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ABSTRACT 

 
Now a days, the discussion of chaotic dynamics has become increasingly popular. A 

particular class of dynamical systems is defined as chaotic dynamical systems. The idea 

of dynamical systems has gone through phases and has even been given different 

names. Chaos is gradually becoming a part of our daily life. Devaney's definition of 

chaos is considered a general and strong definition of chaos. It is based on the strength 

of topological transitivity in the discovery of chaos.  

 

In this research, we reviewed the Proximity theorem 3.3.1 and its proof and using this 

theorem we have found strong chaotic features of the shift map 𝜎, on ∑ . We have also 

proved the chaotic features of the generalized shift map. We have found the essential 

chaotic properties of the complemented shift map and confirmed that 𝜎  is chaotic on 

∑ .  

 

Presently, we are using the shift map as a chaotic model of a dynamical system. This 

research has established that the generalized shift map and the complemented shift map 

are chaotic. So, we can use the above two maps as constituting the new model for 

chaotic dynamical systems. 
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INTRODUCTION 

 
Dynamical systems are part of life. Quite often, it has been studied as an abstract 

concept in mathematics. For every dynamical system, a state-space represents the set 

of values for which iterations of the system are generated. The state space is given by a 

set of real numbers or possibly a vector at any given time. Every point or vector used 

can be represented by a point in the appropriate state space. The path of a dynamical 

system [39] (trajectory or orbit) is relevant if only individual systems could be obtained 

and comprehended. It is often difficult due to the complexity of many dynamical 

systems. 

 

 Chaos theory was discovered in 1963 though Lorenz had observed the phenomenon 

two years earlier. Quite a number of things could contribute to this irregularity which 

would later become a giant concept of study years later on. Lorenz is believed to 

propound the idea, but he is certainly not the first to associate chaos with the 

phenomenon under study. Alexander Lyapunov also made some contributions in the 

early stages. He was in the study of the instability of fluids and turbulence in fluids or 

gases. He tried to measure the transition from order to chaos. Chaos is one of the few 

concepts in mathematics which cannot usually be defined in a word or statement. Chaos 

theory is a branch of mathematics focusing on dynamical systems that are highly 

sensitive to initial conditions. Chaos theory is the study of how systems that follow 

simple, straightforward, deterministic laws can exhibit very complicated and seemingly 

random long-term behavior. In mathematics, chaos cannot usually be defined in a word 

or statement. Chaotic features depend on either the topological or metric properties of 

the system. In mathematics, Chaos theory is presented through a brief analysis of some 

interesting dynamical systems that exist one-, two-, and three-dimensional maps like 

logistic, tent, doubling, Smale's horseshoe map, Hénon map and Lorenz model which 

exhibit chaotic behavior. This behavior can be studied through the analysis of a chaotic 

mathematical model. 

 

Symbolic dynamics gives a method for converting natural system trajectories into 

symbol sequences and answering how much the underlying system can be deduced 

from these sequences. Symbolic dynamics shows how one may convert a dynamical 

system into an extended technique, studies the simplified dynamics in sequences space, 
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and then take the results back to the state-space of the original system. The symbolic 

dynamical systems form a significant category of dynamical systems. We may consider 

a shift operator that shifts a sequence one symbol left in such a place.  

 

As first mathematicians, Li and Yorke [15] assembled the term chaos with a map. 

According to the definition of Devaney’s chaos [1], topological transitive map is 

chaotic. The concept of chaos accompanied with the concept of transitivity and 

sensitivity by J. Auslander and J.A. Yorke [20] in 1980. There are various ways of 

assessing the complicated or chaotic nature of the dynamics. Akin [57] proposed 

connection between sensitivity and Li-Yorke version of chaos. L. Snoha [24] induced 

the conception of dense chaos and dense 𝛿- chaos. 

 

Thompson [78] describes how Dynamical systems can be studied from a distinct point 

of view of which one dominant area is topological dynamics. Topological dynamics 

deals with a space, a topology, and a function that acts on it.  One of the two components 

of Devaney chaos is topologically transitive . It is well known that having the property 

of transitivity is sufficient enough for a system on the interval [52] and, on the infinite 

shift space; it is obvious that transitivity implies dense periodic points and therefore 

implies SDIC [22]. This is not true if we replace the property of transitivity with the 

other ingredient of Devaney chaos, dense periodicity property yields different results.  

 

Topological transitivity for transitive maps is quite similar to topological mixing. In the 

case of interval maps [55], weakly mixing, transitivity, and topological mixing are 

equivalent. Transitivity guarantees sensitivity dependence for interval maps; the 

converse is true. Horseshoe maps have positive topological entropy. Positive entropy 

and homoclinic points are equivalent properties. 

 

The symbol space we conduct here has a metric that is defined naturally. Hence the 

study can be related to the metric space using the standard concepts of dynamical 

systems. This discussion aims to show the chaoticity and related properties of 𝜎. There 

are many concepts of chaoticity defined in metric spaces. Biswas H. R. [16] expanded 

the concept of the shift map to the generalized shift map 𝜎  in the symbol space Ʃ  and 

showed that the generalized shift map is chaotic on Ʃ . Ju H., Shao H., Choe Y., and 

Shi Y. [17] gave an idea of the conditions for any maps to be conjugate or semi-

conjugate (topologically) to subshifts of finite type. In recent times [14, 18, 19], some 
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attractive research works have been done on the particular property sensitive 

dependence on initial conditions. Ruette [55] showed that shift maps are topologically 

mixing, have sensitive dependence on initial conditions, and dense periodic points on 

an invariant subset supporting topological semi-conjugacy. Dutta T. K. and 

Burhagohain A. in [33] used topological conjugacy to prove chaoticity. The basic 

ingredients of Li-Yorke chaos are uncountable scrambled sets called Li-York pairs. 

Construction of Li-Yorke pairs has been done [21, 54] in a clear cut-way. In 1993, Li 

Si. [81] introduced the notion of 𝜔-chaos through the introduction of 𝜔-scrambled set.  

 

Mathematica and Matlab software are useful for programming, and so to analyze the 

chaotic behaviors of different maps, we have used these software’s to perform our 

research.  

 

Organisation of the thesis 
 

The chapter of the thesis is organized as follows: 

Chapter-1:  Some basic and general concepts of dynamical systems, types of 

dynamical systems, different types of orbits, several definitions of chaos and related 

theorem, chaotic maps in the interval which are required in the subsequent chapters of 

this thesis are presented in this chapter. 

 

Chapter-2: How symbolic dynamics work for one-dimensional, and two-dimensional 

maps such as quadratic map, logistic map, tent map, Smale’s horseshoe map, and a 

specific horseshoe map is discussed here. This chapter shows the chaotic significance 

by comparing one map with another map with the help of topological conjugacy.  

 

Chapter-3: Important strong chaotic properties of the shift map 𝜎 on the generalized 

one-sided symbol space ∑ , 𝑚 (≥ 2) ∈ 𝑁 is explained in chapter 3.   

 

Chapter-4:  Strong chaotic features of the generalized shift map 𝜎  is discussed in this 

chapter. 

 

Chapter-5:  Complemented shift map and its essential chaotic features are established 

here. It is proved that 𝜎  on ∑  is Devaney as well as Auslander-York Chaotic.  
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CHAPTER -1 

DYNAMICAL SYSTEMS AND DIFFERENT TYPES OF 

CHAOS 

 
1.1 Introduction 
 

A dynamical system is a mathematical attempt to describe the phenomenon of change. 

In terms of modern dynamical systems and their ideas, a relatively brief historical past 

exists. Considered the prominent founding father of dynamical systems, the French 

mathematician Henri Poincaré (1854-1912) developed the study of non-linear 

differential equations by presenting the qualitative approaches of geometry and 

topology instead of analytic methods to discuss the general properties of solutions of 

these systems. As a mathematician, a world and international appreciation and 

acceptance of the behavior of all system solutions were equally more important than 

just the solved analytically-precise solutions. Birkhoff appreciated the significance of 

the study of mappings and accentuated discrete dynamics as a method of figuring out 

the continuous dynamics arising from differential equations. As times progressed, the 

subject of dynamical systems has benefited from a combination of interest and 

techniques and methods and applications from all sorts of fields [12].  

 

Science and Mathematics have always been interrelated. Perhaps this could be due to 

the fact that mathematical expressions can present almost every idea in science. Science 

helps interpret nature, whereas mathematics enables us to solve real-life problems that 

are usually difficult to solve or deal with directly. These expressions are typically in the 

form of equations and, more often, differential equations. It is generally done using the 

concept of modeling. In models, real-life science is described with purely mathematical 

language. Most often, these are considered to be adequate and accurately such that 

solutions to the mathematics model imply the problem in science is solved. It was born 

out of a real-life challenge some years ago, somewhere in the eighteenth century. Once 

in Russia, in Koenigsberg, the river Pregel had over flown its banks and run through the 

city. There existed some seven bridges that connected the regions in this city. People 

wanted to find out the possibility of going through the city but crossing each bridge 
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only once. Given their position, even Euler believed it was impossible to walk across 

the bridges. 
 

 

Figure 1.1: The Koenigsberg bridges (Adapted from an illustration in 

Newman,1983) 

 

Mathematicians believed that what is now being defined as chaos is not really anything 

new. It has been with us all these years, and we are only renaming it to make it look 

more mathematical. Perhaps they would agree with Henry Poncaire’s quote that 

“Mathematics is the art of giving new names to old things”. The first experience with 

what is now called chaos was with Henry Poincaré, the famous French mathematician 

in the early 1900’s. Poincaré is considered the last of the universalist (people who made 

major contributions to all major and known areas) in mathematics. He studied what was 

called the three-body problem (motion of the solar system) by Newton. In Poncaire’s 

view, there is always a small cause (infinitely small) that we usually are not aware of, 

and irrespective of the fact that we overlook it, it has a big and noticeable effect that we 

cannot afford to overlook. Often, we attribute this cause to chance. 

 
1.2 General Overview 
 

A dynamical system can be thought of as repeating events once and again. We consider 

anything that evolves (changes over time) as a dynamical system. Since life is full of 

changing (non-constant events), so life could be considered a dynamical system. In 

dynamical systems, the starting point, the journey along the line as well as the finishing 

points are all relevant, and hence we pay attention to each of them as such. One of the 

ways of describing the passage in time of points in a given space 𝑆 is a dynamical 
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system. The space 𝑆 varies depending on the area of dynamics [2]. Dynamical systems 

help appreciate the relationships between mathematics and various aspect of science. 

 
1.3 Dynamical System 
 

A dynamical system is best to describe in terms of these three words  

 

(i) Phase space 

(ii) Time 

(iii) Law of evolution 

 

(i) Phase space: The phase space captures the various structures of a dynamical system. 

The different aspects of dynamical systems are obtained based on these structures. They 

could either be differentiable, topological or considered preserving (ergodic). 

 

(ii) Time: Time is expressed either as discrete when the values are integers, whereas it 

is considered continuous when the set of values are real numbers. Time considered here 

is either reversible or irreversible depending on its domain. 

 

(iii) Law of Evolution: This is the rule that allows us to determine the state of a system 

at any moment, given its current state. 

 

Mathematically, (𝑋, 𝐺, 𝛹) is a dynamical system if 

 

(i) 𝑋 is a non-empty set.  

(ii) 𝐺 is a group or semi-group.  

(iii) 𝛹 is a map where 𝛹: 𝑋 × 𝐺 → 𝑋 satisfies  𝛹 𝛹 𝑥, 𝑔
1

, 𝑔
2

= 𝛹 𝑥, 𝑔
1

× 𝑔
2

. 

 

Here 𝑋 is called state-space or phase space. We give some examples of dynamical 

systems which shown in our real-life [4]. 

 
Example: 
 

(i) Population growth,  

(ii) A swinging pendulum,  

(iii) The motions of celestial bodies, 

(iv) Atmosphere (weather), 

(v) Economy (stock market). 
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1.3.1 Types of Dynamical Systems 
 

Here, we will discuss different dynamical systems, such as discrete and continuous 

dynamical systems. 

 
1.3.1.1 Discrete Dynamical System 
 

Given the current or present state of a system, we expect to know the state of the system 

given a change in time. A discrete dynamical system [1] is defined as a sequence 𝑋  

with 𝑋 = 𝑓(𝑋 ) where 𝑓: ℝ → ℝ. 

 

Actually, we have a discrete dynamical system when time is a sequence of separate 

chucks, each of the next like beads on a string. In such cases, one can really distinguish 

between the position of the bead in front and the bead behind without confusion or 

ambiguity. In discrete dynamical systems, usually preceding states can be obtained 

depending on computations of the current state. It is always important to know where a 

system will be in the next instant. Also, there are intervals (big) between two distinct 

time intervals; hence, we say discrete dynamical systems change in cycles after the 

expected time periods. 

 
1.3.1.2 Continuous Dynamical System 
 

A continuous dynamical system [2] is mostly represented by differential equations. It 

is usually expressed as 𝑋 ′ = 𝑓(𝑥) which describes the rate at which the system changes 

with time. Here our interest is how quickly the system changes with time.  

 
Example 1.3.1.1 An orange is thrown up in the air. It will be unfortunate to ask where 

the mango will be at the next instant, though we have every reason to know how the 

height and velocity of the mango changes with time. 

 

We can describe such a system by a vector representation of its height or position and 

velocity or speed. Velocity here is simply the rate of change of position relative to time. 

As the mango falls back from up there (return to its starting point), it obtains a velocity 

against gravity. 
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Mathematically, 

𝑋 = [ℎ, 𝑣] = 𝑣 and  = −𝑔 

 

The solution of this system indicates the height and velocity of the mango at any time 

(t). One area or type of system where continuous systems really appear most is in 

chemical reactions. It deals with the response of several components and can usually 

be modeled as a differential equation. We note that both discrete and continuous 

dynamical systems can appear beyond the one-dimensional form. As stated earlier, 

there are various aspects of the dynamical system due to the behavior of their state 

space. 

 
1.4 Other Concepts in Dynamical Systems 

 

The nature of its orbit [1] is always important and worth noting in a dynamical system. 

There is always the tendency to have repetitions in orbit.  

 
Definition 1.4.1 (Orbits) 
 

Given  𝑥 ∈ ℝ, we define the orbit of 𝑥  under 𝑓 to be the sequence of points. 

 𝑥 , 𝑥 = 𝑓(𝑥 ), 𝑥 = 𝑓 (𝑥 ), … … … , 𝑥 = 𝑓 (𝑥 ), … … 

That is,  𝑥 = 𝑓(𝑥 ) = 𝑓 (𝑥 ). The point 𝑥  is the seed of the orbit [1]. 

 
Definition 1.4.2 (Fixed Point): If 𝑓(𝑥 ) = 𝑥  then 𝑥  is a fixed point [1], where 

𝑓: 𝑋 → 𝑋 is a continuous map. 

 
Definition 1.4.3 (Periodic Point): 
 

A point 𝑥 ∈ 𝑋 is periodic point [1] of a function 𝑓 of period  𝑛 if 𝑓 (𝑥 ) = 𝑥  , 𝑛 > 1 

is the order of 𝑓. 

 
Definition 1.4.4 (Forward Asymptotic point): 
 

If lim
→

𝑓 (𝑥) = 𝑝 then x is an asymptotic forward point [1] where 𝑝 is the periodic 

point of period n. 𝑊 (𝑝) is a stable set of consisting of all points forward asymptotic 

to p. 
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Definition 1.4.5 (Backward Asymptotic point): 
 

We can define forward asymptotic points by 𝑓 (𝑥) − 𝑓 (𝑝) → 0 as 𝑖 → ∞ where p is 

a non-periodic point. If f   is invertible, then we have backward asymptotic points [1] 

by putting 𝑖 → −∞. 𝑊 (𝑝) is an unstable set of p consisting of all points that are 

backward asymptotic to p. 

 
 

1.5 Chaos and Chaotic dynamics 
 

In this section we will discuss about chaos and chaotic dynamics. Chaos represents one 

of the interesting behaviors of dynamical system and it shows movement of sets from 

their existing position or location. Chaos theory as an idea in non-linear mathematics is 

applicable in both social sciences and natural science. 

 

1.5.1 General Discussion 
 

Most Mathematicians and Physicist like Newton and Laplace made indirect 

contributions to chaos theory. The pair believed in the same cause being equal to the 

same effect. They pointed out that there are always clear rules of life (cause and effect), 

which brought about predictability and could always be controlled. They believed 

systems behaved nicely once we repeated doing the same thing, expecting the same 

results. Though Newton and his colleague believed in predictability, it had challenges 

in predicting systems like the weather. The orbits of the weather or solar system created 

a gap in what they believed. Basically, they meant that, given two bodies in motion from 

similar points, we should be able to trace one orbit using the other. In this height, he 

desired to see the three-body problem solved. He discovered in his study that there are 

orbits of systems that are not periodic and yet never move closer or converge to any 

fixed point. Though Poncaire never solved Newton’s three-body problem, he made 

significant remarks in that direction. His solution was considered as a partial solution to 

the problem. It was still awarded for it, perhaps because other legendary 

Mathematicians like Euler, Laplace, Lagrange, and others could not help out. In 

Poincare’s solution, he did approximate orbits in the form of series. He later realized 

he had made a mistake, and it was the genuineness of mind in admitting gave rise to 

what will now be termed as chaos. He realized that little changes had more than just a 
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little effect over time. His idea on chaos almost never fell through because people had 

lived with Newtonian science for long and maybe because other mathematics like 

Laplace, Leibniz, and others still believed in Newtonian science. Almost every system 

is linear and could be predicted to a point unknown and perhaps unseen. 

 

Edward Lorenz from MIT is known and acknowledged as the father (modern) of chaos 

theory. He was a meteorologist and had so much interest in long-term predictions of the 

weather. This happened during one of his routine computations trying to predict the 

weather. He did the same computations but with different input values. This was 

because he continued one of his after-break sessions using input values from his 

computer. The difference in the values was small such that he thought was negligible 

and insignificant. Edward Lorenz describes chaos in these words “Chaos is when the 

present determines the future, but the approximate present does not approximately 

determine the future”. He further explained that the unpredictability nature of the 

weather is because we can only measure the weather approximately. He only realized 

from his work graphically that though they have almost identical starting points, the 

difference in their final points given the same number of iterations was wide and 

unimaginable [2]. After careful consideration and scrutiny, Edward Lorenz realized that 

the two initial input values differ by decimal points. The output from his machine had 

three decimal places compared to the six decimals of his original inputs. This small 

numerical difference has contributed to the great difference in his computations. If his 

computer is not faulty, then mathematicians are failing to acknowledge; a small change 

in input produces a significant difference in the end. 

 
1.5.2 Three main characteristics of chaos  
 

Three main characteristic behaviors are associated with a chaotic system. They are (i) 

sensitivity to initial condition, (ii) density of unstable periodic orbits in a chaotic 

attractor, (iii) Topological transitivity.  

 
(i) Sensitive Dependence to Initial Conditions:  

 

The characteristic of sensitivity is usually observed during the iterations. The idea of 

sensitivity dependence allows the orbits to be far apart as the number of iterations 

increases. Usually, sensitivity dependence holds for large time values. Suppose a 

system is sensitive depending on initial conditions [19]. In that case, our observation 
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does not necessarily start from the first iterate, or better still, we are not only interested 

and expecting a change in trajectory due to the initial condition but that the slightest 

perturbation causes preceding values to differ from the expected. The idea of sensitivity 

dependence is otherwise called the butterfly effect. Generally, this is experienced in 

non-linear science. The butterfly effect is one of the few ideas in mathematics that 

directly refer to the non-scientific world.  

 

Mathematically, A dynamical system (𝑋, 𝑇) has sensitive dependence on initial 

conditions if ∃ some 𝛿 > 0 such that for 𝑥 ∈ 𝑋 and  𝜀 > 0, ∃ 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) < 𝜀 

and  ∃ 𝑛 ∈ 𝑁 such that 𝑑 𝑇 (𝑥),  𝑇 (𝑦) > 𝛿, where X is a compact metric space and 

𝑇 is a continuous map. 

 

(ii) Density of Periodic Orbits: 
 

A dynamical system (𝑋, 𝑓) has a dense orbit [1] if and only if  ∃ 𝑥 ∈ 𝑋: ∀ 𝑦 ∈ 𝑋 

∀𝜀 > 0 ∃ 𝑛 ∈ 𝑁: 𝑑(𝑓 (𝑥), 𝑦) < 𝜀 where 𝑥 and 𝑦 represent the distinct initial points for 

the iteration, 𝑓 (𝑥) represents a specific iteration. The orbit of 𝑥 moves arbitrarily close 

to another orbit at a given in time such that the metric between them is significantly 

small. As the iteration continues (𝑛 → ∞), the possibility of every other point 

experiencing this is high. It implies that 𝑑(𝑓 (𝑥), 𝑦) < 𝜀. 

 

(iii) Topologically Transitivity: 
 

A dynamical system  (𝑋, 𝑓) is topologically transitive [1] if and only if all open subsets 

(non-empty) 𝑈, 𝑉 ⊂ 𝑋, ∃ 𝑘 > 0 such that 𝑓 (𝑈) ∩ 𝑉 ≠ ∅. Generally, transitivity 

implies the existence of dense orbit.  

 
1.5.3 Some Useful Definitions  

We present some definitions and results in this section which are essentials for 

establishing the theorem in the next chapters. 

 

Definition 1.5.3.1 (Invariant)  
 

A set ∧ is invariant [1] for a function 𝑓 on ∧ if we have  𝑓 ∧=∧. 

Note that 𝑓: ∧→∧  follows if ∧ is an invariant. Also ∧ is negative invariant if ∧ ∈ 𝑓 ∧  

and ∧ is a positive invariant if  𝑓 ∧ ∈ ∧. 
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Definition 1.5.3.2 (⍵-limit set) 
 

Let 𝑓: 𝑋 → 𝑋 be a continuous map, where (𝑋, 𝑑) is a compact metric space. Then the 

⍵-limit set [27] of points of 𝑥 ∈ 𝑋 is the set of all limit points of the orbit of 𝑥. We 

denote the ⍵-limit set of points of 𝑥 by ⍵ (𝑥).  

Hence ⍵ (𝑥) = ⋂ 𝑓 (𝑥) ∶ 𝑘 ≥ 𝑛∈ . 

 
Definition 1.5.3.3 (Recurrent point) 
 

A point 𝑥 ∈ 𝑋 is called recurrent [81] if 𝑥 ∈ ⍵ (𝑥). Hence we can say that orbit of 𝑥 

returns to an arbitrarily small neighborhood of 𝑥 infinitely often.  

 
Definition 1.5.3.4 (Non-wandering point) 
 

A point 𝑥 ∈ 𝑋 is called non-wandering point [81] if, for every neighborhood 𝑁(𝑥) of 

𝑥, ∃ an integer 𝑘 ≥ 1 such that, 𝑁(𝑥) ∩ 𝑓 (𝑁(𝑥)) ≠ ∅. 

 
Definition 1.5.3.5 (Wandering point) 
 

A point 𝑥 ∈ 𝑋 is called a wandering point [81] if there exists a neighborhood 𝑁(𝑥) of 

𝑥is disjoint from all 𝑓 (𝑁(𝑥)), 𝑘 ≥ 1. 

 
Definition 1.5.3.6 
 

For a given positive number 𝛿 > 0, a pair (𝑥, 𝑦) ∈ (𝑋, 𝑋) is said to be 𝛿-scrambled if  

 

(i) lim
→∞

𝑠𝑢𝑝 𝑑 𝑓 (𝑥), 𝑓 (𝑦) > 𝛿  

(ii) lim
→∞

𝑖𝑛𝑓𝑑 𝑓 (𝑥), 𝑓 (𝑦) = 0  

 
1.5.4 Different Types of Chaos and related theorems 
 

In this section, we now discuss various types of chaos as defined by mathematicians of 

the world. 

 
Definition 1.5.4.1 (Devaney’s Chaos) 
 

A continuous map 𝑓: 𝑋 → 𝑋 is said to chaotic [1] if  

 

(i) 𝑓 has sensitive dependence on initial conditions. 
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(ii) 𝑓 are transitive in 𝑋. 

(iii) the periodic Points of 𝑓 are dense in 𝑋. 

 

where 𝑋 is a metric space. 

 

This definition of chaos is one of the widely known and accepted definitions in chaos 

theory. This makes the foundation of the definition redundant. The property of 

transitivity and periodic orbits being dense in the set X are invariant under topological 

conjugation. It points out the fact that the two are topological properties. A property is 

considered topological and preserved under topological conjugation only if the space X 

is defined in topology and as a compact space. Sensitivity to initial conditions is usually 

expressed in metric spaces and is therefore non-invariant under topological conjugation. 

 
Definition 1.5.4.2 (Li-Yorke chaos)  
 

Let 𝑥, 𝑦 ∈ 𝑋. The pair (𝑥, 𝑦) ∈ (𝑋, 𝑋) is a Li-Yorke scrambled pair [15] if  

 

(i) lim
→∞

𝑠𝑢𝑝𝑑 𝑓 (𝑥), 𝑓 (𝑦) > 0  

(ii) lim
→∞

𝑖𝑛𝑓𝑑 𝑓 (𝑥), 𝑓 (𝑦) = 0  

 

Since d is a metric imposed on the iterates as n varies through to infinity, we could 

simply consider the distance between the iterate at some n. 

That is  𝑑 𝑓 (𝑥), 𝑓 (𝑦) = |𝑓 (𝑥) − 𝑓 (𝑦)|. 

 

Generally, 𝑥 and 𝑦 are different points. The trajectory path for the two points, irrespective 

of how close they may apply to each other at the beginning, grows to a positive non-

zero value. The closest distance at any point in the iteration is very small and equivalent 

to zero. A map with points of discontinuity is usually not Li-Yorke chaotic.  

 
Definition 1.5.4.3 (Wiggins Chaos) 
 

In the sense of Wiggins [10] chaos, any map 𝑓: 𝑋 → 𝑋 is chaotic if it is  

 

(i) topologically transitive 

(ii) has sensitivity dependence on initial conditions. 
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Definition 1.5.4.4 (Lyapunov Chaos) 
 

If 𝑓: ℝ → ℝ is the differentiable and continuous map, then this map 𝑓 is said to be 

Lyapunov chaos [30] if it is 
 

(i) transitive (topologically) 

(ii) has positive Lyapunov exponent.  

 
Definition 1.5.4.5 (Knudsen Chaos) 
 

According to Knudsen [84], the dynamical system (𝑋, 𝑓) is chaotic if it  

 

(i) has dense orbits 

(ii) has the sensitivity to the initial condition 
 

where 𝑓: 𝑋 → 𝑋 is a continuous map on a metric space (𝑋, 𝑑). 

 
Definition 1.5.4.6 (Kato’s Chao) 
 

A map 𝑓: 𝑋 → 𝑋 is said to be chaotic in the sense of Kato [58] if f is both sensitive and 

accessible. Kato introduced it in 1966. 

 
Definition 1.5.4.7 (Martelli’s Chaos) 
 

In 1999 Martelli introduced another type of chaos is called Martelli’s [59] chaos. A map 

𝑓: 𝑋 → 𝑋 is said to be chaotic in the sense of Martelli if ∃ 𝑥 ∈ 𝑋 such that the orbit of 

𝑥  is dense in 𝑋 and unstable. 

 
Definition 1.5.4.8 (Auslander-Yorke Chaos) 
 

A continuous map 𝑓: 𝑋 → 𝑋 is said to be chaotic in the sense of Auslander-Yorke [20] 
if it 
 

(i) has a point 𝑥 whose orbit is dense, 

(ii) has sensitive dependence on initial conditions. 

 
Definition 1.5.4.9 (Bau-Sen Du) 
 

According to the definition of Bau-sen Du [19],  𝑓 is chaotic if there exists a positive 

number 𝛿 such that for any point 𝑥 and any non-empty open set 𝑉 in 𝑋 there is a point 

𝑦 in 𝑉 such that 

lim
→

sup 𝑑 𝑓 (𝑥), 𝑓 (𝑦) ≥ 𝛿 and lim
→

inf 𝑑 𝑓 (𝑥), 𝑓 (𝑦) = 0 
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Theorem 1.5.4.1 
 

Let 𝑓: 𝐼 → 𝐼 be a continuous map on a compact interval I, then Martelli’s and Devaney’s 

chaos are equivalent. We know that Martelli’s chaos implies topological transitivity; 

hence the result follows from [41]. 

 

Recently, Y. Shi and P. Yu [40] discussed some features of turbulent maps in non-

compact sets of a complete metric space. In [42], the authors discussed Li-York chaotic 

sets of continuous and discontinuous maps. In [50], J. Canovas and R. Haric proved 

that any continuous map 𝑓: 𝑇 → 𝑇 is distributionally chaotic if and only if its 

topological entropy is positive, where T is a finite tree, and any vertex of T is a fixed of 

T is a fixed point of f. W. Huang and X. Ye [7] proved that Devaney’s chaos is stronger 

than Li-Yorke’s chaos. In [5], Aulbach and Kieninger discussed three types of chaos: 

Devaney, Li-Yorke, and Block-Coppel. Also, various types of chaos have been 

discussed in [56, 62] and [37]. Y. Shi and G. Chen [43] examined the chaos of discrete 

dynamical systems in complete metric spaces and introduced several new concepts. In 

[40], the same authors discussed chaotification of discrete dynamical systems. 

 

From the following example, we observe that if any function has periodic points which 

are dense, but it has no sensitive dependence on initial conditions and no transitive 

points. 

Example 1.5.4.1 
 

Consider 𝑔 (𝑥) = 𝑥 be a map on 𝐼. Here 𝑥 is a fixed point for 𝑔 . So, 𝑔  has dense 

periodic points. since every interval is invariant under 𝑔 , so  𝑔  is not transitive. Also, 

for every 𝛿 > 0, there is a nbd of 𝑥, for any 𝑥 ∈  𝐼, such as an open ball of 𝑥 with radius 

𝛿/3, 𝐵 𝑥,  such that for every 𝑦 in the ball, 

 

 |𝑔  (𝑥) − 𝑔  (𝑦)| = |𝑥 − 𝑦|  < 𝛿/3 for all 𝑛.  

 

So, 𝑔  is not transitive, and it does not have sensitive dependence on initial conditions. 

 
1.5.5 Characterization of topological transitivity and mixing 
 

In a dynamical system (𝑋, 𝑓), where 𝑋 is a compact metric space and 𝑓 is onto, 

topological transitive is equivalent to the existence of a dense orbit in 𝑋. i.e., there is a 

point 𝑥 ∈ 𝑋 such that orbit of 𝑥 is dense in 𝑋. 
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Example 1.5.5.1 
 

Take 𝑋 = [0, 2] and 𝑓: 𝑋 → 𝑋 defined by 

  

 𝑓(𝑥) =

2𝑥 + 1   if   0 ≤ 𝑥 ≤

−2𝑥 + 3    if  ≤ 𝑥 ≤ 1

−𝑥 + 2  if     1 ≤ 𝑥 ≤ 2

 

 

 

 

 

 

 

 

 

 

 

 
 
Then 𝑓 is topologically transitive but 𝑓  is not. Also, 𝑓 × 𝑓 is not transitive. 
 

 
 
The next result gives a sufficient condition under which totally transitivity implies 
weakly mixing. 

 

A totally transitive dynamical system (𝑋, 𝑓) with dense set of periodic points is weakly 
mixing.  
 

The following result gives a sufficient condition under which weakly mixing implies 
strongly mixing. 

 

A totally transitive dynamical system (𝑋, 𝑓) where 𝑋 is compact with an open interval 
𝐽 having a dense set of periodic points is strongly mixing. 
 

So, in general, we have the following implications 
 

Strongly mixing Weakly mixing totally transitive transitive. 
 
 
 
 
 
 

 

Figure 1.5.1:  Graph of 𝑓(𝑥) 
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Example 1.5.5.2 
 

Let, 

 𝐻(𝑥) =

⎩
⎪
⎨

⎪
⎧ + 2𝑥   if   0 ≤ 𝑥 ≤

− 2𝑥    if  ≤ 𝑥 ≤

1 − 𝑥     if ≤ 𝑥 ≤ 1

 

 

The above function 𝐻: [0,1] → [0,1] is transitive but not mixing. Since 𝐻 is transitive, 

then the set of periodic points of 𝐻 is dense in 𝑋. It implies that ([0,1], 𝐻) is Devaney 

chaotic. Because 𝐻 has positive topological entropy than is Li-Yorke 𝜀-chaotic for 

some positive 𝜀  but not chaotic. 

 

1.5.6 Chaotic maps in the interval 
 

Here, we will discuss different chaotic maps such as a logistic, tent, and expanding 
maps. 

 

1.5.6.1 Logistic Map 
 

Define the function 

 

𝑓 (𝑥) = 𝑎𝑥(1 − 𝑥), 𝑥 ∈ [0,1], 𝑎 > 0  for given 𝑥 ∈ [0,1]  is called logistic map. 

 

B. Aulbach and B. Kieninger have given a simple proof for hyperbolicity and chaos of 

the logistic map in [5]. Also, in [69], P. Glendinning has investigated hyperbolicity of 

the invariant set for the logistic map when 𝑎 > 4. 
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Now, the graphical representation of the dynamical behavior is as follows: 

 

(i) 𝑎 = 1 
 

(ii) 𝑎 = 2 

 

(iii) 𝑎 = 3 
 

 

(iv) 𝑎 = 4 
 

Figure 1.5.2: Behavior of the logistic map for  (i)  𝑎 = 1, (ii) 𝑎 = 2  (iii) 𝑎 = 3,

(iv) 𝑎 = 4 

 
1.5.6.2 Bifurcation Diagram of Logistic Map: 
 

From the Figure 1.5.3 (a), 1.5.3 (b), 1.5.3 (c), we see that for 𝑎 < 1, all the points are 

plotted at 0, for 1 < 𝑎 < 3, we still have one-point attractors, but the attracted value of 

𝑥 increases as 𝑎 increases, at least to  𝑎 = 3. Bifurcation occurs at  𝑎 = 3, 3.449,

3.54409, 3.5644, 3.56875 (approximately) until just beyond 3.57, where the system 

is chaotic. But for 𝑎 > 3.57, the system is not chaotic.  
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                     Figure 1.5.3 (a)                                    Figure 1.5.3 (b) 

 

 

                              Figure 1.5.3 (c) 

 
 
1.5.6.3 Tent map 
 

Consider the function 

 

 𝑇(𝑥) =
2𝑥,               𝑖𝑓 0 ≤ 𝑥 ≤

2(1 − 𝑥),     𝑖𝑓 < 𝑥 ≤ 1
 

 

The given tent map is also chaotic in the closed interval [0, 1]. 
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Consider the iterations of the tent function as n gets larger (approaches infinity), the 

pattern in the diagram is lost gradually, and it gets worse and worse. This is observed 

very clearly up to the seventh iteration. We notice the interval in the diagram reducing 

as the iteration furthered on. In iterations eight and nine, the behavior of the orbits 

seems to have changed entirely from the one we could predict as half of the previous 

iteration. At this point, the regular periodicity is getting lost, and chaos is imminent. 

Chaos, just like its routes, is experienced over time. 

 

 

    Figure 1.5.4: The Tent function 
 

From the iterations below, there is an observed pattern. The preceding figure for the 

iteration is obtained by dividing the existing figure into two. It implies the number of 

fixed points increases as well. The fixed point is the point of intersection of the line 

𝑦 = 𝑥 with the orbits of the diagram. 

 

This behavior continues clearly through from iteration one to tenth. 
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Figure 1.5.5: Second iteration of the tent 

function 

 

Figure 1.5.6: Third iteration of the tent 

function 

 

 

 

  

Figure 1.5.7: Fourth iteration of the tent 

function 

 

Figure 1.5.8: Fifth iteration of the tent 

function 
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Figure 1.5.9: Sixth iteration of the tent 

function  

 

Figure 1.5.10: Seventh iteration of the 

tent function 

 

 

 

  

Figure 1.5.11: Eighth iteration of the tent 

function  

 

Figure 1.5.12: Nineth iteration of the tent 

function 
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Figure 1.5.13: Tenth iteration of the tent function  

 

Both iteration nine and ten behave in the same pattern. The movement of their orbits 

has changed. The regular periodicity is lost. The routes to chaos at this point are 

becoming obvious and visible. 

 

Graphically, the tent map is chaotic as the iterations increase. This is typical of almost 

every chaotic map such that the phenomenon is observed for considerably long 

iterations depending on the nature of the map. Here we observed lost patterns. The 

various trajectories or orbits cannot be distinguished. Periodic orbits have become so 

dense. Hence chaos is in motion, and the tent map is considered chaotic. 

 
1.5.6.4 Expanding map 
 

If 𝑓: 𝐼 → 𝐼 is piecewise monotone mapping on [0,1], then the mapping is said to be 

expanding [49] if ∃ a constant 𝜆 > 1 such that |𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜆|𝑥 − 𝑦|. Here the 

constant 𝜆 is said to be expanding constant for 𝑓. 

 

Expanding maps play a significant role in the context of chaotic interval maps. 

 
1.6 Summary and Conclusion 
 

Dynamical systems are about the result trends and changes observed over time 

concerning a particular real-life scenario and practice. Time is a significant factor in the 

study of dynamical systems. The different behavior of various systems has become 

relevant to study and understand. The idea of dynamical systems has gone through 
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phases and has even been accorded different names until now. We still don't have one 

principled definition for chaos, but it is defined based on the set of conditions it satisfies 

in terms of topology or metric. Different routes lead to the conclusion of systems being 

chaotic. The routes in terms of metrics are usually measurable, whiles the topological 

routes are usually analytical. The topological routes of a known map can be interrelated 

to the properties of an unknown map such that the conclusion for the two maps is the 

same. Topological conjugation preserves topological properties, but the same can not 

be said for all metric properties of chaos. It was observed that the tent map exhibits 

either non-periodicity at higher iterations or a different kind of periodicity. The tent has 

shown some properties of chaoticity. 

 

The mathematical language expressed by chaotic systems (especially sensitive 

dependence, transitivity, and dense orbits) guarantees that a chaotic system passes the 

element of regularity, unpredictability, and indecomposability. The chaos of a map 

cannot be soley based on sensitive dependence or its equivalent relation of positive 

Lyapunov exponent. Transitivity is about the strongest property among all the 

conditions. Perhaps it is the reason most definition has an aspect of transitivity. For 

most maps, when transitivity fails, it is likely if not evident, that the condition of dense 

orbits might fail. Of course, positive Lyapunov does not depend on transitivity. 
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CHAPTER -2 

SYMBOLIC DYNAMICS AND TOPOLOGICAL 

CONJUGACY FOR CHAOTIC MAPS    

 
2.1 Introduction 
 

The key idea of this chapter is to show the usefulness of symbolic dynamics in proving 

some simple mappings are chaotic. The methodology of symbolic dynamics was used 

as far back as Hadamard in 1898. Symbolic dynamics grew into its discipline in the 

1930s with the works of Birkhoff, Morse, and Hedlund, which incidentally inspired 

Smale to construct his horseshoe map. J. Hadamar [74] illustrated the first application 

of symbolic dynamics. He applied trajectory coding to represent the universal behavior 

of geodesics on surfaces with negative curvature.  C. Hsu enlarged the cell-to-cell 

mapping method. Brin [50] discussed cells of a given partition and their images under 

the action of a system. G. Osipenko [67] introduced the method of a symbolic image in 

which an oriented graph represents the transitions of a trajectory of partition elements. 

This method is effectively useful to the cost of production of invariant sets and Morse 

spectrum. Symbolic dynamics attempts to answer how much actuality about a 

dynamical system can be drawn from a data sequence produced by system 

measurements.  

 

Topological conjugacy feature has an essential role in studying the chaotic behavior of 

a map. With the help of this feature, we can explore the chaotic significance by 

comparing one map with another map. Topological conjugacy [64] has such importance 

as it can protect many topological dynamical properties. In discussing any chaotic 

dynamical system, topological conjugacy between maps is a potential tool. Topological 

conjugacy is a significant notion about knowledge of dynamical systems. This essential 

tool makes predictions about a dynamical system's behavior by comparing this with 

another dynamical system whose specific properties are recognized.  We get the basic 

idea about symbolic dynamics from many papers and books. There are some interesting 

applications of a symbolic dynamical system. Such as the symbolic representation of 

the Cantor set. From the article of H.R. Biswas and Monirul Islam [18], we get the basic 

idea of shift maps and their chaotic properties.  
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This chapter will discuss the symbolic dynamics of different types of maps. First, we 

will discuss the Quadratic family of functions 𝑓 (𝑥) = 𝑥 + 𝑐, where 𝑐 is a constant. 

While this function looks simple enough, we will see their dynamics are amazingly 

complicated. Indeed, their behavior is not entirely understood for certain 𝑐-values. In 

section 2.4 and section 2.5, we will show in what way symbolic dynamics work on 

logistic function and Smale’s Horseshoe map. In theorem 2.5.3.3, we will establish that 

Cantor map or big tent map is chaotic. We know that conjugacy (topological) and 

symbolic dynamics are an exclusive incorporation of tools of dynamical systems. This 

chapter gives some important examples of conjugacy between different maps. 

 
2.2 Basic Concepts 
 

Symbolic dynamical systems are suitable for exalted generalization and abstraction of 

the original dynamical systems based on the topological conjugacy between the 

continuous manifestations of the dynamical systems. When the original dynamical 

systems are hard to be resolved, symbolic dynamics can provide a hopeful direction. 

Symbolic dynamical systems are space of sequences ∑ ={𝑠: 𝑠 =(𝑠 𝑠 𝑠  .  .  .  .  .  .),  𝑠 =

0 or 𝑠 = 1 for all 𝑖} together with the shift map defined on it.  Symbolic dynamics are 

trembling with maps on sets.  

 

German mathematician Georg Cantor in 1883 was made famous by introducing the 

Cantor set in his works of mathematics. The ternary Cantor set [86] is the most well-

known of the Cantor sets and can be best described by its construction. This set starts 

with the closed interval zero to one and is constructed in iterations. The first iteration 

requires deleting the middle third of this interval, and the second iteration will delete 

the middle third of each of these two remaining intervals. These iterations continue in 

this fashion infinitely. Finally, the ternary Cantor set is described as the intersection of 

these intervals. This set is particularly interesting because its unique properties are 

uncountable, closed, length of zero, and more. A more general Cantor set is created by 

taking the intersection of iterations that remove any middle portion during each 

iteration. 
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We are giving below some important definitions which are essential for this chapter. 
 

Definition 2.2.1 (Shift map):  
 

The map 𝜎: ∑ → ∑  is defined by 
 

𝜎(𝑠 ) = 𝑠  
 

 that is 𝜎(𝑠 𝑠 𝑠 … . . ) = (𝑠 𝑠 𝑠 … … ) is called the shift map. 

 
Definition 2.2.2 (Cantor set): 
 

A non-empty set 𝐶 is said to be a Cantor set provided it is (i) perfect, (ii) totally 

disconnected, and (iii) compact. 

 
Definition 2.2.3 (Cantor’s Middle-Thirds Set): 
 

From 𝐼 = [0, 1], delete the open interval , . Again delete the middle thirds, i.e., the 

pair of open intervals ,  and ,  from the remaining part, which is the closed 

interval 0, ∪ , 1 . We continue removing middle thirds in this fashion infinitely 

many times. The remaining set is called Cantor’s middle thirds set [88]. At the kth step, 

the total length of the 2  closed intervals is  which tends to zero as 𝑘 → ∞. If we 

go up to 𝑛 times iterations, we can write 

 

𝐶 = 0, ∪ , ∪ … .∪ , ∪ , 1 , where 𝑛 ≥ 0. 

 

Hence, we get, the Cantor middle  set is 𝐶 =∩ 𝐶 . 

 
2.3 Symbolic Dynamics for Quadratic family 
 
Symbolic Dynamics is the most potential tool for understanding the chaotic behavior 

of the dynamical system. In this section, we want to show that quadratic map 

 𝑓 (𝑥) = 𝑥 + 𝑐 is chaotic on its invariant set.  

 

We get the following two roots by solving the equation 𝑥 + 𝑐 − 𝑥 = 0: 
 

𝑟 =
1

2
(1 − √1 − 4𝑐) 

𝑟 =
1

2
(1 + √1 − 4𝑐) 
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Let 𝐼 = [−𝑟 , 𝑟 ] and 𝑥 ∉ 𝐼𝑥 → ∞. Now let the invariant set of the quadratic map, 

Ʌ = {𝑥 ∈ 𝐼| 𝑓 (𝑥) ∈ 𝐼 ∀ 𝑛}. Consider 𝐴 = (−√−𝑐 − 𝑟 , √−𝑐 − 𝑟 ) is the open 

interval of 𝐼 that contains all the points 𝑥  such that 𝑥 < −𝑟 ; that is the orbit of 𝑥  

under 𝑓 (𝑥) escapes to infinity after one iteration. 𝐴  divides 𝐼 into two disjoint closed 

subintervals 𝐼  and 𝐼 . 

 
Definition 2.3.1 (Itineraries) 
 

Let 𝑥 ∈  Ʌ ⊂ 𝐼 ∪ 𝐼 . Then∀ 𝑛, we can write 𝑥 = 𝑓 (𝑥 ) ∈ 𝐼 ∪ 𝐼 . 

 
Definition 2.3.2 
 

The itinerary of 𝑥  is the sequence 𝑆(𝑥 ) of 0’s and 1’s given by 
 

𝑆(𝑥 ) = (𝑠 𝑠 𝑠 … 𝑠 … ) such that 𝑠 =
0     if 𝑥 ∈ 𝐼
 1     if 𝑥 ∈ 𝐼

. 

 
The itinerary of 𝑥  is a simplified, symbolic representation of the orbit of 𝑥  under 𝑓 . 

 
2.3.1 Proposition (Density) 
 

Suppose a continuous map 𝐹: 𝑋 → 𝑌 is onto. If 𝐷 is a dense subset of 𝑋,  We can say 

𝐹(𝐷) is a dense subset of 𝑌.  

 
The following theorem shows that the quadratic map 𝑓 (𝑥) is chaotic on its invariant 
set. 
 
Theorem 2.3.1: The quadratic map 𝑓 (𝑥) is chaotic on its invariant set Ʌ for 

 𝑐 < −
√ . 

 

Proof:  Using the given condition 𝑐 the itinerary map 𝐻 : ∑ → Ʌ is a conjugacy, then 

𝐻 : ∑ → Ʌ  is a homeomorphism.  

 

Now 𝐻 (ℎ) is a periodic point in Ʌ if and only if ℎ is a periodic point in ∑ . Now 

using the Density Proposition 2.3.1, 𝐻  maps the dense set of periodic points for 𝜎 in 

∑  to a dense set of periodic points for 𝑓  in Ʌ. 

 

Secondly, since orbit of ℎ under 𝜎 is dense in ∑ , the Density Proposition 2.3.1 ensures 

that the orbit of 𝐻 ℎ  under 𝑓  is also dense in Ʌ. It means that 𝑓  is also transitive. 
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Now we need to show that 𝑓  is sensitive to initial conditions.  𝐼  and 𝐼  are the closed 

disjoint subintervals of 𝐼 = [−𝑟 , 𝑟 ], produced by discarding all the points in the open 

interval 𝐴 . Let 𝛽 be the length of the interval 𝐴 . Now let 𝑥, 𝑦 ∈ Ʌ, 𝑥 ≠ 𝑦. 

 

Since 𝐻 is bijective 𝐻(𝑥) ≠ 𝐻(𝑦), and there is a 𝑘 such that the 𝑘-th entries of 𝐻(𝑥) 

and 𝐻(𝑦) differ. It means that both 𝑓 (𝑥) and 𝑓 (𝑦) are not in the same interval, 𝐼  or 

𝐼 . Consequently, |𝑓 (𝑥) −  𝑓 (𝑦)| ≥ 𝛽. Therefore, the orbit of 𝑦 under 𝑓  for any 

𝑦 ≠ 𝑥 eventually separates from the orbit of 𝑥 under 𝑓  by at least 𝛽. 

 

Hence 𝑓 (𝑥) is chaotic on the set Ʌ. 

 
2.4 Symbolic Dynamics for the Logistic Function: 
 

Let 𝐹µ(𝑥) = µ𝑥(1 − 𝑥) and 𝛬 = { 𝑥|𝐹 (𝑥) is in[0,1] ∀ 𝑛 }. In this section, we will see 

that for µ > 4, the non-wandering set of the logistic function is a Cantor set. 

 

Here we solve a problem about the Cantor set of Logistic Functions. 

 
Problem 2.4.1 (Cantor set of the logistic map): 
 

Consider the logistic map 𝐹µ = µ𝑥(1 − 𝑥) on  𝐼 = [0,1], where µ > 4. 
 

Note that in this case 𝐹µ > 1. Since 𝐹µ(0) = 0, we can write using intermediate 

value theorem, ∃𝛼 ∈ 0,  such that 𝐹µ(𝛼 ) = 1. Since 𝐹µ is monotone on 0, , the 

interval 𝐼 = [0, 𝛼 ] of all points the left of 
 
  where 𝐹µ(𝑥) ∈ 𝐼. Similarly, there exists 

𝛼 >   with 𝐹µ(𝑥) such that 𝐹µ(𝑥) ∈ 𝐼, ∀𝑥 ∈ 𝐼 = [𝛼 , 1] [See Figure 2.4.1 (a) and 2.4.1 

(b)]. 

 

Consider  𝐴 = 𝐼 ∪ 𝐼 .Then  𝐴 = 𝑥 ∈ 𝐼: 𝐹µ(𝑥) ∈ 𝐼 . 
 

In the same way, we can write that 𝐴  consists of the four closed intervals 

 𝐴 = 𝐼 ∪ 𝐼 ∪ 𝐼 ∪ 𝐼  (See Figure 2.4.2) where 

 

𝐼 = {𝑥: 𝑥 ∈ 𝐼  and 𝐹µ(𝑥) ∈ 𝐼  }, 

𝐼 = {𝑥: 𝑥 ∈ 𝐼   and 𝐹µ(𝑥) ∈ 𝐼 }, 

𝐼 = {𝑥: 𝑥 ∈ 𝐼  and 𝐹µ(𝑥) ∈ 𝐼 }, 

𝐼 = {𝑥: 𝑥 ∈ 𝐼  and 𝐹µ(𝑥) ∈ 𝐼 }. 
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Continuing this process, we construct  𝐴 =∪ 𝐼 … , where 𝑠  is either 0 or 1, and  
 

𝐼 …  = 𝑥 ∈ 𝐼: 𝑥 ∈ 𝐼 , 𝐹µ(𝑥) ∈ 𝐼 ,…,𝐹µ (𝑥) ∈ 𝐼  

 = ⋂ 𝐹µ (𝐼 ) 

 = 𝐼 ∩ 𝐹µ (𝐼 … ) 

 

We first note that  𝐴 = {𝑥 ∈ 𝐼: 𝐹µ (𝑥) ∈ 𝐼}. Furthermore, 
 

𝐼 … = 𝐼 … ∩ 𝐹µ (𝐼 ) ⊂ 𝐼 ….   
 
Hence 𝐴 ⊂ 𝐴 . Define the set  
 

𝛬 = 𝐴  

 
Now, we have to show that 𝛬 is a Cantor set. 

 

Figure 2.4.1: 𝑨𝟏 = 𝑰𝟎 ∪ 𝑰𝟏. If 𝒙𝟎 ∉ 𝑰. 

We begin this task by computing points  𝛼 ∈ 𝐼  and  𝛼 ∈ 𝐼 . After solving 

µ𝑥(1 − 𝑥) = 1, we get, 

 

𝛼 =
1

2
−

µ − 4µ

2µ
 

and  𝛼 = +
µ µ

µ
. 
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Figure 2.4.2: 𝑨𝟐 = 𝑰𝟎𝟎 ∪ 𝑰𝟎𝟏 ∪ 𝑰𝟏𝟏 ∪ 𝑰𝟏𝟎 

 

To establish that 𝛬 is a Cantor set, we now assume that µ > 2 + √5. We need to show 

that 𝛬 is closed, totally disconnected, and perfect set: 

 

(i) 𝛬 is closed. We observed that 𝐴  is open. Furthermore, we know 𝐴 = 𝐹 (𝐴 ). 

𝐹  is a continuous function, so the pre-image of an open set is open. 

Hence, 𝐴 = 𝐹 (0) is open, and by induction, every 𝐴  is open. So, ⋃ 𝐴  is open. 

Its complement, 𝐼 − ⋃ 𝐴 = 𝛬 is thus closed. 

 

(ii) 𝛬 is totally disconnected. We know that 𝐹 (𝑥) > 1 for µ > 2 + √5 and  

𝑥 ∈ 𝐼 − 𝐴 . There exists 𝜆 > 1 such that 𝐹 (𝑥) > 𝜆 > 1∀𝑥 ∈ 𝛬. Then 𝐹 (𝑥) > 𝜆  

by the chain rule. Assume ∃ 𝑥, 𝑦 ∈ 𝛬 such that 𝑥 ≠ 𝑦 that form a closed interval 

[𝑥, 𝑦] ⊂ 𝛬. Then 𝐹 (𝛼) > 𝜆  ∀ 𝛼 ∈ [𝑥, 𝑦]. We can choose 𝑛 in such a way that 

𝜆 |𝑥 − 𝑦| > 1. Then we can apply the Mean value theorem 𝐹 (𝑥) − 𝐹 (𝑦) >

𝜆|𝑥 − 𝑦| > 1. This implies that the distance between 𝐹 (𝑥) and 𝐹 (𝑦) is larger than 1, 

and thus at least one of them must be outside of 𝐼. This is contradicting with 𝑥, 𝑦 ∈ 𝛬. 

This implied that 𝑥 and 𝑦 can never 𝐼. Therefore, there are no intervals in 𝛬, and it must 

be totally disconnected. 

 

(iii) 𝛬 is perfect. 𝛬 set is perfect if all its point is limit points. So, we have to prove that 

∀𝑥 ∈ 𝛬 and all 𝜀 > 0, there is a 𝑦 ∈ 𝛬 such that 𝑥 ≠ 𝑦 and |𝑥 − 𝑦| < 𝜀. Now using 

𝐼  and 𝐼  where 𝐼 = [0, −
√

] and 𝐼 = +
√

, 1 , the restrictions 

𝐹 / : 𝐼 → [0, 1] and 𝐹 / : 𝐼 → [0, 1] are homeomorphisms, and thus, there exist 

inverse maps ℎ : 𝐼 → [0, 1]  and ℎ : 𝐼 → [0, 1] such that 𝑥 = 𝐹 (ℎ (𝑥)). The orbits of 

𝑥 ∈ 𝛬 never leave [0,1], so if 𝑥 ∈ 𝛬, we know that ℎ (𝑥), ℎ (𝑥) ∈ 𝛬. 
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We know that 𝑥 = 𝐹 (𝑥 ) so 𝑥 = ℎ (𝑥 ) or 𝑥 = ℎ (𝑥 ) depending on 

whether 𝑥  is in 𝐼  or 𝐼 . There exists 𝜆 > 1 such that, for 𝑎, 𝑏 ∈ 𝛬: 

 
|ℎ (𝑎) − ℎ (𝑏)| ≤ |𝑎 − 𝑏| and |ℎ (𝑎) − ℎ (𝑏)| ≤ |𝑎 − 𝑏|. 

 
Now we can write 𝑥 = ℎ ∘ ℎ ∘ … … ∘ ℎ. Now we choose 𝑦 = 0, which is a fixed point 

in  𝛬. For any 𝜀 > 0∃ as 𝑛 such that < 𝜀. Then for some 𝑦 ≠ 𝑥  converging to 𝑦  

we find that |𝑥 − 𝑦| ≤ |𝑥 − 𝑦| ≤ < 𝜀, which completes the proof. 

 

Although this is true for µ > 4,  the proof becomes very much involved for                      

4 < µ ≤ 2 + √5. 

 
2.5 Symbolic Dynamics and the Smale Horseshoe  
 

The methodology of symbolic dynamics was used as far back as Hadamard in 1898. 

Symbolic dynamics grew into its own discipline in the 1930’s with the works of 

Birkhoff, Morse, and Hedlund which incidentally inspired Smale to construct his 

horseshoe map. In this section we establish that the horseshoe map 𝑓, is chaotic on its 

invariant set. 

 

2.5.1 The Bernoulli shift map 
 

The phase space is given by 
 

∑  = {bi-infinite sequences of 0’s and 1’s} 
 

Thus, any element of ∑  is of the form 𝑠 = (… 𝑠 … 𝑠 . 𝑠 𝑠 … 𝑠 … ), such 

that      𝑠 = 0 or 𝑠 = 1, for all  𝑖 ∈  ℕ. In this notation, the “.” is used to denote the 

central element in the sequence. The phase space ∑  becomes a normed space with the 

norm 

 

𝑑 (𝑠, �̅�) =
|𝑠 − �̅� |

2| |
 

 
Now, we define the Bernoulli shift map: 
 

𝛼(𝑠) = (… 𝑠 … 𝑠 . 𝑠 𝑠 … 𝑠 … ) 
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Thus, the shift map moves all elements to the left, one position: 
 

(𝛼(𝑠)) = 𝑠 . 
 
Clearly, the shift map is invertible.  
 

Theorem 2.5.1.1: The Bernoulli shift map 𝛼 on ∑  has 
 

(i) countably infinitely many periodic orbits, 

(ii) uncountably many non-periodic orbits, and 

(iii) 𝑠 dense orbit. 

 

Proof: (i) Consider any 𝑠 ∈ ∑  which consists of a repeating sequence of digits. 

Suppose that 

𝑠 = 𝑠 ,   𝑖 ∈  ℤ, for some positive integer 𝑘. 
 

Then 𝛼 𝑠 =  𝑠 which means that 𝑠 is a 𝑘-periodic point of 𝛼. The collection of all such 

points is countable. Indeed, they may be enumerated as 

 

(. 0), (. 1), 

(. 01), 

(. 001), (. 011), 

(. 0001), (. 0011), (. 0111) 

… … … … … … … … … … 

 

(ii) Any sequence 𝑠 that does not repeat gives rise to a non-periodic orbit. Such 

sequences are uncountable; consider all real numbers between 0 and 1. These numbers 

may be represented in binary form. Those numbers whose binary from repeats are 

rational numbers. The others are irrational. We know that irrational numbers are a full 

measure uncountable set. It follows that 𝛼has an uncountable number of non-periodic 

orbits. 

 

(iii) Consider  𝑠 = concatenation of the root part of all periodic orbits. 
 

Then 𝑠 is dense in 𝑠, by construction: it will approach any sequence arbitrarily close, as 

all central parts occur somewhere down the line in 𝑠. 
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The following theorem shows that the Bernoulli shift map 𝛼 is sensitive dependence on 

initial conditions, in ∑ . 

 

Theorem 2.5.1.2 The Bernoulli shift map 𝛼 is sensitively dependent on initial 

conditions, in ∑ . 

 

Proof: Consider 𝑠,  𝑠 be two points such that 
 

𝑑(𝑠, �̅�) < 𝜀 
 

for 𝜀 > 0. Otherwise, 𝑠 and �̅� are arbitrary. It implies that the central digits of 𝑠 and 𝑠̅ 

agree, but it puts no constraint on their digits sufficiently far from the center. It follows 

that a large enough number of shifts will make this difference arbitrarily large. This 

concludes the proof. 

 
2.5.2 Smale’s Horseshoe: 
 

Stephen Smale [35] introduced the horseshoe map at the time of discussion of the 

behavior of the orbits of the van der Pol oscillator. The action of map is defined 

geometrically. Firstly it squeezing to square, then extending into a long strip, and lastly 

folding the strip into the shape of a horseshoe. Squeezing and stretching are uniforms 

in case of horseshoe map.  

 

Smale's horseshoe is a naturalistic, higher dimensional version of the open binary shifts. 

Let us consider a map of rectangular set into a “Horseshoe” shaped set covering entire 

breadth of the original in two places, then the set surviving for infinite time is a Cantor 

set in the unstable direction and smooth in the stable direction. It will be also a Cantor 

set and labeled by the shift on the full space, if the set staying infinite times in the 

positive and negative direction, which will be intersection of two Cantor sets [86]. Also, 

this is structurally stable. 

 

Before we get started, it should be pointed out that it is possible to give an analytical 

description of the Smale’s Horseshoe, just like we’ll provide a geometrical one. We 

will stick to the geometrical picture. 

 

Let us define a map 𝑓 by, 
 

𝑓 ∶ 𝐷 → 𝐷 ∶ [0, 1]  × [0, 1]  →  [0, 1]  × [0, 1] . 
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It is possible to give an analytical description of this map, but the illustrations Figure 

2.5.1 may be more useful for our purposes. The map 𝑓 is referred to as Baker’s map. It 

is a composition of three elementary steps: (a) a stretching step, where the unit square 

is stretched to a long vertical strip; (b) a folding step, where this long vertical strip is 

bent in the shape of a horseshoe; and (c) an overlay step, where the map is restricted to 

its original domain. 

 

The inverse map is remarkably similar: it also consists of a composition of three 

elementary steps, given by (a) a stretch, where the unit square is horizontally stretched; 

(b) a folding step, where a horseshoe is created, once again; and (c) an overlay step 

where the result is restricted to the unit square. All of this is illustrated in Figure 2.5.2. 

 

 
 
Figure 2.5.1: The action of Baker’s map 
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          Figure 2.5.2: The action of the Baker’s inverse map 

 
2.5.2.1 The Forward iterates: 
 

The first few forward iterates of the map are shown in Figure 2.5.3. It follows from this 

figure that all points in the invariant set are confined to a middle-third Cantor set 

collection of vertical line segments. We associate an address with each of the iterates, 

as shown in Figure 2.5.3. 

 

Here’s how the assigning of the address is done: 
 

After one iteration, the left strip is assigned a zero, the right strip is a one. 
 

After two iterations, we transport addresses assigned at the previous iteration to their 

new location. In other words, the left-most strip inherits a zero, as does the right-most 

strip, since they both originate from the previous left strip. The other two strips inherit 

a one, as they originate from the last right strip. We modify these inherited addresses: 

the two on the left get an extra zero (since they are at the left; the zero is added to the 

front). The two on the right get an extra one (since they are at the right; the one is added 

to the front). 

 

After three iterations, we repeat this: after using the map again, all new strips inherit 

their old address, taking into account where they originate from. The strips left of the 

center get an extra zero tagged to their front; the strips right of the center get an extra 

up front. 
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The number of digits in the address equals the number of iterates of 𝑓. It should also be 

clear that an address uniquely determines which vertical line we mean. 

 

If we consider an infinite number of forwarding iterates, then in the limit, every strip 

has associated with it an infinite sequence of zero’s and one’s. 

 

 

 
Figure 2.5.3: Several forward iterates of the Baker’s map 

 
2.5.2.2 The backward iterates: 
 

This part is very similar to the previous part. The first few backward iterates of the map 

are shown in Figure 2.5.4. It follows from this figure that all points in the invariant set 

are confined to a middle-third Cantor set collection of horizontal line segments. With 

each of the iterates, we associate an address, as shown in Figure 2.5.4 

 

Here’s how the assigning of the address is done: 
 

After one iteration, the bottom strip is assigned a zero, the top strip is a one. 
 

After two iterations, we transport the address assigned at the previous iteration to their 

new location. In other words, the bottom-most strip. The other two strips inherit a one, 

as they originate from the previous top strip. We modify these inherited addresses: the 

two on the bottom get an extra zero (since they are at the bottom; the zero is added to 

the front). The two on top get an extra one (since they are at the top; the one is added 

to the front). 

 

After three iterations, we repeat this: after using the map again, all new strips inherit 

their old address, taking into account where they originate from. The strips below center 

get an extra zero tagged to their front; the strips above center get an extra one up front. 
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The number of digits in the address is equal to the number of iterates of 𝑓 . It should 

also be clear that an address uniquely determines which horizontal line we mean. If we 

consider an infinite number of backward iterates, then in the limit, every strip has 

associated with it an infinite sequence of zero’s and one’s. 

 

 
 

Figure 2.5.4: Associate an address with different forward iterates of the Baker’s map 

 

Figure 2.5.5: Associate an address with different, forward iterates of the Baker’s map 
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2.5.2.3 The invariant set 
 

The invariant set is the intersection of the forward and backward invariant sets. It 

consists of the intersection of two Cantor line sets, one horizontal and one vertical. 

Thus, the invariant set is a point set with an uncountable number of entries. We should 

remember that the points of the invariant set are not fixed points of the map𝑓. Rather, 

they belong to a set of points which is invariant under the action of 𝑓, that is, one point 

of the invariant set is mapped to another, under either a forward or backward iterate of 

𝑓. 
 

Taking the addresses, we have constructed for the forward and backward iterates, we 

may assign a unique bi-infinite address with every point P in the invariant set. We do 

this as follows: let 
 

𝑉 …… 
 

denotes a unique vertical line. Similarly, let 
 

𝐻 …… 
 

denotes a unique horizontal line. Their intersection point P is assigned the address 
 

𝜎(𝑃) = (… 𝑠 𝑠 . 𝑠 𝑠 𝑠 … ). 
 

As before, we use the ‘.’ to denote the central element. Thus, with every address 𝜎 there 

corresponds a unique point 𝑃 in the invariant set, and for every point in the invariant 

set, we have a unique address. In other words, through the assigning of addresses, we 

may identify the invariant set of the Baker’s map with ∑ , the phase space for the 

Bernoulli shift map.  

 
Theorem 2.5.2.1: The restriction of the Baker’s map to its invariant set satisfies 
 

α(𝜎(𝑃)) =  𝜎(𝑓(P)), 
 

where α is the Bernoulli shift map, 𝑃 is a point of the invariant set, and 𝜎 is an address 

assigned as described above. 

 

Proof: Since the Bernoulli shift map only shifts one digit, it suffices to consider the 

digits of 𝜎(𝑃) within 2 positions of the central marker. This means that we have to 

consider a finite number of possibilities in effect. Again, we proceed by doing this 

graphically. Since we only worry about the central part of the addresses, we can 

consider the first two layers of the invariant set, as shown in Figure 2.5.6  
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Figure 2.5.6: The first two layers, with some addressing, of the invariant set of 𝒇. 
 
Let us check this for the red small square indicated in Figure 2.5.7. The central part of 

the address of any point in this square is  𝜎 (𝑃) = (… 00 .01) … ). Thus 
 

𝛼 𝜎(𝑃) = (… 000 .1 … ). 
 

On the other hand, Baker’s map 𝑓 maps the small red square to the stretched blue 

rectangle. The addresses of all points on the invariant set in the blue rectangle are 
 

𝜎 𝑓(𝑃) = (… 0 .1 … ), 
 

which agrees with the action of the shift map. 
 

The reasoning is very similar to that for the first case. Consider the small red square. 

The central part of the address of any point in this square is 𝜎(𝑃) = (… 00 .10 … ). 
 

Thus, 𝛼 𝜎(𝑃) = (… 001 .0 … )., 
 

 
   

Figure 2.5.7: Checking the first of 16 cases 
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On the other hand, Baker’s map f maps the small red square to the stretched blue 

rectangle. The addresses of all points on the invariant set in the blue rectangle are  

 

𝜎 𝑓(𝑃) = (… 1 .0 … ), 
 

which agrees with the action of the shift map. 
 

As we said, there is 14 more cases to check. 
 

We immediately conclude that the Baker’s map is chaotic, restricted to its invariant set. 

This is also a justification for why we investigated the Bernoulli shift map in the first 

place. It was pretty easy to prove that it was chaotic. Now we have shown that Baker’s 

map restricted to its invariant set is chaotic. This has huge consequences for what 

follows: in the sense of this construction, the presence of a horseshoe in a dynamical 

system is enough to consider the map to be chaotic, as least on some part of its phase 

space. 

 

We show the action of the Smale horseshoe [36], which is based on the Baker’s map, 

the Bernoulli shift map has countably infinitely many periodic orbits, uncountably 

many non-periodic orbits, and 𝜎 dense orbit on ∑ . We also proved that the Bernoulli 

shift map is sensitively dependence on initial conditions in  ∑ . 

 
Theorem 2.5.2.2: The Horseshoe map 𝑓, is chaotic on its invariant set. 
 

Proof: Let 𝑃 ∈ ∧. The itinerary of 𝑃 is the bi-infinite sequence of 0’s and 2’s given by 
 

𝜑(𝑃) = (… 𝑠 𝑠 . 𝑠 𝑠 𝑠 … ) 
 

where 𝑠 = 𝑘 if 𝑓 (𝑃) ∈ 𝑉 , 𝑖 ∈ 𝑍, 𝑘 = [0,1]. 
 

Since each horizontal line intersects with a specific vertical line at a unique point, 𝑃 

then there is a well-defined map from points in the invariant set to bi-infinite sequences 

of 0’s and 1’s called 𝜑. The decimal point in the bi-infinite sequence separates the past 

iterates from the future iterates. Thus, we can find the sequence for an associated 𝑓 (𝑃) 

by shifting the decimal point until it is immediately to the left of 𝑆 . 

 

Now, we need to prove that the map  𝜑:∧→  ∑  is a homeomorphism. 
 

(i) 𝜑 is one-to-one: Suppose 𝑃, 𝑃 ∈ ∧, where 𝑃 ≠ 𝑃 , and 𝜑(𝑃) = 𝜑(𝑃 ) =

{… 𝑠 … 𝑠 . 𝑠 … 𝑠 … }. But we defined 𝑃 ∈ ∧ as being the unique point resulting 

from the intersection of a vertical line and a horizontal line. Since there can only be one 
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point at an intersection with a uniquely associated bi-infinite sequence then 𝑃 = 𝑃 , 

which is a contradiction. 

 

(ii) 𝜑 is onto: It was expressly set up so that each vertical line is associated with a 

specific sequence of 0’s and 1’s {. 𝑠 𝑠 𝑠 … 𝑠 }. Each horizontal line is also associated 

with a specific sequence of 0’s and 1’s {… 𝑠 … 𝑠 . }. Concatenating the sequences 

together gives us a unique bi-infinite sequence corresponding to a unique point in the 

invariant set proving onto. 

 

(iii) 𝜑 is continuous: Let 𝑃 ∈ ∧ and 𝜀 > 0 be given. There is a 𝛿 > 0,  

|𝑃 − 𝑃 | < 𝛿  𝑑 𝜑(𝑃), 𝜑(𝑃 ) < 𝜀. In order to have 𝑑 𝜑(𝑃), 𝜑(𝑃 ) < 𝜀 , there 

must be an 𝑛 ∈ 𝑁 such that if 𝜑(𝑃) = {… 𝑠 … 𝑠 . 𝑠 … 𝑠 … } and 

 𝜑(𝑃 ) = {… 𝑠 … 𝑠 . 𝑠 … 𝑠 … } for 𝑠 = 𝑠 , 𝑖 = 0, 1, … .,𝑁, 𝑁 ∈ 𝑍. Based on 

the construction of ∧, this means that 𝑃 and 𝑃  lie in the same rectangular region created 

by the intersection of a horizontal and vertical rectangle after some iteration of the 

horseshoe map. The width and height of such a rectangular region would be 𝜆  and 

 to ensure continuity. 

 

Hence 𝜑:∧→  ∑  is a homeomorphism. So 𝜑 is a conjugacy.  
 

Suppose a continuous map 𝐹: 𝑋 → 𝑌 is onto. If 𝐷 is a dense subset of 𝑋,  We can 

write 𝐹(𝐷) is a dense subset of 𝑌. So, the periodic points of the horseshoe map are 

dense and that the mapping also has a dense orbit, which is equivalent to transitivity, 

satisfying the first two criteria of Devaney’s definition. The only thing remaining to 

prove is sensitive dependence. 

 

Choose 𝛽 > 0 that is smaller than the minimum distance between the closed, disjoint 

intervals, 𝑉  and 𝑉 . Since all orbits of our horseshoe mapping, regardless of how close 

the seeds may be, are unique, they will eventually separate by at least  𝛽 proving 

sensitive dependence. 

 

Hence horseshoe map 𝑓, is chaotic on its invariant set. 

 
2.5.3 A specific Horseshoe Map 
 

In the general horseshoe case, points in a two-dimensional plane were represented as 

bi-infinite sequences in sequence space. In this specific case, the height will be 
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contracted by one-third its original height, and the width will be expanded by three 

times the actual width before wrapping it back around into the unit square 𝐷. 

 
Definition 2.5.3.1: 
 

Setting the origin as the bottom left corner of a unit square then the horseshoe map, 𝐻 

described above is, 

 

𝐻(𝑥, 𝑦) =
3𝑥, 𝑦                 if  𝑥 ∈ 0,

3 − 3𝑥, 1 − 𝑦 if  𝑥 ∈ , 1
  …………………………….  (2.5.3.1) 

 
The inverse is horizontally shrinking the unit square to one-third of its original width. 

It is stretched to three its actual height followed by bending itself back into the unit 

square. 

 

 Thus, 𝐻 (𝑥, 𝑦) =
𝑥, 3𝑦                 if  𝑥 ∈ 0,

1 − 𝑥, 3 − 3𝑦 if  𝑥 ∈ , 1
 ………………………...(2.5.3.2) 

 

We see that the contracting / expanding of the Smale horseshoe map in the specific case 

can be modeled by the Cantor middle-thirds set via ternary numbers. Since the invariant 

set is equivalent to the Cantor set and future iterates remove all one’s from their ternary 

expansions, one would still end up with a bi-infinite sequence of 0’s and 2’s.  

 
Definition 2.5.3.2: 
 

Let 𝑦 = 0. 𝑦 𝑦 𝑦 … in ternary [36] as defined for 𝑥 and denote 𝑦 by 𝑦 = 2 − 𝑦 . That 

is, multiplying by 3 shifts the decimal one place to the right and inversely multiplying 

by  shifts the decimal one place to the left. 

 

𝐻(0. 𝑥 𝑥 𝑥 … ,0. 𝑦 𝑦 𝑦 … ) =
(0. 𝑥 𝑥 𝑥 … ,0. 0𝑦 𝑦 … )    if  𝑥 ∈ 0,

1

3

(0. �̅� �̅� �̅�  … ,0.2 𝑦 𝑦 … )    if  𝑥 ∈
2

3
, 1

 

 

                                                       =
0. 𝑥 𝑥 𝑥 … ,0. 0𝑦 𝑦 …     if 𝑥 = 0
0. �̅� �̅� �̅� … ,0. 𝑥 𝑦 𝑦  … if 𝑥 = 2

  ………(2.5.3.3) 

 
It becomes necessary that the second component of the specific Horseshoe map be 

defined in terms of the first component. If this can be accomplished, then 𝐻(𝑥, 𝑦) can 

be proven to be chaotic directly on the space defined by the Cantor set. 
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The first three iterates of 𝐻(𝑥, 𝑦)  indicate a pattern that accomplishes this goal. 
 

First iterate: 𝐻(0. 𝑥 𝑥 𝑥 … , 0. 𝑦 𝑦 𝑦 … … ) =
(0. 𝑥 … ,0. 𝑥 𝑦 … )       if     𝑥 = 0

(0. �̅�   … , 0. 𝑥 𝑦  … )     if      𝑥 = 2
 

 

Second iterate: 𝐻 (0. 𝑥 𝑥 𝑥 … , 0. 𝑦 𝑦 … ) =
(0. 𝑥 … ,0. 𝑥 𝑥 𝑦 𝑦 … )   if  𝑥 = 0
(0. �̅�  … , 0. �̅�  𝑥 𝑦 𝑦 … )  if  𝑥 = 2

 

 

Third iterate: 𝐻 (0. 𝑥 𝑥 𝑥 𝑥 … ,0. 𝑦 𝑦 𝑦 … ) = 
 

(0. 𝑥 … , 0. 𝑥 𝑥 𝑥 𝑦 𝑦 𝑦 … )     if   𝑥 = 0

(0. �̅�  … , 0. 𝑥 �̅�  𝑥 𝑦 𝑦 𝑦 … )   if   𝑥 = 2
 

 

We observe that there are 2  horizontal bands following 𝑛 iterations that are now  

high. We can see the following the first iteration that both components of 𝐻(𝑥, 𝑦) are 

the same or, specifically, 𝑥  as seen in equation (2.5.3.3). Upon further iterations, we 

observe that there are 2  vertical bands with  2 -1 inner thirds removed. Now the 

horseshoe map is more of a snake map as it bends over itself, essentially  2 -1 times. 

There are 2  binary combinations of 0’s and 2’sover 𝑛 places past the decimal point, 

which can be assigned simply by ordering the bands by location. 

 
Proposition 2.5.3.1: 
 

𝐻 (𝑥) =
0. 𝑥 𝑥 … ,0. 𝑥 𝑥 … 𝑥 𝑥 𝑦 𝑦 …        if      𝑥 = 0
0. �̅� �̅�  … ,0. �̅� �̅� … �̅� 𝑥 𝑦 𝑦 …       if     𝑥 = 2

     ……(2.5.3.4) 

 

Proof: The first component of the horseshoe map is just the iterative ternary map. 

However, remember the second component is dependent upon the first component so 

both components are needed in this proof. Let the second component be 

 

𝑊 (𝑥, 𝑦) = (0. 𝑥 𝑥 𝑥 𝑥 … ,0. 𝑦 𝑦 𝑦 … ) 

=
0. 𝑥 𝑥 … 𝑥 𝑥 𝑦 𝑦 …           if  𝑥 = 0
0. �̅� �̅� … �̅� 𝑥 𝑦 𝑦 …          if  𝑥 = 2

 

 

Looking at the iterative horseshoe map, when 𝑛 = 1, the original definition from 

equation (2.5.3.3) must be true. Assume that 𝑊 (𝑥, 𝑦) is true for some 𝑘 > 1 ∈ 𝑁 and 

shows that it is valid for 𝑘 + 1. Concentrating on the second component of the 

horseshoe map,  

 

𝑊 (𝑥, 𝑦) =
𝑊(0. 𝑥 𝑥 … , 0. 𝑥 𝑥 … 𝑥 𝑥 𝑦 𝑦 … )if  𝑥 = 0

𝑊(0. �̅� �̅� … , 0. �̅� �̅� … �̅� 𝑥 𝑦 𝑦 … )  if   𝑥 = 2
….(2.5.3.5) 

 

Solving Equation (2.5.3.5) for 𝑥  and 𝑥 , we have 
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(i)  𝑥 = 0 and 𝑥 = 0 

(ii) 𝑥 = 0 and 𝑥 = 2 

(iii) 𝑥 = 2 and 𝑥 = 0 

(iv) 𝑥 = 2 and 𝑥 = 2 

 

Applying all of this to equation (2.5.3.5) yields,  
 

𝑊 (𝑥, 𝑦) =

0. 𝑥 𝑥 … 𝑥 𝑥 𝑦 …   if 𝑥 = 0 and 𝑥 = 0 
0. 𝑥 �̅� … �̅� �̅� 𝑦 …   if 𝑥 = 0 and 𝑥 = 2 
0. �̅� 𝑥 … 𝑥 �̅� 𝑦 …  If 𝑥 = 2 and 𝑥 = 0
 0. �̅� �̅� … �̅� 𝑥 𝑦 …   if 𝑥 = 2 and 𝑥 = 2

 

 

which can be simplified further to  
 

𝑊 (𝑥, 𝑦) =
0. 𝑥 𝑥 … 𝑥 𝑥 𝑦 …           if  𝑥 = 0
0. �̅� �̅�   … �̅� 𝑥 𝑦  …         if  𝑥 = 2

 

 

Since this inductively proves that the second component of the Horseshoe map is 

correct, it is asserted with confidence that equation (2.5.3.4) is correct. Smale’s 

Horseshoe map's iterated is now all expressed as ternary expansion with only 0’s and 

2’s. 

 
Proposition 2.5.3.2: 
 

Let 𝑝 = (𝑝 … 𝑝 … ) ∈ ∑ , 𝑞 = (𝑞 … 𝑞 … ) ∈ ∑ then 𝑑(𝑝, 𝑞) = ∑
| |

| |  is a 

metric on ∑. 

 
Theorem 2.5.3.1: (Proximity theorem): 
 

Let 𝑝, 𝑞 ∈ 𝛤 and suppose 𝑝 = 𝑞  for 𝑖 = 0,1, … , 𝑘, then 𝑑(𝑝, 𝑞) ≤ . Conversely, if 

𝑑(𝑝, 𝑞) < , then 𝑝 = 𝑞  for 𝑖 ≤ 𝑛. 

 
Theorem: 2.5.3.2: The horseshoe map, 𝐻 is chaotic. 
 

Proof: (i) The horseshoe map, 𝐻 has a dense set of periodic points.  
 

Here the periodic points of the form  
 

𝑥 = 0. 𝑥 𝑥 … 𝑥 0  and  𝑦 = 0. 𝑥 𝑥 … 𝑥 0  or 

𝑥 = 𝑥 𝑥 … 𝑥 2�̅� �̅�  … … �̅�  0  or 𝑦 = 𝑥 𝑥 … 𝑥 2 �̅� �̅�   … �̅� 0 
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Let (𝑝, 𝑞) ∈ 𝛤, let 𝜀 > 0, and choose 𝑟 ∈ 𝑁 such that < 𝜀. Choose a periodic point 

𝑥 = 0. 𝑝 𝑝 … 𝑝 𝑞 𝑞 … 𝑞 0  and 𝑦 = 0. 𝑞 𝑞 … 𝑞 𝑝 𝑝 … 𝑝 0 with period 

𝑛 = 2𝑟 + 1. Since (𝑥, 𝑦) agrees with (𝑝, 𝑞) to 𝑟 ternary places 

‖(𝑥, 𝑦) − (𝑝, 𝑞)‖ ≤
√

< 𝜀  proving that the horseshoe map has a dense set of periodic 

points. 

 
(ii) The horseshoe map, 𝐻 has a dense orbit. 
 
Let 𝑥 = 𝐵 𝐵 𝐵 … contains all blocks of the form 𝑝 𝑝 … 𝑝 0𝑞 𝑞 … 𝑞  where the 𝑝’s 

and 𝑞’s are 0’s and 2’s. Let 𝑝 = 0. 𝑝 𝑝 … , 𝑞 = 0. 𝑞 𝑞 … ∈ 𝛤, let 𝜀 > 0, choose 

𝑦 ∈ ∑, choose 𝑘 ∈ 𝑁 such that < 𝜀. There exists a block 𝑞 𝑞 … 𝑞 0 𝑝 𝑝 … 𝑝  in 

𝑥 where the middle zero is the 𝑛th digit of 𝑥.  

Then 𝐻 (𝑥) = (0. 𝑝 𝑝 … 𝑝 , 0. 𝑞 𝑞 … 𝑞 … ) and so ‖𝐻 (𝑥, 𝑦) − (𝑝, 𝑞)‖ ≤
√ . 

Thus, the orbit of (𝑥, 𝑦) is dense. 

 
(iii) Let 𝛽 > 0 which is smaller than the minimum distance between the closed, disjoint 

intervals remaining after the middle third has been removed. Since all orbits of the tent 

map, regardless of how close the seeds may be, are unique, they will eventually separate 

by at least  𝛽 proving sensitive dependence. 

 

Hence the horseshoe map is chaotic. 

 

Theorem 2.5.3.3: Cantor map or Big Tent map 𝑇, is chaotic. 
 

Proof: The big tent map, given below, will be used to connect the Cantor set and the 𝑥 

dimensional of Smale’s horseshoe map. In fact, it will be proven that the sequence space 

representing 𝑥 ∈ 𝛤 actually is the Cantor set. They are utilizing the fact that the tent 

map is the Cantor set. 

Let 𝑇: ℝ → ℝ be 𝑇(𝑥) =
3𝑥         if 𝑥 ≤

3 − 3𝑥   if 𝑥 >
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Figure: 2.5.8 Cantor Tent map acting on unit interval 

 

 

Figure: 2.5.9 Cantor Tent map for 𝑇  showing the middle third has been removed  

 

Let all the points that aren’t removed with future iterations of 𝑇 (𝑥) ∈ [0,1] for 𝑖 ∈ 𝑁 

be 𝛺 and let 𝑇(𝑥): 𝛺 → 𝛺. 

 

It is evident that 𝑇(𝑥) removes the inner third of the interval, following each iteration, 

provided 𝑥 ∈ [0,1]thus yielding the Cantor set. Let 𝑥 = 0. 𝑥 𝑥 𝑥 … …. and denote �̅� by 

�̅� = 2 − 𝑥, then 
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𝑇(𝑥) =
𝑥 . 𝑥 𝑥 … if   0 ≤ 𝑥 ≤

�̅� .  �̅�  �̅� … .  if  1 ≥ 𝑥 >
   …………………………………….(2.5.3.6) 

 

Due to our mapping restrictions, 𝑇(𝑥) must be in [0,1], but clearly, this is not the case 

if 𝑥 = 1 or �̅� = 1 thus,  

 

𝑇(𝑥) =
0. 𝑥 𝑥 … if𝑥 = 0

0. �̅� �̅� … if  𝑥 = 2
  ……………………………………………..(2.5.3.7) 

 

Since all ternary expansions of the Cantor set have only ‘0’ or ‘2’ in it as all the ternary 

expansions with a 1 escape after some iterate, then the ternary expansion of the Cantor 

set is only comprised of ‘0’s and ‘2’ s, proves that all ternary expansions of the tent 

map also only contain ‘0’s and ‘2’. In other words, 𝑇 (𝑥) ∈ [0,1] if and only 

𝑥 = 0 or 2. This proves that 𝑥 ∈ 𝛺 and that 𝛺 is the Cantor set showing that 𝑇 maps 

𝛺 into itself. 

Visually, a picture of 𝛺 is that of a disconnected Cantor set (see Figure 2.5.10) 
 

 
 

Figure 2.5.10: Cantor set 
 

Now for 𝑛 ≥ 1, we assume that 𝑇 (0. 𝑥 𝑥 … ) =
0. 𝑥 𝑥 … if   𝑥 = 0
0. �̅� �̅� …  if   𝑥 = 2

 

 

For proving tent map is chaotic, we need to verify that the following three properties: 
 

(i) Tent map, T  has a dense set of periodic points.  
 

Following one iteration of 𝑇 (𝑥) a point 𝑥 ∈ 𝛺 of period n can be defined as 
 

0. 𝑥 𝑥 … =
0. 𝑥 𝑥 … if    𝑥 = 0
0. �̅� �̅� … if   𝑥 = 2

 

 
Hence, there are periodic points of the form  
 

𝑥 = 0. . 𝑥 𝑥 … 𝑥 0  or 𝑥 =. 𝑥 𝑥 … 𝑥 2 �̅� �̅�  … �̅� 0 
 

1/3 1 2/3 

𝑪𝟏 

𝑪𝟎 

𝑪𝟐 

𝑪𝟑 

𝑪𝟒 

0 
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Let 𝑃 = 0. 𝑝 𝑝 … ∈ 𝛺, 𝜀 > 0, and choose 𝑘 ∈ 𝑁 such that < 𝜀. Choose a periodic 

point 𝑥 = 0. 𝑝 𝑝 … 𝑝 0 which yields |𝑥 − 𝑃| ≤ < 𝜀 prove that the tent map has 

a dense set of periodic points. 

 

(ii) Tent map has a dense orbit. 
 

Let 𝑥 = 𝐴 𝐴 …, where each 𝐴  is a block of length 𝑛 that contains every combination 

of 0’s and 2’s preceded by a 0. Let 𝑃 = 0. 𝑝 𝑝 … ∈ 𝛺 , 𝜀 > 0, and choose 𝑘 ∈ 𝑁 such 

that < 𝜀. A finite sequence of digits 𝑥 = 0. 𝑝 𝑝 … 𝑝  thus occurs in block 𝐴 . If the 

sequence starts at the 𝑚th digit of 𝑥 then 𝑇 (𝑥) = 0. 𝑝 𝑝 … 𝑝  and so in the interval 

𝑇 (𝑥) − 𝑃 the first 𝑘 digits are zero, yielding |𝑇 (𝑥) − 𝑃| ≤ . Thus, the orbit of 𝑥 

is dense. 

 

(iii) Tent map is sensitive to initial conditions. 
 
Let 𝛽 > 0 which is smaller than the minimum distance between the closed, disjoint 

intervals remaining after the middle third has been removed. Since all orbits of the tent 

map, regardless of how close the seeds may be, are unique, then eventually they will 

separate by at least  𝛽 proving sensitive dependence. 

 

So the tent map is chaotic. 

 
2.5.4 Topological Conjugacy for one-dimensional map 
 

This section aims to study the chaotic significance by comparing one map with another 

map with the help of topological conjugacy. Topological conjugacy [44] is a proper 

equivalence relation. Number and type of periodic points will be same in case of two 

conjugate (topologically) maps. This section shows that the tent map is conjugate to 

logistic map, doubling map is conjugate to logistic map and doubling map is also 

conjugate to shift map. Using this essential tool, we can predict behavior of a dynamical 

system comparing it with another dynamical system whose specific properties are 

known. 

 
Definition 2.5.4.1 A function 𝑘: 𝑋 → 𝑌 is a homeomorphism if  
 

(i) 𝑘 is injective 

(ii) 𝑘 is surjective 
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(iii) k is continuous 

(iv) 𝑘  is also continuous. 

 
Difinition 2.5.4.2 
 

A map 𝑘: 𝑋 → 𝑌 is a conjugacy (topological) from 𝑓 : 𝑋 → 𝑋 to 𝑓 : 𝑌 → 𝑌 if 
 

(i) k is a homomorphism from X to Y and 

(ii) 𝑘𝑓 = 𝑓 𝑘 or equivalently 𝑓 = 𝑘𝑓 𝑘  or 𝑓 = 𝑘 𝑓 𝑘 . 

 

Commuted diagram relates more commonly with Semi-conjugacy and conjugacy 

which is given to the Figure 2.5.11. The Diagram A commutes in case of  k is a semi-

conjugacy from 𝑓  to 𝑓 . However, k and 𝑘  is a semi-conjugacy from 𝑓  to 𝑓  and 𝑓  

to 𝑓 respectively, if k is a conjugacy and the Diagram A and Diagram B commute 

representing semi-conjugation for k and 𝑘 . 

 
 
Figure 2.5.11 Semi-conjugacy and conjugacy between 𝑓 and 𝑓  

 
Some useful lemmas and theorems are presented in the next context. 
 
Lemma 2.5.4.1  
 

(i) 𝑓 : 𝑋 → 𝑋 is conjugate to itself. 

(ii) If 𝑘: 𝑋 → 𝑌 is a conjugacy (topological) from 𝑓 : 𝑋 → 𝑋 to 𝑓 : 𝑌 → 𝑌, then 𝑘  is a 

conjugacy from 𝑓 : 𝑌 → 𝑌 to 𝑓 : 𝑋 → 𝑋. 

(iii) If 𝑘is a conjugacy (topological) from 𝑓 : 𝑋 → 𝑋 to 𝑓 : 𝑌 → 𝑌 and 𝑘  is a conjugacy 

(topological) from 𝑓 : 𝑌 → 𝑌 to 𝑓 : 𝑍 → 𝑍, then 𝑘𝑘  is a conjugacy from 𝑓 : 𝑋 →

𝑋 to 𝑓 : 𝑍 → 𝑍. 
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Lemma 2.5.4.2: If h is a conjugacy from𝑓 to 𝑓 , then 𝑘 is also a conjugacy from 𝑓  to 

𝑓  for every positive integer. 

 
Theorem 2.5.4.1 
 

If 𝑓: 𝐴 → 𝐴 is topologically conjugate to 𝑔: 𝐵 → 𝐵 via topological conjugacy ℎ: 𝐴 →

𝐵, then 𝑓 is transitive if and only if 𝑔 is transitive. That is, topological conjugacy [44] 

preserves transitivity. 

 

Theorem 2.5.4.2 
 

If ℎ: 𝐴 → 𝐵 is an onto continuous mapping [2], then the image under ℎ of a set dense in 

𝐴 is a set dense in 𝐵. 

 
Theorem 2.5.4.3 
 

Let us consider that 𝑓 is a map of the set of periodic points of period 𝑛 and it is denoted 

by Pern(𝑓). If 𝑓 and 𝑔are topologically conjugate, then Pern(𝑓) is dense [28] if and only 

if Pern(𝑔) is dense. 

 

The following example shows that the logistic map is topologically conjugate to the 

tent map.  

Example 2.5.4.1 The tent map 𝑇, defined by 𝑇(𝑥) =
2𝑥                0 ≤ 𝑥 <

2(1 − 𝑥) ≤ 𝑥 < 1
  is 

conjugate to the logistic map, 𝐹 = 4𝑥(1 − 𝑥), via the conjugacy 𝑘(𝑥) = sin √𝑥. 

 
Figure 2.5.12 Conjugacy between tent map and logistic map 
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Solution: The function k is a homeomorphism on 𝐼 = [0,1]. Then it follows that 

 𝑘 (𝑥) = sin 𝑥 . We have to show that 𝐹 (𝑥) = 𝑘 o 𝑇o 𝑘(𝑥). 

The first case, 0 ≤ 𝑥 ≤ ; 

 𝐹 (𝑥) = 𝑘 o𝑇o 𝑘(𝑥) 

= sin
π

2

4

π
sin √𝑥  

  = sin 2 sin √𝑥  

                      = 2sin sin √𝑥 cos sin √𝑥  

      = 2√𝑥cos sin √𝑥  

= 4𝑥cos sin √𝑥  

             = 4𝑥 1 − sin sin √𝑥  

= 4𝑥(1 − 𝑥) 

The second case,  ≤ 𝑥 ≤ 1; 

𝐹 (𝑥) = 𝑘 o𝑇o 𝑘(𝑥) 

            = sin
π

2
−

4

π
sin √𝑥 + 2  

             = sin −2 sin √𝑥 + π  

             = 2sin − sin √𝑥 +
π

2
cos − sin √𝑥 +

π

2
 

  = 2cos sin √𝑥  sin sin √𝑥  

               = 4𝑥 cos sin √𝑥  

                = 4𝑥(1 − 𝑥) 
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Hence, we get,  𝐹 (𝑥) = 𝑘 o 𝑇o 𝑘(𝑥) for all 𝑥 ∈ [0,1]. 

Therefore, all topological properties of 𝐹  and 𝑇 are the same, and we can concentrate 
on the piecewise linear tent map 𝑇. 

Here we give another example that proves that the Doubling map is conjugate to logistic 

Map. 

Example 2.5.4.2 The Doubling map D(𝑥) =
2𝑥                     if 0 < 𝑥 <

2𝑥 − 1,               if < 𝑥 < 1 
  is 

conjugate to logistic Map. 

Poof: Let us consider 𝐽(𝑥) = sin 2π𝑥 be a homeomorphism and putting 

  𝜑(𝑥) = (𝐽 ∘ 𝐷 ∘ 𝐽 )(𝑥) 

Hence, 

φ(𝑥) = 𝐽 𝐷 𝐽 (𝑥) = 𝐽 𝐷
1

2π
sin √𝑥 , 0 ≤

sin √𝑥

2π
< 1 (i. e. 0 ≤ 𝑥 < 1) 

                                           = 𝐽 2 ×
1

2π
sin √𝑥 , 0 ≤

sin √𝑥

2π
<

1

2
 (i. e. 0 ≤ 𝑥 ≤

1

2
) 

                                = 𝐽
1

π
sin √𝑥 , 0 ≤

sin √𝑥

2π
<

1

2
 i. e. 0 ≤ 𝑥 <

1

2
 

                                        = sin 2π × sin √𝑥  

                                              = {sin(2 sin √𝑥)}  

                                               = 2sin sin √𝑥 . cos sin √𝑥  

                                                = 2√𝑥 {1 − sin sin √𝑥 } 

                                                 = 4𝑥(1 − 𝑥) 

Similarly, 

φ(𝑥) = 𝐽 𝐷 𝐽 (𝑥)  
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= 𝐽 𝐷
1

2π
sin √𝑥 , 0 ≤

sin √𝑥

2π
< 1 (i. e. 0 ≤ 𝑥 < 1) 

           = 𝐽 2 ×
1

2π
sin √𝑥 − 1 , 0.5 ≤

sin √𝑥

2π
< 1 (i. e. 0 ≤ 𝑥 < 1) 

           = 𝐽
1

π
sin √𝑥 − 1 , 0.5 ≤

sin √𝑥

2π
< 1 i. e. 0 ≤ 𝑥 <

1

2
 

            = sin2π
1

π
sin √𝑥 − 1  

            = sin 2sin √𝑥 − 2π  

            = sin 2sin √𝑥  

            = 2sin sin √𝑥 . cos(sin √𝑥)}^2  

             = 2√𝑥 {1 − sin sin √𝑥 } 

               = 4𝑥(1 − 𝑥) 

So, 𝐷 is conjugate to logistic map. 

Example 2.5.4.3: Doubling map 𝐷(𝑥) =
2𝑥                     𝑖𝑓 0 ≤ 𝑥 <

2 − 2𝑥,               𝑖𝑓 ≤ 𝑥 < 1 
 is conjugate 

to shift map. 

 

Proof: Doubling map is defined by 𝐷(𝑥) =
2𝑥                     𝑖𝑓 0 ≤ 𝑥 <

2 − 2𝑥,               𝑖𝑓 ≤ 𝑥 < 1 
 

 
Let’s represent each 𝑥 ∈ [0,1] by its binary expansion: 

𝑥 = 0. 𝑏 𝑏 𝑏 … = + + + + ⋯ where each 𝑏 ∈ {0,1}. For 𝑥 =  ,  

represent 𝑥 with a binary expansion ending in 0’s rather than 1’s. Then if 𝑏 = 0, we 
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know 𝑥 ∈ [0, . Similarly, 𝑏 = 1, we know 𝑥 ∈ , 1). Suppose 𝑥 ∈ [0,  is given 

𝑥 = 0. 0𝑏 𝑏 𝑏 … = + + + + ⋯.  

 

Then 𝐷(𝑥) = 2𝑥 = 0. 0𝑏 𝑏 𝑏 … = + + + + ⋯. 

 

Consider 𝑥 = 0. 01010110 …. Then 𝑥 = + + + + ⋯. 

 

𝐷(𝑥) = 2𝑥 =
2

4
+

2

16
+

2

64
+

2

128
=

1

2
+

1

8
+

1

32
+

1

64
+ ⋯

1

64
= 0. 01010110 … 

 

Now suppose 𝑥 ∈ , 1) is given. Then 𝑥 = 0. 1𝑏 𝑏 𝑏 … = + + + + ⋯. 

 
Thus 𝐷(𝑥) = 2𝑥 − 1 = 1. 𝑏 𝑏 𝑏 … − 1 = 0. 𝑏 𝑏 𝑏 …. Hence on [0,1), 𝐷(𝑥) is 

equivalent to 𝜎(𝑥), the shift map on two symbols. Since shift map is chaotic on two 

symbol space, so Doubling map is also chaotic on the entire space. 

 

From the following theorem, we prove that the itinerary map, 𝜋 is continuous and 
surjective. 

 
Theorem 2.5.4.4 The itinerary map 𝜋 is continuous, surjective but not a 

homeomorphism. 

 

Proof: We need to show that the itinerary map 𝜋 is continuous,  

so we let 𝑠 = 𝑠 𝑠 … . ∈ ∑  and 𝜀 > 0. Pick n such that < 𝜀. Let 𝑡 ∈ ∑  satisfy 

𝑑(𝑠, 𝑡) < . Then 𝑠 = 𝑡  for every 𝑖 ≤ 𝑛. Therefore 

 

|𝜋(𝑠) − 𝜋(𝑡)| =
𝑠 − 𝑡

2
 

                           ≤
𝑠 − 𝑡

2
 

                                   ≤
𝑠 − 𝑡

2
 

                             =
1

2
≤ 𝜀 

 

Here we see that 𝜋 is surjective, so 𝜋 is not a homeomorphism since it is not injective.  
 

Hence 𝜋 is continuous surjective but not a homeomorphism. 
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Theorem 2.5.4.5 𝜋 is a topologically conjugate for the doubling map, D, and the shift 

map, 𝜎. 

 

From this section, we observe that topologically conjugacy and symbolic dynamics are 

an illustrious join of tools to discussing dynamical systems. 

 

 

Example 2.5.4.4 Let 𝐼 = [0,1] and define 𝑓: 𝐼 → 𝐼 by 

𝑇(𝑥) =

⎩
⎪
⎨

⎪
⎧ 3𝑥,                 𝑥 ∈ 0,

1

3

3𝑥 − 1, 𝑥 ∈
1

3
,
2

3

3𝑥 − 2,       𝑥 ∈
2

3
, 1

 

 

Figure: 2.5.13 Function of 𝑇(𝑥) acting on [0, 1] 
 

Then let 𝑋 = 𝑥 ∈ 𝐼: 𝑇 (𝑥) ∉ , , 𝑛 ≥ 0 , 𝑋 is a standard Cantor set that is invariant 

under 𝑇. 

 

Here it is easy to see that (𝑋, 𝑇) is topologically conjugate to a symbolic system (∑, 𝜎) 

of two symbols. 

 

The functions given below are not conjugate topologically: 

 
Example 2.5.4.5 The maps 𝑓, 𝑔: [0,1] → [0,1] given by 

𝑓(𝑥) =
2𝑥              if 𝑥 < 0.5
−2𝑥 + 2  if 𝑥 ≥ 0.5

   and 𝑔(𝑥) =
2𝑥           if  𝑥 < 0.5
2𝑥 − 1  if  𝑥 ≥ 0.5

 are not topologically 

conjugate. 
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Solution: A topological conjugacy consists of a homeomorphism ℎ: [0,1] → [0,1] 

which in particular must send endpoints. Moreover, it must send orbits to orbits and 

thus, in particular fixed points to fixed points. However, the two fixed points of 𝑔 are 

the two endpoints, whereas the two fixed points of f are one of the endpoints and the 

other is in the interior; thus, h cannot be a conjugacy. 

 
2.6 Summary and Conclusion 
 

This chapter has discussed the symbolic dynamics of one and two-dimensional maps. 

Symbolic dynamics evolved into discussing standard dynamical systems; the skills and 

concepts have found significant applications in data storage and transmission and linear 

algebra. For 𝜇 > 4 , we observed that specific points of 𝐼 leave the interval after the 

first iteration. The points that never leave are called the non-wandering set. This non-

wandering set is a Cantor set. Furthermore, we have looked at symbolic dynamics. We 

used symbolic dynamics to see that the logistic function is chaotic for  𝜇 > 4 on its 

Cantor sets. There is some application of symbolic dynamical systems such as the 

Cantor set and its ternary representation with symbolic behavior and Cantor set of the 

logistic map. We believe that several critical applications of the symbolic dynamics for 

a two-dimensional chaotic map can be explored. In this chapter we have proved that 

horseshoe map is chaotic on its invariant set. It is also established that Big Tent map is 

chaotic. We have shown that the action of the Smale’s horseshoe, which is based on the 

Baker’s map, the Bernoulli shift map has countably infinitely many periodic orbits, 

uncountably many non-periodic orbits, and 𝜎 dense orbit on ∑ .  

 

In this chapter, we see that the tent map, 𝑇  and the logistic map, 𝐹  are conjugate. From 

another example, we find that the doubling map is conjugate to logistic map and the 

doubling map is also conjugate to shift map. But in Example 2.5.4.5, we see that the 

given two maps are not conjugate.  
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CHAPTER -3 

CHAOTIC CHARACTERISTICS OF THE SHIFT MAP 

ON THE GENERALIZED 𝒎-SYMBOL SPACE 

 
3.1 Introduction 

 

Chaotic dynamical systems have been extensively discussed and investigated its 

characteristic in a distinguished extent of studies. In modern times, the chaoticity of a 

dynamical system is a more needful and requiring area for both mathematicians and 

physicists.  

 

Symbolic dynamical systems are beautiful examples of topological dynamical systems. 

Robert L. Devaney [1] has given an unforgettable representation of space 𝟐 . By 

symbolic dynamical systems, we know that the space of sequences 𝟐 = {𝛼: 𝛼 =

(𝛼 𝛼 … … … ), 𝛼 = 0 or 1 } along with the shift map defined on it. From [1], we know 

that 𝟐 is a compact metric space where 𝑑(𝑠, 𝑡) = ∑
 

 , 𝑠 = (𝑠 𝑠 … … … )  and 

𝑡 = (𝑡 𝑡 … … … ). At the beginning of the sequence, we can think of 𝑠 and 𝑡 as close if 

their sequences are similar.  

 

This chapter aims to investigate some chaos-related characteristics of shift map on ∑ ,

𝑚 (≥ 2) ∈ 𝑁. We assume several concepts of chaos available in modern literature.  In 

section 3.2, we have proved that shift map is topological dynamical systems (TDS). 

The Proximity Theorem is established in section 3.3, and using this theorem, we have 

shown that shift map is transitive (topologically), topologically mixing. It is seen that 

𝜎 is generically 𝛿-chaotic. We have also shown that  (∑ , 𝜎) has modify weakly chaotic 

dependence on initial conditions. In section 3.4, we have shown that symbol space 

∑  is Cantor set. We have established that 𝜎: ∑ → ∑  is topologically conjugate to 

map 𝑓 (𝑥) = 𝑚𝑥(𝑚𝑜𝑑1)on the space 𝑅/𝑍. In theorem 3.5. the shift map is exact 

Devaney chaotic. 

 
3.2 Useful Definitions and Theorems 
 

In this section we have discussed some important definitions which are useful to 

prove chaotic properties. 
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Definition 3.2.1: (Full Shift space)  
 

If  ∑ is a finite alphabet, then the full  ∑- shift is the collection of all bi-infinite 

sequences of symbols from  ∑. The full  ∑- shift is denoted by ∑ =

{𝑥 = (𝑥 ) ∈ : 𝑥 ∈ ∑ ∀ 𝑖 ∈ 𝑍}. 

 

Here each sequence 𝑥 ∈ ∑  is called a point of the full shift. A block or word over ∑ 

is a finite sequences of symbols from ∑. 

 
Definition 3.2.2: (Language)  
 

Consider 𝑋 be a subset of a full shift, and let 𝐵 (𝑥) denote the set of all 𝑛- block that 

occur in points in 𝑋. The language [68] of 𝑋 is the collection 𝐵(𝑋) = ⋃ 𝐵 (𝑋). 

 
Definition 3.2.3 
 

For each 𝑛 we can construct the following function 𝜎: ∑ → ∑  by 

 

𝜎 (𝑎 ) = (𝑎 ). 

 

In other words, if (𝑎 ) = (𝑎 𝑎 𝑎 … … ) then 𝜎 (𝑎 ) = (𝑎 𝑎 𝑎 … … ) . 

 
To define following definitions we consider (𝑋, 𝑑) is a compact metric space, 𝑔: 𝑋 →

𝑋 is a continuous map and two non-empty open sets 𝑈, 𝑉. 

 
Definition 3.2.4 (Transitive (Topologically)): 
 

For 𝑈, 𝑉 ⊂ 𝑋 ∃ 𝑘 ≥ 0 such that 𝑔 (𝑈) ∩ 𝑉 ≠ 𝜙 then 𝑔: 𝑋 → 𝑋 is called transitive 

(topologically) [1]. 

 

Definition 3.2.5 (Strictly topologically transitive): Let 𝑔 : 𝑋 → 𝑋, 𝑛 ≥ 1 be a 

sequence of continuous maps. If 𝑈, 𝑉 ⊂ 𝑋 ∃ 𝑘 ≥ 0  such that  𝑔 (𝑈) ∩ 𝑉 ≠ ∅, the 

sequence {𝑔 }  is said to be strictly topologically transitive [1]. 

 
Definition 3.2.6 (Totally Transitive): 
 

If 𝑔  is totally transitive ∀ n ≥ 1, then 𝑔: 𝑋 → 𝑋 is called totally transitive [2]. 
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Definition 3.2.7 (Transitive Point): 
 

Any point on a compact metric space (𝑋, 𝑑) is said to be a transitive point [1] if it has 

a dense orbit. 

 
Definition 3.2.8 (Topologically Mixing): 
 
The map 𝑔 is said to be topologically mixing [27] if 𝑈, 𝑉 ⊂ 𝑋 ∃ 𝑚 ≥ 0 such that 

∀ 𝑛 ≥ 𝑚, 𝑔 (U)∩ 𝑉 ≠ 𝜙. 

 
Definition 3.2.9 (Strong Sensitive Dependence on Initial Conditions): 
 

A continuous map 𝑔: 𝑋 → 𝑋 has strong sensitive dependence on initial conditions [64] 

if for any 𝑥 ∈ 𝑋 and non-empty open set 𝑈of 𝑋, ∃ 𝑦 ∈ 𝑈 and 𝑛 ≥ 0 such that 

𝑑 𝑔 (𝑥), 𝑔 (𝑦)  is maximum in 𝑋. It is evident that all strong, sensitive dependence 

maps have sensitive dependence. 

 
Definition 3.2.10 (Generically 𝜹-chaotic): 
 
 

If 𝐿𝑌(𝑔, 𝛿) is residual in 𝑋  then 𝑔: 𝑋 → 𝑋 on a compact metric space X is called 

generically 𝛿-chaotic [13]. 

 
We also need the following Proposition, Lemma and Theorem. 

 
Problem 3.2.1 Prove that 𝑑  is a metric on ∑ . 

 
Proof: Here 𝑑  is non-negative since |𝑠 − 𝑡 | ≥ 0 ∀ 𝑖, and it vanishes if and only if 

𝑠 = 𝑡 . So we need to show it is symmetry and triangle inequality. Symmetry follows 

since |𝑠 − 𝑡 | = |𝑡 − 𝑠 | for 𝑠  and 𝑡 . Also triangle inequality follows since 

𝑑 (𝑠, 𝑡) + 𝑑 (𝑡, 𝑢) =
|𝑠 − 𝑡 |

𝑚
+

|𝑡 − 𝑢 |

𝑚
 

=
|𝑠 − 𝑡 | + |𝑡 − 𝑢 |

𝑚
 

≥
|𝑠 − 𝑢|

𝑚
 

= 𝑑 (𝑠, 𝑢) 
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Then 𝑑  is a metric and (𝑑 , ∑ ) is a metric space. 
 

Now we find the maximum distance between a pair of sequences in ∑ : 
 
The maximum value of |𝑠 − 𝑡 | is 𝑚 − 1, and therefore, the maximum distance 

between two sequences in ∑  is 𝑑 (𝑠, 𝑡) = ∑
| |

 

                          ≤
𝑚 − 1

𝑚
 

                                                                              = (𝑚 − 1) = 𝑚. 

So, in general, the maximum distance can be no more than the size of the alphabet. 

 
Problem 3.2.2 How many fixed points does the shift map have? How many 2-cycles? 

How many cycles of prime period 2? 

 
Solution: Let 𝜎: ∑ → ∑   with 𝜎(𝑠 𝑠 𝑠 … . . ) = (𝑠 𝑠 𝑠 … . . ). 
 

Now, 𝜎 has 𝑚 fixed points, indeed, 
 

fix 𝜎 = {(000 … . ), (111 … ), … … , (𝑘𝑘𝑘 … )} where 𝑘 = 𝑚 − 1. Recall that the shift 

map on ∑  has two points of prime period 2. It turns out that this is not the case since 

any sequence of the form (𝑠 𝑠 ) is of period 2, and there are 𝑚  such points. But 𝑚 of 

these are fixed, and so there are 𝑚 − 𝑚 = 𝑚(𝑚 − 1) points of prime period 2. 

 
Problem 3.2.3 How many periodic points in ∑ ? 
 

Solution: We have that 𝑝𝑒𝑟 𝜎 = {(𝑠 𝑠 𝑠 )| 𝑠 , 𝑠 , 𝑠 ∈ ∑ } and so |𝑝𝑒𝑟 𝜎| = 𝑚 . Of 

these, 𝑚 − 𝑚 = 𝑚(𝑚 − 1) are of prime period three since 𝑚 of them are fixed. 

Similarly, we can write in general |𝑝𝑒𝑟 𝜎| = 𝑚  

 
Remark 3.2.1 It is evident that 𝜎 has periodic orbits of every length. There are exactly 

𝑚  periodic orbits of length 𝑘 since for each 𝑘 ∈ 𝑍  there are 𝑚  different blocks of 

length 𝑘 consisting of integers from {0,1,2, … … , 𝑚 − 1}. Repetitions of such a block 

define a point in ∑  which is on a periodic orbit of length 𝑘 and any sequence (𝑎 ) with 

𝜎 (𝑎 ) = (𝑎 ) is a sequence consisting of repeated blocks of length 𝑘.  
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Proposition 3.2.1 If 𝑔 is topologically weak mixing [41] then it is generically 𝛿-chaotic 

on X with 𝛿 = 𝑑𝑖𝑎𝑚(𝑋). 

 
Theorem 3.2.1 If 𝑔 is transitive (topologically) [1] on 𝑋 and the periodic points of 𝑔 

are dense in 𝑋, then 𝑓 is chaotic on 𝑋, where 𝑋 is an infinite subset of metric space. 

 
Theorem 3.2.2 If the periodic points of 𝑔 are dense in 𝑋 and there is a point whose 

orbit under iteration of 𝑔 is dense in the set 𝑋, then 𝑔is topologically transitive [2] on 

𝑋. 

 
Lemma 3.2.1: [14] Let 𝑠, 𝑡 ∈ Ʃ and 𝑠 = 𝑡  , 𝑖 = 0,1, … … … , 𝑚 . Then 𝑑(𝑠, 𝑡) <  

and conversely if 𝑑(𝑠, 𝑡) <  then 𝑠 = 𝑡 , for 𝑖 = 0,1, … … … , 𝑚. 

 
 

Theorem 3.2.3: (∑ , 𝜎) is topological dynamical systems (TDS). 
 

Proof: Consider the space 

∑ = {0,1,2, … … , 𝑚 − 1} = {𝑢 = (𝑢 )∞ : 𝑢 ∈ {0,1,2, … … , 𝑚 − 1}} 

where 𝑚(≥ 2) ∈ 𝑁, is a compact metric space under 𝑑: ∑ × ∑ → 𝑅 defined by 

𝑑(𝑢, 𝑣) = ∑
| |

 for 𝑢 = (𝑢 𝑢 𝑢 … … . ), 𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ ∑ . Again, this 

is explicit that 𝜎: ∑ → ∑ well-defined by 𝜎(𝑢 𝑢 𝑢 … … ) = (𝑢 𝑢 𝑢 … … ) is 

continuous.  

 

Hence, (∑ , 𝜎) is topological dynamical system.  

 

Note: For any 𝑚, 𝑛(𝑛 < 𝑚) ∈ 𝑁, we have that ∑ ⊆ ∑ .  So, if it is true for  ∑  is 

also true for ∑ . 

 

3.3 Chaotic features of the shift map 
 

Important chaotic features of 𝜎 on ∑  is discussed in this section. 

 
Theorem 3.3.1 [The Proximity Theorem] 
 

Let 𝑢, 𝑣 ∈ ∑ . Then 𝑑(𝑢, 𝑣) ≤  if and only if u and v agree up to n-digits. 
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Proof: If 𝑢 = (𝑢 𝑢 𝑢 … … . ), 𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ ∑   and u and v agree up to the 

n-digits then 𝑢 − 𝑣 = 0 for 𝑖 = 1,2,3, … … , 𝑛 and so, we get  ∑
| |

= 0. 

 

Hence 𝑑(𝑢, 𝑣) = ∑
| |

= ∑
| |

+ ∑
| |

= 0 + ∑
| |

 

=∑
| |

. 

 

Here 𝑢 , 𝑣 ∈ {0,1,2,3, … , 𝑚 − 1},   ∀𝑖 ∈ 𝑁 

⇒|𝑢 − 𝑣 | ≤ 𝑚 − 1,   ∀𝑖 ∈ 𝑁
| |

≤ , ∀𝑘 > 𝑛 

∴ 𝑑(𝑢, 𝑣) =
|𝑢 − 𝑣 |

𝑚
≤

𝑚 − 1

𝑚
=

𝑚 − 1

𝑚

1

𝑚
=

𝑚 − 1

𝑚
.

1

1 −
=

1

𝑚
. 

 
 

Conversely, let 𝑑(𝑢, 𝑣) ≤  . We have to show that u and v agree up to n-digits.  

Let u disagree to v at least at one digit that leads the nth digit, say at ith  digit where 

1 ≤ 𝑖 ≤ 𝑛 − 1 and agrees at all other digits up to n-digits. Then  

 

𝑑(𝑢, 𝑣) =
|𝑢 − 𝑣 |

𝑚
=

|𝑢 − 𝑣 |

𝑚
+

|𝑢 − 𝑣 |

𝑚
≥

|𝑢 − 𝑣 |

𝑚
≥

1

𝑚
>

1

𝑚
 

[ Since 𝑖 ≤ 𝑛 − 1 < 𝑛]. 

 

This contradicts our assumption that 𝑑(𝑢, 𝑣) < . So, it follows that u and v essential 

agree up to n-digit. 

 
Theorem 3.3.2 𝜎:∑ → ∑  is continuous. 
 

Proof: Let 𝑢 = (𝑢 𝑢 𝑢 … … ) ∈ ∑   and  𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ ∑  

            Then 𝜎(𝑢) = (𝑢 𝑢 𝑢 … … ) and   𝜎(𝑣) = (𝑣 𝑣 𝑣 … … ) 

𝑑 𝜎(𝑢), 𝜎(𝑣) =
|𝑢 − 𝑣 |

𝑚

∞

 

                            = 𝑚
|𝑢 − 𝑣 |

𝑚

∞

 



 

P a g e  | 64 
 

 

                             = 𝑚
|𝑢 − 𝑣 |

𝑚

∞

 

                         ≤ 𝑚 ∑
| |∞  

                       = 𝑚 𝑑(𝑢, 𝑣) 

Let 𝜀 > 0 be given and choose 𝑛 so that < 𝜀. Now suppose 𝛿 =  and 

𝑑(𝑢, 𝑣) < 𝛿. Then 𝑢 = 𝑣  for 𝑖 ∈ {0,1, … … , 𝑚 + 1} and 

𝑑 𝜎(𝑢), 𝜎(𝑣) ≤ 𝑚 𝑑(𝑢, 𝑣) < 𝑚 𝛿 = 𝑚 
1

𝑚
=

1

𝑚
< 𝜀 

⇒ 𝑑 𝜎(𝑢), 𝜎(𝑣) < 𝜖 

Hence 𝜎 is continuous on ∑ . 

 
We can prove the following theorem using Theorem 3.3.1. 

Theorem 3.3.3 𝜎: ∑ → ∑  is transitive (topologically). 
 

Proof: To establish this theorem, 

Let 𝑢 = (𝑢 𝑢 𝑢 … … . ) ∈ 𝑈 and 𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ 𝑉 be arbitrary. 

Now, 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉, and U, V are open sets. So, ∃ open balls 𝐵(𝑢, 𝑟 ) ⊆ 𝑈 and 

𝐵(𝑣, 𝑟 ) ⊆ 𝑉. If 𝑟 = min {𝑟 , 𝑟 } then 𝐵(𝑢, 𝑟) ⊆ 𝑈 and 𝐵(𝑣, 𝑟) ⊆ 𝑉. We choose 𝑛 ∈ 𝑁 

such that < 𝑟. Consider the point 𝑤 = (𝑢 𝑢 𝑢 … … 𝑢 𝑣 𝑣 𝑣 … … ) ∈ ∑   and 

using Theorem 3.3.1, we find that  

 

𝑑(𝑢, 𝑤) ≤
1

𝑚
< 𝑟 

⇒ 𝑤 ∈ 𝐵(𝑢, 𝑟) ⊆ 𝑈 

 

and consequently, it follows that 𝜎 (𝑤) ∈ 𝜎 (𝑈). 
 
Also 𝜎 (𝑤) = (𝑣 𝑣 𝑣 … … ) = 𝑣 ∈ 𝑉, 

𝑣 = 𝜎 (𝑤) ∈ 𝜎 (𝑈) ⇒ 𝑣 = 𝜎 (𝑤) ∈ 𝜎 (𝑈) ∩ 𝑉. So it follows that 𝜎 (𝑈) ∩ 𝑉 ≠ ∅ 

and then 𝜎: ∑ → ∑  is transitive (topologically). 
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We know that the chaotic maps are Li-Yorke sensitive and topologically transitive [2]. 

The following illustration shows that a continuous function is Li-Yorke sensitive maps 

or topologically transitive but not chaotic in the sense of B. S. Du. 

 

Example 3.3.1: Consider a function 𝐽(𝑥): [−1,1] → [−1,1] is defined by  

𝐽(𝑥) =

⎩
⎪
⎨

⎪
⎧

11

10
(𝑥 + 1), −1 ≤ 𝑥 ≤ −

1

11

−11𝑥,                −
1

11
≤ 𝑥 ≤ 0

𝑥 ,                    0 ≤ 𝑥 ≤ 1

 

 

 

Figure 3.3.1: Function of 𝐽(𝑥) on the interval [-1,1] 

 

The above function 𝐽(𝑥) is a continuous function. We can simultaneously prove that 

𝐽(𝑥)  is Li-Yorke sensitive and topologically transitive. However, in the sense of   B. 

S. Du [19], it is not chaotic because  (the period two-point) and the interval [0,1] are 

jumping alternatively [2] and never get close to each other. 

 
Theorem 3.3.4  𝜎: ∑

𝑚
→ ∑

𝑚
 is topologically mixing. 

 

Proof: To prove the above theorem,  

consider 𝑢 = (𝑢 𝑢 𝑢 … … . ) ∈ 𝑈 and 𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ 𝑉 be arbitrary. Then since 

𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉and 𝑈, 𝑉 are open sets in ∑ , ∃ open balls 𝐵 𝑢, 𝑟, , 𝐵(𝑣, 𝑟 ) such that 

𝐵(𝑢, 𝑟 ) ⊆ 𝑈 and 𝐵(𝑣, 𝑟 ) ⊆ 𝑉.  

 

1.0 0.5 0.5 1.0
X

0.5

0.5

1.0

Y
Function Jx
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If 𝑟 = min{𝑟 , 𝑟 }then 𝐵(𝑢, 𝑟) ⊆ 𝑈 and 𝐵(𝑣, 𝑟) ⊆ 𝑉 and choose 𝑘 ∈ 𝑁 such that 

 < 𝑟. We then construct a sequence {𝑤 } of points in ∑  with the help of k, u, and 

v  such that 

𝑤 = (𝑢 𝑢 𝑢 𝑢 … 𝑢 𝑣 𝑣 𝑣 𝑣 … ),  

     𝑤 = (𝑢 𝑢 𝑢 𝑢 … 𝑢 𝑎 𝑣 𝑣 𝑣 𝑣 … ), 

𝑤 = (𝑢 𝑢 𝑢 𝑢 … 𝑢 𝑎 𝑎 𝑣 𝑣 𝑣 𝑣 … ), …, 

𝑧 = (𝑢 𝑢 𝑢 𝑢 … 𝑢 𝑎 𝑎 … … 𝑎 𝑣 𝑣 𝑣 𝑣 … ), 𝑖 ≥ 2,  

𝑎 ∈ {0,1,2, … … , 𝑚 − 1}. 

Here, every 𝑤  , 𝑖 ≥ 2 is created by using the finite word attained by taking first (i-1) 

successive symbols of 𝑎 = (𝑎 , 𝑎 , 𝑎 , … … 𝑎 , . . . ) ∈ ∑ . More exactly, the first k 

letters of 𝑤 , for each 𝑖 ≥ 2, is the finite word 

𝑢[ , ] = (𝑢 𝑢 𝑢 𝑢 … 𝑢 ) taken from 𝑢 ∈ 𝑈 and then  

𝑎[ , ] = (𝑎 , 𝑎 , 𝑎 , … … , 𝑎 ) taken from a and at last the sequence representing v, 

i.e. 𝑤 = 𝑢[ , ], 𝑎[ , ], 𝑣 . Now, using {0,1,2, … , 𝑚 − 1}, repeating it for (i-1) times 

rather than using 𝑎[ , ]. 

Now, using Theorem 3.3.1, we get, 𝑑(𝑢, 𝑤 ) ≤ < 𝑟 ∀ 𝑖 ∈ 𝑁. So, 𝑤 ∈ 𝐵(𝑢, 𝑟) ⊆ 𝑈 

and hence 

𝜎 (𝑤 ) ∈ 𝜎 (𝐵(𝑢, 𝑟)) 𝜎 (𝑈)∀ 𝑖 ∈ 𝑁. 

 Also 𝜎 (𝑤 ) = (𝑣 𝑣 𝑣 … … ) ∈ 𝑉, 𝜎 (𝑤 ) ∈ 𝜎 (𝑈) imply that 

𝜎 (𝑈) ∩ 𝑉 ≠ ∅, for all 𝑖 ≥ 2.  

Therefore, 𝜎 (𝑈) ∩ 𝑉 ≠ ∅, for all 𝑛 ≥ 𝑘. 

So, 𝜎: ∑
𝑚

→ ∑
𝑚

 is mixing topologically. 
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The condition of sensitive dependence on initial conditions (SDIC) is the property that 

is widely used as one of the important features of chaotic mappings. The following 

theorem shows that shift map has sensitive dependence on initial conditions (SDIC). 

 

Theorem 3.3.5  𝜎: ∑ → ∑  has sensitive dependence on initial conditions (SDIC). 

 

Proof: Consider 𝑢 ∈ ∑  and 𝑁(𝑢) be an arbitrary neighborhood of 𝑢. Then ∃ 𝑈 (a 

non-empty open set) such that 𝑢 ∈ 𝑈 ⊆ 𝑁(𝑢). Now 𝑢 ∈ 𝑈 ∃ 𝐵(𝑢, 𝑟) such that          

𝐵(𝑢, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑢). Again 𝑣 ∈ 𝐵(𝑢, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑢) such that 𝑢 ≠ 𝑣 and 𝑢 is very 

close to 𝑣. Now we want to show  
1

𝑚𝑘 < 𝑟 for  𝑘 ∈ 𝑁 then the point 𝑣 to agree with 𝑢 up 

to k-digits. So 𝑑(𝑢, 𝑣) ≤ < 𝑟. 

 

Let 𝑑(𝑢, 𝑣) = 𝜀. Then 𝜀 > 0, ∃ a significant and unique 𝑛 ∈ 𝑁 such that                  

< 𝜀 ≤ . Consider 𝑑(𝑢, 𝑣) = 𝜀 ≤ . 

Then 𝑑(𝑢, 𝑣) ≤ ⇒ 𝑢 and 𝑣 agree up to the 𝑛th digit 

⇒ (𝑛 + 1)  digits of 𝑢 and 𝑣 are different 

⇒ First digit of 𝜎 (𝑢) and 𝜎 (𝑣) are different 

⇒ 𝑑 𝜎 (𝑢), 𝜎 (𝑣) = ∑
| |

 

                                      =
|𝑢 − 𝑣 |

𝑚
+

|𝑢 − 𝑣 |

𝑚
≥

1

𝑚
 

From the above relation, it is clear that   is equal to the sensitivity constant 𝛿. 

Hence for 𝑢 ∈ ∑  and ∃ 𝑣 ∈ 𝑁(𝑢) and 𝑛 > 0 satisfying 𝑑 𝜎 (𝑢), 𝜎 (𝑣) ≥ 𝛿 for 

𝛿 = . 

Therefore, 𝜎: ∑
𝑚

→ ∑
𝑚

 has sensitive dependence on initial conditions (SDIC). 
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Theorem 3.3.6 The set of all the periodic points of 𝜎, 𝑃(𝜎) is dense in ∑ . 

 

Proof: At first, we need to show that  𝜎 has 𝑚 − 𝑚 periodic points of period-n in ∑  

for 𝑛 ≥ 2. We know that if a definite block of n-digits from {0, 1, 2, 3, 4, … … , 𝑚 − 1} 

repeats indefinitely, then it is a periodic point of 𝜎 of period-n in ∑ . A block of n-

digits can be designed with m distinct digits 0, 1, 2, 3, …., m-1 in 𝑚  ways. These 

blocks cover the m-blocks designed by the same digit, which are not periodic points of 

period-n. If periodic points of period-1, so we take only (𝑚 − 𝑚) numbers of periodic 

points of period-n in ∑ . 

 

Now, we have to show that for any 𝜀 > 0, however small, there is a point 𝑝 ∈ 𝑃(𝜎) 

such that 𝑑(𝑢, 𝑝) < 𝜀. If 𝑢 = (𝑢 𝑢 𝑢 … … . ) ∈ 𝑈, for 𝜀 > 0, we get < 𝜀  

where 𝑛 ∈ 𝑁. 

 

Now, we make a periodic point 𝑝 ∈ 𝑃(𝜎) of periodic (n+1) such that 

𝑝 = (𝑢 𝑢 𝑢 … … 𝑢 𝑣 𝑢 𝑢 𝑢 … … 𝑢 𝑣 𝑢 𝑢 𝑢 … … 𝑢 𝑣 … … ) i.e. 𝑝 is made by 

repeating the word 𝑊 = (𝑢 𝑢 𝑢 … … 𝑢 𝑣) infinite number of times so as to it agrees 

with the digits of 𝑢 up to n-terms and disagrees at (n+1)th digit such that 𝑢 ≠ 𝑣 and 

𝑑(𝑢, 𝑝) ≤ < 𝜀. 

 

Thus, for every 𝑢 ∈ ∑  and 𝜀 > 0, ∃ 𝑝 ∈ 𝑃(𝜎) such that 𝑑(𝑢, 𝑝) < 𝜀. Hence 𝑃(𝜎) is 

dense. 

 
 

Theorem 3.3.7   𝜎 is Devaney as well as Auslander-Yorke chaotic on  ∑ . 

 
Proof: Using Theorem 3.3.3, Theorem 3.3.5, and Theorem 3.3.6, we have established 

that 𝜎 satisfies all the requirements of Devaney’s chaotic. Again, according to the 

definition of Auslander-Yorke chaos [Definition 1.5.4.8], we can say that it is chaotic. 

Hence it is Devaney as well as Auslander-Yorke chaotic [20]. 

 
Theorem 3.3.8  𝜎 is 𝛿-chaotic with 𝛿 = 𝑑𝑖𝑎𝑚(∑ ) = 1. 

 

Proof: In Theorem 3.3.4, it has shown that 𝜎 is topologically mixing on ∑ . We know 

that topologically mixing maps on a compact metric space also weakly topologically 
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mixing, 𝜎 is weakly topologically mixing. Using Proposition 3.2.1, we can say the shift 

map 𝜎 on ∑  is generically 𝛿-chaotic with 𝛿 = 𝑑𝑖𝑎𝑚(∑ ) = 1. 

 
Theorem 3.3.9  (∑ , 𝜎) has modified weakly chaotic dependence on initial conditions. 

 

Proof: Let 𝑢 = (𝑢 𝑢 𝑢 … … 𝑢 … … ) ∈ ∑  and 𝑁(𝑢) be any neighborhood of 𝑢. 

Then ∃ U of ∑  such that 𝑢 ∈ 𝑈 ⊆ 𝑁(𝑢). 

 

As 𝑢 ∈ 𝑈 and ∃ an open ball 𝐵(𝑢, 𝑟) with 𝑟 > 0such that 𝐵(𝑢, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑢). Then 

for 𝑟 > 0, we can choose 𝑛 such that < 𝑟. We now find two points 

𝑣, 𝑤 ∈ 𝐵(𝑢, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑢) with 𝑣 ≠ 𝑢, 𝑤 ≠ 𝑢 such that (𝑣, 𝑤) ∈ ∑  is Li-Yorke.  

 

By a word in ∑  we mean a finite sequence of digits, called letters, from the set 

{0,1,2,3, … … , 𝑚 − 1}. Words are denoted by 𝐴, 𝐵, 𝐶, … , 𝑃, 𝑄, 𝑅, … … etc. If the words 

𝐴 and 𝐵 consist of 𝑝 and 𝑛 letters respectively such that 𝐴 = (𝑎 𝑎 𝑎 … … 𝑎 ) and 𝐵 =

(𝑏 𝑏 𝑏 … … 𝑏 ) then by the symbol 𝐴𝐵, we mean the composite word 

(𝑎 𝑎 𝑎 … … 𝑎 𝑏 𝑏 𝑏 … … 𝑏 ) which consists of (𝑝 + 𝑞)-number of letters. Using the 

letters in 𝑢 = (𝑢 𝑢 𝑢 … … 𝑢 … ) ∈ ∑ , we now construct the words 𝑊(𝑢, 3𝑛), 

𝑊(𝑢, 5𝑛), 𝑊(𝑢, 7𝑛), … …etc. as follows: 

 

𝑊(𝑢, 3𝑛) = (𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 𝑢 … 𝑢 ), 

𝑊(𝑢, 5𝑛) = (𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 𝑢 … 𝑢 ), 

𝑊(𝑢, 7𝑛) = (𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 𝑢 … 𝑢 ) , … 

and so on. 
 

Here it is observed that each of the above words contains 2𝑛 letters, first 𝑛 of that are 

𝑚-nary complements of the letters in the corresponding places of 𝑢, and the rest 𝑛 letters 

are just the letters in the related areas of 𝑢. In all the above words 

𝑢∗ = (𝑚 − 1) − 𝑢 , ∀ 𝑘. 

 

Now take 

𝑣 = (𝑢 𝑢 𝑢 … … 𝑢 𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 𝑢 … 𝑢 𝑢 𝑢 ) 

 

and  

𝑤 = (𝑢 𝑢 𝑢 … … 𝑢 (0∗) (0) 𝑊(𝑢, 3𝑛)𝑊(𝑢, 5𝑛)𝑊(𝑢, 7𝑛)𝑊(𝑢, 9𝑛) … ) 

 
where (0∗) = 0∗0∗0∗ … 0∗ , (0) = 000 … 0 and 0∗ = (𝑚 − 1) − 0 = 𝑚 − 1. 
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With these and using Theorem 3.3.1 for ∑ , we now establish the theorem as follows: 

Since 𝑣 and 𝑤 agree with 𝑢 up to the 𝑛th term, we get 𝑑(𝑢, 𝑣) ≤ < 𝑟, 

𝑑(𝑢, 𝑤) ≤ < 𝑟 and consequently 𝑣, 𝑤 ∈ 𝐵(𝑢, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑢). 

 

Here, we look that 𝑤 holds infinitely many words of  𝑊(𝑢, (2𝑘 − 1)𝑛) containing 2n 

letters where 𝑘(≥ 2) ∈ 𝑁. 

 

Also  

𝜎 (𝑣) = (𝑢 𝑢 … 𝑢 𝑢 𝑢 … 𝑢 𝑢 𝑢 … ) 

𝜎 (𝑤) = (𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 𝑢 … 𝑢 𝑢∗ 𝑢∗ … ) 

𝜎 (𝑣) = (𝑢 𝑢 … 𝑢 𝑢 𝑢 … 𝑢 𝑢 𝑢 … ) 

𝜎 (𝑤) = (𝑢 𝑢 … 𝑢 𝑢∗ 𝑢∗ … 𝑢∗ 𝑢 ,𝑢 … ) 

 

Therefore, 𝑠𝑢𝑝 𝑑 𝜎 (𝑣), 𝜎 (𝑤) ≥ 𝑑(𝜎 (𝑣), 𝜎 (𝑤)) and so  
 

lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑣), 𝜎 (𝑤) ≥ lim
→

𝑑(𝜎 (𝑣), 𝜎 (𝑤)) 

 

≥ lim
→

|𝑢 − 𝑢∗ |

𝑚
 

 

≥ lim
→

1

𝑚
+

1

𝑚
+ ⋯ +

1

𝑚
 

=
1

𝑚 − 1
 

 
Again, 0 ≤ lim

→
𝑖𝑛𝑓𝑑( 𝜎 (𝑣), 𝜎 (𝑤)) 

≤ lim
→

𝑑(𝜎 (𝑣), 𝜎 (𝑤)) 

= lim
→

𝑑((𝑢 … 𝑢 𝑢 … 𝑢 𝑢 … ), 

(𝑢 … 𝑢 𝑢∗ 𝑢∗ … … 𝑢∗ 𝑢 … … )) 

 

    ≤ lim
→

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+ ⋯  

     = lim
→

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
.

1

𝑚
+

1

𝑚
+

1

𝑚
+ ⋯  

     = lim
→

1 −
1

𝑚
.

1

𝑚
1 +

1

𝑚
+

1

𝑚
+

1

𝑚
… …  
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      = lim
→

1 −
1

𝑚
.

1

𝑚
.

1

1 −
 

       = (1 − 0). 0. =0 

 

Now, 0 ≤ lim
→

𝑖𝑛𝑓𝑑 𝜎 (𝑣), 𝜎 (𝑤) ≤ 0 ⇒ lim
→

𝑖𝑛𝑓𝑑 𝜎 (𝑣), 𝜎 (𝑤) = 0. 

 
So, it follows that 

lim
→

𝑠𝑢𝑝 𝑑(𝜎 (𝑣), 𝜎 (𝑤)) ≥  and lim
→

𝑖𝑛𝑓𝑑( 𝜎 (𝑣), 𝜎 (𝑤)) = 0.  

 

Hence, (𝑣, 𝑤) ∈ ∑  is a Li-Yorke pair with 𝛿 = > 0. Accordingly, (∑ , 𝜎) has 

modified weakly chaotic dependence on initial conditions. 

 
The following theorem proves that shift map has chaotic dependence on initial 

conditions on ∑ . 

 

Theorem 3.3.10  (∑ , 𝜎) has chaotic dependence on initial conditions. 

 

Proof: Consider 𝑝 = (𝑝 𝑝 𝑝 … … ) ∈ ∑  and 𝑝 ∈ 𝑈 ⊆ 𝑁(𝑢), where 𝑈 is an open set. 

As 𝑝 ∈ 𝑈 so ∃ an open ball 𝐵(𝑝, 𝑟)s.t.𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝). Then for 𝑟 > 0, consider 

< 𝑟. Now to find a point 𝑞 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝) such that (𝑝, 𝑞) ∈ ∑  is Li-

Yorke.  

 

With letters in 𝑝 = (𝑝 𝑝 𝑝 … … ) ∈ ∑ , we can make the words 𝑊(𝑝, 3𝑛), 𝑊(𝑝, 5𝑛),

𝑊(𝑝, 7𝑛), … …etc. as follows: 

 

𝑊(𝑝, 3𝑛) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 ), 

𝑊(𝑝, 5𝑛) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 ) 

𝑊(𝑝, 7𝑛) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 ) , … 

and so on. 

 

We make the point 𝑞 using the above-defined words as follows: 
 

𝑞 = (𝑝 𝑝 , 𝑝 … 𝑝 (0∗) (0) 𝑊(𝑝, 3𝑛)𝑊(𝑝, 5𝑛)𝑊(𝑝, 7𝑛)𝑊(𝑝, 9𝑛) … ) 
 
where (0∗) = 0∗0∗0∗ … 0∗, (0) = 000 … 0 and 0∗ = (𝑚 − 1) − 0 = 𝑚 − 1. 
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From 𝑞, it is clear that 𝑞agrees with 𝑝 up to the nth term. So using Theorem 3.3.1, we 

can write 𝑑(𝑝, 𝑞) ≤ < 𝑟 and hence 𝑞 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝). 

So, it is observed that 𝑞 contains infinitely many words of 𝑊(𝑝, (2𝑘 − 1)𝑛) containing 

2n letters where 𝑘 ≥ 2. 

 
Also  
 

𝜎 (𝑞) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 𝑝∗ 𝑝∗ … ) 

𝜎 (𝑞) = (𝑝∗ 𝑝∗ … 𝑝 𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … ) 

 

Therefore, 𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≥ 𝑑(𝜎 (𝑝), 𝜎 (𝑞)) and so  
 
lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≥ lim
→

𝑑(𝜎 (𝑝), 𝜎 (𝑞)) 

 

≥ lim
→

|𝑝 − 𝑞∗ |

𝑚
 

≥ lim
→

1

𝑚
+

1

𝑚
+ ⋯ +

1

𝑚
 

                                                     =
1

𝑚 − 1
 

 
 

Again, 0 ≤ lim
→

𝑖𝑛𝑓𝑑( 𝜎 (𝑝), 𝜎 (𝑞)) 

                 ≤ lim
→

𝑑(𝜎 (𝑝), 𝜎 (𝑞)) 

  = lim
→

𝑑((𝑝 … 𝑝 𝑝 … 𝑝 𝑝 … ), 

(𝑝 … 𝑝 𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 … … )) 

≤ lim
→

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+ ⋯  

  = lim
→

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
.

1

𝑚
+

1

𝑚
+

1

𝑚
+ ⋯  

   = lim
→

1 −
1

𝑚
.

1

𝑚
1 +

1

𝑚
+

1

𝑚
+

1

𝑚
… …  

    = lim
→

1 −
1

𝑚
.

1

𝑚
.

1

1 −
 

    = (1 − 0). 0. =0 

 

Now, 0 ≤ lim
→

𝑖𝑛𝑓𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≤ 0 ⇒ lim
→

𝑖𝑛𝑓𝑑 𝜎 (𝑝), 𝜎 (𝑞) = 0. 
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So, we get lim
→

𝑠𝑢𝑝 𝑑(𝜎 (𝑎), 𝜎 (𝑏)) ≥  and lim
→

𝑖𝑛𝑓𝑑( 𝜎 (𝑎), 𝜎 (𝑏)) = 0.  

Hence, (𝑝, 𝑞) ∈ ∑  is a Li-Yorke pair with 𝛿 = > 0.  

So, (∑ , 𝜎) has chaotic dependence on initial conditions. 

 
Theorem 3.3.11  𝜎: ∑ → ∑  is homeomorphism. 
 

Proof: It is sufficient to show that (i) 𝜎 is one-one (ii) 𝜎 is onto (iii) 𝜎 is continuous 

(iv)  𝜎  is continuous. 

 

(i) 𝜎 is one-one: Suppose that 𝜎(𝑢) = 𝜎(𝑣) where 𝑢 = (𝑢 ) ℤ, 𝑣 = (𝑣 ) ℤ ∈ ∑ . 

Put 𝑤 =  𝜎(𝑢) = 𝜎(𝑣), where  𝑤 = (𝑤 ) ∈ℤ;  w = 𝑢 = 𝑣  .    ∀ 𝑛 ∈ ℤ 
 

Then,  𝑢 = 𝑣 ∀𝑛 ∈ ℤ. Thus 𝑢 = 𝑣 and hence 𝜎 is one-one. 

 

 (ii)  𝜎 is onto: Let 𝑣 = (𝑣 ) ℤ ∈ ∑ , put  𝑢 = (𝑢 ) ∈ℤ where 𝑢 = 𝑣  
 

Then 𝜎(𝑢) = 𝑣 and hence 𝜎 is onto. 

 
(iii)  Continuity of 𝜎: Let, 𝑢′ = (𝑢′ ) ∈ℤ ∈ ∑  

 

By the definition of  𝜎, we have, 𝜎(𝑢′) = 𝑣 ′ = (𝑣 ′ ) ∈ℤ ∈ ∑  ,where 𝑣 ′ = 𝑢′ . 

 

Now 𝑑 𝜎(𝑢), 𝜎(𝑢′) = 𝑑(𝑣, 𝑣 ′) 

=
𝑣 − 𝑣 ′ 

𝑚

∞

+
𝑣 − 𝑣 ′ 

𝑚

∞

 

 

                                       =
𝑢 − 𝑢′ 

𝑚
+

𝑢 − 𝑢′ 
𝑚

∞∞

 

 

                                       =
1

𝑚

𝑢 − 𝑢′ 
𝑚

∞

+ 𝑚
𝑢 − 𝑢′ 

𝑚

∞

 

 

                                        =
1

𝑚

𝑢 − 𝑢′ 
𝑚

+
1

𝑚

𝑢 − 𝑢′
𝑚

∞

+ 𝑚
𝑢 − 𝑢′ 

𝑚

∞

 

 

                                        =
1

𝑚

𝑢 − 𝑢′ 
𝑚

+ 𝑚
𝑢 − 𝑢′ 

𝑚

∞

+
1

𝑚

𝑢 − 𝑢′
𝑚

∞
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                                        = 𝑚
𝑢 − 𝑢′ 

𝑚

∞

+
1

𝑚

𝑢 − 𝑢′
𝑚

∞

 

 

                                    ≤ 𝑚 ∑
 ′∞ + 𝑚 ∑

 ′ ∞  

 
                                         = 𝑚 𝑑(𝑢, 𝑢′) 
 

Let 𝜀 > 0 be given and choose 𝑛 so that < 𝜀. Now suppose 𝛿 = . 

If 𝑑(𝑢, 𝑢′) < 𝛿, then 𝑑 𝜎(𝑢), 𝜎(𝑢′) ≤ 𝑚 𝑑(𝑢, 𝑢′) < 𝑚 𝛿 = 𝑚 = < 𝜀 

 

                              ⇒ 𝑑 𝜎(𝑢), 𝜎(𝑢′) < 𝜖 

 

Hence 𝜎 is continuous on ∑ . 
 

(iv)  Continuity of 𝜎 : Let, 𝑢′ = (𝑢′ ) ∈ℤ ∈ ∑  we put 𝜎 (𝑢) = 𝑣 then 𝜎(𝑣) = 𝑢. 

Thus, by definition of 𝜎, we have 𝑣 = 𝑢 . 

 

Again, put 𝜎 (𝑢′) = 𝑣 ′ ⇒ 𝜎(𝑣 ′) = 𝑢′ and by the definition of 𝜎, we have, 𝑣 ′ = 𝑢 .
′  

 

Now 𝑑 𝜎 (𝑢), 𝜎 (𝑢′) = 𝑑(𝑣, 𝑣 ′) 

 

                                                =
𝑣 − 𝑣 ′ 

𝑚

∞

+
𝑣 − 𝑣 ′ 

𝑚

∞

 

 

                                               =
𝑢 − 𝑢′ 

𝑚

∞

+
𝑢 − 𝑢′ 

𝑚

∞

 

 

                                               = 𝑚
𝑢 − 𝑢′ 

𝑚

∞

+
1

𝑚

𝑢 − 𝑢′ 
𝑚

∞

 

 

                                               = 𝑚
𝑢 − 𝑢′

𝑚

∞

+
1

𝑚

𝑢 − 𝑢′ 
𝑚

∞

 

 

                                              = 𝑚
𝑢 − 𝑢′

𝑚

∞

+
𝑢 − 𝑢′ 

𝑚
+

1

𝑚

𝑢 − 𝑢′ 
𝑚

∞

 

 

≤
𝑚𝑢 − 𝑢′ 

𝑚
+ 𝑚

𝑢 − 𝑢′
𝑚

∞

+
1

𝑚

𝑢 − 𝑢′ 
𝑚

∞
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                                              = 𝑚
𝑢 − 𝑢′

𝑚

∞

+
1

𝑚

𝑢 − 𝑢′ 
𝑚

∞

 

≤ 𝑚
𝑢 − 𝑢′

𝑚

∞

+ 𝑚
𝑢 − 𝑢′ 

𝑚

∞

 

 
                                             = 𝑚 𝑑(𝑢, 𝑢′) 
 

Let 𝜀 > 0 be given and choose 𝑛 so that < 𝜀. We put 𝛿 = . 

 

Consider 𝑑(𝑢, 𝑢′) < 𝛿 then 𝑑 𝜎 (𝑢), 𝜎 (𝑢′) < 𝑚𝛿 = 𝑚. = 𝜀. 

 
Therefore,  𝜎  is a continuous function. 
 
Hence, we conclude that 𝜎: ∑

𝑚
→ ∑

𝑚
is homeomorphism.  

 
3.4 Some features of the symbol space ∑𝒎 
 

In this section, we have discussed some properties of the symbol space ∑ . 

 
Theorem 3.4.1 The sequence space ∑  is a Cantor set. 
 

Proof: To prove this theorem, we need to show that ∑  is: 
 

i)  sequentially compact 

ii) perfect and 

iv) totally disconnected. 

 

Proof i) We have to show that ∑  is sequentially compact. Let 𝑢( ) = (𝑢
( )

)where 

𝑛 ∈ 𝛧, (𝑚 = 1,2, . . . . . ) be a sequence in ∑ , then we need to show that 𝑢 ∈ ∑  and 

subsequence 𝑢 → 𝑢(𝑙 = 1,2, … … ) 

 

First, observe that the zeroth term 𝑢 (𝑚 = 1,2, … … ) must take some value in 

{1,2, . . . . 𝑚} infinitely often. Choose such an 𝑢 ∈ {1,2, … … 𝑚} in the 𝑢
( )

= 𝑢 for 

infinitely many. By induction, for 𝑙 > 0 choose 𝑢 ∈ {1,2, … … 𝑚} such that 𝑢
( )

=

𝑢 , … … 𝑢
( )

= 𝑢  for finitely many m. Finally, we define 𝑢 = (𝑢 ) where 𝑙 ∈ ℤ. 

For such 𝑙 ≥ 0, we choose 𝑚 = 𝑚 such that 𝑢( )
= 𝑢 … … . 𝑢

( )
= 𝑢 , then 

 

𝑑 𝑢( ), 𝑢 ≤   and so 𝑑(𝑢 , 𝑢) → 0 as 𝑙 → ∞ 
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(ii) To see that ∑  is perfect, fix 𝑢 and define 𝑢( ) s.t. 𝑢( )
= 𝑢 for 0 ≤ 𝑗 ≤ 𝑛  and 

𝑢
( )

= 𝑢 . Hence 𝑢 = 𝑢( ) and 𝑢( ) converges to 𝑢.  

 
 

(iii) To see ∑  is totally disconnected. Let 𝛿 : ∑ → {0,1,2, … … 𝑚 − 1}, 𝑢 → 𝑢 is 

continuous. Hence the set  𝑈 = 𝑢: 𝑢 = 𝑐  for fix 𝑗  and 𝑐 is open and 𝑉 = {𝑢: 𝑢 ≠

𝑐}. Now let 𝑢, 𝑣 ∈ ∑  if  𝑢 ≠ 𝑣 then there is 𝑗 such that 𝑢 ≠ 𝑣 . Now take 𝑐 =

𝑢  then from above, we see that 𝑈 and 𝑉are disjoint sets (open) whose union is in ∑  

and which contains 𝑢 and 𝑣. 

 
Theorem 3.4.2 There exists a continuous map on the symbol space ∑  such that all 

points of  ∑  are period m distinct points by the map. 

 

Proof: We take the map 𝜑: ∑ → ∑  as the complement map, that is, 𝜑(𝑠) =

(𝑠 𝑠 … … ), where 𝑠 = (𝑠 𝑠 … … ) is any point of  ∑ . 

 

At first, we need to prove that the complemented map 𝜑 is continuous on ∑ . 
 

We pick n so large that < 𝜀, where 𝜀 > 0. Let 𝑢 = (𝑢 𝑢 𝑢 … … … ) and 

𝑣 = (𝑣 𝑣 𝑣 … … … ) are any two points of ∑ . Now we choose 𝛿 =  and define 

the complement of 𝛼  by 𝛼 . Then 

 

𝑑(𝑢, 𝑣) < 𝛿 =
1

𝑚
 

⇒ 𝑑 (𝑢 𝑢 … 𝑢 … ), (𝑣 𝑣 … 𝑣 … ) <
1

𝑚
 

⇒ 𝑢 = 𝑣  for 𝑖 = 0,1,2, … … . , 𝑛 + 1 

⇒ 𝑢 = 𝑣  for  𝑖 = 1,2, … … . , 𝑛 + 1 

⇒ 𝑑 (𝑢 𝑢 … 𝑢 … ), (𝑣 𝑣 … 𝑣 … ) < < 𝜀 using Theorem 3.3.1 

⇒ 𝑑 𝜑(𝑢), 𝜑(𝑣) < < 𝜀 

 

which proves that 𝜑 is continuous on the symbol space ∑ . 
 

Again by our construction of 𝜑 we see that 𝜑 (𝑠) = 𝜑(𝑠 𝑠 … … ) = (𝑠 𝑠 … … ) = 𝑠, 

where 𝑠 = (𝑠 𝑠 … … ) is any point of  ∑ . 

 

Similarly, we can write 𝜑 (𝑠) = 𝑠, 𝑚 > 2, where 𝑠 = (𝑠 𝑠 … … ) is any point of  ∑ .  

Hence all points of  ∑  are period m distinct points by the continuous map 𝜑. 
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3.5 Topological Conjugacy and Some Chaotic properties 
 
As referred to dynamical systems, the word conjugacy means the comparison between 

the dynamical behavior of two mappings. This section proves that 𝜎 is exact Devaney 

chaotic (EDevC), and it is conjugate to the quadratic map. 

 
Theorem 3.5.1  𝜎: ∑ → ∑  and 𝑓  ∶ 𝑅/𝑍 → 𝑅/𝑍 are topologically semi-conjugated 

where 𝑓 (𝑢) = 𝑚𝑢(𝑚𝑜𝑑 1). 

 

Proof: Let 𝛹: ∑ → = 𝐼/~ such that 𝛹(𝑢 𝑢 𝑢 … … ) = ∑  .  This map is well 

defined because the series ∑ ≤ ∑ = 1 is convergent. We have to show 

that this mapping is a topological semi-conjugacy between 𝜎 and 𝑓 . 

 

To see 𝛹 is surjective, we consider every real number 𝑥 ∈ 𝐼 = [0,1] has an 𝑚-nary 

expansion, so, we have 𝑢 = ∑∞ , where 𝑢 ∈ {0,1,2, … … 𝑚 − 1}. Then, the digits 

in the 𝑚-nary expansion for 𝑢 will form the sequences 𝑢 = (𝑢 𝑢 𝑢 … … ).  

As 𝑢 ∈ {0,1,2, … … 𝑚 − 1}, clearly, 𝑢 ∈ ∑ . So we can write 𝛹(𝑢) = ∑∞ = 𝑢. 

Hence, 𝛹 is surjective. 

 
 

For any 𝑢 = (𝑢 𝑢 𝑢 … … ) ∈ ∑ , we have  𝜎(𝑢) = (𝑢 𝑢 𝑢 … … ) ∈ ∑ . 
 
Now (𝛹 𝑜 𝜎)(𝑢) = 𝛹 𝜎(𝑢) = 𝛹(𝑢 𝑢 𝑢 … … ) 

                                                     = ∑∞ . 

 

Also, we get (𝑓  𝑜 𝛹)(𝑢) = 𝑓 𝛹(𝑢)  

                                                  = 𝑓
𝑢

𝑚

∞

 

                                                   = 𝑚
𝑢

𝑚

∞

(𝑚𝑜𝑑 1) 

= 𝑢 +
𝑢

𝑚

∞

(𝑚𝑜𝑑 1) 

                                                    =
𝑢

𝑚

∞
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                                                   = (𝛹 𝑜 𝜎)(𝑢), ∀ 𝑢 ∈ ∑  

 
Hence, we can conclude that 𝛹 𝑜 𝜎 = 𝑓  𝑜 𝛹. 
 

Thus 𝛹: ∑ → = 𝐼/~is a semi-conjugacy between 𝜎 and 𝑓 . 

 
Theorem 3.5.2 𝜎: ∑

𝑚
→ ∑

𝑚
 is exact Devaney chaotic (EDevC). 

 

Proof: To prove 𝜎: ∑ → ∑  is exact [1], consider 𝑈 ∈ ∑  ,where 𝑈 is a non-empty 

open set. For 𝑢 ∈ 𝑈, ∃ an open ball 𝐵(𝑢, 𝑟) such that 𝐵(𝑢, 𝑟) ⊆ 𝑈. Then, we can choose 

some 𝑘 ∈ 𝑁 such that ≤ 𝑟. 

 

Putting = 𝑟 , we get 𝑟 = ≤ 𝑟 and so 𝐵(𝑢, 𝑟 ) ⊆ 𝐵(𝑢, 𝑟)⊆𝑈. 

 

Then for every 𝑣 ∈ 𝐵(𝑢, 𝑟 ), we can write 𝑑(𝑢, 𝑣) < 𝑟 = . 

 
Hence the kth iterates of all these points in 𝐵(𝑢, 𝑟 )  constitute the space ∑ , 

i.e. 𝜎 𝐵(𝑢, 𝑟 ) = ∑ . 

 

Also, 𝐵(𝑢, 𝑟 ) ⊆ 𝑈 ⇒ 𝜎 (𝐵(𝑢, 𝑟 )) ⊆ 𝜎 (𝑈) 

⇒ ∑ ⊆ 𝜎 (𝑈) 

⇒ ∑ = 𝜎 (𝑈),   [Since ∑ ⊇ 𝜎 (𝑈)] 

 

So ∑ = 𝜎 (𝑈) is true for every non-empty open set 𝑈 ∈ ∑ .  Hence, 𝜎 is an exact 

map on ∑ . 

 

From the above result, we see that 𝜎 is exact Devaney chaotic. Since𝜎 is exact Devaney 

chaotic; therefore, it also mixing Devaney chaotic and weak mixing Devaney chaotic. 

 

Note: Since it follows that 𝜎 is EDevC. As 𝜎 is EDevC, therefore, it also mixing 

Devaney chaotic and weak mixing Devaney chaotic. 

 
Definition 3.5.1 
 

Let Ʌ = {𝑥 ∈ 𝐼 / 𝑄 (𝑥) ∈ 𝐼, ∀ 𝑛} be the invariant set of the quadratic map. Here we 

consider the quadratic family is 𝑄 (𝑥) = 𝑥 + 𝑐, 𝑐 < −
√ . 

It shows from the following theorem that shift map, 𝜎 is conjugate to the quadratic map, 

𝑄 (𝑥) on its invariant set. 
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Theorem 3.5.3  𝜎 on ∑  is conjugate to the quadratic map, 𝑄 (𝑥) on its invariant set, 

Ʌ when 𝑐 < −2.368. 
 

Proof: We prove 𝑆: Ʌ → ∑  homeomorphism. To prove this, we need to show that 𝑆 

is one-to-one and onto and that both 𝑆 and 𝑆  are continuous. 
 

(i) 𝑆: Ʌ → ∑  is one-to-one:  
 

Suppose 𝑥, 𝑦 ∈ Ʌ with 𝑥 ≠ 𝑦 such that 𝑆(𝑥) = 𝑆(𝑦); then 𝑄 (𝑥) and 𝑄 (𝑦) are both 

in the same interval, 𝐼  or 𝐼 , for each value of 𝑛. Now consider the interval [𝑥, 𝑦]. Then 

for each 𝑛 we have the following bijective correspondence 
 

[𝑥, 𝑦] → [𝑄 (𝑥) , 𝑄 (𝑦)] 
 

Moreover, 𝑄′ (𝑥) > 𝜇 > 1 ∀𝑥 ∈ 𝐼 ∪ 𝐼  and some 𝜇. Then by the Mean value 

theorem, we get 𝐻 = [𝑄 (𝑥), 𝑄 (𝑦)] is greater than 𝜇 |𝑥 − 𝑦|. But 𝜇 > 1.  
 

So as 𝑛 → ∞  length [𝑄 (𝑥), 𝑄 (𝑦)] → ∞, which is a contradiction. Since 𝑥, 𝑦 ∈ Ʌ 

with 𝑥 ≠ 𝑦. Hence 𝑥 = 𝑦. 
 

(ii) 𝑆: Ʌ → ∑  is onto:  
 

Let 𝑠 ∈ ∑ , we will construct 𝑥 ∈ Ʌ such that 𝑆(𝑥) = 𝑠. Let 
 

𝐼 …… = 𝑥 ∈ 𝐼| 𝑥 ∈ 𝐼 , 𝑄 (𝑥) ∈ 𝐼 , 𝑄 (𝑥) ∈ 𝐼 , … … , 𝑄 (𝑥) ∈ 𝐼  

                                  = 𝐼 ∩ 𝑄 𝐼 ∩ … … ∩ 𝑄 𝐼  

                                   = 𝐼 ∩ 𝑄 𝐼 ∩ … … ∩ 𝑄
( )

𝐼  

                                   = 𝐼 ∩ 𝑄 𝐼 ……  

By induction, on the number of subscripts in 𝐼 …… , we can prove 𝐼 ……  is 

always a single closed interval. Moreover, these closed subintervals are nested because 

𝐼 …… = 𝐼 …… ∩ 𝑓𝑄 𝐼 ⊂ 𝐼 ……  
 
 

Thus ⋂ 𝐼 …… ≠ ∅; and 𝑥 ∈ ⋂ 𝐼 ……  𝑥 ∈ Ʌ, 𝑆(𝑥) = 𝑠. 
 

So 𝑆 is onto. 
 
(iii) 𝑆: Ʌ → ∑  is continuous: 
 

Let 𝜀 > 0 be given and pick 𝑛 such that < 𝜀. Let 𝐽  be a closed interval such that 

𝐽 ⊂ 𝐼 , 𝑄 (𝑥) ∈ 𝐽 . Then 𝑄 (𝐽 ) consists of two closed intervals 𝐼  and 𝐼 . Let  𝐽  

be the closed interval in 𝐼  that contains 𝑄 (𝑥).  
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Proceed in this way for  0 ≤ 𝑖 ≤ 𝑛 to obtain closed intervals 𝐽 ⊂ 𝐼  such that 

 𝑄 (𝑥) ∈ 𝐽 . 

 

Then 𝑥, 𝑦 ∈ 𝐽  𝑄 (𝑥), 𝑄 (𝑦) ∈ 𝐽 … … 𝑄 (𝑥), 𝑄 (𝑦) ∈ 𝐽 . 
 

Consequently, 𝑥, 𝑦 ∈ Ʌ ∩ 𝐽  𝑑 𝑆(𝑥), 𝑆(𝑦) ≤ < 𝜀.  
 

Therefore, 𝑆 is continuous at 𝑥. 
 
(iv) 𝑆 : ∑ → Ʌ exists:  
 

Since 𝑆: Ʌ → ∑  is one-to -one and onto,  𝑆 : ∑ → Ʌ exists.  

Hence 𝑄 ০ 𝑆 = 𝑆 ০𝜎. In general, 𝑄 ০𝑆 = 𝑆 ০ 𝜎 .  

 

(v) 𝑆  is continuous: 
 

Let 𝑠 = 𝑆(𝑥), 𝑡 = 𝑆(𝑦). As 𝑐 < −2.368, there is 𝜇 > 1 such that 

|𝑄 (𝑥) − 𝑄 (𝑦)| ≥ 𝜇 |𝑥 − 𝑦||𝑥 − 𝑦| ≤
| ( ) ( )|

. 

 

But |𝑄 (𝑥) − 𝑄 (𝑦)| < 𝐿 , where 𝐿  is the length of 𝐼 . Pick 𝑛 large enough so that 

< 𝜀.  

 

Then 𝑑 𝑆(𝑥), 𝑆(𝑦) <  |𝑥 − 𝑦| < 𝜀  𝑆 𝑆(𝑥) − 𝑆 𝑆(𝑥) < 𝜀, which 

proves the continuity of 𝑆 . 

 

It concludes the proof that 𝑆 is a homeomorphism. 

 
3.6 Summary and Conclusions 
 

In this chapter, we have corroborated important characteristics of 𝜎 on ∑ , we have 

verified some new results by using the features of conjugacy (topologically).  We have 

established Proximity theorem 3.3.1, and using this theorem proved that chaotic 

features of 𝜎. We have shown that the shift map is a homeomorphism. It is found that 

𝜎 and 𝑓 (𝑢) = 𝑚𝑢(𝑚𝑜𝑑 1) are topologically semi-conjugated. We have determined 

in this chapter that 𝜎 is exact Devaney chaotic. In the last part of this section, we have 

proved that 𝜎 is conjugate to 𝑄 (𝑥) on Ʌ when 𝑐 < −2.368. 
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CHAPTER -4 

CHAOTICITY OF THE GENERALIZED  

SHIFT MAP ON ∑𝒎 

 
4.1 Introduction 
 

The aim of this chapter is to introduce a generalization of the shift map. It is well known 

that the three conditions of Devaney’s definition of chaos for continuous mappings are: 

(a) density of periodic points, (b) topologically transitive, and (c) sensitive dependence 

on initial conditions. Later it was demonstrated in [1] that the conditions (a) and (b) 

together imply condition (c). In the previous chapter, we have defined the space ∑ . 

Properties of the shift map are discussed in Chapter 3. Here we have taken the metric 𝑑 

as defined in Chapter 3.  

 

In section 4.3, we have proved some features of the generalized shift map such as 

periodic points that are dense in ∑   and topologically transitive. We have established few 

stronger characteristics of the generalized shift map related to chaos, such as totally 

transitive, strong sensitive dependence on initial conditions, topologically mixing, and 

chaotic dependence on initial conditions in section 4.4. Section 4.4 of this chapter 

provides an example of a continuous function is chaotic but not topologically transitive. 

 
4.2 Basic Concepts 
 

We start this section by giving some elementary definitions and results, which are the 

requirements for establishing the main theorem. We first define a generalized shift map 

and some other definitions and lemma necessary for this chapter.  

 
Definition 4.2.1 Generalized shift map  

 

The generalized shift map 𝜎 : ∑
𝑚

→ ∑
𝑚

 is defined by 𝜎 (𝑠) = (𝑠 𝑠 … … … ), 

where 𝑠 =(𝑠 𝑠 … … … 𝑠 … …) is any point of  ∑  and 𝑛 ≥ 1 is any integer. 
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Definition 4.2.2 (Weakly topologically mixing): 
 

f is said to be weakly topologically mixing if for every non-empty pair 𝑈, 𝑉 ⊂ 𝑋, ∃ a 

positive integer 𝑘 such that 𝑓 (𝑈) ∩ 𝑉 ≠ ∅.  

 

Next, we have to prove that 𝜎  is continuous on ∑ . 

 
Lemma 4.2.1 𝜎 : ∑ → ∑  is continuous in the space ∑ . 

 

Proof: Choose 𝑝 so large that < 𝜀, 𝜀 > 0. Also, consider  𝛿 = ( ) and 

𝑠 = (𝑠 𝑠 𝑠 , … … ), 𝑡 = (𝑡 𝑡 𝑡 , … … ) be any two points of ∑  which satisfies 

𝑑(𝑠, 𝑡) < 𝛿. So, 𝑑(𝑠, 𝑡) < ( ).  

 

Hence by Lemma 3.2.1, we get 𝑠 = 𝑡 , for 𝑖 = 1,2, … … … , 𝑛(𝑝 + 1). 

 

Obviously 𝑑 𝜎 (𝑠), 𝜎 (𝑡) = 𝑑 𝑠 𝑠 … … , 𝑡 𝑡 … …  

                                               < < 𝜀. 

 

So we get our desired result, that is, 𝑑(𝑠, 𝑡) < 𝛿  𝑑 𝜎 (𝑠), 𝜎 (𝑡) < 𝜀. 

 

Hence 𝜎  is continuous on ∑ . 

 
4.3 Some features of the generalized shift map  
 

Here we discuss some essential characteristics of 𝜎 . According to the definition of 

Devaney’s chaos, we have established that 

𝜎 : ∑ → ∑  is chaotic. For this, at first, we need to prove that two essential conditions 

of Devaney's chaos, such as periodic points are dense and topologically transitive. 

 
Theorem 4.3.1 Periodic points are dense in ∑  for 𝜎 . 
 

Proof: Consider 𝑠 = (𝑠 𝑠 𝑠 … … ) be any point of  ∑  and we choose 𝑝 in a way that 

 
< 𝜀, 𝜀 > 0. 

 

Again, choose the point 𝛼 = (𝑠 𝑠 𝑠 … … 𝑠 𝑠 𝑠 𝑠 … … 𝑠 𝑠 … … ). 
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Then 𝜎 𝛼 = 𝛼 . Hence 𝛼  is a p-periodic point of 𝜎 . Now by our construction, we 

see that 𝑠 and 𝛼  are similar up to npth entry. Then by Theorem 3.3.1, we can say that 

𝑑(𝛼 , 𝑠) < < 𝜀. This gives that 𝛼 → 𝑠. So, periodic points are dense in ∑ for 

𝜎 : ∑ → ∑ . 

 
Theorem 4.3.2  (∑ , 𝜎 ) is topologically transitive on ∑ . 
 

Proof: Let 𝑈, 𝑉 ∈ ∑  (𝑈 and 𝑉 are non-empty open sets) and 𝜀 , 𝜀 > 0. Also, consider 

𝑢 = (𝑢 𝑢 … … … ) ∈ 𝑈 such that min {𝑑(𝑢, 𝛽 )} ≥ 𝜀 , for any 𝛽  is the boundary of 

U. Similarly, consider 𝑣 = (𝑣 𝑣 … … … ) ∈ 𝑉 be any point such that 

min {𝑑(𝑢, 𝛽 )} ≥ 𝜀 for any 𝛽  is the boundary of V. Now, choose 𝑘 and 𝑘  so that 

< 𝜀  and < 𝜀 , where 𝑛 is an arbitrary positive integer. Now let 

𝛽 = (𝑢 𝑢 … … 𝑢 𝑣 𝑣 … … 𝑣 … … ). Then by Theorem 3.3.1, 

we can write, 𝑑(𝑢, 𝛽 ) < < 𝜀 . 

 

Hence 𝛽 ∈ 𝑈, that is 𝜎 (𝛽 ) ∈ 𝜎 (𝑈) ……………………………..……….  (4.3.1) 

 

Then again, 𝜎 (𝛽 ) = (𝑣 𝑣 … … … 𝑣 … … ). 

 

So𝑑(𝜎 (𝛽 ), 𝑣) < < 𝜀  , by applying Theorem 3.3.1 again. 

 

Its gives 𝜎 (𝛽 ) ∈ 𝑉. ……………………………………………………..……(4.3.2) 

 

By (4.3.1) and (4.3.2), we can write 𝜎 (𝑈) ∩ 𝑉 ≠ ∅. 

 

Hence (∑ , 𝜎 )  is topologically transitive on ∑ . 

 
 

Theorem 4.3.3  𝜎 : ∑
𝑚

→ ∑
𝑚

 is exact Devaney chaotic (EDevC). 

Proof: To prove 𝜎  is exact, let 𝑈 ∈ ∑ , where 𝑈 is a non-empty open set. For 𝑢 ∈ 𝑈, 

∃ an open ball 𝐵(𝑢, 𝑟) such that 𝐵(𝑢, 𝑟) ⊆ 𝑈. Then, we can choose some 𝑘 ∈ 𝑁 such 

that ≤ 𝑟. 

 

Putting  ≤ 𝑟. we get  𝑟 = ≤ 𝑟 and so 𝐵(𝑢, 𝑟 ) ⊆ 𝐵(𝑢, 𝑟)⊆𝑈. 

Then for every  𝑣 ∈ 𝐵(𝑢, 𝑟 ), we can write  𝑑(𝑢, 𝑣) < 𝑟 = . 
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Hence the kth iterates of all these points in 𝐵(𝑢, 𝑟 )  constitute the space ∑ .  

 

That is  𝜎 𝐵(𝑢, 𝑟 ) = ∑ . 

 

Also, 𝐵(𝑢, 𝑟 ) ⊆ 𝑈 ⇒ 𝜎 (𝐵(𝑢, 𝑟 )) ⊆ 𝜎 (𝑈) 

⇒ ∑ ⊆ 𝜎 (𝑈) 

⇒ ∑ = 𝜎 (𝑈),   [Since ∑ ⊇ 𝜎 (𝑈)] 

 

So ∑ = 𝜎 (𝑈) is true for every non-empty open set 𝑈 ∈ ∑ .  Hence, 𝜎  is an exact 

map on ∑ . 

 

From the above result, we see that 𝜎  is exact Devaney chaotic. Since 𝜎  is exact 

Devaney chaotic; therefore, it also mixing Devaney chaotic and weak mixing Devaney 

chaotic. 

 
4.4 Some Stronger chaotic features of 𝝈𝒏 
 

This section has proved a few more vital chaotic features of 𝜎 .  

 
Theorem 4.4.1 𝜎 : ∑

𝑚
→ ∑

𝑚
 is totally transitive on ∑

𝑚
. 

 

Proof: Consider 𝑈, 𝑉 ∈ ∑
𝑚

 (U and V are two non-empty open sets) and 𝜀 , 𝜀 > 0. 

Also, let 𝑢 = (𝑢 𝑢 … … … . ) ∈ 𝑈 such that min {𝑑(𝑢, 𝛽 )} ≥ 𝜀 , where 𝛽 belongs to 

boundary of U. Similarly, let 𝑣 = (𝑣 𝑣 … … … ) ∈ 𝑉 such that min {𝑑(𝑣, 𝛽 )} ≥ 𝜀  

where 𝛽  belongs to boundary of V. Next, choose two odd integers 𝑘 and 𝑘  so large 

that < 𝜀  and < 𝜀 . 

 

To prove this theorem, consider the following cases: 

 

(i) When n is an even integer. 

 

If we take 𝛼 = (𝑢 𝑢 … … 𝑢 𝑣 𝑣 … … 𝑣 … … ). Then by Lemma 3.2.1, 

𝑑(𝑢, 𝛼) < < 𝜀 . 

 

Hence 𝛼 ∈ 𝑈, that is 𝜎 (𝛼) ∈ 𝜎 (𝑈). 

Then again, 𝜎 (𝛼) = (𝑣 𝑣 … … 𝑣 … … ). 
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So 𝑑(𝜎 (𝛼), 𝑣) < < 𝜀  by applying Lemma 3.2.1 again. 
 

We get 𝜎 (𝛼) ∈ 𝑉.  
 

Hence, we can write 𝜎 (𝑈) ∩ 𝑉 ≠ ∅, where 𝑛 is an even integer.  
 

So, 𝜎 : ∑
𝑚

→ ∑
𝑚

is totally transitive on ∑ , when 𝑛 is an even integer. 
 

(ii) Here, we consider 𝑛 is an odd integer. 
 

Let 𝛽 = (𝑢 𝑢 … … 𝑢 𝑣 𝑣 … … 𝑣 … … ). 
 

Then by applying Lemma 3.2.1 again, 
 

 we can write 𝑑(𝑢, 𝛽) < < 𝜀 . Hence 𝛽 ∈ 𝑈, 

that is 𝜎 (𝛽) ∈ 𝜎 (𝑈). On the other hand, 𝜎 (𝛽) = (𝑣 𝑣 … … 𝑣 … … ). 
 

So, 𝑑(𝜎 (𝛽), 𝑣) < < 𝜀  by applying Lemma 3.2.1 again. 

 

We have 𝜎 (𝛽) ∈ 𝑉. Hence we can write 𝜎 (𝑈) ∩ 𝑉 ≠ ∅, where 𝑛 is an odd integer.  

 

So 𝜎 : ∑ → ∑  is totally transitive on ∑ , when 𝑛 is an odd integer. 

 

Joining (i) and (ii), we can write 𝜎  is totally transitive on ∑ . 
 

 

The following example showing that chaotic functions are not necessarily topologically 

transitive.  

 
Example 4.4.1 Consider 𝐹 (𝑥) = 4𝑥(1 − 𝑥) is the logistic map on [0,1] and the map 

𝑔(𝑥) from [-1,1] to itself defined by 𝑔(𝑥) =
−𝑥  , −1 ≤ 𝑥 ≤ 0
𝐹 (𝑥)  , 0 ≤ 𝑥 ≤ 1

. 

 

The map defined above is also continuous. If we choose 𝑈 = (0,1) and 𝑉 = (−1,0) 

then 𝑓 (𝑈) ∩ 𝑉 = ∅ ∀ 𝑘 so we see that 𝑔(𝑥) is chaotic but not transitive 

(topologically). 

 
Theorem 4.4.2 (∑

𝑚
, 𝜎 ) is topologically mixing. 

 

Proof: To prove the above statement at first take 𝑈, 𝑉 ∈ ∑  and 𝑢 = (𝑢 𝑢 𝑢 … … ) ∈

𝑈 such that min {𝑑(𝑢, 𝛽 )} ≥ 𝜀 , where 𝛽 belongs to boundary of 𝑈. Again, consider 
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𝑣 = (𝑣 𝑣 … … … ) ∈ 𝑉 such that min {𝑑(𝑣, 𝛽 )} ≥ 𝜀  for 𝛽  belongs to boundary of  

𝑉. Now, pick two integers 𝑘 and 𝑘  so that < 𝜀  and < 𝜀 , where 𝑛 is a 

positive integer. 

 

Now let 𝛾 = (𝑢 𝑢 … … 𝑢 (0) ( )𝑣 𝑣 … … 𝑣 … … ), for 𝑖 = 2,3, … .. 

and  𝛾 = (𝑢 𝑢 … … 𝑢 𝑣 𝑣 … … 𝑣 … … ).  

 

Then by Theorem 3.3.1,  

 

𝑑(𝑢, 𝛾 ) < < 𝜀 , 𝑖 = 1,2, … … ………………………………………..(4.4.1) 

 

Hence 𝛾 ∈ 𝑈,  𝑖 = 1,2, ⋯ ⋯, that is 𝜎 (𝛾 ) ∈ 𝜎 (𝑈), for any 𝑘 ≥ 0. 

 

On the other hand, 𝜎 (𝛾 ) = (𝑣 𝑣 … … … 𝑣 … … ). 
 

Hence by applying theorem 3.3.1, we get 
 

𝑑(𝜎 (𝛾 ), 𝑣) < < 𝜀  ……...……………………………………………(4.4.2) 

which gives 𝜎 (𝛾 ) ∈ 𝑉. 

 

In virtue of (4.4.1) and (4.4.2), we can see that 𝜎 (𝑈) ∩ 𝑉 ≠ ∅. Next, let  𝛾  such that 

𝜎 (𝛾 ) = 𝑣 𝑣 … … … 𝑣 … … = 𝑉. Hence 𝜎 (𝑈) ∩ 𝑉 ≠ ∅. Finally 

taking about all 𝛾 ’s we get  𝜎 (𝑈) ∩ 𝑉 ≠ ∅, ∀ 𝑘 ≥ 𝑘 .  

 

So (∑
𝑚

, 𝜎 ) is topologically mixing on ∑ . 

 
Theorem 4.4.3 𝜎  on ∑  is generically 𝛿-chaotic with  𝛿 = 𝑑𝑖𝑎𝑚 ∑

𝑚
= 1. 

 

Proof: From Theorem 4.4.2, we see that 𝜎  is topologically mixingon ∑ . As we know 

that topologically mixing continuous map on a compact metric space is also a 

topologically weak mixing, so 𝜎  is also topologically weak mixing. Now, using 

Proposition 3.2.1, it is established that𝜎 is generically 𝛿-chaotic on ∑  with 

𝛿 = 𝑑𝑖𝑎𝑚(∑ ) = 1. 

 

Theorem 4.4.4 If  𝜎 : ∑ → ∑  is the generalized shift map. Then 𝑢 ∈ ∑  and any 

open neighborhood 𝑈 of 𝑢, ∃ two non-empty subsets 𝑆 and 𝑇 of 𝑈, which satisfy the 

following three conditions: 
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(i) Both 𝑆 and 𝑇 are countable. 
 

(ii) 𝑆 ∩ 𝑇 = ∅ and 
 

(iii) 𝑑 σ (𝑠), σ (𝑢) = 1, for all 𝑠 ∈ 𝑆 and 𝑑 σ (𝑡), σ (𝑢) = 0, ∀ 𝑡 ∈ 𝑇, 

where 𝑛 ’s and 𝑚 ’s are different for different points of 𝑆 and 𝑇 and depend 

on the minimum distance of 𝑢 from the boundary of 𝑈. 

 

Proof: Consider 𝑢 = (𝑢 𝑢 … … ) ∈ ∑  and 𝜀 > 0. Choose 𝑝 such that < 𝜀, 

 ∀ 𝑛 ≥ 1. 

 

Consider 𝑆 = 𝑠 : 𝑠 = 𝑢 𝑢 … … 𝑢 𝑢′ 𝑢′ 𝑢′ … … , 𝑖 ≥ 𝑝  and  

𝑇 = 𝑡 : 𝑡 = 𝑢 𝑢 … … 𝑢 𝑢′ 𝑢′ 𝑢′ … … , 𝑗 ≥ 𝑝 . 

 

Now by formation, we follow that all 𝑠 ’s of 𝑆 agree with 𝑢 at least up to 𝑢 . So using 

Lemma 3.2.1, we have that 𝑑(𝑢, 𝑠 ) <  , ∀ 𝑠 ∈ 𝑆. So 𝑠 ∈ 𝑈, ∀ 𝑖 ≥ 𝑝 and we 

observe that 𝑆 is a non-empty subset of 𝑈. Similarly, it is proved that 𝑇 is also a non-

empty subset of 𝑈. Again by our making structure, it has shown that both 𝑆 and 𝑇 are 

countable. So, (i) is proved. 

 

From two sets 𝑆 and 𝑇 we see that after the (𝑚𝑛𝑖 + 𝑚𝑛)-th (or (𝑚𝑛𝑗 + 𝑚𝑛)-th) all 

terms of 𝑠  or 𝑡  are mutually complementary terms for all 𝑖 (or 𝑗). So, 𝑡 ≠ 𝑠 , ∀𝑖 and 

𝑗, that is, 𝑆 ∩ 𝑇 = ∅. It is so proved (ii). 

 

Now 𝑑 𝜎 (𝑠), 𝜎 (𝑢) = 𝑑 𝑢 𝑢 … … , 𝑢 𝑢 … …  

=
1

𝑚
+

1

𝑚
+ ⋯ 

                                                                 ≥   , for all 𝑠 ∈ 𝑆 and 

 

𝑑 𝜎 𝑡 , 𝜎 (𝑢)

= 𝑑 𝑢 𝑢 … … , 𝑢 𝑢 … …

=
0

𝑚
+

0

𝑚
+ ⋯ 

= 0, for all 𝑡 ∈ 𝑇 
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Also, by the construction of 𝑆 and 𝑇 it is observed that 𝑖 ≥ 𝑝 and 𝑗 ≥ 𝑝, for 𝑆 and 𝑇 

respectively, and 𝑝 are dependent on 𝜀, where 𝜀 is the minimum distance of 𝑥 from the 

boundary of 𝑈. So, we conclude that 𝑛 ’s and 𝑚 ’s are depending on the minimum 

distance of 𝑢 from boundary of 𝑈. So, (iii) is proved. 

 

Hence all the above three conditions of the theorem are proved. 

 
Theorem 4.4.5 𝜎 : ∑ → ∑  has strong sensitive dependence on initial conditions. 

 

Proof: Consider 𝑢 = (𝑢 𝑢 … … ) ∈ ∑  and S be any non-empty open set of ∑ . So 

we can make an open ball T with radius 𝜀 > 0 and center at 𝛼 = (𝛼 𝛼 … … ) , such 

that 𝑇 ⊂ 𝑆. If 𝑝 > 0 is an integer such that < 𝜀. 

 

Let 𝑣 = 𝛼 𝛼 … … 𝛼 𝑢 𝑢 … … . Then v agrees by 𝛼 up to 𝛼  and later, 

all terms of v are the complementary terms of 𝑢, starting with 𝑢 . 

 

Using Lemma 3.2.1, we have that 𝑑(𝛼, 𝑣) < < 𝜀. So 𝑣 ∈ 𝑇, that is 𝑣 ∈ 𝑆 also. 

 

Again, we get 𝑑 𝜎 (𝑢), 𝜎 (𝑣) = 𝑑 𝑢 𝑢 … … , 𝑢 𝑢 … …  

=
1

𝑚
+

1

𝑚
+ ⋯ 

                                                               ≥
1

𝑚 − 1
 

 

From the above relation, it is clear that   is the role of sensitivity constant 𝛿. 
 

So, for 𝑢 ∈ ∑  and ∃ 𝑣 ∈ 𝑁(𝑢) and 𝑛 > 0 satisfying 

 𝑑 𝜎 (𝑢), 𝜎 (𝑣) ≥ 𝛿 for 𝛿 = . 

Hence 𝜎 : ∑ → ∑  has strong sensitive dependence on initial conditions. 

 
Theorem 4.4.6 Given countable infinite subset 𝑈 ∈ ∑  and ∃a dense uncountable 

1-scrambled set 𝑆 of transitive points of ∑  such that, for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑃 we have to 

prove that    

lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑢), 𝜎 (𝑣) =  and lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑢), 𝜎 (𝑣) = 0. 
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Proof: To establish the above theorem 4.4.6, we first require some properties, and we 

need to prove Lemma 4.4.1. 

 

Properties: 

(a) Consider 𝑃 = 𝑝 𝑝 … … 𝑝  and 𝑄 = 𝑞 𝑞 … … 𝑞  are two sequences of 0’s and 

1’s then 𝑃𝑄 = 𝑝 𝑝 … … 𝑝 𝑞 𝑞 … … 𝑞 . Again, if 𝑇 𝑇 … … 𝑇  are 𝑝 finite 

sequences of 0’s and 1’s then  𝑇 𝑇 … … 𝑇  can be defined similarly as above. 

 

(b) Let 𝑘 ≥ 2 be any integer, β = (β β … … ) be any element of ∑  and 

            𝑎 = (𝑎 𝑎 𝑎 … … ) be a transitive point of ∑ . 

We now define, 

𝐸(𝛽, 𝑘) = 𝑎 𝑎 𝑎 … … 𝑎 (𝛽 ) ( )(𝛽 ) ( ) … … 

(𝛽 ) ( )(0 1 )( )!(0 1 )( )! … … 0 ( )1 ( ) ( )!
𝛽 𝛽  

       … … 𝛽 . 

(c) Let   𝑈 = 𝑢 : 𝑢 = 𝑢 , 𝑢 , … … , i ≥ 1  ∈ ∑ . 

 

Now define  

𝐹(𝑢 , 𝑘) = 𝑢 , . ( , , ) 𝑢 , . ( , , ) … … 𝑢 , . ( , , )  and  

𝐹(𝑢 , 𝑘) = 𝑢 , . ( , , )  𝑢 , . ( , , ) … … 𝑢 , . ( , , )  

 

where 𝑡(𝑘, 𝑖, 𝑗) = 2𝑘 + 𝑘 + 𝑘! + 2𝑘(𝑖 − 1) − 𝑗.  

Also, we denote 𝐹(𝑢 , 𝑘)𝐹(𝑢 , 𝑘) by 𝐹(𝑢 , 𝑘). 
 

(d) Define,  

τ = (𝑏 ) (𝑏 ) … … (𝑏 ) 𝐸(β, 𝑘)𝐹(𝑥 , 𝑘)𝐹(𝑥 , 𝑘) … … 𝐹(𝑥 , 𝑘)  

𝐸(β, 𝑘 + 1)𝐹(𝑥 , 𝑘 + 1)𝐹(𝑥 , 𝑘 + 1) … … 𝐹(𝑥 , 𝑘 + 1)𝐸(β, 𝑘 + 2) … …,  

where 𝑏 (0 ≤ 𝑗 ≤ 𝑘 − 1) are any fixed 𝑘 numbers composed of 0’s and 1’s. 

 

(e) Lastly, consider 𝑃 = σ τ : 𝑝 ≥ 0, β ∈ ∑ . 

At this time, we also note that,  

 

(i) The length of the finite sequence 𝐸(β, 𝑘) is 𝑛𝑘 + 𝑛𝑘! + 𝑛𝑘. 
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(ii) The length of the sequence (𝑏 ) (𝑏 ) … … (𝑏 )  is 𝑛𝑘. 

(iii) The length of the sequence 

(𝑏 ) (𝑏 ) … … (𝑏 ) 𝐸(β, 𝑘)𝐹(𝑥 , 𝑘)𝐵(𝑥 , 𝑘) … … 𝐹(𝑥 , 𝑘)  

is 3𝑛𝑘 + 𝑛𝑘! + 2𝑛𝑘. 

 
Lemma 4.4.1 The set 𝑃 = σ τ : 𝑝 ≥ 0, β ∈ ∑

𝑚
 as defined above, is a dense 

uncountable invariant set of transitive points. 

 

Proof: Now 𝜎 (𝑃) ⊂ 𝑃, by our construction. Also, the set is uncountable. We now 

show that 𝑃 is a dense subset of ∑ . Consider an arbitrary point 𝛼 = (𝛼 𝛼 … … ) of 

∑ . Then 𝜎 ! (𝜏 ) is a point of 𝑃. Note that 𝑘 ≥ 2 is an integer. Again,  

𝑑 𝜎 ! (𝜏 ), 𝛼 = 𝑑 (𝛼 𝛼 … … 𝛼 … … ), (𝛼 𝛼 … … )  

                                                    < , using Lemma 3.2.1 

So, 𝜎 ! (𝜏 ) → 𝛼, which proves that there is a sequence of points from 𝑃, 

converges to an arbitrary point of  ∑ . 

Lastly, note that every point of 𝑃 contains infinitely many finite sequences of fixed 

transitive points of the type 𝑎 𝑎 … … 𝑎  in every 𝐸(𝛽, 𝑘), 𝑘 ≥ 2 and for any 

𝛽 ∈ ∑ . So we can see that orbits of 𝑃 appear arbitrarily close to any sequence of points 

from ∑ . Hence 𝑆 consists of transitive points. 

Now we will prove Theorem 4.4.6. 

Consider 𝑃 = 𝜎 𝜏 : 𝑝 ≥ 0, 𝛽 ∈ ∑  and 𝛽 = (𝛽 𝛽 … … ) ∈ ∑ , 

 𝛾 = (𝛾 𝛾 … … ) ∈ ∑  such that 𝛽 ≠ 𝛾 . Then, for two integers 𝑖 and 𝑗 such that 

  0 ≤ 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑘 − 1.  

Using 𝜎 ,  2𝑘 + 𝑠. (𝑘 − 1) times on the two points 𝜏  and 𝜏 ,  

We have 𝜎 .( )
𝜏 = 𝛽

( )
𝛽

( )
… … 

and 𝜎 .( )
𝜏 = 𝛾

( )
𝛾

( )
… … 
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So, 

 lim
→∞

𝑠𝑢𝑝 𝑑 𝜎 𝜎 𝜏 , 𝜎 𝜎 𝜏 ≥ lim
→∞

𝑑 𝛽
( )

… … 𝛾
( )

… …  

≥ lim
→∞

1

𝑚
+

1

𝑚
+ ⋯ +

1

𝑚 ( )
 

                                                 = …………………………………...…………...(4.4.3) 

Now, let 𝑡 = 𝑘 + 𝑘 + (𝑗 − 1) 𝑗 − (𝑖 + 1) . (𝑘 − 2)! then we can write 

𝜎 𝜏 = 0 ( )1 ( ) ( )!
… … 

= 0 ( ) 1 ( )0 ( ) ( )!
1 ( ) … … 

and  

𝜎 𝜏 = 0 ( )1 ( ) ( )!
… … 

 = 0 ( ) 1 ( )0 ( ) ( )!
1 ( ) … … . 

So from the above, we can say that although 𝜏  and 𝜏  are different; after certain 

number of iterations, they begin with the same sequence. Since 𝐸(𝛽, 𝑘) and 𝐸(𝛾, 𝑘) 

both have a finite sequence of the type  0 ( )1 ( ) ( )!
 of 0’s and 1’s.  

So, 

𝜎 𝜏 = 1 ( )0 ( ) ( )!
1 ( ) … … = 1 ( ) 0 ( )1 ( ) ( )!

… … 

 

Consequently, lim
→∞

sup 𝑑 𝜎 𝜎 𝜏 , 𝜎 𝜎 𝜏 ≥

lim
→∞

𝑑 𝜎 𝜏 , 𝜎
( )

𝜏  

≥ lim
→∞

1

𝑚
+

1

𝑚
+ ⋯ +

1

𝑚 ( ) ( )(( )! )
 

                             =
 
………………………………………….……………..(4.4.4) 
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Applying (4.4.3) and (4.4.4), we can write for any 𝑢 ≠ 𝑣 in 𝑆, 

lim
→∞

sup 𝑑 𝜎 (𝑢), 𝜎 (𝑣) =  ………………..………………………... (4.4.5) 

Note that by our construction of 𝑃, we can always choose two points 𝜎 𝜏  and 

𝜎 𝜏  for infinitely many integers 𝑛 . 

It gives, lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑢), 𝜎 (𝑣) ≤ lim
→∞

+ + ⋯ + = 0, for 𝑢 ≠ 𝑣 in 𝑃 and 

for some positive integer 𝑡. 

So, lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑥), 𝜎 (𝑦) = 0, for 𝑢 ≠ 𝑣 in 𝑃.  ………………………(4.4.6) 

Furthermore, if 𝑣 is a periodic point of 𝜎  and for any 𝑢 in 𝑃, choose a positive integer 

𝑚 such that 𝜎 (𝑢), 𝜎 (𝑣) are different in the first term of the sequence. 

So, lim
→∞

sup 𝑑 𝜎 (𝑣), 𝜎 (𝑢) ≥ lim
→∞

𝑑 𝜎 (𝑣), 𝜎 (𝑢) ≥   ……...(4.4.7) 

Now from equations (4.4.5), (4.4.6) and (4.4.7) and Lemma 4.4.1, we can say that 𝑃 is 

a dense invariant uncountable 1-scrambled set of transitive points for 𝜎 . 

Finally, for 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑃, lim
→∞

sup 𝑑 𝜎 (𝑢), 𝜎 (𝑣) =  and  

lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑢), 𝜎 (𝑣) = 0. (Proved) 

 
Theorem 4.4.7 ∑

𝑚
, 𝜎  has chaotic dependence on initial conditions. 

 

Proof: Let 𝑝 = (𝑝 𝑝 𝑝 … … . ) ∈ ∑  and 𝑁(𝑝) ∃ an open set 𝑈 of ∑  such that 

𝑝 ∈ 𝑈 ⊆ 𝑁(𝑝). 

As 𝑝 ∈ 𝑈 so ∃ an open ball 𝐵(𝑝, 𝑟) with 𝑟 > 0 such that 𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝). At that 

time for 𝑟 > 0, choose k such that < 𝑟.  

We now make out 𝑞 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝) such that the pair (𝑝, 𝑞) ∈ ∑  is Li-Yorke.  

Now after using the letters in 𝑝 = (𝑝 𝑝 𝑝 … … . ) ∈ ∑ , we define the words 

𝑊(𝑝, 3𝑛𝑘), 𝑊(𝑝, 5𝑛𝑘), 𝑊(𝑝, 7𝑛𝑘), … …etc. as follows: 
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𝑊(𝑝, 3𝑛𝑘) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝  … 𝑝 ), 

𝑊(𝑝, 5𝑛𝑘) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝  … 𝑝 ) 

𝑊(𝑝, 7𝑛𝑘) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 ) , … 

and so on.  

Now using the above-defined words, we form the point q as follows: 

𝑞 = 𝑝 𝑝 𝑝 … 𝑝 (0∗) (0) 𝑊(𝑝, 3𝑛𝑘)𝑊(𝑝, 5𝑛𝑘)𝑊(𝑝, 7𝑛𝑘)𝑊(𝑝, 9𝑛𝑘) …  

where (0∗) = (0∗0∗0∗ … 0∗) , (0) = (000 … 0)  and 

0∗ = (𝑚 − 1) − 0 = 𝑚 − 1. 

From the construction of 𝑞 it is evident that 𝑞 agrees with 𝑝 up to the kth term. Hence 

using Theorem 3.3.1, we can write 𝑑(𝑝, 𝑞) ≤ < 𝑟 and hence  

𝑞 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑈 ⊆ 𝑁(𝑝). Here, we observe that 𝑞 contains infinitely many words of 

the type 𝑊(𝑝, (2𝑛 − 1)𝑘) containing 2k letters each where 𝑛 ≥ 2. 

Moreover  

𝜎 (𝑞) = (𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … 𝑝 𝑝∗ 𝑝∗ … ) 

𝜎 (𝑞) = (𝑝∗ 𝑝∗ … 𝑝 𝑝∗ 𝑝∗ … 𝑝∗ 𝑝 𝑝 … ) 

Therefore, 𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≥ 𝑑(𝜎 (𝑝), 𝜎 (𝑞)) and so  

lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≥ lim
→

𝑑(𝜎 (𝑝), 𝜎 (𝑞)) ≥ lim
→

|𝑝 − 𝑝∗ |

𝑚
 

≥ lim
→

1

𝑚
+

1

𝑚
+ ⋯ +

1

𝑚
 

                                                   =
1

𝑚 − 1
 

Again, 0 ≤ lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑝), 𝜎 (𝑞)  

≤ lim
→

𝑑(𝜎 (𝑝), 𝜎 (𝑞)) 
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             = lim
→

𝑑((𝑝 … 𝑝 𝑝 … 𝑝 𝑝 … ), 

                                 (𝑝 … 𝑝 𝑝∗ 𝑝∗ … … 𝑝∗ 𝑝 … … )) 

≤ lim
→∞

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
+ ⋯  

= lim
→

𝑚 − 1

𝑚
+

𝑚 − 1

𝑚
+ ⋯ +

𝑚 − 1

𝑚
.

1

𝑚
+

1

𝑚
+

1

𝑚
+ ⋯  

                = lim
→

1 −
1

𝑚
.

1

𝑚
1 +

1

𝑚
+

1

𝑚
+

1

𝑚
… …  

                 = lim
→

1 −
1

𝑚
.

1

𝑚
.

1

1 −
 

                  = (1 − 0). 0.  = 0 

Now, 0 ≤ lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≤ 0 ⇒ lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑝), 𝜎 (𝑞) = 0. 

So, it follows that 

 lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑞) ≥  and lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑝), 𝜎 (𝑞) = 0.  

Hence, (𝑝, 𝑞) ∈ ∑  with modulus 𝛿 = > 0. Hence, (∑ , 𝜎 ) has chaotic 

dependence on initial conditions. 

 

 
4.5 Summary and Conclusions 
 

In this chapter, we try to establish some stronger chaotic features of 𝜎 . From example 

4.4.1, we see that 𝑔(𝑥) is chaotic but not transitive (topologically). In theorem 4.4.3, 

we observed that 𝜎  on ∑  is generically 𝛿-chaotic with  𝛿 = 𝑑𝑖𝑎𝑚 ∑
𝑚

= 1. 

 

We know that Devaney chaos is stronger than Li-Yorke chaos, and already, we have 

shown 𝜎  satisfies all the requirements of Devaney's chaos, so we can say that it is also 

Li-Yorke chaos. At present, the shift map is used to chaotic model of a dynamical 
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system, and we can now try to use 𝜎  instead of 𝜎 to the chaotic model of a dynamical 

system. So, we can use generalized shift map, 𝜎  as a new model for chaotic dynamical 

systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

P a g e  | 96 
 

 

CHAPTER -5 

CHAOTIC FEATURES OF THE COMPLEMENTED 

SHIFT MAP ON 𝒎-SYMBOL SPACE   

 
5.1 Introduction 
 

We have already established stronger chaotic features of  𝜎  in chapter 4. This chapter 

is devoted to studying the chaoticity and related properties of the complemented shift 

map 𝜎 . Few important chaotic properties of 𝜎  have been discussed.  In the last part 

of this chapter, it is proved that 𝜎  is conjugate (topologically) to 𝜎. Finally, we provide 

an example to show that 𝜎  is chaotic, and for that reason, we say that 𝜎  is an 

alternative chaotic model in m-symbol space. 

 

In the previous chapter, we defined m-symbol sequence space, which is  
 

∑ = {0,1,2, … … 𝑚 − 1} = {(𝑢 )∞ : 𝑢 ∈ {0,1,2 … … 𝑚 − 1}, 𝑚 ∈ ℕ}, 

 where 𝑚(≥ 2) ∈ ℕ, under 𝑑(𝑢, 𝑣) = ∑
| |

 

 for 𝑢 = (𝑢 𝑢 𝑢 … … ), 𝑣 = (𝑣 𝑣 𝑣 … … ) ∈ ∑ . 

 

Topological conjugacy can be used to make predictions of the behavior of a dynamical 

system up to comparing it with another dynamical system whose specific properties are 

known [5]. The Topological conjugacy feature has an essential role in studying the 

chaotic behavior of a map. With the help of this feature, we can explore the chaotic 

significance by comparing one map with another map. Topological conjugacy has such 

importance as it can protect many topological dynamical properties.  

 
 

If we consider 𝑠 = (𝑠 𝑠 … … … ) is any point of ∑ . Then 𝜎 : ∑
𝑚

→ ∑
𝑚

 is defined by 

𝜎 (𝑠) = (𝑠 𝑠 … … … … ), where complement of 𝑠  is 𝑠 . Here, the map shifts the 

first element of a point and then changes all others into its complement. 
 

 
5.2 Properties of the Complemented shift map 
 

The dynamical behavior of 𝜎  is discussed in this section. Here we prove that  𝜎  is a 

continuous on ∑ . Using Theorem 5.2.2 we proved that it is 𝜔-chaotic. 
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Theorem 5.2.1: The dynamical systems ∑

𝑚
, 𝜎  is continuous on on ∑ . 

 

 

Proof: We pick n so large that < 𝜀, where 𝜀 > 0. Consider 𝑔 = (𝑔 𝑔 𝑔 … … … ) 

and 𝑒 = (𝑒 𝑒 𝑒 … … … ) be any two points of  ∑ . Now we choose 𝛿 = .  

 

Then 𝑑(𝑔, 𝑒) < 𝛿 =  

⇒ 𝑑 (𝑔 𝑔 … 𝑔 … ), (𝑒 𝑒 … 𝑒 … ) <
1

𝑚
 

⇒ 𝑔 = 𝑒  for 𝑖 = 0,1,2, … … . , 𝑛 + 1 (using Lemma 3.2.1) 

⇒ 𝑔 = 𝑒  for  𝑖 = 1,2, … … . , 𝑛 + 1 

⇒𝑑 (𝑔 … 𝑔 … ), (𝑒 … 𝑒 … ) <  

⇒𝑑 𝜎 (𝑔),  𝜎 (𝑒) < < 𝜀 

 

Hence ∑
𝑚

, 𝜎  is a continuous on ∑ . 

 
Theorem 5.2.2: There exists an uncountable Ω of ∑  such that for arbitrary 𝑔, 𝑒 ∈ Ω 

with 𝑔 ≠ 𝑒, i) ⍵ (𝑔) \ ⍵ (𝑒) is uncountable, (ii) ⍵ (𝑔) ∩ ⍵ (𝑒) ≠ ∅,  

(iii) ⍵ (𝑔) ∩ 𝑃𝑒𝑟(𝜎 ) ≠ ∅.  

 

In addition, 
 

(iv) either lim
→

𝑖𝑛𝑓 𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 0, or lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 1, for 

arbitrary 𝑔, 𝑒 ∈ Ω with 𝑔 ≠ 𝑒, and (v) if 𝑝 is any periodic point of 𝜎 , 

lim
→

𝑠𝑢𝑝 𝑑 𝜎 (𝑝), 𝜎 (𝑔) ≥ , for any 𝑔 ∈ Ω. 

 

Proof: Let 𝑆 be a subset of  ∑ with the following properties, 
 

(i) for any two elements α, β ∈ S, α ≠ β , at least for one s, where α = (α α … … ) 

and β = (β β … … ) 

 

(ii) for any element γ ∈ S, there does not exist any positive integer m, such that 

σ  (γ) = γ. 

Then clearly, the set 𝑆 is uncountable. For any 𝛽 = (𝛽 𝛽 … … ) ∈ 𝑆, we know define 

𝐵(𝛽, 𝑘, 𝑆) = (𝛽 𝛽 … … 𝛽 (10)(1100) … … (1 !0 !)), where 𝑘 ≥ 2 is a fixed 

integer. The length of the finite string (10)(1100) … … (1 !0 !) is always even 

whatever be the value of 𝑘. Hence the length of the string 𝐵(𝛽, 𝑘, 𝑆) is even if k is even 
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and odd if k is odd. Further, let 𝑇 = ((0) (1) 𝐵(𝛽, 𝑘, 𝑆)𝐵(𝛽, 𝑘 + 1, 𝑆)𝐵(𝛽, 𝑘 +

2, 𝑆) … … ), 𝛽 ∈ 𝑆. 

 

It is also noted that if the length of 𝐵(𝛽, 𝑘, 𝑆) is odd (or even) then the length of the 

following string 𝐵(𝛽, 𝑘 + 1, 𝑆) is even (or odd) and so on. So by our construction of 𝑇  

we get that lengths of the finite strings such as 𝐵(𝛽, 𝑛, 𝑆), 𝑛 ≥ 2 are alternatively even 

and odd in 𝑇 . We now consider the set Ω = 𝜎 𝑇 : 𝛽 ∈ 𝑆, 𝑝 ≥ 0 . Since the set 𝑆 

is uncountable, the set Ω is also uncountable.  

 

Let 𝜎 𝑇  and 𝜎 𝑇  be two arbitrary elements of Ω. Then by our construction 

𝛽 ≠ 𝛾  for some 𝑠. 

 

Let 𝜀 > 0 and < 𝜀 , for sufficiently large 𝑛 , such that 𝑛 > 𝑠. Then the set 

𝐴 = 𝛿: 𝛿 = (𝛽 𝛽 … … 𝛽 … … 𝛽 𝜆 𝜆 … … ) , where 𝜆 = (𝜆 𝜆 … … ) is any point of 

∑ . 

 

Similarly, let 𝜀 > 0 and < 𝜀 , for sufficiently large 𝑛 , such that 𝑛 > 𝑠.  

 

In the same way, we can write the set 𝐵 = 𝜌: 𝜌 = 𝛾 𝛾 … … 𝛾 … … 𝛾 𝜆 𝜆 … … , 

where 𝜆 = (𝜆 𝜆 … … ) is any point of  ∑ . 

 

To prove (i), (ii) and (iii) now consider the following three cases: 
 

 
Case I: Both 𝑝 and 𝑞 are even. 
 

We now choose an even integer 𝑙  such that 𝜎 𝜎 𝑇  starts from 𝛽  and with 

𝑘 > 𝑛 + 1. Note that by our construction, we can get infinitely many such 𝑙 ’s. So, 

𝜎 𝜎 𝑇  and 𝛿 agree at least up to 𝛽 , for all 𝛿 ∈ 𝐴 . So by the application of the 

Lemma 3.2.1 we get 𝑑 𝜎 (𝜎 𝑇 , 𝛿) < < 𝜀 , for all 𝛿 ∈ 𝐴 . Hence 𝐴  is a 

set of limit points of the orbit of 𝜎 𝑇 . Since 𝜆 ∈ ∑  is arbitrary, the set 𝐴 is 

uncountable. So, we can say that ⍵ 𝜎 𝑇  contains at least an uncountable 

number of points. 

 

We now similarly choose an even integer 𝑙  such that 𝜎 𝜎 (𝑇  ) starts from 𝛾  and 

with 𝑘 > 𝑛 + 1. By our construction, we can get infinitely many such 𝑙 ’s. So, 
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𝜎 𝜎 (𝑇  ) and 𝜌 agree at least up to 𝛾 , ∀ 𝜌 ∈ 𝐵 . So using Lemma 3.2.1 again, we 

have 𝑑 𝜎 𝜎 (𝑇  ) , 𝜌 < < 𝜀 , ∀ 𝜌 ∈ 𝐵 . Hence 𝐵  is a set of limit points of 

the orbit of  𝜎 (𝑇  ). Since 𝜆 ∈ ∑  is arbitrary, the set 𝐵  is obviously uncountable. 

So we can say that ⍵ 𝜎 𝑇  contains at least an uncountable number of points. 

Since 𝛽 ≠ 𝛾 , 𝐴 ∩ 𝐵 = ∅. 

 

Hence ⍵ 𝜎 𝑇 \⍵ 𝜎 𝑇  is always uncountable. 
 

Now both 𝜎 𝑇  and 𝜎 𝑇  contain infinitely many finite sequences of the type 

(10)(1100) … … (1 !0 !) in 𝐵(𝛽, 𝑘, 𝑆) (or  𝐵(𝛾, 𝑘, 𝑆). By our construction 𝑘 is 

continuously increasing in the next term 𝐵(𝛽, 𝑘 + 1, 𝑆) (or  𝐵(𝛾, 𝑘 + 1, 𝑆) and the 

length of 𝐵(𝛽, 𝑘, 𝑆) (or  𝐵(𝛾, 𝑘, 𝑆) is alternatively even or odd. 

 

We now consider the point 𝑡 = (10)(1100) … … (1 !0 !)(1 ! 0 ! ). By the above 

argument and Lemma 3.2.1, we get that the point 𝑡 is a limit point of the orbit of 

𝜎 𝑇  and 𝜎 𝑇  both. 

 

Hence ⍵ 𝜎 𝑇 ∩ ⍵ 𝜎 𝑇 ≠ ∅. 
 

Consider the point 𝑔 = 𝛽 𝛽 … … 𝛽 𝑎 𝑎 … …  of 𝐴 , where 𝑎 = (𝑎 𝑎 … … ) is a 

non-periodic point of 𝜎 . Then obviously, 𝑔 is also a non-periodic point of 𝜎 . 

Hence 𝑔 ∉ 𝑃𝑒𝑟(𝜎 ). But by our construction 𝑔 ∈ ⍵ 𝜎 𝑇 . 

Hence, we get ⍵ 𝜎 𝑇 \𝑃𝑒𝑟(𝜎 ) ≠ ∅. 
 

This proves the requirements of (i), (ii), and (iii) if 𝑝 and 𝑞 are both even. 
 

 

Case II: Both 𝑝 and 𝑞 are odd. 
 

Now choose an odd integer 𝑙  (that is, 𝑝 + 𝑙  even) such that 𝜎 𝜎 (𝑇  )  starts from 

𝛽  and with 𝑘 > 𝑛 + 1. By our construction, again, we can get infinitely many such 

𝑙 ’s. So, 𝜎 𝜎 (𝑇  )  and 𝛿 agree at least up to 𝛽 , for all 𝛿 ∈ 𝐴 . Hence by Lemma  

3.2.1 𝐴  is an uncountable set of limit points of the orbit of 𝜎 (𝑇  ). So we can say 

that ⍵ 𝜎 𝑇  contains at least an uncountable number of points. 

 

Similarly, we choose an odd integer 𝑙  (that is, 𝑞 + 𝑙  even) such that 𝜎 𝜎 𝑇  

starts from 𝛾  and with 𝑘 > 𝑛 + 1.  Again we can get infinitely many such 𝑙 ’s. So, 
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𝜎 𝜎 𝑇  and 𝜌 agree at least up to 𝛾 , for all 𝜌 ∈ 𝐵 . Hence 𝐵  is an 

uncountable set of limit points of the orbit of 𝜎 𝑇 . So get that ⍵ 𝜎 𝑇  

contains at least an uncountable number of points. Since 𝛽 ≠ 𝛾 , 𝐴 ∩ 𝐵 = ∅. 

 

Hence ⍵ 𝜎 𝑇 \⍵ 𝜎 𝑇  is always uncountable. 
 

Here also the point 𝑡 = (10)(1100) … … (1 !0 !)(1 ! 0 ! ) is a limit point of the 

orbit of  𝜎 𝑇  and 𝜎 𝑇  both. Because we can always choose two odd integers 𝑖 

(for 𝜎 𝑇 ) and 𝑗 (for 𝜎 𝑇 ) such that an arbitrary neighborhood of 𝑡 contains 

both the points  𝜎 𝜎 (𝑇  )  and 𝜎 𝜎 𝑇 . 

Hence ⍵ 𝜎 𝑇 ∩ ⍵ 𝜎 𝑇 ≠ ∅. 
 

In this case also the point 𝑔 = 𝛽 𝛽 … … 𝛽 𝑎 𝑎 … …  as defined in Case 1 does not 

belong to 𝑃𝑒𝑟(𝜎 ), but by our construction 𝑑 ∈ ⍵ 𝜎 𝑇 . Hence we get, 

⍵ 𝜎 𝑇 \𝑃𝑒𝑟(𝜎 ) ≠ ∅. 

This proves the requirements of (i), (ii), and (iii) if 𝑝 and 𝑞 are both odd. 
 
 
 

Case III: Exactly one of 𝑝 and 𝑞 is even. 
 

When we take  𝑝 is even and 𝑞 is odd. Combining Case I and Case II above, we get that 

satisfies the conditions (i), (ii), and (iii), if exactly one of 𝑝 and 𝑞 is even. 

We now prove the last part of this theorem. We consider the points 𝑔 = 𝑇  and 

𝑒 = 𝜎 𝑇  of  Ω.  Then 𝐿𝑡 𝑠𝑢𝑝
→

 𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 1.  

We now take the points  𝑔 = 𝑇  and 𝑒 = 𝑇  of Ω. 

Then 𝐿𝑡 𝑖𝑛𝑓
→

𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 0.  

 

Hence either 𝐿𝑡 𝑖𝑛𝑓
→

𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 0 or 𝐿𝑡 𝑠𝑢𝑝 
→

𝑑 𝜎 (𝑔), 𝜎 (𝑒) = 1, for 

arbitrary 𝑔, 𝑒 ∈ Ω with 𝑔 ≠ 𝑒. 

 
Lastly, if 𝑝 = (𝑝 𝑝 … … ) is any periodic point of 𝜎  we can always choose a positive 

integer 𝑚 such that 𝜎 (𝑝) and 𝜎 (𝑔) are different in the first term of the sequence 

for any 𝑔 ∈ Ω. 
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Hence 𝐿𝑡𝑠𝑢𝑝
→

𝑑 𝜎 (𝑔), 𝜎 (𝑒) ≥ 𝐿𝑡 𝑠𝑢𝑝 
→

𝑑 𝜎 (𝑝), 𝜎 (𝑔) ≥ . 

 

 
So, we get that Ω satisfies the conditions (iv) and (v). Hence the theorem is proved.  

 
Theorem 5.2.3:  𝜎 : ∑ → ∑  is 𝜔- chaotic in ∑ . 
 

Proof: By construction of the set Ω in Theorem 5.2.2 and by (i), (ii) and (iii) of Theorem 

5.2.2, we get that Ω  is an 𝜔-scrambled set for 𝜎 . 

Hence 𝜎 : ∑ → ∑  is 𝜔- chaotic on ∑ . 

 
5.3 Some Strong Chaotic Properties of  𝝈𝒄 
 
In this section, we present some essential chaotic properties of the complemented shift 
map. 
 
Theorem 5.3.1  𝜎 : ∑ → ∑  is transitive (topologically). 
 

Proof: To prove 𝜎  is topologically transitive, we need to prove that for any two non-

empty open sets, P and Q of  ∑ , ∃ 𝑛 ∈ ℕ such that 𝜎 (𝑃) ∩ 𝑄 ≠ ∅.  

 

Let 𝑝 = (𝑝 𝑝 𝑝 … … ) ∈ 𝑃 and 𝑞 = (𝑞 𝑞 𝑞 … … ) ∈ 𝑄 be arbitrary. Now, 𝑝 ∈ 𝑃,  

𝑞 ∈ 𝑄. So, ∃ open balls 𝐵(𝑝, 𝑟 ) ⊆ 𝑃 and  𝐵(𝑞, 𝑟 ) ⊆ 𝑄. 

 

 If 𝑟 = min {𝑟 , 𝑟 } then 𝐵(𝑝, 𝑟) ⊆ 𝑃, 𝐵(𝑞, 𝑟) ⊆ 𝑄 and < 𝑟, 𝑛 ∈ ℕ. 

 

Consider the point 𝑊 = (𝑝 𝑝 𝑝 … … 𝑝 𝑞 𝑞 𝑞 … … ) ∈ ∑  which agrees with 𝑝 up to 

the nth term. Therefore, by Theorem 3.3.1, we have that 

 

𝑑(𝑝, 𝑊) ≤ < 𝑟 ⇒ 𝑊 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑃 and it follows that 𝜎 (𝑊) ∈ 𝜎 (𝑃). 

 

Again, 𝜎 (𝑊) = (𝑞 𝑞 𝑞 … … ) = 𝑞 ∈ 𝑄, 𝑞 = 𝜎 (𝑊) ∈ 𝜎 (𝑃) 

                                                                     ⇒ 𝑞 = 𝜎 (𝑊) ∈ 𝜎 (𝑃) ∩ 𝑄. 

  

So we have 𝜎 (𝑃) ∩ 𝑄 ≠ ∅ and hence 𝜎 : ∑ → ∑  is transitive (topologically). 

. 
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Theorem 5.3.2:  𝜎 : ∑ → ∑  is topologically mixing. 
 

Proof: Let 𝑝 = (𝑝 𝑝 𝑝 … … ) ∈ 𝑃 and 𝑞 = (𝑞 𝑞 𝑞 … … ) ∈ 𝑄 be arbitrary. Then 

since 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄 and 𝑃, 𝑄 are open sets in  ∑ , ∃ open balls 𝐵(𝑝, 𝑟 ) ⊆ 𝑃 and 

 𝐵(𝑞, 𝑟 ) ⊆ 𝑄.  

 

If 𝑟 = min {𝑟 , 𝑟 } then 𝐵(𝑝, 𝑟) ⊆ 𝑃, 𝐵(𝑞, 𝑟) ⊆ 𝑄 and choose 𝑘 ∈ 𝑁 such that 

 < 𝑟. Now we set up a sequence {𝑤 } of points in ∑  with the help of k, 𝑝, and q 

such that 

𝑤 = (𝑝 𝑝 𝑝 𝑝 … 𝑝 𝑞 𝑞 𝑞 … ),  

      𝑤 = (𝑝 𝑝 𝑝 𝑝 … 𝑝 𝑎 𝑞 𝑞 𝑞 … ), 

𝑤 = (𝑝 𝑝 𝑝 𝑝 … 𝑝 𝑎 𝑎 𝑞 𝑞 𝑞 𝑞 … ) , … … 

𝑤 = (𝑝 𝑝 𝑝 𝑝 … 𝑝 𝑎 𝑎 … … 𝑎 𝑞 𝑞 𝑞 𝑞 … … ), 𝑖 ≥ 2,  

𝑎 ∈ {0,1,2, … … , 𝑚 − 1}. 

 

Now, every 𝑤  , 𝑖 ≥ 2 is constructed by using the finite word attained by taking first 

(i-1) consecutive symbols of 𝑎 = (𝑎 , 𝑎 , 𝑎 , … … 𝑎 , . . . ) ∈ ∑  chosen arbitrarily.  

In particular, the first k letters of 𝑤 , for each 𝑖 ≥ 2, is the finite word 

𝑝[ , ] = (𝑝 𝑝 𝑝 𝑝 … 𝑝 ) taken from 𝑝 ∈ 𝑃 and then the word 

𝑎[ , ] = (𝑎 , 𝑎 , 𝑎 , … … , 𝑎 ) taken from a and at last the sequence representing 𝑞, 

i.e.𝑤 = 𝑝[ , ], 𝑎[ , ], 𝑞 . In this situation, we can also use a fixed letter from the 

alphabet set {0,1,2, … , 𝑚 − 1} repeating it for (i-1) times rather than using 𝑎[ , ]. 

 

Now, by using the Theorem 3.3.1, we get, 𝑑(𝑝, 𝑤 ) ≤ < 𝑟 [since 𝑝 and 𝑤  agree up 

to the kth digits], ∀ 𝑖 ∈ 𝑁. So, 𝑤 ∈ 𝐵(𝑝, 𝑟) ⊆ 𝑃 and hence 

 

𝜎 ( )(𝑤 ) ∈ 𝜎 ( )(𝐵(𝑝, 𝑟))  𝜎 ( )(𝑃) for all 𝑖 ∈ 𝑁. 
 
Also 𝜎 ( )(𝑤 ) = (𝑞 𝑞 𝑞 … … ) ∈ 𝑄, 𝜎 ( )(𝑤 ) ∈ 𝜎 ( )(𝑃) imply that 

𝜎 ( )(𝑃) ∩ 𝑄 ≠ ∅,  ∀ 𝑖 ≥ 2. So, 𝜎 (𝑃) ∩ 𝑄 ≠ ∅, for all 𝑛 ≥ 𝑘. 

 

Hence, 𝜎  is topologically mixing. 

 
Theorem 5.3.3:  𝜎  is generically 𝛿-chaotic on ∑ with 𝛿 = 𝑑𝑖𝑎𝑚 ∑

𝑚
= 1. 

 

Proof: In theorem 5.3.2, it is proved that  𝜎  is topologically mixing on  ∑ . We know 

that a topologically mixing map which is continuous on a compact metric space is also 
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topologically weak mixing, so 𝜎  is topologically weak mixing. Using Proposition 

3.2.1, it follows that 𝜎  is generically 𝛿-chaotic on ∑  with 

 𝛿 = 𝑑𝑖𝑎𝑚 ∑
𝑚

= 1. 

 
Theorem 5.3.4: 𝜎 : ∑ → ∑  has chaotic dependence on initial conditions. 
 

Proof: Consider 𝑔 = (𝑔 𝑔 𝑔 … … ) be any point of  ∑ . Also, let 𝑃 be an open 

neighborhood of 𝑔. Since P is open, so ∃ an open ball 𝑄 ⊂ 𝑃 with radius 𝜀 > 0. Choose 

a large positive integer n such that  < 𝜀.  

 

(i) Consider 𝑢 = (𝑢 𝑢 … … … 𝑢 ) and 𝑣 = (𝑣 𝑣 … … … 𝑣 ) be two finite sequences 

then 𝑢𝑣 = 𝑢 𝑢 … … … 𝑢 𝑣 𝑣 … … … 𝑣 . Further, if we guess that 𝑇 𝑇 … … 𝑇  are 𝑝 

finite sequences then 𝑇 𝑇 … … 𝑇  can be defined in a similar way as above. 

 

(ii)  Let 𝑊(𝑢, 2𝑛 + 2) = (𝑢 𝑢 … … … 𝑢 𝑢 𝑢 … … … 𝑢 ), 
 
𝑊(𝑢, 2𝑛 + 4) = (𝑢 𝑢 … … … 𝑢 𝑢 𝑢 … … … 𝑢 ), 
 
𝑊(𝑢, 2𝑛 + 6) = (𝑢 𝑢 … … 𝑢 𝑢 𝑢 … … … 𝑢 ), and 

so on. 

Note that for 𝑘 > 0, 𝑊(𝑢, 2𝑛 + 𝑘)is a finite string of length (2𝑛 + 𝑘). 

 

(iii)  We take 𝑡 ∈ ∑
𝑚

 such that, 

𝑡 = (𝑢 𝑢 … … … 𝑢  𝑊(𝑢, 2𝑛 + 2)𝑊(𝑢, 2𝑛 + 4)𝑊(𝑢, 2𝑛 + 6) … … … … … ). 

 

Using those three notations and Lemma 3.2.1 as above, we now prove the theorem. By 

making 𝑢 and 𝑡 agree up to 𝑢 . So, 𝑑(𝑢, 𝑡) < < 𝜀. Therefore 𝑡 ∈ 𝑄 ⇒ 𝑡 ∈ 𝑃. 

 

Now consider the following two cases, which are favorable to prove this theorem. 
 

Case I: We consider 𝑛 is an odd integer. 
 

Now 𝜎 (𝑢) = (𝑢 𝑢 … … … 𝑢 … … … ) and  
 
𝜎 (𝑡) = (𝑢 𝑢 … … … 𝑢 … … … ). 
 

Since 𝑡 formation of infinitely many finite sequences of the type 𝑊(𝑢, 2𝑛 + 𝑘). 

 So we get, 

 

𝐿𝑡 𝑖𝑛𝑓
→

𝑑(𝜎 (𝑢), 𝜎 (𝑡)) 

≤ 𝐿𝑡
→

𝑑((𝑢 𝑢 … … … 𝑢 … … ), (𝑢 𝑢 … … … 𝑢 … … ) 
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               ≤ 𝐿𝑡
→

( + +  … … … + ) 

  = 0 

 

So, 𝐿𝑡 𝑖𝑛𝑓
→

𝑑(𝜎 (𝑢), 𝜎 (𝑡)) = 0. …………………………………………..….(5.3.1) 

 
Similarly, 𝜎 (𝑢) = (𝑢 𝑢 … … … 𝑢 … … ) and 
 
𝜎 (𝑡) = (𝑢 𝑢 … … … 𝑢 … … ). 
 
Hence,   
 
𝐿𝑡 𝑠𝑢𝑝 

→
𝑑(𝜎 (𝑢), 𝜎 (𝑡)) 

    ≥ 𝐿𝑡
→

𝑑((𝑢 𝑢 … … … 𝑢 … … ), (𝑢 𝑢 … … … 𝑢 … … )) 

≥ 𝐿𝑡
→

( + +  … … … . . + )  

 =
1

𝑚 − 1
= 𝛿 > 0 

 

Hence 𝐿𝑡 𝑠𝑢𝑝 
→

𝑑 𝜎 (𝑠), 𝜎 (𝑡) ≥ 𝛿.  …………………………………………(5.3.2) 

 
Case II: Here 𝑛 is an even integer. 
 
Then 𝜎 (𝑢) = (𝑢 𝑢 … … … 𝑢 … … ) and 
 
𝜎 (𝑡) = (𝑢 𝑢 … … … 𝑢 … … ). 
 
In this situation, also 𝑡 consists of infinitely many finite sequences of the type 

𝑊(𝑢, 2𝑛 + 𝑘). 

So, we have 
 
𝐿𝑡 𝑖𝑛𝑓

→
𝑑(𝜎 (𝑢), 𝜎 (𝑡)) 

                           ≤ 𝐿𝑡
→

𝑑((𝑝 𝑝 … … … 𝑝 … … ), (𝑝 𝑝 … … … 𝑝 … … )) 

  ≤ 𝐿𝑡
→

( + +  … … … . . + ) 

  = 0 

 
Hence, 𝐿𝑡 𝑖𝑛𝑓

→
 𝑑(𝜎 (𝑢), 𝜎 (𝑡)) = 0.………………………….………………(5.3.3) 

 
Similarly, 𝜎 (𝑢) = (𝑢 𝑢 … … … 𝑢 … … ) and 
 
𝜎 (𝑡) = (𝑢 𝑢 … … … 𝑢 … … ). 
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So we get 
 

𝐿𝑡 𝑠𝑢𝑝 
→

𝑑(𝜎 (𝑢), 𝜎 (𝑡)) 

≥ 𝐿𝑡
→

𝑑((𝑢 𝑢 … … 𝑢 … … ), (𝑢 𝑢 … … 𝑢 … … )) 

 ≥ 𝐿𝑡
→

( + +  … … … + )  

           = = 𝛿 > 0  

 

Hence,  
𝐿𝑡 𝑠𝑢𝑝 

→
𝑑 𝜎 (𝑢), 𝜎 (𝑡) ≥ 𝛿 ….…………………………….……………….(5.3.4) 

 

By virtue of (5.3.1), (5.3.2), (5.3.3), (5.3.4) in the above two cases, we get  
 

𝐿𝑡 𝑖𝑛𝑓
→

𝑑(𝜎 (𝑝), 𝜎 (𝑡)) = 0 and 𝐿𝑡 𝑠𝑢𝑝 
→

𝑑 𝜎 (𝑠), 𝜎 (𝑡) ≥ 𝛿.………..…...(5.3.5) 

 

By virtue of (5.3.5), it is proved that the pair (𝑢, 𝑡) is Li-Yorke. Hence (∑
𝑚

, 𝜎 ) has 

chaotic dependence on initial conditions. 

 
The following example establishes that if any continuous map has strong sensitive 

dependence on initial conditions, then it has sensitive dependence on initial conditions, 

but the converse is not always true. 

 
Example 5.3.1 Let 𝑀: [−1,1] → [−1,1] be a map defined by  

𝑀(𝑥) =

⎩
⎪
⎨

⎪
⎧

8

7
𝑥 +

8

7
,    − 1 ≤ 𝑥 ≤ −

1

8

−8𝑥,                −
1

8
≤ 𝑥 ≤ 0

𝑥 ,                    0 ≤ 𝑥 ≤ 1

 

 

 

Figure 5.3.1: Function of 𝑀(𝑥) on the interval [-1,1] 

1.0 0.5 0.5 1.0
X

0.2

0.4

0.6

0.8

1.0

Y
Function Mx



 

P a g e  | 106 
 

 

The map defined above is continuous. It can be quickly shown that this map has 

sensitive dependence on initial conditions. We observe that the maximum distance 

between any two points of [-1,1] equals 2. If consider the point −  and 𝑈 = (0,1). 

Then ∃ no point 𝑦 ∈ 𝑈 such that 𝑑 𝑀 (𝑥), 𝑀 (𝑦) = 2, for any 𝑛 ≥ 0. Hence given 

map does not have strong sensitive dependence on initial conditions.   

 
The following theorem shows that the complemented shift map is topologically 

conjugate to the shift map.  

 

Theorem 5.3.5:  𝜎  and 𝜎 are conjugate topologically. 
 

Proof: Consider a map 𝑓: ∑ → ∑  by 𝑓(𝑎) = (𝑎 𝑎 𝑎 𝑎 … … ), where 

 𝑎 = (𝑎 𝑎 𝑎 … … ) is any point of ∑ . At first, we prove the continuity of the function 

𝑓. 

 

Let 𝑢 = (𝑢 𝑢 𝑢 … … ) and 𝑣 = (𝑣 𝑣 𝑣 … … ) be any points of ∑ , choose 𝜀 > 0 be 

arbitrary and an even integer n so large that < 𝜀 . 

 

Then 𝑑(𝑢, 𝑣) < 𝛿 =  

⇒ 𝑑 (𝑢 𝑢 𝑢 … … 𝑢 … ), (𝑣 𝑣 𝑣 … … 𝑣 … ) <
1

𝑚
 

⇒ 𝑢 = 𝑣  for 𝑖 = 0,1,2, … … . , 𝑛 using Lemma 3.2.1 

⇒ 𝑢 = 𝑣  for  𝑖 = 1,2, … … . , 𝑛 

⇒𝑑 (𝑢 𝑢 𝑢 𝑢 … … 𝑢 … ), (𝑣 𝑣 𝑣 𝑣 … … 𝑣 … )  

⇒ 𝑑 𝑓(𝑢), 𝑓(𝑣) <
1

𝑚
< 𝜀1 

 
which proves that on ∑ , our assuming map 𝑓: ∑

𝑚
→ ∑

𝑚
 is continuous. In the same 

way, we can show that the inverse of 𝑓 is also continuous.  

 

Next, we need to show that the map 𝑓: ∑
𝑚

→ ∑
𝑚

 is bijective. Consider 𝑓(𝑠) = 𝑓(𝑡), 

then we get (𝑢 𝑢 𝑢 𝑢 … … ) = (𝑣 𝑣 𝑣 𝑣 … … ).   

 

Hence  𝑢 = 𝑣 , for 𝑚 = 0,2,4, … … and 𝑢 = 𝑣 , for 𝑚 = 1,3,5, … …. So we get 

𝑢 = 𝑣  for al  𝑚 ≥ 0, that is 𝑢 = 𝑣,  which proves that 𝑓: ∑
𝑚

→ ∑
𝑚

 is injective. 
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To show that 𝑓 is a homomorphism, we are only to show that 𝑓 is surjective on ∑ . Let 

𝑏 = (𝑏 𝑏 𝑏 𝑏 … … ) be any point of ∑ . After that 𝑏∗ = (𝑏 𝑏 𝑏 𝑏 … … ) is a point of 

∑ , such that 𝑔(𝑏∗) = 𝑏. Hence the mapping 𝑓: ∑
𝑚

→ ∑
𝑚

 is surjective. Hence we 

conclude that the map 𝑓: ∑
𝑚

→ ∑
𝑚

 is a homomorphism. Now we try to show that the 

map 𝑓 is a conjugacy between 𝜎 and 𝜎 . 

 

Let 𝑢 = (𝑢 𝑢 𝑢 … … ) be the point defined as above.                                                               

Then    𝜎 ∘ 𝑓(𝑠) = 𝜎(𝑢 𝑢 𝑢 𝑢 … … ) = (𝑢 𝑢 𝑢 … … ).  

On the other hand, 

 we get 𝑓 ∘ 𝜎 (𝑠) = 𝑔(𝑠 𝑠 𝑠 … … ) = (𝑠 𝑠 𝑠 … … ). 

 

Hence 𝜎 ∘ 𝑓(𝑠) =  𝑓 ∘ 𝜎 (𝑠). So 𝜎  and 𝜎 are conjugate topologically. 

 

The discussion of transitive maps on compact spaces is extensively motivated. It is 

essential to know if some iterate exists that is not transitive for a transitive map. From 

the following example, we see that 𝐺 is not totally transitive, but it is transitive 

(topologically). 

 
Example 5.3.2 Consider 𝐺(𝑥) be a continuous map defined by 

 

𝐺(𝑥) =

⎩
⎪
⎨

⎪
⎧ 6𝑥 +

1

7
,                 0 ≤ 𝑥 ≤

1

7

−6𝑥 +
13

7
,                 

1

7
≤ 𝑥 ≤

2

7
1

5
−

1

5
𝑥 ,                    

2

7
≤ 𝑥 ≤ 1

 

 
 

  
Figure 5.3.2 (a): Function of G(x) acting on 
[0,1] 

Figure 5.3.2 (b): Function of 𝐺 (x) acting on 
[0,1] 
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Since G is transitive, it has an orbit dense in [0,1], and hence, the interval is the unique 

invariant compact with a non-empty interior. It can be spontaneously shown G is 

transitive (topologically) on [0,1], and we can find under 𝐺 , the subintervals 0, and 

, 1  are invariant. But the above map is not transitive (topologically) on [0,1]. Hence 

𝐺(𝑥) is not totally transitive. 

 
Problem 5.3.1: Prove that 𝜎 : ∑

𝑚
→ ∑

𝑚
 is chaotic. 

 

Solution: We have already proved that according to the definition of Devaney, it is 

chaotic, and we know that Devaney chaos implicates Li- Yorke. So 𝜎  is Li- Yorke 

chaotic. Now ⎾  is defined by,  

 

⎾ = 𝛼 01𝛼 𝛼 𝛼 𝛼 0011𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 000111 … … … …,  
 

∀𝛼 = (𝛼 𝛼 𝛼 … … … ) in ∑ , we can prove it directly. So in the symbol ∑ , 𝜎  is a 

strong chaotic map. Since the shift map is a chaotic model so now we can try to usage 

𝜎  in the position of 𝜎.  Hence for chaotic dynamical systems, we accomplish that 𝜎  

is a new model. 

 
5.4 Summary and Conclusion 
 

We have investigated in this work strong chaotic properties of 𝜎 . We have proved that 

𝜎  is 𝜔- chaotic in ∑  with some additional features. Since 𝜔- chaos is equivalent to 

chaos in the sense of Devaney, 𝜎  is Devaney chaotic. Hence it is also Li-Yorke chaotic, 

Devaney chaos is stronger than Li-York chaos.  It is also established that 𝜎  is generally 

𝛿-chaotic with 𝛿 = 𝑑𝑖𝑎𝑚(∑ ) = 1. Section 5.3 of this chapter provides an example of 

a continuous function with strong sensitive dependence on initial conditions, but the 

converse is not always true. We have found from Theorem 5.3.5, 𝜎 and 𝜎  are conjugate 

toplogically. In example 5.2.3, we have shown that if any continuous map has an dense 

orbit, so that map is transitive on given interval. But that map is not totally transitive. 

So, we can say that not all transitive maps are totally transitive, and not all chaotic maps 

are totally transitive. Finally, we proved that 𝜎  is chaotic. 

 

 

 

 



 

P a g e  | 109 
 

 

SUMMARY AND FUTURE WORK  

 
The vision of this thesis is to investigate some chaotic features of the generalized shift 

map and the complemented shift map. On shift of finite type, the implication is true but 

not the case on the unit interval. The study of chaotic behavior on shift of finite type 

has been done extensively in various approaches. This thesis is divided in five chapters 

to facilitate the completion of the research work. 

 

In the first chapter, dynamical systems and different types of chaos are briefly introduced. 

Various types of chaos as defined by mathematicians of the world are discussed. Different 

kind of chaotic maps and their chaotic behavior with changing values are also studied. 

Graphically, it is observed that the tent map is chaotic as the iterations increase. 

 

Basic concepts related to symbolic dynamics are presented in the second chapter. The 

basic definition of shift map, Cantor set, Cantor's middle-thirds set, Itineraries are 

presented. Symbolic dynamics for quadratic, logistic, and Smale’s Horseshoe are also 

explained. The action of the Smale’s horseshoe which is based on the Baker's map, the 

Bernoulli shift map has many periodic orbits that are countably infinite and many non-

periodic orbits that are uncountable. The dense orbit on ∑  is also shown. In the last 

section of this chapter, topological conjugacy for one-dimensional map is discussed. It 

is observed that the tent map, 𝑇  and the logistic map, 𝐹  are conjugate. The doubling 

map conjugate to logistic map is also found.  

 

Some important definitions which are helpful to prove chaotic properties are presented 

in the third chapter. Essential chaotic features of the shift map 𝜎 on ∑  is discussed in 

this chapter. Proximity theorem is established and based on this theorem, it is proved 

that shift map is topologically transitive, topologically mixing, and has sensitive 

dependence on initial conditions (SDIC). It is found that 𝜎 is 𝛿-chaotic on ∑  with 𝛿 =

𝑑𝑖𝑎𝑚(∑ ) = 1. Other important chaotic properties are proved, such as modified 

weakly chaotic dependence on initial conditions and chaotic dependence on initial 

conditions. The shift map is homeomorphism is proved. The fact that sequence space 

∑  is a Cantor set is shown. It is found that the shift map and 𝑓 (𝑢) = 𝑚𝑢(𝑚𝑜𝑑 1) 

are topologically semi-conjugated. The shift map is exact Devaney chaotic (EDevC), 

and that it is conjugate to the quadratic map is proved. 
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In this chapter four, some stronger chaotic features of the generalized shift map, 𝜎  is 

established. From example 4.3.2, it is found that chaotic functions are not necessarily 

topologically transitive.  

 

The chaoticity and related properties of the complemented shift map 𝜎  are studied in 

chapter five. A few essential chaotic properties of this map are discussed. That the 

complemented shift map, 𝜎  is generally 𝛿-chaotic with 𝛿 = 𝑑𝑖𝑎𝑚(∑ ) = 1 is 

established. It is proved that the shift map and complemented shift map are conjugate. 

Finally, it is found that the complemented shift map is chaotic. 

 

In the future, we will discuss several important applications of symbolic dynamics in 

the field of dynamical systems, such as Markov Partitions, homoclinic orbits, and 

topological entropy etc. We will use the generalized shift map and the complemented 

shift map as another models for chaotic dynamical systems. We will attempt to establish  

some chaotic models in the field of "Population Dynamics" considering some 

contemporary and interesting phenomena in nature. We are interested in showing their 

chaotic behaviors as they play an important role in the analysis of dynamical systems.    

 

Shift maps are proposed as a new framework to describe various geometric 

rearrangement problems that can be computed as a global optimization. Extending shift-

map to use multiple source images, as described in shift map composition, can also be 

used for inpainting. Input images can include transformations of the original input image 

like rotation, scaling, etc. The generation of the binary sequence using a modified 

chaotic sine map will be studied. The possibilities of using the generated binary 

sequence in the radar pulse compression technique will be explored. 
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APPENDIX 

 
Figure 1.5.1: 
 

f[x_]:=2x+1/2/;0x1/2 
f[x_]:=-2x+3/;1/2x1 
f[x_]:=2-x/;1x2 

𝐏𝐥𝐨𝐭[𝒇[𝒙], {𝒙, 𝟎, 𝟐}, 𝐀𝐱𝐞𝐬𝐋𝐚𝐛𝐞𝐥 → {"𝐗", "𝐘"}, 𝐏𝐥𝐨𝐭𝐋𝐚𝐛𝐞𝐥 → "𝐟(𝐱)", 𝐏𝐥𝐨𝐭𝐒𝐭𝐲𝐥𝐞

→ 𝐑𝐆𝐁𝐂𝐨𝐥𝐨𝐫[𝟏, 𝟎, 𝟎], 𝐃𝐢𝐬𝐩𝐥𝐚𝐲𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 → 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲 

 
Figure 1.5.2: 
 

recurrenceList[a_,x0_,n_:50]:=NestList[(a # (1-#))&,x0,n-
1] 
Module[{fns,colors},colors={Red,Yellow,Green,Blue,Lighter
[Purple,0.6]}; 
 
GraphicsGrid@Partition[Table[fns=Table[recurrenceList[a,x
][[n+1]],{n,1,5}]; 
    Plot[fns,{x,0,1},PlotStylecolors],{a,1,4}],2]] 

 
Figure 1.5.3: (Using MATLAB) 
 

clear 
rmin = input('rmin = ') 
rmax = input('rmax = ') 
xo = input('x0 = ') 
num = 100 
num2 = num/2; 
 
rmn = round(rmin*1000); %Matlab requires integer 
subscripts 
rmx = round(rmax*1000); 
rct = 0; %rct is a counter for the number of r-
valuesinterated 
for r = rmn:rmx 
x(1)=xo; %set initial condition--Matlab requires 
subscript > 0 
rdec = r/1000; % converts back to decimal r 
for n=2:num 
x(n)=rdec*(x(n-1))*(1-(x(n-1))); 
if n > num2 
ir = n+(num-2)*rct; %ir is a counter for total 
interations 
itx(ir) = x(n); %after the first num2 iterations 
rv(ir)=rdec; 
end 
end 



 

P a g e  | 112 
 

 

rct=rct+1; 
end 
 
plot(rv,itx,'.') 
axis([(rmin),ceil(rmax),0,1]) 
numitr = num2str(num); 
title(['Bifurcation Diagram for the Logistic Map with 
Interations = ',numitr]) 
 
Figure 1.5.4: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=1; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatio->1, PlotStyleRGBColor[1,0,0]] 

 
Figure 1.5.5: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=2; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatio->1, PlotStyleRGBColor[1,0,0]] 

 
Figure 1.5.6: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=3; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatio->1, PlotStyleRGBColor[1,0,0]]  

 
Figure 1.5.7: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=4; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatio->1, PlotStyleRGBColor[1,0,0]]  
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Figure 1.5.8: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=5; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatio->1, PlotStyleRGBColor[1,0,0]]  

 
Figure 1.5.9: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=6; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotStyleRGBColor[1,0,0], 
PlotRange-> {xmin,xmax},AspectRatio->1] 

 
Figure 1.5.10: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=7; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotStyleRGBColor[1,0,0], 
PlotRange-> {xmin,xmax},AspectRatio->1] 

 
Figure 1.5.11: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=8; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotStyleRGBColor[1,0,0], 
PlotRange-> {xmin,xmax},AspectRatio->1] 

 
Figure 1.5.12: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=9; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotStyleRGBColor[1,0,0], 
PlotRange-> {xmin,xmax},AspectRatio->1] 
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Figure 1.5.13: 
 

Clear[T,x]; 
T[x_]:=If[x<=.5,2x,2-2x]; 
xmin=0; 
xmax=1; 
NumberOfIterations=10; 
Plot[{Nest[T,x,NumberOfIterations],x},{x,xmin,xmax},PlotStyleRGBColor[1,0,0], 
PlotRange-> {xmin,xmax},AspectRatio->1] 

 
Figure: 2.5.8: 
 
Clear[T,x]; 
T[x_]:=If[x.5,3x,3-3x]; 
xmin=0; 
xmax=1.5; 
NumberOfIterations=1; 
Plot[Nest[T,x,NumberOfIterations],{x,xmin,xmax},PlotRange
{xmin,xmax},AspectRatio1, PlotLabel"Cantor Tent 
Map",AxesLabel{"x","y"}, PlotStyleRGBColor[1,0,0]] 

 
Figure: 2.5.9: 
 
Clear[T,x]; 
T[x_]:=If[x.5,3x,3-3x]; 
xmin=0; 
xmax=1.5; 
NumberOfIterations=2; 
Plot[Nest[T,x,NumberOfIterations],{x,xmin,xmax},PlotRange
{xmin,xmax},AspectRatio1, PlotLabel"Cantor Tent Map", 
BaseStyle{FontWeight"Bold", 
FointSize14},PlotStyleRGBColor[1,0,0],AxesLabel{"x","y
"}] 

 
Figure 2.5.13: 
 

Clear[𝑇, 𝑥] 

T[x_]:=3x/;0x1/3 
T[x_]:=3x-1/;1/3x2/3 
T[x_]:=3x-2/;2/3x1 

Plot[𝑇[𝑥], {𝑥, 0,1}, AxesLabel → {"X", "Y"}, DisplayFunction → Identity, PlotStyle

→ RGBColor[1,0,0]] 
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Figure 3.3.1:  
 
 

J[x_]:=11/10(x+1)/;-1x-1/11 
J[x_]:=-11x/;-1/11x0 
J[x_]:=x/;0x1 

Plot[𝐽[𝑥], {𝑥, −1,1}, AxesLabel → {"X", "Y"}, PlotStyle

→ RGBColor[1,0,1], DisplayFunction → Identity, PlotLabel

→ "Function J(x)"] 

 
Figure 5.3.1: 
 

M[x_]:=8/7x+8/7/;-1x-1/8 
M[x_]:=-8x/;-1/8x0 
M[x_]:=x/;0x1 

Plot[𝑀[𝑥], {𝑥, −1,1}, AxesLabel → {"X", "Y"}, PlotStyle

→ RGBColor[1,0,0], DisplayFunction → Identity, PlotLabel

→ "Function M(x)"] 

 
Figure 5.3.2 (a): 
 

Clear[G,x]; 
G[x_]:=6x+1/7/;0x1/7 
G[x_]:=-6x+13/7/;1/7x2/7 
G[x_]:=-1/5x+1/5/;2/7x1 
 xmin=0; 
 xmax=1; 
 NumberOfIterations=1; 
 Plot[{Nest[G,x,NumberOfIterations]},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatioAutomatic,  PlotLabel"Graoh of G(x)", 
AxesLabel{"X","Y"},PlotStyleRGBColor[1,0,1]] 

 
Figure 5.3.2 (b): 
 

Clear[G,x]; 
G[x_]:=6x+1/7/;0x1/7 
G[x_]:=-6x+13/7/;1/7x2/7 
G[x_]:=-1/5x+1/5/;2/7x1 
 xmin=0; 
 xmax=1; 
 NumberOfIterations=2; 
 Plot[{Nest[G,x,NumberOfIterations]},{x,xmin,xmax},PlotRange-> 
{xmin,xmax},AspectRatioAutomatic,  PlotLabel"Graoh of 2nd iteration of G(x)", 
AxesLabel{"X","Y"},PlotStyleRGBColor[1,0,1]] 
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