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Abstract

Mobile Device Cloud (MDC) is a collaborative mobile cloud computing platform

in which neighboring smart devices form an alliance of shared resources to mitigate

resource-scarcity of an individual user device. It unfolds an improved computing

opportunity for hand-held mobile devices to run compute-intensive applications like

visual text translation, face recognition, augmented reality, and real-time health

monitoring etc. exploiting code offloading mechanism. However, the sustainability

of such a distributed platform depends on spontaneous participation of the in-

volved mobile devices, i.e., resource-requester (buyer) and resource-provider (seller

or worker). A fundamental challenge in such a resource-trading system is the se-

lection of reliable worker mobile devices that enhances the computation quality

of user applications. Moreover, participation of the worker mobile devices greatly

depends on their compensations provided for the used resources. In this thesis, we

focus on incentivizing mobile worker devices based on their task execution qualities

to materialize a sustainable MDC system.

Selection of worker mobile devices for task offloading imposes great research

challenges including computation quality and worker reliability. Unfortunately,

these two performance parameters often oppose each other. In this thesis, we first

develop an optimization framework that trades-off in between application execution

i
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Abstract ii

speedup and reliability while maintaining device energy within a predefined range.

We also design an algorithm for developing a dependency tree among the modules of

a software application so as to allow higher number of parallel executions, wherever

and whenever it is possible. The emulation results of the proposed algorithm

outperform the relevant state-of-the-art works in terms of application completion

time, communication latency and rescheduling overhead.

The second contribution of this thesis is to maximize user Quality-of-Experience

(QoE) at minimum cost while providing attractive incentives to mobile worker

devices. In literature works, mobile devices are assumed either to take part in

execution voluntarily or aim to optimize one objective parameter (quality or cost)

only. In this thesis, the aforementioned challenging problem is formulated as a

multi-objective linear programming (MOLP) optimization function that exploits

reverse-auction bidding policy. Practical application scenarios have been considered

to trade-off between the cost and quality of execution. Due to NP-hardness of the

MOLP, we offer two greedy worker selection algorithms for maximizing user QoE

and minimizing execution cost. In both the algorithms, the amount of incentive

awarded to a worker is determined following the QoE offered to a user. Theoretical

proofs on holding desirable properties of the proposed incentive mechanisms have

been presented. Simulation results depict effectiveness of our incentive algorithms

compared to the state-of-the-art approaches.
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Chapter 1
Introduction

1.1 Introduction

The emergence of portable and wearable devices has increased the usage of mobile

applications dramatically over the last few years. A recent study shows that around

195 billion applications were downloaded in 2018 which is projected to grow to 298

billion by 2023 giving a 52 % increase in just five years (Figure 1.1 (a) [1]). At

the same time, the projected revenue from these applications will increase from

365 billion to 935 billion USD accelerating a 155 % increase as shown in Figure 1.1

(b) [1]. Now a days, the usage of mobile devices have gone beyond simple con-

nectivity and the offered services require more complex processing. These include

compute-intensive applications like speech recognition to aid in identifying snippets

of audio or identifying objects from a set of images, reality augmentation to im-

prove our daily living, collaborative sensing and monitoring to assist in distributed

decision making and coordination, possibly in real-time [2, 3, 4, 5].

Over the last few years, there has been a significant advancement in the sophis-

tication of mobile computing applications. Two key factors have been made this

possible. Firstly, the processing and storage capability of portable mobile devices

like smartphone, tablet, and wearable devices has been significantly improved in

1
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Figure 1.1: Mobile application downloads and revenue

every generation. Although energy constraint is still a burden for mobile devices,

smart power management technologies have been introduced to enable longer-lived

computation facilities in mobile devices. Secondly, the communication technology

has been improved significantly offering diverse connectivity options with higher

data rate for the mobile devices and enabled remote processing and execution of

applications [6]. However, mobile devices still have stringent resource constraints

like low CPU power, insufficient memory and storage size, limited bandwidth and

limited battery power. As a result, execution of these applications on mobile de-

vices, most of the time, is not feasible for various issues including delay, energy,

reliability, etc [7, 8]. These issues have been addressed by many researchers with a

general solution called Mobile Cloud Computing (MCC). The MCC utilizes code

offloading mechanism to partition and offload computationally intensive and stor-

age demanding tasks to a remote server with vast computational resources (i.e.,

cloud, cloudlet). Code offloading is proven to reduce the response time and en-

ergy consumption of mobile applications to overcome resource scarcities of mobile
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1.1 INTRODUCTION 3

devices [9, 10, 11, 12, 13].

The Mobile Device Cloud (MDC) is a form of MCC where compute-intensive

application tasks are offloaded to nearby mobile devices and these devices collec-

tively act as a cloud server to execute the application tasks on behalf of the mobile

device [6, 14, 15, 16, 17, 18]. The key philosophy of this MDC technology is to

exploit the underutilized resources of nearby mobile devices. Since executors in

MDC are located closer to the initiators, the energy consumption, communication

latency or response delay have been reduced significantly compared to cloud based

solutions.

To execute an application in an MDC system, a major challenge is to select

reliable devices while minimizing execution time due to mobility and heterogeneous

computation capacity of the mobile devices [16, 19]. Moreover, amount of energy

available at a mobile device and its received signal strength also impact greatly

on the reliable execution of a task [20, 21]. Considering these observations, this

research aims to develop a system that optimally allocates offloaded codes to the

members of MDC. The main target is to minimize execution time with the most

reliable devices considering the device specific parameters like mobility, available

energy, signal strength, computing capacity and application specific parameter like

module dependency.

Voluntary task execution might impose a major challenge on the sustainability

of an MDC system due to lack of participation of worker mobile devices. More-

over, bandwidth charges and limited resources further demotivate the workers in

participating task execution in MDC [15, 22]. For this reason, to design a sus-

tainable MDC technology, incentivizing the workers is essential in addition to the

compensation of the used resources. Considering these observations, we extend our
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1.2 CODE OFFLOADING 4

research to develop a Quality-of-Experience (QoE) aware incentive mechanism for

workers in an MDC system to maximize the user QoE and minimize the execution

cost.

The rest of the chapter is organized as follows. An introduction to the state-

of-the-art code offloading technologies are presented in section 1.2. An overview

of Mobile Device Cloud including its applications and challenges are described

in Section 1.3. The problem statement and the solution methodology have been

discussed in Section 1.4. Section 1.5 reflects the contributions of our research.

Finally, the thesis organization is presented in Section 1.6.

1.2 Code Offloading

Amobile device often meets a lot of entities capable of sharing its resources that cre-

ates an opportunity for remote computation in a mobile environment. Offloading to

these nearby devices, a mobile device can provide better execution performance in

addition to prolonging the battery lifetime. However, in addition to performance

gain and energy savings, the key questions for offloading decision are: where to

offload, which to offload and whom to offload? Addressing these questions to of-

fload application tasks in a remote server, researchers have exploited three different

mechanisms as illustrated in Fig. 1.2.

At the early stage of introducing concept of code offloading, the distant enter-

prise cloud is used for offloaded execution that are explored in [12, 13, 23, 24, 25,

26]. In this method, the mobile device or the remote cloud determines which por-

tion of the code is to be offloaded for execution in the cloud. An enterprise cloud or

cloud server contains a shared pool of configurable computing resources which are

provisioned dynamically to provide a ubiquitous, convenient, on-demand service to
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Offloading to 

Enterprise Cloud

Offloading to Cloudlet 

Offloading to 

Mobile Devices

Figure 1.2: Mobile application offloading technologies

a user. These cloud servers are owned and maintained by third party providers and

Internet access is a prerequisite to get services from these servers. Though the cloud

offloading technique significantly reduces the execution time, some real-time and

latency sensitive applications cannot tolerate it due to excessive communication

delay between cloud provider and mobile devices [16, 27].

The second category of code offloading strategies introduced cloudlets which are

smaller version of the enterprise cloud that contain limited amount of resource-rich

computation entities placed at different locations for executing offloaded program-

segments [28, 29, 30, 31, 32]. These cloudlet servers are located in public or commer-

cial places like coffee shops, bus terminals, markets, or airport lounge where people

gather together and spend some time. Since the cloudlets are in the vicinity of

mobile devices, the data transmission latency gets reduced significantly compared

to distant enterprise cloud environment. However, the performance of offloading to

cloudlet degrades significantly due to the increasing penetration of mobile devices

and contention between mobile devices under a single cloudlet, especially when

with limited resources [33].

To enhance the computation performance further, researchers introduced Mo-
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Smart PhonePDA Tablet Laptop

Figure 1.3: A mobile device cloud environment

bile Device Cloud (MDC) where compute-intensive application tasks are offloaded

to nearby mobile devices and these devices collectively act as a cloud server

to execute the application tasks on behalf of the mobile device (as shown in

Fig. 1.3) [16, 27, 34, 35, 36]. In the literature, this opportunistic computation

of application codes on nearby mobile devices is also known as Ad-hoc Mo-

bile Cloud [37, 38, 39] Dynamic Mobile Cloud [14, 40, 41] or Virtual Mobile

Cloud [13, 42]. The key philosophy of this MDC technology is to exploit the

underutilized resources of nearby mobile devices. Since executors in MDC are lo-

cated closer to the initiators, the energy consumption, communication latency or

response delay have been reduced significantly compared to cloud based solutions.
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1.3 An Overview of Mobile Device Cloud

Almost at everywhere, we are surrounded with a plethora of mobile devices either

in large scale stationary place (i.e. stadium, shopping center, restaurants or Movie

Theater) or during travelling by bus, launch, train and on air (Fig. 1.4). Though the

devices are mobile, collectively they become stationary in the context of onboard

vehicle or at the situated place. In such cases, collaboration among these stationary

mobile devices may unfold improve computing opportunities for running resource

hungry applications.

Airplane/ 

Airport Lounge

MDC

Movie Theater 

Bus/

Bus Station

Train/

Train Station

Shopping Mall Restaurant 

Figure 1.4: Opportunistic environment for mobile device cloud

The main essence of MDC technology is to exploit the unutilized resources of

nearby hand-held smart devices to fulfill the demand of a resource-constraint de-

vice [43, 44, 45]. The inclusion of diverse smart applications demanding high com-

putation with low latency, the mandate of such collaborative computation technolo-

gies is increasing day by day [16, 21]. Some of the key benefits of MDC technology

are highlighted as follows:

� Increased battery lifetime: Available energy of a device is one of the key
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concerns while executing an application in a mobile device. Due to mobility,

such kind of battery powered device always seeks for offloading facility with

minimum energy consumption. Distant cloud based offloading mechanism

consumes a significant amount of energy power for the communication. Due

to proximity of the mobile devices, MDC offloading significantly reduces the

communication latency resulting a lower energy consumption compared to

other offloading strategies.

� Enhanced execution quality: In context of device resource capacity, a mobile

device tries to find an offloading solution for two reasons: 1) if the device

doesn’t contain the necessary resource to execute the application or 2) the

device wants a higher execution quality compared to its local execution. In

both cases, MDC system might be capable of executing the application with

desired quality, resulting in a better quality-of-experience (QoE) for the user

device.

� Increased resource utilization: In MDC, the unused resources of mobile de-

vices are shared with resource-constrained devices to execute their applica-

tions. Such kind of resource sharing facilitates efficient utilization of idle

resources while enabling execution of applications beyond the resource capa-

bility of a mobile device.

1.3.1 Applications of MDC

The development of MDC was motivated from parallel and distributed computation

of applications in wireless Adhoc networks. The emergence of MDC has expedited

the growth of a broad variety of distributed applications on a large scale in recent
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(a) Real-time text translation (b) Natural language processing

(c) Emergency disaster response (d) Real-time healthcare data processing

Figure 1.5: Applications of mobile device cloud

years. The following areas are major categories of MDC applications.

� Real-time text translation: Real-time text translation is a typical area

amongst the many possible applications of MDC system. For example, con-

sider a tourist traveling in a foreign country by train as shown in Figure 1.5

(a). To spend his leisure period he starts to watch a movie. Unfortunately,

the subtitle of movie is not native to the tourist. Though his movie player

has a text translation software to translate the text in his native language,
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he becomes unable to run it with his available battery power and computing

resources. To get rid of this problem, he initiates an application that creates

an MDC environment where the subtitle text is transferred to the nearby

devices and each device translates part of the text [41].

� Natural language processing: Recent research has increasingly focused on

natural language processing applications that has made the communication

much easier compared to any other times. Though these applications require

a large amount of computation resources, real-time processing of such ap-

plications can be supported by the shareable resources of an MDC system.

Consider a student attending a conference where speakers from different coun-

tries have come to deliver talks on their research results. Unfortunately, the

speakers are delivering speeches in their native languages which the student

cannot understand. Though the student has a speech recognition and synthe-

sis application in his cellphone, he cannot use it due to lack of computational

resource and/or battery power. To solve this problem, he may initiate an

MDC system and use the computational resources of other attendees in the

seminar room as shown in Figure 1.5 (b) [46].

� Emergency disaster responses: Search and rescue of the inhabitants after a

natural disaster like earthquake, flood, tsunami, and landslide become almost

impossible due to lack of communication infrastructure. In such emergency

situations, MDC system can be deployed to coordinate the search and rescue

of different relief groups. For example, consider a search and rescue operation

where several people are missing after a natural disaster as shown in Figure 1.5

(c). Relatives have gathered in the rescue center with photographs of the

missing persons. The matching of such huge amount of images cannot be done
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in a local device as the device is not equipped with enough resource to process

such tasks. On the other hand, due to lack of infrastructure the images

cannot be transferred to a centralized server. To solve this problem, the

relief workers may create an MDC infrastructure using their mobile devices

and collaboratively process individual images to identify a person [3, 47, 48].

� Real-time healthcare data processing: The health-care facilities provided to

the citizens act as one of the key metrics to measure the prosperity of a

nation. The health-care applications are always seeking for more powerful

and efficient mechanisms to deliver on-time support to the emergency patients

with the best care and pleasant services. The MDC system can be utilized

to collect healthcare data of patients and diagnose in real-time to monitor

and track their activities which can significantly reduce the casualty rate of

emergency patients (Figure 1.5 (d)) [49, 50].

� Reality augmentation: With the help of computer vision and object recog-

nition, smartphone applications can now imitate natural environments or

situations which is known as augmented reality. Execution of such compu-

tation intensive applications can also take support from the nearby devices

to process these virtual objects whenever necessary in the form of an MDC

environment [51, 52].

� Tactical networks: Tactical networks mainly depend on collaborative pro-

cessing of battlefield data where infrastructure based services cannot be in-

stalled. The MDC system can be a solution to provide such a collaborative

environment to facilitate execution of Military applications like identification

of objects, monitoring and sensing of targets, etc [53].
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1.3.2 Challenges of Code Offloading in MDC

In a study, the authors show that, most of the time mobile devices stay in idle state

whereas other devices can’t afford to execute large applications by their limited

processing powers [11]. It becomes impossible due to the limited computation

capacity of mobile devices to execute real-time multimedia applications. To do so,

we can aggregate the idle computation power of the nearby mobile devices under

an MDC to execute a compute intensive application. However, the MDC itself

issues several challenges including determination of portion of code to be offloaded

and where to offload, maintenance of connectivity among mobile devices, assurance

of device availability in terms of minimum battery energy, etc. This challenge is

extended further if the application expects execution with reliable devices having

heterogeneous computation capacity to minimize execution time. Moreover, the

amount of energy available at user device and its signal strength greatly impact

on the reliable execution of a task. The following subsections explain the key

challenges of code offloading in MDC environment.

1.3.2.1 Resource heterogeneity

Offloading an application primarily depends on the shareable amount of resources

availability at nearby mobile devices. These resources include mostly CPU for pro-

cessing and RAM for temporary storage of application codes. Now a days, mobile

devices are equipped with rich computational resources, though these resources

greatly vary from one device to another. For this reason, selection of an appro-

priate mobile device among these heterogeneous computation entities to execute

application tasks imposes a major challenge in making offloading decisions [54].
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1.3.2.2 Task interdependency

In code offloading, an application is apportioned into a set of modules which are

known as tasks. The key philosophy of this apportion is to enable parallel exe-

cution to minimize the execution time of an application [55]. Though the tasks

are independently executable, their execution may be dependent on producing the

execution result of other tasks. In such cases, scheduling of a child task before

the parent task may adversely affect the overall execution result of an application.

For this reason, estimation of interdependency and maintaining the dependencies

among the tasks imposes another challenge in scheduling of application tasks.

1.3.2.3 Application deadline

Deadline defines the maximum allowable time to execute an application including

the communication latency. While offloading an application to nearby devices, a

primary objective is to execute the application with a lower execution time com-

pared to the local device. Moreover, time-sensitive applications expect the exe-

cution result within a maximum tolerable delay. In such situations, application

deadline plays a key role in selection of the mobile devices so that the execution

results can be provided to the user device within the allowable deadline [41].

1.3.2.4 Energy-critical user device

One of the key reasons of code offloading is the lack of having sufficient energy

in a mobile device. The key philosophy of MDC is to exploit idle resource of

nearby devices without exhausting their battery powers. If a device drains out

of its battery power for executing offloaded codes then the mobile device will not

be able to provide basic services to its user. For this reason, available energy of
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a mobile device put restriction on the selection of a mobile device to execute an

offloaded task.

1.3.2.5 Lack of compensation for mobile users

In the emerging industry 4.0, MDC is becoming one of the key contributors that

will be used for the collection and processing of data from different disruptive tech-

nologies like IoT, AI, Robotics, Cloud Computing, and Virtual reality applications

[56, 57]. Execution performance of an offloaded application greatly varies with the

number of participated devices as well as their resource capacity. Participation

of more number of devices increases the chance of having execution with higher

quality. Lack of a compensation of the used resources (Bandwidth charges, CPU,

RAM) might demotivate the owner of mobile devices to perform task execution in

MDC [15, 58]. However, to make such a collaborative technology sustainable, the

collaborative participation of nearby mobile worker devices is a prerequisite.

1.4 Problem Description and Solution Methods

In this section, we briefly explain the problem addressed in this dissertation and

key philosophy of solution methodologies.

1.4.1 Dissertation Problem

To execute an application in MDC system, the most fundamental challenge is to

select suitable worker devices. Finding a set of qualified and reliable workers is

the prerequisite to execute an offloaded application and thus to meet the user re-

quirements. Large applications are partitioned into a set of tasks to make them
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executable on MDC. A task is executed either on MDC or local device to minimize

energy consumption, response time, data transmission time exploiting idle com-

puting resources. In the literature, code offloading mechanism can be classified in

two dimensions based on the payment of the worker devices:

� Voluntary task execution in MDC: In voluntary task execution approach, the

key philosophy is to execute the tasks of an application with the voluntary

participation of nearby mobile devices. In this approach, the main focus

is to minimize the application execution time through parallel execution of

individual tasks [16, 21, 27, 34, 41]. This strategy neither focuses on the

reliability of worker devices nor provides any compensation to them for the

used resources.

� Paid task execution in MDC: In this approach, a user offloads an application

to nearby worker devices with a fixed budget. The worker devices contends for

their interested tasks with an approximate cost of their shared resources [22,

58, 59, 60]. In this approach, the key philosophy is to minimize the task

execution time while making the minimum expenditure.

1.4.1.1 Scope of the work

In MDC system, worker device selection plays a pivotal role in the successful exe-

cution of an application. Nearby devices with high computing resources may often

not provide services with good reliability, and vice-versa. As MDC is an emerg-

ing technology, numerous researchers are working on this fundamental challenge of

task allocation on worker devices to minimize execution time. However, a number

of related key factors including selection of offloadable tasks, dependency among

tasks were not considered in scheduling tasks [16, 27, 34]. Similarly, only a few
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of the worker related parameters were considered including associativity time, rep-

utation, available energy, and resource capacity while assigning tasks to worker

devices [16, 21, 41]. However, for successful execution of an application with better

performance all the above mentioned parameters need to be addressed jointly.

In addition to this, such a voluntary-based task execution faces sustainabil-

ity problem due to lack of participation of reliable workers with rich computation

capability. Bandwidth charges and limited resources also demotivate the workers

further in participating task execution in MDC. To execute an application with

guaranteed service, a payment should be provided based on the execution ser-

vice [22, 58, 59, 60].

In this thesis, we aim to develop an MDC framework to facilitate collabora-

tive computation of an application utilizing the idle resources of nearby mobile

devices [61, 62]. Considering the sustainability of the technology, we focus on

designing a payment system based on the execution result of the tasks to compen-

sate the used resources and increasing the participation. To promote high quality

execution from workers, we would like to introduce incentive as a reward in ad-

dition to their regular payment [63]. The detail discussion on the development of

code offloading framework for task assignment and incentive algorithms for worker

payment are given in Chapter 3 and Chapter 4.

1.4.1.2 Research objectives and motivation

The research objectives and motivation towards the proposed MDC system are

described in the following sections.

� Enhanced user-quality-of-experience (QoE): The expectation toward offload-

ing an application is to enhance the user-QoE with minimum cost. The
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user-QoE is defined as the improvement of execution performance observed

by a user for running an application in MDC. However, it is observed that the

quality and the cost hold an inverse relationship, i.e., increasing the execu-

tion quality demands selection of workers with rich computation resources; on

the other hand, the selection of high computation resources demands higher

payoffs, resulting in higher execution cost. Therefore, an efficient tradeoff is

needed to address both the parameters so that we can optimize the cost while

preserving the required quality or vice-versa.

� Reliable task execution: To execute the tasks of an offloaded application, the

selection of worker devices considers resource capacity and the reliability of

a worker device. The trustworthiness of a worker device plays an important

role in the successful execution of an offloaded application. The selection of

a felonious worker may result in a failed execution of a task due to falsified

advertisement of resources that induces resubmission of the task. Such kind

of resubmission decreases the quality of an execution that inherently ham-

pers the satisfaction of a user. Our proposed MDC system takes account

of such felonious activities during task allocation to reduce the amount of

resubmission resulting in better user satisfaction.

� Utilizing idle resources: MDC based offloading facilitates better usage of

idle resources of the nearby worker devices. However, a worker device may

be interested to share a partial amount of resources for offloading service.

Moreover, a worker device could be involved in executing tasks of multiple

applications from different users. For this reason, a task can be offloaded

to a worker device based on its available resource capacity. To address the

aforementioned specification, in our proposed system, we have taken account
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of the maximum resource capacity of a worker device in assigning a task.

� Cost minimization: A primary concern of the MDC system is to motivate

mobile devices to participate as workers through resource sharing. To in-

crease participation, such a method of motivation is to implement a payoff

for the shared resources. Conventionally, a user always attempts to execute

an application with possible minimum cost while a worker will try to maxi-

mize its profit. Hence, the system should be able to produce a competitive

environment to minimize the overall cost while providing attractive incentives

in executing an application.

� System sustainability: Sustainability is defined as the constant existence of

an application or a system despite all the adverse environment. The MDC

technology produces an environment that enables mobile devices to share

their idle resources in executing application tasks of other users. As the tech-

nology is fully dependent on the availability of shared resources offered by the

nearby mobile devices, a prime concern is the sustainability of the technology.

Increasing participation of adequate number of devices can highly improve

the system performance. For this reason, the development of a mechanism is

essential to invite more workers in the system facilitating better utilization of

resources that would inherently increase the sustainability of the technology.

1.4.1.3 Coordination in offloading

In MDC, an offloaded execution consists of a series of activities including apportion

of tasks, selection of worker mobile devices, scheduling of tasks according to depen-

dency, accumulation and sending the result back to the user device, etc. Such kind

of activities contain complex processing and require both high computation and
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energy. Running this decision making algorithm on the user device might avert the

gain of the overall process. For this reason, a resource-rich computation entity is

introduced to facilitate smooth trading of the resources. To serve the purpose, in

this work, we assume a cloudlet, which is a resource-rich computation unit equipped

with line power supply and stays close to users, making it suitable to execute the

decision algorithm within a short period.

1.4.2 Solution Methodology

In this section, we describe our proposed architecture and computational framework

to execute an application in MDC environment.

1.4.2.1 Code offloading architecture in MDC

Usually, computation-intensive applications are hard to execute on mobile devices

and if executed on the mobile devices the batteries drain out quickly as it requires

a large number of CPU cycles. If the application is apportioned into different

tasks and offloaded to nearby cloudlets or other mobile devices, then the whole

application can be executed in much less time while saving a considerable amount

of energy. To facilitate the collaborative execution of different tasks we provide

an architecture which is shown in Figure 1.6, where several mobile devices are

connected through a wireless interface (Wi-Fi). It is a two-tier architecture with

user and worker mobile devices at tier one and cloudlet at tier two. The user device

has a compute-intensive application to execute but is unable to execute it due to

constrained resources. So, it communicates with the cloudlet at tier two to make

an offloaded execution of the application. The cloudlet then communicates with

the connected worker devices and selects the appropriate devices to distribute the
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apportioned tasks of the application for execution. The cloudlet coordinates the

distribution of tasks to worker devices, accumulation and sending the result back

to the user device.

User Workers

Cloudlet

Figure 1.6: Code offloading architecture for MDC

1.4.2.2 Framework of proposed MDC system

In this dissertation, we develop a computation framework for the smooth operation

of different entities to execute an offloaded application. The developed framework

employs three major components to collect and distribute apportioned tasks to

individual workers. Figure 1.7 shows the basic framework and the interaction

among different entities of our proposed system. At first, we develop a voluntary

execution service where the tasks are executed without any payment or benefit. The

proposed task-worker allocation algorithm optimally assigns tasks that speed up

the computation through reliable worker devices. Later, a payment mechanism has

been devised that motivates high-quality workers to participate in sharing resources

for executing offloaded tasks. To increase the task execution quality an incentive

mechanism has been adopted that provides additional payment as incentives to
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qualified execution. Such kind of incentive mechanism enhances the user quality-

of-experience and creates a win-win situation both for users and workers which is

essential for the sustainability of the technology.
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Figure 1.7: Framework of the proposed mechanism

1.4.2.3 Optimization of the Framework

Code Offloading in MDC poses challenges that address novel modeling and opti-

mization concepts in the selection of worker devices (i) to enhance the task execu-

tion quality, (ii) to increase the reliability in task execution, (iii) to minimize the

execution cost, and (iv) to incentivize the worker devices for high-quality execu-

tion. The key philosophy of this work is to enhance the task execution quality with

reliable worker devices while minimizing the task execution cost. In this thesis,

the problem has been addressed as a multi-objective optimization since the goal of
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the problem is to find an optimal solution from a set of conflicting objectives and

hence we need a tradeoff between them.

1.5 Contributions of This Thesis

The MDC is a virtual cloud technology that is created opportunistically with the

help of stationary mobile devices in a particular area. The sole purpose of this

technology is to utilize the idle resources in a collaborative execution environment

offered by resource-constrained devices. The system contains no fixed devices ex-

cept the cloudlet which monitors and administrates the activities of these devices.

Hence, in addition to computation resources, reliability, association period of these

devices plays an important role in disseminating application tasks to these devices.

In this thesis, we address quality and reliability aware worker selection problem to

execute a compute-intensive application in MDC. We explore the MDC platform

to design and develop a collaborative and distributed computing architecture to

execute a compute-intensive application with required quality and reliability. The

main philosophy of the work is to create a virtual cloud platform with the idle

computing resources of the nearby worker devices where the application tasks can

be scheduled in a non-overlapping manner to attain the desired quality of execu-

tion. This thesis also answers how can the worker devices be benefited for sharing

their resources in application execution. To do so, we aim to incentivize the worker

devices following their execution qualities in addition to their regular payment for

successful execution of application tasks.

The first contribution of this dissertation is to develop a code offloading frame-

work named TESAR for the MDC system where worker devices participate vol-

untarily in executing application tasks of a user [62]. We formulate an optimal



1.5 CONTRIBUTIONS OF THIS THESIS 23

function that assigns each task to a worker device intending to speed up the com-

putation and maximizing the reliability. The goal of the formulated mechanism

is to make a tradeoff between execution speedup and reliable execution of tasks

based on the application requirement. The objective function has been designed in

such a way that it can be used to maximize the reliability or computation speedup

or to make a tradeoff between these two. To conduct the experimentation, we

implement an emulation testbed using android platform that demonstrates that

our proposed TESAR system can significantly improve the application execution

performance compared to other state-of-the-art-works in terms of execution time,

communication latency, and rescheduling overhead.

To motivate the worker devices in sharing resources, in our second work, we em-

phasize to extend our proposed system to incorporate a payment mechanism for the

used resources of the workers. Focusing on this, we develop a QoE-aware incentive

mechanism for workers in an MDC system to maximize the user QoE and minimize

the execution cost. To facilitate resource trading, we employed a reverse auction

mechanism that allocates tasks of an application among the workers in the system.

Based on the bids of the workers, we formulate an optimization function with an

objective to minimize user cost and maximize the quality of the executed task. As

this formulation turns to be an NP-hard problem with the growing number of tasks

and worker devices, we develop two alternative greedy algorithms for maximizing

the user QoE and minimizing the execution cost respectively. In contrast to regular

payment mechanisms, we incentivize the worker devices based on their execution

quality in addition to their bid amount. The desirable properties of our proposed

incentive mechanisms have been proven theoretically. For numerical analysis, we

conducted simulation in MATLAB that depicts the effectiveness of our proposed
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algorithms with state-of-the-art-works in terms of user QoE, cost and satisfaction.

1.6 Organization of This Thesis

The outline of the thesis is as follows. In Chapter 2, we overview state-of-the-

art task execution mechanisms in MDC and discuss the motivation of this work.

In Chapter 3, we develop a voluntary task execution mechanism to speed up the

computation in MDC. Further improvement on user QoE is explored through ex-

ploiting incentive mechanisms for offering qualified execution in Chapter 4. Finally,

we conclude the thesis in Chapter 5 by summarizing the findings in the thesis and

describing avenues of possible extensions to this work.



Chapter 2
Literature Review

In this chapter, we overview necessary background studies for task execution in

MDC system. We also discuss the state-of-the-art incentive mechanisms available

for worker devices in MDC system.

2.1 Introduction

A Mobile Device Cloud (MDC) comprises of a group of mobile devices that col-

lectively act as a cloud computing service provider. The computing resources of

these mobile devices are exploited to execute offloaded tasks of an application. The

shared idle resources create an opportunistic computing community that allows col-

laborative execution of compute-intensive application tasks [14, 16, 21]. Such type

of virtual cloud computing infrastructure plays a crucial role in situations with no

or weak connections to the Internet.

In recent years, MDC has become a major research area in mobile cloud com-

puting and has received immense interests from the research communities. The ap-

propriate selection of worker devices is the heart and foundation for the execution

of any offloaded task. Reliable execution of a task also closely impacts on the selec-

tion of worker devices. Besides, user QoE highly depends on the execution quality

25
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of a task. Moreover, offloading to MDC can provide monetary savings by avoiding

data charging costs while offering enhanced performance with reduced communica-

tion latency. Execution of tasks in MDC can be categorized into two strategies: 1)

voluntary task execution and 2) paid task execution. In a voluntary task execution

approach, resources of nearby mobile devices are shared free of cost for the collabo-

rative execution of a compute-intensive application [16, 21, 27, 34, 41, 64, 65, 66, 67].

In return for the service, no benefit is offered to the worker mobile devices. On

the other hand, in the paid task execution approach, worker mobile devices are

offered with a handsome amount as compensation of the shared resources used for

executing application tasks of a user [15, 22, 58, 59, 60, 68, 69, 70, 71]. The main

motivation towards offering this payment is to increase participation of worker

devices for sharing idle resources.

Since the inception of the MDC mechanism, a good number of researches has

been performed to find appropriate worker devices for the execution of offloaded

tasks. In the literature, the primary focus of these approaches concentrated on

minimizing the execution time of application tasks to speed up computation per-

formance. To do so, user applications are apportioned into tasks and distributed

into different worker devices. Worker mobility, signal strength, and resource capac-

ity act as the key parameters in the selection of worker devices. The outcome of

these researches depicts that offloading tasks to nearby mobile devices can signifi-

cantly improve the application execution performance while prolonging the battery

lifetime of a user mobile device. However, the successful execution of tasks mostly

relies on the selection of reliable workers because a poor worker may significantly

hamper offloading performance. The selection of reliable workers for maximizing

task execution quality is yet to be well explored in the literature.
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Next, considering bandwidth charges and resource usage researchers empha-

sized designing a payment system as compensation of used resources and to mo-

tivate workers in sharing resources. In state-of-the-art-works, the key philosophy

of such a payment mechanism concentrated on either minimizing task execution

cost [22, 59] or maximizing profit of the worker devices [58, 60]. The selection of

the worker devices is governed by an auction mechanism where worker payment

is determined by the amount of resources used in the execution of tasks. How-

ever, these approaches still lack in identifying reliable workers to increase user QoE

for executing offloaded tasks. Moreover, in addition to a regular payment, worker

devices can be incentivized according to the quality of the executed task.

In this chapter, state-of-the-art works on the selection of worker devices in MDC

have been categorized based on different types of task execution strategies such as

voluntary or payment-based and are listed in Table 2.1 and Table 2.2, respectively.

The rest of the chapter is organized as follows. In section 2.2, we focus on

state-of-the-art-works that provide a solution for the execution of tasks with the

voluntary participation of worker devices. Section 2.3 studies state-of-the-art-works

on payment of the worker devices for the used resources of worker mobile devices

to maximize the user QoE. Finally, we summarize this chapter in Section 2.4.

2.2 Code Offloading in Cloud Computing

The advancement of computing, storage, and network technologies has enabled

the execution of diverse resource-hungry applications in a mobile device. Though

computational resources and application demand are thriving at a rapid pace, still

there exists a consistent resource constraint that inhibits to achieve a tangible per-

formance from a mobile device. Researchers exploited code offloading mechanism
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in which a resource-hungry application or a portion of that is migrated to a remote

server, having rich computation resources, to alleviate the resource constraints of

a mobile device. The key philosophy of code offloading technique is to speed up

computation and to reduce energy consumption. The following sections discretely

describes the state-of-the-art cloud-based code offloading strategies.

2.2.1 Code Offloading to Remote Cloud

In the preliminary state-of-the-art works [12, 13, 23, 25, 26, 72, 73, 74], researchers

used the remote cloud for offloading the computation. In [72], Chun et al. proposed

a flexible task partitioning system to migrate and execute part of a task in the

remote server. It used static analysis and dynamic profiling for partitioning tasks

to reduce execution time and energy usage.

To extend the battery lifetime of a mobile device, Huang et al. formulated a

Lyapunov optimization based dynamic offloading algorithm [12]. The algorithm

determines offloadable tasks of an application according to change in the wireless

environment while satisfying application delay deadline constraint.

Ra et al. proposed a runtime system named Odessa that supports mobile ap-

plications offloading tasks to the cloud [73]. They implemented a greedy offloading

algorithm based on task execution time which incrementally makes a decision to

offload each task in stages. Though Odessa is fast but it is far from optimal and

performs poorly when the network bandwidth is limited. Moreover, the offloading

decision for each task is made without the global view of the other tasks involved

in the application.

In [13], Yang et al. designed a framework to provide runtime support for the

dynamic computation partitioning and distributed execution of compute-intensive
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application tasks in remote cloud. A genetic algorithm was formulated to apportion

the application into atomic tasks. Later, Yang et al. addressed the partitioning

of application tasks between the cloud and mobile device and scheduling offload-

able tasks on a constrained amount of cloud resources to minimize the average

execution delay of latency sensitive applications [74]. The system also modeled a

performance resource-load (PRL) which is used to make an optimal tradeoff be-

tween the application performance and cost of the cloud resources. Though their

proposed mechanism significantly improved the throughput of task execution, their

implementation ignored the cloud service time which is not practical.

Considering the cloud service time, Jia et al. presented an online task offload-

ing algorithm to minimize completion time of tasks in a mobile application [23].

For sequential tasks, an optimal offloading algorithm was proposed whereas a load-

balancing heuristic was introduced for concurrent tasks that maximizes the paral-

lelism between the mobile and the cloud. However, their work failed to address the

dependency between the tasks in an application.

To execute compute-intensive applications in a wearable device, Cheng et al.

proposed a three-layer code offloading architecture consisting of wearable devices,

mobile devices, and a remote cloud where application tasks are transferred to mo-

bile device or remote cloud for offloaded execution [25]. They proposed a genetic

algorithm-based fast heuristic method to determine the maximum number of tasks

that can be executed on a wearable device within the tolerable delay deadline.

To offload tasks from a mobile device to a cloud server using 5G network, an

intelligent computation offloading system was proposed by Khoda et al. in [26]

that carried out tradeoff between energy savings and latency requirement of an ap-

plication. They used a Lagrange Multiplier to regulate the code offloading decision
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and a statistical regression based model to estimate execution time of a task more

accurately.

In the above offloading mechanisms, the main objective is to offload an appli-

cation or application tasks to a remote cloud that minimizes task execution time

and prolongs the battery lifetime of user mobile devices. However, such kind of of-

floading suffers a large communication latency due to cellular connectivity between

the mobile device and the remote cloud that averts the remote cloud execution

performance.

2.2.2 Code Offloading to Cloudlet

To minimize communication latency of remote cloud, Satyanarayanan et al. en-

visioned cloudlet, a trusted, resource-rich computation unit to execute offloaded

application tasks of mobile users [28]. The concept and ideas stated that cloudlets

can be exploited as an alternative to the remote cloud for serving tasks of multi-

ple applications from different users using the virtual machine (VM) technology.

The research also addressed promising prospects and key challenges towards the

deployment of this technology.

In [29], Jararweh et al. introduced a cloudlet-based code offloading mecha-

nism to reduce energy consumption and communication latency in mobile cloud

computing that takes into account the mobility and movement nature of a mobile

device. The experimental analysis showed that their proposed approach can signif-

icantly reduce energy consumption and communication latency while maintaining

the desired QoS.

Considering user mobility, real-time network performance and server loads, Li et

al. proposed a three-tier architecture including smartphones, cloudlets, and clouds
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to optimize the offloading decision [30]. They proposed a greedy search algorithm

to predict the mobility of users and an efficient Wi-Fi access point (AP) selection

method to determine appropriate AP for offloading application tasks.

Mahmud et al. developed a multi-objective nonlinear programming solution to

execute context-aware application software in a local cloudlet [32]. The main ob-

jective of the proposed QoE and context-aware scheduling method was to maximize

user QoE and application execution success rate.

In [75, 76], Jin et al. studied resource sharing for cloudlet in mobile cloud

computing, and designed efficient auction mechanisms to guarantee the truthfulness

of the bidders. The proposed schemes conduct well for homogeneous systems,

where the amount of resources required by each buyer is the same as the amount

of resources available at each seller. Moreover, their works restrict the one-to-

one resource trading mode, which omits the fact that the resource-rich seller (i.e.,

mobile device) can support multiple buyers of resources in a practical mobile cloud

system.

From the above discussion, it is evident that cloudlet execution can significantly

reduce the communication latency for being in close proximity to the user device.

Though cloudlets can notably reduce communication latency, their performance

becomes unreliable with the increasing number of offloading requests. This is due

to the fact that the amount of resources in a cloudlet is limited in comparison to

the master cloud and hence it cannot satisfy the requests of user applications at

pick hours.
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2.3 MDC as a Code Offloading Framework

The immense increase of number of mobile devices and applications running on

those, cloudlet based solutions can no longer satisfy the resource requirement let

alone the remote master cloud based solutions. Offloading modules of an applica-

tion to nearby mobile devices with idle computing resources is considered to be the

future of mobile computing [42, 77, 78]. Such a mechanism was first introduced by

Canepa et al. in [42] that provided a guideline to create a virtual cloud computing

framework using the resources of mobile devices in the vicinity of a user. The

authors implemented a prototype application that showed the effectiveness of the

proposed framework in terms of execution time.

Fernando et al. envisioned a dynamic mobile cloud computing framework to

opportunistically exploit the runtime resources of the mobile devices for execut-

ing offloaded tasks cost-effectively considering mobility and cost [14]. They also

discussed the possible challenges in such an opportunistic network like mobility,

job partitioning, job distribution, cost estimation, connectivity options, and fault

tolerance, etc.

To exploit the idle resources of nearby mobile devices, Shi et al. also pro-

posed a code offloading framework named Serendipity in [6]. The paper proposes

a powerful job structure that enables a mobile computation initiator to use remote

computational resources available in other mobile systems to speedup computing

and conserve energy. The paper also provides an algorithm to disseminate and

monitor the tasks among mobile devices. Based on the Serendipity architecture,

Shi et al. developed an application to use the computational resources of nearby

mobile devices in Cirrus clouds [79]. The application used RollerNet and Haggle

trace to emulate the Serendipity functionality, where fixed size of independent tasks
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are disseminated among the mobile devices. Although the authors considered the

intermittent connectivity, computing capacity of the devices and quantification of

network signal strengths were untouched.

Li et al. introduced a device-to-device (D2D) communication framework for

exploiting computing resources of mobile devices in the vicinity to execute appli-

cation tasks that overcome the limitation of cellular connectivity [20]. To discover

the computing resources, subtask distribution and retrieval in these intermittent

devices, two access schemes had been proposed that provide improved performance

in terms of computation speedup and monetary savings. To solve the mobility

problem of mobile devices, the authors proposed an offloading heuristic based on

location information of the mobile devices [19]. To schedule a task, the scheduling

algorithms take into account communication latency in addition to associativity

time which is calculated from historical location trace of a mobile device.

To optimize the applications execution performance, Le et al. provided a col-

laborative infrastructure among nearby mobile devices by leveraging Wi-Fi Direct

technology that not only minimizes energy consumption but also expands the hard-

ware capability of mobile devices [37]. The simulation results also reveal that task

execution with nearby mobile devices is more beneficial compared to remote cloud

server-based execution due to higher communication latency of cellular networks.

In [38], Balasubramanian et al. exploited the resources of nearby mobile devices

to provide Infrastructure as a Service in the Mobile Ad-hoc Cloud Computing en-

vironment. They also outlined necessary architecture and algorithms to create a

pool of devices with dedicated resources and efficient utilization of those resources.
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2.4 Task Execution Approaches in MDC

Different task execution approaches that have been exploited to utilize idle re-

sources of nearby mobile devices are described in the following sections.

2.4.1 Voluntary Task Execution

The increasing number of smartphones has brought an enormous opportunity of

code offloading to nearby mobile devices. A good number of recent works have

demonstrated the benefits of exploiting idle resources of nearby mobile devices

compared to executing applications on remote clouds. For making the offloading

decision and coordinating the activities few researchers involved a trusted third

party while few works gave the responsibility to the user mobile device. Different

approaches for voluntary task execution are described in the following sections.

2.4.1.1 Execution with local coordination

In [16], Mtibaa et al. implemented an emulation testbed which showed the ef-

fectiveness of MDC compared to remote cloud or cloudlet based code offloading

solutions. The authors showed that offloading tasks to nearby mobile devices can

save up to 50% execution time and 26% energy compared to master cloud-based

execution. However, the authors did not consider heterogeneous computational ca-

pacities of the nearby devices. Furthermore, the system assumed all devices having

the same energy level and the number of offloadable tasks was fixed at 50%, which

is not often practical.

Later, the authors provided a generic computation offloading framework to het-

erogeneous devices including master cloud and cloudlets [27]. The framework max-
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imized the computational gain with respect to response time, energy consumption

and network lifetime. However, there were no consideration of execution depen-

dency among the application modules, expected data rate and available energy

level of the devices.

Fernando et al. exploited a work-stealing method [64] on a set of mobile devices

for better load sharing among the worker nodes in [80]. It was implemented us-

ing Bluetooth technology. Later, the authors exploited Wi-Fi Direct technology to

utilize the computing resources of nearby mobile devices and introduced a mobile

crowd that performed as a complement to the remote cloud [41]. For scheduling, a

task, task heterogeneity, available resource at a worker, and dynamism were iden-

tified as the key challenges for which they employed a preemptive work-stealing

mechanism on a set of worker nodes to balance the amount of workload and mini-

mize the execution time. The model worked only for independent tasks and it did

not consider the computing capacity of the devices, resulting in stealing jobs from

weak workers frequently which in turn causes poor system throughput.

To prolong its battery lifetime, Truong-Huu et al. proposed a dynamic oppor-

tunistic offloading algorithm to determine the feasibility of offloading to a certain

mobile device [65]. The optimization model was formulated as a Markov decision

process with an objective to minimize the execution cost while considering different

types of cost parameters (i. e., computation cost, communication cost, and penalty

cost), resulting in a higher utilization of resources of nearby worker devices. How-

ever, their scheduling may lead to several levels of failed execution due to offloading

only based on availability time and not considering the resource capacity of worker

devices. Moreover, the execution of all tasks in parallel also leads to an impractical

assumption of the task graph of an application.
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Gao et al. introduced a multi-objective optimization model considering task

execution time and resource consumption to select a set of target workers in an

MDC environment with multiple devices containing multiple tasks [66]. Later, a

set of heuristics has been applied to the model to achieve the minimum collective

execution time while consuming the lowest amount of resources. In [39], Balasub-

ramanian et al. formulated a model to ensure the parallel execution of tasks with

a minimum number of worker devices. A composition score was calculated based

on the shared resources of the device (CPU, Memory, and Storage) to guarantee

the selection of the best available devices for task execution.

Lin et al. proposed a code offloading framework named Circa that exhibits the

feasibility of code offloading in the proximity of nearby mobile devices exploiting

iBeacons, a wireless location-based transmitter system [35]. The system used an

efficient and fair task allocation algorithm to disseminate tasks of an application

among reliable worker devices. In [36], Guiguis et al. delineated transient clouds,

a collaborative computing framework for the offloaded execution of tasks with the

help of nearby mobile devices. The authors explored centralized and distributed

approaches to allocate tasks among mobile devices according to their capabilities.

A modified Hungarian algorithm had been introduced in the centralized approach

to balance the workload and Distributed Hash Tables were used to minimize the

communication cost in the distributed mechanism.

2.4.1.2 Execution with external coordination

To further minimize the task completion time Habak et al. proposed Femto-

Cloud [21], a dynamic and self-configuring cluster head based MDC architecture

coordinated by a Cloudlet. The authors tried to maximize the overall workload of
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the participating devices in the cluster. The improvement was achieved because

of applying priority based task assignment and earliest deadline heuristic on task

assignment and result collection, respectively. However, they didn’t consider sig-

nal strength (or data rate) offered by the devices and their residual energy levels.

Moreover, these works incurred a huge burden on the potential workers due to a

biased assignment of tasks.

Pandey et al. proposed a robust and distributed computing framework named

Maestro to support concurrent execution of mobile application tasks in an MDC

where each mobile device plays the role of a service provider, service requester, and

broker [67]. Tasks were scheduled according to dependency whereas a replication

and deduplication-based task scheduling have been applied for critical and similar

tasks, respectively to achieve robustness in the system [81].

2.4.1.3 Comparative characteristics

The key characteristics of some of the voluntary task execution approaches are

summarized in Table 2.1. Note that all of the above works emphasized the

benefits of MDC technology that distributes computing loads to other mobile

devices. However, most of them ignored inter-dependencies among the tasks

while utilizing the parallel execution to speed-up the execution of the applica-

tion [16, 21, 27, 41, 65, 66]. Furthermore, whether a target mobile device is reliable

for code offloading (or not) has not been quantified for its selection. In this work,

we develop a code offloading framework for the MDC system that makes a tradeoff

between execution speedup and reliable execution of codes [62]. The performance

is optimized through selecting devices that are reliable, offer higher computing

capacities, signal strengths, and energy levels.
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Table 2.1: Summary of voluntary task execution approaches
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Mtibaa et al. [16] X X X X X

Habak et al. [21] X X X X X

Mtibaa et al. [27] X X X X X

Lin et al. [35] X X X X X

Guiguis et al. [36] X X X X X

Balasubramanian et al. [39] X X X X X

Fernando et al. [41] X X X X X

Truong-Huu et al. [65] X X X X X

Gao et al. [66] X X X X X

Pandey et al. [81] X X X X X

Saha et al. [62] X X X X X

2.4.2 Necessity of a Payment Mechanism for Workers

The actual benefit of the emerging MDC technology can only be harvested through

the effective participation of mobile worker devices in the computation process. For
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the deployment of a large scale MDC system, increasing participation of users is

a prerequisite. Voluntary approaches cannot motivate workers to participate in

executing application tasks as each execution requires a certain amount of com-

putational resources and bandwidth charges, resulting in a monetary payoff for a

worker. For this reason, a worker device needs a payoff as a compensation of the

used resources, stimulating to share their idle resources for executing more appli-

cation tasks of different users. Moreover, high-quality workers can be supported

with additional payment as an incentive-based on their quality of execution. In

such cases, incentive models can be introduced to encourage worker devices for

sharing their idle resources [82]. The introduction of a reward giving mechanism

can incentivize the used resources of mobile devices, increasing motivation for the

worker devices.

2.4.3 Paid Task Execution in MDC

MDC-based computing systems exploited a resource trading mechanism to provide

payment of the worker devices where a resource-constrained mobile user acts as

a resource-requester or buyer and a nearby worker mobile device with shareable

idle resources acts as a resource-provider or seller. In addition to general payment

policy [15, 34, 59, 68, 83], auction mechanisms are widely used to provide payment

of the workers in an MDC system [22, 58, 60, 69, 70, 71, 84]. An auction mechanism

addresses the conflicts between the buyer and the seller arranges a competition

to fairly allocate the resources, determines appropriate payment for the allocated

resources and ensures the truthfulness of the corresponding entities [85, 86].

In a few state-of-art-works, the conventional forward auction mechanism has

been employed where a particular resource or service is sold with the highest
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amount of bid. On the contrary, a number of literature works motivated in de-

signing a reverse auction-based payment mechanism as the roles of the buyer (or

user) and the seller (or worker) are changed in an MDC system. In such cases, a

buyer placed a request for a resource and many sellers bid declaring a minimum

amount of value to be paid for the resource and, finally, the bidder with the least

demand value won the auction.

The following sections describe the state-of-the-art payment strategies used for

the payment of workers in an MDC system.

2.4.3.1 General payment strategy

In [15], Miluzzo et al. provided an outline of a payment mechanism for resourceful

nearby mobile devices that run compute-intensive offloaded tasks of an applica-

tion in an MDC system. Though the payment mechanism considered execution

cost parameters such as waiting time and bandwidth usage, few other influential

parameters like worker reputation and workload, task interdependency, etc. were

untouched in the system.

Asghari et al. proposed a self-organizing and distributed leader selection frame-

work where the role of the leader is to discover resources and balance the consump-

tion of energy in an MDC [68]. The leader selection process introduced a multi-

player first-price sealed-bid auction mechanism to select a leader with minimum

resource discovery cost and provide payment for the leadership role. A credit-

based incentive model also has been introduced for the payment of the worker

devices for sharing resources for the execution of tasks. However, the consideration

of remaining energy as the only parameter may lead to the selection of an untrust-

worthy worker as a leader. Moreover, the leader selection process can consume a
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significant amount of time if the network contains a large number of worker devices

hampering the quality of the task execution.

Noor et al. in [59], created a mobile cloud architecture that proposed a virtual

cloud with mobile phones connected through different network operators. The sys-

tem utilized the unused resources of the mobile phones to execute the submitted

task of a particular user and applied a reputation based task allocation strategy to

assign tasks to different mobile phones. Though the model achieves trustworthi-

ness through rating points, it poses the latency problem of cloud architecture due

to continuous communication between mobile devices through a cellular network.

Moreover, they didn’t provide any incentive to reputed workers in the system let

alone QoE.

The user mobility patterns and its opportunistic contact rates with nearby

devices were taken into consideration for determining the appropriate devices for

offloading by Wang et al. in [34]. The authors developed a convex optimization

technique to determine the amount of computation to be offloaded to other devices

and results showed the efficiency of the algorithm in terms of higher computation

success rate. A worker device was paid according to the amount of computation

where the unit price for the computation of a task was determined by the user

device.

Balasubramanian et al. designed a reinforcement learning-based autonomous

energy management framework that makes use of energy threshold to select reliable

worker devices for the offloading of tasks [83]. They also modeled a reward policy

where the worker devices were rewarded based on the rate of energy consumption.
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2.4.3.2 Reverse auction mechanism

In [22], Wang et al. considered a game-theoretic approach to find an equilibrium

point on user cost and worker profit for an optimal allocation of tasks in worker

devices. Though the system gains benefit in the context of both buyer and seller

devices, it tried to minimize user cost in the context of remote cloud price, which

is often not practical. They improved execution performance further by developing

auction mechanisms considering task heterogeneity [58]. Bid winners were paid

with the amount of immediate next bidding price for a task, leading to overpayment.

Though the algorithms achieved desirable properties of an auction mechanism none

of them considered workload and reliability of mobile devices to execute the task.

In [60] Tang et al. proposed a broker based mobile cloud system that uses

a double-sided bidding mechanism to allocate idle resources of mobile users to

resource-demanding mobile users. The authors provided two algorithms with a

game-theoretic approach to find an equilibrium point that maximizes the benefits

both for resource buyer and seller devices. However, like the other works, this work

also concentrated only on task allocation and price determination strategy whereas

parameters like worker device capacity, reliability was out of their consideration.

Li et al. proposed an optimization model to minimize the transmission energy

for offloading tasks in ad hoc mobile cloud [69]. To encourage the participation of

mobile devices, the system introduced an auction-based task offloading mechanism

that provides payment to worker mobile devices for sharing their vacant resources

in collaborative computation. Though the system significantly reduces the energy

consumption of a user device, it cannot guarantee a feasible solution due to not

considering the budget of a user. Moreover, the lack of consideration in worker

reliability may lead to the selection of poor quality workers that hampers the user
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QoE.

2.4.3.3 Regular auction mechanism

To increase the participation of mobile devices, an forward auction model has

been proposed by Wang et al. in [70] that trades resources between task owners

and worker devices. Resource allocation and price estimation were determined

through a distributed algorithm whereas a payment evaluation procedure detected

dishonest sellers in the system. Since bids were submitted privately to the selected

participants, the optimal result couldn’t be guaranteed from the system.

He et al. formulated the collaborative task execution with the help of nearby

mobile devices and payment for used resources as a social welfare maximization

problem [71]. Due to the NP-hardness of the formulated optimization function, an

alternative primal-dual based online auction algorithm was devised to make the task

allocation and payment decision in polynomial time. Later, He et al. proposed a

Vickrey-Clarke-Groves (VCG)-based online auction algorithm to provide payment

of the workers for their used resources in a mobile edge cloud environment [84].

The system adopted a dynamic pricing policy for the used resources due to the

dynamic participation of mobile workers. However, both the systems were unable

to recognize qualified workers let alone providing incentives for their quality of

execution.

2.4.3.4 Comparative characteristics

The key working principles of different paid task execution strategies are summa-

rized in Table 2.2. All the above works focused on a general objective to minimize

execution time and cost of a user where the workers were compensated with the
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Table 2.2: Summary of paid task execution approaches
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Miluzzo et al. [15] X X X X X X General

Wang et al. [34] X X X X X X General

Noor et al. [59] X X X X X X General

Asghari et al. [68] X X X X X X General

Venkatraman et al. [83] X X X X X X General

Wang et al. [22] X X X X X X Game Theory

Wang et al. [58] X X X X X X Reverse Auction

Tang et al. [60] X X X X X X Game Theory

Li et al. [69] X X X X X X Reverse Auction

Wang et al. [70] X X X X X X Forward Auction

He et al. [71], [84] X X X X X X Forward Auction

Saha et al. [63] X X X X X X Reverse Auction
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bid amount. There were no consideration of additional payment as incentive fol-

lowing quality execution of a task. Moreover, most of the works not only ignored

the reliability of devices while selecting the workers but also neglected the inter-

dependency among the tasks. The key philosophy of this work [63] is to select a set

of reliable worker devices to execute an application task considering its dependency

with others so as to minimize the user execution cost and to maximize the quality

of execution. This novel strategy of rewarding worker devices with an additional

incentive for offering high quality execution would help our system to attract more

workers to participate and makes such MDC system sustainable.

2.5 Summary

In this chapter, we provide a detailed discussion on existing methodologies for

the execution of tasks in MDC to enhance the execution performance of compute-

intensive applications. In Chapter 1, we analyzed various design parameters to

be addressed by an effective code offloading solution for exploiting idle resources

of nearby worker devices in an MDC environment. Based on that, we studied

the state-of-the-art voluntary and paid task execution approaches in this Chapter.

Voluntary task execution approaches tried to minimize task execution time while

skipped the reliability of the workers and only addressed the parallel execution of

independent tasks. Paid task execution approaches mostly employed auction mech-

anism for the payment of the workers while unable to provide any quantification

of user QoE. In the next chapters, we aim to provide solutions that can diminish

the challenges of state-of-the-art-works.



Chapter 3
Voluntary Task Execution in

MDC

We have discussed and compared the state-of-the-art works on different task execu-

tion approaches in MDC system proposed by the researchers in the previous chapter.

By motivating from the limitations of the related works and to overcome the chal-

lenges of task execution in MDC, we develop and evaluate a reliable worker selection

strategy in this chapter.

3.1 Introduction

With the advent of different mobile computing technologies, the expectation of

mobile device users also has been increased dramatically on the functionality and

quality of experience of user applications. To meet these expectations, mobile

devices have opened up a plethora of computational infrastructure and engaged

high accuracy sensors, large volumes of multimedia data, and complex artificial

intelligence algorithms to provide improved performance for compute-intensive ap-

plications to the end-users. However, the execution of these applications on the user

mobile device still cannot produce a feasible solution due to constrained resources,

46
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resulting in an offloaded execution with the help of remote cloud or cloudlets. Fur-

thermore, remote cloud or cloudlets also cannot produce a satisfactory performance

for having longer communication latency and resource scarcity, respectively. In a

consequence, Mobile Device Cloud (MDC) has been introduced to provide a col-

laborative cloud computing environment exploiting the idle resources on nearby

mobile devices. The opportunistic resources of the encountered nearby mobile de-

vices have made MDC technology to alleviate the resource constraints of a user

to execute compute-intensive applications like object, face, pattern and speech

recognition, disaster response, natural language processing, m-health, and reality

augmentation, etc.

Usually, in the MDC system, the mobile worker devices act as voluntary resource

providers and participate voluntarily in the execution process of an offloaded ap-

plication. Execution of tasks in an MDC system is more challenging than cloud or

cloudlets due to the opportunistic nature of the nearby resources. The execution

performance of an offloaded application in the MDC system highly depends on the

smart utilization of the resources of nearby worker devices. Efficient strategies need

to be employed so that the maximum resources of qualified workers can be utilized

to execute the application within the required deadline. In voluntary participa-

tion, the primary challenge lies in the selection of a set of reliable worker devices

to speedup the execution of an application.

In the literature, a good number of researches had been conducted to utilize the

resources of nearby mobile devices for the execution of an offloaded application.

In a testbed implementation, Mtibaa et al. showed that offloading tasks to nearby

mobile devices can save upto 50 % execution time and 26 % energy consumption

compared to remote cloud-based offloading mechanism [16]. Truong-Huu et al. also
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proposed a dynamic opportunistic offloading algorithm that utilizes the computa-

tion resources of nearby mobile devices to minimize the task execution time and

prolong the battery lifetime of a mobile user [65]. However, none of them consid-

ered the resource capacity of the worker devices and interdependency among the

tasks, resulting in poor execution performance.

In [36], Guiguis et al. introduced transient clouds for executing offloaded ap-

plication tasks and developed centralized and distributed algorithms to exploit the

idle resources of nearby mobile devices. Balasubramanian et al. modeled a compo-

sition score to select the worker devices that maximize parallelism in the execution

of tasks with a minimum number of workers [39]. In [41], Fernando et al. initi-

ated a preemptive work-stealing mechanism to utilize the computing resources of

nearby mobile devices that minimized the task execution time and balanced the

workload of worker devices. To select the opportunistic worker devices, Gao et al.

formulated a multi-objective optimization model considering task execution time

and resource consumption that applied a set of heuristics to minimize the task

execution time and resource consumption [66]. However, these approaches failed

to grab the potential benefits of the opportunistic resources due to the selection

of unreliable workers that resulted in frequent failed execution of tasks. Moreover,

running the decision algorithm on the user mobile device also imposed an extra

burden on the available resources and energy of the user device.

Habak et al. applied priority-based task assignment and earliest deadline heuris-

tic to minimize the task completion time in a cluster head based MDC architecture

which was coordinated by a Cloudlet [21]. In [81], Pandey et al. developed a

robust and distributed computing framework that applied replication and dedu-

plication mechanism to facilitate concurrent execution of application tasks in an
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MDC system.

All these works presented the benefits of mobile device cloud technology that

exploits the resources of nearby mobile devices. However, most of the works ignored

the reliability of the worker devices and inter-dependency among the tasks that

resulted in frequent resubmission and longer execution time, respectively in the

execution of application tasks.

Considering these observations, in this thesis, we first develop an opportunis-

tic offloading mechanism named TESAR that optimally allocates offloaded tasks

to the members of MDC. The key idea is to select the most reliable worker de-

vices with adequate resources that are capable to execute a submitted task. The

main goal of our TESAR system is to minimize the task execution time consider-

ing the device-specific parameters like mobility, available energy, signal strength,

computing capacity, and application-specific parameter like module dependency.

In TESAR, apportion and dissemination of application tasks, accumulation of col-

lected results and selection of the worker devices is coordinated by a cloudlet.

According to the demand of an application, the system can be tuned to select the

worker devices that provide minimum execution time or maximum reliability or

makes a tradeoff between these two. We present performance analysis and results

for task completion time, communication latency, and communication overhead

with varying number of tasks, workers and parallel tasks. The results show that

the proposed TESAR mechanism significantly outperforms state-of-the-art works

- OMDC [27] and Honeybee [80].

What follows next are the summarization of the key contributions of this chap-

ter:

� We develop a code offloading framework, namely TESAR, that speedup the
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computation and maximizes the reliability of an MDC system.

� The task allocation algorithm is formulated as a MILP problem to maximize

computation speedup and reliability

� The system makes a tradeoff between execution speedup and reliable execu-

tion of tasks based on the application requirement. The objective function

has been designed in such a way that it can be used to maximize the reliability

or computation speedup or to make a tradeoff between these two.

� An extensive simulation has been carried out to evaluate the performance of

the proposed TESAR system.

The rest of this chapter is organized as follows. In Section 3.2, we describe the

code offloading architecture and framework for MDC. The mathematical formu-

lation of our proposed TESAR system is discussed in detail in Section 3.3. The

experimental testbed setup and results of performance evaluations are presented in

Section 3.4. Finally, we conclude the paper in Section 3.5.

3.2 Code Offloading Framework for Mobile De-

vice Cloud

An MDC system comprised of heterogeneous set of mobile devices including lap-

tops, smart-phones, palmtops, tabs/pads, wearable devices like watch, glass, etc.

The amount of computation, communication and storage resources of the devices

greatly vary from each other. Typically, they have small scale computation and

storage capacities that remain idle most of the time on a large number of devices.

These idle computing resources can be accumulated together to run heavy weight
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applications that are not executable on their devices within delay deadline. In

MDC, these idle resources act as small virtual machines (VMs) for executing codes

of nearby users. The user can configure the VM of his/her device by limiting the

amount of resources (CPU, storage, bandwidth usage, etc.) to serve applications

of other users and to gain benefits. The amount of resources shared by a device is

reconfigurable at any point of time and users have complete control of managing re-

sources of their devices. What follows next, we present a framework with functional

components and the system model for code offloading in an MDC system.

3.2.1 Compute-Intensive Code Offloading Framework

Limited resources of a mobile device restrict it to deliver the results of an application

in time. Application codes requiring higher computing power, need a great number

of CPU cycles, storage and thus its battery drains out very fast. However, if the

application is partitioned into a number of tasks that are offloadable to nearby

mobile devices, then the execution load gets distributed and completion time of the

application gets reduced. To make use of the resources of nearby mobile devices

and to enable parallelism in the execution of tasks, we propose a compute-intensive

code offloading framework named TESAR as shown in Figure 3.1. The detailed

descriptions for each of the functional modules are given below.

� Task Profiler (TP): The TP module receives an application with an exe-

cution deadline through the task receiver component from a mobile user. It

then uses the workload analyzer component to split the application into a set

of atomic tasks where each atomic task contains a number of instructions for

offloaded execution. Using static analysis, it determines the tasks which are

offloadable. The dependency estimation component is responsible for deter-



3.2 CODE OFFLOADING FRAMEWORK FOR MOBILE DEVICE CLOUD 52
U

 s
 e

 r
  
 (

 B
 u

 y
 e

 r
) 

Task-Worker 

Allocator

Task 

Profiler

Execution 

Coordinator

Worker 

Manager

Application 

Receiver

Dependency 

Estimator 

Workload 

Analyzer

Task 

Advertisement

Bid

Coordinator

Task

Dispatcher 

Result 

Collector

Result 

Dispatcher

Cloudlet

(Broker)

W
 o

 r
 k

 e
 r

  
 (

 S
 e

 l
 l

 e
 r

)

Worker

Reputation

Database

Worker

Activity

Log

1.1

1.2 1.3

1.4

1

2

3

2.1

2.4

3.1

3.2

3.3

2.2

Figure 3.1: Compute-intensive code offloading framework

mining the interdependency among tasks which is used to identify execution

order, facilitating parallel execution. The relative dependencies determine

tasks that can be executed in parallel so as to minimize the overall execution

time of the application. A rooted tree construction algorithm for determining

the task dependencies is presented in section 3.3.2. For each task, it creates

a tuple containing task number, instruction size, and task deadline. The TP

then hands the tasks over to the task advertisement component for advertis-

ing the tasks to the worker devices. It also shares advertised task information

with the task-worker allocator (TWA) for cross verification purposes.

� Task-Worker Allocator (TWA): The TWA module is the core of the pro-

posed system, and it controls and coordinates functionalities of other mod-

ules. It triggers the TP to collect user applications and submits advertise-
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ments after profiling the application tasks. It collects worker bids through the

bids coordinator component. The worker devices send their device-specific

information which contains device ID, associativity time, and a set of bids.

All the collected bids and device information are then transferred to the TWA

module to determine the winners among the submitted bids. Notifications

of winning bids are also dispatched through the same interface to selected

worker devices.

The TWA module interacts with the Worker Manager component to deter-

mine the feasibility of workers to execute tasks successfully. The Worker

Manager component monitors and stores the device-specific information that

can be used during task allocation. Specifically, it stores device ID, signal

strength, clock cycle, available energy, reputation value, and updates it peri-

odically. It evaluates submitted bids to determine the quality and reliability

of worker devices through historical trace using worker reputation database

and activity log. It is also responsible for updating the reputation of a mobile

device after successful completion or failure of execution of a task respectively.

The reputation is given as a means of recognition that is increased/decreased

based on the successful/failed execution of a task. Whenever a new device

gets registered, the TWA module communicates with the Worker Manager

component to collect and store the reputation information. Detail procedure

of calculating the reputation values is presented in the section 3.3.5.

After accumulating all this information, the TWA runs a worker selection

algorithm to determines the optimal mapping of individual worker devices

to different application tasks. The task-worker mapping is transferred to the

execution coordinator (EC ) for scheduling of tasks along with a notification
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to the winners from the set of candidate worker devices. Moreover, the TWA

ensures that no device will be assigned two tasks that can run simultane-

ously, i.e., having zero relative execution dependency. Detail operation of the

offloading decision-making mechanism is presented in the section 3.3.

� Execution Coordinator (EC): On reception of the task-worker mapping

list from the TWA, the EC calls the task dispatcher component to sched-

ule the tasks in order. After successful execution, results are collected and

transmitted back to the user device. Failed executions are reallocated by the

TWA to the next available bidder.

The critical part of the proposed TESAR framework is the identification of the

parent-child relationship between tasks and mapping worker devices to offloadable

tasks. Although we provide a complete architecture for an MDC system, this

work, particularly, focuses on TWA that optimally assigns computation tasks to

worker devices. However, for parallel execution of offloadable tasks, identification

of parent-child relationships among the tasks is a prerequisite. For this reason, the

TP executes Algorithm 1, described in section 3.3.2, to construct a dependency

tree between the tasks, and then the TWA determines the optimal assignment of

computation tasks to worker devices.

3.2.2 System Model for Collaborative Computation in

MDC

Our proposed collaborative code offloading system has two tiers. A device that

requires to offload codes to others for faster execution, known as user device and

the (worker) devices where the compute-intensive codes are offloaded for execution
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Figure 3.2: Collaborative computation in a mobile device cloud

resides in tier one. The cloudlet and wireless communication infrastructure that

facilitate collaboration are at tier two. The mobile devices are connected to the

cloudlet through Wi-Fi Access Points (APs). A (worker) device communicates with

the cloudlet and show its interest to run any compute-intensive applications. The

cloudlet collects information of the (worker) devices, makes scheduling plan and

offloads tasks of the application in favor of the user devices. It also performs the

mapping of application tasks to the VMs of (worker) devices and offloads accord-

ingly. It acts as a broker by partitioning the application into tasks, coordinating

the distribution of tasks to remote devices and accumulating results obtained from

worker devices.

Let us assume, there are sufficiently available devices in the MDC system to

allocate each task in a compute-intensive application, and there is no task unbidden,

while the cloudlet broadcasts. We also consider that a candidate worker device (as
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known as, candidate device) agrees to execute whatever amount of task is allocated

in the MDC. Figure 3.2 illustrates the details of the proposed system model and

decision process of MDC and thereby are explained in following steps.

S1. When a user requires to offload an application for faster execution, it submits

the application to the cloudlet.

S2. As soon as the cloudlet receives the application, it splits the application into

atomic tasks and immediately advertises the tasks to the workers.

S3. In response to the advertisement, interested workers submit their bids for

corresponding tasks to the cloudlet.

S4. Being an auctioneer, the cloudlet receives bids from the workers and it deter-

mines winner set from the candidate bids.

S5. Based on the task-worker mapping list, the cloudlet allocates each task to

the corresponding worker device, as determined in step 4.

S6. After completion of task execution, the worker immediately returns the result

to the cloudlet.

S7. Finally, the cloudlet aggregates the results of each task, collecting from indi-

vidual workers, and returns to the user device.

In this chapter, the initial reputation of mobile devices has been chosen ran-

domly. Moreover, a number of works have already been carried out to determine

the associativity time of mobile devices [30],[87] and we have adopted [30] since

it exploits historical trace of mobile devices and fairly captures the MDC environ-

ment.
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3.3 Optimization Problem Formulation

The main contribution of this work is to optimally map the execution of application

tasks on different worker devices so that the total execution time can be minimized

while preserving higher reliability. This is a challenging issue as highly reliable

devices may not be equipped with greater computing capacity. To distribute the

tasks among the worker mobile devices, we have devised a MILP objective func-

tion that considers a number of placement and capacity constraints. Particularly,

the objective function makes the selection of remote mobile devices considering

execution time and reliability parameters jointly to maximize the gain.

In this subsection, we first define an application model for compute-intensive

MDC system. Then, we determine the sets of parent and child tasks of the ap-

plication and time required for executing those locally. After that, we derive an

objective function that will select remote mobile hosts in such a way that total

execution time gets minimized and reliability of execution in respect of device rep-

utation get maximized while satisfying a number of constraints. Table 3.1 shows

the list of notations used in this work.

Binary variable ym,k = {1, 0} is used to indicate whether a task m ∈ M is

executed on device k or not. Since the application contains both local and remote

executable tasks, the total number of tasks therefore, can be obtained as,

M = |R|+ |L|. (3.1)

3.3.1 Compute-intensive Application Model

Each application in an MDC system can be considered as a directed graph G(M,

e) with M processing tasks where each task performs a specific operation of the
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Table 3.1: List of notations for voluntary task execution

M Set of tasks in the application

K Set of available devices

Πm Set of parents of task m

L Set of Leaf nodes

R / L Set of tasks executed Remotely / Locally

So
m /So′

m Instruction size of task m ∈ R / m ∈ L

Vm Output instruction size of task m ∈M

µk Execution speed of device k ∈ K

T l
m(o) / T l

m(o
′) Local device execution time of task m ∈ R / m ∈ L

T x
m,k Remote execution time of task m ∈ R in device k ∈ K

T t
m,k / T r

m,k Input transmission /Output reception time of task m ∈ R

Bd
k Uplink bandwidth between cloudlet and device k ∈ K

Bd′

k Downlink bandwidth between cloudlet and device k ∈ K

Exm,k / E tm,k Execution /Input transmission energy of task m ∈ R in k ∈ K

Erm,k Output transmission energy of task m ∈ R in k ∈ K

ϕn,m Percentage of dependency of task m ∈M on its parent n ∈M

γk Signal strength of device k ∈ K

ηk Associativity time of device k ∈ K

Ek Available energy of device k ∈ K

Ωk Reputation of device k ∈ K

application. The directed edges between tasks form a rooted tree to define depen-

dencies between tasks. This rooted tree determines execution flow of the application

as shown in Fig 3.3. Each edge e consists of two weights - So
m and Vm, the input
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and output instruction sizes, respectively, of the task m ∈ M. A dependent child

task can be executed only when output of the parent task is available. However, all

parallel tasks can be executed simultaneously based on availability of the worker

devices.

A

B C

D E

F

Figure 3.3: Dependency tree of the application tasks

The execution time of an application is inversely related with the number of

dependency levels since the later decreases execution parallelism. The total execu-

tion time of the application is the maximum execution time of a subtree including

communication delays. In this work, local and remote executions have been used

interchangeably with user and worker device executions, respectively.

3.3.2 Construction of Rooted Tree of Tasks

A task n is said to be the parent of another task m if, there exists a dependency

between the execution of tasks m and n that is, task m requires the output from n

at any particular instance of its execution. A task may require outputs form more

than one parent tasks and the set of all parent tasks of task m is given by Πm.

Again, a task has been considered as leaf, if it has no child dependent on it. The set

of leaf tasks is given by L. Algorithm 1 summarizes the steps of determining Πm
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Algorithm 1 Algorithm for constructing parent and leaf sets of tasks

INPUT: G(M, e) : A graph of tasks (M) of an application with edges (e)

P : Parent task from which the execution begins

OUTPUT: Πm : Set of parent tasks for each task m ∈M

L : Set of leaf tasks

1. Set Πm ← Φ, Colorm ←White, ∀m ∈M

2. Set L← Φ, Queue Q← Φ, ΠP ← Φ

3. Q.enqueue(P )

4. while Q is not empty do

5. n← Q.dequeue()

6. for all m ∈M|(n,m) ∈ e do

7. Πm ← Πm ∪ {n}

8. if Colorm = White then

9. Q.enqueue(m)

10. end if

11. end for

12. for all m ∈M do

13. if (n,m) ∩ e = Φ then

14. L← L ∪ {n}

15. end if

16. end for

17. Colorn = Black

18. end while
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and L from the dependency graph G(M, e). Here, each element of e is a directional

edge from parent task to child task.

3.3.3 Time Estimation for Local Execution

Time of execution for the whole application in the local device is the total time

required for the completion of both local and remote executable tasks. Here, time

required for executing task m ∈ R is given by, T l
m(o) =

So
m

µk|k=0
where, So

m represents

the size of taskm ∈ R and µk represents the execution speed of device k ∈ K; k = 0

represents the local device and all the remote devices under the cloudlet takes a

nonzero value of k. Similarly, time required for executing task m ∈ L is represented

as, T l
m(o

′) = So′
m

µk|k=0
. Therefore, the total local execution time is obtained from the

execution delay of all local (L) and remote (R) executable tasks,

T (l) =
|R|∑
m=1

T l
m(o) +

|L|∑
m=1

T l
m(o

′). (3.2)

3.3.4 Time Estimation for Remote Execution

To calculate the execution time of offloadable tasks at remote hosts and unof-

floadable tasks at local device, we need to consider the time for transmitting the

tasks, execute the tasks and collect the results back to the cloudlet. The time for

transmitting task m ∈M from the cloudlet to device k ∈ K can be expressed as,

T t
m,k = (

So′
m

Bd
k|k=0

+
So
m

Bd
k|k>0

)×ym,k, (3.3)

where, Bd
k represents the available bandwidth for data transmission from cloudlet

to device k ∈ K; k = 0 again represents the user device which executes the

unoffloadable tasks. Now, the time for execution of task m ∈ M in device k ∈ K
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of MDC can be represented as,

T x
m,k = (

So′
m

µk|k=0

+
So′
m

µk|k>0

)×ym,k. (3.4)

After completion of execution of a task, all devices including the user will

transmit the result back to the cloudlet. The time required to send the execution

result of task m ∈M from device k ∈ K to cloudlet can be calculated as,

T r
m,k =

Vm

Bd′
k

×ym,k, (3.5)

where, Vm represents the size of results produced after the execution of task m.

Therefore, the total execution time of task m ∈M in device k ∈ K can be obtained

as,

Tm,k = T t
m,k + T x

m,k + T r
m,k. (3.6)

Now, for calculating the completion time of a task, we have summed up the total

time required to execute the task from the beginning of execution of the application.

This is performed by adding the execution time of the task (Tm,k) with the total

completion time of it’s parent (Tn(r)|n ∈ Πm). However, a child may not always

depends completely on the result of it’s parents. It may start independently and

after completion of a certain percentage of execution it requires the results from

it’s parents. This dependency relation is represented by ϕn,m. Therefore, the total

completion time of task m ∈M is given by,

Tm(r) = max (Tn,k̄) + Tm,k(1− ϕn,m); ∀n ∈ Πm. (3.7)

The total time required for execution completion of the application is therefore,

the largest time required for completion among all the leaf tasks. The total time

required for execution of the complete application is represented as,

T (r) = max (Tm(r)); ∀m ∈ L. (3.8)
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In order to evaluate the completion time of an application in MDC and compare

among different scheduling arrangements, scheduling speedup factor needs to be

calculated. The speedup factor of a scheduling can be represented as,

T (f) = 1− T (r)
T (l)

. (3.9)

3.3.5 Calculation of Reputation Value

For successful execution of offloaded tasks reliable worker selection is a prerequisite.

If a low performing or unreliable worker is selected for execution of a task, it turns

into an unsuccessful execution, increasing response time and hence deteriorates the

overall performance of offloading mechanism. Any device may advertise itself as a

first-rate worker with high computing capability whereas its successful execution

rate might be very poor. The reputation parameter can be used to guard against

such unqualified workers. The reputation of a device is calculated as,

Ωk = δ × Ωk + (1− δ)×

∑
m∈R

dm,k∑
m∈R

ym,k

, (3.10)

where, δ is a relative weight parameter and takes value from the range [0,1]; dm,k

is a binary variable having value 1 when, task m ∈ R is completed successfully in

device k ∈ K and, 0 otherwise. Similarly, binary variable ym,k is set to 1, if m ∈ R

is submitted to device k ∈ K for execution, and 0 otherwise.

While scheduling the offloadable tasks of an application, reputation of the mo-

bile devices for task execution needs to be considered. Involving devices with higher

reputation for execution of the tasks of an application increases the execution reli-

ability. Calculation of average reputation of workers for scheduling all the tasks of
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an application can be expressed as,

Ωt =
1

|M|
∑
k∈K

Ωk × ym,k. (3.11)

As soon as a registered worker device bids for a task, the TWA communicates

with the worker manager component and loads reputation value (Ωk) of that device.

Whenever execution of a particular application ends, the TWA calculates reputa-

tion value of all the involved mobile devices and updates the reputation database

of individual workers.

3.3.6 Expected Energy for Remote Execution

Since mobile devices suffer from the scarcity of energy, we need to calculate the

total energy that will be required to offload a task to a user device. To calculate the

total energy consumed to offload a task, we need to consider the energy required for

the transmission and execution the task and collection of the result back. Energy

required to transmit task m ∈M from cloudlet to device k ∈ K is given by,

E tm,k = T t
m,k×ϵtk×ym,k, (3.12)

where, ϵtk represents the energy consumption rate for transmission by device k ∈ K.

Now, the energy required to execute task m ∈M in device k ∈ K is expressed as,

Exm,k = T x
m,k×ϵxk×ym,k. (3.13)

Similarly, energy required to transmit output of task m ∈M from device k ∈ K

to cloudlet is,

Erm,k = T r
m,k×ϵrk×ym,k, (3.14)

where, ϵxk and ϵrk represents the energy consumption rate of device k ∈ K for

execution and result transmission, respectively.
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3.3.7 Optimal Selection of Mobile Workers

Now to select the optimal set of remote mobile devices for the execution of

offloadable tasks, we need to choose those devices for which the execution delay

of offloadable and unoffloadable tasks gets minimized while total reputation of all

the scheduling devices gets maximized. The objective function for the selection of

remote mobile devices is formulated as,

Maximize :

Z = α× T (f) + (1− α)× Ωt. (3.15)

Here, weight factor α has been used to represent relative priority between ap-

plication completion time and device reputation. The value of α can be determined

by the requirement of the application. Time sensitive applications can set a higher

of α while applications requiring high reliability can choose a lower percentage of

α.

Constraints:

Each task should be executed in a single device at a time.∑
k∈K

ym,k = 1; ∀m ∈M (3.16)

The offloadable computation time of the tasks through MDC should be less

than local computation time of the whole application, i.e.,

T (r) < T (l). (3.17)

Participating node signal strength should be greater than a certain minimum

threshold, i.e.,

γk > γ; ∀k ∈ K, (3.18)
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where, γk represents the signal strength of device k ∈ K which is obtained through

simulation process; and, γ represents the threshold value of signal strength what

must be satisfied by a potential worker.

Participating device energy, after execution, should be greater than a certain

minimum threshold, that is,

Ek > E tm,k + Exm,k + Erm,k +Ψ; ∀k ∈ K,∀m ∈M, (3.19)

where, Ψ represents the energy threshold that a worker device must hold after the

completion of the execution.

During the execution and transmission period, the participating devices will be

available within the range of the cloudlet, i.e.,

Tm(r) < ηk; ∀m ∈M, ∀k ∈ K, (3.20)

where, ηk represents the associativity time of device k ∈ K with the cloudlet.

All the unoffloadable tasks (m ∈ L) must have to be executed on the local

device

ym,k =

 1, if k = 0 ∀m ∈M, ∀k ∈ K

0, otherwise.
(3.21)

Note that, the objective function of the proposed TESAR algorithm provided in

equation (3.15) selects those mobiles for which total execution time in remote mo-

bile device cloud is minimum and have the highest previous reputation of execution.

It is a multi-objective mixed integer linear programming (MILP) problem that has

both combinatorial and continuous constraints.

To solve the MILP problem, the NEOS optimization tool [88] has been used

to find the impact of optimization function parameters and the optimal mapping
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between tasks and worker devices for task allocation and scheduling in TESAR.

Two Intel Xeon E5-2698@2.3 GHz CPU with 192GB RAM has been used to find the

optimal scheduling for an application containing 12∼15 tasks and 60∼80 mobile

devices. Note that, with the increase of number of tasks and available mobile

devices, real-time solution of TESAR becomes intractable in a typical cloudlet

and thus the problem can be grouped as NP-complete one [89]. However, the

constraints (3.16 - 3.21) facilitate us to significantly reduce the input sets in TESAR

environment and thus the optimal solution was found in polynomial time.

3.4 Performance Evaluation

In this section, we discuss the emulation testbed that is used to implement the

proposed task offloading algorithm TESAR and compare the obtained results with

state-of-the-art works. We compare the performance of TESAR with the following

algorithms:

� OMDC: In OMDC [27], the application tasks are assigned to different avail-

able workers in a round robin scheduling order.

� Honeybee: In Honebee [80], application tasks are scheduled on different

worker devices based on availability in a purely random fashion. If a poor

worker was chosen for a task, the work stealing mechanism is applied to take

out the task (from the poor worker) and is executed later on a computation

rich worker.

� Random: In this mechanism, the tasks are assigned to different worker

devices randomly without considering the device status.
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Figure 3.4: Emulation testbed

3.4.1 Experimental Testbed

To evaluate the performance of our proposed TESAR, an emulation testbed has

been set up by implementing an Android application on a number of heterogeneous

mobile devices. The cloudlet functionalities are implemented on a laptop through

which all the mobile devices are connected. A sample snapshot of the emulation

environment is shown in Figure 3.4. The mobile devices and the laptop communi-

cate to each other via a Wi-Fi access point. Different parameters and their values

used to carry out the emulation are summarized in Table 3.2.

We consider prime number calculation problem as an experimental prototype

to represent a compute-intensive application. Generation of prime numbers with

a large range requires a lot of computation. This particular problem can easily be
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Table 3.2: Configuration and settings of devices

Device Model OS Version RAM CPU

Laptop

(cloudlet)

ASUS ZenBook

UX303LN

Windows 10 8GB Core i5-5200U

2.20GHz

Cell Phone

(user)

Sony LT18i Android 4.0.4 512 MB 1.4 GHz Scorpion

Tablet PC

(worker)

Symphony

T8Q

Android 4.2.1 1 GB Quad-core 1.2 GHz

Cortex A7

Cell Phone

(worker)

Walton Primo

X2mini

Android 4.2.1 1 GB Quad-core 1.5 GHz

Cortex-A7

subdivided into several tasks that are passed through Algorithm 1 to construct the

parent-child dependency tree. Then, we run the objective function on this set of

tasks for distributing the execution of tasks on nearby worker devices. Figure 3.5

shows the android application interface which is used by a user/worker device to

interact with the cloudlet.

In this experiment, the prime number problem produces primes between 1 and

300000, where the complete range is divided into tasks of different size. The number

of tasks varies from 4 to 12 according to the need of the experiment. Total number

of available devices were 12 which is also varied for measuring different performance

metrics. First task of the application is always executed on the user device. The

user device can execute one or more tasks while the rest of the tasks are offloaded

to be executed on the worker devices. A device must contain a certain percentage

of remaining battery power (ψ) for self-sustainability and a minimum of -80dB
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User

Worker

Figure 3.5: User/Worker interface of android application

signal strength to be a candidate worker. The ψ is a system defined parameter

and its value can be tuned following the needs of the computing environment and

without loss of generality, we have kept ψ = 20% in our experiments. The access

point that has been used to connect the mobile devices with the cloudlet supports

IEEE 802.11b/g/n and can achieve maximum 150Mbps data rate through different

channels [90]. The value of α has been chosen to be 0.6 to give emphasis on the

execution time. All the experiments have been conducted for 20 times and the

obtained results are averaged. The local device takes 235 seconds on an average to

execute the application without offloading.
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3.4.2 Results and Discussion

This subsection provides the experimental result and analysis of our proposed

TESAR system with other benchmark solutions. In most of the cases, random

allocation method fails to execute the allocated task as it doesn’t consider the ca-

pability of the worker device and handles failed tasks. The results depict that,

the magnitude of transmission time is negligible compared to completion time.

The results for random allocation are obtained from the successful completion of

application executions only.

3.4.2.1 Impact of number of tasks in an application

Fig. 3.6 shows the impact of varying the total number of tasks in an application

on the performances of the studied systems. Fig. 3.6(a) shows that, initially, the

total completion time is decreased significantly with the increasing number of ap-

plication tasks in all the studied systems. Such behavior is theoretically expected

as well since the scope of parallel execution is enhanced with the number of tasks.

However, after reaching at a certain level of partitioning (10 tasks in the figure),

the completion time starts increasing gradually with the number of tasks. This

is due to the fact that, as the number of tasks increases, the assignment of tasks

to relatively poor worker devices also increases and communication latency among

the interdependent tasks is increased with the same rate. In case of communication

latency (Fig. 3.6(b)), with the rise of the number of tasks, transmission time and

output reception time increases for all the approaches. Fig. 3.6(c) shows the result

of rescheduling overhead with the growth of number of tasks. As the number of

tasks increases, the task size decreases and hence the rescheduling overhead is also

decreased. However, our TESAR system outperforms all others with respect to
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Figure 3.6: Impacts of increasing number of tasks in an application

completion time, communication latency and rescheduling overhead since it selects

devices with higher signal strength, reliability and associativity period.
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Figure 3.7: Impacts of increasing number of worker devices

3.4.2.2 Impact of number of worker devices

With increasing number of devices, the opportunity of selecting more suitable can-

didates for code offloading is enhanced, resulting in better performances in com-

pletion time as well as rescheduling overhead of tasks, as shown in Fig. 3.7(a) and

(c). However, with the increase in the number of devices, communication latency
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for code offloading is increased gradually (Fig. 3.7(b)). Nevertheless, since TESAR

method selects devices with high reputation, it can avoid rescheduling of applica-

tion tasks to a large extent and hence it experiences better performance compared

to state-of-the-art offloading algorithms.
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Figure 3.8: Impacts of increasing number of parallel tasks
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3.4.2.3 Impact of number of parallel tasks

Comparative study among the systems on varying number of parallel tasks is illus-

trated in Fig. 3.8. Here, the number of total tasks is fixed at 12, amongst which

the number of parallel tasks has been increased from 2 to 10. Fig. 3.8 shows that,

the completion time of the application decreases gradually with the number of par-

allel tasks. However, computation latency and task rescheduling overhead rise for

higher number of parallel tasks. This is caused by increased communication latency

among the higher number of tasks. Again, the likelihood to task rescheduling in-

creases with growing number of parallel executable tasks. However, the proposed

TESAR system considers partial dependency and it selects optimal devices for code

offloading and hence outperforms compared to other offloading algorithms under

study.

3.4.2.4 Impact of α value on the performance of TESAR

Fig 3.9 shows performances of the proposed TESAR system in terms of completion

time of applications with respect to increasing number of devices and tasks for

different values of α. The graph reveals the fact that, the proposed TESAR system

provides the worst completion time for α = 0. The completion time is decreased

with the gradual increase in α value. This is because, with the increase of α,

the algorithm chooses devices having high computational speed and reasonable

reliability. It exhibits the optimal behavior when α takes the value of 0.6. However,

further increase of α value starts increasing the completion time again. This is due

to the fact that, much higher value of α forces the system to choose devices offering

reduced reliability, causing a number of tasks experience rescheduling and therefore,

completion time of the application is increased.
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Figure 3.9: Impact of α value on the performance of TESAR

3.5 Summary

In this chapter, we have focused on strategies for code offloading to surround-

ing mobile devices instead of distant remote cloud. Offloading decision has been

implemented to make a tradeoff between execution speedup and reliability for

compute-intensive applications. The proposed TESAR system employs cloudlet

infrastructure to coordinate apportion of application into tasks and to distribute

on different worker devices for faster execution. The system outperforms as the

best worker devices are extracted from the set of candidate workers by consid-

ering offered computation speed, reliability, signal strength and available energy.

Simultaneous execution of parallel tasks with most suitable worker device achieves

better result in terms of execution time, communication latency and rescheduling

overhead compared to the state-of-the-art works for varying number of tasks and

worker devices.



Chapter 4
Incentivizing Workers in MDC

In the previous chapter, we have discussed the formulation of a voluntary approach

to execute the tasks of an offloaded application and found that, to exploit the re-

sources of nearby mobile devices, the selection of reliable worker devices is the key

to speedup the computation performance. In this chapter, we will discuss on algo-

rithms to incentivize the worker devices for their used resources in executing a task

successfully. Here, we also present detailed performance evaluation results.

4.1 Introduction

With huge advances in recent years, mobile devices (e.g., smartphones, smart-

watches, and tablets) have become ubiquitous and are rapidly growing as a dom-

inant computing platform for users. These devices, which are equipped with a

plethora of embedded sensors (e.g., GPS, camera, audio, proximity, and temper-

ature) to execute various kinds of interactive and real-time applications requiring

a large amount of computation. Although the divergence of mobile applications is

increasing every day, the execution performance is not yet sufficient due to resource

constraints, mainly in terms of limited CPU, memory, and battery capacity [91, 92].

To enhance the computation performance of mobile applications, mobile de-

77
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vice cloud (MDC) [6, 15, 16, 37] has been introduced which is an opportunistic

computation offloading technology that exploits idle resources of stationary mobile

devices. Mobile devices in a large scale stationary location (e.g., theater, shopping

mall, stadium, or restaurant) or onboard a vehicle (e.g., bus, train, and airplane)

may collaboratively form a cloud service infrastructure. MDC technology has facil-

itated the running of many compute-intensive mobile applications such as intelli-

gent transportation, natural language translation, augmented reality, and real-time

health monitoring [4, 93]. A study shows that mobile devices are kept in idle state

approximately 89 % of the time, and during this period they consume not more

than 11 % of the available system resources [94]. The idle resources from such a

plethora of mobile devices present untapped computing opportunities [61]. The

MDC technology not only mitigates scarcity of computation resources in cloudlet-

based offloading mechanisms [91, 95, 96] but also resolves communication latency

of remote clouds [4, 10, 12].

Typically, an application user (i.e., a buyer device) offloads an application code

to the MDC manager, and then it is executed by different worker devices (i.e.,

sellers) having a sufficient amount of idle resources. The actual benefit of the

emerging MDC technology can only be utilized through the effective participation

of mobile worker devices in the computation process. For this reason, it is important

to ensure the participation of nearby worker devices in such a computation system

so as to exploit unused resources efficiently. In state-of-the-art works, authors have

focused on designing an MDC framework, where the worker devices participate

voluntarily in the task execution process [16, 21, 27, 41, 62, 65, 66, 81]. However,

these methods lack to attract a good number of reliable workers in the resource-

trading mechanism due to a lack of compensation for the used resources. Moreover,
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qualified and reputed worker devices became demotivated in sharing resources as

their contribution were unrecognized in the allocation of future tasks. Thus, a

payment mechanism should be planned to ensure the participation and sharing

of resources of eligible worker devices. Moreover, the introduction of a reward

mechanism can incentivize the use of mobile device resources, increasing motivation

for worker devices.

In the literature, a number of strategies have introduced to provide payments for

the used resources of the worker devices. A few researchers addressed a general pay-

ment strategy that discretely exploited parameters like execution cost, remaining

energy, energy consumption, etc. parameters for the selection and later providing

payment of the worker devices [15, 34, 59, 68, 83]. However, these mechanisms

unable to fulfill the demand of different user applications due to the selection of

untrustworthy workers with poor resource capacity and large communication over-

head, resulting in poor execution performance. Few researchers exploited a reverse

auction mechanism to provide payment for the used resources of the worker de-

vices in executing the application tasks [22, 58, 60, 69]. These works applied a

game-theoretic approach to finding an equilibrium point between the user cost and

worker profit. However, these approaches failed to provide a feasible solution in

most of the cases as the user budget exceeds the worker device payment due to im-

mediate next bidding price strategy while few approaches completely neglected the

budget of a user. A few works also considered a forward auction mechanism to al-

locate application tasks to different worker devices and offer payment for their used

resources [70, 71, 84]. However, these approaches also unable to recognize qualified

worker devices due to bidding to selected workers, resulting in a suboptimal result.

In general, all state-of-the-art-works are focused on designing a payment mech-
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anism either to minimize the cost of the user or to maximize the profit of the worker

devices. However, the impact of user Quality-of-Experience (QoE) for executing

tasks in an MDC environment is yet to be investigated extensively.

The QoE metric quantifies the improvement of the execution time of an of-

floaded task observed by the user. Focusing only on minimizing execution cost

leads to the selection of unreliable and/or poor workers, hampering the user QoE.

A buyer device always wants to increase QoE at low-cost and a seller device expects

higher payment. This payment acts as compensation for its used resources (e.g.,

CPU, memory, and energy) and bandwidth charges. Furthermore, an application

user (i.e., buyer) might be motivated to pay more only if s/he receives high-quality

execution supports from worker devices. Hence, it is a pre-eminent concern to

design an incentive mechanism to enhance worker participation, while considering

the resource capacity and reputation of worker devices to execute the tasks with

the aim of increasing user quality-of-experience (QoE).

In this chapter, we focus on the selection of reputed and resourceful worker de-

vices to execute tasks of an application and incentivize them based on the quality

of execution. We consider an MDC system consisting of a cloudlet acting as a cloud

broker and a set of participating mobile devices (i.e., user and workers), as shown in

Figure 4.1. The user device has an application (with a set of individual tasks) that

requires offloading to the cloudlet for execution. After getting an announcement

from the cloudlet, a worker device expresses its willingness to execute a certain

task/tasks. Following the reverse-auction bidding policy, the cloudlet then deter-

mines an optimal mapping of the tasks to be executed on the worker devices so as

to maximize user QoE and minimize execution cost. After the successful execution

of the assigned tasks, claimed cost with additional incentives according to execu-
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User 

(Buyer)
Worker

(Seller)

Cloudlet

Figure 4.1: Architecture for collaborative computation

tion quality is paid to the worker devices. Contributions listed in the works of this

chapter are:

� We design a framework for a QoE-aware incentive mechanism to execute

applications by workers in MDC. To the best of our knowledge, this is the

first work to improve the user-QoE through incentivizing worker devices in

addition to their regular bid payment, according to task execution quality.

� We formulate a multi-objective linear programming (MOLP) function that

determines the optimal provisioning of application tasks on high performing

worker devices with the aim of increasing user QoE with reduced cost.

� Due to the NP-hardness of MOLP, we develop two greedy task-worker as-
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signment algorithms and incentive mechanisms to facilitate resource sharing

using reverse-auction theory.

� The novelty of this work lies in paying additional incentives to the workers

following their offered qualities of user task execution.

� The reliability and trustworthiness of the workers and the correctness of the

incentive mechanisms have been proved theoretically.

� The performances of the proposed incentive mechanisms were evaluated in

MATLAB [97], and significant improvements in user QoE and cost reduction

were demonstrated.

The remainder of this chapter is organized as follows. Section 4.2 presents an

incentive aware computation framework for MDC along with our assumptions. Sec-

tion 4.3 formulates the worker device selection and incentive disbursement methods

and presents a theoretical analysis. Section 4.4 presents the simulation environment

and experimental results of the proposed incentive mechanisms with comparative

analysis. Finally, the paper is concluded in Section 4.5.

4.2 System Model and Assumptions

This section introduces a novel computation framework for an MDC system, inter-

actions among its functional modules and assumptions made for modeling the task

execution. In the remainder of the chapter, without loss of generality, the terms

buyer and seller devices should be considered synonymous to the terms user and

worker devices, respectively.
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4.2.1 Computation Framework

We consider an MDC system with three different entities: users (buyers), workers

(sellers) and a cloudlet (broker), which are working in two tiers. Mobile devices

that are running applications that require additional resources (CPU, memory, etc.)

for code execution, act as buyers and devices providing the required computation

resources act as sellers ; both reside at tier one. Interested seller devices bid for

different application tasks based on their shareable resources. As presented in

Figure 4.2, the allocation and distribution of these tasks and resources are done

by a cloudlet, which acts as the central controller for task execution and resides in

tier two. The cloudlet also acts as a broker to select the winners from a pool of

candidate workers and their payment disbursement. Detailed descriptions of four

functional modules of our proposed computation framework are appended below.

To enable parallel execution, the dependency estimation component determines the

interdependency among the tasks and [62].

Task Profiler (TP): The TP module receives an application with an allot-

ted budget (P) and an execution deadline through the task receiver component.

It then uses the workload analyzer component to split the application into a set of

atomic tasksM, where each atomic task m ∈ M contains Sm number of instruc-

tions for offloaded execution. The dependency estimation component is responsible

for determining the interdependency among tasks [62] which is used to identify ex-

ecution order, facilitating parallel execution. The TP then hands the tasks over to

the task advertisement component for advertising the tasks to the worker devices.

Each advertised task is a three-parameters tuple denoted by < m,Sm, Tm >, where,

m ∈ M is the task ID, Sm is its number of instructions and Tm defines the task

deadline. Based on the task size and historical transaction prices, it also calculates
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Figure 4.2: Computation framework of the proposed incentive-driven MDC system

maximum and minimum payable amounts (Bmax
m and Bmin

m , respectively) for each

task to guard against bids from felonious workers [98]. The TP shares the lists of

advertised tasks information with the TWA.

Task-Worker Allocator (TWA): The TWA module is the core of the pro-

posed system, and it controls and coordinates functionalities of other modules. It

triggers the TP to collect user applications and submits advertisements after pro-

filing the application tasks. It collects worker bids (B) through the bids coordinator

component. The worker devices send their device-specific information, identified

by the tuple < k,Bk,Rk, ηk,Hk >, which contains device identifier (k), workload

capacity (Hk), associativity time (ηk), and a set of bids (Bk). Parameter Rk is

used to determine the aggregated resources required to execute a single instruction,

whereas the workload capacity Hk indicates the maximum number of instructions
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that can be handled by the worker [58, 70]. The associativity time ηk indicates the

expected amount of time a worker device will stay in the vicinity. Associativity

time of a worker device can be calculated based on its contextual information and

current GPS location which has been exploited in [99]. A single worker k ∈ K is

allowed to bid for multiple tasks m ∈ M, and each bid Bk
m ∈ B is represented by

tuple < k,m, bkm,Qk
m >, which contains execution cost (bkm) and execution quality

(Qk
m) promised by the worker k ∈ K. However, to win a bid a worker device must

have to satisfy the reputation and computation resource constraint in addition to

bid cost. Moreover, a worker device will be entitled to execute multiple tasks only

if it has sufficient computational resources and the tasks are sequential in order of

execution.

All the collected bids and device information are then transferred to the TWA

module to determine the winners among the submitted bids. After collecting all the

bids from different workers, the TWA matches the advertised list of tasks with the

corresponding worker bids to ensure that no task remains unbidden. Notifications

of winning bids (W ⊆ B) are also dispatched through the same interface to selected

worker devices (V ⊆ K). The TWA module interacts with the worker manager

component to determine the dependability of workers to execute tasks success-

fully and to estimate the required cost. The worker manager component evaluates

submitted bids to determine the quality and reliability of worker device through

historical traces containing execution history and reputation information [100, 101].

After accumulating all information, it runs a worker selection algorithm to deter-

mine the winners from the set of candidate worker devices, and then it forwards the

task-worker mapping list to the execution coordinator (EC) to schedule the tasks

in order.
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Execution Coordinator (EC): On reception of the task-worker mapping list

from the TWA, the EC calls the task dispatcher component to schedule the tasks

in order. This is to be noted that due to different computation and communication

resources, the worker devices exhibits heterogeneous execution and communication

latencies. However, ordered scheduling of the tasks helps to diminish any syn-

chronization latencies due to such issues. After successful execution, results are

collected and transmitted back to the user device with a payment (P ′ ≤ P) dis-

bursement request. Failed executions are reallocated by the TWA to the next

available bidder. After the execution of all the submitted tasks, reputation of the

allocated worker devices are updated according to their execution results and sent

to the TWA module to store in the worker manager database.

Payment Manager (PM): The PM receives the agreed amount of payment

from the user device through the payment receiver component. Upon getting the

successful execution notification from the EC, the PM disburses the individual

amount of payment (Pv) to the corresponding winning worker devices v ∈ V ac-

cording to their bids along with incentives, if any, with the help of the payment

provider component. It also collects a certain percentage of the worker bid cost

as the utility (U0) of the cloudlet, which is acting as a broker, coordinating all

these transactions and communication activities on behalf of the user and worker

devices.

Figure 4.3 shows the sequence of activities among the user tasks, worker devices,

and cloudlet platform for application execution.

The proposed incentive mechanisms trade among the seller devices to execute

application tasks of a buyer with minimum cost and maximum quality. The incen-

tive mechanisms should satisfy the following desirable properties:
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Figure 4.3: Sequence diagram of proposed incentive mechanism

� Computational efficiency: An incentive mechanism is said to be compu-

tationally efficient if it can produce an auction decision in polynomial time.

� Individual rationality: The incentive mechanism must ensure a positive

utility to bid-winning worker devices and the cloudlet to facilitate execution

of application tasks, i.e., Uk
m > 0, ∀k ∈ K, ∀m ∈ M; U0

m > 0, ∀m ∈ M,

where Uk
m denotes the utility of worker k ∈ K for task m ∈ M. This basic

requirement is mandatory to encourage the participation of worker devices in

the system.

� Truthfulness: An incentive mechanism is truthful if it can guarantee that

only the bidders declaring true costs are eligible to win the auction. No bidder

can increase its utility by submitting a bid other than its actual cost.
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� Budget balance: The incentive mechanism must guarantee that the to-

tal amount of payment P ′ charged by different worker devices is within the

budget allocation P of a user for a certain application, i.e., P ′ ≤ P .

4.2.2 Assumptions

Based on the state-of-the-art works, we have made the following assumptions in

this work.

We assume the application as a directed rooted tree where the tasks repre-

sent vertices, and the linkages correspond to dependencies among them. Execution

of the tasks begins from the root, where parallel tasks start their execution si-

multaneously and dependent tasks start execution after completion of the parent

task [92, 102, 62]. Hence, the execution performance of an application mostly re-

lies on the number of dependent and parallel tasks. The overall execution delay is

calculated considering both execution times and communication latencies involved.

We assume there will be a sufficient number of worker devices in the system

to allocate all the application tasks, and each task will be bid on by at least one

worker. The worker devices agree to execute tasks assigned to them, and each

device will execute one task at a time [22, 58]. However, it may execute multiple

tasks of one application. These worker devices are symmetric, independent, and

risk neutral, having no security or privacy violations. A worker device may bid for

multiple advertised tasks, where each bid has been generated randomly considering

given task size and deadline. When a worker device submits quality information in

a bid, it includes communication latency with actual execution time [103].

We assume the system will be running on a trusted platform where all executions

will be in a secure environment and all the device-cloudlet interactions will be
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governed by proper authorization and authentication techniques [104]. We consider

a quasi-static behavior for mobility of the user and worker devices to determine

the associativity time (η), where the movement of the devices will remain relatively

unchanged for a given period of time that is sufficient to execute the allocated task

and return the result to the cloudlet [36, 37, 99]. In this thesis, current GPS

location and contextual information have been used to determine the associativity

time of a worker mobile device [99].

The major notations used in this paper are listed in Table 4.1.

4.3 Proposed Incentive Mechanism

Successful execution of application tasks greatly depends on the selection of high

performing and reputed worker devices. The execution time of an application

task also significantly varies from one worker to another due to their resource

heterogeneities, which offers varied QoE for users. This section first details the

design of an optimal selection process of worker devices considering user QoE and

task execution cost. Due to the NP-hardness of the optimal solution, we then

develop greedy algorithms for task assignments on suitable workers so as either to

maximize QoE or minimize execution cost. Finally, this section ends by presenting

a QoE-aware incentive payment mechanism and theoretical proofs of its properties.

4.3.1 Optimal Selection of Worker Devices

The competency of our proposed QoE-aware incentive mechanism mostly relies

on efficient selection of worker devices so that the overall execution quality is in-

creased and cost is decreased. The efficiency of application task allocations by the
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Table 4.1: List of notations for paid task execution

Symbol Description

M Set of advertised tasks

K Set of candidate worker devices

V Set of winning worker devices

B Set of bids submitted by worker devices

W Set of winning bids

Sm Number of instructions in task m ∈M

Tm Execution deadline of task m ∈M

Rm Resource requirement for executing task m ∈M

Ckm Claimed cost of worker k ∈ K for task m ∈M

Qk
m Offered quality of worker k ∈ K, m ∈M

Ωk
m Earned reputation of worker k ∈ K, m ∈M

Pk
m Payment of worker k ∈ K for task m ∈M

U0
m Utility of cloudlet for serving task m ∈M

Uk
m Utility of worker k ∈ K for task m ∈M

TWA module on different worker devices also depends on their reputations and

resource availabilities. In addition to that, interdependency among the tasks and

costs demanded by the worker devices for task execution are also important. Thus,

provisioning of application tasks on worker devices is a multi-objective, multi-

constrained problem. The next subsections describe methods for measuring user

QoE and execution cost metrics, followed by formulation of an optimization frame-

work for the problem.
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4.3.1.1 User quality-of-experience (QoE)

As discussed earlier, each task has an associated deadline Tm determined by the

cloudlet [105], within which the output of a task must be available to the cloudlet.

Execution quality of an application, as termed as service level agreement (SLA)

quality, is defined as the ratio of task execution time on the worker device to that

on user device. Therefore, quality for a single task m ∈ M being offloaded to

device k ∈ K can be calculated as

Qk
m = 1− (

T k
m + Lk

m

Tm
), Qk

m ∈ (0, 1], (4.1)

where T k
m denotes task execution time, and Lk

m indicates communication latency

between worker device k ∈ K and the cloudlet during input and output transmission

for task m ∈ M. The task execution time T k
m is calculated by Sm

µk , where µk

represents the CPU speed of a worker device k ∈ K. The ratio T k
m+Lk

m

Tm < 1 because

execution delay cannot exceed the deadline for any task. Now, combining the

quality of all tasks, the QoE observed by the user for an application can be expressed

as

Q =
1

|M|

|M|∑
m=1

Qk
m, Q ∈ (0, 1]. (4.2)

The target of our QoE-aware incentive mechanism is to increase the value of Q

for a user application.

4.3.1.2 Cost of execution

A worker device participating in task execution incurs a cost due to usage of a cer-

tain amount of resources (CPU, memory, bandwidth, etc.). Therefore, a payment

for the used resources is necessary to incentivize the worker device, promoting this
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service model [58]. The cost to execute each task m ∈ M is determined by the

amount of resources utilized by the task during task execution time. The amount

of computation resources (CPU clock speed) required to execute task m ∈M with

task size Sm can be given as

Rm = Sm ×Rk, (4.3)

where Rk is the resources required by candidate device k ∈ K to execute a single

instruction. Then, the total cost is calculated by considering cloudlet utility along

with execution cost. Now, considering Ck to be the cost of utilizing a unit resource

in device k ∈ K, the cost of executing task m ∈M can be determined by

Ckm = Rm × Ck. (4.4)

After successful completion of a task, the corresponding worker devices earn

payments with incentives in line their execution qualities. From application task

profiling and worker selection to task dissemination, the cloudlet controls and co-

ordinates the whole process of execution in the MDC system. Thus, our worker

devices pay a certain proportion of their bid amounts to the cloudlet as a coordi-

nating utility. The utility of the cloudlet for executing task m ∈ M by candidate

device k ∈ K is

U0
m = bkm × λ, (4.5)

where bkm is the price of bidding by worker device k ∈ K to execute task m ∈ M

that contains a marginal profit with accumulated costs for used resources and

cloudlet payment, and λ is the utility percentage that will be given to the cloudlet

for coordinating this task assignment and execution. The value of this utility

percentage is a system design parameter, and it may vary from one cloudlet to
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another over a given period. The total utility of the cloudlet U0 for providing

necessary support to execute all tasks of an application is scaled by

U0 =

|M|∑
m=1

U0
m. ∀k ∈ K (4.6)

Therefore, the utility of candidate k ∈ K for executing a single task m ∈M is

Uk
m = bkm − Ckm − U0

m, (4.7)

where Ckm is the actual cost of executing task m ∈ M on device k ∈ K. Accumu-

lating the cost of each task m ∈ M in the application, we can get total bidding

cost of application execution on the candidate devices, quantified as

CM =

|M|∑
m=1

|K|∑
k=1

bkm × ykm, (4.8)

where binary variable ykm ∈ {0, 1} takes value 1 if task m ∈ M is executed on

worker device k ∈ K and 0 otherwise. Hence, the normalized bidding cost C of the

user is gained by

C = CM
P
, C ∈ [0, 1], (4.9)

where P is user-sanctioned budget for execution of the complete application and

is the summation of the maximum allowable bid costs for each task m ∈ M,

i.e., P =
∑|M|

m=1B
max
m . While selecting worker devices, the proposed incentive

mechanism aims to minimize this normalized execution cost for an application.

4.3.1.3 Optimal objective function

The selection of an optimal set of candidate devices for offloading tasks of an

application can now be formulated as
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Maximize :

Z = argmax
W∈P (B)

∑
∀w∈W

{β ×Q− (1− β)× C}, (4.10)

subject to:

CM ≤ P (4.11)

ηk ≥ max(T k
n ) + T k

m(1− Φn,m), ∀n ∈ Πm, (4.12)

Ωk ≥ γ, ∀k ∈ K (4.13)

|M|∑
m=1

Sm × ykm ≤ Hk, ∀k ∈ K, ∀m ∈M (4.14)

Uk
m > 0, ∀k ∈ K,∀m ∈M; U0 > 0, ∀m ∈M (4.15)∑

k∈K

ykm = 1, ∀m ∈M. (4.16)

In the above formulation, the aim of the objective function (4.10) is to excel in

task QoE while reducing execution cost. It chooses a bid setW from the power set

of bids P (B), which optimizes the said parameters. Here, β is the relative weight

parameter, which works as a control knob. Its value can be tuned to obtain different

tradeoff levels between application QoE and execution cost required by various

types of applications. Setting β = 1 translates it into a quality maximization

problem, and β = 0 makes it a cost minimization problem, while other values

correspond to various quantified levels of tradeoff between the two. The cloudlet

determines an appropriate value of β following user demands.

The budget constraint defined in (4.11) means that the total payment of workers

must not exceed the user-sanctioned payment. The availability constraint (4.12)

specifies the minimum amount of time a selected candidate device must stay in
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the system. Here, Πm is the set of parents of a task m ∈ M and Φn,m is the

percentage of dependency of a child task m ∈ M on its parent n ∈ Πm [62]. The

reputation constraint (4.13) ensures that to win an auction for any task m ∈ M,

the reputations of all selected candidates must be greater than a certain minimum

threshold. The taskload constraint (4.14) refers to the fact that a candidate device’s

total assigned taskload must be less than or equal to its specified maximum capacity

Hk. The utility constraint (4.15) ensures that each device executing a task of

an application will earn positive revenue. The cloudlet will also earn positive

utility for supporting the execution service for each individual task. Similarly,

the atomicity constraint (4.16) confirms that a single task will not be assigned to

multiple candidate devices, and each task should be executed only once.

Theorem 1. The proposed worker device selection problem in (4.10) is NP-

hard.

Proof: The optimization framework in (4.10) is a MOLP because since it con-

tains two conflicting objectives (i.e., maximizing quality and minimizing cost) with

combinatorial and continuous constraints. The worker selection problem can be

reduced to a multiprocessor scheduling problem (an NP-complete scheduling prob-

lem) [106] by leveraging the constraints and considering that all workers offer equal

quality. A multiprocessor scheduling problem has following components,

1. A set S = {J1, J2, ...Jn} of jobs,

2. A partial order ≺ on S,

3. A weight function, W , giving the processing time of each job at different

processors,

4. A set of processors, K
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The problem aims to minimize the overall processing time of jobs which is

given as,

Minimize :

k∑
j=1

n∑
i=1

Wi × xj (4.17)

subject to:

t(j) < t(j′) : j ≺ (j′) (4.18)

The worker selection problem can be reduced to multiprocessor scheduling

problem by leveraging the constraints and considering that all workers can solve

time with equal quality. If execution of a task depends fully of its parent task,

i.e., task can start its execution after the complete execution of its parent task,

the ILP is then takes the form:

Minimize :

Z = argmin
k∈K

((1− β)× C), (4.19)

subject to:

T k ≥ max(T k
n ), ∀n ∈ Πm, (4.20)

where, the constraint ensures that, a child task starts execution after completion

of its parent task. As we can easily reduce the proposed ILP to multiprocessor

scheduling problem, it can safely be declared that, the proposed ILP is at least as

hard as multiprocessor scheduling problem, which is NP-hard. Hence, the proposed

MOLP problem is NP-hard and cannot provide a polynomial time solution.

In a practical MDC platform, a typical application containing approximately

10−15 individual tasks may generate thousands of bids. To find boundary values of
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Figure 4.4: Computation time for optimal selection of workers

worker and tasks in a typical MDC environment, we simulate the objective function

in NEOS optimization server (2× Intel Xeon e5-2698 @ 2.3GHZ CPU and 92GB

RAM) with β = 0.5. The graphs in Fig. 4.4 show that the computation time for

a higher number of tasks and workers exponentially increases due to exploring an

enormous number of task-worker assignments. For 20 tasks and 30 workers, the

run time exceeds 100 seconds, which might not be tolerable for a decision-making

algorithm. To overcome this problem, we develop two greedy solutions for assigning

tasks to workers.

4.3.2 Greedy Selection of Worker Devices

To support real-time processing of user applications, this section introduces light-

weight greedy worker selection algorithms focusing on either maximizing execution

quality or minimizing execution cost. Algorithm 2 selects workers that maximize
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task execution quality while maintaining total cost within the allocated budget.

On the other hand, Algorithm 3 selects workers that demand minimum cost while

maintaining the required quality of execution. Detailed descriptions of the algo-

rithms are given in the following subsections.

4.3.2.1 Maximizing task execution quality

Algorithm 2 takes a set of bids B and a set of tasksM as input and produces a set of

winning bidsW as output. It uses a priority queue of bids B′ in descending order of

their execution qualities (line 6). First, the algorithm prepares a candidate bid set

after pruning the bids that cannot meet the minimum reputation and fall outside

of the bid boundary. These bids are sorted with higher quality values and stored

in the priority queue (lines 4 − 8). Then, the task of the topmost bid is assigned

to the corresponding worker device that fulfills the required resource requirements

(lines 10 − 11). After successful task assignment, the corresponding task and the

bid is removed from the queue and the procedure is repeated until all the tasks

assignment are completed (lines 9− 17).

4.3.2.2 Minimizing task execution cost

The algorithm selects worker devices that can satisfy execution constraints, ascer-

tain minimum execution quality, and reduce overall execution costs. Delay tolerant

applications, such as text translation, audio video transmission, online forum, and

blogging can compromise in terms of execution quality, providing us the opportu-

nity to minimize execution cost.

Algorithm 3 follows similar steps of Algorithm 2, except the priority queue B′

is based on minimum execution cost (line 6). The algorithm selects all bids that



4.3 PROPOSED INCENTIVE MECHANISM 99

Algorithm 2 Worker selection for maximizing quality

INPUT: Set of bids from all worker devices for all tasks, B ←
∪

∀k∈K,∀m∈M Bk
m

OUTPUT: Set of winning bids, W

1. Set W ← ϕ, M′ ←M

2. Set Rk
u ← 0 ∀k ∈ K

3. Set Priority Queue, B′ ← ϕ

//Select the candidate workers

4. for all Bids Bk
m ∈ B do

5. if ((bkm > Bmin
m && bkm < Bmax

m ) && (Ωk ≥ γ) && (Qk
m > 0)) then

6. B′.push(Bk
m) //Insert item following priority on higher values of Qk

m

7. end if

8. end for

//Pop the topmost bid and assign the task to the corresponding worker

9. while (B′ ̸= ϕ && M′ ̸= ϕ) do

10. F ← B′.pop()

11. if (Rm +Rk
u < Hk && F .k ∩M′ ̸= ϕ) then

12. W ←W ∪F

13. Rk
u ←Rm +Rk

u

14. M′ ←M′ \ k | k ∈ F //Remove the assigned task

15. end if

16. B′ ← B′ \ F //Remove the assigned bid

17. end while

18. return W

provide minimum task execution cost and ensures at least minimum quality (lines

4− 17).
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Algorithm 3 Worker selection for minimizing cost

INPUT: Set of bids from all worker devices for all tasks, B ←
∪

∀k∈K,∀m∈M Bk
m

OUTPUT: Set of winning bids, W

1. Set W ← ϕ,M′ ←M

2. Set Rk
u ← 0 ∀k ∈ K

3. Set Priority Queue, B′ ← ϕ

//Select the candidate workers

4. for all Bids Bk
m ∈ B do

5. if ((bkm > Bmin
m && bkm < Bmax

m ) && (Ωk ≥ γ) && (Qk
m > 0)) then

6. B′.push(Bk
m) //Insert item following priority on lower values of bkm

7. end if

8. end for

//Pop the topmost bid and assign the task to the corresponding worker

9. while (B′ ̸= ϕ && M′ ̸= ϕ) do

10. F ← B′.pop()

11. if (Rm +Rk
u < Hk && F .k ∩M′ ̸= ϕ) then

12. W ←W ∪F

13. Rk
u ←Rm +Rk

u

14. M′ ←M′ \ k | k ∈ F //Remove the assigned task

15. end if

16. B′ ← B′ \ F //Remove the assigned bid

17. end while

18. return W

What we unfold next is the process of providing additional incentives to the

high performing workers following their offered qualities of task executions. Note
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here that the incentive mechanisms are applicable for workers assigned tasks either

by MOLP system or greedy algorithms.

4.3.3 Quality-of-Experience-Aware Incentive Mechanism

Upon successful execution of all tasks of an application, payment is calculated for

disbursement to the corresponding bid winners v ∈ V . A worker device is paid the

bid amount (bvm) and an additional incentive based on the executed task quality

(Q′v
m), which is measured after task execution. This incentive might play a vital role

in motivating worker devices to submit rational bids and increasing participation

of valued workers in the bidding process.

The entitlement of an incentive depends on two parameters. Firstly, the bid cost

must be less than the maximum budget for the task (i.e., bvm < Bmax
m ). Secondly,

the provided execution quality of a task must be higher than the committed quality

(i.e., Q′v
m > Qv

m). If these two criteria are fulfilled then we calculate the amount

of bonus quality provided by the worker device, i.e., (Q
′v
m−Qv

m

Qv
m

). A worker device is

given a portion of the unused budget (Bmax
m − bvm) as an incentive for the provided

bonus quality. Otherwise, the worker will not be entitled to any incentive amount.

Thus, we calculate the incentive amount σv
m as

σv
m =


(Bmax

m − bvm)×
Q′v

m−Qv
m

Qv
m

, if bvm < Bmax
m

&& Q′v
m > Qv

m.

0, otherwise.

(4.21)

Now, the cloudlet is responsible for computing the required payment to the

worker devices. A detailed description of the payment strategy for bid-winning

worker devices is presented in Algorithm 4.
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Algorithm 4 Incentive payment for winner devices

INPUT: Set of winning bids, W , from Algo 1 or Algo 2.

OUTPUT: Payment Pv for winner device, v ∈ V, Total amount of payment, P ′

for the user application.

1. Set Pv ← 0,P ′ ← 0

2. V = {v | v is a winning device listed in W}

3. for all winning devices v ∈ V do

4. for all tasks m ∈M do

5. Calculate incentive amount, σv
m using Eqn. (4.21)

6. Pv
m ← bvm + σv

m //Total payment for a task m

7. Pv ← Pv + Pv
m //Total payment for a worker v

8. P ′ ← P ′ + Pv
m //Total payment for the application

9. end for

10. end for

11. return Pv,P ′

After completion of all tasks, the cloudlet picks a worker device and calculates

incentives of each task executed by it using (4.21), total payment for the task (Pv
m),

and payment for all the executed tasks (Pv). These steps are repeated for all the

worker devices (lines 3 − 7). Finally, the cloudlet calculates the total actual pay-

ment (P ′) of the user and disburses payments to individual workers upon reception

of actual payment from the user (line 8). We call the incentive payment mecha-

nism IMaxQ when the workers are selected to maximize task execution quality (in

Algorithm 2) and IMinC when the workers are selected to minimize task execution

cost (in Algorithm 3).
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4.3.4 Updating Reputations of Worker Devices

Reputations of worker devices are updated by the TWA module based on the

execution results of the tasks; this is important for selecting winning devices in

future task assignments. To encourage truthful bidding, successful execution with

the offered quality provides a positive reputation, whereas failure in maintaining

the offered quality or deadline results in a penalty to protect against dishonest

activity of unqualified workers.

To calculate the reputation of a winning device v ∈ V , the cloudlet first calcu-

lates the quality enhancement indicator Ev
m of the executed task based on qualities

Qv
m and Q′v

m offered in SLA and provided by the worker, respectively.

Ev
m =


1, if Q′v

m ≥ Qv
m

(1− Qv
m−Q′v

m

Qv
m

), if 0 < Q′v
m < Qv

m

−1, unsuccessful.

(4.22)

The task quality enhancement indicator (Ev
m) is used to calculate the reputa-

tion/penalty value gained for executing the current task m ∈M as

Ωv
m = α× Ev

m × (−1)xv
m × (−1)yvm , (4.23)

where α is a weight parameter used to put emphasis on the currently availed rep-

utation/penalty. In this work, the value of α was set to 0.1, placing only a small

significance on the reputation achieved for executing the current task. The bi-

nary variable xvm ∈ {1, 0} is used to represent service level agreement (SLA) re-

tention status. xvm is set to 1 if worker device v ∈ V successfully executes task

m ∈ M, maintaining Q′v
m ≥ Qv

m; otherwise, it is set to 0. Similarly, binary vari-

able yvm ∈ {1, 0} takes value 1 if task m ∈ M successfully executed on the worker



4.3 PROPOSED INCENTIVE MECHANISM 104

device v ∈ V and 0 otherwise. Finally, the reputation of a worker device is updated

for future task assignments considering previous reputation as

Ωv = max(0,min(Ω′v + Ωv
m, 1)). (4.24)

Equation (4.24) bounds the reputation for a worker device v ∈ V between 0

and 1. In this work, the initial reputation of a worker device was considered as

1.0 to encourage new workers to participate in the MDC system. Note that (4.23)

and (4.24) jointly ensure that on-time successful execution increases the reputation

of a worker and that delayed or failed execution causes a penalty for the device. In

this way, the dynamic reputation update of a worker facilitates our proposed incen-

tive mechanisms to select high performing workers for task execution, increasing

user QoE as well as incentives for workers.

4.3.5 An Illustrative Example

{1000, 0.7} {800, 0.5}

K1 K2 K3 K4 K5

M1 M2 M3

{1100, 0.8} {800, 0.75} {850, 0.8}

{30K, 120ms} {50K, 150ms} {70K, 200ms}

Figure 4.5: An example scenario for task assignment
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This section presents an illustrative example on operation processes of the pro-

posed IMaxQ, IMinC and Optimal solutions. Consider a scenario depicted in

Fig. 4.5, where the cloudlet divides an application into three tasks: M1,M2, and

M3 with allowable maximum execution costs 3, 5, and 7 units, respectively. We

also assumed that five worker devices K1 − K5 available in the system bid for the

designated tasks shown by edges (in Fig. 4.5, labeled with bid cost and committed

quality). The instruction sizes and deadlines of the tasks are labeled at the top

and available resource capacities and reputations of the worker devices are labeled

at the bottom.

The task assignment to different workers, their incentives, and user cost savings

have been shown in following Table 4.2. It is to be noted here that the worker

K2 could not win any bid due to its poor reputation. Furthermore, as expected

theoretically, the proposed IMinC has brought out the maximum cost savings

for the user and IMaxQ has offered the lowest while the Optimal solution (with

β = 0.5) has worked out with competitive savings. We also notice that, in all

algorithms, tasks were executed satisfying the expected QoE within the allocated

budget. Finally, the amount of incentive (σv
m) awarded to a worker is directly

proportional to the quality (Q′v
m) it offers in executing a user task.

4.3.6 Theoretical Proofs of Desirable Properties

In this section, we provide theoretical proofs of the desirable properties of the

proposed incentive mechanisms, including computational efficiency, individual ra-

tionality, truthfulness, and budget balance.

Lemma 1. The proposed incentive mechanisms run in polynomial

time, meaning they are computationally efficient.
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Table 4.2: Bid winners, their incentives, and user cost savings

K M bvm Qv
m Q′v

m σv
m Savings(%)

IM
ax

Q

3 M1 2.7 0.6 0.7 0.05

10.0%1 M2 4.0 0.4 0.5 0.25

4 M3 6.5 0.3 0.3 0

IM
in
C

1 M1 2.5 0.5 0.6 0.1

12.0%3 M2 3.8 0.4 0.5 0.3

5 M3 6.0 0.2 0.3 0.5

O
p
ti
m
al 4 M1 2.5 0.4 0.4 0

11.67%1 M2 4.0 0.4 0.5 0.25

5 M3 6.0 0.2 0.3 0.5

Proof: In Algorithm 1, lines 4−8 run for all bids to check the eligibility of bids

and to prune bids that do not maintain the required constraints, incurring a runtime

complexity of O(|B|). Inside the loop, candidate bids are pushed in a priority queue

(line 6) that has a runtime complexity of O(|B|log|B|), totaling O(|B|× |B|log|B|).

Lines 9− 17 add complexity of O(|B|), and the remaining statements are executed

in constant time; hence, the overall runtime complexity of Algorithm 1 is O(|M|×

|K| × |M| × |K|log|M| × |K|+ |M| × |K|) ≈ O(|M|2 × |K|2log|M| × |K|), where

M is the set of application tasks and K is the set of available worker devices. The

runtime complexity of Algorithm 2 is the same as that of Algorithm 1. Similarly,

Algorithm 3 has a runtime complexity of O(|M| × |K|).

Thus, the complexities of the algorithms are bounded by |M| and |K|, so they

are computable within polynomial time.
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Lemma 2. The proposed incentive mechanisms are individually ra-

tional to the cloudlet and worker devices.

Proof: Consider the two following scenarios:

1. If a worker device k ∈ K wins no bid, it will have no resulting cost,

C ′k = 0, payment Pk = 0, and Uk = 0. In this case, the utility of the cloudlet

U0 = 0.

2. If a worker device k ∈ K wins a bid, its utility is calculated as Uk
m =

Pk
m − Ckm − U0

m, where payment is determined as Pk
m = bkm + σ. According

to (4.5), cloudlet utility (U0
m) will be nonzero for a successful task execution

by a worker device. Moreover, for a successful execution by a worker device,

payment will be at least equal to the bid price. As worker devices bid for

a task m ∈ M including cloudlet payment (U0
m) and its resource cost Ckm,

bid price must be higher than U0
m + Ckm, which has been ensured through

constraint (4.15). Therefore, in conclusion, it can be clearly seen that the

utility of a worker device and cloudlet will be nonzero.

Lemma 3. The proposed incentive mechanisms are truthful.

Proof: Let Uk
m and bkm denote the utility and bid price, respectively, of a

worker device k ∈ K if it bids with actual cost Ckm, and let Ūk
m and b̄km denote the

illegitimate utility and bid price, respectively, caused by bad intension of a worker,

where bkm ̸= b̄km. To prove this lemma, we must show that only a truthful bid price

can provide the maximum utility of a worker device, i.e., Uk
m ≥ Ūk

m, ∀bkm ̸= b̄km. In

this case, we first consider Algorithm 3 (IMinC ).

Assume that b̄km > bkm, a win of b̄km means that the worker wins when it bids b̄km,

and a loss of b̄km means that the worker loses when it bids b̄km. Algorithm 3 confirms
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that a worker with minimum bid cost wins the bid. Hence, b̄km loses the bid in the

presence of another bid that equals bkm, and thus the utility Ūk
m = 0 and Uk

m > Ūk
m.

If b̄km = bkm, then a win of b̄km means that bkm also wins. In this case, Uk
m = Ūk

m

signifies that the actual bid is made by a legitimate worker.

Lastly, if b̄km < bkm, then b̄
k
m wins the bid according to the worker selection cri-

teria. However, in this case, the expected utility constraint Ūk
m < Uk

m is preserved.

Similarly, for Algorithm 2 (IMaxQ), workers offering higher quality may submit

overpriced bids. In this case, maximum bid cost (Bmax
m ) for a task m ∈M is used

to guard against such dishonest activity and reject such bids during the candidate

worker set generation phase, which results in utility Uk
m = 0 for worker k ∈ K.

Moreover, the incentive (σ) for qualified execution induces extra profit to deserving

workers. For this reason, workers are motivated in bidding with actual cost to

increase the opportunities for a winning bid.

It is to be noted here that a worker might win a task by misreporting both the

quality and bid but it would be penalized with a negative reputation due to failure

in achieving the committed quality.

Lemma 4. The proposed incentive mechanisms are budget balanced.

Proof: The total amount of payment for a user to execute all tasks is calculated

as P ′ =
∑|M|

m=1Pk
m, including their incentive (lines 4 − 7 in Algorithm 4). If all

payments of tasks are equal to their maximum allowable bid prices (including

incentive σ, if any), then the total payment will be P ′ = CM = P (according

to (4.8)); otherwise, the payment will be CM ≤ P ′ ≤ P . This means that the total

cost of an application execution will always be less than or equal to the budget

allocated by the user, i.e., P ′ ≤ P . Hence, the proposed incentive mechanisms

maintain the budget balance property.
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4.4 Performance Evaluation

The performances of the proposed IMaxQ and IMinC algorithms were compared

with two state-of-the-art works (Min-Cost [58] and First-Fit [107]) through nu-

merical simulations in MATLAB [97]. The Min-Cost algorithm employed a least

cost per unit resource mechanism to select the winning bids. The workers that

offer a minimum bid are selected for the execution of tasks and the corresponding

worker devices were paid with the immediate next bid amount of the task. On

the other hand, First-Fit is a baseline method extracted from [107] that greed-

ily allocates tasks on worker devices with sufficient resources without considering

execution quality, cost, or device reputation.

4.4.1 Simulation Setup

We assumed that a number of user devices (buyers) issue application code execu-

tion requests to a nearby cloudlet on which there are 10 − 100 connected worker

devices (seller), randomly distributed in a 50 × 50m2 area. A user application

ranging the size from 100K−500K instructions is supposed to execute in an MDC

environment. Since the application will be distributed to a number of worker de-

vices, it is split into a random size of smaller tasks containing instructions from

5000−125000. Now, to execute these instructions, worker devices are elected by the

greedy algorithms in the system. We consider the capacity of a worker is randomly

chosen from the range of 10, 000 − 1, 000, 000 units. For simplicity, we assumed

1 unit of resources is required to execute each instruction, where 1 unit of cost

was estimated for every 10,000 units of resources. The maximum amount of bid

(Bmax
m ) for a task has been calculated based on the task size and the cost per unit



4.4 PERFORMANCE EVALUATION 110

Table 4.3: Values of simulation parameters

Parameter Description

Number of tasks 4− 24

Number of workers 10− 100

Application size 100− 500K instructions

Task size 5− 125K instructions

Cost per unit resource 10−4 units

Total budget 10− 50 units

Worker available resource 10000− 1000000 units

Arrival rate of tasks 1− 3 tasks/second (poisson)

Arrival rate of workers 2− 5 workers/second (poisson)

Task deadline 500− 1500 ms

Reputation threshold (γ) 0.6

Cloudlet utility (λ) 20 % of worker bid cost

Simulation area 50× 50 m2

Simulation time 500 sec

of resources which has been varied according to the task size. The value of (Bmin
m )

has been set to 0 in all experiments. To generate the simulation data, we have

implemented an experimental testbed based on our preliminary works [61, 62]. In

the experiments, the reputation threshold of a candidate worker was set to 0.6. The

percentage of cloudlet utility λ, has been set to 20 %. All simulation experiments

were conducted on a PC with an Intel Core i5 2.2 GHz processor and 8 GB memory

running Windows 8.1. This is to note here that both the greedy algorithms run in
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polynomial time and the runtime of both algorithms is few milliseconds which has

been ignored in the calculation of task execution quality in the simulation results.

To compare with the state-of-the-art works, at first, we estimate the execution

time for the whole application in the user device. Then we compute improvement of

QoE, payment savings, and user satisfaction based on execution time, bid amount

and number of successful execution (without resubmission), respectively. Details of

measuring each performance metric are explained in section 4.4.2. This is to note

that each simulation experiment was run for 500s, and the results collected from

50 runs with different random seed values were averaged to plot each data point

with corresponding confidence interval in the graphs. A summary of the values and

ranges of different simulation parameters is given in Table 4.3.

4.4.2 Performance Metrics

We focused on the following performance metrics to evaluate the proposed methods

and to compare them with other state-of-the-art methods.

� Improvement of user QoE: The user Quality-of-Experience (QoE) metric

measures the task quality improvement of an offloaded task observed by the

user. This gives the average percentage improvement of execution time in

MDC compared to that of the user device. To compute it, at first, we esti-

mate the execution time of the whole application in the user device. Then,

we distribute the application among the selected worker devices based on the

proposed greedy allocation algorithms. After getting the execution results, we

compute execution time (including communication latency) for corresponding

worker devices and the improvement of user QoE using Eq. 4.2.

� User payment savings: The user payment savings parameter reflects the sur-
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plus amount of the budget after the completion of payment and incentive of

the worker devices. This is defined as the proportion of unused payment com-

pared to the sanctioned budget of a user for a certain application execution;

it is expressed as a percentage, i.e., (1− P ′

P )× 100 %.

To compute it, at first, we estimate the maximum budget (including cloudlet

cost, bandwidth cost, resource compensation, etc.) for the whole user appli-

cation to be executed in the MDC environment. Based on the bid amount in

auction and execution time, the cloudlet disburses payments to the winner

worker devices including incentives. It is to note that the eligibility of incen-

tives is determined by Eq. 4.21. Finally, we compute the payment savings

with respect to estimated budget and total expenditure including incentives

and bid cost.

� User satisfaction: This is the percentage of successfully executed tasks (with-

out resubmission) out of all offloaded tasks.

4.4.3 Results

This subsection provides the experimental results and discussion on the compara-

tive performances of the studied systems.

4.4.3.1 Impact of varying number of tasks

In this experiment, we fix the number of worker devices to |K| = 50 and application

size to 200K, and we vary the number of tasks from 4 − 24. The number of

instructions in each task may vary from other tasks and due to fixed size application,
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Figure 4.6: Impact of varying number of tasks

the number of instructions of an individual task is reduced with increasing number

of tasks.

Fig. 4.6(a) shows the improvement of user QoE achieved by the proposed incen-

tive algorithms compared to existing approaches. We observe that the user QoE

increases with the number of tasks, and it reaches its peak point when the task



4.4 PERFORMANCE EVALUATION 114

population is close to 12. This trend is reasonable since a few capable workers are

able to bid and win the tasks at the beginning due to relatively large instruction size

of the tasks. When size of an individual task is decreased, the number of capable

worker devices for executing the task is increased that facilitated more parallel ex-

ecution and enabled their executions on highly qualified workers till the saturation

point. After that, admission of an additional number of tasks in the system forces

it to allocate mid-level or even poor capacity and/or low-quality workers to allo-

cate for the execution of tasks, causing degradation of user-QOE. The graphs also

depict that the proposed IMaxQ offers the highest quality (35 %) as it is expected

theoretically. Since IMinC and Min-Cost prefer workers with low cost rather than

high quality and thus their performances are significantly less compared to IMaxQ.

Similarly, due to the random selection of workers, First-Fit provides the worst user

QoE among all.

On the other hand, in Figure 4.6(b), IMinC offers the highest user payment

savings with an increasing number of tasks compared to all other incentive algo-

rithms. In the beginning, a fewer number of tasks containing a large number of

instructions were bid by a few capable workers at a high cost. Due to this mo-

nopolistic competition, such execution leads to small savings for the user. As the

number of tasks increases, the amounts of savings also rises in all algorithms. This

is due to the fact that more low-cost offering workers were able to compete that

assisted better worker selection and execution quality with relatively lower bid cost,

resulting higher cost savings for the user. Nevertheless, further increase of tasks

(|M | >= 16) causes a sharp fall in savings since the system is bound to select

workers with high bid costs to accommodate the increasing number of tasks. By

comparison, IMinC provides the highest payment savings (35 %) and Min-Cost’s
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user payment savings percentage is somewhat lower than that of IMinC because

it pays worker devices with the immediate next bid winner’s cost. IMaxQ cannot

provide low cost execution due to the selection of higher quality workers. Due to

the random selection of workers by First-Fit, it provides the least payment savings.

We also measured the satisfaction level of application users offered by the stud-

ied systems through on-time execution of tasks, as shown in Fig. 4.6(c). We ob-

served that the user satisfaction rates for all studied algorithms increased with the

number of tasks until peaking at approximately |M | = 12, and then they started

to decrease slowly. Initially, the size of each task was relatively bigger due to a

small number of tasks in an application. As a result, a few number of resource-rich

workers were able to win the bid and provide successful execution. Dividing the

application into more number of tasks instigated more quality workers with a bet-

ter reputation get a chance to win bids, resulting in higher successful execution.

Further increasing the number of tasks implies that each task contains a fewer

number of instructions, demanding allocation to more workers of the system. This

consequence diminishes user satisfaction due to allocations of tasks to relatively

poor workers. Hence, user satisfaction is increased slightly at the beginning and is

reduced gradually after reaching a pick point. In comparison, IMaxQ and IMinC

provide better user satisfaction than Min-Cost and First-Fit, and IMaxQ provides

the best. This is due to the consideration of worker reputation, which allocates

a task to reliable devices in addition to available computation resources. More-

over, lack of consideration of task dependency incurs unnecessary waiting time for

a task (dependent on a different one for data input) and hampers user satisfaction

in Min-Cost and First-Fit.
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Figure 4.7: Impact of varying number of worker devices

4.4.3.2 Impact of varying number of worker devices

Availability of worker devices creates an opportunity to select more appropriate

resources for executing a task, resulting in better system performance. To inves-

tigate the impact of worker devices, we fix the number of tasks to |M| = 20 and

application size to 200K and vary the number of worker devices from 20− 100.
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Figure 4.7(a) shows that increasing the number of worker devices drives the

average user QoE to rise sharply, and then it slows until it reaches saturation. This

is due to the fact that with a fixed set of tasks (|M| = 20), increasing worker

devices create an opportunity to allocate resources from more qualified workers,

resulting in better user QoE. However, increasing worker devices cannot remarkably

improve the user QoE when the system contains many qualified workers (|K| >

60) above the user demand. Our proposed IMaxQ and IMinC algorithms show

better performances compared than the other. Task allocation to reputed workers

with rich computing resources provides the finest result for IMaxQ, while IMinC

sacrifices quality slightly to minimize execution cost.

A completely opposite phenomenon is illustrated in Figure 4.7(b), wherein the

selection of worker devices with minimum bid cost provides superior performance

for IMinC and Min-Cost compared to IMaxQ and First-Fit, while IMinC provides

the maximum savings for a user. This figure also illustrates that user payment

savings gradually increase due to the availability of a large number of worker devices

offering relatively lower execution cost. However, availability of too many qualified

workers (|K| > 60) cannot improve the user savings further as the system reaches

saturation.

Similarly, increasing worker devices creates more opportunity to improve suc-

cessful task execution rate, which facilitates higher user satisfaction, as shown in

Figure 4.7(c). From this figure, it is also evident that our proposed IMaxQ and

IMinC algorithms maintain significantly superior results than the other algorithms

due to the consideration of task dependency, worker reputation, and available com-

puting resources.
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Figure 4.8: Impact of varying task sizes

4.4.3.3 Impact of varying task sizes

In this experiment, we fixed the number of worker devices to |K| = 50 and the

number of tasks to |M| = 20 and classified the application size into three categories:

small (25K − 50K), medium (100K − 200K) and large (400K − 500K) tasks.

As shown in Figure 4.8(a) and Figure 4.8(b), increasing the size of a task results
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in degradation of both user QoE and payment savings. This is due to the fact that

increasing task size reduces the percentage of qualified worker devices to execute the

task, resulting in relatively resource-poor workers being hired. For this reason, user

QoE and user payment savings decrease with growing task size. However, due to

the consideration of worker reputation, task dependency, and available computation

resources, our proposed IMaxQ and IMinC algorithms still outperform the Min-

Cost and First-Fit models, while IMaxQ has superior performance for user QoE and

IMinC provides maximum cost savings. For the same reason, user satisfaction also

decreases with growing application task size, as illustrated in Fig. 4.8(c). However,

for allocation of tasks to reputed worker devices, our proposed IMaxQ and IMinC

provide significantly better results compared to other algorithms.

4.4.3.4 Incentives for worker devices

In this experiment, we plotted the average amount of incentives received by different

winning worker devices for executing a single application having 20 units of budget

with fifty worker devices (|K| = 50). Figure 4.9(a) shows the impact of increasing

the number of tasks on the distribution amounts of the worker bids, incentives, and

savings. Initially, size of an individual task was relatively bigger. As a result, a

few workers were able to win the bid with high bid cost, resulting small payment

savings and incentives. Dividing the application into more number of small-sized

tasks invited more quality workers with lower bid cost, resulting higher payment

savings, and incentives. However, further increasing number of tasks diminishes

payment savings and incentives due to execution of tasks with relatively high bid

cost workers. More specifically, in such situation, number of good quality workers

is not enough to execute so many tasks. For the same reason, the graph follows
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similar trend for user payment savings. Comparatively, IMaxQ pays more incentive

than IMinC as it prefers higher quality. Incentive performances for the Min-Cost

and First-Fit algorithms are not presented here because these algorithms do not

pay any additional incentives to workers above their bid amounts.
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Figure 4.9: Incentive for workers

Similarly, increasing the number of worker devices causes more competition

among the workers with fixed number of tasks (|M| = 20), resulting in higher user

QoE with small bid cost, as illustrated in Figure 4.9(b). Therefore, the user gets

the opportunity to pay a higher incentive for the worker resources. However, fur-

ther increasing the number of workers (> 70) resulted high quality execution from

the worker devices though the incentive amount is decreased. At this point, due

to high competition among the workers, the difference between the SLA quality

and the provided quality of the workers becomes very little and hence the incen-

tive amount is decreased even though the payment savings is increased. Though

IMaxQ pays higher incentives than IMinC, the savings amount in Figure 4.9(b)
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is much higher compared to its counterpart shown in Figure 4.9(a). It is worth

noting that although our proposed IMaxQ and IMinC algorithms provide incen-

tives to workers, the savings are still higher than from other state-of-the-art-works

due to the payment strategy. Our proposed resource allocation algorithms provide

payment as the workers bid price, whereas other mechanisms use the next winner’s

bid cost to pay a worker, causing higher payment. However, our proposed allo-

cation algorithms incentivize only the qualified workers, resulting in savings. Our

in-depth look into the simulation trace files also reveals that, due to the payment of

additional incentives, the participation of resourceful workers also increases gradu-

ally with the growing number of worker devices and execution of tasks with these

worker devices upswing user-QoE.

In summary, the amount of incentive received by a worker device is proportional

to how much less time it takes for it to execute a task than the user deadline.

Our in-depth analysis on results in the simulation trace file revealed that approx-

imately 40 % of the workers are incentivized with an ample amount for offering

excellent qualities of execution. Moreover, approximately 30 % of the workers are

incentivized insignificantly due to bidding higher cost and offering just above SLA

quality. The remaining workers are given negligible (or zero) incentives for just-in-

time execution. Such a mechanism develops a win-win environment for users and

workers, increasing the sustainability of the MDC system.

4.4.3.5 Impact of worker reputations

The impact of worker reputations on user payment savings and QoE are plotted in

Figure 4.10. In these experiments, we execute an application having 200K instruc-

tions where the number of tasks and workers are fixed at 20 and 50 respectively.
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Figure 4.10: Impact of worker reputation

Figure 4.10(a) shows that with the increasing number of reputation the user pay-

ment savings increases initially reaches a pick and starts to decrease after reaching

the saturation. This is due to execution with non-reputed or untrustworthy work-

ers, the user payment saving is very low at the beginning but increases with the

growing reputation of the workers. With a very high reputation, the execution

cost of the tasks also increases hence the payment saving decreases. Similarly, user

QoE also increases with growing user reputation as timely execution with required

quality are ensured with reputed workers as depicted in Figure 4.10(b). However,

with very high reputation (≥ 0.6) the user QoE improvement is very little as the

workers provide almost similar quality execution.
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4.5 Summary

In this chapter, we have developed a novel computation framework for MDC, where

mobile worker devices are incentivized in line with their execution qualities of user

application tasks. Furthermore, consideration of resource capacity, reputation, and

bid cost of worker devices helped our incentive mechanisms to harvest maximum

benefits (in terms of quality or cost) through provisioning of user application tasks

to high performing workers. The simulation results clearly indicate that the pro-

posed system can maximize user QoE by as much as 35 % while minimizing cost

by up to 30 %. The results also reveal that increasing the number of workers in the

system can steadily improve user QoE, payment savings, and satisfaction, whereas

larger task sizes can adversely affect MDC performance. Such a collaborative and

distributed platform might play a vital role for developing a large machine learning

model so as to further improve the performances.



Chapter 5
Conclusion

In this chapter, we summarize the research results presented in this thesis and state

few directions for future works

5.1 Summary of Research

With the advancement of mobile computing technologies, the demand of mobile

device users for better performance on the functionality and quality of experience

of mobile applications has increased significantly. To meet the user demand, nowa-

days, each mobile device is equipped with a number of high-quality sensors, and

complex artificial intelligence algorithms to process a huge volume of multimedia

data. Significant research has been conducted recently to minimize the execution

latency of compute-intensive applications through forming a Mobile Device Cloud

(MDC), a collaborative cloud computing platform over which neighboring smart

devices form an alliance of shared resources to mitigate resource-scarcity of an indi-

vidual user device for running compute-intensive applications. An MDC supports

the execution of resource-intensive and interactive mobile applications with lower

latency by providing powerful computing resources to mobile devices through ex-

ploiting the shared resources of the nearby devices. An MDC can be envisioned

124
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in large scale stationary places (i.e. stadium, shopping mall, coffee shop or Movie

Theater) or during traveling (air, bus, train) or scenarios where infrastructure may

be infeasible and/or inefficient (e.g., natural disasters areas, heavily crowded re-

gions, remote areas in military operations). However, the self-limitations of MDC

technology restricts the widespread deployment. Our advanced study shows that

there are a number of concerns that stand as vulnerabilities for implementing a

sustainable MDC technology, including task interdependency, application dead-

line, resource heterogeneity, available energy, and compensation of worker devices,

etc. In this thesis, we have focused on reliable worker device selection to speedup

the execution performance of offloaded applications and providing payment to the

worker devices according to their execution qualities. The different approaches

available in state-of-the-art-works have considered as motivations and inspirations

for developing solutions to such problems.

In this thesis, we first developed a code offloading framework named TESAR

to provide improved performance for compute-intensive applications to the end-

users. We formulate a mixed-integer linear programming (MILP) objective function

with necessary constraints for assigning the computation tasks of an application

on nearby worker devices so that the performances are optimized. We also provide

an algorithm for developing a dependency tree among the tasks of an application

so as to allow a higher number of parallel executions, wherever and whenever it is

possible. The dependency tree aids the optimization framework in the ordering of

tasks while scheduling. The optimization function helps to tradeoff between ap-

plication execution speedup and reliability while maintaining device energy within

a predefined range. Finally, the conducted emulation implemented in the android

platform depicts that task execution with reliable workers can significantly speedup
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the execution performance while minimizing the application completion time, com-

munication latency, and rescheduling overhead.

Next, we have addressed the joint problem of maximizing user quality-of-

experience (QoE) at minimum cost while providing attractive incentives to workers’

mobile devices. To the best of our knowledge, this is the first work where worker de-

vices are incentivized in addition to their regular bid payment, according to their

task execution quality to improve the user-QoE. We update the code offloading

framework proposed in section 3.2.1 and incorporate a payment module to facil-

itate the payment and incentive related functionalities. The goal of the updated

computational framework is to minimize the execution cost of user codes while sup-

porting sufficient payments and incentives to the workers for their used resources.

To increase the user-QoE with reduced cost, we formulated multi-objective linear

programming (MOLP) optimization function that exploits reverse-auction bidding

policy to provision the application tasks on workers with rich computation re-

sources. Due to resource heterogeneity, the optimization formulation also ensures

the selection of reputed workers in the execution of tasks. Due to the NP-hardness

of MOLP, we offer two greedy worker selection algorithms for maximizing user QoE

or minimizing execution cost. In both algorithms, the amount of incentive awarded

to a worker is determined following the QoE offered to a user. Thus, the proposed

algorithms motivate reliable and qualified worker’s participation while rejects felo-

nious workers in the system and ensures a sustainable system. We also conducted

theoretical proofs of desirable properties of the proposed incentive mechanisms to

ensure the correctness of the proposed algorithms. Simulation results illustrate

that our incentive algorithms offer higher user-QoE, and payment savings while

providing attractive incentives to qualified worker devices.
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5.2 Discussion

Over the last few years, the interest in utilizing the computational resources of

nearby mobile devices has been increased significantly. The MDC is such a col-

laborative environment where tasks of an application are executed collaboratively

with the help of the resources of nearby mobile devices. A crucial benefit of MDC

is that it does not relies on any preexisting infrastructure and can be formed easily

in a large scale stationary place. We have explored the current task offloading

mechanism and found that at present the tasks are offloaded to available worker

devices without considering their capacity, and/ or reliability. We have also in-

vestigated that worker devices are not motivated in resource sharing due to a lack

of compensation. We have reconnoitered that a payment mechanism can substan-

tially increase the participation of workers with high computation resources, and

increase the quality of the executed tasks.

My Ph.D. journey started with the aim to work with code offloading mecha-

nisms in mobile cloud computing (MCC). Studying with the state-of-the-art works,

we found the promising field of mobile device cloud (MDC). Although MDC, is a

special kind of MCC, the formation and working functionality is significantly dif-

ferent from the regular MCC and thus the solution strategies are different for the

same problem. It is also observed that MDC can be a momentous supplement to

the regular cloud-based offloading mechanisms to offer enhanced performance for

our real-life applications. Hence, we opt to develop a code offloading framework and

formulated an optimization function to select reliable worker devices that speedup

the computation of tasks and delivers an improved execution result. Later we found

that a payment mechanism is necessary to compensate the worker devices for the

used resources and to encourage their participation in the system. For this reason,



5.3 FUTURE WORKS 128

we concentered on developing an incentive mechanism for the worker devices to

acknowledge their qualified execution support.

To find an efficient solution to a problem, we have studied the state-of-the-art

tools and techniques and acquainted with them. We explored different optimization

techniques for modeling our code offloading framework to find an optimal solution.

After the mathematical formulation, we had to go for simulation to evaluate the

performance of the proposed model. Since MDC is a new technology, simulation

tools are not equipped with the necessary features to conduct the performance

analysis and hence we choose to develop an emulation testbed in the Android

platform. For this reason, we had to spend a significant amount of time in learning

Android and implementing the testbed. For the numerical evaluation, we had

to learn MATLAB. Finally, after spending a significant amount of time in the

laboratory, we had been able to implement our testbed which was tested with a

good number of state-of-the-art-works to deliver satisfactory outcomes.

5.3 Future Works

In this thesis, we have presented the techniques for an improved code offloading

mechanism in an MDC system. The developed framework and algorithms intend to

build a collaborative code offloading environment that takes into account worker ca-

pacity, reliability, available energy, and interdependency among the tasks. Android

platform was used to implement the experimental testbed while the MATLAB tool

was used to investigate the numerical performance of the proposed algorithms.

While the preliminary results of the performance looked encouraging, there are

ample issues and open challenges that require more investigation to improve the

performance further.
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Although our proposed worker selection algorithms provide higher user-QoE

with significant payment savings, further theatrical and experimental expansion

are still possible. The present formulation is intended to work for a single appli-

cation from a single user. In the future, investigating the problem of selecting the

worker devices while tasks are offloaded from multiple users would be an interesting

problem.

In this work, we have considered a fixed budget for the execution of an appli-

cation that shrinks the worker selection due to budget constraints. Moreover, the

work is focused on minimizing the execution cost of the user that hinders the profit

of the worker. In the future, this work can be enhanced further by establishing an

equilibrium between user budget and worker bids during on-demand provisioning

of application tasks to workers.
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Appendix A
List of Notations

M Set of advertised tasks in the application

K Set of candidate worker devices

V Set of winning worker devices

B Set of bids submitted by worker devices

W Set of winning bids

Πm Set of parents of task m

L Set of Leaf nodes

R Set of tasks executed Remotely

L Set of tasks executed Locally

So
m Instruction size of task m ∈ R

So
m′ Instruction size of task m ∈ L

Vm Output instruction size of task m ∈M

µk Execution speed of device k ∈ K

T l
m(o) Local device execution time of task m ∈ R

T l
m(o′) Local device execution time of task m ∈ L

T x
m,k Remote execution time of task m ∈ R in device k ∈ K

T t
m,k Input transmission time of task m ∈ R

T r
m,k Output reception time of task m ∈ R
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LIST OF NOTATIONS 148

Bd
k Uplink bandwidth between cloudlet and device k ∈ K

Bd
k′ Downlink bandwidth between cloudlet and device k ∈ K

Exm,k Execution energy of task m ∈ R in k ∈ K

E tm,k Input transmission energy of task m ∈ R in k ∈ K

Erm,k Output transmission energy of task m ∈ R in k ∈ K

γk Signal strength of device k ∈ K

ηk Associativity time of device k ∈ K

Ek Available energy of device k ∈ K

Ωk Reputation of device k ∈ K

ϕn,m Percentage of dependency of a child task m ∈ M on its parent

n ∈M

Sm Number of instructions in task m ∈M

Tm Execution deadline of task m ∈M

Rm Resource requirement for executing task m ∈M

Ckm Claimed cost of worker k ∈ K for task m ∈M

Qk
m Offered quality of worker k ∈ K, m ∈M

Ωk
m Earned reputation of worker k ∈ K, m ∈M

Pk
m Payment of worker k ∈ K for task m ∈M

U0
m Utility of cloudlet for serving task m ∈M

Uk
m Utility of worker k ∈ K for task m ∈M
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Appendix B
List of Acronyms

AI Artificial Intelligence

AP Access Point

CPU Central Processing Unit

D2D Device to Device

GPS Global Positioning System

ILP Integer Linear Programming

IMaxQ Incentive for Maximizing Quality

IMinC Incentive for Minimizing Cost

IoT Internet of Things

MCC Mobile Cloud Computing

MDC Mobile Device Cloud

MILP Mixed-Integer Linear Programming

MOLP Multi Objective Linear Optimization

NP Non-deterministic Polynomial

PM Payment Manager

PRL Performance Resource-Load

QoE Quality of Experience

QoS Quality of Service
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LIST OF ACRONYMS 150

RAM Random Access Memory

SLA Service Level Agreement

TESAR Tradeoff between Execution Speedup And Reliability

TP Task Profiler

TWA Task-Worker Allocator

EC Execution Coordinator

VCG Vickrey-Clarke-Groves

VM Virtual Machine

Wi-Fi Wireless Fidelity
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