (MMLE),
modified multivariate t statistic and modified joint confidence regions to get efficient estimates
and test statistic for exact linear restricted parameters of multivariate regression with continuous
responses. The proposed estimator is unbiased, consistent and relatively efficient than classical
maximum likelihood estimator. Likelihood ratio test, modified Akaike information criterion are
applied to select the related predictors of multivariate responses. We also proposed a modified
maximum likelihood estimator for restricted parameters of multivariate regression with mixed
responses and evaluate the performance of the proposed estimation method based on relative
efficiency criterion. A Monte Carlo experiment is conducted to examine relative performance of

the modified methods.

We also proposed a modified two parameter weighted estimator (MTPWE) to estimate the
stochastic linear restricted parameters in multivariate regression analysis. The study has revealed
theoretically and numerically that the proposed MTPWE is consistent based on mean square
error criterion and relatively efficient than conventional multivariate least square (MLSE) and

weighted mixed estimator (MMWME) in multivariate extension. Moreover, A Monte Carlo

Vii


Anis
Typewritten text
Dhaka University Institutional Repository


simulation experiment has done to ensure a comparison of the MTPWE to the MLSE and

MMWME for different restricted parameters of the various levels of correlation and sample size.

The proposed inferential approach has been also applied to detect the numerical nexus among
socio-demographic determinants, food expenditure and total monthly expenditure in “Haor”
areas of Bangladesh by using Household Income Expenditure Survey (HIES) dataset 2016. The
study reveals that logarithm form of total monthly expenditure and food expenditure as
multivariate continuous responses are significantly related to total operating land, logarithm form
of family size and total monthly income (p < 0.01) considering a restriction on the parameters
at 5% level of significance. Based on the simulation study and empirical application, the
performance of the modified inferential approach is deemed more realistic than the existing

methodology.
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PART I

Introduction



Chapter 1

Introduction

1.1 Prelude

Inferential statistics is a wide-ranging discipline based on mathematics, empirical science, and
philosophy used to draw a conclusion about a particular parameter of population using sample
data. Efficient and significant empirical estimate of population parameters will be helpful for the
policymaker to take the right decisions about sophisticated issues in the dynamic world.
Sometimes in real-life, parameter originates from the complex domain and covered by different
sorts of restriction. The nature of restrictions can be exact linear, stochastic or inequality
constraints. Since the end of the twentieth century, statisticians are going forward to develop a
unique working methodology for estimating and testing the restricted parameters mathematically
as well as statistically in the contemplated decision-making process. Constraint statistical
inference (CSI) has grown out for cause and effect analysis of survey or experimental data in
various interdisciplinary fields especially, where restrictions are attached with parameters of a

statistical model.

Multivariate regression analysis (MRA) a methodology of the statistical modeling used to assess
the effect of the predictor variables on the interrelated responses. It can also be used for
predicting response variables from a collection of predictor variables. MRA has scope to fortify
its applications in almost all walks of life and science. However, in the dynamic world,
multivariate regression models are difficult due to a complex network of restriction either in the
unknown parameter space in a parametric way or even in the sample space of the random

observations. Hence, every tire of the statistical modeling says model specification, parameter
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estimation, the test of significance of the parameters, criterion of appropriate model selection fall
in the new challenge. Now, it became necessary to modify the inferential methods for compatible
developments in statistical decision theory and thereby need to regulate the appropriate

methodology to meet the demand of the vast interdisciplinary fields of applications.

1.2 Background of the Study

Multivariate techniques have emerged as a powerful inferential tool to analyze relationship
among multiple variables at a time. It plays a vital role in developing multivariate estimator for
estimating the parameter vector and to evaluate the estimated parameter mostly by testing
significance of the parameters. However, statisticians have faced crux when the prior knowledge
about the nature of parameters is predefined and multicollinearity problem is raised among the
predictors in cause and effect analysis. Ordinary least square or maximum likelihood methods

are not efficient to estimate the parameters in such situations.

When the researchers are going to test the parameter jointly in multivariate regression or in
multivariate analysis of variance (MANOVA), the test statistics available in existing literature
are Likelihood Ratio, Wilks’ lambda, Pillai’s trace, Hotelling-Lawley trace and Roy’s greatest
root (Johnson and Wichern, 2013).The power of general Likelihood Ratio or Wilks’ lambda test
to test the parameters jointly in multivariate regression is also weak (Silvapulle,2006). Generally,
the distribution of the error term of multivariate multiple regression models is multivariate
normal (Anderson, 2003). But most of the time, the demographic variables may be qualitative or
quantitative. One example of the response vectors may be that it consists of desired family size,

contraceptive use, marital status which comprises both qualitative and quantitative variables,



may not be multivariate normal. Hence, multivariate regression analysis faces a labyrinth to

estimate regression parameters or testing it.

1.3 Statement of the Problem

Multivariate regression analysis is getting increasing attention among the socio-demographers
due to the complex nature of the interdependence of the response variables. It is more efficient
than regression analysis for each dependent variable separately when the correlation structure
among the dependent variables is present (Hartung and Knapp, 2014). MRA allows a researcher
to answer several questions, such as whether there is a significant relationship between the
criterion and predictor variables, whether a given subset of predictors is really important to the
relationship or not, and whether the predictors are able to explain a significant amount of the
total variation among the criterion variable (Kshirsagar and Ravindra, 2014). The multivariate
linear regression has been discussed in both theoretical and applied statistics (Anderson, 1951;
Johnson and Wichern, 2013; Bilodeau and Brenner; 1999, Rencher, 2002). This empirically,
statistically and mathematically mature method is needed to deal with big data challenge in the
digital world. In the complex domain, the multivariate regressions are generally not so simple
due to a complex network of constraints in the space of the unknown parameters in a parametric
way. There is therefore a growing need for statistical inference to cope with such constrained
environments. However, very little research has addressed the problem of i) estimating
multivariate regression parameters considering exact or stochastic linear restriction and ii) testing
the restricted parameters individually. Detection of the critical value(s) for the test statistic
related to the restricted hypothesis is not smooth due to the complex nature of the exact null

distribution. Though several information criterions are used to investigate the best model after



selecting the appropriate number of variables, the need to develop a consistent model selection

criterion considering parameter restriction remains unanswered.

Bangladesh has experienced promising improvements in its overall economic, social and health
conditions but the progress is not up to the mark in Haor areas. The socio-economic condition of
day laborers and other workers in Haor areas are volatile where predictors may follow some
restrictions (linear or stochastic) leading to one-sided hypothesis testing in modeling exercise.
This study has tried to apply multivariate regression with restricted parameter for detecting major
predictors, like family size, access to safety-net program, income and operating land, of monthly

food consumption and overall expenditure.

However, the concept of multivariate regression faces hurdles when response matrix is
categorical or mix of both categorical and numerical variables (and both continuous and ordered
discrete variables), which is a common scenario in socio-economic and demographic analysis.
The way of estimating the joint distribution of mixed responses in multivariate regression is
complex and unknown in most of the cases. Consequently, parametric methods to estimate the
parameters have still not been established and testing procedure to test the significance of the

regression coefficients are needed to be modified.

So, a big challenge for social statisticians is to develop appropriate model by addressing these
issues and seek out efficient estimation and powerful hypothesis testing procedure to fit model

correctly and predict about future phenomenon.



1.4 Objectives of the Study

The main objective of the study is to develop modified inferential approach on restricted

parameters in multivariate regression analysis and its applications in socio-demographic

research.

The specific objectives of the study are to-

L.

il.

iil.

1v.

Vi.

develop appropriate estimation strategy for exact restricted parameters of multivariate
regression with continuous responses;

develop suitable testing procedure for multivariate regression parameters of continuous
responses under exact restricted alternatives;

construct modified estimators of multivariate regression parameters with continuous
responses under stochastic restrictions;

construct modified estimators of multivariate regression parameters with mixed
responses;

conduct Monte-Carlo simulation to check the adequacy and appropriateness of the
suggested methods; and

apply the modified approach to socio-demographic real life data.

1.5 Functional Definition and Notation of Important Terminologies

Constraint Statistical Inference: Statistical models in real-life interest as well as in

interdisciplinary research are generally complex in their designs, sampling methodology,

associated probability laws, which in turn are often constrained by exact or stochastic

restrictions, order, functional, shape or other restraints. In such situations, constrained statistical



inference is a branch of decision theory; used for parameter estimation and hypothesis testing

considering the parameter restrictions, in the process.

Linear Regression: Linear regression is a statistical technique which is useful for predicting one
set of response variables from another set of predictor variables. The response variables will be
discrete, continuous or mixed. The model of linear regression is given as

Y=XB+¢ (1.1)
where, Y is the n X p matrix of response variables and X is the n X (k 4+ 1) predictors. B is a

(k + 1) X p matrix of unknown parameters and € is n X p matrix of random disturbances.

Restricted Parameter Space: The parameter space B is the space of possible parameter values
that reflects the feasible states of nature relative to the unknown parameters matrix f in linear
regression. If the prior or non-sample information that reflects knowledge other than that derived
from the statistical investigation is amalgamated with unknown parameters, parameter space is

defined as restricted parameter space.

Exact Linear Restriction: If the exact information on the particular parameter or linear
combination of the parameters in a linear regression model is available by the investigator, the
restriction is called exact linear equality restrictions. The form of exact linear equality
restrictions:

RB =¢ (1.2)
where R is a g X (k + 1) and q < k known prior information design matrix that expresses the
structure of the information on the individual parameters or some linear combination of the

elements of known elements B matrix and & is a matrix of known elements of order g X p.



Stochastic Linear Restriction: The restrictions may be called stochastic linear restrictions, if
uncertainty exists about the prior or non-sample information specification in equation (1.2). The
form of stochastic linear restriction can be expressed as

RB+v=¢& (1.3)
vis aq X p unobservable normally distributed random vector with mean vector § and covariance

Y.

Inequality Restriction: In applied research, there exists in many cases prior information
concerning the non-negativity or non-positivity of a regression parameter or linear combination
of parameters, or that a parameter or a linear combination of parameters lies between certain
upper and lower bounds or that functions are monotonic, convex or quasi-convex. When
information of this form is available, it can be presented by the inequality restrictions. The form
of inequality restrictions is given by

RB=>¢ (1.3)

Uniformly Minimum Variance Unbiased Estimator: Uniformly minimum variance unbiased
estimator (UMVUE) is an unbiased estimator that has minimum variance than any other
unbiased estimator for all possible observable values of the parameters.

The modified estimator of regression parameter f# is called UMVUE if and only if 1) modified
estimator is unbiased and 2) the variance of modified estimator is minimum compared to that of

any other unbiased estimator.

Relative Efficiency: The relative efficiency of modified estimators is the ratio of the variance of

modified estimator and the variance of other estimator.



Variance of modified estimator of B

Relative Effeciency =
Y= Variance of existing estimator of B

The value of relative efficiency is greater than 1 indicates that modified estimator is preferable.

Coverage Probability: The coverage probability of a technique for calculating confidence
interval is the proportion of time that the interval contains the true value of interest. Confidence

interval with shortest length and high coverage probability is better than others.

Restricted Hypothesis: If C and M are subsets of an Euclidian space, then restricted hypotheses
are
Type A: Hy: B € M against Hi: B E€C and B € M

Type B: Hy: B € Cagainst H,: B & C.



1.6 Conceptual Framework of the Study

Phase I: Model
Identification

">
» Define distribution of response > Develop functional form of the
variables

model with constraint

» Collect or generate simulated ) o
» Determine  the  objective

)

data of response variables
function with constraint

\> Generate design matrix

Phase II: Parameter
Estimation

> Estimate parameters of > Develop confidence interval

potential model

) > i
> FEvaluate the estimators Evaluate confidence interval

Phase II1: Hypothesis
Testing

» Overall parameter test and
evaluate the test statistic
» Individual parameter test

» Evaluate the power of the test

- /

Figure 1.1: Conceptual Framework for Developing Modified Inferential Methods for MRA
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1.7 Source of Data

The multivariate data have been simulated from multivariate normal, multivariate Bernoulli
distribution and mixed distribution to achieve specific objectives I to VI. The Household Income
Expenditure Survey (HIES) data 2016 have been collected and partially used for achieving

specific objective VII.

1.8 Statistical Computation

Numerical computation is a challenging task for modifying statistical methodology. Complex
statistical modeling faces computational obstacles about Monte Carlo methods, random number
generation, big data management, numerical optimization in statistical inference for estimating
and testing parameters. Programming language R (graphical user interface, RStudio), statistical
software (IBM SPSS Statistics, Stata), Spreadsheet (Microsoft Excel) have been used for the

purpose of statistical computation.

1.9 Synoptic View of the Study

This chapter introduces the background of the study, statement of the problem upon which the
study is based. The study objectives are defined and relevant concepts are delineated.
Contributions of the study are discussed. Operational terminologies and concepts, statistical
computation of this study are defined. Chapter II reviews the relevant literature to multivariate
regression with continuous, categorical and mixed responses. Estimation and testing procedures
related to multivariate regression are discussed. The theoretical background and previous
conceptual and empirical research findings are discussed. Chapter III (for objectives I, II and VI)
discusses modified inferential approach for multivariate regression with continuous responses

considering parameter restriction. Monte Carlo simulation and real life applications of the

11



methods are also presented in this chapter. Chapter IV (for objectives III, V and VI) presents a
detailed discussion on multivariate regression with continuous responses, model specification for
stochastic restricted parameters, modified estimation and testing methods. Monte Carlo
experiments are conducted to evaluate the performance of modified techniques. Chapter V (for
objectives IV and V) documented the methodology of estimating and testing the parameter of
multivariate regression with mixed responses. Again, Monte Carlo study is performed to evaluate
the proposed estimating and testing methods. Chapter VI (for objective VII) presents a real life
application of constraint statistical inference. Chapter VII conclusions and the implications of the

research are delineated and future research directions are presented.

12
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Multivariate Continuous Responses with Restricted Parameters
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Chapter 2

Literature Review of Multivariate Continuous Responses

2.1 Introduction

Linear regression is a statistical methodology used to predict one set of response variables from
another set of predictor variables. Both univariate and multivariate regression plays a pivotal role
to find significant predictors in decision-making problems. Multivariate linear regression
attempts to investigate any significant relationship among responses and predictors; to diagnosis
which predictors have dominant effect on the relationship and finally find the answer to the
question whether the significant amount of total variation among the response variables can be

explained through the predictors (Kshirsagar and Ravindra, 2014).

The nature of the response variables in classical multivariate regression model must be
continuous. The multivariate linear regression has been discussed in both theoretical and applied
statistics (Anderson, 1951; Johnson and Wichern, 2013; Bilodeau and Brenner, 1999; and

Rencher, 2002).

In this chapter, we review the different aspects of multivariate regression for continuous
responses considering different parameter constraints. Section 2.1.1 defines the concept and
notation of multivariate regression for normal variates. In Section 2.2, we describe the estimation
technique of the restricted parameters for univariate regression. Section 2.3 reveals the overall
testing procedure of the restricted parameters. Sections2.4 and 2.5 have mentioned the individual

testing procedure and joint confidence interval of the restricted parameters respectively. In

14



section 2.6, we conclude the chapter by outlining what we will investigate in the next chapters

for continuous responses.

2.1.1 Classical Multivariate Regression with Continuous Responses

Classical univariate regression analyses can assess the relationship among univariate response
variable and a set of explanatory variables. But, multivariate regression is used to explain the
relationship between more than one quantitative response variables and a set of quantitative
explanatory variables. When a correlation structure among the response variables is present, a
multivariate regression model is considered as more efficient than regressions analysis for each
response variable separately. So, MRA is employed to make inference about correlated response
variables based on parsimonious number of predictors when both predictors and correlated

response variables are quantitative in nature (Hartung and Knapp, 2014).

Let Y be an n X p observation matrix of p continuous multivariate response variable and X be a
design matrix of n X (k + 1) nonstochastic predictor variables with rank k < n where n is the
sample size. A multivariate regression model is given as

Y=fX)+e=XB+¢
Here, the distribution of random disturbances is multivariate normal, e~MND(Oyxp, Zpxp)- B, Z
are the unknown parameters where B is a (k + 1) X p matrix of regression co-efficient (Johnson and

Wichern, 2013).

Estimating unknown parameters of the MRA is one of the challenging issues. The first need of
MRA is to fit model from the observed data considering number of assumptions through
estimating unknown parameters using maximum likelihood estimator when the distribution of

15



the responses is multivariate normal or by using least-squares approach when no distributional
assumptions are made. But, the multivariate regressions are generally not so simple due to a
complex network of constraints in the space of the unknown parameters in a parametric way.
Hence, there is a growing need for statistical inference to cope with these sorts of constrained
environments. Ordinary least square or maximum likelihood methods are not efficient to
estimate the restricted parameters. Different studies were conducted separately for estimating the
restricted parameters and testing the overall significance of restricted parameters for classical

multiple linear regression (Atiqullah, 1969; Nancy, 2014; Speed, 2014; Silvapulle, 2006).

2.2 Estimating Technique of the Restricted Parameters

Statistical inference problem in which stochastic model faces several types of restriction
especially, exact linear restriction, stochastic linear restriction, inequality restriction. Ordinary
least square or maximum likelihood methods do not take challenges to find standard results of
the restricted parameter of the regression model where the distribution of the random error is
normal (Silvapulle, 2006). Atiqullah (1969) described a restricted least square estimator for

general linear model considering exact linear parameter restriction.

2.2.1 Restricted Least Square Estimator

Let Y be a n X lvector of observations and X be a full rank design matrix of n Xk

nonstochastic predictor variables where n is the sample size. Consider a general linear model as
Y = Xp + &, with prior restriction R = &

The method of Sweep-Out is used to obtain computing formulas for calculating the least squares

estimator and its variance matrix in the linear models not necessary of full rank, in which certain

restrictions may hold on the actual parameters (Atiqullah, 1969).
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B=PB—C'R(RCR)"*(RB — &) whereX'X = C
E(B) =B

V(B) = o*(C™' — C"'R*(RC™'RY)"RC™)

2.2.2 Restricted Maximum Likelihood Estimation

Restricted maximum likelihood estimation (REML) is an approach to estimation that maximizes
likelihood over a restricted parameter space (Nancy, 2014). Parameters in dispersion matrices
can be estimated by using restricted maximum likelihood estimation (REML) method which can
be taken as a substitute to its main contender profile maximum likelihood because, use of profile
likelihood may lead to badly biased estimators of parameters of interest when there are a large
number of nuisance parameters whereas REML considers degrees of freedom lost in estimating
parameters in a model for expected values and gives estimators of the remaining parameters with

less bias and better consistency properties (Speed, 2014).

In a general linear model with normal error distribution, REML is an unbiased estimator when
the distribution of the response variable is normal. The method has been applied to situations
where the parameters satisfy order restrictions (Nancy, 2014). In the multiple linear regression
analysis, the linear model is given below
Y=XB+Zb+¢

whereY is an n X 1 observed data vector, B is a (k + 1) X 1 vector of fixed effect parameters with X
be a design matrix of n X (k + 1), b is a I X 1 vector of random effects, Z is a design matrix with
dimension n X land € is an n X 1 vector of error terms which are independent and distributed as
N(0,R). The variance of Y is V. = ZDZ' + R. The elements of D and R may be taken to be

functions of an unobservable parameter vector. The REML estimators of B and its variance are
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Br = (XtV X)XtV Y
and

V(Br) = (XtVR_lx_l) where Vg = ZDRZ' + Ry

2.3 Overall Testing Procedure of Restricted Parameters

After estimating the restricted parameters of the regression model, the researcher is usually
inquisitive in testing one or more linear hypotheses about individual restricted parameters or
linear combination thereof. The Lagrange multiplier test (LM), Likelihood Ratio test (LR) and
Wald test (W) are frequently used statistic for testing parametric restrictions in the linear
regression model (Wolak, 1989). The first document on this issue seems to be due to Gourieroux
et al. (1982), succeeded by the celebrated paper by Self and Liang (1987). Based on the first two
documents, Mukerjee and Tu (1995) published a paper related to the exact small sample LRT
and also discussed its properties in the case of a classical simple linear regression model with the
non-negativity restriction. Multivariate linear regressions are broadly used statistical technique in
many applications to model the associations between multiple related responses and a set of
predictors. Likelihood ratio test (LRT) is again one of the most popular methods to test the
structure of regression coefficient in such cases (Fujikoshi, 1974). Let a classical multivariate

linear regression model is

Ba
Y=XB+ewhereff = |
B2

and the functional form of likelihood ratio test statistic will be

A max(ﬁ(l)’z)L(ﬁ(l), 2)
maxg s L(P, )
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So, the likelihood ratio test is based upon the difference between the maximum of the likelihood
under the null and under the alternative hypothesis. The restricted likelihood ratio test is
uniformly more powerful than the global version for the entire restricted parameter space in

many cases (Tsai, 1992).

The exact knowledge of the null distribution of the hypothesis test statistic is essential for the
reasonable use of the test statistic. The distribution of two-sided LR tests follows asymptotically
central Chi-square (Johnson, 2013) under the null hypothesis. However, in a socio-demographic
study, the hypothesis is not always exactly two-sided. A relevant theory related to inequality
constraints is scattered in the prior literature under different names especially order restricted
inference or one-sided testing. A mixture distribution was applied to multivariate LR tests by
different researches where the asymptotic null distribution of the tests was explained to be a
mixture of different chi-squared type distribution with binomial mixing probabilities (Silvapulle,

20006).

Silvapulle (2006) addressed and reviewed a substantive number of research related to LRT for
testing constrained parameters in different situations. But, the complexity of the procedure has
been raised for different reasons, i) most of the times the dispersion matrix of the error is
unknown, ii) matching the null distribution of the test statistic for complex hypothesis is difficult.
Fonseca et al. (2015) has given a path for testing linear inequality constraint on the regression
coefficient of univariate model and developed the LRT for unknown error variance which is in

the same line as in Mukerjee and Tu (1995).
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2.4 Individual Testing Procedure of Restricted Parameters

The classical theory of the statistical inference is primarily flourished on the assumptions that the
distributions of target variables are normal. But, most of the times several estimators of socio-
economic and business data exhibit fat-tailed distributions. Recently many authors have
investigated as to how inferences are affected if the distributional pattern of the statistic departs
from normality (Kibria and Joarder, 2006). The suitability of the application of t statistic in real
life was assessed by Blettberg and Conedes (1974). The multivariate t statistic is a natural
generalization of the univariate Student ¢t statistic which is a more viable alternative to test the
significance of the parameter vector. Kelker (1970), Cambanis, Huang and Simons (1981), Fang

and Anderson (1990), Kotz and Nadarajah (2004) also discussed the significance of this

. . t . . )
argument. A p dimensional random vector T = (Tl,Tz, ...,Tp) is said to have the p variate t
distribution with degree of freedom v, mean vector u, covariance matrix X and correlation

matrixp, if the statistic can be expressed as

T-p=—,

<=l <

Where Y is a p variate normal random vector with mean zero and covariance matrix X, and if u
is a chi-square variate with degree of freedom v. The functional form of probability density

function of T with parameters X, u and v is given by

T [(v+p)] _(v+p)

1
M) = s — [T+ (M- W (T - )
[‘(g)y(E)r[ﬂzﬁ v

where %22 is the covariance matrix if v > 2 (Kotz and Nadarajah, 2004).

The ultimate target of decision-makers is to improve the power of the test statistic in different

circumstances. But, sometimes researchers faced the problem of power loss when testing the
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hypothesis of linear equality against the hypothesis of linear inequality in linear regression
models. The study of one tail alternatives hypothesis testing was originally addressed by
Bartholomew (1959) for independent linear models considering normality assumption and
extended by Kudo (1963) for multivariate linear models. Nuesch (1966) also treated this study
for the classical linear model while Perlman (1969) expanded the outcomes for a more general

class of multivariate normal models.

Gourieroux et al. (1982) discussed the asymptotic null distribution of the one-sided test statistics
in multivariate normal models when the variance-covariance matrix may depend on a finite
number of unknown parameters. Wolak (1987) proposed exact one-tail tests for classical
multivariate linear models and Wolak (1989) extended the results from Gourieroux et al. (1982)
for restricted hypotheses. Kodde and Palm (1986) presented a Wald-type test that may be used
for testing equality and inequality restrictions in general multivariate regression models and
Silvapulle (2006) described a score-type test for assessing one-tail alternatives in general
regression models that may include correlated observations also. The score test and Wald test
statistics which are asymptotically distributed as a mixture of chi-square distributions where the
weights may depend on the correlations but not depend on the null parameters. Application of
multivariate t statistics is a very promising approach in multivariate analysis. If the distribution
of Y follows multivariate normal with a certain mean vector, then the critical region of the test
statistic follow non-central multivariate ¢t distribution. Kshirsagar's (1961), Siotani's (1976),
Arellano-Valle and Bolfarine's (1995), Fang et al. (2002), Gupta (2000) and Jones' (2002)
proposed and modified functional approach of non-central multivariate t in different

circumstances.

21



2.5 Joint Confidence Region of Restricted Parameters

Joint confidence intervals (JCI) construct a joint confidence region (JCR) for a vector of
parameters, comprising individual intervals for the separate components, with a coverage
confidence level of the simultaneous correctness of all the statements involved (Chen and Hoppe,
2017). Joint confidence regions are numerically analyzed by comparison for regression, the mean
value of multiple responses, regression coefficients and individual observation (Belov, 2018).
Confidence intervals are used in socio-economic research to indicate the degree of uncertainty in
estimates due to random error. It is reasonably well-known that one can get a statistical
significance test by constructing confidence interval around an obtained statistic and seeing
whether or not the corresponding hypothesized parameter is “captured” by the interval (Knapp,
2017). Since the distributions of the regression parameter of classical multivariate regression
with continuous responses are multivariate normal. This study has been derived joint confidence

regions for the regression vector with a specified coverage probability.

Many methods are used to computing JCI for fitted values and linear combination of regression
coefficients. The commonly used procedures are the Scheffe , Duncan, Tukey and the Bonferroni
method. In the multivariate setting, it is difficult to find the exact joint confidence regions in
balanced or unbalanced models. In order to respond to the problem, different approximation
procedures are used to obtain good approximate joint confidence regions. A quantitative way of
obtaining the critical value that determines the joint confidence region of a given level has been
applied to overcome this sort of problem (Belov, 2018). The effective method to construct joint
confidence regions with prescribed coverage probability for the regression parameters evaluated
at different settings of the predictor variables, which are narrower than bounds obtained without

using the predictor constraints.
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2.6 Model Selection Technique

Model selection is an important task of any statistical analysis for selecting a well fitted
stochastic model from a candidate set of models that fits the input data. Kullback and Leibler
(1951) derived information measure known as the Kullback-Leibler (K-L) distance. Later, the K-
L distance defined as a directed distance between two models which is the most fundamental of
all information measures and it is the logical basis for model selection. In general statistical
models, it is called model selection (Linhart and Zucchini, 1986) and especially, in the regression

model, it is well-known as a variable selection (Miller, 1990).

Akaike information criterion (AIC), which was proposed by Akaike (1973) and is an estimator of
risk based on the Kullback—Leibler (K-L) information between the true model and the candidate
model, is being used universally in selecting variables. Akaike (1973) evaluated AIC under the
assumption that the distribution of candidate models corresponds to the true distribution. Hence a
correction term for the bias of risk in AIC is fixed for any distribution, even if its risk is changed
by the true distribution. Akaike Information Criterion is defined by

AIC = —2{maximum log likelihood — no. of unknown parameter}
o 1
= nin|S| + np(In2r + 1) + 2{kp + Ep(p + 1)}

The AIC is considered as an approximately unbiased estimator for R(x), but in the case of over
specified candidate model and for small sample size, AIC drastically underestimate the R(x) in
multivariate normal regression model (Hurvich and Tsai, 1989). AIC was modified by Satoh
(1997) using Corrected AIC (CAIC) and the modified AIC became unbiased estimator for both
under specified and over specified models. Modified AIC (MAIC) is written below:-

MAIC = CAIC + 2ktr(A—1,) — {tr(A— L,)}* — tr{(A— 1,)?},
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(n+k)np

where, CAIC = n1n|f| + npln2m +
n—-k-p-1

n-k & wA-1

and A= PHD)

n-kg
Inequality constraints or order restrictions is not considered in AIC to select model. Traditionally
AIC does not incorporate order restriction to select appropriate model, but simple order
restriction is included by Anraku (1999) in Order Restricted Information Criterion (ORIC),
—2{1(0, &) — info s B(6,0)}. The simple closed form of penalty term (optimum
bias)infg ;B(8,0) is {1 + Zle iw; (p, W, C)} for the restriction RO > 0, which is applicable for

simple order and tree ordered restriction (Silvapulle and Sen, 2005).

Generalized Order Restricted Information Criterion (GORIC) proposed by (Kuiper, Hoijtink and
Silvapulle, 2011) is GORIC = —2{l (8, &) —1—YF_ iw; (p,W,C)},

where, 1(6, &) is the maximum log likelihood and penalty term is the nonnegative constants;
known as chi-bar square weights which arises naturally in constrained statistical inference and
defined in the chi-bar square distribution, pr(X"W™X <c¢) = P w; (o, W,CO)pr(x? <c)

(Silvapulle and Sen, 2005) and (Silvapulle, 1996).

For simple order restriction GORIC reduces to Anraku (1999) model and when no inequality
constraints imposed on 8, then for wy, (p,W,C)=1, w;(p, W, C) = 0; i < p the GORIC reduces to
AIC. Probability of choosing correct model using GORIC approaches is unity when sample size

tends to infinity (o).
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Chapter 3

Modified Inferential Approach for Multivariate Continuous Responses with Exact

Restrictions

3.1 Multivariate Regression Analysis for Continuous Responses (MRACR)

Classical multivariate regression analysis emphasizes the use of sample information in making
inferences about the unknown parameters (matrix of regression coefficients) ignoring any non-
sample information that may exist about the individual parameters or relationships among the
unknown parameters. But, nexus among non-sample information and unknown parameters in the
model can develop such statistical decision which accountable for the creation of inefficient
improvement policy. Appropriate model specification, efficient estimation technique and
powerful hypothesis testing method are needed in these circumstances. Recognizing different
constraint of unknown parameters, we consider a modified approach for MRA with continuous

responses where can be considered both sample and non-sample information.

In this chapter, different aspects of multivariate regression with exact linear restriction have been
described (Sayem and Hossain, 2022). Section 3.1; define the specification of the multivariate
regression model with the description of exact linear restriction in subsection 3.2.1. In section 3.3
and subsection 3.3.1 have been explained the modified maximum likelihood estimator and its
properties. Section 3.4 reviewed the likelihood ratio test for overall regression parameters
whereas section 3.5 described the modified t test for individual regression parameters with exact
linear restriction. A modified joint confidence interval for individual regression parameters with

exact linear restriction is explained in section 3.6. In section 3.7, Monte Carlo experiment has
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been conducted to evaluate the performance of modified methods and finally in section 3.8 has

been recorded the overall conclusion.

3.2 Model Specification for MRACR

Let Y be an n X p observation matrix of p continuous multivariate response variable and X be a
design matrix of n X (k + 1) nonstochastic predictor variables with rank k < n where n is the
sample size. Consider the following multivariate regression model

Y = f(X) + &, where € is an X p matrix of random error.
Multivariate regression model sometimes faces the challenge of exact linear restriction,

stochastic linear restriction and inequality restriction on the parameters.

3.2.1 Exact Linear Restriction in Multivariate Regression with Continuous Responses

There may be precedents in applied research when the researcher has exact information on a
particular parameter or linear combination of the parameters. If exact information is available, a

multivariate regression model with exact linear restriction is given as

Y = Xp + &, with prior restriction R =§&orRB > ¢ (3.1
Assumptions:
a) The values of predictor variables of the design matrix are fixed.
b) The distribution of random disturbances is multivariate normal i.e.e~MND(O, Z).

c) B, X are the unknown parameters where 8 is a (k + 1) X p matrix of regression coefficient.
d) The exact linear restriction exists among the subset of the parameters which is believed to

be true for each response.
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3.3 Modified Maximum Likelihood Estimator (MMLE)

On the parameter space of the regression coefficient, consider the following restriction

RB =, (3.2)
Where R is a matrix of order g X (k + 1)and q < kof known elements and § is a matrix of
known elements of order p X p. In case of no restrictions, the probability density function of

multivariate response becomes
FOIB, ) = (M)~ 7 |Z| zexp {— %tr[(Y - XB)L(Y — XB)Z‘l]} , t is a symbol of transpose.

In order to estimate the regression coefficient, the following log-likelihood function is needed to

be maximized

£B,2) = Bl (= 2) (nlZl + (v, — XBY'E™' (¥, - XB)}. (3.3)

Using equation (3.3), the maximum likelihood estimator (MLE) of B is B = (Xt X) " 1Xty.

To take the restriction “equation 3.2” into account of the inferential procedure, a modified
maximum likelihood estimator (MMLE) for multivariate regression is proposed in a similar
manner as used in univariate regression by imposing restrictions on the log-likelihood function
(3.3), the objective functions to be maximized, thus becomes
LB,2)=L(B)+ 2 (RB— &) (3.4)

where A is a vector of Lagrangian multipliers and t is the symbol of matrix transpose. Method of
Lagrange multipliers is a strategy for finding the maximum and minimum of the function
subjected to the constraints (Hoffmann, Laurence, Bradley and Gerald, 2004). If the prior
information of active constraints were known at the solution to the optimization problem, the

solution would be a local maximum point of the problem defined by ignoring the inactive
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constraint and treating all active constraint as equality constraints (Luenberger, 2003; Silvapulle,
2006) which reflects that changing the right-hand side by a small amount will not affect the

optimal solution. To maximize the objective function, firstly need to differentiate (3.4) with

. AL oL . . . _—
respect to B and A and setting Y and P equals zero, we derive the modified maximum likelihood

estimator of B as
Bmmle = Bmle - (XtX)_lRt[R(XtX)_lRt]_l(Rﬁmle - E) (3-5)

for A= —2[R(X*X)"*R*]7*(§ — RB1e)

3.3.1 Properties of Modified Maximum Likelihood Estimator (MMLE)

The expected value of modified maximum likelihood estimator (MMLE) is given below
E(Bmmte) = ElBmie — (X X) ' RI[R(XX) 'R (RBmie — §)]
= E[Bmie] — EIX*X) 'R [R(X*X) 'R (RBrmie — §)]
=B — X'X)T'R'[RXX)T'R ] (RE[Brmie] — §)
Since maximum likelihood is unbiased (Johnson and Wichern, 2013)andRf = &,

E(Bmmie) = B— (X"X)'R'[RX*X)'R|""(RB - §) = B
Corollary 3.3.1(a): MMLE is an unbiased estimator i.e. E (ﬁmmle) =p.

The covariance matrix of modified maximum likelihood estimator (MMLE) is given as
E|(Bumie = B) Bramic — B)'| = E[(MXX)~1X &) (M(XX) " X £)"]
=MX' X)X (M(X'X)1XY) ! QE[e€!]
=MX'X)IX'(M(X'X) 1 XH)IQX
= MXX)TIXIX(M(XEX) ™)' QL
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= M(M(X'X)™)!®z
Cov(Bmmie) = X' X' Q L — (X' X)'RI[RX'X) 'R 'RX'X)' QX
Where Bmie — B = M(XtX) " 1Xte

M=1-(XX)"'R[R(XX)"'R']"'R

Corollary 3.3.1(b): The covariance matrix of MMLE is smaller than MLE because of

Cov(Bmie) = X X) ' QL.

3.4 Likelihood Ratio Test (LRT) for Overall Regression Parameters with Exact Linear
Restriction
Let ¥ be a matrix of p continuous multivariate response variables from MND (X, Zpxp) Where
Zis unknown. X be a design matrix of n X (k + 1) nonstochastic predictor variables with rank
k < n where n is the sample size.
1) Ho:RB =0 against H1:RB >0

Since X is unknown, the log likelihood discarding the constant is given by

l
1
£B,2) = ) (=3) izl + (v, — XB)'T(% - XB))

i=1

Hence the likelihood ratio can be obtained as

LRT = Z[maxRﬁZO{f(ﬁ, 2)} — maxgg-o{£(B, Z)}]wherez > 0 andZX is positive definite.The

estimator of £ will be £ = n~1(¥ — Xﬁr)t(Y - XB,) .

i) Ho:RB =0 against H:R=0
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If Y~MND(XB,X)where X is positive definite matrix but unknown, R be matrix of order
q X p,rank(R) = g < p, and let R; be a sub matrix of R of order r < p. Then, the LRT for
testing the hypothesis is given below
LRT = 2[maxg, p»o{(B, 2)} — maxgp=o{£(B, 2)}].

To find the sampling distribution of LRT under the null hypothesis is a challenging issue. The
common approach of identifying null distribution is to

Pr(LRT < c|Hy) = Xi_ow; (r, R;ZR})Pr ()(S_Hi < c) where w; is the weight (Silvapulle,
2006), suggested an estimation method for these weights but that still have room to

improvements.

3.5 Modified t test (t,,q) for Individual Regression Parameters with Exact Linear
Restriction

With underlying assumption of normality, the joint distribution of fand & in classical
multivariate regression are B~MND(B, (X*X)™* ® Z)and (n — k)2~W,(n — k,X) where B

and T are independent.
Hence, the test statistic for testing the hypothesis H,: 8 = 0 against H;:f # 0 is t = SE(B)™* X
(B — B) which follows the multivariate ¢ distribution (Kotz and Nadarajah, 2004).

But, the difficulty is higher if the regression parameters are restricted and the hypotheses related
to the parameters are one sided. The hypothesis under consideration is

Ho:5; =0 against Hy:f; > 0or Hy: B; <O.

At statistic modified for testing the above hypothesis can be given as
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_ (Emmle_ﬁ)

tmOd N SE(ﬁmmle) (36)

where Bmie = Bmie — (X X)IRIR(XEX) 'R (RB,1e — €) and the standard error of each

Bmmie(i) 18 the square root of the diagonal element of the variance covariance matrix-
Cov(Bmmie(iy Bmmie(y) = X X)) @~ (XX) 'R [RXX) 'R "R(X'X) "' ® .

While the distribution of t,;,,4 in equation 3.6 does not match with any conventional distribution,
a Monte Carlo simulation is used to generate the simulated critical value of t,,,qand to compare

the power of t,,,q and multivariate t test.

3.6 Joint Confidence Region for Regression Parameters with Exact Linear Restriction

Joint confidence regions constitute confidence intervals for a vector of parameters, comprising
individual intervals for the separate components, with a coverage probability of the simultaneous
correctness of all the statements involved. The exact distribution function of the restricted
statistic is not always attainable, and then quantile of the statistic can be calculated by using
Monte Carlo Simulation. The length of modified joint confidence interval using quantile points
will be shorter than conventional methods and maintain highest coverage probability.

The modified joint confidence regions with (1 — a)% level of confidence for multiple
comparisons of restricted parameters in multivariate regression with continuous responses are

derived as
Pr[{ﬁmmle(i) - Q(l—a)(tmod) X SE(ﬁmmle(i))} < .8 < {.émmle(i) + d(1-a) (tmod) X SE(ﬁmmle(i))}] =1-a

where ﬁmmle = Bmie — (XtX)_lRt[R(th)_lRt]_l(Rﬁmle -8,
q(1-¢)(mod t) = (1 — a)% quantile of modified multivariate t statistic, and
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Cov(Bmmie(iy Pmmiet) = X X)) Q Z — (X! X)'RYI[R(XX)'RY'R(X*X)"' ® Z, and

SE(ﬁmmle(i)) refers to the square root of the im diagonal element ofCov(ﬁmmle(i), ,[?mmle( j)).

3.7 Monte Carlo Experiments

Monte Carlo experiments have been conducted to evaluate the performance of the modified
statistic for estimating and testing the restricted parameters of the multivariate regression model
with continuous responses.

The study considered a multivariate regression model with bivariate responses (p = 2). The

multivariate linear model was-

Y)Y 2] = XB + ewhere, B = [B)|B], & =[ewlee]~MND(0,X)

Assumptions:
a) The predictor variable’s values of the design matrix are fixed.
b) The exact linear restriction exists among the subset of the parameters which is believed
to be true for each response.

c) The distribution of Y is multivariate normal (MND) with mean Xf and the covariance

matrix X = {al-j}for all i, .

Since the application of multivariate regression analysis depends on the correlation among the
response variables, the different trials have been conducted for different arbitrary value of
correlation coefficient namely, p = 0.00, 0.25, 0.75, 0.80, 0.90 where 0;; = 100 and o,, = 81

including sample sizes of different order, n = 25,50,100, 200,400 and 1000.
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The generation of multivariate response variables also depends on the parameter values of the

regression coefficients taken to be

Bo1  Boz 25 175
[ﬂ (1)|ﬁ (2)] = gll gm = 3575 2152 5 where restriction matrix will be
21 P22 — 1L —1
ﬂ31 ﬂ32 _1.5 _1.25

01 2 0

HR=[0 1 2 0] 2)R=[0 Lo

] for§ =[0 0]and & = [(1) (1)]respectively.

The simulated performance of modified maximum likelihood (MMLE) estimate and maximum
likelihood estimator (MLE) depends on the number of iteration of the trials. Sample size and
information of the test increase for increasing number of iteration, and then the estimated error
will be reduced (Kogak, 2020). So, it is important to estimate the required number of iteration.
Hence, we determine the minimum number of iteration required using the following formula
given by Banks et.al. (2001) for vector valued parameter considering minimum loss of

information

Za/2 XSample Variance)2

Number of iteration > ( ,
Margin of error

Theoretically, it is proved in section 3 that modified maximum likelihood estimate is unbiased
and the variance of MMLE is lower than general maximum likelithood estimate. But the
experiment has been revealed that simulated expected value of the modified maximum likelihood
estimate is not exactly equal to their parameter value. Table 3.1 reveals that the amount of bias
will be reduced if correlation among the response variables is high which may also true for

increased sample size.
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Table 3.1: Measuring Bias of Modified Maximum Likelihood Estimate for Different

pandn
Ssz;:elp:: P12 Relative Bias (RB™") of Modified Maximum Likelihood Estimate
s
Bo1 P11 B21 B31 Bo2 P12 B22 B32
(25) (3.5) (-1.75) (-1.5) (175) (2.5) (-1.25) (-1.25)
25 0.00 6.6404 0.1473 0.1473 0.5377 -5.2375 -1.203 -0.1803 -4.6609
0.25 24.2352 0.5605 0.5605 1.8764 -3.3801 -0.7833 -0.3889 -2.9772
0.75 18.942 0.436 0.436 1.4745 -1.292 -0.3064 -0.4245 -1.1068
0.80 17.7314 0.4075 0.4075 1.3824 -1.0514 -0.2513 -0.4235 -0.8919
0.90 14.6055 0.3341 0.3341 1.1446 -0.4734 -0.1189 -0.4173 -0.376
50 0.00 17.6768 0.4008 0.4008 1.5293 0.2276 0.0957 4.5037 -0.8778
0.25 14.9969 0.324 0.324 1.6292 1.6676 0.4046 2.7583 0.8496
0.75 16.2572 0.3575 0.3575 1.6354 2.1768 0.5016 0.9044 1.7582
0.80 16.483 0.3638 0.3638 1.6318 2.2066 0.5063 0.6935 1.836
0.90 16.9722 0.3777 0.3777 1.6151 2.2581 0.513 0.1891 2.0042
100 0.00 15.99 0.3236 0.3236 1.6247 -1.7463 -0.4463 -2.5659 -0.9345
0.25 20.3877 0.44382 0.4482 1.7313 0.0391 -0.0674 -3.4087 0.9011
0.75 19.4129 0.4175 0.4175 1.7377 1.1954 0.1975 -3.0772 1.867
0.80 19.142 0.4095 0.4095 1.7339 1.3065 0.2238 -3.0057 1.9498
0.90 18.3708 0.3875 0.3875 1.7161 1.5579 0.2842 -2.8108 2.1287
200 0.00 4.1745 0.1015 0.1015 0.5722 -0.7765 -0.1531 -2.5992 0.2477
0.25 6.443 0.1453 0.1453 0.437 -0.2311 -0.031 -2.6131 0.7515
0.75 5.8412 0.1342 0.1342 0.4928 0.185 0.0567 -1.946 0.8862
0.80 5.6924 0.1313 0.1313 0.5035 0.2278 0.0656 -1.8514 0.8904
0.90 5.2918 0.1236 0.1236 0.5279 0.3271 0.0859 -1.6116 0.8929
0.00 -4.5287 -0.0874 -0.0874 -0.144 1.32 0.3049 0.9239 0.9663
0.25 -8.6586 -0.1868 -0.1868 -0.4181 0.6102 0.157 0.0942 0.5851
400 0.75 -7.4883 -0.1581 -0.1581 -0.3366 -0.0114 0.0198 -0.4721 0.1847
0.80 -7.2108 -0.1514 -0.1514 -0.3178 -0.0784 0.0047 -0.5279 0.1393
0.90 -6.4791 -0.1337 -0.1337 -0.2692 -0.2363 -0.0309 -0.6551 0.0307
*,012 refers the correlation among responses “RB = E(B)-8 x 100

B
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The relative efficiency Table 3.2 sorts out that variance of modified maximum likelihood

estimate (MMLE) are smaller than that of maximum likelihood estimate (MLE) for each pwhich

fulfill the property of minimum variance unbiased estimate (MVUE).

Table 3.2: Relative Efficiency of MMLE on MLE

SS?;I;?TI: P12 Relative Efficiency (RE™) of Modified Maximum Likelihood Estimate
ﬁOl ﬁll ﬁZl ﬁ31 ﬁOZ ﬁlZ ﬁZZ ﬁ32
(25) (3.5) (-1.75) (-1.5) (175) (2.5) (-1.25) (-1.25)
25 0.00 1.679558 | 1.447613 | 11.088879 | 1.026724 | 1.613201 1.49928 | 11.281796 | 1.014476
0.25 1.657591 | 1.463613 | 11.143086 | 1.022805 | 1.652568 1.47003 11.17942 | 1.021568
0.75 1.666887 | 1.456668 11.11863 | 1.024485 | 1.676913 | 1.450689 11.10538 1.02611
0.80 1.668688 | 1.455341 11.11404 | 1.024808 | 1.678341 | 1.449482 11.10042 | 1.026386
0.90 1.672776 | 1.452357 11.10391 | 1.025538 | 1.680607 | 1.447465 11.09164 | 1.026835
0.00 2.136489 | 1.529128 | 14.739342 | 1.071524 | 2.077175 | 1.540895 | 14.564368 1.06151
0.25 2.12429 1.52299 14.58073 | 1.070763 | 2.103163 | 1.546549 | 14.795936 | 1.064258
50 0.75 2.130568 1.52401 | 14.631702 | 1.071479 | 2.12754 | 1.538789 | 14.825957 | 1.068817
0.80 2.131671 | 1.524366 14.6432 | 1.071578 | 2.12943 | 1.537682 | 14.821051 | 1.069247
0.90 2.133976 1.52546 | 14.672225 | 1.071731 2.13309 | 1.534996 | 14.803747 | 1.070162
0.00 2.225337 | 1.455111 14.14655 | 1.096848 | 2.215036 | 1.450167 | 13.996744 1.09577
0.25 2.228641 | 1.456161 | 14.174738 | 1.097077 | 2.21285 | 1.449773 | 13.989252 | 1.095685
100 0.75 2.228311 | 1.456145 | 14.175223 | 1.097074 | 2.218804 | 1.452457 | 14.069438 1.09627
0.80 2.228139 | 1.456099 | 14.174059 | 1.097063 | 2.219587 | 1.452789 | 14.079184 | 1.096342
0.90 2.227555 | 1.455916 | 14.169174 | 1.097024 | 2.221451 | 1.453565 | 14.101883 | 1.096511
200 0.00 2.202896 | 1.394682 13.25396 | 1.108771 | 2.209436 | 1.365277 12.8409 | 1.116077
0.25 2.230978 | 1.401563 13.49708 1.11162 | 2.174876 | 1.362831 12.63286 | 1.111277
0.75 2.223106 | 1.401294 13.45411 | 1.110467 | 2.180418 | 1.378635 12.89957 | 1.108743
0.80 2.22117 | 1.400971 13.43966 | 1.110238 | 2.182329 | 1.380608 12.93893 | 1.108615
0.90 2.216049 | 1.399761 13.39599 | 1.109709 | 2.18767 | 1.385256 13.03577 1.10844
400 0.00 1.969029 | 1.448207 12.7128 | 1.062011 | 1.992177 | 1.444276 12.7798 | 1.065618
0.25 1.945278 | 1.445951 12.53647 | 1.058923 | 2.017806 | 1.447845 12.98951 | 1.068841
0.75 1.950422 | 1.446752 12.57995 1.05956 | 1.998552 | 1.448951 12.89688 | 1.066053
0.80 1.951913 | 1.446922 12.59151 | 1.059751 | 1.995402 | 1.448952 12.87861 | 1.065614
0.90 1.956184 | 1.447337 12.62338 | 1.060306 | 1.987509 | 1.448861 12.83125 | 1.064523

* . *
P12 refers the correlation among responses

* RE — Var(EMLE)

var(BymLE)
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After estimating the parameters, testing the significance of individual regression coefficient are
essential. Multivariate t statistic can be used to test the regression coefficient. But, the Table 3.3
and figure 3.1 demonstrate that t,,,q is more powerful than multivariate t statistic for each p and

sample size.

Table 3.3: Power of the test statistics in different sample size and p

n"  Test Statistic” p=000 p=025 p=050 p=075 p=080 p=085 p=090 p=095
trod 0.4531 0.4465 0.4486 0.4617 0.4683 0.481 0.501 0.5465
25
Multivariate ¢  0.3393 0.3374 0.3371 0.3387 0.3426 0.3425 0.3551 0.380
tmod 0.6759 0.6967 0.7302 0.7978 0.8241 0.8558 0.900 0.9532
200
Multivariate t ~ 0.6308 0.6474 0.6709 0.7331 0.7551 0.7863 0.831 0.8939
tmod 0.7326 0.7667 0.8133 0.8875 0.9102 0.9429 0.972 0.9946
400
Multivariate t ~ 0.6965 0.7197 0.7618 0.8378 0.8621 0.8948 0.9335 0.9751
tmod 0.8459 0.879 0.9231 0.9757 0.9874 0.9955 0.9987 0.9999
1000
Multivariate t ~ 0.7972 0.8354 0.8788 0.9533 0.9688 0.9837 0.9951 0.9998

E3

N, " tmoq and p refer sample size, modified t statistic and population correlation coefficient among responses, respectively

It is need to address that the power of the modified test will be increased for increasing sample
size and also increasing correlation among response variables. The simulated critical values for

tmog at different levels are given in appendix 1.
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Figure 3.1: Power Comparison betweent,,qand multivariate t statistic
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3.4 reveals that the modified joint confidence regions provide shorter intervals

(modified joint confidence interval/length of multivariate t interval) for correlated response

variables from small to large sample where multivariate t intervals are slightly better for

uncorrelated responses with small sample.

Table 3.4: Evaluation of modified joint confidence interval with multivariate t interval

Sample Bi1 B21 B31 B2 B2z B2
Size P12 (3.5) (-1.75) (-1.5) (2.5) (-125) | (-1.25)
0 1693398 | 2.869468 | 0453826 | 1.505744 | 2.551487 | 0403535
25 075 | 0771601 | 130748 | 0206787 | 0.765985 | 1297964 | 0205282
0.9 0551472 | 0934471 | 0.147793 | 0550375 | 0932612 | 0.147499
0 0.009438 | 0.018844 | 0.005731 | 0.009523 | 0.019014 | 0.005783
200 075 | 0010051 | 002007 | 0006103 | 0010632 | 0021229 | 0.006456
0.9 0.010317 | 0.020599 | 0.006264 | 0.010715 | 0.021394 | 0.006506
0 0.129823 | 0239941 | 0.05763 | 0.128323 | 0237168 | 0.056964
400 075 | 0.142323 | 0263045 | 0063179 | 0.14708 | 0271835 | 0.06529
0.9 0.146152 | 027012 | 0.064878 | 0.149512 | 027633 | 0.06637
0 0.068795 | 0.133994 | 0.038015 | 0.068979 | 0.134353 | 0.038116
1000 075 | 0000244 | 0219251 | 0061231 | 4053882 | 005751 | 0.11379
0.9 0.146152 | 027012 | 0.064878 | 0.149512 | 027633 | 0.06637
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3.8 Conclusion
Parameter estimation and significant variable selection are two important goals in multivariate
analysis. This chapter reviewed systematically the previous research and proposed-i) a minimum
variance unbiased estimator namely modified MLE, ii) modified multivariatet test statistic whose
power is comparatively better than traditional multivariate t test statistic and iii) modified joint
confidence region considering exact linear restriction of multivariate regression parameters for
small to big data. Monte Carlo simulation has been used to evaluate the performance of proposed

modified methods and construct the quantile values of t,,,,qtest statistic.
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Chapter 4

Modified Inferential Approach for Multivariate Continuous Responses with

Stochastic Linear Restrictions

4.1 Multivariate Continuous Responses with Stochastic Linear Restrictions

The prior information's about the population parameter in linear regression analysis is well
known to provide more efficient estimators of regression coefficients. Such prior information can
be obtainable in different forms from different sources especially past experience of the
researcher or similar kind of researches conducted in the past. When the prior information is
available in the form of stochastic restrictions, then in many practical situations a systematic bias
can arise, due to various reasons like personal judgments of the person involved in the
experiment, in the testing of general linear hypothesis in linear models when the null hypothesis
is rejected or in missing values imputation through regression approach. Another problem in
multiple linear regression models, close linear dependency among the predictors causes the
problem of multicollinearity, which reduces the efficiency of the ordinary least squares (OLS)
estimator. Total inferential procedure both estimation technique and testing procedure need to be
addressed these shorts of phenomena in multivariate regression model to give best policy
options. Whatever, addressing stochastic constraint of unknown parameters and multicollinearity
of the predictors, we consider a modified approach for MRA with continuous responses where

can be considered both sample and non-sample information in this chapter.

4.2 Model Specification
The exact linear restrictions assume that there is no randomness involved in the prior

information. Sometimes in real life, the truthfulness of this assumption can be suspected and
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accordingly an element of uncertainty can be introduced within the parameters. Stochastic
restrictions on unknown parameters are one of the alternative techniques in the linear regression

model to tackle the multicollinearity among the predictors.

A multivariate multiple linear regression model is considered in the form

Y=XB+¢ (4.1)
where Y~MND(XB,2Q I) is n X p random matrix (observation matrix) of p continuous
multivariate ~ responses, Y = (Yl, Y,, ..., Yp), Y ~ND(XB,,0iilp,), i=12,...,p,B=

011012 "'le

021023.:-02 . .
P land X Pis the mean of the observation

(B1, B2 . Bp)s Cov(Y,Y)) = 01,2 =

O-plo-pz ...Upp
matrix E(Y) = X, Xis an n X (k + 1) design matrix of nonstochastic predictor variables with
k < n where n is the sample size. Bis a (k + 1) X p matrix of unknown parameters. £ @ Iis the

covariance matrix of the observation vector vec(Y) = (Yt, Yg, “ee Yf,)t.

In addition to model (4.1), it is supposed that there some prior information about fin the form of
a set of independent stochastic linear restrictions

E=RB+V (4.2)
where € is a vector of known elements, R is a full rank matrix with known elements and V is a
vector of stochastic elements assumed to be distributed with zero mean and variance-covariance
matrix ¥ with known elements. It is also assumed that the element of V are stochastically

independent of the elements of &.
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4.3 Parameter Estimation of Multivariate Regression with Stochastic Linear Restrictions

The least squares estimator of multivariate regression (MLSE) of the parameter, f in model (4.1)
is given by

Buse = (XEX)~1X'Y where t is the symbol of transpose (4.3)
by minimizing the objective function (Johnson and Wichern, 2013)

®; = tr[(Y — XB)'(Y — XB)] (4.4)
The MLSE estimator is the widely known estimator of the coefficients in a linear regression
model since it is unbiased and has the minimum variance among all linear unbiased estimator
(Wu, 2014). When the stochastic linear restriction as prior information on the unknown
parameters assumed to be held, Schafrin and Toutenberg (1990) introduced the method of
weighted mixed regression and developed the weighted mixed estimator (WME) where sample
information and the prior information are not equally likely based on some extraneous
consideration in the estimation of regression parameters. Considering sample information in
equation (4.1) and the prior information in equation (4.2), the form of objective function for
minimization is given as
P, = tr[(Y = XB)'(Y —XP)] +w(E —RBY ' —RB) (4.5)
wherew is a nonstochastic and nonnegative scalar weight. Since wis 0 < w < 1, the value of w
specifies an estimator in which the prior information receives less weight in comparison to the
sample information (Liu, Yang and Wu, 2013).
Differentiating of equation (4.5) with respect to fSlead to the normal equations
X‘XB — X'Y + wR'PIRB — wR'P~ & =0, (4.6)
From equation (5.6), the estimator of fis as follows-

Bwur = (XX + WR'WIR) "1 (X'Y + wR'W1§), 4.7
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And observing
X' X +wR'WP IR = (X*X)"! —wX'X)"IR' (¥ + wRY1RY)IR(X'X)!

and ((X*X)"'—wX'X)"IR' (Y + wRY'R)IRX'X) " H)WR'W & = w(X'X)1R' (W +
WRW™IR!)1E,
After simplification of equation (4.7), the modified multivariate extension of the weighted mixed
estimator is

Bymwue = Burse + WX X)T'R* (W + wR(X"X)"*R")™*(§ — RBu1sz) (4.8)
The regression model faces the challenge to handle multicollinearity problems in real life
experiment. When the problem of multicollinearity is present, the MLSE estimator may be
statistically insignificant with wrong sign and large variances; hence the biased estimation as an
alternative to the MLSE estimator is recommended in order to obtain some reduction in variance
(Ozkale, 2014; Ozbay and Kagiranlar, 2017). Ozkale and Kagiranlar (2007) introduced two
parameter estimators to overcome the problem of multicollinearity for univariate regression. The

objective function of multivariate multiple regression

5 = tr[(Y — XB)'(Y — XB)] + K| (B — dB)"(8 — dB) — C| 4.9)
Where K is the Lagrangian multiplier, C is a constant and d is a Liu (Li and Yang, 2010) biasing
parameter lies between 0 < d < 1. Differentiating both sides with respect to BandK for
minimizing the objective function (4.9)
XXB-XY+K(B-dB)=0 (4.10)
By solving the equation (4.10), the multivariate approach of the two-parameter estimator is given
as

Burre = (XEX + KD 1(X'Y + KdB)(4.11)
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Combining the objective function @, in equation (4.5) and @5 in equation (4.9), the modified

objective function

~\T PN
, = tr[(Y = XB)'(Y = XB)] + K[(B — dB)'(B — dB) — C| + w(& — RB)'W~' (£ - R),
(4.12)
where K, d, w are Lagrangian multiplier, biasing parameter and nonstochastic scalar respectively.

Differentiating both sides with respect to fandK for minimizing the objective function (4.12)

Sds

and putting %); = 0 and K 0

X'XB — XY +K(B—dB) + wWR'WY~IRB — wR'W 1§ =0 (4.13)
~~\t —~

(B—dp)'(B—dB)-c=0 (4.14)

The simplified form of equation (4.13) is
X XByrpwe + KBurpwe + WR"C T RByrpwr = X'Y + KdB + wR'W™ 1§

Burrwe = (XX + KQI + WRY1RY)1(X'Y + KdB + wR'W~1¥) (4.15)

And observing

X' X+ wR'WPY IR = (XX)"! —wX'X)"IR' (¥ + wRPIR)IR(X'X)! (4.16)

(X)) —wXX)TIR' (WY + wRPY IR TIR(X'X) " HWR'W 1 = w(X'X)1R' (W +

wWRW-1RY)~1¢& (4.17)

Using (4.16) and (4.17) in (4.15);

Burrwe = BK d) + w(X*X + KQD 'R! (W + wR(X'X + KQD'R)1(§ — RB(K, d))

(4.18)

Assumptions:

e) The predictor variables’ values of the design matrix are fixed.
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f) The distribution of random disturbances is multivariate normal i.e.
E~MND(0pxp, Zpxp)-

g) B, L are the unknown parameters where f is a (k+ 1) X p matrix of regression
coefficient.

h) The exact linear restriction exists among the subset of the parameters which is believed

to be true for each response.

4.3.1 Optimum Value of k and d
In multivariate regression, orthogonal transformation is used to convert classical regression
model to canonical form.

y=Z7ZQ+ €
Where Z=XA, Q= A*Band A is a orthogonal matrix such that Z'Z = A'X'XA = A =
dies (A1,4;,---,4p) = Adies (4,43, *+,4,) where 4; = A, = --- = 4, > 0 where 4; are the
ordered eigen value of X*X.The selection of the estimators of the parameters d and k in f(k, d)

can be obtained by applying the following literature procedure-

~2

Step 1: Calculate d where d < min { :29‘ 2}
—+6,
a0t

~2 . . ~2
0,”, 62 are the unbiased estimate of 8, and o2
Step2: Estimate Eop by using d in step 1 then

p ~2

? _lz o
P op éf—d(j—ﬂéiz

i=1

It is supposed that X!X and R'W™1R are commutative (Liu, Yang and Wu, 2013), then

Q'R'W™RQ =¥ = diag(§,, ...,&,) for k > 0. Since the value of wis weight level to the

45



sample information and the prior information, the formula to choose optimum w for the fixed

value of K, is

\/Zil h2, + 8(XF_ hi)? — XP_, by
w = 5 —
Zi=1 4'h'li

Where hy; = 62&,(A; + Kop)? and hy; = 26223 (4; + 2K,p)? + zz?gpaiﬁl? — 6282 (A + K,p)?

Step 3: Obtain &Op by using the optimum value of k

K8,” — 42
( )/(/L- + k)?

K(&2+§izﬁiz)
i (Ai+K)

Q>
=
&
Il
NGl

~
1l
Juy

Step 4: If &Opt is negative used &Opt = ﬁ.aopt is always less than one, but is bigger than zero.

4.4 Monte Carlo Experiment

In this section, the Monte Carlo simulation study has been conducted to examine the
performance of three estimation methods described in the previous section. First, the study has
been compared to relative bias by looking at the average parameter estimates over the
replications. Second, the study also has been examined the relative efficiency of three modified

statistics with a number of restricted parameters used in the simulation estimates.

The study planned a multivariate regression model with bivariate continuous responses (p = 2).
Four different sets of correlation coefficientsp = 0.25,0.75,0.80, 0.9 have been considered to
examine the consistency and efficiency of the estimators where oy; = 100 and g5, = 81
including sample sizes of different order, n = 25,50, 100, 200,400. The response matrix were

generated by multivariate regression model with continuous responses which is given below
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[Y(1)|Y(2)] = Xﬁ + ewhere,ﬂ = [B(l)lﬁ(z)]' E = [8(1)|£(2)]~MND(0, 2)

Where € are independent normal pseudo-random numbers with mean 0 and constant varianceX.

The simulation study has been continued considering the following three assumptions.
a) The predictor variable’s values of the design matrix are fixed.
b) The stochastic linear restriction exists among the subset of the parameters which is
believed to be true for each response.
c) The distribution of Y is multivariate normal distribution (MND) with mean Xfand the
covariance matrix¥ = {ai ]-} forall i,j.
For each choice of p and n, the multivariate continuous responses have been generated which

also depends on the parameter values of the regression coefficients taken to be

Bo1 Bo2 175
BwlBa] = gi 24 I_1 %5 125
P31 B2 —15 -1.25

The study has been also considered the arbitrary value of restriction matrix, R = [0 1 2 O0]for
stochastic restriction, § = Rf + V in the multivariate regression whereVis a vector of stochastic
elements assumed to be distributed with zero mean and variance-covariance matrix £ (Yang,
Chang and Liu, 2009; Li and Yang, 2010). The weight of the prior information w is chosen as
0.20, 0.50 and 0.50. Further for the Lagrangian multiplier,K and the biasing parameter, d some
selected values are chosen that 0 <k < land 0 <d < 1. The simulated performance of
Multivariate Least Squares Estimate (MLSE) estimate, Modified Restricted Least Squares Estimate
(MRLE), Multivariate Weighted Mixed estimator and Multivariate Two Parameter Weighted

Estimator depends on the number of iteration of the trials. The experiment is repeated 10000
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times by generating new pseudo-random numbers before determining the minimum number of

iteration required using the following formula given by Banks et.al. (2001)

Za/2 XSample Variance)2

Number of iteration > < ,
Margin of error

Theoretically, the ordinary least square (OLS) estimator is the best linear unbiased estimator
(Montgomery and Peck, 1992).Sometimes stochastic linear restrictions exhibit the instability of
the estimate. The Monte Carlo experiment has been revealed that simulated expected value of the
MLSE is not exactly equal to their parameter value. Table 4.1 and 4.2 reveals that the amount of
bias for both multivariate least squares estimate and modified restricted least squares estimate will

be reduced if correlation among the response variables is high.
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Table 4.1: Measuring Relative Bias (RB) of Multivariate Least Squares Estimate (MLSE) for

Different p and n

Sample . RB** of MLSE
Size,n | P12 Bo1 P11 B21 B31 Boz B12 B22 B2
(25) (3.5) (-1.75) (-1.5) (175) (2.5) (-1.25) | (-1.25)
0.25 | 32.8218 | 0.3964 | -0.2084 | -1.8764 | 3.8295 | 0.6991 | -0.3889 | -2.9772
0.75 26.556 | 0.2904 | -0.2458 | -1.4745 | 1.1574 | 03316 | -0.4245 | -1.1068
» 0.80 | 25.1104 | 0.2665 | -0.2533 | -1.3824 | 0.8552 | 0.2881 | -0.4235 | -0.8919
090 | 21.3593 | 0.205 | -0.2707 | -1.1446 | 0.1334 | 0.1826 | -0.4173 | -0.376
0.25 | 47.7633 | 0.189 -2.286 | -1.6292 | 1.3476 | 0.8672 | -2.7583 | -0.8496
0.75 43.743 | 0.0728 | -1.8318 | -1.6354 | 1.6609 | 0.5808 | -0.9044 | -1.7582
» 0.80 | 42.7352 | 0.0472 | -1.7273 | -1.6318 | 1.9668 | 0.5431 | -0.6935 | -1.836
0.90 | 40.0004 | 0.0172 | -1.4566 | -1.6151 | 2.6731 | 0.4493 | -0.1891 | -2.0042
0.25 35.343 | 0.2392 | -0.6761 | -1.7313 | 4.5744 | 0.6886 | -3.4087 | -0.9011
0.75 | 39.0907 | 0.1425 | -1.0618 | -1.7377 | 5.6402 | 0.4113 | -3.0772 | -1.867
10 0.8 39.7899 | 0.1209 | -1.1427 | -1.7339 5.69 0.3765 | -3.0057 | -1.9498
09 | 413584 | 0.0663 | -1.3406 | -1.7161 | 5.7588 | 0.2912 | -2.8108 | -2.1287
0.25 5.4331 | 0.1587 | -0.2196 | -0.437 | 3.3508 | 0.4989 | -2.6131 | -0.7515
0.75 9.2037 | 0.0893 | -0.1132 | -0.4928 | 2.9632 | 0.3061 -1.946 | -0.8862
20 0.8 9.9979 0.074 | -0.1854 | -0.5035 | 2.887 0.2818 | -1.8514 | -0.8904
0.9 11.9459 | 0.0349 | -0.3658 | -0.5279 | 2.682 0.2217 | -1.6116 | -0.8929
0.25 | 11.4336 | 0.1409 | -0.8269 | -0.2682 | 0.0497 | 0.2768 | -0.7302 | -0.4779
0.75 | 10.8005 | 0.1679 | -0.8753 | -0.2053 | 0.6137 | 0.2980 | -1.0410 | -0.1997
0 0.80 | 10.6300 | 0.1733 | -0.8833 | -0.1910 | 0.6782 | 0.2968 | -1.0625 | -0.1673
090 | 10.1513 | 0.1860 | -0.899 | -0.1541 | 0.8251 | 0.2915 | -1.1042 | -0.0893
" iy refers the correlation among responses and **RB = "8 5 100

B
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Table 4.2: Measuring Relative Bias of Modified Restricted Least Squares Estimator(MRLE) for

Different p and n

*%
RB of MRLE

Sample *
Size, n P12 Bo1 B11 P21 P31 Bo2 B12 B2 P32
(25) (3.5) (-1.75) (-1.5) (175) (2.5) (-1.25) | (-1.25)
0.25 32.8676 | 0.3955| -0.2125 | 1.8771 | -3.7991 | -0.7048 | -0.4155 | -2.9724
0.75 26.4615 0.2922 | -0.2374 | 1.4732| -1.1245| -0.3378 | -0.4534 | -1.1017
25 0.80 24.931 0.2699 | -0.2372 | 1.3800 | -0.8107 | -0.2964 | -0.4626 | -0.8849
0.90 21.1273 0.2094 | -0.2499 | 1.1415| -0.0928 | -0.1902 | -0.4529 | -0.3696
0.25 475621 | -0.1859 | -2.2700 | 1.6256 | -1.3192 | 0.8629 | 2.7362 | 0.8556
0.75 43.3734 -0.067 | -1.8024 | 1.6287 | 1.7071| 0.5737| 0.8683 | 1.7679
> 0.80 | 42.2954 | -0.0404 | -1.6923 | 1.6239 | 2.0235| 0.5344| 0.6493 | 1.8479
0.90 39.3567 | 0.0273 | -1.4053 | 1.6035| 2.7606 | 0.4359 | 0.1207 | 2.0226
0.25 35.3263 0.2395 | -0.6748 | 1.7310 | 4.5649 | -0.6873 | -3.4017 | 0.8988
0.75 39.0945 0.1424 | -1.0621 | 1.7378 | 5.6294 | -0.4098 | -3.0692 | 1.8645
s 0.80 39.7982 | 0.1208 | -1.1434 | 1.7341 | 5.6788 | -0.3750 | -2.9974 | 1.9471
090 | 41.3897 | 0.0659 | -1.3429 | 1.7167 | 5.7440 | -0.2891 | -2.7998 | 2.1251
0.25 54405 | 0.1586 | 0.2190 | 0.4371 | 3.3465| -0.4983 | -2.6100 | 0.7504
0.75 9.2301 0.0890 | -0.1151 | 0.4933 | 2.9570 | -0.3053 | -1.9415| 0.8846
20 0.80 10.0303 0.0735 | -0.1877 | 0.5042 | 2.8800 | -0.2808 | -1.8463 | 0.8887
0.90 11.9952 | 0.0343 | -0.3695 | 0.5290 | 2.6723 | -0.2204 | -1.6047 | 0.8905
0.25 11.4300 | -0.1408 | -0.8266 | 0.2681 | -0.0499 | -0.2768 | -0.7301 | -0.4780
0.75 10.7977 | -0.1678 | -0.8751 | 0.2053 | 0.6134 | -0.2980 | -1.0408 | -0.1997
0 0.80 10.6272 | -0.1732 | -0.8830 | 0.1909 | 0.6780 | -0.2968 | -1.0623 | -0.1673
0.90 10.1484 | -0.1859 | -0.8988 | 0.1541 | 0.8249 | -0.2915 | -1.1041 | -0.0893
" 1y refers the correlation among responses and **RB = EE1E 5 100
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Table 4.3: Relative Efficiency (RE) of Modified Restricted Least Squares Estimator (MRLE)

with respect to MLSE for Different p and n

Sample N RE** of MRLE
Size,n | P12 Bo1 P11 Ba1 B31 Boz P12 B2 B3z
(25) (3.5) (-1.75) (-1.5) (175) (2.5) (-1.25) (-1.25)
0.25 | 1.007884 | 1.006286 | 1.018122 | 1.000488 | 1.009729 | 1.007614 | 1.022311 | 1.000552
0.75 | 1.007895 | 1.00648 | 1.018142 | 1.000542 | 1.009815 | 1.007727 | 1.022314 | 1.000628
» 0.80 | 1.0078951 | 1.006512 | 1.01843 | 1.000527 | 1.009843 | 1.007757 | 1.022334 | 1.000645
0.90 1.00796 | 1.00655 | 1.018433 | 1.000578 | 1.009848 | 1.007758 | 1.022638 | 1.000691
0.25 | 1.005096 | 1.003302 | 1.008901 | 1.000634 | 1.006222 | 1.004111 | 1.011007 | 1.000729
0.75 | 1.005127 | 1.003381 | 1.00891 | 1.00065 | 1.006256 | 1.004103 | 1.010866 | 1.000737
¥ 0.80 1.00514 | 1.003381 | 1.008989 | 1.000654 | 1.006280 | 1.004096 1.01082 | 1.000798
0.90 | 1.005148 | 1.00339 | 1.008991 | 1.000666 | 1.006874 | 1.004081 1.0107 | 1.000798
0.25 | 1.002603 | 1.001461 | 1.004403 | 1.000416 | 1.003206 | 1.001818 | 1.005452 | 1.000507
0.75 | 1.002609 | 1.001467 | 1.004407 | 1.000422 | 1.003212 | 1.001839 | 1.005473 | 1.000508
. 0.80 | 1.002616 | 1.001469 | 1.004481 | 1.000426 | 1.00322 | 1.001848 1.00548 | 1.0005081
0.90 | 1.002625 | 1.001469 | 1.00482 | 1.000432 | 1.003223 | 1.001852 1.00548 | 1.000509
0.25 | 1.001131 | 1.000595 | 1.001912 | 1.000203 | 1.00135 | 1.000697 | 1.002356 | 1.000241
0.75 | 1.001137 | 1.000596 | 1.001915 | 1.000205 | 1.001351 1.0007 | 1.002357 | 1.000241
=0 0.80 | 1.001138 | 1.000598 | 1.001916 | 1.000206 | 1.001351 1.0007 | 1.002358 | 1.000241
0.90 | 1.001147 | 1.000599 | 1.001927 | 1.000208 | 1.001352 1.0007 | 1.0023581 | 1.000242
0.25 | 1.000379 | 1.000244 | 1.000722 | 1.000042 | 1.00048 | 1.000305 | 1.000894 | 1.000054
0.75 | 1.000374 | 1.000246 | 1.000723 | 1.000044 | 1.000489 | 1.000307 | 1.000902 | 1.000056
0 0.80 | 1.000372 | 1.000247 | 1.00073 | 1.000045 | 1.000491 | 1.000307 | 1.000905 | 1.000056
0.90 | 1.000366 | 1.000249 | 1.000731 | 1.000049 | 1.000499 | 1.000308 | 1.000914 | 1.000058
’ var(Busse)

D12 refers the correlation among responses and **RE =

var(BMrLE)
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In Table 4.3, the performance of modified restricted least squares estimator (MRLE) is relatively

more efficient than MLSE for different sample size where the stochastic restriction presents in

regression parameters of the multivariate regression model.

Table 4.4: Relative Efficiency (RE) of Modified Multivariate
(MMWLS) Estimate with respect to MLSE for Different p, W and n

Weighted Least Square

RE** of MMWLS
Sample * *%
Size, n P12 w Bo1 B11 Ba1 B31 Boz B12 B2z B3z
(25) (3.5 (-1.75) (-1.5) (175) (2.5) (-1.25) | (-1.25)
0.2 | 1.001557 | 1.001266 | 1.003617 | 1.000084 | 1.001962 | 1.001537 | 1.004453 | 1.000112
023 0.5 | 1.003883 | 1.003156 | 1.009049 | 1.000209 | 1.004889 | 1.003829 | 1.011141 | 1.000279
0.8 | 1.006197 | 1.005037 | 1.01449 | 1.000333 | 1.007799 | 1.006105 | 1.017839 | 1.000443
0.2 | 1.001494 | 1.001308 | 1.00363 | 1.00007 | 1.00199 | 1.00151 | 1.004463 | 1.000128
073 0.5 | 1.003721 | 1.003258 | 1.009074 | 1.000173 | 1.00495 | 1.003752 | 1.011139 | 1.000318
0.8 | 1.005931 | 1.005196 | 1.014516 | 1.000275 | 1.007879 | 1.005966 | 1.017792 | 1.000505
% 0.2 | 1.001483 | 1.001316 | 1.003635 | 1.000067 | 1.002002 | 1.001502 | 1.004463 | 1.000132
080 0.5 | 1.00369 | 1.003278 | 1.009079 | 1.000166 | 1.004974 | 1.003726 | 1.011124 | 1.000327
0.8 | 1.005877 | 1.005224 | 1.014513 | 1.000263 | 1.007908 | 1.005916 | 1.017744 | 1.000519
0.2 | 1.001439 | 1.001336 | 1.003627 | 1.000058 | 1.002036 | 1.001568 | 1.004444 | 1.000143
0% 0.5 | 1.003567 | 1.003316 | 1.009026 | 1.000143 | 1.005028 | 1.003731 | 1.011002 | 1.000353
0.8 | 1.005658 | 1.005266 | 1.014376 | 1.000225 | 1.007945 | 1.00594 | 1.017429 | 1.000557
0.2 | 1.001021 | 1.000662 | 1.001798 | 1.000127 | 1.001247 | 1.000825 | 1.002198 | 1.000147
025 0.5 | 1.00255 | 1.001654 | 1.004499 | 1.000318 | 1.003115 | 1.00206 | 1.005497 | 1.000366
0.8 | 1.004079 | 1.002643 | 1.007202 | 1.000508 | 1.00498 | 1.003291 | 1.008802 | 1.000584
> 0.2 | 1.001028 | 1.000659 | 1.001796 | 1.000131 | 1.001217 | 1.000826 | 1.002176 | 1.000143
07 0.5 | 1.002567 | 1.001644 | 1.00449 | 1.000326 | 1.003038 | 1.00206 | 1.005437 | 1.000356
0.8 | 1.004104 | 1.002627 | 1.007186 | 1.000521 | 1.004851 | 1.003287 | 1.008696 | 1.000567
0.80 | 0.2 | 1.001031 | 1.000659 | 1.001798 | 1.000132 | 1.00121 | 1.000826 | 1.00217 | 1.000141

52




0.5 | 1.002575 | 1.001645 | 1.004495 | 1.000328 | 1.003017 | 1.002058 | 1.005419 | 1.000351

0.8 | 1.004115 | 1.002627 | 1.007191 | 1.000524 | 1.004814 | 1.003283 | 1.008662 | 1.00056

0.2 | 1.001037 | 1.000654 | 1.001793 | 1.000134 | 1.001193 | 1.000829 | 1.002163 | 1.000137

0% 0.5 | 1.002585 | 1.00163 | 1.004477 | 1.000335 | 1.002965 | 1.00206 | 1.005386 | 1.000339
0.8 | 1.004125 | 1.002599 | 1.007152 | 1.000534 | 1.004717 | 1.003277 | 1.008583 | 1.000538

0.2 | 1.000521 | 1.000297 | 1.00088 | 1.000083 | 1.000642 | 1.000364 | 1.001089 | 1.000102

025 0.5 | 1.001302 | 1.000741 | 1.0022 | 1.000208 | 1.001604 | 1.00091 | 1.002724 | 1.000254
0.8 | 1.002083 | 1.001185 | 1.003521 | 1.000333 | 1.002565 | 1.001455 | 1.00436 | 1.000407

0.2 | 1.000522 | 1.000294 | 1.000877 | 1.000085 | 1.000644 | 1.000369 | 1.001095 | 1.000102

07 0.5 | 1.001305 | 1.000734 | 1.002193 | 1.000211 | 1.001608 | 1.000921 | 1.002737 | 1.000254
100 0.8 | 1.002088 | 1.001174 | 1.003509 | 1.000338 | 1.002571 | 1.001472 | 1.004378 | 1.000406
0.2 | 1.000524 | 1.000293 | 1.000876 | 1.000085 | 1.000643 | 1.000371 | 1.001097 | 1.000101

080 0.5 | 1.001309 | 1.000731 | 1.002191 | 1.000213 | 1.001606 | 1.000926 | 1.002742 | 1.000252
0.8 | 1.002093 | 1.001168 | 1.003505 | 1.000341 | 1.002567 | 1.00148 | 1.004385 | 1.000403

0.2 | 1.000527 | 1.000291 | 1.000876 | 1.000087 | 1.00064 | 1.000373 | 1.001096 | 1.0001

020 0.5 | 1.001315 | 1.000725 | 1.002188 | 1.000217 | 1.001595 | 1.00093 | 1.002736 | 1.000248
0.8 | 1.002102 | 1.001158 | 1.003498 | 1.000346 | 1.002546 | 1.001484 | 1.00437 | 1.000395

0.2 | 1.000226 | 1.000119 | 1.000382 | 1.000041 | 1.00027 | 1.00014 | 1.000471 | 1.000048

023 0.5 | 1.000565 | 1.000298 | 1.000956 | 1.000102 | 1.000675 | 1.000349 | 1.001177 | 1.000121
0.8 | 1.000905 | 1.000476 | 1.00153 | 1.000163 | 1.00108 | 1.000558 | 1.001884 | 1.000193

0.2 | 1.000227 | 1.000118 | 1.000383 | 1.000041 | 1.00027 | 1.00014 | 1.000466 | 1.000048

073 0.5 | 1.000569 | 1.000296 | 1.000957 | 1.000103 | 1.000676 | 1.00035 | 1.001164 | 1.00012
200 0.8 | 1.00091 | 1.000474 | 1.001532 | 1.000164 | 1.001081 | 1.00056 | 1.001863 | 1.000192
0.2 | 1.000228 | 1.000118 | 1.000383 | 1.000041 | 1.00027 | 1.00014 | 1.000465 | 1.000048

080 0.5 | 1.000569 | 1.000296 | 1.000958 | 1.000103 | 1.000676 | 1.00035 | 1.001162 | 1.00012
0.8 | 1.000911 | 1.000473 | 1.001533 | 1.000165 | 1.00108 | 1.00056 | 1.001858 | 1.000193

0.2 | 1.00023 | 1.000118 | 1.000386 | 1.000042 | 1.000269 | 1.00014 | 1.000461 | 1.000048

0% 0.5 | 1.000574 | 1.000296 | 1.000964 | 1.000104 | 1.000671 | 1.000349 | 1.001151 | 1.000119
0.8 | 1.000918 | 1.000473 | 1.001542 | 1.000167 | 1.001073 | 1.000558 | 1.001841 | 1.000191
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0.2 | 1.000076 | 1.000049 | 1.000144 | 1.000008 | 1.000096 | 1.000061 | 1.000179 | 1.000011
0.25 | 0.5 | 1.00019 | 1.000122 | 1.000361 | 1.000021 | 1.00024 | 1.000153 | 1.000447 | 1.000027

0.8 | 1.000303 | 1.000195 | 1.000577 | 1.000033 | 1.000384 | 1.000244 | 1.000716 | 1.000043

0.2 | 1.000075 | 1.000049 | 1.000142 | 1.000008 | 1.000098 | 1.000061 | 1.00018 | 1.000011

0.75 | 0.5 | 1.000187 | 1.000121 | 1.000356 | 1.00002 | 1.000245 | 1.000153 | 1.000451 | 1.000028

0.8 | 1.000299 | 1.000194 | 1.00057 | 1.000033 | 1.000391 | 1.000245 | 1.000722 | 1.000045

200 0.2 | 1.000074 | 1.000048 | 1.000142 | 1.000008 | 1.000098 | 1.000061 | 1.000181 | 1.000011
0.80 | 0.5 |1.000186 | 1.000121 | 1.000355 | 1.00002 | 1.000246 | 1.000153 | 1.000452 | 1.000028

0.8 | 1.000298 | 1.000194 | 1.000568 | 1.000032 | 1.000393 | 1.000245 | 1.000724 | 1.000045

0.2 | 1.000073 | 1.000048 | 1.00014 | 1.000008 | 1.0001 | 1.000062 | 1.000183 | 1.000012

0.90 | 0.5 | 1.000183 | 1.000121 | 1.000351 | 1.00002 | 1.000249 | 1.000154 | 1.000457 | 1.000029

0.8 | 1.000293 | 1.000193 | 1.000561 | 1.000031 | 1.000399 | 1.000246 | 1.000731 | 1.000046

* var (Buvse)

. *k . .
D12 refers the correlation among responses, W refers nonnegative scalar weight and***RE =

var (BunwLs)

Table 4.4 has been represented that the modified multivariate weighted mixed estimator

(MMWME) is shows better performance rather than MLSE. It is also stated in the simulation

experiment that if the correlation between predictors inflates, then the estimated relative

efficiency values of the modified multivariate weighted mixed estimator (MMWME) also

Increase.
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Table 4.5: Relative Efficiency (RE) of modified two parameters weighted mixed estimator

(MTPWME) with respect to MLSE for Different p, W and n

RE*** of Modified Multivariate Two Parameter Weighted
Sample . . Estimator
sizen | 712 | g B g B g
11 21 31 12 22 32

(3.5 (-1.75) (-1.5) (2.5) (-1.25) (-1.25)

0.2 | 2.487068 | 2.469872 | 1.910375 | 2.554078 | 2.560669 | 1.912374

0.25 0.5 | 2.487264 | 2.470203 | 1.91036 | 2.554253 | 2.561108 | 1.912318

0.8 2.48746 | 2.470534 | 1.910345 | 2.554429 | 2.561547 | 1.912262

0.2 | 2.692266 | 2.68273 | 1.920508 | 2.769392 | 2.749747 | 1.918376

0.75 0.5 | 2.692476 | 2.683073 | 1.920498 | 2.769546 | 2.750175 | 1.918321

0.8 | 2.692686 | 2.683417 | 1.920488 | 2.769701 | 2.750604 | 1.918266

2 0.2 | 2.739507 | 2.730736 | 1.926606 | 2.820264 | 2.797978 | 1.924713
0.80 | 0.5 | 2.739724 | 2.731085 | 1.926598 | 2.820411 | 2.798404 | 1.924657

0.8 2.73994 | 2.731435 | 1.926589 | 2.820558 | 2.79883 1.924602

0.2 | 2.877911 | 2.870047 | 1.95087 | 2.969743 | 2.94189 | 1.949232

0.90 | 0.5 | 2.878164 | 2.870423 | 1.950869 | 2.969849 | 2.942297 | 1.94917

0.8 | 2.878416 | 2.870799 | 1.950869 | 2.969954 | 2.942705 | 1.949108

0.2 | 2.601416 | 2.407231 | 2.027656 | 2.703683 | 2.532185 1.98785

025 0.5 | 2.601578 | 2.407415 | 2.027644 | 2.703838 | 2.532463 | 1.987793

0.8 2.60174 | 2.407599 | 2.027631 | 2.703993 | 2.532741 | 1.987737

0.2 | 2.828575 | 2.572447 | 2.035532 | 2.957099 | 2.679187 | 2.003298

0.75 0.5 | 2.828755 | 2.572634 | 2.035524 | 2.957232 | 2.679439 | 2.003245

50 0.8 | 2.828935 | 2.572822 | 2.035517 | 2.957365 | 2.679691 | 2.003192
0.2 | 2.881635 | 2.610218 | 2.041818 | 3.017018 | 2.716301 | 2.010998

0.8 0.5 | 2.881824 | 2.610409 | 2.041813 | 3.017144 | 2.716548 | 2.010945

0.8 | 2.882013 | 2.610599 | 2.041808 | 3.017269 | 2.716794 | 2.010892

0.2 | 3.034665 | 2.72106 | 2.065738 | 3.192632 | 2.82745 | 2.039173

0.9 0.5 3.0349 2.721268 | 2.065742 | 3.192718 | 2.827681 | 2.039113

0.8 | 3.035135 | 2.721476 | 2.065746 | 3.192803 | 2.827912 | 2.039053

0.2 | 2.326808 | 2.262891 | 1.980358 | 2.50151 | 2.501585 | 1.901793

0.25 0.5 | 2.326914 | 2.263014 | 1.980352 | 2.501609 | 2.501805 | 1.901749

0.8 232702 | 2263136 | 1.980346 | 2.501708 | 2.502025 | 1.901704

100 0.2 | 2.479874 | 2.428602 | 1.963829 | 2.683715 | 2.629919 | 1.918062
0.75 0.5 | 2.479999 | 2.428733 | 1.963831 | 2.683787 | 2.630118 | 1.918016

0.8 | 2.480125 | 2.428863 | 1.963833 | 2.683858 | 2.630317 | 1.917971

0.8 0.2 | 2516164 | 2.46414 | 1.965517 | 2.727515 | 2.660732 | 1.923332
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0.5 2.516297 | 2.464274 | 1.965522 | 2.727579 | 2.660927 | 1.923286

0.8 2.51643 | 2.464407 | 1.965526 | 2.727643 | 2.661122 | 1.923239

0.9 0.2 2.619273 | 2.564953 | 1.977005 | 2.852575 | 2.750268 | 1.942597

0.9 0.5 2.619448 | 2.565104 1.97702 | 2.852599 | 2.750452 | 1.942541

0.9 0.8 2.619623 | 2.565255 | 1.977036 | 2.852623 | 2.750636 | 1.942486

0.2 1.931704 | 1.998775 | 1.869967 | 2.048222 | 2.329264 | 1.721134

0.25 0.5 1.931773 1.99886 1.869965 | 2.048285 | 2.329439 | 1.721106

0.8 1.931842 | 1.998946 | 1.869963 | 2.048348 | 2.329615 | 1.721079

0.2 2.011653 | 2.159665 | 1.826335 | 2.179246 | 2.434512 | 1.730851

0.75 0.5 1.000296 | 1.000957 | 1.000103 1.00035 1.001164 1.00012

0.8 2.011827 | 2.15986 1.82635 | 2.179322 | 2.434828 | 1.730783

200 0.2 | 2.030232 | 2.190971 | 1.822922 | 2.209592 | 2.457739 | 1.734727
0.8 0.5 2.030326 | 2.191072 | 1.822932 | 2.209623 | 2.457895 | 1.734691

0.8 2.03042 | 2.191173 | 1.822942 | 2.209654 | 2.458051 | 1.734655

0.2 | 2.081067 | 2.274436 | 1.819145 | 2.292133 | 2.52014 1.747612

0.9 0.5 2.081193 | 2.274554 | 1.819167 | 2.292132 | 2.520295 | 1.747562

0.8 2.08132 | 2.274671 | 1.819189 | 2.29213 2.52045 1.747513

0.2 1.520573 | 1.660035 | 1.711523 | 1.613199 | 1.988925 1.48605

0.25 0.5 1.520622 | 1.660098 | 1.711529 | 1.613244 | 1.989041 | 1.486038

0.8 1.52067 1.660161 | 1.711534 1.61329 1.989156 | 1.486026

0.2 1.543241 | 1.788547 | 1.641626 | 1.663116 | 2.028195 | 1.483066

0.75 0.5 1.543302 | 1.788622 1.64164 1.663145 | 2.028305 | 1.483045

500 0.8 1.543363 | 1.788698 | 1.641655 | 1.663174 | 2.028415 | 1.483024

0.2 1.548852 1.80998 1.632819 | 1.675161 | 2.037024 | 1.483189

0.8 0.5 1.548917 | 1.810059 | 1.632836 | 1.675185 | 2.037134 | 1.483165

0.8 1.548983 | 1.810137 | 1.632854 | 1.675209 | 2.037244 | 1.483141

0.2 1.562962 | 1.862002 | 1.612019 | 1.704516 | 2.053631 | 1.483965

0.9 0.5 1.563049 | 1.862093 1.61205 1.704516 | 2.053745 | 1.483924

0.8 1.563136 | 1.862184 1.61208 1.704516 | 2.05386 1.483884

*

. o . . var(B
D12 refers the correlation among response, W refers nonnegative scalar weight and***RE = _Var(Puise)

Var (BurpwME)

According to table 4.5, it is observed that the modified two parameters weighted mixed estimator
(MTPWME) is superior to the MLSE. It is also seen that an increase in W generally increase the
relative efficiency of MTPWME, which leads to the results that an increment to the weight of the
prior information increases the dominance of the modified two parameters weighted mixed

estimator (MTPWME) over the MLSE which is true for small to large sample size.
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4.5 Conclusion

In this chapter, multivariate two-parameter weighted (MTPWE) estimator has been proposed for
the estimation of multivariate regression models with stochastic linear regression. Moreover, a
Monte Carlo simulation is done to ensure a comparison of the proposed multivariate two-
parameter weighted (MTPWE) estimator to the other modified methods for different sample size
and various levels of different parameters. Based on the Monte Carlo simulation, the study

reveals that the MTPWE always outperforms for multicollinearity aspects.
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Chapter 5

Modified Inferential Approach for Multivariate Mixed Responses

5.1 Introduction

In applied research especially socio-demographic, epidemiological and agricultural study, the
researcher needs to find out the influential factors for the target multivariate responses where the
response variables may follow the mixed distribution and the parameters of the model may be
restricted. However, the concept of multivariate regression faces hurdles when the response
matrix is a combination of both categorical and numerical variables which is a common scenario
in socio-economic and demographic analysis.

Hence, multivariate regression analysis faces a problem to estimate regression parameters or
testing it because of the error distribution may not be multivariate normal. One example of the
response vectors may be that it consists of desired family size, mothers weight and contraceptive
use whereas, covariate matrix consists of age, income, education, sex, number of children,
employment status, migration status etc. Hence, the challenge for the social statistician is to
develop the appropriate model by addressing challenging issues and seek out powerful
estimation and hypothesis testing procedure to fit model correctly and predicting or forecasting
about the future phenomenon. In this chapter, the study has been tried to propose an estimation
technique for the restricted parameters of multivariate regression with mixed responses. Here, the

multivariate multiple regression models is as follows-

Ynxp = nx(r+1)ﬂ(r+1)xp + Enxp

E(€w) =0, Cov(€w, €p) =oul ; k=12 .p
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where, Yy, is the vector of the n measurements of the mixed variables; B4q)xprefers the
matrix of regression coefficients with restriction; €,y,is the vector of error which follows

multivariate mixed distribution; and Z,+1)is the design matrix.

5.2 Review of Literature

When categorical and continuous responses occur simultaneously then influential factors on
responses can’t be assessed jointly through separate analysis of those responses (Cox and
Wermuth, 1992). Furthermore, the separate analysis gives biased estimates for the parameters
and misleading inference. So, for multivariate mixed categorical and continuous responses, a
joint model with appropriate distribution pattern is necessary for precise analysis (Samani and
Ganjali, 2008). Heckman (1978) was initiated to develop a general model for simultaneously
analyzing two mixed correlated responses. The joint model considers that categorical responses
are inter-correlated and also are dependent on continuous responses. Simultaneous modeling of
categorical and continuous variables can be described in terms of a correlated multivariate
normal distribution for the underlying latent variables of ordinal responses and continuous

responses (Samani and Ganjali, 2008).

Though very little research has been addressed the problem of estimating joint density function
with mixed categorical and continuous responses; but still established parametric or
Semiparametric procedure are not available to estimate joint density functions for mixed
responses, calculating the multivariate regression coefficients for mixed responses, model
specification test, and the test of the individual parameters. In this study, a modified maximum
likelihood estimator has been proposed to estimate the restricted parameters of multivariate

regression with continuous responses.
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5.3 Proposed Approach of Parameter Estimation in Multivariate Regression with Mixed
Responses

5.3.1 Model Specification

Let Y be an n X 2 observation matrix of mixed response variables and X be a design matrix of

n X (k + 1) nonstochastic predicted variables with rank k < n where n is the sample size. A
multivariate regression model with linear restriction is given as

Y = XB + & with prior restriction Rf§; = §; and R, = &,

Yiip Yo 1
. . . . , success
where Y = }T}_Z Y_Z__Z is the mixed response with categorical response Y, = {0 failure and
Yln YZn
continuous response ¥, which lies between —oo to + co. Here, the design matrix, disturbance
Xo1 X110 X €11 €21
term and matrix of regression coefficient are X = _)_(_02 ___X12 . Xiez ,e=| %12 22
XOTl XlTL - an Sln 827’1
P Pan Ryt Ry - Ria
B = B__l_Z B_%_Z respectively. The restricted parameters are R = | ... and
ﬁln .BZn ROr er Rrr r<k

§i=Cin Si2) .
The model considered the following assumption to estimate the parameters.
1) The sample observation for each unit is independent.

i1) Each restriction is same for both dependent variables.

5.3.2 Parameter Estimation
The random component identifies the probability distribution function of response variable. The
joint distribution of the response variables Yjand Y, given the design matrix X without

restriction is given below
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1 2
[3B01+B11X1i+~--+ﬁk1in+V12Yzi]Yli e—m(yzi— Poz= F12X1i == Pz Xki)
1

[V, YlXq, o X)) = N [1+ ePortBraXait+Br1Xki+V12Y2i]
(5.1
So, the likelihood function of the parameters for Y and Y, given X is
[e301+B11X1i+"'+ﬁk1in+Y12Yzi]yli e_#(yzr Boz= B1zXai == BiaXit)
1
L(ﬂjl’ ﬁ]Z) = H?=1 Jm [1+ eBOl+B11X1i+'"+ﬁklxki+y12YZi] (5'2)
forj=12,..k
Taking logarithm both sides in equation (5.2), the log likelihood function will be
n 1 [3301+ﬁ11X1i+---+Bk1in+y12Y2i]Yli [e—#(yzi— Boz— B12X1i —— ﬁkszi)z]
Inl=in 1:1[ o\ 21 [1 + ePortBiaXait +Br1Xkity12Y2i]

In order to estimate the regression coefficient, the following log-likelihood function will be
InL =

Y1 Yii(Bor + BuiXei + -+ BraXui + VizYai) — Xiey In[1 + ePortPuact +BaXitvizYai] —

1 1
202 ?:1(Y2i = Boz — P12X1i — - — ﬂkszi)z + nin (ﬁ) (5.3)

Though the link functions play a vital role of linking the random component with systemic

component for exponential family but the link function of the joint distribution containing binary

and continuous responses will be mixed, namely logit link and identity link bridging by an

association parameters (Islam and Chowdhury, 2017). Here, y, is the association parameter.

Consider the following restrictions on the parameter space of the coefficient vector f,RBj; = &;

and Rfj; = &,, the modified maximum likelihood estimate is proposed by imposing restriction
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on the log likelihood function (5.3). Therefore, the following objective function should be

maximized.

z(ﬁjl!ﬁjbﬂ'lfﬂ'z) =LnlL+ /11(Rﬂj1 — 51) + /12(R:8j2 — fz) (5.4)

where 4, and A, are two Lagrangian multipliers for different restrictions, respectively.

Using matrix approach in equation (5.4) and taking differentiation with respect to §;; to find the

first normal equation (5.5)

57 X'Bi1+Y. ,
[ - W nttra) |y gy =g (5.5)

= X'|Y,
8Bj1 1+eXP(X’ﬁj1+YZV12)

Hence, Newton-Raphson method has been used to estimate the parameters for categorical

response given design matrix Xand continuous responseY,.

Aj(izrrrllznle) = Bl aniey + X'X)'R'[RX'X) ' R'1[é1 — RBf e
-'-B\jl(mmle)= le(mle) - (X,X)_lR’[R(X,X)_lR’]_l[Rle(mle) - fl] (5-6)

Using matrix approach in equation (5.4) and taking differentiation with respect tof;, to find the

second normal equation (5.7).

57
6Bj2

= =2X'Y, + 2X'X Bjzgmmiey + R'A; =0 (5.7)

Now, restriction Rfj; —¢, =0 has been used to estimate the parameters of f;;, Hence,
minimization of the objective function with respect to S, and A,, we derived the modified

likelihood estimate for f;, .
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Bizanmiey = Bjizgmiey — X' X)TR'[RX'X) R’ [RBj2miey — &2 (5-8)

Now, differentiating both sides with respect toy;, for obtain (Islam and Chowdhury, 2017)
the normalized equation (5.9)

5t _ Y..Y. Yaiexp(XBji+ Yaivaz)| _
SV — aj=1|11i12i — 1 (X Y. ) -
Yj2 + exp(XBj1+ Y2iv12

0 (5.9)

exp(XBji+ Yav12)
1+ exp(XBj1+ Yav12)

Sincep; =m = the equation (4.9) has been reduced as

Y YoilYy; — P;] = 0, hence iterative weighted least square has been used to find out the

modified maximum likelihood estimate for y;,.

~ 1 ~ 27y -1 51

pUtD = 9t 4+ (WY,)” V(Y — BY) (5.10)
where P/ is the estimated value of P; using ,[?jtl andW' = diag 13](1 - Isi) such that 13] in the
jthelement of the 7’.Again, differentiating both sides with respect to a2 and putting the function

equal zero for measuring o2 .

= = o 0 (Ve — XBj2) (Yai — XBj2) (5.11)

202 20*

1 ,
6% = H(YZ — XBa;) (Y2 — XBs;)

5.4 Monte Carlo Experiment

Monte Carlo experiments have been conducted to examine the performance of the newly
proposed modified maximum likelihood estimator for estimating and testing the restricted
parameters of the multivariate regression model with mixed responses. The study considered a
multivariate regression model with mixed responses (p = 2) where categorical response

1, success

. and continuous response Y, lies between —oo to + oo.
0, failure

- |
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Since the application of multivariate regression analysis depends on the correlation among the
response variables, the different trials have been conducted for different arbitrary value of
correlation coefficient namely, p = 0.00, 0.25,0.75, 0.80,0.90 where o4, = 100 and g,, = 81
including sample sizes of different order, n = 25,50,100,200,400. The generation of
multivariate responses also depends on the parameter values of the regression coefficients taken
to be

Bji» =125 35 —-1.75 —1.5]andpBj, =[175 2.5 -125 -1.25 55]

DR, =[0 1 2 0] 2) Ry=[01 2 0 0]for&=1[0 0]respectively.

The relative efficiency (RE) has been used to diagnosis the simulated performance of modified
maximum likelihood estimate and maximum likelihood estimator for restricted coefficients of
multivariate regression with continuous responses. Hence, the study used 10,000 times iteration

to find the results.
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Table 5.1: Relative Efficiency (RE) of MMLE on MLE for Multivariate regression with mixed

responses
SSE;:;?::' Pz Relative Efficiency (RE"") of Modified Maximum Likelihood Estimate
Bos P11 Bz1 B31 Boz P12 B2z B3z 14
(25) (3.5 (-1.75) (-1.5) (175) (2.5) (-1.25) | (-1.25) | (5.5)
0.00 1.6132 1.4993 11.2818 1.0145 3.1512 | 0.4455 | 19.9002 | 1.2766 | 0.8789
0.25 1.6526 1.47 11.1794 1.0216 1.7119 1.449 | 11.5114 | 1.0388 | 1.0753
25 0.75 1.6769 1.4507 11.1054 1.0261 1.722 | 1.4028 | 10.8732 | 1.0445 | 1.0893
0.80 1.6783 1.4495 11.1004 1.0264 1.1873 | 2.3213 | 12.0493 | 1.7593 | 1.9428
0.90 1.6806 1.4475 11.0916 1.0268 225122113 | 16.6991 1.848 | 1.958
0.00 2.0772 1.5409 14.5644 1.0615 | 61.4582 | 0.0007 | 17.8633 | 2.1534 | 1.9384
0.25 2.1032 1.5465 14.7959 1.0643 2.0753 | 2.9331 | 18.6844 | 2.7262 | 1.9616
50 0.75 2.1275 1.5388 14.826 1.0688 2.2655 | 3.0195 | 18.7296 | 2.7251 | 1.9896
0.80 2.1294 1.5377 14.8211 1.0692 9.3336 | 6.1609 | 18.8757 2.762 | 1.9964
0.90 2.1331 1.535 14.8038 1.0702 3.5262 | 4.0497 | 18.8803 | 2.3288 | 1.0543
0.00 2.215 1.4502 13.9967 1.0958 1.2048 1.168 4.2097 | 1.1962 | 1.9932
0.25 2.2129 1.4498 13.9893 1.0957 1.3984 | 1.3585 1.6842 | 1.4101 | 1.9797
100 0.75 2.2188 1.4525 14.0694 1.0963 1.8569 | 1.3765 3.7339 | 1.8469 | 1.9953
0.80 2.2196 1.4528 14.0792 1.0963 1.8784 | 1.9254 4.9135 | 1.85321 | 1.9755
0.90 2.2215 1.4536 14.1019 1.0965 1.9008 | 1.6353 7.3219 | 1.2576 | 1.9109
0.00 2.2094 1.3653 12.8409 1.1161 1.6232 | 1.1627 2.884 | 1.2841 | 1.0535
0.25 2.1749 1.3628 12.6329 1.1113 1.4371 | 1.2263 3.8123 1.294 | 1.0927
200 0.75 2.1804 1.3786 12.8996 1.1087 1.596 | 2.7186 6.2365 | 1.7699 | 1.098
0.80 2.1823 1.3806 12.9389 1.1086 2.6294 | 2.7918 6.6784 | 2.1096 | 1.0937
0.90 2.1877 1.3853 13.0358 1.1084 1.6509 | 2.6491 7.4321 | 2.7842 | 1.0979
0.00 1.9922 1.4443 12.7798 1.0656 1.6509 | 2.6491 1.4321 | 2.7842 | 1.0179
0.25 2.0178 1.4478 12.9895 1.0688 1.4389 | 2.7429 2.891 | 1.1362 | 1.0019
400 0.75 1.9986 1.449 12.8969 1.0691 1.6897 | 2.7864 | 43.4435 | 1.5493 | 1.0098
0.80 1.9954 1.449 12.8786 1.0696 1.7795 | 2.7957 6.4671 | 1.3749 | 1.0068
0.90 1.9875 1.4489 12.8313 1.0699 1.8718 | 2.4598 | 41.9685 1.321 | 1.0054
*P12 refers the correlation among response, and "~ RE = M
var(BumLE)

According to Table 5.1, it is observed that the modified maximum likelihood estimate is superior

to the MLE for the restricted parameters of multivariate regression with mixed responses.
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Theorem 5.1: Let Y;;~Bernouli(P;)and Y,;~Normal (u, 6?) are to be random variables which
are interrelated. Y; and Y, are the categorical and continuous variables respectively and
X1i, X5, -, Xi; are the explanatory variables. Hence the joint density function of Y;and Y, given
the explanatory variables X;;, Xo;, ..., Xi; 18

P[Yll Y2|X11X21X3; Xk]

. 1
1 [exp [Bo1 + BiaX1i + - + BraXwi + V12Y2i]171 X exp [—ﬁ(hi — Boz = Bizx1i — = = BrzaXki)?]
oV2r 1+exp [Bor + Braxyi + -+ + BraXki + Y12Y2il

Let Y, is a continuous random variable with density function

1 1
P[Y; = y,1X1 = %1, X3 = x5, . X = xp] = ovan CXP [‘ﬁ()’zi — Boz — B1zX1i — ** — BraXki)* Whose
distribution is normal with expectation Bo, + B12X1; + B22X2i + *** + BraXk; and variance o2,

Yii V..
PY1|Yy, X1, o, Xil = P[Ys = y1lYo = 2, X1 = X, . Xpe = x4] = P 1 - Pi)l Y1i

WherePi — €xp [ﬁOl+ﬁ11x1i+B21x2i+'"+ﬁk1xki+)/12y2i]] (Bel et. al., 2018)

1+exp [Bo1+P11X1i+B21%2i+ +Br1Xki+V12Y2i
P[Y,|Y,, X1, X5, X5, .. X ]

exp [Bor + Br1x1i + -+ BraXki + V12Yail 1 1-Yyq

Yii
S+ exp [Bo1 + P11X1i + -+ BraXpi + V12)’2i]] [1 + exp [Bor + Pr1X1i t+ - + BraXi + V12Y2il

_lexp [Boy+B11Xyi++BraXki+tV12Y2i]1Y 1i
1+exp [Bo1+B11%1i+ +Br1XkitV12Y2i

The mathematical approach to formulate joint distribution function of Y;and Y, given a set of
explanatory variables (Islam and Chowdhury, 2017) is
P(Yy, Y5 Xy, X5, o, Xi) = P( 1Yo, Xy, .., X)) P(Y2]X4, ..., Xi). Hence, the joint distribution of

two correlated variables Y;and Y, given a set of explanatory variables is formulated as
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P[Yy, Ya|X1, X2, X3, . Xic)

. 1
1 [exp [Bor + Braxyi + = + BraXwi + V12Y2:]1"% X exp [‘ﬁ()’zi — Boz — PraX1i — = — BraXki)®]
oV2m 1+exp [Bor + Br1x1i + -+ BraXki + V12Y2il

5.5 Conclusion

This study is the initial initiative to find out a uniform approach for estimating the restricted
parameter of multivariate regression with mixed responses especially the mixed of binary and
continuous responses. Based on the Monte Carlo simulation, the study reveals that the variance
of modified maximum likelihood estimator is lower and relative efficiency is higher than current

methods.
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Chapter 6

Socio-economic Determinants of Households Food Expenditure in Haor Areas of

Bangladesh: A Restricted Multivariate Regression Approach

6.1 Background

Bangladesh has experienced positive improvements in social, economic, and health sectors. Still,

the progress is not up to the mark in Haor areas. Haors are wetland ecosystem located in the

northeastern region of Bangladesh which is physically a bowl or saucer-shaped shallow

depressions. Haor is particularly low lying basin area below the level of the flood plain. These

areas are also similar to swampland covered by water almost six months of a year starting from

the monsoon. The total number of 373 Haors situated in the districts of Sunamganj, Habiganj,

Maulabibazar, Sylhet, Mymensingh, Bramanbaria and kishorganj which covered 1.99 million ha.

of areas.

Table 6.1: Descriptions of the Haor Areas in Bangladesh

District Total Area of the District (in ha.) | Haor Area (in ha.) No. of Haor
Sunamganj 367,000 268,531 95
Sylhet 349,000 189,909 105
Habiganj 263,700 109,514 14
Maulvibazar 279,900 47,602 3
Netrokona 274,400 79,345 52
Kishoreganj 273,100 133947 97
Brahmanbaria 192700 29616 7
Total 1999800 858,460 373

Source: Report on Classification of Wetlands of Bangladesh, Department of Bangladesh Haorand Wetlands Development, Ministry of Water

Resources, Bangladesh, 2016
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Figure 6.1: Study Areas (Haor Areas) in Bangladesh
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The economic progress of Bangladesh is moving steadily. Yet, the Haor regions have long been
lagging behind mainstream national development. It is difficult to anticipate the country’s overall
progress without the development of the Haor region due to it covers the major part of the

country and the population which deserves special development initiatives.

The Haor people’s livelihood strategy is still neither viable nor sustainable (Gardener and
Ahmed, 2006). Seasonality is closely correlated with uncertain fluctuation of food security and
situational poverty in low-income peoples which impacts on four major broad indicators of food
security: food access, availability, distribution and utilization. Food consumption and food

security became a top priority concern for the governments and socio-demographic research
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because of increasing input cost in the cereal production and dramatic rise in the prices of food
throughout the world. This chapter has been tried to find out the implication of applying a
restricted multivariate regression approach for finding socio-economic determinants of

household’s food consumption in Haor Areas of Bangladesh.

6.2 Sources of Data

Bangladesh Household Income Expenditure Survey (HIES) 2016 data set has been used to detect
the consequence of proposed inferential approach for multivariate regression analysis. The study
has been selected socio-economic data namely social safety net programme, wage employment,
food and non-food expenditure data of 2280 agriculture and nonagricultural workers in Haor
regions (Sunamganj, Habiganj, Maulabibazar, Sylhet, Mymensingh, Bramanbaria and kishorganj

districts) as a target sample.

6.3 Variable Selection

The variables have been selected based on the review of the literature and field experience.
Monthly food consumption, total monthly expenditure, family size, age, employment status,
marital status and educational attainment of household head are logically interrelated variables
(Shekhampu, 2012). The study has been assumed that household total expenditure and food
consumption to be function of total monthly income, family size, total operating land and other

predictors. The description of the explanatory variables is given below.

Total monthly income: Total monthly income of a respondent was measured by summing of all
income earned by a respondent and other member of the family in a month from agriculture
sector (crop farming, livestock rearing, fisheries, farm labour, homestead forestry sector) and
nonagricultural sector (service, business, social benefits scheme, relief and driving boat) which
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expressed in taka. The study assumes that food expenditure is positively and significantly

influenced by household income (Babalola and Isitor, 2014).

Family size: Family size of the respondent is the total members of the family including the
respondent himself, spouse, children and other dependants who use to live, eat and act together
in a family. The expected sign of the relationship between family size and food consumption is

positive (Alam, Alam and Mustaq, 2018).

Total operating land: Total operating land is the most important factor in agricultural sector.
Access of total operating land is considered the key determinant of the livelihood strategy of
rural low income people by influencing household's crop production capacity leading to increase
food availability and also enhance extra income from marketing the surplus production. Again,
the expected sign of the relationship between family size and food consumption is positive

(Alam, Alam and Mustaq, 2018).

The Logarithm functional form is used to explain responses in household total and food
expenditure socio-economic predictors. The logarithmic transformed variables are given below.
TME=Logarithm of Total Monthly Expenditure

MFC= Logarithm of Monthly Food Consumption

FS= Logarithm of Family Size

TMI= Logarithm of Total Monthly Income as a Worker

TOL=Total Operating Land
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Table 6.2: Association among logarithm function of monthly total expenditure, food expenditure

and socio-economic predictors

Pearson Correlation

Coefficient (r) TME MFC FS TMI TOL
960" 487" 346 056
TME (.000) (.000) (.000) (.000)
960" 5037 3027 .039
MFC (.000) (.000) (.000) (.060)
487 503" 090" .035
FS (.000) (.000) (.000) (.091)
346" 3027 090" -.004
™I (.000) (.000) (.000) (.840)

056 .039 035 -.004

TOL (.007) (.060) (.091) (.840)

Food consumption and household income are positively correlated (Talukder and Chile, 2013).
Though logarithm functional form of total monthly expenditure and monthly food consumption
are highly(r = 0.96) and significantly (p < 0.00) correlated, “TME” and “MFC” can be used as
a multivariate response variable.

Sensitivity analysis is important to quantify how the uncertainty in the output of a model is
related to the uncertainty in its inputs (Salciccioli, Crutain, Komorowski and Marshall, 2016).
The previous literature reveals that household total and food expenditure is positively influenced
by family size, total household income and total operating land. It also found out that the
influence of family size is higher than household income on food expenditure as well as family
income. Scatter matrix (figure Al in appendix A) as a method of sensitivity analysis (Bells,
Alary, Laguerre, Fanke, 2018) and correlation matrix is also support this conditions. FS, TMI
and TOL are significantly related to both “TME” and “MFC”. This study has considered FS,

TMI and TOL as the predictors.
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6.4 Multivariate Analysis

Multivariate data analysis is the statistical methodologies that allow simultaneous investigation
of more than two interrelated variable. It attempts to explain or predict the multiple response
variables on the basis of fixed predictors. The challenge in this regard is to develop a logical

frame of the multivariate regression model.

6.4.1 Model Selection
Multivariate regression model has been used to find the degree of dependency among

multivariate response and predictors. The two different models are assumed of these issues.

BOl :802

Model 1:[TME : MFC] = [IFS TMI TOL] X Pin Pz + [&rmE | Emrc]
ﬁZl :822
B31 :832

Assumptions:
1. The random disturbance [epmg i Empe] follows multivariate normal distribution with

OTME UTME,MFC]

Ele i E = [0 : 0] and covariance matrix, X = [
[ermE | Emrcl = [ ] 5 CIMEMFC OMEC

2. The observations in different trials are independent.

3. P and X are unknown parameters of the design matrix [FS TMI TOL].

,801 ﬂOZ
. : - Bi1  PBrz .
Model 2: [TME : MFC] = [1IFS TMI TOL] X + [&1MmE | €mFc]
:821 ﬁZZ
,831 ﬂ32
ﬁOl ﬁOZ
with respectto [R;, R, Rz R4]x P PBrzf _ 11 72]
ﬂZl ﬂZZ
ﬁ31 ﬁ32
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The restriction [Ry R, R3 R4]=[0 1 -2 0] and ["1 T2]=[0 0] considered

subjectively on the basis of prior information.

Assumptions:
1. The random disturbance [epmg i Empe] follows multivariate normal distribution with

OTME UTME,MFC]
OTME,MFC OMFC

Elerme i €mrc] = [0 i 0] and covariance matrix, £ = [
2. The observations in different trials are independent.
3. P and X are unknown parameters of the design matrix [FS TMI TOL].

4. The restriction of the model is exact linear.

6.4.2 Parameter Estimation and Testing Methods
Both maximum likelihood and modified maximum likelihood method are used to estimate the
parameters of the model 1 and model 2. Model 2 is the modification of the model 1 on the basis

of prior information.

Modified restricted likelihood ratio test has been used to evaluate the relative performance of the
two models. Proposed modified multivariate t test has been applied to test the individual
parameter of the required model. Modified confidence intervals are used to obtain interval

estimation of the parameters. Stata 14 and R program are used for computing the datasets.

6.5 Results and Discussion
The value of restricted likelihood ratio test for comparing model 1 to model 2 is 1.030216 with
p — value(Lr statistic) = 0.09481 which indicate that model 2 is better at 10% level of

significance.
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Table 6.3: Parameter estimation and testing of model 1

95% Conf. Interval

Model 1 Coefficient Std. Err. t P>t LCL UCL
TME

FS 0.588836  0.022123 26.62 0.000 0.5455 0.6322
T™I 0.270384  0.015293 17.68 0.000 0.2404 0.3004
TOL 0.002279  0.000949 24 0.016 0.00042 0.00413
_cons 6.949503  0.136465 50.93 0.000 6.6819 7.2171
MFC

FS 0.602938  0.021871 27.57 0.000 0.56005 0.6458
TMI 0.22565 0.015119 14.93 0.000 0.1960 0.2554
TOL 0.001279  0.000938 1.36 0.173  -0.00056 0.0031
_cons 7.131675  0.134908 52.86 0.000 6.86712 7.3962

The results of the multivariate regression model on the factors that affect household food
consumption are shown in the Table 6.3. The results of the study shows that total monthly
income, family size, total operating land have a significant influence on monthly food
expenditure.

These predictors were found to exert a positive impact on both food consumption and total
monthly expenditure. The study reveals that logarithm form of total monthly expenditure and
food consumption as multivariate continuous responses are significantly related to total operating
land, logarithm form of family size and total monthly income (p < 0.01) considering a

restriction on the parameters at 5% level of significance.
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Table 6.4: Parameter Estimation and Testing of Model 2

Std. 95% Modified Confidence
Model 2 Coefficient Err. tmod P>tnod Interval
TME LCL UCL
Constant  6.7813693 0.090 75.30593 0 6.6077 6.95499
FS 0.5489785 0.014 39.57764 0.00 0.5198 0.57819
™1 0.2744892 0.013 21.86325 0.00 0.2599 0.2891
TOL 0.0013737 0.000 56.14568 0.00 -0.00024 0.00299
MFC
Constant  6.8384578 0.091 75.29916 0 6.6634 7.0136
FS 0.5717308 0.014 40.87016 0.00 0.5423 0.6012
™1 0.2858654 0.013 22.57726 0.00 0.2711 0.3006
TOL 0.0023087 0.000 93.56499 0.00 0.00068 0.0039

6.6 Conclusion

The proposed inferential approach has been also used to detect the numerical nexus among
socio-demographic predictors, food expenditure and total monthly expenditure in Haor regions
of Bangladesh. An increase in monthly household income, household size and total operating
land of the household is associated with a positive increase in household food expenditure and

total expenditure.
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Chapter 7

Conclusions and Further Research

The aim of this dissertation was to search appropriate inferential approach for analyzing
multivariate regression considering prior information about the parameters. The appropriate
inferential approach was proposed after checking the utility of different conventional parameter
estimation and testing methods, and modifying and developing new techniques or methods if
necessary. This chapter summarizes the overall work in this thesis, highlighting the key findings,

and outlining possible areas of interest for future research.

7.1 Multivariate Regression with Exact Linear Restriction

Parameter estimation and significant variable estimation are two important goals in regression
modeling. In chapter 2, related published scientific papers have been reviewed for finding the
research gap, justification of the study, developing the objectives and the framework to fulfill the
objectives. In chapter 3, Modified maximum likelihood estimator has been proposed to estimate
the exact restricted parameters of multivariate regression with continuous responses. The
proposed estimator is unbiased, consistent and relatively efficient than the classical maximum
likelihood estimator. In chapter 5, Modified maximum likelihood estimator has been proposed to
estimate the exact restricted parameters of multivariate regression with mixed responses. The
performance of modified estimator is relatively efficient than the maximum likelihood estimator.
In chapter 3, modified likelihood ratio test, modified Akaike information criterion has been
applied to select the related variables of multivariate responses. Modified multivariate 't’ test has

been proposed to check the significance of individual restricted parameters. Modified joint
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confidence region has been developed to obtain joint confidence interval for restricted
parameters. Based on the simulation study, this research concludes that the proposed estimation
technique and hypothesis testing methods are more appropriate for multivariate regression with

exact linear restriction.

The proposed modified inferential approach has been also applied to detect the numerical nexus
among socio-demographic determinants, food expenditure and total monthly expenditure in
“Haor” areas of Bangladesh. The study has been revealed that total monthly expenditure and
food expenditure are significantly related to total operating land, family size and total monthly
income (p < 0.01) considering restricted parameters. Based on the simulation study and
empirical application, the performance of the modified inferential approach is better than the

existing methodology.

7.2 Multivariate Regression with Stochastic Restriction

Most of the situations in real life, the prior information of the parameter of multivariate
regression model are not exact. In chapter 4, modified restricted least squares estimator
(MRLSE), modified multivariate weighted least squares (MMWLS), modified two parameters
weighted mixed estimator (MTPWME) have been proposed to estimate the stochastic linear
restricted parameters. The study has revealed that the proposed estimator MRLSE is relatively
unbiased, consistent and relatively efficient than multivariate ordinary least square. However, to
overcome the multicollinearity problems arise in the classical ordinary least squares estimation
procedure, the MTPWME has been proposed. Moreover, A Monte Carlo simulation experiment
has been done to create confirms comparison of the MTPWME to the MMWLS, MRLSE and

MLSE for the various levels of different parameters. The simulation study has recommended that
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the MTPWME always shows better performance towards the MMWLS and MRLSE with the

given stochastic restrictions and multicollinearity for the multivariate regression model.

7.3 Limitations and Directions for Further Research
There are numerous ways in which the results developed in this thesis can be extended.

1) In socio-demographic research, many of the times response matrices are categorical.
Multivariate logit models are widely used to describe the correlated binary decision
data. If there have been any prior information regarding the degree of dependency
among response matrix and predictors or multicollinearity has been attained in the
model, the proposed modified statistic can be extended to find the relative efficient
estimators. So, the proposed modified statistics can be extended for multivariate
regression with categorical (either ordinal or nominal) responses.

i) Sometimes, statistically, the problem introduced by the presence of multicollinearity
in the data matrix and also the existence of the stochastic restrictions in the
parameters, modified multivariate two-parameter weighted estimate can be used to
estimate the parameter. However, the opportunity is still there to research further for
finding out the individual and overall test of the parameters.

iii) Nowadays, big data is another issue for the statisticians. The modified inferential
approach can be used or extended to estimate the restricted parameters in big data and
also for missing data.

v) The proposed modified approach can also be used or extended for restricted
parameters of multivariate regression for mixed responses. The powerful testing

procedure for the restricted parameters is also needed to be developed.
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7.4 Concluding Remarks

Complex natures of real life data have widened the scope of devising estimators with restrictions.
This comes with the complex nature and structure of data and mixed type of the response vectors
in regression analysis. Furthermore, these pose serious challenge to the existing hypothesis
testing methodology. This thesis has tried to shed light on such aspects and suggested a way
forward to solve complex estimation and testing problems. More should be done in this area, and
inferential statistics should be ready to deal with emerging complex problems, especially with

the emergence of big data sets on various fields.
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Appendix A

Appendix A.1: Simulated Quantile (Critical Value) point for t,,,q at different level

Sample Size,

. P12 0.9 0.95 0.975 0.985 0.99 0.9975
0| 4822417 7.155769 | 8.322446 | 8.905784 | 9.022451 | 9.372454
025| 2953842 | 3.165833 | 3.271828 | 3.324825 | 3.335425| 3.367224
25 0.75| 2.860572 | 3.067135| 3.170417 | 3.222058 | 3.232386 |  3.26337
0.8 | 2.832061 | 3.036853 | 3.139249 | 3.190448 | 3.200687 | 3.231406
09| 2747137 | 2.946526 | 3.046221 | 3.096068 | 3.106037 | 3.135946
0| 2145359 | 2.552059 | 2.755409 | 2.857085| 2.87742 | 2.93842
025| 2315094 | 2380149 | 2412676 | 2428939 | 2432192 | 2.44195
200 075 | 2.686368 | 2.846584 | 2.926693 | 2.966747 | 2974757 | 2.99879
0.8 | 2732407 | 2.881341 | 2.955808 | 2.993042 | 3.000489 3.0228
09| 2.829456 | 2.942884 | 2.999598 | 3.027956 | 3.033627 | 3.050641
0| 2455515 2771747 | 2929863 | 3.008921 | 3.024732 | 3.072167
025| 2275267 | 2.469454 | 2.566547 | 2.615094 | 2.624803 | 2.653931
400 075| 2871769 | 2.875078 | 2.876732 | 2.877559 | 2.877725| 2.878221
0.8 | 2916904 | 2918396 | 2919143 | 2919516 | 291959 | 2.919814
09| 3.000161 | 3.007663 | 3.011415| 3.013291 | 3.013666 | 3.014791
0| 09548702 | 1.009798 | 1.037262 | 1.050994 | 1.053741 | 1.06198
025| 0.9665599 | 1.177758 | 1.283358 | 1336157 | 1.346717| 1.378397
1000 0.75| 0.9566973 | 1.148151| 1.243878 | 1291741 | 1301314 | 1.330032
08| 09444962 | 1.131594 | 1225143 | 1271917 ] 1281272 | 1309337
09| 00981476 | 1.119708 | 1.188824 | 1.223382 | 1.230294 | 1.251029
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Appendix A.2: Measuring Relative Bias of Multivariate Weighted Mixed estimator Estimate for

Different p and n

Sample
Size,pn P12 | \ | Relative Bias of Multivariate Weighted Mixed estimator Estimate
Bo1 B B21 B31 Bo: B12 B2 B3
25| 0]02| 11.7059 0.0504 -0.3064 05378 | -63991 |  -0.9853 |  -0.1835 |  -4.6603
250 0]05| 117237 0.0501 -0.3079 0.5381 -6.3937 | -0.9863 | -0.1883 |  -4.65%
25| 0]0.8 ] 11.7402 0.0498 -0.3094 0.5383 |  -6.3883 |  -0.9873 -0.193 | -4.6586
25]025]02 | 328316 0.3962 -0.2093 1.8766 | -3.8233 | -0.7003 | 03943 |  -2.9762
25102505 | 32.8457 0.3959 -0.2105 1.8768 | -3.8141 -0.702 | 04024 | -2.9748
25102508 | 328591 0.3957 -0.2117 1.8769 -3.805 | 07037 |  -04103 |  -2.9734
251075102 | 265371 0.2908 -0.2441 14742 | -1.1507 | -0.3329 |  -0.4304 |  -1.1058
251075105 | 265088 0.2913 -0.2416 14738 | -1.1408 | -0.3347 | -0.4391 -1.1042
251075 ] 0.8 | 264804 0.2919 -0.2391 1.4735 -1.131 -0.3366 | -0.4477 | -1.1027
25| 0.8]02| 250745 0.2672 -0.25 13819 | -0.8462 |  -0.2898 | 04314 |  -0.8905
25| 0.8]0.5] 250206 0.2682 -0.2452 13812 | -0.8328 | -0.2923 | -0.4432 |  -0.8884
25| 0.8]0.8| 249668 0.2692 -0.2404 13805 | -0.8195 |  -0.2948 |  -0.4549 |  -0.8863
25| 0902 ] 213125 0.2059 -0.2665 1.144 | -0.1251 -0.1842 | -0.4245 | 03747
25| 0905 | 212427 0.2072 -0.2603 1.143 | -0.1129 | -0.1865 | 04353 |  -0.3728
25| 09108 | 211733 0.2085 -0.254 1.1421 -0.1008 | -0.1887 | -0.4459 |  -0.3709
50|  0]02| 322452 0.1728 -0.7596 1.5289 | -5.4107 0.9608 4.497 -0.876
50| 0]05 32214 0.1732 -0.7571 1.5284 | -5.3979 0.9589 4.4871 -0.8734
50|  0]08| 32187 0.1737 -0.7546 1.5278 | -5.3852 0.9569 44772 | -0.8707
50 | 0.25 ] 0.2 | 47.7231 -0.1884 -2.2828 1.6285 -1.342 0.8664 27539 0.8508
50 | 0.25 ] 0.5 | 47.6628 |  -0.1875 -2.278 1.6274 | -1.3334 0.8651 2.7473 0.8526
50 | 0.25 | 0.8 |  47.6024 |  -0.1865 -2.2732 1.6263 | -1.3249 0.8637 2.7406 0.8544
50 1075 02 | 43.6691 -0.0716 -1.826 1.6341 1.6701 0.5794 0.8972 1.7601
50 | 0.75 | 0.5 | 435583 |  -0.0699 -1.8171 1.6321 1.684 0.5773 0.8864 1.763
50 [ 0.75 | 0.8 | 434474 |  -0.0682 -1.8083 1.6301 1.6978 0.5751 0.8755 1.7659
50| 0.8]02| 426473 |  -0.0459 -1.7203 1.6302 1.9781 0.5414 0.6847 1.8384
50| 0.8]0.5| 425154 |  -0.0438 -1.7098 1.6279 1.9951 0.5388 0.6714 1.8419
50 | 0.8]0.8 | 423834 |  -0.0417 -1.6993 1.6255 20121 0.5362 0.6581 1.8455
50 0.9]02]| 398718 0.0192 -1.4463 1.6128 2.6906 0.4467 0.1754 2.0079
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50| 0905 39.6787 0.0222 -1.4309 1.6093 2.7168 0.4426 0.1549 2.0134

50| 09]0.8 39.4855 0.0253 -1.4156 1.6059 2.7431 0.4386 0.1344 2.0189
100 0]0.2 43.9731 -0.0675 -1.7801 1.6244 1.1296 -0.8401 -2.565 -0.9348
100 0]0.5 43.9559 -0.0672 -1.7788 1.6241 1.1276 -0.8399 -2.5635 -0.9352
100 01]0.8 43.9388 -0.067 -1.7775 1.6237 1.1257 -0.8396 -2.5621 -0.9357
100 | 0.25 [ 0.2 35.3397 0.2393 -0.6758 1.7313 4.5725 -0.6883 -3.4073 0.9007
100 | 0.25 ] 0.5 35.3346 0.2393 -0.6754 1.7312 4.5696 -0.6879 -3.4052 0.9
100 | 0.25 | 0.8 35.3296 0.2394 -0.675 1.7311 4.5668 -0.6875 -3.4031 0.8993
100 | 0.75 | 0.2 39.0915 0.1424 -1.0619 1.7378 5.6381 -0.411 -3.0756 1.8665
100 | 0.75 1 0.5 39.0926 0.1424 -1.062 1.7378 5.6348 -0.4105 -3.0732 1.8658
100 ] 0.75 1 0.8 39.0937 0.1424 -1.0621 1.7378 5.6315 -0.4101 -3.0708 1.865
100 ] 0.8]0.2 39.7916 0.1209 -1.1429 1.7339 5.6878 -0.3762 -3.004 1.9492
100 ] 0.8 ]0.5 39.7941 0.1209 -1.143 1.734 5.6844 -0.3758 -3.0015 1.9484
100 | 0.8 ]0.8 39.7966 0.1208 -1.1432 1.734 5.681 -0.3753 -2.999 1.9476
100 | 09 0.2 41.3646 0.0662 -1.341 1.7162 5.7559 -0.2908 -2.8086 2.128
100 | 09105 41.374 0.0661 -1.3417 1.7164 5.7514 -0.2902 -2.8053 2.1269
100 | 091 0.8 41.3834 0.0659 -1.3425 1.7166 5.747 -0.2895 -2.802 2.1258
200 0]02 16.3149 -0.0603 -0.7915 0.5721 2.616 -0.5962 -2.5986 0.2475
200 0]0.5 16.3114 -0.0603 -0.7913 0.572 2.6148 -0.596 -2.5977 0.2472
200 01]0.8 16.3078 -0.0602 -0.791 0.572 2.6136 -0.5959 -2.5969 0.2469
200 | 0.25 ] 0.2 5.4345 0.1587 0.2194 0.437 3.35 -0.4988 -2.6125 0.7513
200 | 0.25 1 0.5 5.4368 0.1587 0.2193 0.437 3.3486 -0.4986 -2.6116 0.751
200 | 0.25 ] 0.8 5.439 0.1586 0.2191 0.4371 3.3473 -0.4984 -2.6106 0.7506
200 ] 0.75 | 0.2 9.209 0.0893 -0.1136 0.4929 2.962 -0.306 -1.9451 0.8858
200 |1 0.75 ] 0.5 9.2169 0.0892 -0.1141 0.4931 2.9601 -0.3057 -1.9437 0.8854
200 | 0.75 1 0.8 9.2248 0.0891 -0.1147 0.4932 2.9582 -0.3055 -1.9424 0.8849
200 | 0.8]0.2 10.0043 0.0739 -0.1858 0.5036 2.8856 -0.2816 -1.8504 0.8901
200 | 0.8]0.5 10.0141 0.0737 -0.1866 0.5038 2.8835 -0.2813 -1.8488 0.8896
200 | 0.8]0.8 10.0238 0.0736 -0.1873 0.504 2.8814 -0.281 -1.8473 0.889
200 | 09102 11.9558 0.0348 -0.3666 0.5281 2.68 -0.2214 -1.6103 0.8924
200 | 09105 11.9706 0.0346 -0.3677 0.5285 2.6771 -0.2211 -1.6082 0.8917
200 | 0910.8 11.9853 0.0344 -0.3687 0.5288 2.6743 -0.2207 -1.6061 0.891
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500 0]02 8.708 -0.2114 -0.9117 0.0606 -1.0454 -0.1348 0.0346 -0.7145
500 0]0.5 8.7069 -0.2114 -0.9116 0.0606 -1.0454 -0.1348 0.0346 -0.7145
500 0108 8.7057 -0.2114 -0.9115 0.0606 -1.0454 -0.1348 0.0346 -0.7145
500 ] 0.25 0.2 11.4329 -0.1408 -0.8268 0.2682 -0.0497 -0.2768 -0.7302 -0.4779
500 ] 0.25 1 0.5 11.4318 -0.1408 -0.8267 0.2682 -0.0498 -0.2768 -0.7302 -0.4779
500 | 0.25 ] 0.8 11.4307 -0.1408 -0.8266 0.2681 -0.0499 -0.2768 -0.7301 -0.4779
500 ] 0.75 | 0.2 10.7999 -0.1679 -0.8753 0.2053 0.6136 -0.298 -1.0409 -0.1997
500 ] 0.75 | 0.5 10.7991 -0.1679 -0.8752 0.2053 0.6136 -0.298 -1.0409 -0.1997
500 ] 0.75 | 0.8 10.7983 -0.1678 -0.8752 0.2053 0.6135 -0.298 -1.0408 -0.1997
500 0.8]0.2 10.6295 -0.1733 -0.8832 0.191 0.6782 -0.2968 -1.0624 -0.1673
500 | 08105 10.6286 -0.1732 -0.8832 0.191 0.6781 -0.2968 -1.0624 -0.1673
500 | 0.8]0.8 10.6278 -0.1732 -0.8831 0.191 0.6781 -0.2968 -1.0623 -0.1673
500 09102 10.1507 -0.186 -0.899 0.1541 0.825 -0.2915 -1.1042 -0.0893
500 | 0905 10.1498 -0.1859 -0.8989 0.1541 0.825 -0.2915 -1.1041 -0.0893
500 | 09]0.8 10.149 -0.1859 -0.8988 0.1541 0.8249 -0.2915 -1.1041 -0.0893
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Appendix A.3: Measuring Relative Bias of Multivariate Two Parameter Weighted Estimator

Estimate for Different p and n

Sample
Size,pn P12 |\ | Relative Bias of Multivariate Two Parameter Weighted Estimator
Bo1 B B2 Bs1 Boz Biz B2z B3z
25 0 |02 | -1137272 | 2706629 | -71.57447 | -38.42419 | -31.77158 | -25.65577 | -56.80517 | -57.4178
25 0 |05 | -1137273 | 2706455 | 7156967 | -38.42184 | -31.77158 | 2565439 | -56.80134 | -57.41558
25 0 |08 ]-1137273 | 2706281 | -71.56487 | -38.41949 | -31.77158 | -25.653 | -56.79752 | -57.41337
25 025 | 02 | 7977683 | -27.220025 | -72.76695 | -37.867542 | -29.69459 | -25.68563 | -57.67678 | -56.48681
25 025 | 0.5 | 797768 | -27.22739 | -72.76244 | -37.86533 | -20.69459 | -25.68482 | -57.67453 | -56.4855
25 025 | 0.8 | 7977677 | 27.225757 | 7275794 | -37.863123 | 29.69459 | 25684 | -57.67228 | -56.4842
25 075 | 02 | 4101671 | 295614 | -8023684 | -39.81449 | -312368 | -27.55408 | -62.1332 | -60.28908
25 075 | 0.5 | 410167 | -2055862 | -8022918 | -39.81073 | -31.2368 | -27.55566 | -62.13753 | -60.29161
25 075 | 0.8 | 410167 | -29.55585 | -8022152 | -39.80697 | -31.2368 | -27.55723 | -62.14186 | -60.29413
25 08 | 02 | 4598043 | -300742 | -81.79102 | -40.33483 | -31.87679 | -28.00758 | -63.11206 | -61.33818
25 08 | 0.5 | 4598042 | -30.07087 | -81.78185 | -40.33033 | -31.87679 | -28.01001 | -63.11874 | -61.34208
25 08 | 08 | 4598042 | -30.06754 | -81.77268 | -40.32583 | -31.87679 | -28.01243 | -63.12542 | -61.34598
25 09 | 02| 5949417 | -31.50447 | -86.11373 | -41.79917 | -33.90442 | -29.31022 | -65.85101 | -64.44126
25 09 | 05 | 5949416 | -31.49835 | -86.09686 | -41.79089 | -33.90442 | -293169 | -65.86944 | -64.45202
25 09 | 08 | 5949414 | 3149223 | -86.07999 | -41.78262 | -33.90441 | -29.32359 | -65.88788 | -64.46278
50 0 | 02| -7.635661 | -27.952472 | -73.766003 | -39.68146 | -33.16646 | -25.99221 | -56.93009 | -58.79376
50 0 | 05| -7.635663 | 2795148 | -73.763306 | -39.6801 | -33.16646 | -25.99126 | -56.92753 | -58.79221
50 0 | 08| -7.635664 | -27.950489 | 7376061 | -39.67874 | -33.16646 | -25.99031 | -56.92496 | -58.79066
50 025 | 02 | 1562719 | -2822495 | -7534713 | -39.14749 | -3046805 | -26.05206 | -58.07295 | -57.64649
50 025 | 0.5 | 1562718 | -2822403 | -7534464 | -39.14624 | -30.46805 | -26.05152 | -58.07149 | -57.64561
50 025 | 0.8 | 1562718 | -2822311 | -7534214 | -39.14498 | -3046805 | -26.05099 | -58.07004 | -57.64474
50 075 | 02 | 46.86404 | -30.32005 | -82.09825 | -40.84675 | -31.76755 | -28.11262 | -63.04917 | -61.70493
50 0.75 | 0.5 | 46.86403 | -3031927 | -82.09371 | -40.84445 | -31.76755 | -28.11368 | -63.05203 | -61.70666
50 075 | 0.8 | 4686403 | -3031759 | -82.08916 | -40.84214 | -31.76755 | -28.11473 | -63.05489 | -61.70839
50 08 | 02| 5150635 | -30.78653 | -83.51099 | -41.31576 | -32.45009 | -28.56571 | -63.99821 | -62.78091
50 08 | 0.5 | 5150634 | -30.78448 | -83.50544 | -41.31295 | -32.45009 | -28.56734 | -64.00263 | -62.78358
50 08 | 08 | 5150634 | -30.78244 | -83.4999 | -41.31014 | -32.45009 | -28.56897 | -64.00704 | -62.78626
50 09 | 02| 638518 | -32.07753 | -87.40668 | -42.63816 | -34.60208 | -29.81943 | -66.52759 | -65.8802
50 09 | 05| 6385179 | -32.07361 | -87.39605 | -42.63276 | -34.60208 | -29.82396 | -66.53987 | -65.88764
50 09 | 08 | 6385179 | -32.06969 | -87.38542 | -42.62736 | -34.60208 | -29.82849 | -66.55215 | -65.89507
100 0 | 02| 1672889 | -27.008333 | -71.489211 | -38.054342 | -27.89175 | -25.95942 | -58.47291 | -56.49156
100 0 | 05| 1672888 | -27.007623 | -71.487297 | -38.053358 | -27.89175 | -25.95862 | -58.47078 | -56.49025
100 0 | 08| 1672887 | -27.006913 | -71.485383 | -38.052375 | -27.89175 | -25.95783 | -58.46866 | -56.48894
100 025 | 02 | 3178136 | -26.929186 | -71.373138 | -37.863089 | -26.16888 | -25.89567 | -58.90841 | -55.60537
100 025 | 0.5 | 3178135 | -26.928552 | -71.371427 | -37.862211 | -26.16888 | -25.89518 | -58.90711 | -55.60457
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100 0.25 0.8 | 3.178134 | -26.927918 | -71.369717 | -37.861332 | -26.16888 -25.8947 -58.90581 -55.60377
100 0.75 0.2 | 4251916 -28.97808 -78.28393 -39.18461 -29.54313 -27.32587 -61.45764 -59.5666
100 0.75 0.5 | 4251916 -28.97687 -78.28066 -39.18292 -29.54313 -27.32664 -61.4597 -59.56787
100 0.75 0.8 | 4251916 -28.97565 -78.2774 -39.18124 -29.54313 -27.32741 -61.46176 -59.56914
100 0.8 0.2 | 48.83766 -29.41007 -79.66599 -39.54216 -30.45841 -27.67537 -62.04692 -60.5768
100 0.8 0.5 | 48.83766 -29.40858 -79.66197 -39.54008 -30.45841 -27.67658 -62.05017 -60.5788
100 0.8 0.8 | 48.83766 -29.40709 -79.65796 -39.53801 -30.45841 -27.67779 -62.05342 -60.58081
100 0.9 02 | 65.05775 -30.57638 -83.36543 -40.541 -33.13212 -28.6569 -63.66369 -63.46185
100 0.9 0.5 | 65.05774 -30.57343 -83.35752 -40.53691 -33.13212 -28.66037 -63.673 -63.4676
100 0.9 0.8 | 65.05774 -30.57049 -83.34961 -40.53282 -33.13212 -28.66384 -63.68232 -63.47334
200 0 0.2 | -13.85445 -23.24759 -61.3082 -33.1827 -27.49176 -22.46651 -49.64615 -50.27287
200 0 0.5 | -13.85445 -23.24707 -61.3068 -33.18198 -27.49176 -22.46594 -49.64462 -50.27192
200 0 0.8 | -13.85445 -23.24655 -61.30541 -33.18125 -27.49176 -22.46536 -49.64309 -50.27097
200 0.25 0.2 | -11.3304 -23.35796 -61.68373 -33.24403 -26.77865 -22.3795 -49.68011 -49.79613
200 0.25 0.5 | -11.3304 -23.35749 -61.68247 -33.24338 -26.77865 -22.37916 -49.6792 -49.79557
200 0.25 0.8 | -11.3304 -23.35701 -61.6812 -33.24272 -26.77865 -22.37881 -49.67829 -49.795

200 0.75 0.2 | 2657132 -24.86055 -67.12676 -33.83547 -30.99382 -23.39827 -50.8146 -53.46699
200 0.75 0.5 | 26.57131 -24.85963 -67.12431 -33.8342 -30.99382 -23.39891 -50.8163 -53.46804
200 0.75 0.8 | 26.57131 -24.85872 -67.12187 -33.83293 -30.99382 -23.39954 -50.818 -53.4691

200 0.8 0.2 | 32.51279 -25.17157 -68.18105 -34.03397 -31.9384 -23.65976 -51.15797 -54.34445
200 0.8 0.5 | 32.51279 -25.17045 -68.17804 -34.0324 -31.9384 -23.66073 -51.16058 -54.34606
200 0.8 0.8 | 32.51279 -25.16932 -68.17502 -34.03084 -31.9384 -23.66171 -51.16319 -54.34768
200 0.9 0.2 | 47.63424 -25.97664 -70.89957 -34.55841 -34.58161 -24.37416 -52.07312 -56.77064
200 0.9 0.5 | 47.63423 -25.9744 -70.89357 -34.55529 -34.58161 -24.37688 -52.08041 -56.77516
200 0.9 0.8 | 47.63423 -25.97216 -70.88758 -34.55217 -34.58161 -24.3796 -52.0877 -56.77968
500 0 02 | -22.0819 -17.72896 -46.34055 -25.75307 -30.28171 -17.06643 -34.15259 -42.60725
500 0 0.5 | -22.0819 -17.72862 -46.33966 -25.75261 -30.28171 -17.06615 -34.15184 -42.60679
500 0 0.8 | -22.0819 -17.72829 -46.33877 -25.75214 -30.28171 -17.06587 -34.15109 -42.60632
500 0.25 0.2 | -5.819548 | -17.688937 | -46.851264 | -25.047696 | -29.15708 -17.08936 -34.64839 -42.11162
500 0.25 0.5 | -5.819548 | -17.688619 | -46.850414 | -25.047251 | -29.15708 -17.08921 -34.648 -42.11138
500 0.25 0.8 | -5.819549 -17.6883 -46.849564 | -25.046806 | -29.15708 -17.08907 -34.64761 -42.11114
500 0.75 0.2 | 2593832 -18.46847 -50.13209 -24.87271 -31.83975 -17.73834 -35.3846 -44.44087
500 0.75 0.5 | 25.93831 -18.46786 -50.13044 -24.87185 -31.83975 -17.73883 -35.3859 -44.44168
500 0.75 0.8 | 25.93831 -18.46724 -50.1288 -24.87099 -31.83975 -17.73931 -35.3872 -44.44249
500 0.8 02 | 30.71173 -18.60849 -50.68602 -24.87847 -32.51126 -17.8745 -35.4976 -44.9808
500 0.8 0.5 | 30.71173 -18.60774 -50.68401 -24.87742 -32.51126 -17.87521 -35.49949 -44.98198
500 0.8 0.8 | 30.71173 -18.60699 -50.682 -24.87637 -32.51126 -17.87592 -35.50138 -44.98316
500 0.9 0.2 | 43.02567 -18.89748 -51.9228 -24.79201 -34.31055 -18.1798 -35.64152 -46.32838
500 0.9 0.5 | 43.02567 -18.89601 -51.91889 -24.78996 -34.31055 -18.18164 -35.64643 -46.33144
500 0.9 0.8 | 43.02566 -18.89455 -51.91497 -24.7879 -34.31055 -18.18347 -35.65133 -46.3345
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Table A.4: Measuring Relative Efficiency of Multivariate Two Parameter Weighted Estimator

Estimate for Different p and n

ampl
Size,pne P12z | w | Relative Efficiency of Multivariate Two Parameter Weighted Estimator
Bo1 B B21 B31 Boz B12 B2z B3z
25 0| 02 1757071 | 2.458332 | 2.420542 | 1.898276 | 1.783417 | 2.525884 | 2.537792 | 1.926081
25 0| 05 1757071 | 2.458517 | 2.420863 | 1.898257 | 1.783417 | 2.526071 | 2.538231 | 1.926029
25 0| 0.8 1757071 | 2.458702 | 2.421183 | 1.898238 | 1.783417 | 2.526259 | 2.538671 | 1.925977
25 025 | 0.2 | 1.770389 | 2.487068 | 2.469872 | 1.910375 | 1.769599 | 2.554078 | 2.560669 | 1.912374
25 0251 0.5 | 1.770389 | 2.487264 | 2.470203 | 1.91036 | 1.769599 | 2.554253 | 2.561108 | 1.912318
25| 025| 08| 1.770389 | 2.48746 | 2.470534 | 1.910345 | 1.769599 | 2.554429 | 2.561547 | 1.912262
25 0.75 | 0.2 | 1.756908 | 2.692266 | 2.68273 | 1.920508 | 1.743657 | 2.769392 | 2.749747 | 1.918376
25 0.75 | 0.5 | 1.756908 | 2.692476 | 2.683073 | 1.920498 | 1.743657 | 2.769546 | 2.750175 | 1.918321
251 075] 08| 1.756908 | 2.692686 | 2.683417 | 1.920488 | 1.743657 | 2.769701 | 2.750604 | 1.918266
25 0.8 | 02| 1.758128 | 2.739507 | 2.730736 | 1.926606 | 1.744138 | 2.820264 | 2.797978 | 1.924713
25 0.8 | 05| 1.758128 | 2.739724 | 2.731085 | 1.926598 | 1.744138 | 2.820411 | 2.798404 | 1.924657
25 0.8 | 0.8 1.758128 | 2.73994 | 2.731435 | 1.926589 | 1.744138 | 2.820558 | 2.79883 | 1.924602
25 0.9 | 02| 1.768865 | 2.877911 | 2.870047 | 1.95087 | 1.75316 | 2.969743 | 2.94189 | 1.949232
25 0.9| 05| 1.768865 | 2.878164 | 2.870423 | 1.950869 | 1.75316 | 2.969849 | 2.942297 | 1.94917
25 09| 0.8 | 1.768865 | 2.878416 | 2.870799 | 1.950869 | 1.75316 | 2.969954 | 2.942705 | 1.949108
50 0| 02 1.892117 | 2.580916 | 2.36801 | 2.037584 | 1.878182 | 2.701369 | 2.549141 | 1.999127
50 0| 05| 1.892117 | 2.581082 | 2.368193 | 2.037571 | 1.878182 | 2.701534 | 2.549433 | 1.999072
50 0| 0.8 1.892117 | 2.581248 | 2.368376 | 2.037558 | 1.878182 | 2.701699 | 2.549724 | 1.999017
50 025 | 0.2 | 1.891122 | 2.601416 | 2.407231 | 2.027656 | 1.864124 | 2.703683 | 2.532185 | 1.98785
50 025 1| 0.5 | 1.891122 | 2.601578 | 2.407415 | 2.027644 | 1.864124 | 2.703838 | 2.532463 | 1.987793
50 025 | 0.8 | 1.891122 | 2.60174 | 2.407599 | 2.027631 | 1.864124 | 2.703993 | 2.532741 | 1.987737
50 0.75 | 0.2 | 1.877665 | 2.828575 | 2.572447 | 2.035532 | 1.843793 | 2.957099 | 2.679187 | 2.003298
50 0.75 | 0.5 | 1.877665 | 2.828755 | 2.572634 | 2.035524 | 1.843793 | 2.957232 | 2.679439 | 2.003245
50 0.75 | 0.8 | 1.877665 | 2.828935 | 2.572822 | 2.035517 | 1.843793 | 2.957365 | 2.679691 | 2.003192
50 0.8 02| 1.879115 | 2.881635 | 2.610218 | 2.041818 | 1.844573 | 3.017018 | 2.716301 | 2.010998
50 0.8 | 05| 1.879115 | 2.881824 | 2.610409 | 2.041813 | 1.844573 | 3.017144 | 2.716548 | 2.010945
50 0.8| 0.8 1.879115 | 2.882013 | 2.610599 | 2.041808 | 1.844573 | 3.017269 | 2.716794 | 2.010892
50 0.9 | 02| 1.890589 | 3.034665 | 2.72106 | 2.065738 | 1.854574 | 3.192632 | 2.82745 | 2.039173
50 09| 0.5 | 1.890589 3.0349 | 2.721268 | 2.065742 | 1.854574 | 3.192718 | 2.827681 | 2.039113
50 09| 0.8 | 1.890589 | 3.035135 | 2.721476 | 2.065746 | 1.854575 | 3.192803 | 2.827912 | 2.039053
100 0| 021923627 | 2.312587 | 2.242411 | 1.982694 | 1.86866 | 2.52942 | 2.511451 | 1.910002
100 0| 051923627 | 2.312691 | 2.242533 | 1.982687 | 1.86866 | 2.52953 | 2.511674 | 1.90996
100 0| 0.8 1923627 | 2.312795 | 2.242655 | 1.98268 | 1.86866 | 2.529639 | 2.511897 | 1.909919
100 025 | 0.2 | 1.925052 | 2.326808 | 2.262891 | 1.980358 | 1.868779 | 2.50151 | 2.501585 | 1.901793
100 025 | 0.5 | 1.925052 | 2.326914 | 2.263014 | 1.980352 | 1.868779 | 2.501609 | 2.501805 | 1.901749
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1001 025 081925052 | 2.32702 | 2.263136 | 1.980346 | 1.868779 | 2.501708 | 2.502025 | 1.901704
1001 075 | 02| 1.912153 | 2.479874 | 2.428602 | 1.963829 | 1.858907 | 2.683715 | 2.629919 | 1.918062
1001 075 05| 1.912153 | 2.479999 | 2.428733 | 1.963831 | 1.858907 | 2.683787 | 2.630118 | 1.918016
100 075 08| 1.912153 | 2.480125 | 2.428863 | 1.963833 | 1.858907 | 2.683858 | 2.630317 | 1.917971
100 08| 02| 1.91274 | 2516164 | 2.46414 | 1.965517 | 1.858608 | 2.727515 | 2.660732 | 1.923332
100 08| 05| 1.91274 | 2.516297 | 2.464274 | 1.965522 | 1.858608 | 2.727579 | 2.660927 | 1.923286
100 08| 08| 1.91274 | 251643 | 2.464407 | 1.965526 | 1.858608 | 2.727643 | 2.661122 | 1.923239
100 09| 02 |1.921193 | 2.619273 | 2.564953 | 1.977005 | 1.863804 | 2.852575 | 2.750268 | 1.942597
100 09| 05 |1.921193 | 2.619448 | 2.565104 | 1.97702 | 1.863804 | 2.852599 | 2.750452 | 1.942541
100 09| 08| 1.921193 | 2.619623 | 2.565255 | 1.977036 | 1.863804 | 2.852623 | 2.750636 | 1.942486
200 0| 021916736 | 1.910708 | 1.978683 | 1.873374 | 1.816132 | 2.048215 | 2.281368 | 1.731134
200 0| 051916736 | 1.910774 | 1.978767 | 1.873372 | 1.816132 | 2.04829 | 2.281544 | 1.731109
200 0| 08| 1.916736 | 1.910839 | 1.978851 | 1.87337 | 1.816132 | 2.048365 | 2.28172 | 1.731083
200 | 025| 02| 1.910528 | 1.931704 | 1.998775 | 1.869967 | 1.82054 | 2.048222 | 2.329264 | 1.721134
200 | 025| 05| 1.910528 | 1.931773 | 1.99886 | 1.869965 | 1.82054 | 2.048285 | 2.329439 | 1.721106
200 | 025| 08 | 1.910528 | 1.931842 | 1.998946 | 1.869963 | 1.82054 | 2.048348 | 2329615 | 1.721079
200 | 075| 02| 1.898524 | 2.011653 | 2.159665 | 1.826335 | 1.801331 | 2.179246 | 2.434512 | 1.730851
200 075| 05 | 1.000569 | 1.000296 | 1.000957 | 1.000103 | 1.000676 | 1.00035 | 1.001164 | 1.00012
200 | 075| 08 | 1.898524 | 2.011827 | 2.15986 | 1.82635 | 1.801331 | 2.179322 | 2.434828 | 1.730783
200 08| 02| 1.89848 | 2.030232 | 2.190971 | 1.822922 | 1.798975 | 2.209592 | 2.457739 | 1.734727
200 08| 05| 1.89848 | 2.030326 | 2.191072 | 1.822932 | 1.798975 | 2.209623 | 2.457895 | 1.734691
200 08| 08| 1.89848 | 2.03042 | 2.191173 | 1.822942 | 1.798975 | 2.209654 | 2.458051 | 1.734655
200 09| 02| 1.90232 | 2.081067 | 2.274436 | 1.819145 | 1.796264 | 2.292133 | 2.52014 | 1.747612
200 09| 05| 1.90232 | 2.081193 | 2.274554 | 1.819167 | 1.796264 | 2.292132 | 2.520295 | 1.747562
200 09| 08| 1.90232 | 2.08132 | 2.274671 | 1.819189 | 1.796264 | 2.29213 | 2.52045 | 1.747513
500 0| 02| 1.914487 | 1.547322 | 1.648532 | 1.761425 | 1.692166 | 1.627719 | 1.991869 | 1.494697
500 0| 05 |1.914487 | 1.54737 | 1.648592 | 1.76143 | 1.692166 | 1.62777 | 1.991988 | 1.494687
500 0| 08| 1.914487 | 1.547417 | 1.648652 | 1.761435 | 1.692166 | 1.62782 | 1.992107 | 1.494677
s00 | 025| 02| 1.895905 | 1.520573 | 1.660035 | 1.711523 | 1.699139 | 1.613199 | 1.988925 | 1.48605
500 | 025| 05| 1.895905 | 1.520622 | 1.660098 | 1.711529 | 1.699139 | 1.613244 | 1.989041 | 1.486038
500 | 025| 08| 1.895905 | 1.52067 | 1.660161 | 1.711534 | 1.699139 | 1.61329 | 1.989156 | 1.486026
s00 | 075 | 02| 1.879919 | 1.543241 | 1.788547 | 1.641626 | 1.666859 | 1.663116 | 2.028195 | 1.483066
500 |  075| 05| 1.879919 | 1.543302 | 1.788622 | 1.64164 | 1.666859 | 1.663145 | 2.028305 | 1.483045
500 | 075 | 08| 1.879919 | 1.543363 | 1.788698 | 1.641655 | 1.666859 | 1.663174 | 2.028415 | 1.483024
500 08| 02| 1.876881 | 1.548852 | 1.80998 | 1.632819 | 1.660052 | 1.675161 | 2.037024 | 1.483189
500 08| 05| 1.876881 | 1.548917 | 1.810059 | 1.632836 | 1.660052 | 1.675185 | 2.037134 | 1.483165
500 08| 08| 1.876881 | 1.548983 | 1.810137 | 1.632854 | 1.660052 | 1.675209 | 2.037244 | 1.483141
500 09| 02| 1.867854 | 1.562962 | 1.862002 | 1.612019 | 1.642194 | 1.704516 | 2.053631 | 1.483965
500 09| 05| 1.867854 | 1.563049 | 1.862093 | 1.61205 | 1.642194 | 1.704516 | 2.053745 | 1.483924
500 09| 08| 1.867854 | 1.563136 | 1.862184 | 1.61208 | 1.642194 | 1.704516 | 2.05386 | 1.483884
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Figure A.1: Scatter Matrix among TME, MFC, FS, TMI and TOL
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Appendix B

Appendix B.1: # Monte Carlo Simulation of Multivariate Regression with Continuous Responses for Stochastic

Restriction#

it<-10000 # Number of iterations

p<-2 # Number of responses

n<-500 #Sample size

rho<-0.9 # Value of correlation coefficient among responses

sigmal 1<-100 # Variance of First response variable

sigma22<-81 # Variance of Second response variable
sigmal2<-rho*sqrt(sigmal 1)*sqrt(sigma22) # Covariance between First and Second responses variables
sigma21<-sigmal2 # Covariance between Second and First responses variables

b01<-matrix(data=NA, nrow = it, ncol = 1)
bl1<-matrix(data=NA, nrow = it, ncol = 1)
b21<-matrix(data=NA, nrow = it, ncol = 1)
b3 1<-matrix(data=NA, nrow = it, ncol = 1)
b02<-matrix(data=NA, nrow = it, ncol = 1)
bl2<-matrix(data=NA, nrow = it, ncol = 1)
b22<-matrix(data=NA, nrow = it, ncol = 1)
b32<-matrix(data=NA, nrow = it, ncol = 1)

rb01<-matrix(data=NA, nrow = it, ncol = 1)
rbl 1<-matrix(data=NA, nrow = it, ncol = 1)
rb2 1<-matrix(data=NA, nrow = it, ncol = 1)
rb3 1<-matrix(data=NA, nrow = it, ncol = 1)
rb02<-matrix(data=NA, nrow = it, ncol = 1)
rb12<-matrix(data=NA, nrow = it, ncol = 1)
rb22<-matrix(data=NA, nrow = it, ncol = 1)
rb32<-matrix(data=NA, nrow = it, ncol = 1)

library (MASS)
for (i in 1L:it) {
mu<- matrix(c(0,0),nrow=2,ncol=1)
sigma<- matrix(c(sigmal 1,sigmal2,sigma21,sigma22),nrow=p,ncol=p)
set.seed(950+1)
error<- mvrnorm(n,mu,sigma)
set.seed(950)
X1<-round(abs(rnorm(n,mean=1000,sd=60)),0)
set.seed(950)
X2<-round(abs(rnorm(n,mean=375,sd=30)),0)
set.seed(950)
X3<-round(abs(rnorm(n,mean=500,sd=20)),0)
xbeta<-matrix(c((25+3.5*(X1)-1.75*%(X2)-2.5*(X3)),(175+2.5*(X1)-1.25*(X2)-1.5%(X3))),nrow=n,ncol=p)

X0<-matrix(c(1), nrow = n, ncol = 1)
X<-cbind(X0,X1,X2,X3) # Design matrix
Y<-xbeta+error # Response Matrix

estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y)
bO1[i]<-estbeta[1,1]
bl1[i]<-estbeta[2,1]
b21[i]<-estbeta[3,1]
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b31[i]<-estbeta[4,1]
b02[i]<-estbeta[1,2]
b12[i]<-estbeta[2,2]
b22[i]<-estbeta[3,2]
b32[i]<-estbeta[4,2]
xbetal<-X%*%estbeta

est _error<-(Y-xbetal)
est_sigma<-(1/n)*(t(est_error)%*%est_error)

R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE)
set.seed(950+1)
V <- mvrnorm(n,mu,est_sigma)
beta<-(matrix(c(25,3.5,-1.75,-2.5,175,2.5,-1.25,-1.5),nrow=4,ncol=2))
r<-R%*%betat+colMeans(V)
A<-((R%*%estbeta)-r)
A2<-(solve(t(X)%*%X))
B1<-(A2%*%t(R))
B2<-(R%*%B1)
B21<-matrix(c(B2),nrow=2,ncol=2,byrow=TRUE)+est sigma
B3<-solve(B21)
C<-((solve(t(X)%*%X))%*%t(R))
restbeta<-estbeta-(C%*%(A%*%B3))
rbO1[i]<-restbeta[1,1]
rbl1[i]<-restbeta[2,1]
rb21[i]<-restbeta[3,1]
rb3 1[i]<-restbeta[4,1]
rb02[i]<-restbeta[1,2]
rb12[i]<-restbeta[2,2]
rb22[i]<-restbeta[3,2]
rb32[i]<-restbeta[4,2]
H
rbols<-matrix(c(abs(mean(b01)-25)/25*100,abs(mean(b11)-3.5)/3.5*¥100,abs(mean(b21)-(-1.75))/(-
1.75)*100,abs(mean(b31)-(-2.5))/(-2.5)*100,abs(mean(b02)-175)/175*100,abs(mean(b12)-
2.5)/2.5*%100,abs(mean(b22)-(-1.25))/(-1.25)*100,abs(mean(b32)-(-1.5))/(-1.5)*100),nrow=4,ncol=2)

rbrols<-matrix(c((mean(rb01)-25)/25*100,(mean(rb11)-3.5)/3.5%100,(mean(rb21)-(-1.75))/(-
1.75)*100,(mean(rb31)-(-2.5))/(-2.5)*100,(mean(rb02)-175)/175*100,(mean(rb12)-2.5)/2.5*¥100,(mean(rb22)-(-
1.25))/(-1.25)*100,(mean(rb32)-(-1.5))/(-1.5)*100),nrow=4,ncol=2)

varols<-matrix(c(var(b01),var(b11),var(b21),var(b31),var(b02),var(b12),var(b22),var(b32)),nrow=4,ncol=2)

varrols<-matrix(c(var(rb01),var(rb11),var(rb21),var(rb31),var(rb02),var(rb12),var(rb22),var(rb32)),nrow=4,ncol=2)
re<-varols/varrols
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Appendix B.2:# Simulation of Multivariate Regression with Continuous Responses with exact restriction #

library (MASS)

p<-2

n<-400

it<-10000

rho<-0.9

sigmal 1<-100

sigma22<-81

sigmal2<-rho*sqrt(sigmal 1)*sqrt(sigma22)
sigma21<-sigmal2

b01<-matrix(data=NA, nrow = it, ncol = 1)
bl1<-matrix(data=NA, nrow = it, ncol = 1)
b21<-matrix(data=NA, nrow = it, ncol = 1)
b31<-matrix(data=NA, nrow = it, ncol = 1)
b02<-matrix(data=NA, nrow = it, ncol = 1)
b12<-matrix(data=NA, nrow = it, ncol = 1)
b22<-matrix(data=NA, nrow = it, ncol = 1)
b32<-matrix(data=NA, nrow = it, ncol = 1)
rb01<-matrix(data=NA, nrow = it, ncol = 1)
rbl1<-matrix(data=NA, nrow = it, ncol = 1)
rb2 1<-matrix(data=NA, nrow = it, ncol = 1)
rb3 1<-matrix(data=NA, nrow = it, ncol = 1)
rb02<-matrix(data=NA, nrow = it, ncol = 1)
rb12<-matrix(data=NA, nrow = it, ncol = 1)
rb22<-matrix(data=NA, nrow = it, ncol = 1)
rb32<-matrix(data=NA, nrow = it, ncol = 1)
for (i in 1:it) {

mu<- matrix(c(0,0),nrow=2,ncol=1)

sigma<- matrix(c(sigmal 1,sigmal2,sigma21,sigma22),nrow=p,ncol=p)

set.seed(950+1)
error<- mvrnorm(n,mu,sigma)
set.seed(950)

X1<-round(abs(rnorm(n,mean=1000,sd=60)),0)

set.seed(950)

X2<-round(abs(rnorm(n,mean=375,sd=30)),0)

set.seed(950)

X3<-round(abs(rnorm(n,mean=500,sd=20)),0)

xbeta<-matrix(c((25+3.5%(X1)-1.75%(X2)-2.5%(X3)),(175+2.5%(X1)-1.25%(X2)-1.5*(X3))),nrow=n,ncol=p)

Y<-xbetaterror
X0<-matrix(c(1),nrow = n,ncol = 1)
X<-cbind(X0,X1,X2,X3)

estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y)

bO1[i]<-estbeta[1,1]
bl1[i]<-estbeta[2,1]
b21[i]<-estbeta[3,1
b31[i]<-estbeta[4,1
b02[i]<-estbeta[1,2
b12[i]<-estbeta[2,2
b22[i]<-estbeta[3,2]

]
]
]
]
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b32[i]<-estbeta[4,2]

R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE)

r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE)

A<-((R%*%estbeta)-r)

A2<-(solve(t(X)%*%X))

B1<-(A2%*%t(R))

B2<-(R%*%B1)

B3<-solve(B2)

C<-((solve(t(X)%*%X))%*%t(R))
restbeta<-estbeta-(C%*%(B3%*%A))
rb0O1[i]<-restbeta[1,1]
rb11[i]<-restbeta[2,1]
rb21[i]<-restbeta[3,1]
rb3 1[i]<-restbeta[4,1]
rb02[i]<-restbeta[1,2
rb12[i]<-restbeta[
rb22[i]<-restbeta[
rb32[i]<-restbeta[

f
#iHH##H# Properties of the Modified Maximum Likelihood Estimator #######
bols<-matrix(c((mean(b01)-25)/25*100,(mean(b11)-3.5)/3.5*100,(mean(b21)-(-1.75))/(-1.75)*100,(mean(b3 1)-(-
2.5))/(-2.5)*100,(mean(b02)-175)/175*100,(mean(b12)-2.5)/2.5*%100,(mean(b22)-(-1.25))/(-1.25)*100,(mean(b32)-
(-1.5))/(-1.5)*100),nrow=4,ncol=2)
rbris<-(matrix(c((mean(rb01)-25)/25*100,(mean(rb11)-3.5)/3.5*100,(mean(rb21)-(-1.75))/(-1.75)*100,(mean(rb3 1)-
(1.5))/(1.5)*100,(mean(rb02)-175)/175*100,(mean(rb12)-2.5)/2.5*%100,(mean(rb22)-(-1.25)/(-
1.25)*100),(mean(rb32)-(1.75)/(1.75)*100)),nrow=4,ncol=2))
varianceolLs<-matrix(c(var(b01),var(b11),var(b21),var(b31),var(b02),var(b12),var(b22),var(b32)),nrow=4,ncol=2)
varianceMLE<-
matrix(c(var(rb01),var(rb11),var(rb21),var(rb31),var(rb02),var(rb12),var(rb22),var(rb32)),nrow=4,ncol=2)
re<-varianceoLs/varianceMLE

2,2
3,2
4,2

s

—_ e
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Appendix B.3: # Monte Carlo Simulation of testing the power of the modified test

library (MASS)

p<-2

n<-25

it<-10000

rho<-0.9

alpha<-.99

sigmal 1<-100

sigma22<-81

iv<-3

sigmal2<-rho*sqrt(sigmal 1)*sqrt(sigma22)
sigma21<-sigmal2
beta<-matrix(c(25,3.5,-1.75,-2.5,175,2.5,-1.25,-1.5), nrow = 4, ncol = 2)
betal<-matrix(c(0),nrow=4,ncol=2,byrow=TRUE)
b01<-matrix(data=NA, nrow = it, ncol = 1)
bl1<-matrix(data=NA, nrow = it, ncol = 1)
b21<-matrix(data=NA, nrow = it, ncol = 1)
b3 1<-matrix(data=NA, nrow = it, ncol = 1)
b02<-matrix(data=NA, nrow = it, ncol = 1)
bl2<-matrix(data=NA, nrow = it, ncol = 1)
b22<-matrix(data=NA, nrow = it, ncol = 1)
b32<-matrix(data=NA, nrow = it, ncol = 1)
rb01<-matrix(data=NA, nrow = it, ncol = 1)
rbl1<-matrix(data=NA, nrow = it, ncol = 1)
rb2 1<-matrix(data=NA, nrow = it, ncol = 1)
rb3 1<-matrix(data=NA, nrow = it, ncol = 1)
rb02<-matrix(data=NA, nrow = it, ncol = 1)
rb12<-matrix(data=NA, nrow = it, ncol = 1)
rb22<-matrix(data=NA, nrow = it, ncol = 1)
rb32<-matrix(data=NA, nrow = it, ncol = 1)
t01<-matrix(data=NA, nrow = it, ncol = 1)
tl1<-matrix(data=NA, nrow = it, ncol = 1)
t2 1<-matrix(data=NA, nrow = it, ncol = 1)
t3 1<-matrix(data=NA, nrow = it, ncol = 1)
t02<-matrix(data=NA, nrow = it, ncol = 1)
t12<-matrix(data=NA, nrow = it, ncol = 1)
t22<-matrix(data=NA, nrow = it, ncol = 1)
t32<-matrix(data=NA, nrow = it, ncol = 1)
o01<-matrix(data=NA, nrow = it, ncol = 1)
ol1<-matrix(data=NA, nrow = it, ncol = 1)
021<-matrix(data=NA, nrow = it, ncol = 1)
o3 1<-matrix(data=NA, nrow = it, ncol = 1)
002<-matrix(data=NA, nrow = it, ncol = 1)
ol2<-matrix(data=NA, nrow = it, ncol = 1)
022<-matrix(data=NA, nrow = it, ncol = 1)
032<-matrix(data=NA, nrow = it, ncol = 1)
oo01<-matrix(data=NA, nrow = it, ncol = 1)
ool 1<-matrix(data=NA, nrow = it, ncol = 1)
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0021<-matrix(data=NA, nrow = it, ncol = 1)
003 1<-matrix(data=NA, nrow = it, ncol = 1)
0002<-matrix(data=NA, nrow = it, ncol = 1)
ool2<-matrix(data=NA, nrow = it, ncol = 1)
0022<-matrix(data=NA, nrow = it, ncol = 1)
0032<-matrix(data=NA, nrow = it, ncol = 1)
beta<-matrix(c(0,0),nrow=4,ncol=2)

ttt0 1 <-matrix(data=NA, nrow = it, ncol = 1)
ttt] 1<-matrix(data=NA, nrow = it, ncol = 1)
ttt2 1<-matrix(data=NA, nrow = it, ncol = 1)
ttt3 1<-matrix(data=NA, nrow = it, ncol = 1)
ttt02<-matrix(data=NA, nrow = it, ncol = 1)
ttt12<-matrix(data=NA, nrow = it, ncol = 1)
ttt22<-matrix(data=NA, nrow = it, ncol = 1)
ttt32<-matrix(data=NA, nrow = it, ncol = 1)

for (i in 1:it) {
mu<- matrix(c(0,0),nrow=2,ncol=1)

sigma<- matrix(c(sigmal 1,sigmal2,sigma21,sigma22),nrow=p,ncol=p)

set.seed(950+1)

error<- mvrnorm(n,mu,sigma)

set.seed(950)
X1<-round(abs(rnorm(n,mean=1000,sd=60)),0)

set.seed(950)
X2<-round(abs(rnorm(n,mean=375,sd=30)),0)

set.seed(950)
X3<-round(abs(rnorm(n,mean=500,sd=20)),0)

Dhaka University Institutional Repository

xbeta<-matrix(c((25+3.5%(X1)-1.75%(X2)-2.5%(X3)),(175+2.5%(X1)-1.25%(X2)-1.5*(X3))),nrow=n,ncol=p)

Y<-xbeta+error
X0<-matrix(c(1),nrow = n,ncol = 1)
X<-cbind(X0,X1,X2,X3)
estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y)
bO1[i]<-estbeta[1,1]
bl1[i]<-estbeta[2,1]
b21[i]<-estbeta[3,1]
b31[i]<-estbeta[4,1]
b02[i]<-estbeta[1,2]
b12[i]<-estbeta[2,2]
b22[i]<-estbeta[3,2]
b32[i]<-estbeta[4,2]
R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE)
r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE)
A<-(R%*%estbeta)-r
A2<-(solve(t(X)%*%X))
B1<-(A2%*%t(R))
B2<-(R%*%B1)
B3<-solve(B2)
C<-((solve(t(X)%*%X))%*%t(R))
restbeta<-estbeta-(C%*%(B3%*%A))
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rbO1[i]<-restbeta[1,1]
rbl1[i]<-restbeta[2,1]
rb21[i]<-restbeta[3,1]
rb3 1[i]<-restbeta[4,1]
rb02[i]<-restbeta[1,2
rb12[i]<-restbeta[2,2
[3,2
[4,2

s

rb22[i]<-restbeta
rb32[i]<-restbeta

—_
—_ e

xrbeta<-
matrix(c((restbeta[ 1,1 ]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]*(X3)),(restbeta[ 1,2]+restbeta[2,2]*(X1
)trestbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2)
rerror<-(Y-xrbeta)
rsigma<-(1/(n-iv-1))*(t(rerror)%*%rerror)

cr1<-A2%*%t(R)%*%B3%*%R%*%A2

sigl<-kronecker(rsigma,A2)

sig2<-kronecker(rsigma,crl)
varrbeta<-sigl-sig2
ttt<-matrix(c((diag(varrbeta))),nrow=4,ncol=2)
varsqt<-sqrt(ttt)

s<-(restbeta-betal)/varsqt
tO1[i]<-s[1,1]
t11[i]<-s[2,1]
t21[i]<-s[3,1]
t31[i]<-s[4,1
t02[i]<-s[1,2
t12[i]<-s[2,2
t22[i]<-s[3,2
t32[i]<-s[4,2]

]
]
]
]

cl<-(restbeta)-quantile(s, probs = c(alpha))*varsqt

cu<-(restbeta)+quantile(s, probs = c(alpha))*varsqt
#bb<-(qmvt(0.90, df = n,corr=rho, tail = "both")$quantile)
#cl<-restbeta-bb*varsqt
#cu<-restbetat+bb*varsqt

out<-ifelse(betal<clbetal>cu,1,0)

001[i]<-out[1,1]

ol1[i]<-out[2,1]

021[i]<-out[3,1]

o31[i]<-out[4,1]

002[i]<-out[1,2]

012[i]<-out[2,2]

022[i]<-out[3,2]

032[i]<-out[4,2]

xebeta<-
matrix(c((estbeta[ 1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[ 1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2)
oerror<-(Y-xebeta)
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osigma<-(1/(n-iv-1))*(t(oerror)%*%oerror)
sig01<-kronecker(osigma,A2)
varols<-sqrt(matrix(c((diag(sig01))),nrow=4,ncol=2))
os<-(estbeta-betal)/varols
ttt01[i]<-os[1,1]
ttt11[i]<-os[2,1]
ttt21[i]<-os[3,1]
ttt31[i]<-os[4,1]
ttt02[i]<-os[1,2]
ttt12[i]<-0s[2,2]
ttt22[i]<-0s[3,2]
ttt32[i]<-os[4,2]
cll<-estbeta-quantile(os, probs = c(alpha))*varols
cuu<-estbeta+quantile(os, probs = c(alpha))*varols
outt<-ifelse(betal<cllbetal>cuu,1,0)
oo01[i]<-outt[1,1]
ool 1[i]<-outt[2,1]
0021[i]<-outt[3,1]
003 1[i]<-outt[4,1]
0002[i]<-outt[1,2]
ool2[i]<-outt[2,2]
0022[i]<-outt[3,2]
0032[i]<-outt[4,2]
}
power 1<-max(mean(o01),mean(o1l1),mean(021),mean(0o31),mean(002),mean(o12),mean(022),mean(032))
power2<-max(mean(oo01),mean(oo11),mean(0021),mean(oo31),mean(0002),mean(oo12),mean(0022),mean(0032))
power<-c(powerl,power2)
View(t(power))

104


Anis
Typewritten text
Dhaka University Institutional Repository


Dhaka University Institutional Repository

Appendix B.4: # Monte Carlo Simulation for comparing modified joint confidence region

library (MASS)

library(expm)

p<-2

n<-25

it<-10000

rho<-.90

sigmal 1<-100

sigma22<-81

sigmal2<-rho*sqrt(sigmal 1)*sqrt(sigma22)
sigma21<-sigmal2

Ir<-matrix(data=NA, nrow = it, ncol = 1)

pvalue<-matrix(data=NA, nrow = it, ncol = 1)

chi<-matrix(data=NA, nrow = it, ncol = 1)
b01<-matrix(data=NA, nrow = it, ncol = 1)
bl1<-matrix(data=NA, nrow = it, ncol = 1)
b21<-matrix(data=NA, nrow = it, ncol = 1)
b3 1<-matrix(data=NA, nrow = it, ncol = 1)
b02<-matrix(data=NA, nrow = it, ncol = 1)
bl2<-matrix(data=NA, nrow = it, ncol = 1)
b22<-matrix(data=NA, nrow = it, ncol = 1)
b32<-matrix(data=NA, nrow = it, ncol = 1)
rb01<-matrix(data=NA, nrow = it, ncol = 1)
rbl1<-matrix(data=NA, nrow = it, ncol = 1)
rb2 1<-matrix(data=NA, nrow = it, ncol = 1)
rb3 1<-matrix(data=NA, nrow = it, ncol = 1)
rb02<-matrix(data=NA, nrow = it, ncol = 1)
rb12<-matrix(data=NA, nrow = it, ncol = 1)
rb22<-matrix(data=NA, nrow = it, ncol = 1)
rb32<-matrix(data=NA, nrow = it, ncol = 1)
for (i in 1L:it) {

mu<- matrix(c(0,0),nrow=2,ncol=1)

sigma<- matrix(c(sigmal 1,sigmal2,sigma21,sigma22),nrow=p,ncol=p)

set.seed(950+1)
error<- mvrnorm(n,mu,sigma)
set.seed(950)

X1<-round(abs(rnorm(n,mean=1000,sd=60)),0)

set.seed(950)

X2<-round(abs(rnorm(n,mean=375,sd=30)),0)

set.seed(950)

X3<-round(abs(rnorm(n,mean=500,sd=20)),0)

xbeta<-matrix(c((25+3.5*%(X1)-1.75*(X2)-2.5%(X3)),(175+2.5%(X1)-1.25%(X2)-1.5%(X3))),nrow=n,ncol=p)

Y<-xbeta+error
X0<-matrix(c(1),nrow = n,ncol = 1)
X<-cbind(X0,X1,X2,X3)

estbeta<-(solve(t(X)%*%X))%*%(t(X)%*%Y)

bO1[i]<-estbeta[1,1]
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bl1[i]<-estbeta[2,1]
b21[i]<-estbeta[3,1]
b31[i]<-estbeta[4,1]
b02[i]<-estbeta[1,2]
b12[i]<-estbeta[2,2]
b22[i]<-estbeta[3,2]
b32[i]<-estbeta[4,2]

R<- matrix(c(0,1,2,0),nrow=1,ncol=4,byrow=TRUE)

r<- matrix(c(0,0),nrow=1,ncol=2,byrow=TRUE)

A<-((R%*%estbeta)-r)

A2<-(solve(t(X)%*%X))

B1<-(A2%*%t(R))

B2<-(R%*%B1)

B3<-solve(B2)

C<-((solve(t(X)%*%X))%*%t(R))
restbeta<-estbeta-(C%*%(B3%*%A))
rbO1[i]<-restbeta[1,1]
rbl1[i]<-restbeta[2,1]
rb21[i]<-restbeta[3,1]
rb31[i]<-restbeta[4,1]
rb02[i]<-restbeta[1,2]
rb12[i]<-restbeta[2,2]
rb22[i]<-restbeta[3,2]
rb32[i]<-restbeta[4,2]

xrbeta<-
matrix(c((restbeta[ 1,1 ]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]%*(X3)),(restbeta[ 1,2]+restbeta[2,2]*(X1
)+restbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2)
rerror<-(Y-xrbeta)
rsigma<-(1/n)*(t(rerror)%*%rerror)

xbeta<-
matrix(c((estbeta[ 1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[ 1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2)
olserror<-(Y-xbeta)
olssigma<-(1/n)*(t(olserror)%*%olserror)
Ir[i]<-det(rsigma)/det(olssigma)
chi[i]<-dchisq(lr[i], 2)
pvalue[i]<-pchisq(lr[i], 2, lower.tail=TRUE)

H

xrbeta<-

matrix(c((restbeta[ 1,1 ]+restbeta[2,1]*(X1)+restbeta[3,1]*(X2)+restbeta[4,1]*(X3)),(restbeta[ 1,2]+restbeta[2,2]*(X1
)trestbeta[3,2]*(X2)+restbeta[4,2]*(X3))),nrow=n,ncol=2)
rerror<-(Y-xrbeta)

rsigma<-(1/n)*(t(rerror)%*%rerror)
cr1<-A2%*%t(R)%*%B3%*%R%*%A2

crl1<-A2-crl

varrbeta<-kronecker(rsigma,crl1)
varrbetasqr<-matrix(c(sqrt(diag(varrbeta))),nrow=4,ncol=2)
t<-restbeta/varrbetasqr

rucl<-(restbeta)+(qt(0.95, 21))*varrbetasqr
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rull<-(restbeta)-(qt(0.95, 21))*varrbetasqr

xbeta<-

matrix(c((estbeta[ 1,1]+estbeta[2,1]*(X1)+estbeta[3,1]*(X2)+estbeta[4,1]*(X3)),(estbeta[ 1,2]+estbeta[2,2]*(X1)+est
beta[3,2]*(X2)+estbeta[4,2]*(X3))),nrow=n,ncol=2)

olserror<-(Y-xbeta)

olssigma<-(1/n)*(t(olserror)%*%olserror)

olsvarrbeta<-kronecker(olssigma,A2)

Ir<-det(rsigma)/det(olssigma)
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