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Abstract

Correlated data which are very common in longitudinal studies should be anal-

ysed with models and methods that take the correlation into account. Most of

the longitudinal models are based on marginal approaches, assuming an induced

correlation between successive individuals, often lacking the proper specifica-

tion of the dependence of binary outcomes. As a result, such models may fail

to provide efficient estimation of parameters. Conditional models which is an-

other commonly used approach for the above situation use a transition probabil-

ity model to capture the dependence of outcome variables. While the selection

of a model depends on the question under study, there is no clear directives in

the existing literature about when to choose which model. Keeping in mind the

limitations of the existing popular methods for analysing longitudinal data, the

objectives of this study were set.

The objectives of this study are (i) to examine how well the dependence of re-

peated response are addressed in selected methods including GEE and ALR, (ii)

to propose joint models based on a marginal conditional approach enabling to

incorporate the true dependence relationship, using likelihood methods, (iii) to

propose a joint model based on a marginal conditional approach under a quasi-

likelihood setup appropriate for situation where the distribution of the outcome

variables is unknown, (iv) to develop and demonstrate the inferential theories

associated with all the proposed models, (v) make comparisons of the proposed

models with the existing models and (vi) to illustrate the proposed models with

applications to real life data. The proposed models demonstrated under objec-

tive (ii) link the marginal and sequence of conditional models to provide the

joint model needed for predicting the covariate effects on dependent variable

at different time points. In case of more than three repeated measurements,
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Abstract

the regressive model approach was proposed that can be extended for any or-

der of dependence without complicating the theory and keeping the number

of parameters of the model for repeated measures minimum. This model has

the flexibility such that one can easily add interaction terms among previous

outcomes and predictors in the proposed framework if and when required. A

number of simulation studies resulted that the proposed methods perform better

than GEE and ALR in terms of bias and 95% coverage probability.

The marginal conditional model developed under a quasi-likelihood setup cap-

tures the correlations among repeated observations in a built-in nature and un-

like GEE or ALR, does not need to have a correlation parameter in the model.

This model can be extended for any number of repeated measures without com-

plicating the theory and keeping the number of parameters to a minimum. The

simulation studies showed that, when the data are correlated or the distribution

of the outcome variables are not identical at different time points, the estimates

of this method has less bias than GEE or ALR.

The marginal conditional feature of the proposed models make the models very

useful for analysing big data, one can use the existing software for model fitting

and risk prediction of a sequence of events. The application using Health and

Retirement Study data illustrate the performance of the proposed models and

prove the usefulness of such models for longitudinal data.

ix

Anis
Typewritten text
Dhaka University Institutional Repository



Chapter 1

Introduction

1.1 Introduction

A longitudinal data set comprises of repeated measurements on each subject

under a study and the term ‘repeated measurements’ refers to a dataset in which

the response of each experimental unit or subject under a study is observed on

multiple occasions or under multiple conditions over a period of time [18, 23,

38]. Although the response variable in a longitudinal study can be either uni-

variate or multivariate, we restricted our consideration to univariate response

variables measured at multiple occasions for each subject.

In a longitudinal study, data collected from the same subject are usually corre-

lated and while modelling and/or analysing such data, this correlation should be

taken into account [18, 38, 79]. The association among the repeated measures

in a longitudinal data makes the analysis of such data distinctive and challeng-

ing and needs to adjust for the association.
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Chapter 1 : Introduction

Most of the models used for longitudinal data are based on marginal approaches

(for example, Generalized Estimating Equations (GEE) by Zeger and Liang

[79] or Alternating Logistic Regression (ALR) by Carey et al. [9]) in which the

correlation considered among repeated measures on the same individuals are

induced correlations. As a result, these models may fail to provide an efficient

estimation of parameters due to lack of proper specification of the dependence.

Relatively fewer approaches for longitudinal data analysis are based on transi-

tion probability based conditional models (for example, Bonney [7], Islam and

Chowdhury [35, 36], Muenz and Rubinstein [59], etc.). Conditional models

have the advantage that one may find whether or not the changes in a dependent

variable are independent of previous observations as well as the independent

variable. But conditional models themselves are not adequate to model the de-

pendence.

An extensive literature review proves the existing controversy about the use of

marginal and conditional models, particularly in the analysis of longitudinal

data. We discussed the advantages and limitations of the marginal models and

the conditional models. We regard the conditional model as fundamental and

from conditional models, marginal predictions can be made [51].

A thorough review of literature confirms that analysis of a longitudinal data

considering the correlation between repeated observations of an individual, it is

more logical to consider a joint model where both the marginal and conditional

probabilities can be expressed as a function of explanatory variables. So the

motivation of this study is to propose appropriate models for analysing longi-

tudinal binary data with time dependent covariates, which takes into account of

both marginal and conditional probabilities of correlated binary events such that

the joint function can be specified fully by unifying marginal and conditional

probabilities. Marginal and conditional probability based joint models are not

new [7, 34–36]. But such models were proposed mainly to focus on the char-
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Chapter 1 : Introduction

acterization problems and have not been employed to focus on the covariate

dependent models with dependence in the outcomes, which is one of the main

focus of this research.

This study proposed joint models as alternatives of the popular GEE or GEE

based approaches for outcome variables with known and unknown distribu-

tions of outcome variables in a longitudinal study. The joint models are pro-

posed along with the estimation procedure to study the relationship among the

repeated measures of the dependent variable as well as relationship among de-

pendent and independent variables. Related tests were suggested and a number

of simulation studies have been performed to compare the proposed method

with existing popular methods such as GEE or ALR. The proposed method has

been illustrated using real life data and the findings are compared with popular

existing methods.

1.2 Background of the Study

Modelling of binary outcomes are common in lifetime data analysis and logis-

tic regression models are common choices in such analyses [14]. For correlated

binary data in a longitudinal study, a joint multivariate distribution can be de-

scribed in terms of the marginal means and correlations as shown by Bahadur

[4]. For paired data, the Bahadur [4]’s model is relatively simple [55] and coin-

cides with the joint distribution that is completely determined by the marginal

means and pairwise correlations. But the full Bahadur [4]’s model is not rou-

tinely implemented for data analysis because of a large number of association

parameters that increase the number of measurements per subject; in addition,

the association parameters are subject to complex constraints that depend on

the marginal means. Using multiple measurements per subject, Lipsitz et al.

[55] implemented maximum likelihood method for analysis of the parameters

of Bahadur [4]’s model.

3



Chapter 1 : Introduction

Important initial work on longitudinal data and binary longitudinal data were

done by Liang and Zeger [52] and Zeger and Liang [79]. Liang and Zeger

[52] and Zeger and Liang [79] proposed the GEE models based on probabil-

ity of the event and correlations or the first and the second moments. Lipsitz

et al. [56], Liang et al. [53] and Carey et al. [9] employed the marginal odds

ratios instead of correlations between pairs of binary responses. Le Cessie and

Van Houwelingen [50] proposed use of different measures of dependence in

modelling for logistic regression for correlated binary data. It has been ob-

served, however, that the marginal measures may fail to provide the measure of

dependence of binary outcomes due to lack of proper specification of the un-

derlying model.

GEE [52, 79] is an iterative approach that alternates between solving the GEE

for regression parameters and updating the estimate of the correlation param-

eter. GEE has been criticized for its lack of an objective function which com-

plicates the development of objective measure for goodness of fit for this ap-

proach. However, the followers of GEE defined the major advantage of GEE

that it yields a consistent estimator of the regression parameter even if the work-

ing correlation structure that models the pattern of association in the data is not

specified correctly with a potential loss in precision of estimation if the assumed

and true patterns of association are not close [18, 24]. Several authors identified

that selection of an appropriate correlation structure in the GEE models as the

limitation of GEE and tried to address the problems [10, 12, 25, 33] by suggest-

ing different ways for selecting an appropriate correlation structure, although,

the problem lies elsewhere.

ALR is the algorithm that alternates between a logistic regression using first

order GEE to estimate regression coefficients and a logistic regression to esti-

mate the odds ratios [9]. ALR uses a logistic model for an outcome conditional

upon another outcome instead of specifying the models by additional marginal

4



Chapter 1 : Introduction

description of the pairwise association.

We note that the consistency in the parameter estimates of GEE or related mod-

els, in spite of misspecified correlation structure, essentially indicates that the

correlation used in GEE is a nuisance correlation and focus on selecting an ap-

propriate correlation structure will not solve the problem and the problem of

analysing the longitudinal data by properly addressing the correlation among

the repeated measures needs a different approach than GEE or any marginal

model.

Maximum Likelihood method or ML method for time independent covariates

was proposed by Zeger et al. [80]. ML approach is suggested as the gold-

standard approach in a few studies because of its attractive features, which in-

clude consideration of an objective function (the log-likelihood function) that

can be used to assess the fit of competing models and construct likelihood ratio

tests. However, the ML approach may be less robust to model misspecifica-

tion than GEE. Guerra et al. [29] suggested an extension of this ML method

for time dependent covariates. The method, named MARK1ML method, can

also be considered as an extension of multiple measurements per subject of

the approaches of McDonald [58] and Lipsitz et al. [55] who considered corre-

lated binary data with two measurements per subject. The likelihood model for

this method was based on the assumption of a Markovian model of first order

(MARK1 model) so that the value of an outcome on a subject at a particular

measurement occasion only depends on the value at the previous measurement

occasion. The MARK1 model allows to consider the usual logistic model for

a GEE analysis of binary data which has the benefit of easy interpretation of

the regression parameters. This approach can be extended for at least second

order because Markovian assumption of higher order is not addressed yet for

such problems. MARK1ML method assumes that correlation between adjacent

measurements on a subject depend on their separation in time and considers

5
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the correlation between adjacent measurements on each subject where differ-

ent assumptions regarding the adjacent correlations induces different patterns

of correlation in the data. Furthermore, this approach considers one additional

specification for the adjacent correlations and unstructured form that does not

impose a particular pattern on the adjacent correlations within subjects. Like

GEE, this approach is also robust to misspecification of the true correlation

structure of the data but not to the same degree as is GEE.

Relatively fewer studies have been conducted in the conditional approaches as

compared to the marginal models approach. Some of the studies on conditional

approach include Muenz and Rubinstein [59], Bonney [7, 8], etc.. However,

neither the marginal models nor the conditional models alone are adequate to

model longitudinal data.

In a series of works, Islam et al. [34], Islam and Chowdhury [35, 36, 37, 38], Is-

lam et al. [40, 41, 43] employed the covariate dependent conditional logis-

tic models and regressive logistic models under the Markov assumptions to

construct a joint model. The works of Bonney [7, 8], Islam and Chowdhury

[35, 37], Islam et al. [43] was generalized to include both binary outcomes in

previous times as well as covariates in the conditional models proposed by Is-

lam et al. [34, 42]. A mixed effect model (GLMM) could also be an alternative

choice to capture the picture since if a random component is taken in the model,

the change in an individual over time can be considered in the model, but again

the change would be added in the intercept part and the fixed effect part will be

unchanged. So if a relationship between the repeated measures of the dependent

variable as well as relationship between dependent and independent variables

are required to be studied then a mixed model is not an appropriate choice.

6
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1.3 Statement of the Problem

Let us consider an experiment for a specified time period for a sample of size N.

In the experiment, we have data from several follow-ups on each of the N units.

The repeated measurements on N units in the sample at times Ti = (ti1, ..., tini)
′

∀ i = 1, ...,N produce repeated outcomes data on the dependent variable with

associated covariatesXi j = (Xi j1, ...,Xi jp)
′. Longitudinal data are naturally cor-

related and the main challenge in analysing such data is to address the correla-

tion or association among the repeated outcomes.

Most of the methods found in literature for analysing repeated measures data are

based on marginal models and has a major limitation in the correlation structure

considered. The marginal approaches consider an induced correlation structure

to take into account the correlation among the repeated responses of each indi-

vidual. Induced correlation, considered in many popular marginal model based

approaches does not fit to the estimation procedure. Moreover, while a marginal

model is taken, the correlation among the repeated responses are not properly

addressed and hence it may fail to provide efficient estimation of parameters

due to lack of proper specification of the dependence of binary outcomes in

the model. Although most of these methods are routinely used and known to

well represent the population averaged methods for the analysis of longitudinal

binary data, as in almost all the cases, the marginal models consider induced

correlations between successive individuals, it does not fit to the estimation

procedure.

ALR alternates between a logistic regression using first order GEE to estimate

regression coefficients and a logistic regression to estimate the odds ratios [9]

with the use of a logistic model for an outcome conditional upon another out-

come instead of specifying the models by additional marginal description of the

pairwise association. Modification of ALR is also found in literature as an alter-

7
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native of GEE using marginal conditional approach which was expected to be

a help to get rid of limitations of GEE that uses a marginal model. But while a

marginal model is taken, the correlation among repeated measures are not taken

care of in a proper sense and hence an efficient estimation of parameters is not

always possible due to lack of proper specification of the dependence of binary

outcomes in the model.

An extensive literature review unravels the fact that the use of popular GEE,

ALR or related methods for analysing longitudinal data is not necessarily log-

ical. Although several researchers tried to address the problem with concen-

tration on selecting an appropriate correlation structure, we would like to point

out that the correlation structure used in GEE is a nuisance correlation and

the estimates are robust to it. Hence the limitation of GEE does not lie in

its correlation structure but the underlying model and an alternative to ana-

lyze longitudinal data should be looked for. The problem of addressing cor-

relation among repeated measures in a proper sense was partly addressed by

Darlington and Farewell [16] and Guerra et al. [29]. Both explained a joint

model by conditional marginal model. Darlington and Farewell [16] pointed

out that the relationship between outcome and explanatory variables may also

depend on the dependence in outcomes and explanatory variables. According

to the two approaches proposed by Darlington and Farewell [16], the models

are designed to focus on the dependence of correlation structure on explana-

tory variables. Guerra et al. [29]’s work has scope to be extended further by

using a model that takes into account the dependence patterns more appropri-

ately which could be a model that takes into account the dependence between

outcomes in repeated measurements as well as dependence between outcomes

and explanatory variables under the framework of a quasi likelihood approach.

Darlington and Farewell [16]’s method appear to be close enough to the ac-

tual correlation, but their method to address the correlation problem was not

8
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complete. In true sense, Guerra et al. [29] eventually ended up with the same

marginal model as the prior researchers in this field.

This study focuses on the fact that to feature the correlation between repeated

outcomes of an individual, it is more logical to consider a joint model than

a marginal or a conditional model. We propose the use of the joint model

based on a marginal conditional approach for repeated binary outcomes that

was addressed in a series of works by Islam et al. [34], Islam and Chowdhury

[35, 36, 37, 38], Islam et al. [40, 41, 43]. These studies proposed covariate

dependent conditional logistic regression models under the Markov assump-

tions and regressive logistic models to construct a joint model based on both

the marginal and conditional probabilities of the correlated binary events such

that the joint function can be specified fully by unifying the marginal and the

conditional probabilities.

1.4 Objectives of the Study

A major feature of the longitudinal data is the repeated responses among each

individual are expected to be correlated that makes the analysis of such data

challenging. Keeping in mind the limitations of existing popular methods in

addressing the correlation among the repeated measures, the objectives of this

study were determined. The specific and detailed objectives of this study are

listed below.

• To examine selected popular methods including GEE and ALR in order to

figure out how well these methods addressed the dependence among the

repeated outcomes;

• to propose joint models based on a marginal conditional approach en-

abling to incorporate the true dependence relationship using likelihood

based methods;

9



Chapter 1 : Introduction

• to develop a joint model based on a marginal conditional approach under

a quasi-likelihood setup for longitudinal binary data under the assumption

that the distribution of the repeated outcomes are unknown;

• to develop and demonstrate the inferential theories associated with all the

proposed models;

• to compare the proposed models based on marginal conditional approach

with popular marginal models including GEE and ALR; and finally

• to illustrate the proposed models with applications to real life longitudinal

data.

In this study, we propose some joint models based on marginal conditional

approaches as alternatives of GEE or related approaches for correlated binary

outcomes. A comparison of these joint models with popularly used GEE or

ALR is performed. These joint models for bivariate data are extended under

the assumption of known distribution of the repeated outcomes of any number

of follow ups. The estimation technique of parameters is shown based on like-

lihood based approaches. A joint model when the distribution of the repeated

outcomes are not known is proposed under the set up of a quasi-likelihood

method.

We used R software for the data analysis. The R packages, ‘bindata’, ‘geep-

ack’ and ‘alr’ are used for estimating the parameters of GEE and ALR models

discussed in this study. The other codes used for the simulation studies and

applications are given in the appendix.

10
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1.5 Organization of the Study

In this thesis, Chapter 1 is the introductory chapter, that includes a brief dis-

cussion on the background of this study with a literature review followed by an

introduction to structure of repeated measures data to detail the statement of the

problem along with the objectives and organization of the study. Chapter 2 con-

tains a detailed literature review which describes the platform of this research

work. The literature is described in a sequence in which the previous models

for analysing longitudinal data were developed. Chapter 3 provides a detailed

description of selected marginal models and quasi-likelihood and working like-

lihood approaches for analysing those models. In Chapter 4, the discussion in

Chapter 3 is extended to a point-to-point identification of problems to describe

the shortcomings of the earlier methods. In Chapter 5, the idea of conditional

models are reviewed and the proposed joint models using a marginal conditional

approach are described with related inferential procedures. A generalization of

the proposed model is also shown. A number of simulation studies were per-

formed followed by an example with a real life data. The results are presented

in Chapter 6 . In Chapter 7, we proposed a new model that we developed under

the setup of a quasi-likelihood approach. The inferential procedures are also

described. The results of a set of simulation studies are reported to show the

performance of the new model as compared to that of GEE and ALR. The new

model was explained using a real life data. Finally in Chapter 8, a summary of

findings of this dissertation as well as some discussions on directions for future

work are placed. Last but not the least, Appendix A contains the full description

of all codes required to run the models used in this study.

11



Chapter 2

Literature Review on Generalized

Linear Models

2.1 Introduction

The development of methods for analysing longitudinal data or repeated mea-

sures categorical data has received substantial attention in the last few decades

and has become an important and active area of research. A Generalized lin-

ear model (GLM) is a common choice for modeling repeated measures data

with categorical response variables. In this chapter, the structure of data with

repeated outcomes is described in the form of a table. A GLM for analysing re-

peated measures data is described in details stating the model assumptions. The

GLM and the associated parameters and estimates of the parameters of a GLM

using quasi-likelihood and likelihood based approaches are also discussed with

a detailed literature review on analysis of repeated measures data.
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2.2 Structure of Data with Repeated Outcomes

In the study of repeated measures data, several notations are required for the

description of the data and related methodologies. Naturally, the notations used

by different authors are not exactly the same. So the basic notations used in this

study are defined here and further notations that would be required to explain

the methodologies in following chapters will be defined accordingly.

Let us consider an experiment for a specified time period for a sample of size

N. In the experiment, we have data from several follow-ups on each of N units.

Suppose each of N units are observed on ni occasions. Then the N units in the

sample observed at ni occasions produce data on the dependent or outcome vari-

able. Let us define the outcome vector Yi = (Yi1,Yi2, ...,Yini)
′ and associated co-

variatesXi j = (Xi j1, ...,Xi jp)
′, observed at times Ti= (ti1, ..., tini)

′ ∀ i= 1, ...,N.

The data structure can be shown as given in Table 2.1.

Table 2.1: Structure of Longitudinal Data

i Ti Y X1 X2 ... Xp

t11 Y11 X111 X112 ... X11p

1 ... ... ... ... ... ...
t1n1 Y1n1 X1n11 X1n12 ... X1n1 p

t21 Y21 X211 X212 ... X21p

2 ... ... ... ... ...
t2n2 Y2n2 X2n21 X2n22 ... X2n2 p

... ... ... ... ...
... ... ... ... ... ...

... ... ... ... ...

tN1 YN1 XN11 XN12 . XN1p

N ... ... ... ... ... ...
tNnN YNnN XNnN1 XNnN2 ... XNnN p

2.3 GLMs for analysing Repeated Measures Data

A GLM investigates the relationship between a response variable and one or

more predictors.

13
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2.3.1 Components of a GLM

A GLM has three components

• Random Component: The random component of a GLM is the probability

distribution of the response variable Yi j; For example, in a linear regres-

sion, Yi j has a Normal distribution, or Yi j has a binomial distribution in

a binary logistic regression. The random component of a GLM is also

known as a noise model or an error model.

• Systematic Component: A systematic component is the linear combina-

tion of the independent variables (Xi j1,Xi j2, ...,Xi jp)
′ in the model in cre-

ating the linear predictor. For example, for a linear regression with two

explanatory variables Xi j1 and Xi j2 and vector of unknown parameters

β = (β0,β1,β2)
′ where β0 is the intercept and β1 and β2 are coefficients

of Xi j1 and Xi j2 respectively, a systematic component can be expressed as

β0 +β1Xi j1 +β2Xi j2.

• Link Function: The function that describes the relationship between the

expected value of the response variable and the systematic component is

called the link function of GLM. A link function is often denoted by η

or g(µ) and can be expressed as ηi j = g(µi j) = g(E(Yi j)). For linear

regression, ηi j = E(Yi j), for logistic regression, ηi j = logit(πi j) (where

πi j is the probability of success of Yi j), etc.

2.3.2 Model

As defined in section 2.2, the vector of outcome for the ith subject can be de-

fined as Yi = (Yi1,Yi2, ...,Yni)
′ and E(Yi) = µi = (µi1,µi2, ...,µini)

′. For the ith

subject at jth follow-up, Yi j, the GLM can be expressed as

f (yi j,θi j,φi j) = exp
[

yi jθi j−b(θi j)

a(φi j)
+ c(yi j,φi j)

]
, (2.1)

14
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where θi j is the natural parameter, b(θi j) is a function of θ and a(φi j) is the

dispersion parameter. We may define

θi j = g(µi j) =Xi jβ = β0 +β1Xi j1 + ...+βpXi jp,

b′(θi j) = E(Yi j) = µi j,

b′′(θi j) = V (µi j) and

V (Yi j) = a(φi j)b′′(θi j) = a(φi j)V (µi j).

2.3.3 Likelihood Function and Maximum Likelihood Estimates

The contribution of Yi j to the likelihood function can be expressed as

Li j(θi j,φi j,yi j) = exp
[(

yi jθi j−b(θi j)

a(φi j)
+ c(yi j,θi j)

)]
. (2.2)

The contribution of Yi j to the log-likelihood function can be shown as

li j =

[
yi jθi j−b(θi j)

a(φi j)
+ c(yi j,θi j)

]
. (2.3)

The log-likelihood function is

l(θ ,φ ,y) =
N

∑
i=1

ni

∑
j=1

[
yi jθi j−b(θi j)

a(φi j)
+ c(yi j,θi j)

]
. (2.4)

Using the Chain Rule, the estimating equations are

δ l
δβ j

=
N

∑
i=1

ni

∑
j=1

(
δ li j

δθi j

δθi j

δ µi j

)
.

(
δ µi j

δηi j

δηi j

δβ j

)
= 0

or,
N

∑
i=1

ni

∑
j=1

(
yi j−µi j

a(φi j).V (µi j)
.
δ µi j

δβ j

)
= 0. (2.5)

The solution to these equations gives the maximum likelihood estimates of β.

It is well known that, maximum likelihood methods are used for fitting mod-

els under the assumptions that there is a known probability model for the data.
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Knowledge of the physical process that lead to the data or substantial experi-

ence with similar data from previous studies is required for that.

Sometimes there is insufficient information about the data to specify a model,

but some of the features of the data can be specified. For example, the type of

the outcome variable (continuous or discrete), dependence among the response

variables, etc. can be known. In such cases, maximum likelihood methods

cannot be used and analytical methods are based on approximation to the like-

lihoods.

2.3.4 Quasi-likelihood Methods

Quasi-likelihood method was introduced by Wedderburn [77] as an approxima-

tion to the likelihoods in cases where maximum likelihood methods cannot be

used. Let us consider a vector of responses,

Y = (Y11, ...,Y1n1, ...,YN1, ...,YNnN
)′,

which are independent with mean

µ= (µ11, ...,µ1n1 , ...,µN1, ...,µNnn)
′.

The response vector for subject i can be shown as Yi = (Yi1,Yi2, ...,Yini)
′ with

mean vector µi = (µi1,µi2, ...,µini)
′. We assume that µi j i = 1,2, ...,N, j =

1,2, ...,ni is a function of covariates, Xi j, and some regression parameters β

and covariance matrix of Yi is σ2V (µi). We also assume that the form of the

random components are not known, but µi j and V (µi j) are known. Since the

components of Yi j are assumed to be independent, V (µi) must be diagonal.

To construct the quasi-likelihood, one may start with a single component Yi j of

Y . The function,

Qi j = Q(µi j|yi j) =

µi j∫
yi j

yi j− t
V (t)

dt, (2.6)
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behaves like a log-likelihood function and this is referred to as a quasi-likelihood

function [77]. Under the conditions given at the beginning of this section, the

first derivative of the function Qi j has several properties in common with the

log-likelihood derivative (i.e. the score). In particular,

• E(Qi j) = 0

• V (Qi j) =
1

σ2V (µi j)

• −E(δ 2Qi j

δ µ2
i j
) = 1

σ2V (µi j)

Most of the first order asymptotic theory concerned with the likelihood are

founded on these properties [77]. Since the components of Y are indepen-

dent by assumption, we may define the quasi-likelihood for the complete data

as the sum of the individual contributions

Q =
N

∑
i=1

ni

∑
j=1

Qi j =
N

∑
i=1

ni

∑
j=1

Q(µi j|yi j) =
N

∑
i=1

ni

∑
j=1

µi j∫
yi j

yi j− t
V (t)

dt. (2.7)

Quasi-estimating Equations

Then the quasi-estimating equations are obtained by differentiating the Quasi-

likelihood function (2.7) with respect to the respective parameters and equating

to zero as

Sβ =
N

∑
i=1

ni

∑
j=1

δQ(µi j|yi j)

δβk
=

N

∑
i=1

ni

∑
j=1

yi j−µi j

σ2V (µi j)
.
δ µi j

δβk
= 0,k = 1,2, ..., p, (2.8)

which is an extension of GLM when µi j and V (µi j) are needed to be known for

obtaining estimating equations for any link function g(µi j) =Xi jβ.

2.4 A Review on Models for Longitudinal Data

GLMs were extended in different ways to model longitudinal data including

marginal or population averaged models and transition or response conditional

models. Three broad classes of regression models for longitudinal data include
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(i) marginal or population averaged models, (ii) random-effects or mixed ef-

fects or subject-specific models, (iii) transition or response conditional mod-

els. These models differ in how the correlation among the repeated measures

is accounted for. Besides, these models have regression parameters with dis-

tinctly different interpretations reflecting the different targets of inference of

such models. We present a detailed review on marginal and conditional models

in the following sections.

2.4.1 Marginal Models

The term marginal emphasizes that the model for the mean response at each oc-

casion depends only on the covariates of interest and not on any random effects

or previous responses. A marginal model is a straightforward way to extend

GLMs to longitudinal data to model the mean response at each occasion using

an appropriate link function [22]. The focus of a marginal model is on marginal

mean and its dependence on the covariates. As a result, marginal models re-

quire only a regression model for the mean response and the full distributional

assumptions for the vector of repeated responses is not necessarily known. We

focus much of this review on marginal models for longitudinal binary data.

A marginal model for longitudinal data has three-parts

• The mean of each response E(Yi j|Xi j) = µi j is assumed to depend on the

covariates through a known link function g(µi j) =X
′
i jβ.

• The variance of each Yi j, given the covariates is assumed to depend on the

mean according to V (Yi j|Xi j) = a(φi j)V (µi j), where V (µi j) is a known

variance function and a(φi j) is a scale parameter that may be known or

need to be estimated.
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• The conditional within-subject association among the vector of repeated

responses, given the covariates, is assumed to be a function of an addi-

tional set of association parameters , α and may also depend upon the

means, µi j.

The extension of GLMs to longitudinal data is clear through this three-part

specification of a marginal model. The first two parts of the marginal model

correspond to the standard GLM, although with no explicit distributional as-

sumptions about the responses. The main extension of GLMs to longitudinal

data is represented by the third component, the incorporation of a model for the

within-subject association among the repeated responses from the same indi-

vidual.

In a marginal model, the mean response and within-subject association are mod-

eled separately and this separation of the modelling of the mean response and

the association among responses has important implications for interpretation

of the regression parameters β. In marginal models, the regression parameters

have population-averaged interpretations.

The development of marginal models for discrete longitudinal data has its ori-

gins in likelihood-based approaches. For a ni× 1 vector of responses for ith

individual, Yi = (Yi1, ...,Yini)
′, the three-part specification given above is ex-

tended by making full distributional assumptions about the response vector. At

least three main research threads can be distinguished in the development of

likelihood based marginal models for discrete longitudinal data [24].

One of the earliest likelihood based approach is a latent variable model pro-

posed by Gumbel [30] for multivariate binary data. This approach consid-

ers a vector of unobserved latent variables, say, Li1, ...,Lini , where each of

these is related to the observed binary responses via Yi j = 1 when Li j ≤ X ′i jβ,

Yi j = 0 when Li j > Xi jβ, β is the p× 1 vector of unknown parameters. As-

suming a multivariate joint distribution for Li1, ...,Lini , identifies the joint distri-
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bution for Yi1, ...,Yini with P(Yi1 = 1,Yi2 = 1, ...,Yini = 1) = P(Li1 ≤ X ′i1β,Li2 ≤

X ′i2β, ...,Lini ≤ X ′ini
β) = F(X ′i1β,X

′
i2β, ...,Xiniβ) where F(.) denotes the joint

cumulative distribution function of the latent variables. Any dependence among

the Li j induces dependence among the Yi j’s.

Another likelihood based approach was proposed by Bahadur [4] where an ex-

pansion for an arbitrary probability mass function for a vector of responses

Yi1, ...,Yini was proposed. The expansion for repeated binary responses is of the

form

f (Yi1,Yi2, ...,yini) =

(
ni

∏
j=1

π
yi j
i j (1−πi j)

1−yi j

)
×

(
1+ ∑

j<k
ρi jkzi jzik

+ ∑
j<k<l

ρi jklzi jzikzil + ...+ρi1...nizi1zik...zini

)
,

where Zi j =
Yi j−πi j√
πi j(1−πi j)

πi j = E(Yi j)

and ρi jk = E(Zi j.Zik), ...,ρi1...ni = E(Zi1.Zi2...Zini).

Here ρi jk is the pairwise or second order correlation and additional parameters

are related to the third and higher order correlations among the responses. The

Bahadur [4] expansion is reproducible or upwardly compatible for any subset

of the vector of responses, the same model holds. In addition, given the model

parameters, the multinomial probabilities for the vector of binary responses are

relatively straightforward to obtain. Altham [1], Kupper and Haseman [49] dis-

cussed applications of this model, with very simple pairwise correlation struc-

ture with an assumption that higher-order terms are zero.

The major limitation of the Bahadur [4] expansion is its parameterization of the

higher-order associations in terms of correlation parameters that has limited its

application to longitudinal data. For discrete data, the Bahadur [4] model re-

quires a complicated set of inequality constraints on the model parameters that
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make maximization of the likelihood very difficult. As a result, the model has

not been widely applied to longitudinal data except in very simple settings with

a small number of repeated measures. Because of the restrictions on the corre-

lations, alternative multinomial models for the joint distribution of the vector of

discrete responses have recently been proposed where the within-subject asso-

ciation is parameterized in terms of other metrics of association, for example,

marginal odds ratio [27, 53, 55, 57]. In virtually all of the later advances, the ap-

plication of the methodology has been hampered by at least three main factors

[22]. First, there are no simple expressions for the joint probabilities in terms

of the model parameters that makes maximization of the likelihood difficult to

some extent. Second, these models are difficult to fit except when the number of

repeated measures is relatively small and finally, many of these models are not

robust to misspecification of the higher-order moments. That is, many of the

likelihood-based methods require that the entire joint distribution be correctly

specified. As a result, if the marginal model for the mean responses has been

correctly specified but the model for any of the higher-order moments has not,

then the maximum likelihood estimators of the marginal mean parameters will

fail to converge in probability to the true mean parameters.

analysing discrete longitudinal data using marginal models had a remarkable

advancement with the introduction of the generalized estimating equations (GEE)

approach by Liang and Zeger [52] and Zeger and Liang [79]. The GEE ap-

proach is a natural extension of the quasi-likelihood approach [77] for GLM

to the multivariate response setting, with an additional set of nuisance param-

eters incorporated to accommodate the within-subject association. The GEE

methodology generated a lot of theoretical and applied research on the use of

this methodology for analysing longitudinal data, e.g., to improve upon effi-

ciency, Prentice [66] proposed joint estimating equations for both the main re-

gression parameters, β, and the nuisance association parameters, α .
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There is overwhelming use of correlated binary data since work on repeated

measures data by Liang and Zeger [52], Zeger and Liang [79] has been pub-

lished on GEE. However, GEE models are proposed based on probability of

the event and correlations or the first and second moments by Liang and Zeger

[52], Liang et al. [53], Lipsitz et al. [56], Prentice [66]. Although the GEE ap-

proach yields a consistent estimator of β under misspecification of the within

subject associations, GEE, by nature, provides very limited information about

the longitudinal associations within the repeated outcomes themselves. This is

disorganized, since previous outcome is frequently an important predictor of

future outcome for many studies. Carey et al. [9] developed models based on

marginal odds ratios instead of correlations between pairs of binary responses

to overcome the limitations of GEE.

GEE and related methods are based on marginal models using a Quasi-likelihood

approach and the marginal models may fail to provide the measure of depen-

dence of binary outcomes due to lack of proper specification of the underlying

model. Although GEE and other approaches based on GEE consider corre-

lation between the repeated outcomes, the correlation considered are induced

correlations and anomalies caused by the induced correlation between repeated

outcomes is beyond any explanation [38].

Many of the earlier studies tried to address correlation in a marginal model ap-

proach in a variety of ways (e.g. Darlington and Farewell [16], Guerra et al.

[29], Zeger et al. [80], etc.) using Markov based transition probabilities. Zeger

et al. [80] examined a robust likelihood estimation method for estimating the

relationship between covariates and the transition matrix in the discrete time

setting. Darlington and Farewell [16] examined modelling the correlation be-

tween the binary outcomes as a function of time dependent covariates also in

the discrete time settings. The binary models of Zeger et al. [80] as well as

Darlington and Farewell [16], Guerra et al. [29] also focused on marginal rela-
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tionships using Markov transition probability.

The marginal measures may fail to provide the measure of dependence of bi-

nary outcomes due to lack of proper specification of the underlying model. Al-

though GEE and other approaches based on GEE considers correlation between

the repeated outcomes, the quasi-likelihood approaches are based on indepen-

dence assumption and an induced correlation among the repeated measures may

cause anomalies which is beyond any explanation. More over, the induced cor-

relation which is, basically, a nuisance correlation, even if misspecified does not

affect the parameter estimates. In Chapter 3 and Chapter 4, we tried to detail

these features of GEE and ALR and some other marginal models which used

transition probabilities but ended up with marginal parameter estimations.

2.4.2 Generalized Linear Mixed Models

A generalized linear mixed model incorporates the within subject variation in

the linear model where random effects are attributable to within subject varia-

tion are incorporated. The generalized linear model for repeated measures can

be expressed as

g(µi j) =Xi jβ, i = 1,2, ...,N; j = 1,2, ...,ni,

with E(Yi j|Xi j) = µi j and V (Yi j) = a(φ)V (µi j) [38]. Then considering a ran-

dom effect, ui, for the repeated outcomes of the ith subject, the extended model

can be written as

g(µi j) =Xi jβ+Ziui, i = 1,2, ...,N; j = 1,2, ...,ni,

where ui follows multivariate normal distribution with mean 0, and variance

covariance matrix Σ. Instead of normality assumptions, other assumptions may

be considered depending on the type of the data.
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2.4.3 Conditional Models

The transition models are the models, in which the conditional distribution of

each response is expressed as an explicit function of the earlier responses and

the covariates [22]. These models can be considered as conditional models

as they model the conditional distribution of the response at any time point

given the responses at previous time points and the covariates. The conditional

models assume that the dependence among the repeated measures are due to

influence of the past values of the response on the present observations. These

models are attractive because of the sequential nature of longitudinal data and

GLMs can be extended to model longitudinal data by modeling the mean and

time dependence simultaneously through conditioning an outcome on previous

outcome or on a subset of all previous outcomes by a transition or Markov

model [22].

Number of previous studies show the use of Markov chains to model equally

spaced discrete longitudinal data with a finite number of states or categories

[2, 5, 13]. Cox [15], Korn and Whittemore [48], Zeger et al. [80] discuss appli-

cability of transition models to longitudinal data.

An example of the simplest conditional model for longitudinal data can be first-

order Markov chain in which the transition probabilities are assumed to be the

same for each time interval. The most appealing aspect of the transition models

is that the joint distribution of the vector of responses can be expressed as the

product of a sequence of conditional distributions, that is,

f (yi1, ...,yi j;β) =
ni

∏
j=1

f (yi j|yi1, ...,yi,ni;β).

Markov models for binary longitudinal data have been explored by Darlington

and Farewell [16], Guerra et al. [29], Tuma et al. [71], Zeger et al. [80], Zeger

and Qaqish [81] as well as several others. Tuma et al. [71] examined mod-

elling the two category instantaneous transition matrix corresponding to the
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binary outcome as a simple function of covariates, in a manner similar to that

of Kalbfleisch and Lawless [44], the first unified approach for applying Markov

models to continuous time categorical panel data with time independent co-

variates. Zeger et al. [80] examined a robust likelihood estimation method for

estimating the relationship between covariates and the transition matrix in the

discrete time setting. Zeger and Qaqish [81] explored the use of higher order

Markov process for modelling the relationship between a binary outcome and

its covariates and prior outcome history in the discrete time setting. Darling-

ton and Farewell [16] examined modelling the correlation between the binary

outcomes as a function of time dependent covariates also in the discrete time

settings. The binary models of Zeger et al. [80] as well as Guerra et al. [29]

focused on marginal relationships while the models of Tuma et al. [71] and the

models of Zeger and Qaqish [81] focused more on predictive relationships. Az-

zalini [3], Bonney [7, 8], Muenz and Rubinstein [59] employed the conditional

logistic models and regressive models under the Markov assumptions.

In a series of works, Islam et al. [34], Islam and Chowdhury [35, 36, 37, 38], Is-

lam et al. [40, 41, 43] employed the conditional covariate dependent conditional

logistic models and regressive logistic models under the Markov assumptions.

The works of Bonney [7, 8], Islam and Chowdhury [35, 37], Islam et al. [43]

was generalized to include both binary outcomes in previous times as well as

covariates in the conditional models [34, 42]. In Chapter 5 we discussed the

joint model for binary outcomes based on marginal conditional model [43] and

proposed it as a better alternative to GEE or related models for longitudinal

data in many situations. We also proposed an extension of the joint model for

bivariate outcomes to joint models for outcomes from exponential families with

any number of follow-ups. A generalized form of the joint model using the re-

gressive model approach [7] is also proposed for cases where there are more
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than three follow-ups. A quasi-likelihood approach based marginal conditional

model is developed in Chapter 7 for response variable with unknown distribu-

tions.

2.5 Conclusion

In this chapter we described the structure of repeated measures data and gener-

alized linear models for analysing such data. A thorough literature review on

earlier works on analysis of repeated measures data are discussed with concen-

tration on marginal and conditional models. We also introduced the generalized

linear mixed models for longitudinal data but avoided details on it as this model

is beyond the concern of this study. In the next chapter, we discussed some

methods based on marginal models for longitudinal data.
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Chapter 3

Marginal Models for Repeated

Measures Data

3.1 Introduction

For analysis of longitudinal binary data, most of the previous works on cor-

related outcome variables were based on the marginal models or marginal re-

sponse probabilities. In this chapter, we discuss in details, the marginal ap-

proaches, GEE, ALR and methods proposed by Zeger et al. [80], Darlington

and Farewell [16], Guerra et al. [29]. The assumptions, likelihood functions,

score and information matrix for each of the models are discussed so that the

methods can be examined thoroughly.
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3.2 Structure of the Longitudinal Data

As described in section 2.2 of Chapter 2, consider a longitudinal study for a

specified time period for a sample of size N. In the study, we have data from

several follow-ups on each of N units. The N units in the sample produce data

on the outcome variable, Y (Table 2.1) for the data structure. Let individual i

is observed on ni occasions taking value either 0 or 1 so that Yi j be a binary

outcome variable observed for individual i at time j, i = 1,2, ...,N and j =

1,2, ...,ni and also let Xi j be the p× 1 vector of covariates for Yi j. Then the

outcome vector for ith subject is Yi = (Yi1 Yi2 ... Yini)
′.

3.3 Models for Repeated Binary Data

The repeated measures data are naturally correlated and the major challenge of

the methods for analysing repeated measures categorical data is to model the

probable correlations among the repeated outcomes on the same subject. The

development of methods for analysis of repeated measures categorical data has

received substantial attention and has become an important and active area of

research in the last few decades and GLMs are commonly chosen for modelling

repeated measures data with categorical response variables (Chapter 2). In the

following sections, we examine selected methods based on quasi-likelihood

approaches followed by selected working likelihood approaches for marginal

models.

3.4 Quasi-likelihood Approaches

Among the popular quasi-likelihood based approaches, GEE and ALR models

are discussed here.
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3.4.1 Generalized Estimating Equations (GEE)

Generalized Estimating Equations (GEE) [52, 79] is a popular and one of the

most widely used method for analysis of longitudinal data which is a quasi-

likelihood approach that uses a marginal or population averaged model [9, 19,

24, 31, 66]. Generalized Estimating Equations(GEE) extend generalized linear

models to accommodate correlated Yi j’s obtained through longitudinal studies

or from repeated measures on same individuals [52, 79]. GEE do not require to

meet the classical assumptions of independence and normality, which are too

restrictive for many problems [66] and needs only the correct specification of

the form of the mean function µi, of the vector of responses for each individual.

Assumptions of GEE

• The responses, Yi1,Yi2, ...,Yini are correlated or clustered, i.e., cases are not

independent.

• The homogeneity of variance does not need to be satisfied.

• Errors are correlated.

• It uses quasi-likelhood estimation rather than maximum likelihood esti-

mation(MLE) or ordinary least squares(OLS) to estimate the parameters,

but at times these will coincide.

• Covariance specification: There are typically four or more correlation

structures that we assume apriori.

Mean and Variance of the Response Vector

Let Yi j be a binary response observed for individual i at time j, i= 1,2, ...,N and

j = 1,2, ...,ni and also letXi be the vector of parameters for individual i. Then

for the ith individual we have a ni×1 random vector of Bernoulli responsesYi =
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(Yi1,Yi2, ...,Yini)
′, and associated covariates of Yi j areXi j = (Xi j1,Xi j2, ...,Xi jk)

′,

i = 1,2, ...,N, j = 1,2, ...,ni. The mean vector for ith individual is

µi = (µi1 µi2 ... µini)
′ = [E(Yi1) E(Yi2) ... E(Yini)]

′ = (pi1 pi2 ... pini)
′ ,

where, the probability of observing the event for ith individual at jth occasion,

pi j = Pr(Yi j = 1|Xi j = xi j) ; i = 1,2, ...,N; j = 1,2, ...,ni. For Binary outcome

variables,

µi j = pi j = Pr(Yi j = 1|Xi j = xi j) =
exp(xi jβ)

1+ exp(xi jβ)
. (3.1)

The probability of not observing the event for ith individual at jth occasion is

qi j = 1− pi j, i = 1,2, ...,N; j = 1,2, ...,ni and the variance of Yi j is pi j(1− pi j).

The variance covariance matrix of Yi is given by

Vi =V (Yi) =


V (Yi1) cov(Yi1,Yi2) ... cov(Yi1,Yini)

cov(Yi2,Yi1) V (Yi2) ... cov(Yi2,Yini)

... ... ... ...

cov(Yini,Yi1) cov(Yini,Yi2) ... V (Yini)

 .

Working Correlation and the Estimating Equations

In addition to the mean and covariance of the vector of responses, Liang and

Zeger [52] suggested to take a ni× ni working correlation matrix for each Yi.

The correlation matrix (denoted by Ri(α)) is working in the sense that it is an

approximation to the actual correlation matrix of Yi. It is assumed that Ri(α)

is fully specified by the vectors of unknown parameters α that is same for all

subjects.

Following the quasi-likelihood approach, with a mean model, µi, and variance

structure, V (Yi), Liang and Zeger [52] expressed the GEE for β of the form

U(β) =
N

∑
i=1
D′iVi

−1(Yi−µi) = 0, (3.2)
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where, Di =
δµi
δβ′ and Vi is a working or approximate covariance matrix of Yi,

chosen by the investigator. In addition to the mean and covariance of the vector

of responses, Liang and Zeger [52] suggested to take a ni×ni working correla-

tion matrix for each Yi. The correlation matrix [denoted by Ri(α)] is working

in the sense that it is an approximation to the actual correlation matrix of Yi. It

is assumed that Ri(α) is fully specified by the vectors of unknown parameters

α that is same for all subjects.

The parameter estimates are obtained by solving U(β) = 0 and are typically

obtained via the Newton Raphson algorithm. The variance structure is chosen

to improve the efficiency of the parameter estimates. The Hessian of the solu-

tion to the GEEs in the parameter space can be used to calculate robust standard

error estimates. The term “variance structure” refers to the algebraic form of the

covariance matrix between outcomes of ith individual, Yi j, j = 1,2, · · ·ni, in the

sample. Examples of variance structure specifications include independence,

exchangeable, autoregressive, stationary m-dependent, and unstructured. This

working covariance matrix can be expressed in the form

Vi =A
1
2
i Ri(α)A

1
2
i ,

where Ai = diag[V (Yi1), ...V (Yini)], is a ni× ni diagonal matrix with V (Yi j) =

φV (µi j), φ is a dispersion parameter, Ri(α) = corr(Yi) is a ni× ni working

correlation matrix and α represents a vector of parameters associated with a

specified model for corr(Yi). Here the form of the estimating equation is sim-

ilar to the quasi-likelihood estimating equations described in McCullagh and

Nelder [57]. With a binary response vector, these equations simply generalize

the ordinary logistic regression estimating equations by introducing a working

or approximate correlation matrix, Ri(α). This leads to estimating equations of

the form

U(β) =
N

∑
i=1
X ′iAiV

−1
i (Yi−µi). (3.3)
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The followings are some common specifications for corr(Yi) in GEE approach.

a. Identity matrix

Ri(α) = I , where I is simply a ni×ni identity matrix. This corresponds to the

working independence assumption, and gives estimating equations identical to

ML method.

b. Exchangeable Correlation or Compound Symmetry

In many longitudinal studies, the correlation within the responses of an indi-

vidual remains same for change in time. Mathematically, for ith individual,

corr(Yi j,Yik) = α; j 6= k. So the correlation matrix for ith individual is defined

as Ri(α) = corr(Yi j,Yik) = α; j 6= k.

c. Autoregressive correlation

Sometimes, in longitudinal studies, the correlation within the responses of an

individual follows autoregressive property. That is for ith individual, the corre-

lation within the responses can generally be defined as corr(Yi j,Yik)=α | j−k|; j 6=

k. Here α is a correlation value and thus a fraction. So in this types of correla-

tion, we consider that for all k > t, α | j−k| > α | j−t|. Then the correlation matrix

can be defined as (Ri(α)) jk = corr(Yi j,Yik) = α | j−k|; j 6= k.

d. Unstructured or Pairwise correlation

If the correlation matrix is totally unspecified then α forms a vector of or-

der ni(ni−1)
2 that considers all the pairwise correlations within the repeated re-

sponses of the same individual. Here we can define the pairwise correlations as

corr(Yi j,Yik)=α jk ; j 6= k. The correlation matrix can be written as (Ri(α)) jk =

corr(Yi j,Yik) = α jk; j 6= k where, α j, j+1 = α j+1, j; j = 1,2, ..,ni; Thus α being a
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ni(ni−1)
2 ×1 vector contains all the pairwise correlations.

Many other correlation structures can be considered and α can also depend on

subject-specific covariates. Thus the specification of Ri(α) can be expressed

more generally as h(Ri) = Ziα , where Zi is a set of subject specific covariates

and h(Ri) is some suitable link function (e.g., inverse hyperbolic). Alterna-

tively, Zi might represent a common design matrix from the time-dependence.

Lipsitz et al. [56] and Liang et al. [53] suggested modelling the association by

the pairwise marginal odds-ratios. With binary responses, the marginal odds-

ratios are a natural measure of association, and ln(OR) can be modeled as a

linear function of covariates. Furthermore, given (µi,OR), we can always con-

struct Ri since, given the means, the pairwise correlations are a one-to-one func-

tion of the pairwise marginal odds-ratios.

Limitations of GEE

The advantages and limitations of GEE are discussed in literature [12, 60].

Some researchers asserted that the major limitation of GEE is that it lacks a

likelihood function (since the GEE does not specify completely the joint distri-

bution). Likelihood-based methods are not available for testing fit, comparing

models, and conducting inferences about parameters. Empirical based stan-

dard errors underestimate the true ones, unless very large sample size Chen and

Lazar [10].

Although GEE is a popular approach for its flexibility, the very bottom line of

GEE is to simply model the mean response and instead of attempting to model

the within subject covariance structure, to treat it as a nuisance. Several stud-

ies pointed out that in GEE a consistent estimator for the regression parameter

can be achieved without correctly specifying the correlation structure of the

repeatedly measured outcomes. Yet, misspecification of working correlation

could not only lead to loss of efficiency, but more seriously, could lead to non-
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feasibility of the GEE solutions [74, 75]. Working correlation structure of GEE

has been concern of many studies mainly focusing on examining the existing

selection criteria and/or proposing new selection criteria for correlations struc-

tures [25, 33, 62, 64, 68, 76].

Unfortunately, although several studies pointed at the problems with the corre-

lation structure of GEE and since the beginning of GEE, researchers are trying

to improve and/or develop a method to capture the true correlation among the

response variables, none of these studies addressed the root of the problem that

the GEE are based on marginal models and considers independence assump-

tion to make use of quasi-likelihood approach and then consider the correlation

between successive measures of an individual to be induced correlation. As a

result, with an arbitrary working assumption about the correlation among re-

peated measurements, the GEE estimator for the regression coefficients is al-

ways consistent. Hence, the solution of the problem lies elsewhere. In next

chapter (Chapter 4), we described how the correlation among repeated obser-

vations remain not addressed in GEE. Due to lack of proper specification of the

underlying model, marginal models such as GEE or ALR may fail to provide

the measure of dependence of binary outcomes.

The GEE or GEE based models, being constructed to describe the population

averaged or marginal distribution of repeated measurements, may sometimes be

appropriate for descriptive observational studies but should be used carefully in

causal experiments [54]. Moreover, the correlation considered in these GEE

based methods are induced correlations and anomalies caused by the induced

correlation between repeated outcomes is beyond any explanation. Many stud-

ies tried to address this problem by modifying the approaches based on marginal

models using Markov based transition probabilities as alternatives to GEE for

fitting population averaged logistic models (see for example, Zeger et al., 1985;

Darlington and Farewell, 1992; Guerra et al., 2012).
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3.4.2 Alternating Logistic Regression

Carey et al. [9] introduced Alternating Logistic Regression (ALR) models based

on marginal odds ratios combining the first order GEE for regression coeffi-

cients with new logistic regression equation for estimating the correlation pa-

rameter.

Let each subject, i, be observed for ni occasions and let Yi j be a binary outcome

variable observed for individual i at time j, i = 1,2, ...,N and j = 1,2, ...,ni and

also letXi j be the covariate vector for individual i at follow up j.

Then for the ith individual we have a ni× 1 random vector of Bernoulli re-

sponses Yi = (Yi1,Yi2, ...,Yini)
′, and the associated covariates of Yi j are Xi j =

(Xi j1,Xi j2, ...,Xi jp)
′ where i = 1,2, ...,N, j = 1,2, ...,ni.

The mean vector for ith individual is

µi = (µi1 µi2 ... µini)
′ = [E(Yi1) E(Yi2) ... E(Yini)]

′ = (pi1 pi2 ... pini)
′ ,

where, the probability of observing the event for ith individual at jth occasion,

pi j = Pr(Yi j = 1|Xi j = xi j) ; i = 1,2, ...,N; j = 1,2, ...,ni. The probability of

not observing the event for ith individual at jth occasion is qi j = 1− pi j, i =

1,2, ...,N; j = 1,2, ...,ni and the variance of Yi j is pi j(1− pi j). The variance

covariance matrix of Yi is given by

V (Yi1) =


V (Yi1) cov(Yi1,Yi2) ... cov(Yi1,Yini)

cov(Yi2,Yi1) V (Yi2) ... cov(Yi2,Yini)

... ... ... ...

cov(Yini,Yi1) cov(Yini,Yi2) ... V (Yini)

 .

For binary data, the correlation between the jth and kth response is, by defini-

tion,
corr(Yi j,Yik) =

Pr(Yi j = 1,Yik = yik)−µi jµik√
µi j(1−µi j)µik(1−µik)

. (3.4)
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The joint probability in the numerator satisfies the following bounds, by ele-

mentary properties of probability, because µi j = Pr(Yi j = 1), max(0,µi j+µik−

1)≤ Pr(Yi j = 1,Yik = 1)≤max(µi j,µik).

Therefore, the correlation is constrained to be within limits that depend in a

complicated way on the means of the data. For modelling binary data, the

odds ratio ORi jk between the jth and kth responses for the ith subject can be

expressed as

OR(Yi j,Yik) =
Pr(Yi j = 1,Yik = 1)Pr(Yi j = 0,Yik = 0)
Pr(Yi j = 1,Yik = 0)Pr(Yi j = 0,Yik = 1)

, (3.5)

which is not constrained by the means and is preferred, in some cases, to cor-

relations for binary data. In ALR approach, the associations between pairs of

outcome measures are modeled with odds ratios. As stated in Carey et al. [9],

the strategy of ALR was developed following the suggestions by Firth [21] and

Diggle [17] in the discussion of Liang et al. [53]. The ALR procedure combines

the first order GEE for β with new logistic regression equations for estimating

the correlation parameter α . The first order approach for β is retained because

it gives robust and reasonably efficient estimates when the assumed form of

cov(Yi) is close to the true covariance matrix. The new equations for α are

designed to avoid the computational burden of second-order equations that re-

sults from evaluating and inerting the matrix, cov(Yi,Wi), where Wi denotes

the
(ni

2

)
cross products of the Yi j’s, (Yi1Yi2,Yi1Yi3, ...,Yi1Yini, ...,Yi,ni−1Yini)

′. The

strategy was to estimate α using the
(ni

2

)
conditional events Yi j given Yik = yik.

In the simple case with logψ j,k ≡ α; α is estimated by regressing Yi j on Yik, for

1≤ j≤ k≤ ni with an appropriate offset. The prior hypothesis is that weighting

the conditional elements as if independent of one another and of Yi j will yield

reasonably efficient estimates of α in many problems.

Let γi jk be the log odds ratio between outcomes Yi j and Yik, let µi j = Pr(Yi j = 1)
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and νi jk = E(Yi jYik) = Pr(Yi j = 1,Yik = 1). Then following Diggle [17],

logitPr(Yi j = 1|Yik = yik) = γi jkyik + log
(

µi j−νi jk

1−µi j−µik +νi jk

)
.

If a particular cluster has ni measures, then there is an

 ni

2

 vector νi with

elements νi jk = E(Yi jYik) for 1≤ j < k ≤ ni.

Let ζi be the

 ni

2

 vector with elements

ζi jk = E(Yi j|Yik = yik)

= logit−1
(

γi jkyik + log
(

µi j−νi jk

1−µi j−µik+νi jk

))

and ei be the vector of residuals with elements

ei jk = Yi j−E(Yi j|Yik = yik) = Yi j−ζi jk.

Estimating Equations

Mathematically, the ALR estimates for β and α are the solutions to the follow-

ing unbiased estimating equations

U(β) =
N

∑
i=1
D′iA

− 1
2

i R−1
i (α̂)A

− 1
2

i (Yi−µi) = 0 (3.6)

and U(α) =
m

∑
i=1

δζi

δα
|β=β̂H−1

i ( ˆζi jk)(Yi− ζ̂i) = 0, (3.7)

where Di =
δµi
δβ , cov(Yi) =A

1
2
i Ri(α̂)A

1
2
i , H(ζi jk) = ζi jk(1−ζi jk) and Ci =

δζi
δα∗ |β=β̂.

Recall that in a GEE model, the correlation parameters (α) are estimated using

estimates of the regression parameters (β). The regression parameter estimates

are, in turn, updated using estimates of the correlation parameters. The com-

putational process alternately updates the estimates of the alphas and then the
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betas until convergence is achieved. The ALR approach works in a similar man-

ner, except that the alpha parameters are log odds ratio parameters rather than

correlation parameters. Moreover, for the same data, an odds ratio between the

jth and kth responses that is greater than 1 using an ALR model corresponds

to a positive correlation between the jth and kth responses using a GEE model.

Similarly, an odds ratio less than 1 using an ALR model corresponds to a nega-

tive correlation between responses. But, the correspondence is not one-to-one,

and examples can be constructed in which the same odds ratio corresponds to

different correlations.

3.5 Working Likelihood Methods for Marginal Models

When the distribution of the outcome variables are known, likelihood based

approaches can be used to estimate parameters of the models for repeated mea-

sures data. Some researchers analyzed longitudinal data based on marginal

models where the approach was to approximate the actual likelihood with work-

ing likelihoods. We discuss the working likelihood based approaches by Dar-

lington and Farewell [16], Guerra et al. [29], Zeger et al. [80] in the following

subsections.

3.5.1 Zeger et al.’s Approach

Zeger et al. [80] proposed models in which marginal probabilities were ex-

pressed as logistic functions of the covariates instead of conditional probabili-

ties. The approach was to approximate the actual likelihood with working like-

lihoods that lead to consistent estimates of β under weak assumptions. Time

series models were considered to account for time dependence.
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Model I by Zeger et al.

The first model by Zeger et al. [80] is based on a working likelihood approach

assuming independence among the repeated outcomes.

Assumption

The repeated outcomes for each subject are independent.

Likelihood and Log-likelihood Function

Under the assumption of Zeger et al. [80], the marginal distribution of Yi j is

logit[Pr(Yi j = 1|Xi = xi)] = β′xi

and the correlation between the successive outcomes can be shown as

corr(Yi j,Yi j−1|Xi = xi) = 0 for j = 2,3, ...,ni.

Under the assumption of independent repeated outcomes, the standard likeli-

hood analysis of the logistic regression model [14] is appropriate. The working

likelihood function was defined as

L(β) =
N

∏
i=1

ni

∏
j=1

pi j
yi j(1− pi j)

1−yi j , (3.8)

where pi j = Pr(Yi j = 1|Xi = xi) =
exp(xiβ)

1+ exp(xiβ)
.

The log-likelihood function can be expressed as

l(β) =
N

∑
i=1

ni

∑
j=1

(
yi j ln pi j +(1− yi j)ln(1− pi j)

)
. (3.9)
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Score Equations and Information Matrix

Differentiating l(β) in equation (3.9) with respect to βk and equating to zero,

the score equations are obtained as

Sk =
δ l

δβk
=

N

∑
i=1

ni

∑
j=1

xi jk(yi j− pi j) = 0, k = 0,1, ..., p. (3.10)

Solving the score equations (3.10), the estimates of β can be obtained. Differ-

entiating the log likelihood equations with respect to βk, and βk′ we have,

δ 2l
δβkδβk′

=
N

∑
i=1

ni

∑
j=1
−x2

i jk pi j(1− pi j). (3.11)

The working Fisher information matrix is obtained as

I0(β) =−
δ 2l

δβδβ ′
, (3.12)

with diagonal elements −
N
∑

i=1

ni
∑
j=1
−x2

i j pi j(1− pi j).

Under the assumption of independent repeated outcomes, β̂, the estimator of

β proposed by Zeger et al. [80], is consistent and asymptotically Gaussian as

N→∞ for any set of stationary processes such that logit(pi) =x
′
iβ. Let Yi j, j =

1,2, ...,ni, i = 1,2, ...,N, be a stationary binary series such that logitE[Yi j|Xi =

xi] = x
′
iβ. Then N

1
2 (β̂−β) is asymptotically multivariate Normal with expec-

tation 0 and covariance matrix I−1
0 I∗0I

−1
0 where I−1

0 = E(SS′).

Model II by Zeger et al.

The second model proposed by Zeger et al. [80] for repeated binary data con-

sidered a stationary Markov chain of order one among the repeated outcomes.
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Assumption

Each series of the repeated outcomes for a subject is a stationary Markov chain

of order one.

Likelihood and Log-likelihood Function

Under the assumption that each binary series is a realization of a stationary

Markov chain, Zeger et al. [80] expressed as

Pr(Yi j = 1|Xi = xi) =
exp(xiβ)

1+ exp(xiβ)
.

The correlation between jth and ( j+1)th outcome of ith response is

corr(Yi j,Yi j−1|Xi = xi) = ρ =
exp(xiτ )

1+ exp(xiτ )
, (3.13)

where β and τ are the vectors of unknown parameters to be estimated. Under

the assumption of Markov dependence among the repeated outcomes with a

common lag one autocorrelation, the working likelihood function is defined as

L(β,τ ) =
N

∏
i=1

pi
yi1(1− pi)

1−yi1
ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j , (3.14)

where the marginal probability pi, the conditional probability p∗i j and the asso-

ciation parameter ρ can be defined as

pi = Pr(Yi j = 1|Xi = xi)

=
exp(xiβ)

1+ exp(xiβ)
,

p∗i j = Pr(Yi j = 1|Yi j−1,Xi = xi)

= E(Yi j|Yi j−1,Xi = xi)

= pi +ρ(Yi j−1− pi),

ρ =
exp(xiτ )

1+ exp(xiτ )
.
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The log-likelihood function can be expressed as

l(β,τ ) =
N

∑
i=1

(yi1 ln(pi1)+(1− yi1) ln(1− pi1))

+
N

∑
i=1

ni

∑
j=1

yi j ln
(

pi j +ρi
(
yi j− pi j

))
+

N

∑
i=1

ni

∑
j=1

(1− yi j) ln
(
1− pi j−ρi

(
yi j− pi j

))
.

Score Equations and Information Matrix

Differentiating l(β,τ) with respect to βk and ρ , and equating to zero, we have

the score equations. Solving them simultaneously, we have the estimates of β

and ρ .

Differentiating the score equations with respect to β ′k and ρ , respectively, we

have, the information matrix as follow

I1 =

 Iββ Iβρ

Iρβ Iρρ

 .

N
1
2 (β̂−β) is, as N→∞, asymptotically Normal with expectation 0 and covari-

ance matrix V = I−1
1 I∗1I

−1
1 where I1 is the working Fisher information matrix

as obtained above and I∗1 = E(SS′).

3.5.2 Darlington and Farewell’s Method

Darlington and Farewell [16] extended the model of Zeger et al. [80]. They

showed that the dependence among repeated outcomes may depend on the ex-

planatory variables when the focus of the study is to identify the relationship

among the binary response and a set of independent variables. A robust estimate

of the variance-covariance matrix of coefficient estimates were suggested to

provide estimates of standard errors. This method considers conditional prob-

42



Chapter 3 : Marginal Models for Repeated Measures Data

ability and one may argue that the work is more a conditional model than a

marginal one. But since it ends up estimating a marginal β, we considered

reviewing this method under marginal models.

Assumptions

For a k× 1 vector of unknown parameters η, Darlington and Farewell [16]

defined the conditional probability, Pr(Yi j = 1|Yi j−1,Xi) = η
′Xi.

Likelihood and Log-likelihood Functions

For this model, the working likelihood function can be written as

L(β) =
N

∏
i=1

pi
yi1(1− pi)

1−yi1
ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j , (3.15)

where pi = Pr(Yi j = 1|Xi = xi)

=
exp(xiβ)

1+ exp(xiβ)
,

p∗i j = Pr(Yi j = 1|Yi j−1,Xi = xi)

= E(Yi j|Yi j−1,Xi = xi)

= pi +ρi(Yi j−1− pi)

and

ρi =
exp(η′xi)− exp(β′xi)

1+ exp(xiη)
.

The log-likelihood function can be written as

l(β,η) =
N

∑
i=1
{yi1 ln(p1)+(1− yi1) ln(1− p1)}+

N

∑
i=1

ni

∑
j=1
{yi j ln

(
p1 +ρi

(
yi j− p1

))
}+

N

∑
i=1

ni

∑
j=1
{
(
1− yi j

)
ln
(
1− p1−ρi

(
yi j− p1

))
}. (3.16)
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Score Equations and Fishers Information Matrix

First derivative of the log likelihood with respect to βk and η equating to zero

gives the score equations. Solving the score equations simultaneously give the

estimates of β̂ and ρ .

The Fisher’s Information Matrix for the model proposed by Darlington and

Farewell [16] has the form

I =

 Iββ Iβη

Iηβ Iηη

 .

Second Derivative of the log likelihood with respect to β and η gives the com-

ponents of Fisher’s Information Matrix. The element of uth row and kth colum

of Iββ is− δ 2l
δβuδβk

. The element of kth row and uth column of Iβkηu are obtained

from − δ 2l
δβkδηu

. and elements of uth row and lth column of Iηη are obtained

from − δ 2l
δηuηl

.

3.5.3 MARK1ML Approach

The maximum likelihood (ML) approach by Guerra et al. [29] for time-varying

covariates is also an extension of the method for time-independent covariates

by Zeger et al. [80]. Since this method also ends up estimating parameters of a

marginal nature, we considered this method under marginal approaches.

Assumption

A Markovian model of first order (MARK1 model) is assumed so that the value

of an outcome on a subject at a particular measurement occasion only depends

on the value at the previous measurement occasion. Mathematically,

Pr(Yi j+1 = yi j+1|Yi1 = yi1, ...,Yi j = yi j) = Pr(Yi j+1 = yi j+1|Yi j = yi j).
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Likelihood and Log-likelihood Function

The joint likelihood can be expressed as the product of the pairwise probabil-

ities of consecutive outcomes on each subject, with a logistic model for the

marginal means. Guerra et al. [29] showed that the joint probability Pr(Yi1 =

yi1, ...,Y i j = yi j) of any particular permutation (yi1, ...,yi j) of zeros and ones

can be expressed by conditioning Yi j on Yi1, ...,Yi j−1. The joint probability of

the ni outcomes on subject i is

Pr(Yi1 = yi1, ...,Yini = yini)

= Pr(Yi1 = yi1)
ni−1

∏
j=1

Pr(Yi j+1 = yi j+1|Yi1 = yi1, ...,Yi j = yi j). (3.17)

Substituting the Markov assumption of order one into the equation (3.17) yields

the following model for the ni outcomes on subject i

Pr(Yi1 = yi1, ...,Yini = yini)

= Pr(Yi1 = yi1)
ni−1

∏
j=1

Pr(Yi j+1 = yi j+1|Yi j = yi j)

= Pr(Yi1 = yi1)
ni−1

∏
j=1

Pr(Yi j+1 = yi j+1,Yi j = yi j)

Pr(Yi j = yi j)
. (3.18)

The pairwise probabilities in equation (3.18) can be expressed as

Pr(Yi j+1 = yi j+1,Yi j = yi j)

= p
yi j+1
i j+1q

1−yi j+1
i j+1 pyi j

i j q1−yi j
i j

(
1+Ci j j+1(α)

(yi j+1− pi j+1)(yi j− pi j)

(pi j+1.qi j+1.pi j.qi j)
1
2

)
,

where Ci j j+1(α) =Corr(Yi j+1,Yi j) and qi j = 1− pi j [66]. Then

Pr(Yi1 = yi1, ...,Yini = yini)

= pyi1
i1 q1−yi1

i1

ni−1

∏
j=1

p
yi j+1
i j+1q

1−yi j+1
i j+1

(
1+Ci j j+1(α)

(yi j+1− pi j+1)(yi j− pi j)

(pi j+1.qi j+1.pi j.qi j)
1
2

)
.

(3.19)
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The log-likelihood is obtained as

l(β,α) =
N

∑
i=1

ni

∑
j=1
{yi jlog(pi j)+(1− yi j)log(1− pi j)}

+
N

∑
i=1

ni

∑
j=1

log

(
1+Ci j j+1(α)

(yi j+1− pi j+1)(yi j− pi j)

(pi j+1.qi j+1.pi j.qi j)
1
2

)
.

(3.20)

The correlation between Yi j and Yik for j < k can be expressed as

Corr(Yi j,Yik) =Ci j j+1(α)...Ci(k−1)k(α) =
k−1

∏
s= j

Ciss+1(α).

Different functional forms were specified for Ci j j+1(α) to obtain the correlation

structures such as autoregressive, Markov or unstructured correlation.

Score Equations and Information Matrix

The score equation for β can be obtained by differentiating the log-likelihood

function with respect toβ and equating to zero. The elements of the information

matrix are obtained by differentiating the score equation U(β) with respect to

the respective parameters.

Note that, although the model proposed by Guerra et al. [29] is based on the

assumption of a first order Markovian model, the joint likelihood of their model

was expressed as a product of the pairwise probabilities of successive outcomes

on each subject, with a logistic model for the marginal means instead of a model

for the conditional probabilities. Hence, the MARK1ML model proposed by

Guerra et al. [29] basically considers the usual logistic model similar to a GEE

model for binary data.
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3.6 Conclusion

In this chapter, we described selected marginal models in details including the

very popular GEE and ALR methods. We discussed that these models, because

of their marginal features, fail to make use of the main feature of a longitudi-

nal data. We showed that, although the Models proposed by Zeger et al. [80],

Darlington and Farewell [16] and Guerra et al. [29] incorporated Markov based

transition probabilities to define conditional probabilities, the methods ended up

with estimation of marginal effect of covariates for each follow ups. In the next

chapter, we extend the discussion on these models to examine the correlation

structures between repeated outcomes considered in these models.
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Chapter 4

Analysis of Correlation Structures

used in Marginal Models

4.1 Introduction

Generalized linear models were extended in different ways to model longitu-

dinal data including marginal or population averaged models and transition or

conditional probability models (Chapter 3). We discussed the GEE approach

as a natural extension of the quasi-likelihood approach [77] for GLM to the

multivariate response setting, with an additional set of nuisance parameters in-

corporated to take into account the within-subject association.

Although the GEE or GEE based approaches yield consistent estimators of β,

even under misspecification of the within subject associations, GEE or related

methods, by nature, provide very limited information about the associations

within the repeated outcomes themselves. This is disorganized, since previ-
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ous outcome is frequently an important predictor of future outcomes for many

studies. Many of the earlier studies identified this problem and tried to address

this problem in a variety of ways and proposed alternatives to GEE based on

marginal models. Among those, we discussed the working likelihood based ap-

proaches by Zeger et al. [80], Darlington and Farewell [16], Guerra et al. [29]

using Markov based transition probabilities (Chapter 3). We showed that in

spite of using Markov transition probability, the binary models of Zeger et al.

[80] as well as Darlington and Farewell [16], Guerra et al. [29] focused on

marginal models.

In this chapter, we continue the discussion and compare GEE, ALR and models

proposed by Zeger et al. [80], Darlington and Farewell [16], Guerra et al. [29]

in terms of the correlation pattern considered among the repeated outcomes on

same individuals.

4.2 Statement of the Problem in Repeated Measures Data

As defined earlier in Chapter 2, let us consider a longitudinal study for a spec-

ified time period for a sample of size N. We have data from several follow-ups

on each of N units. The N units in the sample produce data on the outcome vari-

able, Y . Let Yi j be a binary response observed for individual i at time j. Let each

subject, i, be observed for ni occasions so that i = 1,2, ...,N and j = 1,2, ...,ni.

Also letXi j be the vector of parameters for jth response of ith individual.

4.2.1 Structure of the Data on Repeated Outcomes

Let us consider the simplest case, individual i is observed on two occasions

taking value either 0 or 1. The value of the outcome variable at time point 1, Yi1

can take values 0 or 1. Then for Yi1 = 0, the value of the outcome variable at

time point 2, Yi2, can be either 0 or 1. Again for Yi1 = 1, the outcome variable
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at time point 2, Yi2 can take either of the two values, 0 or 1.

In a longitudinal data, the repeated outcomes on the same subject are expected

to be correlated. Consider a study with two repeated binary outcome variables

Yi1 and Yi2 for each subject i where Yi1 and Yi2 can take values 0 or 1.

The outcome vector for ith subject can be expressed as Yi = (Yi1 Yi2)
′. The

mean vector for ith subject is µi = (µi1 µi2)
′ = [E(Yi1) E(Yi2)]

′ = (pi1 pi2)
′,

where, pi j = Pr(Yi j = 1|Xi j = xi j); i = 1,2, ...,N; j = 1,2. The probability of

not observing the event for ith individual at jth occasion is qi j = 1− pi j. The

variance covariance matrix of Yi is

cov(Yi) =

 V (Yi1) cov(Yi1,Yi2)

cov(Yi2,Yi1) V (Yi2)

 ,

where V (Yi j) = pi j(1− pi j).

We may define β1 as the (p + 1)× 1 vector of parameters of the marginal

model P(Yi1 = 1|Xi = xi) and β2 as the (p+1)×1 vector of parameters of the

marginal model P(Yi2 = 1|Xi =xi). Also we may define, β01 as the (p+1)×1

vector of parameters of the conditional model P(Yi2 = 1|Yi1 = 0,Xi = xi) and

β11 as the (p+ 1)× 1 vector of parameters of the conditional model P(Yi2 =

1|Yi1 = 1,Xi = xi). A generalized linear model, which is a common choice for

analysing longitudinal data, can be expressed as

f (yi j,θi j,φi j) = exp[(yi jθi j−b(θi j))a−1(φi j)+ c(yi j,φi j)],

where the canonical parameter θi j = g(µi j) =Xi jβ and β is the coefficient of

Xi j (equation (2.1), Chapter 2).

The first derivative of b(θi j) is b′(θi j) = E(Yi j) = µi j; the second derivative

of b(θi j) is b′′(θi j) =V (µi j) and V (Yi j) = a(φi j)b′′(θi j) = a(φi j)V (µi j), where

a(φi j) is the dispersion parameter.
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For two Bernoulli populations, we have the logit link functions

θi1 = g(µi1) = ln
µi1

1−µi1
=Xi1β1,

µi1 = E(Yi1) = pi1 =
exp(Xi1β1)

1+ exp(Xi1β1)
,

θi2 = g(µi2) = ln
µi2

1−µi2
=Xi2β2,

µi2 = E(Yi2) = pi2 =
exp(Xi2β2)

1+ exp(Xi2β2)
,

where β1 and β2, respectively, are the parameters of the marginal models of Yi1

and Yi2.

4.2.2 Correlation among the Repeated Outcomes

Let us consider two binary outcomes Yi1 and Yi2 for ith individual. Consider

binary outcomes Yi1 and Yi2 for ith individual. If Yi1 and Yi2 are not independent,

then the conditional probability of Yi2 given Yi1 can be expressed as [16, 65]

P(Yi2 = 1|yi1,xi2) = P(Yi2 = 1|Xi2 = xi2)

+ρi (Yi1−P(Yi1|Xi1 = xi1)) , (4.1)

where ρ is the correlation between Yi1 and Yi2. For Yi1 = 0, equation (4.1) can

be expressed as,

P(Yi2 = 1|Yi1 = 0,Xi2 = xi2) = P(Yi2 = 1|xi2)+ρi (0−P(Yi1|xi1))

or,
exp(xi2β01)

1+ exp(xi2β01)
=

exp(xi2β2)

1+ exp(xi2β2)
−ρi.

exp(xi1β1)

1+ exp(xi1β1)
.

(4.2)

For Yi1 = 1, equation (4.1) can be expressed as

P(Yi2 = 1|Yi1 = 1,xi2) = P(Yi2 = 1|xi2)+ρi (1−P(Yi1|xi1))

or,
exp(xi2β11)

1+ exp(xi2β11)
=

exp(xi2β2)

1+ exp(xi2β2)
+ρi

(
1− exp(xi1β1)

1+ exp(xi1β1)

)
.

(4.3)
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Clearly ρi is a function of β1, β2 and β2.1 where β1 and β2 are the parameters

of the marginal models, P(Yi1 = 1) and P(Yi2 = 1), respectively. For Bernoulli

outcomes, β2.1, denote the vector of parameters of the two conditional models

P(Yi1 = 1|Yi1 = 0) and P(Yi1 = 1|Yi1 = 1). If Yi1 and Yi2 are not correlated, ρi = 0

and

P(Yi2 = 1|Yi1,Xi2 = xi2) = P(Yi2 = 1|Xi2 = xi2) =
exp(xi2β2)

1+ exp(xi2β2)
. (4.4)

Theoretically, the observed correlation between two repeated outcome vari-

ables, Yi1 and Yi2, can be shown as

ρi =
cov(Yi1,Yi2)√
V (Yi1)

√
V (Yi2)

=
E(Yi1Yi2)−E(Yi1)E(Yi2)√
µi1(1−µi1)

√
µi2(1−µi2)

, (4.5)

where E(Yi1Yi2) =
1

∑
yi1,yi2=0

yi1yi2P(Yi1 = yi1,Yi2 = yi2)

= P(Yi1 = 1,Yi2 = 1)

= P(Yi2 = 1|Yi1 = 1)P(Yi1 = 1)

=
exp(xi2β11)

1+ exp(xi2β11)
.

exp(xi1β1)

1+ exp(xi1β1)
. (4.6)

If Xi j is time invariant then the correlation between Yi1 and Yi2, can be shown

as

ρi = exp
(

1
2
xi(β1−β2)

)
exp(xiβ11)− exp(xiβ2)

(1+ exp(xiβ11))
. (4.7)

Equation (4.7) shows that correlation between Yi1 and Yi2 is equal to zero when

β11 = β2. However, this condition does not completely define no association

between Yi1 and Yi2. The equations (4.2) and (4.3) show that for the indepen-

dence of Yi1 and Yi2, it is necessary that both β01 and β11 are equal and equal

to β2. If β01 6= β11 then Yi1 and Yi2 are associated. Islam et al. [40] showed

that the dependence in bivariate Bernoulli outcome variables can be tested by
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testing the equality of these two conditional models. Yi1 and Yi2 are independent

if
P(Yi2 = 1|Yi1 = yi1,Xi2 = xi2) = P(Yi2 = yi2|Yi1 = 0,Xi2 = xi2)

= P(Yi2 = yi2|Yi1 = 1,Xi2 = xi2)

= P(Yi2 = yi2|Xi2 = xi2),

i.e. β2.1 = β01 = β11 = β2.

It should also be noted that even if the distribution of Yi1, Yi2, ..., Yi j are indepen-

dent, i.e., β j.12... j−1 = β j, ∀ j = 2,3, ...,ni, this does not necessarily mean that

the distribution of Yi j’s are identical. Distribution of Yi1, Yi2, ..., Yi j are identical

only if β1 = β2.1 = ...= β j.12... j−1 = β.

4.3 Correlation under GEE

Following the quasi-likelihood approach [77], with a mean model, µi j, and vari-

ance structure, Vi j, Liang and Zeger [52] expressed the GEE for β of the form

(as shown in equation (3.2))

U(β) =
N

∑
i=1
D′iV

−1
i (Yi−µi) = 0,

with Di =
δµi

δβ
,

Vi = A
1
2
i Ri(α)A

1
2
i , a working or covariance matrix of Yi,

Ai = diag[V (Yi1), ...,V (Yini)], a ni×ni diagonal matrix,

Ri(α) = corr(Yi j,Yik), j 6= k is a working correlation matrix.

In a longitudinal data, the repeated observations on same individual are ex-

pected to be correlated. The correlation between Yi1 and Yi2 were shown in

equation (4.5) in section 4.2.2 as

ρ = exp
(

1
2
Xi(β1−β2)

)
exp(Xiβ11)− exp(Xiβ2)

1+ exp(Xiβ11)
,
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where β1 and β2 are parameters of the marginal models of Y1 and Y2 and β11

is the parameter of the conditional model of Y2 given Y1 = 1. Note that the

parameters to be estimated in GEE model are the parameters of a marginal or

population averaged model (same in each follow-up), i.e. β1 = β2 = β(say).

Under this assumption, the equation (4.5) becomes

ρ =
exp(Xiβ11)− exp(Xiβ)

1+ exp(Xiβ11)
.

Also to be noted that GEE does not take into account any transition model

(such as P(Yi j = 1|Yi j−1)) and as a population averaged model, it considers the

same distribution for all Yi j, j = 1,2, ...,ni. In other words, even for the corre-

lated outcomes, GEE estimates the same regression parameter β for the model

P(Yi j = 1|Yi j−1). That inevitably proves that, under the assumption of GEE,

β01 = β11 = β, and with this assumption, the equation (4.5) becomes ρ = 0.

One might argue that, in GEE, the correlation among the repeated outcomes

are attempted to be addressed by incorporating some nuisance correlation pa-

rameters, assuming correlation structures such as independence, autoregressive,

exchangeable, etc.

But it must be remembered that being a marginal or population averaged model,

GEE considersβ1 =β2.1 = ...=βni.12...ni−1 =β, which logically fits only when

Yi’s are identically and independently distributed. Hence inducing a (nuisance)

correlation structure contradicts with the basic assumptions of GEE unless the

correlation structure considered is independent correlation. So inducing a cor-

relation structure might contradict with the true correlations among the repeated

measures unless the correlation structure considered is an independent correla-

tion, such that, the repeated outcomes are independent.
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4.4 Correlation in Alternating Logistic Regression

The alternating logistic regression procedure or ALR proposed by Carey et al.

[9] combines the first order GEE for β with new logistic regression equa-

tions for estimating α , the correlation parameter. The first order approach for

β is retained because it gives robust and reasonably efficient estimates when

the assumed form of cov(Yi) is close to the true covariance matrix. The new

equations for α are designed to avoid the computational burden of second-

order equations that results from evaluating and inverting the covariance matrix,

cov(Yi,Wi). The strategy was to estimate α using the
(ni

2

)
conditional events Yi j

given Yik = yik. In the simple case α is estimated by regressing Yi j on Yik, for

1≤ j≤ k≤ ni with an appropriate offset. The prior hypothesis is that weighting

the conditional elements as if independent of one another and of Yi j will yield

reasonably efficient estimates of α in many problems.

The ALR strategy follows from the suggestions by Firth [21] and Diggle [17]

in the discussion of Liang et al. [53].

Let γi jk be the log odds ratio between out comes Yi j and Yik, µi j = Pr(Yi j = 1)

and νi jk = Pr(Yi j = 1,Yik = 1). Then following Diggle [17], logitPr(Yij =

1|Yik = yik) = γijkyik + log
(

µij−νijk
1−µij−µik+νijk

)
.

Unlike tha correlation parameters in GEE, the association parameters in ALR

are the log odds ratio parameters, estimated using estimates of the regression

parameters, β. The regression parameter estimates are, in turn, updated using

estimates of the correlation parameters. The computational process alternately

updates the estimates of the log odds ratios and then the β’s until convergence

is achieved. Furthermore, for the same data, an odds ratio between the jth

and kth responses that is greater than 1 using an ALR model corresponds to

a positive correlation between the jth and kth responses using a GEE model.

Similarly, an odds ratio less than 1 using an ALR model corresponds to a nega-
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tive correlation between responses. But, the correspondence is not one-to-one,

and examples can be constructed in which the same odds ratio corresponds to

different correlations.

4.5 Correlation in Zeger et al.’s Model

If Yi j is a binary outcome variable observed for individual i at time j, i =

1,2, ...,N and j = 1,2, ...,ni and Xi is the p× 1 vector of covariates for in-

dividual i at each follow up j, then under the assumptions of Zeger et al. [80],

the marginal distribution of Yi j and correlation between Yi j and Yi j+1 can be

expressed as (section 3.5.1 in Chapter 3)

Pr(Yi j = 1|xi) =
exp(xiβ)

1+ exp(xiβ)
and ρ =

exp(xiτ )

1+ exp(xiτ )
.

Under the assumption of Markov dependence among the repeated outcomes,

the working likelihood function is (equation (3.14))

L(β ,τ) =
m

∏
i=1

pi
yi1(1− pi)

1−yi1
ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j ,

where pi = Pr(Yi j = 1|Xi = xi) =
exp(xiβ)

1+ exp(xiβ)
,

p∗i j = Pr(Yi j = 1|Yi j−1,Xi) = E(Yi j|Yi j−1,Xi)

= pi +ρ(Yit−1− pi)

and ρ =
exp(xiτ )

1+ exp(xiτ )
.

The method proposed by Zeger et al. [80] uses a marginal model, where a

marginal β is considered for each follow up. Hence, in this method, β1 =

β2 = β. With this assumption in equation (4.5), we have

ρ =
exp(Xiβ11)− exp(Xiβ)

1+ exp(Xiβ11)
.
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In addition, as Zeger et al. [80]’s method considers a marginal β, the method

considers β01 = β11 = β, which results in ρ = 0. Clearly, the correlation de-

fined by Zeger et al. [80], ρ = exp(Xiτ )
1+exp(Xiτ )

, is an induced correlation not rep-

resenting the true association scenario and it is not logical to consider such

correlation among repeated measures.

4.6 Correlation by Darlington and Farewell

Darlington and Farewell [16] assumed Markov dependence among the repeated

outcomes and redefined the working likelihood function of Zeger et al. [80] as

(equation (3.15), section 3.5.2, Chapter 3)

L(β,η) =
N

∏
i=1

pi
yi1(1− pi)

1−yi1
ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j ,

where pi = Pr(Yi j = 1|Xi = xi) =
exp(xiβ)

1+ exp(xiβ)
,

p∗i j = Pr(Yi j = 1|Yi j−1,Xi = xi) = E(Yi j|Yi j−1,Xi = xi)

= pi +ρi(Yi j−1− pi)

and ρi =
exp(η′xi)− exp(β′xi)

1+ exp(xiη)
.

Under the assumption of Darlington and Farewell [16], β1 = β2 = β and under

this assumption, the equation (4.5) becomes

ρi =
exp(Xiβ11)− exp(Xiβ)

1+ exp(xiβ11)
,

which is the correlation defined by Darlington and Farewell [16],

ρi =
exp(η′xi)− exp(β′xi)

1+ exp(xiη)
, if β11 = η.
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According to Darlington and Farewell [16], complete independence is present

when ρ = 0 i.e. β = η. But we showed in section 4.2.2 that ρ = 0, when

P(Yi j = 1|Yi j−1,Xi) = P(Yi j = 1|Xi). The two conditional models for Yi2 given

Yi1 = 1 and Yi1 = 0, are

p∗i j = P(Yi j = 1|Yi j−1 = 1) =
exp(Xiβ11)

1+ exp(Xiβ11)
; i f Yi j−1 = 1

= P(Yi j = 1|Yi j−1 = 0) =
exp(Xiβ01)

1+ exp(Xiβ01)
; i f Yi j−1 = 0.

When both the p∗i j are equal to the marginal probability pi = P(Yi j = 1|Xi), the

outcomes are independent, or in other words, if the two outcomes are indepen-

dent, p∗i j = pi. This implies that Yi1 and Yi2 are independent when both of the

following are true

exp(Xiβ11)

1+ exp(Xiβ11)
=

exp(Xiβ)

1+ exp(Xiβ)
(4.8)

and
exp(Xiβ01)

1+ exp(Xiβ01)
=

exp(Xiβ)

1+ exp(Xiβ)
. (4.9)

We can say that both the tests H01 : β01 = β2 and H02 : β11 = β2 are needed to

be performed for independence of the outcome variables on repeated occasions

or follow ups [39]. Clearly, Darlington and Farewell [16] closely attempted to

address the correlation among the repeated measures but could only, partially,

portray it.

4.7 Correlation in MARK1 Model

Guerra et al. [29] made some improvements over the model proposed by Zeger

et al. [80] based on a Markovian model of the first order. Guerra et al. [29]

showed that the consecutive pairwise probabilities can be expressed as [66]
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Pr(Yi j+1 = yi j+1,Yi j = yi j)

= p
yi j+1
i j+1q

1−yi j+1
i j+1 pyi j

i j q1−yi j
i j

(
1+Ci j j+1(α)

(yi j+1− pi j+1)(yi j− pi j)

(pi j+1.qi j+1.pi j.qi j)
1
2

)
,

where Ci j j+1(α) =Corr(Yi j+1,Yi j). Different correlation structures, for exam-

ple, independence, exchangeable, autoregressive, etc. can be induced among

the repeated responses. Although Guerra et al. [29] introduced a Markovian

approach in their model, they specified a logistic model for the marginal means

under the set up of marginal probabilities instead of a model for the conditional

probabilities (section 3.5.3, Chapter 3). As a result, this approach, too, ulti-

mately ended up with a similar problem in identifying the association pattern

between repeated measures as the earlier marginal approaches of Zeger et al.

[80] and Darlington and Farewell [16].

4.8 Conclusion

In this chapter, we showed that both GEE and ALR are based on marginal

models and are inadequate to provide the measure of dependence of binary

outcomes due to its marginal or population averaged feature. One may argue

that GEE and ALR considers correlation between the repeated outcomes, but

we explained in this chapter that the correlation considered are induced and

nuisance correlations and anomalies caused by the induced correlation between

repeated outcomes is beyond any explanation. As a result, an alternative model

is required for longitudinal data
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Chapter 5

Proposition of Marginal

Conditional Models

5.1 Introduction

Most of the longitudinal models are based on marginal approaches. In almost

all the cases, the marginal models consider an induced correlation between suc-

cessive individuals. We discussed in Chapter 3 and 4 that the marginal models

have limitations in analysing the repeated measures data, mainly, because of

their marginal features and due to the correlation structures considered. Use of

correlation in a marginal model lacks in proper specification of the dependence

of binary outcomes in the model. Furthermore, an Induced correlation does not

fit to the estimation procedure while a marginal model is taken. Hence it may

fail to provide efficient estimation of parameters of the model considered.

Markov models for binary longitudinal data have been explored by many re-
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searchers. Cox [14] proposed an extension of logistic regression in which the

conditional rather than the marginal probabilities of a Markov chain are ex-

pressed as logistic functions of the covariates. This method have been applied to

the analysis of many binary series [48, 59]. Cox [14]’s model leads to propen-

sity estimates which depend strongly on the specification of the time depen-

dence, for example, choice of order of Markov chain. When the covariates are

categorical, an alternative approach is introduced by Grizzle et al. [28], Koch

et al. [47] who proposed repeated measures models to account for time depen-

dence in dichotomous data.

Azzalini [3], Bonney [7, 8] also used logistic regression for autocorrelated

data with repeated measures using a conditional model approach. Islam et al.

[34], Islam and Chowdhury [35], Islam et al. [39, 40, 41, 42] carried out a series

of research works using Markov based conditional models based on Markov

transition probability for repeated binary data. The conditional regressive lo-

gistic model of Bonney (1986, 1987) were generalized by Islam et al. [39, 42]

to include both binary outcomes in previous times as well as covariates in the

conditional models. In this Chapter, we discuss the Markov based transition

probability models proposed by Islam and Chowdhury [35] along with neces-

sary tests and propose joint models based on marginal conditional approaches

for analysing Repeated Binary data as alternatives to GEE based approaches.

Although the idea of joint model using a marginal conditional approach is not

a new one, the earlier works on such model mainly focused on estimating the

transition probability or testing dependence among repeated measures. Islam

and Chowdhury [38] described the estimation procedure of the parameters and

the test procedures for overall model. However, pertinence of such a model

for analysing longitudinal binary data is completely neglected in literature. We

examined the performance of the model in terms of bias of the estimates and

coverage probability, compared the estimates of parameters of the joint model
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with the estimates of parameters of GEE and ALR and proposed the application

of joint model based on marginal conditional approach for analysis of longitu-

dinal binary data as a better alternative to GEE or ALR. In this Chapter, for

analysis of longitudinal data we propose two different strategies:

• Joint models based on marginal-conditional approach

• Joint model based on extended Regressive Model approach.

The proposed methods can be used for outcome variables with known distri-

bution using likelihood based methods. The proposed joint models based on

marginal conditional approach for repeated binary outcomes are generalized for

exponential family. The limitation of the conditional probability based model

for more than 3 repeated measures is discussed and the extended regressive

model is shown as a better alternative for such cases.

5.2 Conditional Models for Repeated Binary Data

Let Yi j be a time dependent binary outcome variable for subject i at time j,

i= 1,2, ...,N and j = 1,2, ...,ni. The outcome vector for subject i can be defined

as Yi = (Yi1 Yi2, ...,Yini)
′ with mean

µi = E(Yi) = (E(Yi1) E(Yi2) ... E(Yini))
′ = (µi1 µi2 ... µini)

′ .

Suppose, P(Yi1 = yi1) denote the marginal distribution of the outcome vari-

able Yi1 and P(Yi j = yi j|Xi = xi,Yi1 = yi1,Yi2 = yi2, ...,Yi j−1 = yi j−1) denote

the conditional distribution of Yi j given Yi1 = yi1, ...,Yi2 = yi2,Yi j−1 = yi j−1,

j = 2,3, ...,ni. Also letXi j be the p×1 vector of covariates for subject i at jth

occasion. If Yi is covariate dependent, then the marginal distribution of the out-

come variable Yi1 can be defined as P(Yi1 = yi1|Xi1 = xi1) and the conditional

distribution of Yi j given Yi1 = yi1, ...,Yi2 = yi2,Yi j−1 = yi j−1, j = 2,3, ...,ni, is

denoted by P(Yi j = yi j|Xi j = xi j,Yi1 = yi1,Yi2 = yi2, ...,Yi j−1 = yi j−1).
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Let θ = (θ1,θ2.1, ...,θni.1,2,...,ni−1)
′ be the vector of unknown parameters where

θ j = g(µi j) = Xi jβ j, θ j.12... j−1 = g(µi j.12... j−1) =Xi jβ j.12... j−1 and g is an ap-

propriate link function.

For example, for Bernoulli outcome variables Yi j, i= 1,2, ...,N and j = 1,2, ...,ni,

if the Yi j’s are time dependent, the marginal probability of Yi j observing an event

can be expressed as

pi j = Pr(Yi j = 1|xi j) =
exp(xi jβ j)

1+ exp(xi jβ j)
; i = 1,2, ...,N; j = 1,2, ...,ni, (5.1)

where β j = (β j0, ...,β jp)
′ is a (p+1)×1 vector of parameters of the marginal

model of Yi j. Consequently, the marginal probability of not observing an event

can be expressed as

1− pi j = 1−Pr(Yi j = 1|xi j) =
1

1+ exp(xi jβ j)
.

The conditional probability of Yi j observing an event, given Yi1 = yi1,Yi2 =

yi2, ...,Yi j−1 = yi j−1, can be defined as

p∗i j = Pr(Yi j = 1|yi1, ...,yi j−1,xi j)

=
exp(xi jβ j.12... j−1)

1+ exp(xi jβ j.12... j−1)
; i = 1,2, ...,N; j = 2, ...,ni,

(5.2)

where β j.12... j−1 is the vector of parameters of the conditional model of P(Yi j =

1|Yi1 = yi1,Yi2 = yi2, ...,Yi j−1 = yi j−1); j = 2, ...,ni− 1. For each combination

of yi1, ...,yini−1, we get one conditional model. For example, when ni = 2,

β2.1 is the vector of parameters of the two conditional models P(Yi2 = 1|Xi2 =

xi2,Yi1 = yi1), yi1 = 0,1. We may denote the vector of parameters of the con-

ditional model, P(Yi2 = 1|Xi2 = xi2,Yi1 = 0), as β01 = (β010, ...,β01p)
′, and the

vector of parameters of the conditional model, P(Yi2 = 1|Xi2 = xi2,Yi1 = 1), as

β11 = (β110, ...,β11p)
′. To distinguish between the vector of parameters of a

marginal model and the vector of parameters of a marginal conditional model,

from this point onward, we will use two different notations, β∗ and β respec-
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tively.

The repeated measures data are naturally correlated and the major challenge

of the methods for analysing repeated measures categorical data is to take care

of the probable correlations among the repeated observations on the same sub-

ject. We start from the model considered by Darlington and Farewell [16] with

repeated binary outcomes with the working likelihood function

L(β∗,β11) =
N

∏
i=1

pi
yi1(1− pi)

1−yi1
ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j ,

where pi = Pr(Yi j = 1|Xi = xi) =
exp(xiβ

∗)

1+ exp(xiβ∗)
, (5.3)

p∗i j = Pr(Yi j = 1|Yi j−1,Xi = xi) = E(Yi j|Yi j−1,Xi = xi)

= pi +ρi(Yi j−1− pi) (5.4)

and

ρi =
exp(β′11xi)− exp(xiβ

∗)

1+ exp(xiβ11)
. (5.5)

max(− pi
1−pi

,−1−pi
pi

) < ρi < 1 because the likelihood must be maximized at

0 < pi < 1 and 0 < pi j < 1. The limitations of this model is that it does not

consider the transition probability from Yi j−1 = 0 to Yi j = 1 and considered

p∗i j = Pr(Yi j = 1|Yi j−1 = 1,Xi). Although, the transition probability P(Yi j =

1|Yi j−1 = 0) was not considered in determining the correlation, while defining

the range of ρi, the transition from Yi j−1 = 0 was considered which contradicts

with the definition of ρi. A straight forward and simple way to improve the

model discussed by Darlington and Farewell [16] by including both the transi-

tion probabilities P(Yi j = 1|Yi j−1 = 0) and P(Yi j = 1|Yi j−1 = 1) in the working

likelihood function.

We named our proposed model 1, proposed model 2 and proposed model 3 as

marginal conditional model 1 (MCM1), marginal conditional model 2 (MCM2)

and marginal conditional model 3 (MCM3), respectively.
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5.3 Proposed Marginal Conditional Model 1 (MCM1)

To overcome the limitations of the working likelihood function proposed by

Darlington and Farewell [16], an extension of the model by Darlington and

Farewell [16] is proposed which is the marginal conditional model 1 (MCM1).

For simplicity, let us consider, first order Markov model for the two consecutive

binary outcomes in a follow-up study.

5.3.1 Likelihood Function

The working Markov likelihood can be expressed as

L(β) =
N

∏
i=1

pi
yi1(1− pi)

1−yi1
N

∏
i=1

ni

∏
j=2

p∗i j
yi j(1− p∗i j)

1−yi j , (5.6)

where the marginal probability is

pi = Pr(Yi j = 1|xi j) =
exp(xi jβ

∗)

1+ exp(xi jβ∗)
, (5.7)

where β∗ is the vector of parameters of the marginal model P(Yi j = 1|xi j) and

the conditional probabilities are

p∗i j =

 pi j01 = Pr(Yi j = 1|Yi j−1 = 0,xi j) = pi +ρi1(Yi j−1− pi)

pi j11 = Pr(Yi j = 1|Yi j−1 = 1,xi j) = pi +ρi2(Yi j−1− pi),
(5.8)

with ρi1 =
exp(xi jβ01)− exp(xi jβ

∗)

1+ exp(xi jβ01)

and ρi2 =
exp(xi jβ11)− exp(xi jβ

∗)

1+ exp(xi jβ11)
,

where β01 and β11 are the vector of parameters of the conditional models,

P(Yi j = 1|Yi j−1 = 0) and P(Yi j = 1|Yi j−1 = 1), respectively; (−1−pi
pi

)< ρ1i < 1,

pi ≥ 0.5 and (− pi
1−pi

)< ρi2 < 1, pi ≤ 0.5.
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5.3.2 Score Equations and Information Matrix

The score equations for the likelihood function can be obtained by differenti-

ating the working log likelihood in equation (5.6) with respect to β ∗k , β01k and

β11k respectively and equating to zero as

δ l
δβ ∗k

=
N

∑
i=1

xi1k(yi1− pi)+
N

∑
i=1

ni

∑
j=2

xi jk(yi j− p∗i j)

p∗i j(1− p∗i j)
{(1−ρi1)pi(1− pi)}

−
N

∑
i=1

ni

∑
j=2

xi jk(yi j− p∗i j)

p∗i j(1− p∗i j)

{
exp(xi jβ

∗)

1+ exp(xi jβ01)
(yi j−1− pi)

}
= 0,

δ l
δβ01k

=
N

∑
i=1

xi2k exp(xi2β01k)

1+ exp(xi2β01k)
(1−ρi1)

ni−1

∑
j=1

(yi j− pi j)(yi j+1− p∗i j+1)

p∗i j+1(1− p∗i j+1)
= 0,

δ l
δβ11k

=
N

∑
i=1

xi2k exp(xi2β11k)

1+ exp(xi2β11k)
(1−ρi2)

ni−1

∑
j=1

(yi j− pi j)(yi j+1− p∗i j+1)

p∗i j+1(1− p∗i j+1)
= 0.

However, the MCM1, which is an extension of Darlington and Farewell [16],

although considers both the transition probabilities P(Yi j = 1|Yi j−1 = 1) and

P(Yi j = 1|Yi j−1 = 0), ignores the fact that the marginal distribution of Yi j may

vary with respect to time and hence the model might not be able to estimate the

outcome-covariate relationship at different time points except in some special

cases (i.e. β1 = β2 = β).

5.3.3 Test of Hypothesis

Since estimation of parameters of proposed model 1 (MCM1) is based on likeli-

hood based procedures, a likelihood ratio test can be used for testing the signif-

icance of the model parameters. The individual parameters can be tested using

a Wald test.
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5.4 Proposed Marginal Conditional Model 2 (MCM2)

For any order of Markov chain with covariate dependence, the proposed marginal

conditional model 2 (MCM2) is a further generalization of proposed marginal

conditional model 1 (MCM1).

Suppose Yi j be a time dependent outcome variable for subject i at time j,

i= 1,2, ...,N and j = 1,2, ...,ni. The outcome vector for subject i can be defined

as Yi = (Yi1 Yi2, ...,Yini)
′ with mean

µi = E(Yi) = (E(Yi1) E(Yi2) ... E(Yini))
′ = (µi1 µi2 ... µini)

′ .

Also let Xi j be the p× 1 vector of covariates for subject i at jth occasion.

Suppose, P(Yi1 = yi1) denote the marginal distribution of the outcome vari-

able Yi1 and P(Yi j = yi j|Yi1 = yi1,Yi2 = yi2, ...,Yi j−1 = yi j−1) denote the condi-

tional distribution of Yi j given Yi1 = yi1, ...,Yi2 = yi2,Yi j−1 = yi j−1, j = 2,3, ...,ni.

Let θ = (θ1,θ2.1, ...,θni.1,2,...,ni−1) be the vector of unknown parameters where

θ1 = g(µi1) = Xi1β1, and θ j.12... j−1 = g(µi j.12... j−1) =Xi jβ j.12... j−1 and g is an

appropriate link function.

If Yi is covariate dependent, the joint distribution of Yi1, Yi2, ..., Yini can be

expressed as

P(Yi1 = yi1,Yi2 = yi2, ...,Yini = yini|Xi = xi)

= P(Yi1 = yi1|xi1).P(Yi2 = yi2|yi1,xi2)

... P(Yini = yini|yi1,yi2, ...,yini−1,xini). (5.9)

5.4.1 Likelihood and Log-likelihood Function

The likelihood function can be expressed as

L(β) =
N

∏
i=1

f (yi1|xi1,β1) f (yi2.1|xi2,β2.1)

... f (yni.1,2, ..., ni−1|xini,βni.1,2, ..., ni−1), (5.10)
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where, f (yi1|xi1,β1) is the marginal distribution of yi1 for given Xi1 = xi1

and the conditional probabilities of yi j, given Yi1 = yi1, ...,Yi j−1 = yi j−1, and

Xi j = xi j are f (yi j.1... j−1) = f (yi j|xi j,yi1, ...,yi j−1,β j.1,..., j−1), j = 2,3, ...,ni

and β = (β1,β2.1, ...,βni.12...ni−1). Let li j be the contribution of i jth term to the

log likelihood function. Then the log likelihood is l = ∑
N
i=1 ∑

ni
j=1 li j.

5.4.2 Score Equations and Information Matrix

Differentiating the log-likelihood, l = ∑
N
i=1 ∑

ni
j=1 li j, with respect to correspond-

ing parameters, and equating to zero, the estimating equations are

δ l
δβk

=
N

∑
i=1

ni

∑
j=1

δ li j

δθ j

δθ j

δ µi j
.
δ µi j

δβk
= 0. (5.11)

The estimates of β can be obtained by maximum likelihood method. The vari-

ance of the estimates, V (β̂), is obtained from the inverse of the information

matrix I, where I is a (2ni−1)(p+1)× (2ni−1)(p+1) matrix with kk′th ele-

ments − δ 2l
δβkδβ ′k

;k,k′ = 0,1, ..., p.

Example 1: Proposed MCM2 for Binary Outcome Variables, ni = 2

Let Yi j be a time dependent binary outcome variable for subject i at time j,

i = 1,2, ...,N and j = 1,2. Then the outcome vector for subject i can be defined

as Yi = (Yi1 Yi2)
′ with mean vectorµi =E(Yi) = (E(Yi1) E(Yi2))

′= (µi1 µi2)
′=

(pi1 pi2)
′. Also let Xi j be the p× 1 vector of covariates for subject i at jth

occasion. The canonical parameters θ1 and θ2.1 are the logit link functions,

where

θ1 = g(µi1) = ln
µi1

1−µi1
=Xi1β1

and θ2.1 = g(µi2.1) = ln
µi2.1

1−µi2.1
=Xi2β2.1.
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The joint distribution of Yi1 and Yi2,as defined in equation (5.9) is

P(Yi1 = yi1,Yi2 = yi2|Xi = xi)

= P(Yi1 = yi1|Xi1 = xi1).P(Yi2 = yi2|Yi1 = yi1,Xi2 = xi2).

The marginal probabilities can be defined as

P(Yi1 = 1|Xi1 = xi1) =
exp(xi1β1)

1+ exp(xi1β1)

and P(Yi1 = 0|Xi1 = xi1) =
1

1+ exp(xi1β1)
,

where β1 = (β10,β11, ...,β1p)
′.

The conditional probabilities considering covariate vectorXi j, can be expressed

in terms of logit link functions as

P(Yi2 = 1|Yi1 = 0,Xi2 = xi2) =
exp(xi2β01)

1+ exp(xi2β01)
,

P(Yi2 = 1|Yi1 = 1,Xi2 = xi2) =
exp(xi2β11)

1+ exp(xi2β11)
,

P(Yi2 = 0|Yi1 = 0,Xi2 = xi2) =
1

1+ exp(xi2β00)

and P(Yi2 = 0|Yi1 = 1,Xi2 = xi2) =
1

1+ exp(xi2β01)
,

where β01 = (β010,β011, ...,β01p)
′ denote the vector of the regression parame-

ters of the conditional model with transition from Yi1 = 0 to Yi2 = 1 and β11 =

(β110,β111, ...,β11p)
′ denote the vector of regression parameters of the condi-

tional model with transition from Yi1 = 1 to Yi2 = 1. The joint probabilities are

P(Yi2 = 1|Yi1 = 0,xi2)P(Yi1 = 0|xi1) =
exp(xi2β01)

1+exp(xi2β01)
. 1

1+exp(xi1β1)
,

P(Yi2 = 1|Yi1 = 1,xi2)P(Yi1 = 1|xi1) =
exp(xi2β11)

1+exp(xi2β11)
. exp(xi1β1)

1+exp(xi1β1)
,

P(Yi2 = 0|Yi1 = 0,xi2)P(Yi1 = 0|xi1) =
1

1+exp(xi2β00)
. 1

1+exp(xi1β1)

and P(Yi2 = 0|Yi1 = 1,xi2)P(Yi1 = 1|xi1) =
1

1+exp(xi2β01)
. exp(xi1β1)

1+exp(xi1β1)
.
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Likelihood and Log-likelihood Function

Let us denote, Yi2 = yi00 when Yi1 = 0 and Yi2 = 0, Yi2 = yi01 when Yi1 = 0 and

Yi2 = 1, Yi2 = yi10 when Yi1 = 1 and Yi2 = 0 and Yi2 = yi11 when Yi1 = 1 and

Yi2 = 1. Then the likelihood function for the parameters β can be expressed as

L(β) =
N

∏
i=1

P(Yi1|Xi1 = xi1)P(Yi2|Yi1,Xi2 =Xi2)

=
N

∏
i=1

(
exp(xi1β1)

1+ exp(xi1β1)

)yi1
(

1
1+ exp(xi1β1)

)1−yi1

(
exp(xi2β01)

1+ exp(xi2β01)

)yi01
(

1
1+ exp(xi2β01)

)yi00

(
exp(xi2β11)

1+ exp(xi2β11)

)yi11
(

1
1+ exp(xi2β11)

)yi10

. (5.12)

The log likelihood function takes the following form

l =
N

∑
i=1

[{yi1xi1β1− ln(1+ exp(xi1β1))}

+{yi01xi2β01− (yi00 + yi01)ln(1+ exp(xi2β01))}

+{yi11xi2β11− (yi10 + yi11)ln(1+ exp(xi2β11))}] . (5.13)

Score Equations and Information Matrix

The score equations can be obtained by differentiating the log likelihood func-

tion (5.13) with respect to the respective parameters. The score equations for

the marginal model can be expressed as

δ l
δβ1k

=
N

∑
i=1

xi1k

[
yi1−

exp(xi1β1)

1+ exp(xi1β1)

]
= 0, k = 0,1, ..., p. (5.14)

The score equations for the conditional models can be expressed as

δ l
δβu1k

=
N

∑
i=1

[
xi2kyiu1− (yiu0 + yiu1)

xi2k exp(xi2βu1)

1+ exp(xi2βu1)

]
= 0;

u = 0,1; k = 0,1, ..., p. (5.15)
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Solving the score equations (5.14) and (5.15) iteratively, the estimates of β1k,k=

0,1, ..., p and βu1k, u = 0,1; k = 0,1, ..., p, can be obtained.

Elements of the variance covariance matrix can be obtained from the inverse of

the observed information matrix using the second derivatives

− δ 2l
δβ1kδβ1k′

=
N

∑
i=1

xi1kxi1k′
exp(xi1β1)

[1+ exp(xi1β1)]2
; k = 1,2, ..., p,

and − δ 2l
δβu1kδβu1k′

=
N

∑
i=1

(yiu0 + yiu1)xi2kxi2k′.
exp(xi2βu1)

[1+ exp(xi2βu1)]2
;

k = 1,2, ..., p; u = 0,1. (5.16)

Diagonal elements of the information matrix are obtained when k = k′.

Example 2: Proposed MCM2 for Binary Outcome Variables, ni > 2

Consider possibly correlated Binary outcome variables Yi1, ...,Yini , with proba-

bility of success pi1, p∗i2, ..., p∗ini
, where pi1 is the marginal probability P(Yi j =

1|xi j) p∗i j denotes the conditional probability, P(Yi j = 1|yi1, ...,yi j−1,xi j), j =

2, ...,ni. The marginal distribution of Yi1 is

f (yi1|xi1,β1) = pyi1
i1 (1− pi1)

1−yi1

and the conditional distribution of Yi j given Yi1 = yi1, ...,Yi j−1 = yi j−1 is

f (yi j.12... j−1|xi j,β j.12... j−1) = p∗yi j
i j (1− p∗i j)

1−yi j , j = 2, ...,ni.

We may write,

f (yi1|xi1,θ1,φ1) = pyi1
i1 (1− p1−yi1

i1 )

= exp(yi1lnpi1 +(1− yi1)ln(1− pi1))

= exp(yi1ln
pi1

1− pi1
− (−ln(1− pi1)))

= exp
(
[yi1θ1−b(θ1)]

a(φ1)
+ c(yi1,φ1)

)
,
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where θ1 = ln
pi1

1− pi1
= β10 +β11xi11 + ...+β1pxi1p,

pi1 =
exp(θ1)

1+ exp(θ1)
,

b(θ1) = −ln(1− pi1) = ln(1+ exp(θ1))

a(φ1) = 1,

c(yi1,φ1) = 0,

E(Yi1) = b′(θ1) =
exp(θ1)

1+ exp(θ1)
= pi1,

and V (Yi1) = a(φi1)b′′(θ1) = pi1(1− pi1).

For j = 2, ...,ni−1, the conditional distribution of Yi j is expressed as

f (yi j|Xi j,yi1,yi2, ...,yi j,θ j.1,2,..., j−1,φ j)

= pyi j
i j (1− p1−yi j

i j )

= exp[yi jlnpi j +(1− yi j)ln(1− pi j)]

= exp[yi jln
pi j

1− pi j
− (−ln(1− pi j))]

= exp
yi jθ j.1,2,..., j−1−b(θ j.1,2,..., j−1)

a(φ j)
+ c(y jφ j).

We may define, ∀ j = 2,3, ...,ni,

θ j.1,2,..., j−1 = ln
pi j

1− pi j
,

pi j =
exp(θ j.1,2,..., j)

1+ exp(θ j.1,2,..., j−1)
,

b(θ j.1,2,..., j−1) = −ln(1− pi j)

= ln(1+ exp(θ j.1,2,..., j−1)),

a(φ j) = 1,

and c(yi j,φ j) = 0.

Mean and variance of Yi j, respectively, can be expressed as
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E(Yi j|yi1,yi2, ...,yi j−1) = b′(θ j.1,2,..., j−1) =
exp(θ j.1,2,..., j−1)

1+ exp(θ j.1,2,..., j−1)

and Var(Yi j|yi1,yi2, ...,yi j−1) = a(φ j)b′′(θ j.1,2,..., j−1) = pi j(1− pi j).

Likelihood and Log-likelihood Function

The likelihood function of θ can be expressed as

L(θ) =
N

∏
i=1

f (yi1,yi2, ...,yini|θ1,θ2.1, ...,θni.1,2,...,ni−1,φ1,φ2, ...,φni)

=
N

∏
i=1

f (yi1|Xi1,θ1,φ1)
ni

∏
j=2

f (yi j|Xi j,yi1, ...,yi j−1,θ j.1,2,..., j−1,φ j)

=
N

∏
i=1

exp{yi1ln
pi1

1− pi1
+ yi2ln

p∗i2
1− p∗i2

+ ...+ yiniln
p∗ini

1− p∗ini

}.

(5.17)

The log likelihood function takes the following form

l(θ) =
N

∑
i=1
{yi1θ1−b(θ1)}+

N

∑
i=1

ni

∑
j=2
{yi jθ j.12... j−1−b(θ j.1,2,..., j−1)}

=
N

∑
i=1

[
yi1ln

pi1

1− pi1
+ yi2ln

p∗i2
1− p∗i2

+ ...+ yiniln
p∗ini

1− p∗ini

]
,

(5.18)

where θ is a function of regression parameters β. The estimates of the required

regression parameters can be obtained by ML method from the above likelihood

function. The score equations for β can be obtained by differentiating the log

likelihood with respect to the respective parameters.
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Score Equations and Information Matrix

Differentiating the log-likelihood in equation (5.18) with respect to the respec-

tive parameters and equating to zero, score equations for β are obtained as

δ l
δβk

=
N

∑
i=1

Xi1k(yi1− pi1)+
N

∑
i=1

ni

∑
j=2

Xi jk(yi j− p∗i j), k = 0,1, ..., p. (5.19)

The information matrix Iβ is a (2ni − 1)(p+ 1)× (2ni − 1)(p+ 1) matrix with

elements − δ 2l
δβkδβ ′k

; k,k′ = 0,1, ..., p.

Example of Proposed Model MCM2: Response Variables belong to Exponen-

tial Family with ni = 2

For simplicity, on each of N individuals, consider two possibly correlated out-

come variables (Yi1,Yi2) (i.e. i = 1, ...,N and j = 1,2). Suppose Yi1 and Yi2

given Yi1 = yi1 are known to belong to an exponential family. Then following

equation (5.9), the joint density of the repeated outcomes of the ith subject can

be expressed as

f (yi1,yi2|Xi = xi,θ1,θ2.1,φ1,φ2)

= f (yi1|xi1,θ1,φ1) f (yi2|xi2,yi1,θ2.1,φ2)

= f (yi1) f (yi2.1) (say), (5.20)

where f (yi1) = f (yi1|xi1,θ1,φ1),

f (yi2.1) = f (yi2|xi2,yi1,θ2.1,φ2),

θ1 = g(µ1),

θ2.1 = g(µ2.1),

(µ1 µ2.1)
′ = (E(Yi1) E(Yi2|Yi1 = yi1))

′,

φ1,φ2 = dispersion parameters,

and g = an appropriate link function.

74



Chapter 5 : Proposition of Marginal Conditional Models

The Mean and the Variance of Marginal and Conditional Distributions

If Yi1 belongs to an exponential family with parameters θ1 and φ1, then the

marginal distribution of yi1 can be expressed as

f (yi1) = f (y1|xi1,θ1,φ1) = exp
[{yi1θ1−b(θ1)}

a(φ1)
+ c(yi1,φ1)

]
, (5.21)

where E(Yi1) = b′(θ1),

V (Yi1) = a(φi1)b′′(θ1),

θ1 = g(µi1) = β10 +β11xi11 + ...+β1pxi1p.

Here β10 is the intercept and β11, ...,β1p are the coefficients of the covariates

Xi11, ...,Xi1p respectively.

If Yi2 given Yi1 = yi1 belongs to an exponential family with parameters θ2.1 and

φ2, then the distribution of yi2 given yi1 can be expressed as

f (yi2.1) = f (yi2|xi2,y1,θ2.1,φi2)

= f (yi2.1,θ2.1,φi j)

= exp
[{yi2.1θ2.1−b(θ2.1)}

a(φi2)
+ c(yi2.1,φi2)

]
. (5.22)

We may define,

E(Yi2|Yi1 = yi1) = E(Yi2.1) = b′(θ2.1)

and Var(Yi2|Yi1 = yi1) =Var(Yi2.1) = a(φi2)b′′(θ2.1),

where θ2.1 = g(µi2.1) = β2.10 +β2.11xi21 + ...+β2.1pxi2p.

So the mean and variance of Yi can be shown, respectively, as

E(Yi) = (µi1 µi2.1)
′
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and

V (Yi) =

 a(φi1)V (µi1) 0

0 a(φi2)V (µi2.1)

 .

We may define, θ1 = β10 +β11xi11 + ...+β1pxi1p; and we may denote θ2.1 =

β2.1,0 + β2.1,1xi21 + ...+ β2.1,pxi2p. Clearly β1 is the set of parameters of the

marginal part of the model and β2.1 is the set of parameters of the conditional

part of the model.

Likelihood and Log-likelihood Function

The likelihood function can be expressed as

L =
N

∏
i=1

f (yi1,yi2|θ1,θ2.1,φ1,φ2)

=
N

∏
i=1

f (yi1|Xi1,θ1,φ1) f (yi2.1|Xi2,yi1,θ2.1,φi2)

= exp
N

∑
i=1

[yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)+

yi2θ2.1−b(θ2.1)

a(φ2)
+ c(yi2.1φ2)

]
.

The log likelihood function takes the following form

l(θ) =
N

∑
i=1

[yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)+

yi2.1θ2.1−b(θ2.1)

a(φ2)
+ c(yi2.1φ2)

]
.

(5.23)

Score Equations and Information Matrix

Differentiating the log likelihood function (5.23) with respect to the respective

parameters and equating to zero, we get the score equations. Solution of score

equations gives the estimates of the parameters. The kk′ th elements of the

information matrix is − δ 2l
δβkδβ ′k

.
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Example of Proposed Model MCM2: Outcome Variable belongs to Exponen-

tial Family, ni > 2

If Yi1, Yi2 given Yi1 = yi1, Yi3 given Yi1 = yi1,Yi2 = yi2, ..., Yini = yini given Yi1 =

yi1,Yi2 = yi2, ...,Yini−1 = yini−1 belong to an exponential family, then the joint

density of repeated outcomes for subject i is

f (yi1,yi2, ...,yini|X ,θ1,θ2.1, ...,θni.1,2,...,ni−1,φ1,φ2, ...,φni)

= f (yi1|xi1,θ1,φ1) f (yi2|xi2,yi1,θ2.1,φ2)... f (yini|xni,yi1,

...,yini−1,θni.1,2,...,ni−1,φni)

= f (yi1). f (yi2.1)..... f (yini.1,...,ni−1). (5.24)

Mean and Variance of the Marginal and the Conditional Distributions

The marginal distribution of yi1 is given by

f (yi1) = f (y1|xi1,θ1,φ1) = exp
[{yi1θ1−b(θ1)}

a(φ1)
+ c(yi1,φ1)

]
. (5.25)

E(Yi1) = b′(θ1), Var(Yi1) = a(φi1)b′′(θ1) and and if β10 is the intercept and

β11, ...,β1p are the coefficients of the covariates Xi11, ...,Xi1p respectively, then

θ1 = g(µ1) = β10 +β11xi11 + ...+β1pxi1p .

For j = 2, ...,ni, the conditional distribution of Yi j given Yi1, ...,Yi j−1 can be

expressed as

f (yi j.1,..., j−1)

= f (yi j|xi j,yi1,yi2, ...,yi j−1,θ j.1,2,..., j−1,φi j)

= f (yi j.1,2,..., j−1,θ j.1,..., j−1,φi j)

= exp
(

yi j.1,2,..., j−1θ j.1,2,..., j−1−b(θ j.1,2,..., j−1)

a(φi j)
+ c(yi j.1,2,..., j−1,φi j)

)
.

(5.26)

We may define, ∀ j = 2,3, ...,ni,
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µi j.12... j−1 = E(Yi j|yi1,yi2, ...,yi j−1) = b′(θ j.1,2,..., j−1),

V (Yi j|yi1,yi2, ...,yi j−1) = V (Yi j.1,2,..., j−1) = a(φi j)b′′(θ j.1,2,..., j−1),

where θ j.1,2,..., j−1 = g(µi j.1,2,..., j−1).

Then V (Yi) can be expressed as

V (Yi) = a


φi1V (µi1) 0 ... 0

0 φi2V (µi2.1) ... 0

... ... ... ...

0 0 ... φiniV (µini.1,2,...,ni−1)

 .

Likelihood and Log-likelihood Function

The likelihood function can be expressed as

L(β) =
N

∏
i=1

f (yi1,yi2, ...,yini|θ1,θ2.1, ...,θni.1,2,...,ni−1,φ1,φ2, ...,φni)

=
N

∏
i=1

f (yi1|Xi1,θ1,φ1)
ni

∏
j=2

f (y j.1,2,..., j−1|Xi,θ j|1,2,..., j−1,φini)

= exp
N

∑
i=1

[
yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)

+
ni

∑
j=2

(
yi j.1,2,..., j−1θ j.1,2,..., j−1−b(θ j.1,..., j−1)

a(φ j)
+ c(yi j.1,..., j−1φ j)

)]
.

The log likelihood function takes the following form

l(θ) =
N

∑
i=1

[yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)+

yi2θ2.1−b(θ2.1)

a(φ2)
+ c(yi2.1φ2)...

+
yini.1,...,ni−1θni.1,...,ni−1−b(θni.1,...,ni−1)

a(φni)
+ c(yini.1,...,ni−1φni)

]
.

(5.27)
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Score Equations and Information Matrix

The score equations are obtained by differentiating the log likelihood equation

with respect to the respective parameters. Differentiating the score equations

with respect to the parameters give the information matrix.

5.4.3 Tests for the Proposed Model MCM2

The test for the significance of the proposed model MCM2 is straightforward

using a likelihood ratio test. The individual parameters can be tested using Wald

test.

Test for Overall Model

To test the significance of the overall model, the null and alternative hypothesis

can be expressed as
H0 : β = β0 vs H1 : β 6= β0,

where β = (β1,β2.1, ...,βni.1,2,...ni−1) and β0 is the value of β under null hy-

pothesis of no covariate effect. The test statistic,

Λ =−2[lnL(β0)− lnL(β)],

has a chi-square distribution under H0 with (2n−1)p d.f. where n=max(ni), i=

1, ...,N. Here lnL(β) is the log likelihood of the full model and lnL(β0) is the

log likelihood of the reduced model for no covariate effects, i.e. the value of

lnL(β) under H0.

For example, for Bernoulli outcome variables with ni = 2, the hypotheses for

the overall model are

H0 : β∗ = (β∗1,β
∗
01,β

∗
11) = 0, vs. H1 : β∗ 6= 0.
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Here β∗1 = (β11,β12, ...,β1p),

β∗01 = (β011,β012, ...,β01p), and

β∗11 = (β111,β112, ...,β11p).

Then the quantity, −2 [lnL(β10,β010,β110)− lnL(β1,β01,β11)] , can be shown

to be asymptotically distributed as χ2 with 3p degrees of freedom.

Test for Individual Parameters

For testing individual parameter in the marginal model, Wald test can be used

for the following hypothesis

H0 : β1k = 0 vs. H1 : β1k 6= 0.

The Wald test statistic for the marginal model is W = β̂1k
ŝe(β1k)

.

For testing parameter in the conditional models, the null and the alternative

hypotheses can be defined as

H0 : βu1k = 0 vs. H1 : βu1k 6= 0, u = 0,1 .

The Wald test statistic for the marginal model is W = β̂u1k
ŝe(βu1k)

.

Tests for Dependence among Repeated Outcomes

From the Bivariate Bernoulli Distribution described in section 5.4.2, equality of

conditional models hold if β01 = β11. If β01 6= β11, indicates dependence of Yi2

on Yi1. The odds ratio is

OR =

P11(xi2)
1−P11(xi2)

P01(xi)
1−P01(xi)

=
exp(xi2β11)

exp(xi2β01)
= exp{xi2(β11−β01)}. (5.28)

Islam et al. [40] showed that testing for H0 : β01 = β11 is equivalent to test

for the association OR = 1 and ln(OR) = 0 where both indicate independence

of the two binary outcomes in the presence of covariates. Any departure from

OR= 1 will measure the extent of dependence, where OR greater than 1 implies

a positive association and OR < 1, a negative association.
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For testing the null hypothesis H0 : β01 = β11, the following test statistics can

be used as suggested by Islam et al. [40]

χ
2 = (β̂01− β̂11)

′[ ˆVar(β̂01− β̂11)]
−1(β̂01− β̂11), (5.29)

which is distributed asymptotically as chi-square with p degrees of freedom.

Another alternative test can be performed from the relationship between the

conditional and marginal probabilities for the outcome variable, Yi2. The null

and the alternative hypotheses are

H01 : β01 = β2 and H02 : β11 = β2.

The test statistics are, as suggested by Islam et al. [40]

χ
2
1 = (β̂01− β̂2)

′[V̂ (β̂01− β̂2)]
−1(β̂01− β̂2) (5.30)

and χ
2
2 = (β̂11− β̂2)

′[V̂ (β̂11− β̂2)]
−1(β̂11− β̂2). (5.31)

It is noteworthy to mention again that Darlington and Farewell [16] proposed a

transition probability model based on the following logit functions with marginal

specification
P(Yi2 = 1|Yi1 = 1,xi) =

exp(xiβ11)

1+ exp(xiβ11)

and P(Yi2 = 1|xi) =
exp{xiβ}

1+ exp(xiβ)
.

The Darlington and Farewell [16]’s method did not consider the transition prob-

ability, transition from Yi1 = 0 to Yi2 = 1, in their model and noted that due to

asymmetry this may not be suitable for all applications. The measure of corre-

lation proposed by Darlington and Farewell [16] is

ρi = corr(Yi1,Yi2|xi) =
exp(β11xi)− exp(βxi)

1+ exp(β11xi)
,

which can be tested by the corresponding chi-square test shown in the alterna-

tive tests as shown in 5.31. However, it is necessary for the independence that

all the alternative tests (5.30 and 5.31) should be performed. This test can be
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simply extended for more than two follow ups.

The major limitation of the proposed joint model based on Markov transition

probability in equation (5.9) is the rapid increase in the number of parameters

for increasing number of follow-ups. With ni follow-ups, the number of param-

eters to be estimated is as big as (2ni−1)(p+1) where p+1 is the number of

covariates.

5.5 Proposed Model 3: A Marginal Conditional Model using Extended

Regressive Approach

For Binary outcome variables, the number of parameters of the joint model with

two follow-ups is 3×(p+1). The number of parameters of the joint model with

three follow-ups for binary outcome variables is 7× (p+ 1). This, inevitably,

shows that when the number of follow-ups increases, the number of parameters

in the proposed joint model increases rapidly.

So we propose an alternative using a regressive model approach [7] for such

cases where there are more than two follow-ups as an alternative to marginal

approach in order to analyze repeated measures data.

The generalized form of the regressive model was proposed by Islam et al. [42].

For Bivariate data, Islam et al. [42] generalized the works of Bonney [7, 8], and

Islam and Chowdhury [35] to include both binary outcomes in previous times as

well as covariates in the conditional models. We denote this model as marginal

conditional model 3 (MCM3).

5.5.1 Framework of the Regressive Model

Consider ni possibly correlated outcome variables (Yi1,Yi2, ...,Yini) on ith indi-

vidual (i = 1, ...,N and j = 1,2, ...,ni). Considering the regression model for

the conditional probabilities as proposed by Bonney [7], the canonical parame-
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ter for Yi j, j = 2, ...,ni, can be defined as

θ j.1,2,..., j−1 = g(µi j.1,2,..., j−1)

= β0 +β1xi j1 + ...+βpxi jp + γ1Yi1 + ...+ γ j−1Yi j−1,

where β0 is the intercept, β1,β2, ...,βp are the coefficients of the covariates,

Xi j1,Xi j2, ...,Xi j1, respectively and γ1,γ2, ...,γ j−1 are the coefficients of the pre-

vious outcomes Yi1,Yi2, ...,Yi j−1, respectively.

Following mostly the notations of Islam et al. [42], let us define

λ′j = (β′,γ ′j−1,ρ
′
j−1,η

′
j−1), and

W ′
j = (X ′i j,Y

′
j−1,ν

′
j−1,Z

′
j−1),

where

Xi j = (1,Xi j1,Xi j2, ...,Xi jp),

Y j−1 = (Yi1, ...,Yi j−1)
′,

ν j−1 = (ν12,ν123, ...,ν12... j−1)
′, interaction terms among Yi js

= (yi1yi2,yi1yi2yi3, ...,yi1yi2...yi j−1)
′; , j = 1, ...,ni,

Z j−1 = (z11, ...,z1p, ...,z j−11, ...,z j−1p)
′

= interaction terms amongXi j and Yi

= (xi1yi1, ...,xipyi1, ...,xi1yi j−1, ...,xipyi j−1)
′,

β′ = (β0,β1, ...,βp) are the coefficients ofXi j,

γ ′j−1 = (γ1, ...,γ j−1),

the parameters corresponding to Yi1, ...,Yi j−1,

ρ′j−1 = (ρ12,ρ13, ...,ρ123, ...,ρ12... j−1),

the (2 j− j−1)×1 vector of coefficients of ν j−1,

and η′j−1 = (η11, ...,η1p, ...,η j−11, ...η j−1p),

= vector of parameters corresponding toZ j−1.
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The regressive model for the jth follow-up is defined as

P(Yi j = s|w j−1) =
exp{λ′jw js}

1+ exp{λ′jw j−1}
; s = 0,1, j = 2, ...,ni. (5.32)

While considering possible interactions among Xi and Yi as well as among

repeated outcomes on Yi, the full parametric form of the model be can be ex-

pressed as [42]

P(Yi j = s|yi j−1,xi j,ν j−1,z) j−1

=
exp{(β′xi j +γ j−1y j−1 +ρ j−1v j−1 +η

′
j−1z)s}

1+ exp{(β ′xi j +γ ′j−1y j−1 +ρ j−1v j−1 +η
′
j−1z j−1)}

; s = 0,1.

(5.33)

Considering the full regressive model for the conditional probabilities, for j =

2, ...,ni, the canonical parameter can be defined as

θ j.1,2,..., j−1 = g(µi j.1,2,..., j−1) = (β ′xi j +γ
′
j−1y j−1 +ρ j−1v j−1 +η

′
j−1z j−1).

5.5.2 Likelihood and Log-likelihood Functions

The likelihood function can be expressed as before

L =
N

∏
i=1

f (yi1,yi2, ...,yini|θ1,θ2.1, ...,θni.1,2,...,ni−1,φ1,φ2, ...,φni)

=
N

∏
i=1

f (yi1|Xi1,θ1,φ1) f (yi2.1|Xi2,yi1,θ2.1,φi2)...

f (yni.1,2,...,ni−1|Xi,yi1,yi2, ...,yini−1,θni.1,2,...,ni−1,φini). (5.34)
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For example, for outcomes from exponential family, the likelihood function can

be expressed as

L = exp
N

∑
i=1

[
yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)+

yi2θ2.1−b(θ2.1)

a(φ2)
+ ...

+
yini.1,2,...,ni−1θni.1,2,...,ni−1−b(θni.1,2,...,ni−1)

a(φni)
+ c(yini.1,2,...,ni−1φni)

]
.

(5.35)

The log likelihood function takes the following form

l(θ) =
N

∑
i=1

[yi1θ1−b(θ1)

a(φ1)
+ c(yi1φ1)+

yi2θ2.1−b(θ2.1)

a(φ2)
+ ...

+
yini.1,...,ni−1θni.1,...,ni−1−b(θni.1,...,ni−1)

a(φni)
+ c(yini.1,...,ni−1φni)

]
.

(5.36)

The parameters can be estimated by using ML method.

5.5.3 Score Equations and Information Matrix

Differentiating the log-likelihood function with respect to the corresponding

parameters and using the Chain rule, we obtain the score equations. For exam-

ple, for outcome variables from exponential family, (assuming no interaction

terms, i.e. λ′j−1 = (β,γ j−1)) the score equations and information matrix can

be obtained as follow

δ l
δβk

=
N

∑
i=1

ni

∑
j=1

(
yi j−b′(θ j)

a(φi j).V (µi j)
.xi jk

)
= 0; k = 0,1, ..., p. (5.37)

δ l
δγs

=
N

∑
i=1

ni

∑
j=1

(
yi j−b′(θ j)

a(φi j).V (µi j)
.yis

)
= 0; s = 1, ..., j−1. (5.38)

The information matrix can be expressed as
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I =

 I1 0

0 I2

 ,

where I1 is a (p+1)× (p+1) matrix with elements, I1 =− δ 2l
δβkδβ ′k

.

− δ 2l
δβkδβ ′k

=
N

∑
i=1

3

∑
j=1

Xi jkXi jk′a(φ j)b′′(θ j), k = 0,1, ..., p. (5.39)

The diagonal elements of I1 are obtained when k = k′.

Similarly, I2 is a (ni−1)× (ni−1) matrix with elements I2 = − δ 2l
δγsδγs′

, s,s′ =

1,2, ...,ni−1 where

− δ 2l
δγsδγ ′s

=
N

∑
i=1

ni

∑
j=s+1

YisYis′a(φ j)b′′(θ j). (5.40)

The diagonal elements of I2 are obtained when s = s′.

5.5.4 Test for the Proposed Regressive Model MCM3

To test the independence of the repeated outcomes, the hypotheses to be tested

are H0 :λ∗j−1 = 0 against H1 :λ∗j−1 6= 0 for model (5.33) where λ j−1 is the vec-

tor of parameters of the model with covariate effects and all interaction effects

and λ ∗j−1 = (γ j−1,ρ j−1,η j−1) is the vector of parameters need to be tested. The

total number of parameters need to be tested is j− 1 for γ j−1, 2 j− j− 1 for

ρ j−1 and ( j−1)× p for η j−1. This test can be performed using the likelihood

ratio test and the test statistic follows chi-square with j−1+2 j− j−1+( j−

1)× p = 2 j−2+( j−1)× p degrees of freedom.

Test of Dependence among Repeated Outcomes

γ is the vector of parameters associated with the outcome variables at earlier

time points Y j−1 such that, H0 : γ = 0 indicates a lack of dependence among

Yi js. However, in several instances,the regressive model (5.33) may fail to rec-
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ognize the true nature of relationship between Yi j’s in the presence of covariates

Xi j1,Xi j2, ...,Xi jp in the model due to the fact that dependence among Yi js de-

pends on the dependence between the outcome variables and the covariates as

well [16]. However, if interested, one may use the tests, (5.29) or (5.30) and

(5.31) or their extensions to take care of this problem.

5.6 Conclusion

In this chapter, we proposed three joint models based on a marginal conditional

approach, MCM1, MCM2 and MCM3, as alternatives to GEE or related models

based on marginal approaches. The proposed models take care of the correla-

tion among the repeated measures in a built-in nature and can be extended for

any order of dependence without complicating the theory. The proposed model

1 (MCM1) is an extension of Darlington and Farewell [16] that shows the likeli-

hood for models based on Markovian assumption of first order more explicitly.

The second model MCM2 (proposed model 2) is a further generalization based

on marginal and conditional models for any order of a Markov chain with co-

variate dependence. For more than three repeated responses, MCM2, the pro-

posed model 2, has restricted use due to overwhelming increase in the number

of models and parameters to be estimated. At this backdrop, a further extension

is considered by including previous outcomes as covariates. This model is de-

noted as proposed model 3 or MCM3. The number of parameters in MCM3 can

be kept as minimum as possible for any order of the underlying Markov Chain.

Hence for practical reasons, the proposed model 3 can be used to analyze lon-

gitudinal data effectively and conveniently when number of repeated measures

is large. In the next chapter, we present the results of the simulation studies

performed to check the competence of the proposed models in terms of bias

and coverage probability of the estimates and to compare the proposed models

with GEE and ALR with an application of the models to a real life data.
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Chapter 6

A Comparison of Proposed Models,

GEE and ALR

6.1 Introduction

We proposed three joint models in Chapter 5 for the outcome variables of a

longitudinal data. The joint models (proposed models 1, 2 and 3 or MCM1,

MCM2 and MCM3) shown in Chapter 5 take care of the correlation among

the repeated measures in a built in nature and can be extended for any order

of dependence without complicating the theory. The proposed model 1 is an

extension of Darlington and Farewell [16] that shows the likelihood for mod-

els based on Markovian assumption of first order more explicitly. The second

model (proposed model 2) is a further generalization based on marginal and

conditional models for any order of a Markov chain with covariate dependence.

For more than three repeated responses, the proposed model 2 has restricted
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use due to overwhelming increase in the number of models and parameters to

be estimated. At this backdrop, a joint model is considered which is based on a

regressive approach and includes previous outcomes as covariates. This model

is denoted as proposed model 3. The number of parameters in the proposed

model 3 can be kept as minimum as possible for any order of the underlying

Markov Chain. In this chapter we discuss the performance of the parameters of

the proposed joint (marginal-conditional) models (5.6), (5.9), when ni = 2 and

(5.32) when ni > 3. The estimates of the proposed models are compared with

the estimates of GEE and ALR in terms of bias and coverage probability of the

estimates. We start with the data generation steps in the next section and the

results and findings followed by an application to HRS Data in the following

sections.

6.2 Generation of Data

A simulation study was carried out to compare the properties of estimates of

regression coefficients of the models discussed in the earlier sections. The re-

peated measures can be associated in a variety of ways and in this study, the

cases considered are (i) Yi j’s are identically and independently distributed, (ii)

Yi j’s are identically distributed and associated (iii) Yi j’s are not identical and

their distributions are independent. For simplicity of the study, we restrict the

simulation study for the conditional marginal model to two follow ups, Yi1 and

Yi2 on ith subject and only one explanatory variable, Xi1 for each of the N in-

dividuals where Xi1 is fixed and time invariant. We assumed that Yi1 and Yi2

are two binary random variables with Yi1 ∼ B(1, pi1) and Yi2 ∼ B(1, pi2). The

corresponding GLMs are

g(µi1) =
exp(Xi1β1)

1+ exp(Xi1β1)
and g(µi2) =

exp(Xi2β2)

1+ exp(Xi2β2)
.

The simulation followed the following steps
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• Data generation

– Step I: An explanatory variable Xi1 was generated first from Bernoulli

distribution with probability of success 0.5.

– Step II: The probability of success for the outcome variable in the

first follow-up, pi1 was calculated using the equation

P(Yi1 = 1|Xi1 = xi1)+
exp(xi1β1)

1+ exp(xi1β1)

where β1 = (β10,β11).

– Step III: N values, ai, were generated from uniform distribution within

range (0,1) and then the outcome variable at first time point, Yi1 was

generated such that Yi1 = 1 if ai <P(Yi1 = 1|Xi1) and 0 otherwise. i.e.

Data on Yi1, the outcome variable at first time point, was generated

such that Yi1 = 1 if runi f (N,0,1)< P(Yi1 = 1|Xi1) and 0 otherwise.

– Step IV: To generate data on Yi2, the value of the outcome variable at

time point 2, first, the probability of success at time point 2, pi2 was

calculated as

P(Yi2 = 1|Xi1 = xi1) =
exp(xi2β2)

1+ exp(xi2β2)

where β2 = (β20,β21,γ1), β20 is the intercept term, β21 is the coeffi-

cient of Xi2 and γ1 is the coefficient of Yi1.

– Step V: Similar as step III, N values, bi, were generated from uni-

form distribution within range (0,1) and then the outcome variable at

second time point, Yi2 was generated such that Yi2 = 1 if bi < P(Yi2 =

1|Xi2 = xi2) and 0 otherwise.

– The cases considered are as follow

∗ Yi1 and Yi2 are independent and their distributions are identi-

cal, i.e β10 = β20, β11 = β21 and γ1 = 0.
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∗ Yi1 and Yi2 are not independent and their distributions are iden-

tical, i.e β10 = β20, β11 = β21 and γ1 6= 0.

∗ Yi1 and Yi2 are independent and their distributions are not iden-

tical, i.e β10 6= β20, β11 6= β21 and γ1 = 0.

∗ Yi1 and Yi2 are not independent and their distributions are not

identical, i.e β10 6= β20, β11 6= β21 and γ1 6= 0.

• For illustration of the regressive model, Yi1, Yi2, Yi3 and Yi4 were gener-

ated in a similar way as Yi1 with β1 = (β0,β1)
′, β2 = (β0,β1,γ1)

′, β3 =

(β0,β1,γ1,γ2)
′ and β4 = (β0,β1,γ1,γ2,γ3)

′, respectively. The cases con-

sidered are as follow

– Yi1, Yi2, Yi3 and Yi4 are independent and their distributions are iden-

tical, i.e β10 = β20 = β30 = β40 = β0, and β11 = β21=β31 = β41 = β1

and (γ1,γ2,γ3) = (0,0,0).

– Yi1 and Yi2 are not independent and their distributions are identi-

cal, i.e β10 = β20 = β30 = β40 = β0, and β11 = β21=β31 = β41 = β1

and (γ1,γ2,γ3) = (1,1,1).

• The bias, mean squared error and coverage probability of the 95% con-

fidence interval were constructed over a range of scenarios for varying

correlation among the responses.

• The sample size was 500 and number of samples was 1000 to construct

each of the tables in the next section.

6.3 Results of the Simulation Study

The findings of the simulation study (estimates, bias, standard error and cover-

age probability) are summarized in Table 6.1 to Table 6.3. In all these tables,

GEE(In), GEE(Ex), GEE(AR) and ALR(Ex) stand for GEE models under in-
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dependent, exchangeable and autoregressive correlation, and ALR model under

exchangeable correlation, respectively. The parameters of the joint model are

β10, β11, β010, β011, β110 and β111. Here, β10 and β11, respectively, denote the

intercept and the regression coefficient of the marginal model P(Yi1 = 1|Xi =

xi); β010 and β011, respectively, denote the intercept and the regression coeffi-

cient of the conditional model P(Yi2 = 1|Yi1 = 0,Xi = xi); and β110 and β111,

respectively, denote the intercept and regression coefficient of the conditional

model P(Yi2 = 1|Yi1 = 1,Xi = xi). GEE or ALR, being approaches based on

marginal models, estimate the parameters of such models as average of the

parameters of two populations from where Yi1 and Yi2 were generated, and to

distinguish the parameters of GEE and ALR from joint model, we used the no-

tation β∗ = (β ∗0 ,β
∗
1 )
′ to denote the parameters of GEE and ALR. In Table 6.1,

P(Yi1 = 1|Xi = xi) =
exp(β10 +β11xi)

1+ exp(β10 +β11xi11)
=

exp(0.5+0.2xi11)

1+ exp(0.5+0.2xi11)

and P(Yi2 = 1|Yi1 = yi1,Xi = xi) =
exp(β20 +β21xi21 + γ1yi1)

1+ exp(β20 +β21xi21 + γ1yi1)
,

where, β20 and β21, respectively, denote the intercept and regression coefficients

of the marginal model P(Yi2 = 1|Xi = xi); So if γ1 = 0, the true values of

the parameters to be estimated for the joint model are β10 = 0.5, β11 = 0.2,

β010 = β20+γ1× (yi1 = 0) = 0.5+0×0 = 0.5 = β20, β011 = β21 = 0.2, β110 =

β20+γ1×(yi1 = 1) = 0.5+0×1 = 0.5 and β111 = β21 = 0.2. When γ1 = 1, the

true values of the parameters to be estimated for the joint model are β10 = 0.5,

β11 = 0.2, β010 = β20 + γ1× (yi1 = 0) = 0.5+ 1× 0 = 0.5, β011 = β21 = 0.2,

β110 = β20 + γ1× (yi1 = 1) = 0.5+1×1 = 1.5 and β111 = β21 = 0.2.

Table 6.1 shows that bias and the standard error of estimates of the proposed

Model 1 (extension of Darlington and Farewell [16]), Proposed Model 2, GEE

and ALR are competitive for longitudinal data when the repeated measures are

independent (γ1 = 0.0).

92



C
h
ap
ter

6
:
A

C
om

p
arison

of
M
argin

al
C
on

d
ition

al
M
o
d
els,

G
E
E
an
d
A
L
R

Table 6.1: Parameters (Par), estimates(Est), bias, standard error(SE) and coverage probability(CP) of estimates for independent (γ1 = 0.0) and
correlated outcomes (γ1 = 1.0) with identical distributions of Yi1 and Yi2, (No. of Simulation = 1000, N = 500, β1 = (β10,β11) = (0.5,0.2),
β2 = (β20,β21) = (0.5,0.2))

γ1 = 0 γ1 = 1
Par Est Bias SE CP Par Est Bias SE CP

Model 1 β ∗0 =0.5 0.5037 -0.0037 0.1456 0.9510 β ∗0 =0.5 0.7756 -0.2756 0.1520 0.5670
β ∗1 =0.2 0.2054 -0.0030 0.2102 0.9570 β ∗1 =0.2 0.2181 -0.0030 0.2212 0.9370
β010=0.5 0.5013 -0.0013 0.3420 0.9660 β010=0.5 0.5013 -0.0013 0.3420 0.9660
β011=0.2 0.2046 -0.0046 0.5138 0.9500 β011=0.2 0.2046 -0.0046 0.5138 0.9500
β110=0.5 0.5079 -0.0079 0.2628 0.9530 β110=1.5 1.5365 -0.0365 0.3357 0.9640
β111=0.2 0.2169 -0.0169 0.3733 0.9550 β111=0.2 0.2228 -0.0228 0.4896 0.9630

Model 2 β10=0.5 0.5127 -0.0127 0.2066 0.9580 β10=0.5 0.5127 -0.0127 0.2066 0.9580
β11=0.2 0.2030 -0.0030 0.2985 0.9550 β11=0.2 0.2030 -0.0030 0.2985 0.9550
β20=0.5 0.4997 0.0003 0.2064 0.9510 β010=0.5 0.5013 -0.0013 0.3420 0.9660
β21=0.2 0.2109 -0.0109 0.2982 0.9460 β011=0.2 0.2046 -0.0046 0.5138 0.9500

β110=1.5 1.5365 -0.0365 0.3357 0.9640
β111=0.2 0.2228 -0.0228 0.4896 0.9630

GEE(In) β ∗0 =0.5 0.5037 -0.0037 0.1453 0.9470 β ∗0 =0.5 0.7756 -0.2756 0.1659 0.6400
β ∗1 =0.5 0.2054 -0.0054 0.2101 0.9510 β ∗1 =0.2 0.2181 -0.0181 0.2409 0.9520

GEE(Ex) β ∗0 =0.5 0.5037 -0.0037 0.1453 0.9470 β ∗0 =0.5 0.7756 -0.2756 0.1659 0.6400
β ∗1 =0.5 0.2054 -0.0054 0.2101 0.9510 β ∗1 =0.2 0.2181 -0.0181 0.2409 0.9520

ALR(Ex) β ∗0 =0.5 0.5037 -0.0037 0.1453 0.9470 β ∗0 =0.5 0.7756 -0.2756 0.1659 0.6400
β ∗1 =0.5 0.2054 -0.0054 0.2101 0.9510 β ∗1 =0.2 0.2181 -0.0181 0.2409 0.9520
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Table 6.2: Estimates(Est), bias, standard error(SE) and coverage probability(CP) of estimates for independent outcomes with non-identical
distributions, (No. of Simulation = 1000, N = 500, β1 = (β10,β11) = (0.5,0.2), β2 = (β20,β21,γ1) = (0.2,0.7,0.0)).

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Model 1 β ∗0 0.3522 0.1478 -0.1522 0.1433 0.8070 0.8040
β ∗1 0.4566 -0.2566 0.2434 0.2107 0.7720 0.7830
β010 0.1960 0.0040 0.3330 0.9590
β011 0.7231 -0.0231 0.5210 0.9570
β110 0.2047 -0.0047 0.2556 0.9640
β111 0.7248 -0.0248 0.3763 0.9530

Model 2 β10 0.5127 -0.0127 0.2066 0.9580
β11 0.2030 -0.0030 0.2985 0.9550
β20 0.1992 0.0008 0.2010 0.9520
β21 0.7157 -0.0157 0.3010 0.9520

GEE(In) β ∗0 0.3522 0.1478 -0.1522 0.1426 0.818 0.828
β ∗1 0.4566 -0.2566 0.2434 0.2101 0.763 0.780

GEE(Ex) β ∗0 0.3522 0.1478 -0.1522 0.1426 0.818 0.828
β ∗1 0.4566 -0.2566 0.2434 0.2101 0.763 0.780

ALR(Ex) β ∗0 0.3522 0.1478 -0.1522 0.1426 0.818 0.828
β ∗1 0.4566 -0.2566 0.2434 0.2101 0.763 0.780
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Inadequacy of GEE or ALR to portray the relationship between X and Y are

visible with the presence of dependence relationship between Yi1 and Yi2 as

shown in last 5 columns of Table 6.1 where the data were generated from two

associated populations (γ1 = 1.0). The marginal parameters in the Model 1 pro-

posed as an extension of Darlington and Farewell [16] does not make much

improvement in the performance of the parameters in terms of bias and stan-

dard error. The proposed joint model 2 (Model 2) gives better estimates than

other models in this case.

The inadequacy of GEE or ALR to portray the relationship between Xi and

Yi are also observed in Table 6.2 where the data are generated from two inde-

pendent but nonidentical populations. The estimates of parameters of GEE are

not portraying the actual relationship between the covariates and the response

variable because the relationship between Xi and Yi are different at different

time points. And the actual bias from population 1 (from where Yi1 were gen-

erated) and population 2 (from where Yi2 were generated) are shown in Table

6.2. Clearly, even if the repeated measures are not associated, while data come

from two different populations, the GEE or ALR or other marginal models are

not adequate to capture the relationship between the covariates and the response

variable.

While there are three or more than three repeated measurements on same sub-

ject, the covariate dependent Markov Chain based joint models need to estimate

too many parameters and we proposed the Model 3, a general form of the re-

gressive model approach [42], as an alternative of GEE based approaches. The

results of the simulation study (Table 6.3) show that when the outcomes are

independent and identically distributed, the estimates of the parameters of a re-

gressive model produce similar results as GEE or ALR in terms of bias and

coverage probability. The regressive model performs better while the repeated

responses are associated and GEE or ALR fails to portray the scenario.

95



C
h
ap
ter

6
:
A

C
om

p
arison

of
M
argin

al
C
on

d
ition

al
M
o
d
els,

G
E
E
an
d
A
L
R

Table 6.3: Parameters(Par), Estimates(Est), Bias, standard error(SE) and coverage probability(CP) of estimates of different models for indepen-
dent and associated distribution (No. of Simulation = 1000, N = 500, β10 = β20 = β30 = β40 = β0 = 0.2, β11 = β21 = β31 = β41 = β1 = 0.7,
(γ1,γ2,γ3) = (0,0,0) and (1,1,1)).

(γ1,γ2,γ3) = (0,0,0) (γ1,γ2,γ3) = (1,1,1)
Methods Par Est Bias SE CP Par Est Bias SE CP

β ∗0 =0.2 0.208 -0.008 0.226 0.946 β ∗0 =0.2 0.252 -0.052 0.316 0.952
β ∗1 =0.7 0.698 0.002 0.199 0.953 β ∗1 =0.7 0.748 -0.048 0.397 0.944

Model 3 γ1=0.0 -0.012 0.012 0.197 0.940 γ1=1.0 1.010 -0.010 0.370 0.942
γ2=0.0 -0.001 0.001 0.197 0.942 γ2=1.0 0.987 0.013 0.352 0.949
γ3=0.0 0.003 -0.003 0.197 0.945 γ3=1.0 1.001 -0.001 0.366 0.950

GEE β ∗0 =0.2 0.201 -0.001 0.062 0.950 β ∗0 =0.2 0.927 -0.727 0.085 0.000
(In) β ∗1 =0.7 0.695 0.005 0.095 0.950 β ∗1 =0.7 0.799 -0.099 0.136 0.889
GEE β0=0.2 0.201 -0.001 0.062 0.950 β ∗0 =0.2 0.927 -0.727 0.085 0.000
(Ex) β ∗1 =0.7 0.695 0.005 0.095 0.950 β ∗1 =0.7 0.799 -0.099 0.136 0.889
GEE β ∗0 =0.2 0.201 -0.001 0.062 0.948 β ∗0 =0.2 0.921 -0.721 0.085 0.000
(AR) β ∗1 =0.7 0.695 0.005 0.095 0.951 β ∗1 =0.7 0.788 -0.088 0.136 0.902
ALR β ∗0 =0.2 0.201 -0.001 0.062 0.950 β ∗0 =0.2 0.927 -0.727 0.085 0.000
(Ex) β ∗1 =0.7 0.695 0.005 0.095 0.950 β ∗1 =0.7 0.799 -0.099 0.136 0.889
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Indubitably, GEE and ALR performed well only when repeated measures come

from identical population and are not associated. The simulation study also

finds that basically there is no difference in the estimates of GEE under differ-

ent correlation structures (Table 6.1 to Table 6.3). Also ALR does not show any

noticeable difference from GEE estimates in most cases. The proposed model

2 produces better estimates in terms of bias and coverage probability than GEE

or ALR in the cases when responses are associated or the responses at differ-

ent time points has different distributions. Proposed Model 3 is suggested for

longitudinal data with more than 3 follow ups on same individual.

6.4 Application to HRS Data

The first three waves of the longitudinal data from the Health and Retirement

Study (HRS) conducted by the University of Michigan [73] were used for com-

parison of the selected methods. The study started in 1992 on American indi-

viduals over the age of 50 years and their spouses and the subjects are observed

every two years. In wave 1, the sample size was 9760 and the sample size was

reduced to 9750 due to dropping of 10 cases with missing values of outcome

variable at round 1. Finally the number of individuals were 8657 who reported

that they were not hospitalized at wave 1. The panel data from the waves for

1992, 1994 and 1996 have been used in this study. Elderly population may

suffer from repeated spells of depression which may change over time [20, 37]

and result in other health problems and chronic illness [45]. The literature on

depression among elderly helped filling many gaps in our understanding of the

factors associated with depression and also the outcome of depression [6]. But

understanding depression and its associated factors more explicitly is impor-

tant. In many studies on clinical and non-clinical populations, CESD (Center

for Epidemiologic Studies Depression) scale is employed to measure depres-

sive symptoms [69].
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The dependent variable for this study is Depression status with outcomes no de-

pression (CESD score = 0) and depression (CESD score > 0). The indepen-

dent variables are gender (male=1), marital status (married/partnered=1), ed-

ucation, ethnicity Black (Black=1), ethnicity White (White=1), drinking habit

(drink=1) and number of health conditions. In Table 6.4 and Table 6.5, Mstat

stands for marital status, White stands for white ethnicity, Black stands for

Black ethnicity, Drink means drinking habit and No. of Cond. is the num-

ber of health conditions.

Table 6.4: Estimates of parameters of GEE and ALR on HRS Data

GEE(In) GEE(Ex)
Est SE p-value Est SE p-value

Intercept 2.023 0.206 0.000 2.023 0.206 0.000
Gender -0.059 0.059 0.321 -0.059 0.059 0.321
Mstat -0.621 0.065 0.000 -0.621 0.065 0.000
Education -0.153 0.010 0.000 -0.153 0.010 0.000
White -0.363 0.166 0.029 -0.363 0.166 0.029
Black -0.085 0.177 0.629 -0.085 0.177 0.629
Drink -0.091 0.055 0.097 -0.091 0.055 0.097
No. of Cond. 0.389 0.024 0.000 0.389 0.024 0.000

GEE(AR) ALR(Ex)
Est SE p-value Est SE p-value

Intercept 1.944 0.206 0.000 2.019 0.192 0.000
Gender -0.056 0.060 0.351 -0.059 0.057 0.153
Mstat -0.613 0.065 0.000 -0.624 0.063 0.000
Education -0.151 0.010 0.000 -0.153 0.010 0.000
White -0.338 0.166 0.042 -0.366 0.153 0.008
Black -0.067 0.177 0.706 -0.085 0.163 0.301
Drink -0.082 0.055 0.135 -0.091 0.053 0.045
No. of Cond. 0.391 0.024 0.000 0.391 0.023 0.000

In GEE models, we observe that marital status, education year, ethnicity White

and number of health conditions are significantly associated with depression.

The GEE model under the assumption of independence and exchangeable cor-

relation produces the same results and finds that marital status, education, White

ethnicity and number of health conditions have significant influence on depres-
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sion. ALR under exchangeable correlation, in addition, finds drinking habit as

a significant factor for depression. GEE model under the assumption of autore-

gressive correlation shows that marital status, education, white ethnicity and

number of health conditions are significantly associated with the depression

status. Gender is not significant in GEE based models.

Table 6.5 shows the estimates of the parameters of the proposed model 2,

MCM2 that shows that the effects of the covariates are different on the de-

pression status at different follow ups.

At the baseline, marital status, education, white ethnicity and number of condi-

tions have significant effect on depression. Married people are less depressed as

compared to their single counterparts, more are the respondents educated, less

are they depressed, white people are less depressed, more physical conditions

results in more risk of depression.

In second follow-up, the effects of the covariates were notably different depend-

ing on the depression status of the respondent in the previous follow ups. De-

pression status of patients (who were not depressed in baseline or first follow-

up) were significantly associated with marital status, education and drinking

habit.

Depression status of patients (who were not depressed in baseline but were

depressed in first follow up) were significantly associated with education. Edu-

cation had significant effect on depression status of patients in second follow up

for those who were depressed in baseline but not depressed in first follow up.

Respondents’ depression status was significantly associated with marital status

and education for those who were depressed in first as well as in second follow

ups.

Clearly, the covariate effects on the depression status were different at different

follow ups and using a marginal model like GEE or ALR may not be appropri-

ate to estimate the covariate effects on depression status of the elderly people.
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Table 6.5: Estimates of Parameters of the Proposed Marginal Conditional Model 2 (MCM2) for HRS Data

β1 β01 β11 β001
Est SE p-value Est SE p-value Est SE p-value Est SE p-value

Intercept 1.230 0.179 0.000 1.837 0.254 0.000 2.856 0.319 0.000 -0.038 0.378 0.920
Gender -0.012 0.054 0.826 -0.273 0.067 0.000 -0.047 0.093 0.614 -0.139 0.087 0.110
Mstat -0.525 0.060 0.000 -0.334 0.081 0.000 -0.455 0.103 0.000 -0.213 0.111 0.056
Education -0.111 0.009 0.000 -0.140 0.012 0.000 -0.140 0.016 0.000 -0.083 0.016 0.000
White -0.454 0.144 0.002 -0.595 0.199 0.003 -0.288 0.250 0.249 -0.056 0.307 0.855
Black -0.094 0.154 0.544 -0.312 0.214 0.146 -0.143 0.266 0.591 0.155 0.327 0.636
Drink -0.079 0.054 0.147 -0.076 0.069 0.272 -0.127 0.095 0.182 0.256 0.094 0.007
No. of Cond. 0.354 0.024 0.000 0.285 0.034 0.000 0.282 0.041 0.000 0.175 0.048 0.000

β011 β101 β111
Est SE p-value Est SE p-value Est SE p-value

Intercept 1.187 0.363 0.001 1.937 0.581 0.001 1.973 0.350 0.000
Gender -0.039 0.109 0.722 0.032 0.156 0.835 -0.117 0.121 0.334
Mstat -0.121 0.126 0.339 -0.335 0.181 0.064 -0.346 0.130 0.008
Education -0.092 0.018 0.000 -0.115 0.028 0.000 -0.076 0.019 0.000
White -0.092 0.284 0.746 -0.373 0.435 0.392 0.228 0.280 0.414
Black 0.060 0.308 0.847 -0.029 0.467 0.950 0.136 0.296 0.647
Drink 0.002 0.110 0.989 -0.188 0.161 0.245 -0.192 0.123 0.119
No. of Cond. 0.320 0.052 0.000 0.052 0.070 0.453 0.317 0.053 0.000
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These findings confirm our assertion that the extensively used GEE based mod-

els fail to specify the covariate effects adequately for longitudinal data. The

results demonstrate that a joint model based on marginal conditional approach

explains the covariate effects more meaningfully.

6.5 Conclusion

In this chapter, we summarized the findings of the simulation studies to com-

pare the proposed joint models using marginal conditional approach with GEE

and ALR which are based on marginal approaches. It is evident from the sim-

ulation studies as well as the application of GEE, ALR and the proposed mod-

els, that the proposed model 2 is expected to provide more specified model in

a more simplified set up. Proposed model 2 produces less bias and has bet-

ter 95% coverage probability as compared to GEE or ALR. For more than 3

repeated outcomes, the proposed model 3 is the most convenient model that

performs better than GEE or ALR. The results of the simulation study indicate

that in terms of bias and coverage probability, the proposed models appears to

be competitive or sometimes better than the alternatives, GEE, or ALR. Hence

for practical reasons, the proposed models can be used to analyze longitudinal

data effectively and conveniently. Both the theoretical and practical users are

expected to find it more useful and interpretable using the proposed models in

appropriate cases.
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Chapter 7

Proposition of a Marginal

Conditional Model using

Quasi-likelihood Methods

7.1 Introduction

A marginal or population averaged model can not make use of the main ad-

vantage of a longitudinal data of visualizing the change in individual responses

over time (Chapter 3 and Chapter 4). In Chapter 5 and 6, we explained how

a joint model using a marginal-conditional approach enables studying the rela-

tionship among covariates and outcome variables at different time points. As a

result, these models are expected to portray the outcome-covariate relationship

in a more meaningful and explicit way as compared to marginal models. The

models proposed in Chapter 5 use likelihood based methods for repeated out-
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comes under the assumption that the distribution of the outcome variables are

known.

A marginal-conditional model in a quasi-likelihood set up is not found in liter-

ature. In this chapter, we describe a new marginal-conditional model developed

for repeated outcomes with unknown distributions. We started this chapter with

a very short review of GEE and ALR and then described the proposed model

along with its parameter estimation procedure and necessary tests. The new

model is compared with GEE and ALR using a set of simulation studies un-

der varying conditions. An application is shown using Health and Retirement

Study (HRS) data [73].

7.2 Models for Repeated Binary Outcomes using Quasi-likelihood Ap-

proaches

Consider a binary outcome variable Yi j, i = 1,2, ...,N, j = 1,2, ...,ni, observed

for subject i at time j. Let Xi j be the (p + 1)× 1 vector of covariates for

individual i at time j. The outcome vector for subject i is Yi = (Yi1 Yi2 ... Yini)
′

with mean vector µi = E(Yi) = (µi1 µi2 ... µini)
′ = (pi1 pi2 ... pini)

′. If Yi j’s are

time dependent, then the marginal probability that Yi j observes an event is (as

defined in equation (5.1), Chapter 5)

pi j = Pr(Yi j = 1|xi j) =
exp(xi jβ j)

1+ exp(xi jβ j)
,

where β j is the (p+1)×1 vector of parameters of the marginal model Pr(Yi j =

1|xi j). The marginal probability that Yi j does not observe an event is qi j = 1−

pi j. The conditional probability that Yi j observes an event given (yi1, ...,yi j−1)

is
p∗i j.1... j−1 = Pr(Yi j = 1|yi1, ...,yi j−1,xi j)

=
exp(xi jβ j.12... j−1)

1+ exp(xi jβ j.12... j−1)
; i = 1, ...,N; j = 2, ...,ni,
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where β j.12... j−1 is the vector of parameters of the conditional model Pr(Yi j =

1|yi1, ...,yi j−1,xi j); j = 2, ...,ni (equation (5.2), Chapter 5). Assume that the

distributional form of Yi j is unknown, but mean µi j is a known function of the

set of regression parameters and variance of Yi j, denoted by V (Yi j), is a known

function of µi j. Then for each observation Yi j, we may define a quantity,

Qi j = Q(µi j|yi j) =

µi j∫
yi j

yi j− t
a(φi j)V (t)

dt.

7.2.1 Log Quasi-Likelihood Function

Under the assumptions above, the integral Qi j behaves like a log-likelihood

function and is referred to as a log quasi-likelihood function of the parameters

µi j [61, 77] (section 2.3.4, Chapter 2). The log quasi-likelihood for the com-

plete data is the sum of the individual contributions

N

∑
i=1

ni

∑
j=1

Q(µi j|yi j) =
N

∑
i=1

[
Qi1(µi1|yi1)+ ...+Qini(µini|yini)

]

=
N

∑
i=1

[ µi1∫
yi1

yi1− t
a(φi1)V (t)

dt + ...+

µini∫
yini

yini− t
a(φini)V (t)

dt
]
.

(7.1)

7.2.2 Quasi-likelihood Estimating Equations

Differentiating equation (7.1) with respect to βk, we have quasi-likelihood esti-

mating equations or quasi-score equations for βk

N

∑
i=1

ni

∑
j=1

δQ(µi j|yi j)

δβk
=

N

∑
i=1

ni

∑
j=1

yi j−µi j

a(φi j)V (µi j)
.
δ µi j

δβk
= 0. (7.2)

We may write that the quasi-likelihood estimating equation, or the quasi score

function as U(β̂) = 0p, where

U(β) =
N

∑
i=1

D′iV
−1
i

(y−µ)

a(φ)
= 0

with Di =
δµi

δβk
and V −1

i =
1

a(φ)V (µi)
.
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While analysing longitudinal data with correlated response variables or response

variables from independent but non-identical populations at different time points,

fitting marginal models like GEE or ALR for Yi j’s is logically not an appropriate

choice as such models fail to utilize the major advantage of longitudinal data of

observing the change in the outcome variable over time and models based on

marginal conditional methods are preferred (Chapter 5 and Chapter 6).

In the following section, we propose a new method to obtain a joint model us-

ing a marginal-conditional approach under the framework of quasi-likelihood

method for outcome variables with unknown distributions.

7.3 Proposed Joint Model

In section 7.2, we defined Yi = (Yi1,Yi2, ...,Yini)
′, i = 1,2, ...,N. To discuss the

proposed joint model using quasi-likelihood method, we start with the assump-

tions and basic notations used for the proposed model.

7.3.1 Assumptions and Basic Notations

Considering the probable dependence among the repeated outcomes, let us re-

define the outcome vector for subject i as

Yi = (Yi1,Yi2.1...,Yini.12...ni−1)
′,

where, Yi j.12... j−1 denotes the outcome variable of subject i at jth time point

given {Yi1 = yi1,Yi2 = yi2, ...,Yi j−1 = yi j−1}. The mean vector can be redefined

as µi = (µi1,µ2.1, ...,µini.12...ni−1)
′, where µi j.1... j−1 is the expected value of Yi j

given {Yi1 = yi1, ...,Yi j−1 = yi j−1}. Now the elements of Yi are independent

of each other with mean vector µi = (µi1,µi2.1, ...,µini.12...ni−1)
′ where µi1 =

E(Yi1|xi) and µi j.1,2,..., j−1 = E(Yi j.12... j−1|xi). The covariance of Yi j.12... j−1 is

a(φi j)V (µi j.12... j−1), where a(φi j) is the scale parameter. If the distributional

form of the outcome variable is unknown, then for each outcome variables,
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Yi1,Yi2.1, ...,Yini.12...ni−1, that are independent of one another, we may define the

quantities,
Qi1 = Q(µi1|yi1) =

µi1∫
yi1

yi1− t
V (t)

dt, (7.3)

Qi j = Q(µi j.12... j−1,yi j.12.. j−1)

=

µi j.12... j−1∫
yi j.12... j−1

yi j.12... j−1− t
a(φi j)V (t)

dt; j = 2, ...,ni. (7.4)

7.3.2 Log Quasi-likelihood Function

Given the components of Yi = (Yi1,Yi2.1, ...,Yini.12...ni−1)
′ are independent, the

log quasi-likelihood for the complete data is the sum of the individual contribu-

tions (as shown in equation (2.7) in Chapter 2)

QJ =
N

∑
i=1

ni

∑
j=1

Qi j =
N

∑
i=1

[
Q(µi1|yi1)+Q(µi2.1|yi2.1)+ ...

+ Q(µini.1,2,...,ni−1|yini.1,2,...,ni−1)
]

=
N

∑
i=1

ni.12...ni−1

∑
j=1

µi j∫
yi j

Yi j− t
a(φi j).V (t)

dt. (7.5)

The sum of the integrals QJ in equation (7.5), then, behaves like a log-likelihood

function and following Nelder and Lee [61], Wedderburn [77], the equation

(7.5) can be referred to as a log quasi-likelihood function of the parameters µi j.

The ni.(p+1)×1 vector of parameters to be estimated for the proposed model

is denoted by β = (β1,β2.1, ...,βni.1,2,...,ni−1)
′, where β1 = (β10,β11, ...,β1p)

′,

β2.1 = (β20,β21, ...,β2p)
′, ..., βni.1...ni−1 = (βni0,βni1, ...,βni p)

′. Clearly, if the

covariate effects on the dependent variables are similar at each follow-up, the

proposed model reduces to the marginal model with p + 1 parameters, β =

(β0,β1, ...,βp)
′.
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7.3.3 Score Equation and Variance Covariance Matrix

Differentiating equation (7.5) with respect to the respective parameter and equat-

ing to zero, the following quasi score equations can be obtained similarly as

equation (2.8) as given in Chapter 2,

δQJ

δβ1k
=

N

∑
i=1

δQJ

δβ1k
=

N

∑
i=1

(
yi1−µi1

a(φi1).V (µi1)
.
δ µi1

δβ1k

)
= 0,

δQJ

δβ2.1k
=

N

∑
i=1

δQJ

δβ2.1k
=

N

∑
i=1

(
yi2.1−µi2.1

a(φi2).V (µi2.1)
.
δ µi2.1

δβ2.1k

)
= 0,

...

...

δQJ

δβni.1...ni−1k
=

N

∑
i=1

(
yini.1...ni−1−µini.1...ni−1

a(φini).V (µini.1...ni−1)
.
δ µini.1...ni−1

δβni.1...ni−1k

)
= 0.

(7.6)

The quasi-likelihood estimating equations for β given in equation (7.6) and the

likelihood equations for generalized linear models are equivalent and makes

only second moment assumptions about the distribution of Yi rather than full

distributional assumptions required for generalized linear models.

The information matrix I is a ni.(p+1)×ni.(p+1) matrix with kk′th elements,

− δ 2QJ
δβkδβ ′k

. The variance covariance matrix for the parameters of the proposed

model can be expressed as

V (β̂) =


V (β̂1) 0 ... 0

0 V (β̂2.1) ... 0

: : : :

0 0 ... V (β̂ni.1,...,ni−1)

 . (7.7)
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7.3.4 Tests of Hypotheses

The test for the overall model and for individual parameters can be obtained

easily as follow.

The Quasi Likelihood Ratio Test for Overall Model

We followed Wedderburn [77] for obtaining a test for the overall model. The

quasi maximum likelihood estimates (QMLE) were discussed by Wedderburn

[77] showing that the precision of QMLE may be estimated from the expected

second derivatives of log quasi likelihood functions in the same way as the pre-

cision of maximum likelihood estimates may be estimated from the expected

second derivatives of the log likelihood. Several researchers suggested the use

of quasi likelihood ratio (QLR) statistic defined as the quasi-log-likelihood ratio

computed from QMLE [77] under the null and the alternative hypothesis to test

the significance of the overall model when the distribution is unknown (see for

example [11]).

In our proposed setup, to compare the full model with a reduced model contain-

ing an intercept term only, the hypotheses can be defined as

H0 : β = β∗0 vs. H1 : β 6= β∗0,

where β = (β1,β2.1, ...,βni.1,2,...ni−1)
′ and β∗0 = (β10,β20, ...,βni0)

′ are the pa-

rameters of the full and reduced models, respectively. The test statistic can be

defined as

QLR =−2[Q(β∗0)−Q(β)]

which follows a chi-square distribution with ni× p degrees of freedom under

H0. Here Q(β∗0) is the quasi likelihood of the reduced model for no covariate

effects, i.e. the value of Q(β) under H0.
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Tests for Individual Parameters: Score Test

Let us consider testing the null hypothesis

H0 :Cβ = d vs. H1 :Cβ 6= d,

where C =

O(p−q)×(p−q) O(p−q)×q

Oq×(p−q) Iq


is a p×q matrix with rank q≤ p not depending on the data or β. All elements

of O(p−q)×(p−q), O(p−q)×q and Oq×(p−q) are zero and Iq is the q× q identity

matrix. In the absence of a likelihood function, an efficient score statistic [67]

which do not involve existence of a likelihood function, can be adopted for

quasi-likelihood based approaches and can be generalized directly to an esti-

mating function setting.

Suppose, V = V (Sβ ) = E(Sβ S′
β
) is the variance of the quasi-score function

Sβ , β̂ is the unrestricted quasi-likelihood estimate of β and β̂∗0 is the quasi-

likelihood estimate of β under H0. Under H0 : Cβ = d and for ergodic case,

the analog of the efficient score statistic [67],

µ = S′β [E(Sβ S′β )]
−Sβ , (7.8)

is envisioned in the circumstances under which

V −
1
2 Sβ

d∼MVN(0,Ip); (7.9)

then µ is approximately distributed as χ2
q under H0.

It can be shown that Sβ

d∼ P Sβ where P = C(C ′V −1C)−C ′V −1. Then

V −
1
2 Sβ

d∼ MVN(0,Ip) and Sβ

d∼ MVN(0,PV P ′), where V (β̂) ≈ PV P ′;

hence

µ
d∼ (P Sβ )

′(PV P ′)−P Sβ

= (V −
1
2 Sβ )

′V
1
2P ′(PV P ′)−PV

1
2 (V −

1
2 Sβ ).

(7.10)

In view of equation (7.9) and since V
1
2P ′(PV P ′)−PV

1
2 is idempotent with

rank q, µ is approximately distributed as χ2 with q degrees of freedom. [32].
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7.4 Simulation Study

To assess the properties of estimates (bias, standard error and 95% coverage

probability) of the regression coefficients obtained by the proposed model, a

simulation study was performed using R 3.4.3. For simplicity of the study,

we restrict the simulation study to two follow ups of the outcome variable,

Yi1 and Yi2 and only one explanatory variable, Xi j1, j = 1,2 for each of the N

individuals. We assumed that Yi1 and Yi2 are two Bernoulli random variables

with Yi1 ∼ B(1, pi1) and Yi2 ∼ B(1, pi2). The corresponding link functions are

g(µi1) =
eXi1β1

1+eXi1β1
and g(µi2) =

eXi2β2.1

1+eXi2β2.1
. At first, the explanatory variableXi j

was generated from B(1,0.5). For chosen values of β1 and β2.1, the probability

of success for the outcome variable at the first and second time points, pi1 and

pi2 respectively, were calculated as pi1 = P(Yi1 = 1|Xi1 = xi1) =
exi1β1

1+exi1β1
and

pi2 = P(Yi2 = 1|Yi1 = yi1,Xi2 = xi2) =
exi2β2.1

1+exi2β2.1
where xi j = (1,xi j1), β1 =

(β10,β11)
′ and β2.1 = (β20,β21)

′. 200 pairs of (Yi1,Yi2), were generated using

the R-package ‘bindata’ for cases where Yi1 and Yi2 are (i) independent and

identically distributed and (ii) non-identical with varying correlation (ρ = 0,

0.3, 0.5, 0.7) between Yi1 and Yi2. For 1000 iterations, the bias, standard error

and coverage probability of the 95% confidence interval of the estimates of

parameters of the proposed model, β = (β10,β11,β20,β21), and the same for

GEE or ALR, β∗ = (β ∗0 ,β
∗
1 )
′, were constructed over a range of scenarios. Note

that, we used the notation β∗ for the vector of parameters of GEE and ALR

to distinguish the vector of parameters from the vector of parameters of the

proposed marginal-conditional model.
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7.5 Results

The estimate of parameters of the proposed model and the same for GEE or

ALR along with their bias, standard error and coverage probability under the

assumption of identical and independently distributed Yi1 and Yi2 are shown in

Table 7.1. Results in Table 7.1 show that while the distribution of Yi1 and Yi2

are identical and independent, the estimates of the parameters of the GEE, ALR

and the estimates of the parameters of the proposed model at all the time points

are exactly same and GEE can be used.

Table 7.1: Parameters(Par), estimates(Est), bias, standard error(SE) and coverage prob-
ability(CP) of the estimates of parameters of GEE, ALR and the proposed model for
independent and identically distributed Yi1 and Yi2 (β10=β20=0.5, β11=β21=0.2, ρ=0)
.

Methods Par Est Bias SE CP
Proposed Model β10 0.504 -0.004 0.209 0.960

β11 0.206 -0.006 0.300 0.968
β20 0.504 0.209 0.950
β21 0.201 0.300 0.965

GEE(In) β ∗0 0.503 -0.003 0.191 0.957
β ∗1 0.203 -0.003 0.275 0.969

GEE(Ex) β ∗0 0.503 -0.003 0.191 0.957
β ∗1 0.203 -0.003 0.275 0.969

ALR(Ex) β ∗0 0.503 -0.003 0.191 0.957
β ∗1 0.203 -0.003 0.275 0.969

For non identical and dependent Yi1 and Yi2, the estimates of the parameters of

the proposed model and GEE and ALR at varying levels of association (ρ =

0.0, 0.3, 0.5 and 0.7 respectively) are shown in Table 7.2 to 7.5 respectively.

The results in Table 7.2 to 7.5 show that when Yi1 and Yi2 are correlated or

when distribution of Yi1 and Yi2 are not identical, GEE or ALR, being marginal

approaches, can not capture the covariate effect on response variable at different

time points effectively. The average effect of the covariates at two time points

are reflected in GEE and ALR which are not appropriate to present the actual

scenario.
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Table 7.2: Parameters (Par), estimates (Est), bias, standard error (SE) and coverage probability (CP) of estimates of parameters of GEE, ALR
and the proposed model for non-identical Yi1 and Yi2, (β10=0.5, β11=0.5, β20=0.2, β21=0.2 and ρ=0)

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Proposed Model β10 0.501 -0.001 0.209 0.964
β11 0.514 -0.014 0.310 0.951
β20 0.196 0.004 0.203 0.953
β21 0.211 -0.011 0.290 0.958

GEE(In) β ∗0 0.345 0.155 -0.145 0.144 0.813 0.832
β ∗1 0.347 0.153 -0.147 0.207 0.895 0.905

GEE(Ex) β ∗0 0.345 0.155 -0.145 0.144 0.813 0.832
β ∗1 0.347 0.153 -0.147 0.207 0.895 0.905

ALR(Ex) β ∗0 0.345 0.155 -0.145 0.144 0.813 0.832
β ∗1 0.347 0.153 -0.147 0.207 0.895 0.905
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Table 7.3: Parameters (Par), estimates (Est), bias, standard error (SE) and coverage probability (CP) of estimates of parameters of GEE, ALR
and the proposed model for dependent outcomes with non-identical distributions, (β10=0.5, β11=0.5, β20=0.2, β21=0.2 and ρ=0.3)

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Proposed Model β10 0.496 0.004 0.209 0.957
β11 0.522 -0.022 0.311 0.953
β20 0.190 0.010 0.204 0.954
β21 0.215 -0.015 0.290 0.954

GEE(In) β ∗0 0.340 0.160 -0.140 0.164 0.821 0.881
β ∗1 0.353 0.147 -0.153 0.237 0.908 0.911

GEE(Ex) β ∗0 0.340 0.160 -0.140 0.164 0.821 0.881
β ∗1 0.353 0.147 -0.153 0.237 0.908 0.911

ALR(Ex) β ∗0 0.340 0.160 -0.140 0.164 0.821 0.881
β ∗1 0.353 0.147 -0.153 0.237 0.908 0.911
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Table 7.4: Parameters(Par), estimates(Est), bias, standard error(SE) and coverage probability(CP) of estimates of parameters of GEE, ALR and
the proposed model for dependent outcomes with non-identical distributions, (β10=0.5, β11=0.5, β20=0.2, β21=0.2 and ρ=0.5)

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Proposed Model β10 0.496 0.004 0.209 0.960
β11 0.517 -0.017 0.310 0.952
β20 0.195 0.005 0.204 0.950
β21 0.213 -0.013 0.290 0.950

GEE(In) β ∗0 0.342 0.158 -0.142 0.176 0.840 0.880
β ∗1 0.350 0.150 -0.150 0.254 0.902 0.919

GEE(Ex) β ∗0 0.342 0.158 -0.142 0.176 0.840 0.880
β ∗1 0.350 0.150 -0.150 0.254 0.902 0.919

ALR(Ex) β ∗0 0.342 0.158 -0.142 0.176 0.840 0.880
β ∗1 0.350 0.150 -0.150 0.254 0.902 0.919
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Table 7.5: Parameters(Par), estimates(Est), bias, standard error(SE) and coverage probability of estimates of parameters of of GEE, ALR and the
proposed model for dependent outcomes with non-identical distributions, (β10=0.5, β11=0.5, β20=0.2, β21=0.2 and ρ=0.7)

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Proposed Model β10 0.497 0.003 0.209 0.958
β11 0.517 -0.017 0.310 0.962
β20 0.192 0.008 0.203 0.950
β21 0.213 -0.013 0.290 0.951

GEE(In) β ∗0 0.342 0.158 -0.142 0.188 0.860 0.886
β ∗1 0.351 0.149 -0.151 0.271 0.906 0.926

GEE(Ex) β ∗0 0.342 0.158 -0.142 0.188 0.860 0.886
β ∗1 0.351 0.149 -0.151 0.271 0.906 0.926

ALR(Ex) β ∗0 0.342 0.158 -0.142 0.188 0.860 0.886
β ∗1 0.351 0.149 -0.151 0.271 0.906 0.926
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The bias of the estimates of GEE and ALR from β1 and β2 show that the esti-

mates represent neither the parameters of the distribution of Yi1 nor the distribu-

tions of Yi2. On the other hand, the proposed joint model gives better estimates

of the covariate effects on response variables at different time points in terms

of bias of the estimates as well as the coverage probability. Clearly it can be

said that when the distributions of the outcome variables at different time points

are not identical, the parameters of GEE or ALR are inadequate to portray the

true covariate effect on dependent variable because GEE or ALR estimate the

parameters of a population average model.

In a nutshell, GEE or ALR are appropriate to estimate the covariate effects

when Yi1 and Yi2 are identically and independently distributed. The bias and the

standard error of estimates of the proposed model and that of marginal model

based GEE and ALR are competitive for longitudinal data when the repeated

measures are independent and identical.

Nevertheless, the bias of the estimates of GEE and ALR from β1 and β2 shows

that GEE and ALR do not portray the actual relationship between the covariates

and the response variables for cases where Yi1 and Yi2 are correlated and/or have

non identical distribution. If the repeated measures are associated or outcome

variables have different distributions at different time points, neither the GEE

nor ALR are adequate to portray the relationship between the covariates and the

response variable.

The simulation study also indicates that there is no noticeable difference among

the estimates of GEE under different correlation structures or ALR with ex-

changeable correlation. So inducing any nuisance correlation structure in the

estimation procedure does not contribute to capture the correlation among the

responses and the estimates of parameters under different correlation structures

are virtually the same. The proposed joint model, on the other hand, captures

the dependence among the repeated responses in a built-in nature. As a result,
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the proposed model provides better estimates of the covariate and outcome re-

lationship which is portrayed in the bias and coverage probability as shown in

the results of the simulation studies.

7.6 Application to HRS Data

To illustrate the proposed method, we used, as an example data, the longitudi-

nal data from the Health and Retirement Study (HRS) conducted by the Univer-

sity of Michigan [73] which is a nationally representative sample data of older

Americans. The study started in 1992 on American individuals over the age of

50 years and their spouses and the subjects are observed every two years. The

initial HRS cohort, recruited in 1992, consisted of persons born in 1931 to 1941

(then aged 51 to 61) and their spouses of any age. The data on activities in daily

living from the initial cohort was selected for this study

Activities in Daily Living Data from HRS

Difficulties in activities of daily living is a common phenomena among elderly

individuals often resulting in specific physical and mental conditions [26, 70].

The term Activities of daily living (ADLs or ADL) is used in health care to

refer to individuals daily self care activities. ADL has been added to and re-

fined by a variety of researchers since it was introduced by Sidney Katz and

his team [46] in 1950s [63]. Basic ADLs consist of self-care tasks that in-

clude bathing and showering, personal hygiene and grooming (including brush-

ing/combing/styling hair), dressing, toilet hygiene, transferring, as measured by

the ability to walk, get in and out of bed, and get into and out of a chair and

self-feeding [46, 78]. While basic definitions of ADLs have been suggested,

what specifically constitutes a particular ADL for each individual may vary.

Identification of group of individuals with difficulty in performing ADL is very
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important to ensure proper assistance and care for elderly people. For illustra-

tion of the proposed joint model using quasi-likelihood method and comparison

of the proposed method with other selected methods, in this study, we consid-

ered ADL data from Health and Retirement Study [72]. The subset of HRS

data with respondents from round 10, round 11 and round 12 from the initial

HRS cohort (recruited in 1992, consisted of persons born in 1931− 41) was

considered. In round 10, the sample size of the HRS cohort was 13593. The

sample size was reduced to 7889 due to dropping of cases with missing values

of outcome variable at round 10. The sample size was further reduced to 7124

at round 11 due to dropping cases with missing values of outcome variables at

round 11 and and to 6246 at round 12 after dropping cases with missing values

of outcome variables at round 12. Seven more cases were dropped due to miss-

ing values in the covariates. Finally the complete panel data of size 6239 from

the rounds for 2010,2012 and 2014 have been used to illustrate the proposed

quasi likelihood method and to compare with selected methods in this study.

In HRS data [73], the variables on activities of daily living (ADL) included

dressing, walking across room, bathing, eating, getting in/out of bed and using

toilet. We constructed a binary outcome variable named Difficulty in Activities

of Daily Living or DADL with values 0 and 1 (No difficulty = 0 and at least one

difficulty = 1). The covariates are age, gender (Male= 1), marital status (Mar-

ried or partnered= 1), ethnicity: White (White= 1) and education in years. The

estimates of covariate effects on difficulties in activities of daily living using

GEE, ALR and the proposed model are obtained and the findings are discussed

as follow.

The estimates of covariate effects using GEE and ALR under different correla-

tion structures are shown in Table 7.6 and estimates of covariate effects using

the proposed model are shown in Table 7.7.
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Table 7.6: GEE and ALR for estimating covariate effects on difficulty in activities of
daily living using HRS data

Covariates GEE(Independent) GEE(Exchangeable)
β̂ SE(β̂) p-value β̂ SE(β̂) p-value

Intercept -2.400 0.419 0.000 -3.549 0.410 0.000
Age 0.039 0.005 0.000 0.055 0.005 0.000
Gender -0.083 0.061 0.175 -0.143 0.061 0.019
Marital Status -0.457 0.056 0.000 -0.368 0.053 0.000
Ethnicity: White -0.277 0.068 0.000 -0.297 0.069 0.000
Education -0.123 0.009 0.000 -0.122 0.009 0.000
Covariates GEE(Autoregressive) ALR(Exchangeable)

β̂ SE(β̂) p-value β̂ SE(β̂) p-value
Intercept -3.256 0.407 0.000 -3.438 0.420 0.000
Age 0.051 0.005 0.000 0.053 0.005 0.000
Gender -0.153 0.061 0.013 -0.130 0.061 0.043
Marital Status -0.360 0.053 0.000 -0.375 0.053 0.000
Ethnicity: White -0.294 0.069 0.000 -0.299 0.069 0.000
Education -0.125 0.009 0.000 -0.121 0.009 0.000

The GEE model under the assumption of independence detects that age, marital

status, white ethnicity and education were significantly associated with DADL.

GEE model under the assumption of exchangeable and autoregressive correla-

tion and the ALR model under the exchangeable correlation showed that all the

selected variables, including gender, were significantly associated with DADL.

Clearly, the GEE models model the average relationship among covariates and

outcome over different follow ups.

The table 7.7 described the effects of covariates on the difficulty in daily ac-

tivities at different follow ups. We observed that the effects of the covariates

were not the same on DADL. In the 10th and 11th round of HRS, age, marital

status, White ethnicity and education were significantly associated with diffi-

culty in activities of daily living (DADL). Age increased the risk of DADL.

Married people or who had a partner had less risk of DADL as compared to

their single counterparts; White people had less risk of DADL and more were

the respondents educated, less they experienced DADL.
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Table 7.7: Marginal-conditional model for estimating covariate effects on difficulty in activities of daily living using HRS data

β̂1 SE(β̂1) p-value β̂2.1 SE(β̂2.1) p-value β̂3.12 SE(β̂3.12) p-value
Intercept -1.313 0.480 0.006 -2.035 0.480 0.000 -2.643 0.455 0.000
Age 0.026 0.006 0.000 0.032 0.006 0.000 0.044 0.006 0.000
Gender -0.091 0.079 0.245 0.001 0.076 0.988 -0.124 0.070 0.075
Marital Status -0.407 0.076 0.000 -0.465 0.074 0.000 -0.472 0.067 0.000
Ethnicity: White -0.351 0.085 0.000 -0.293 0.084 0.000 -0.203 0.078 0.010
Education -0.136 0.011 0.000 -0.114 0.010 0.000 -0.122 0.010 0.000
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In the 10th and 11th rounds, gender had no significant association with DADL.

In round 12, along with age, marital status, white ethnicity and education, gen-

der also had significant association with DADL. Nevertheless, effect of all co-

variates differ at different follow ups as shown by the varying parameter esti-

mates at different round. For example, the estimates of regression parameter for

covariate age in 10th 11th and 12th round are 0.026, 0.032 and 0.044 respec-

tively.

These findings confirm our assertion that the GEE based models which are ex-

tensively used fails to specify the covariate effects adequately when the co-

variate effects are possibly different at different time points in case of a lon-

gitudinal data and might give us misleading conclusions. A joint model based

on marginal-conditional approach explains the covariate effects more explicitly

and more meaningfully and is suggested in such cases.

7.7 Conclusion

In this chapter we proposed a joint model using a marginal-conditional ap-

proach in the quasi-likelihood set up for modelling correlated binary data along

with necessary related tests. In a marginal-conditional model, the relationship

among covariates and outcome variables are studied at different time points

and hence the models are expected to portray the outcome-covariate relation-

ship in a more meaningful and explicit way as compared to GEE or ALR based

on marginal approaches. Unlike GEE or GEE based approaches, the proposed

method do not need to estimate any correlation parameter but takes care of the

probable correlation among repeated outcomes in a built in nature and estimates

the covariate effects on the response variable more effectively. This model can

be extended for any number of repeated measures without complicating the the-

ory. For outcome variables with known distributions, the proposed method can

simply be used with likelihood based estimation procedures as shown in Chap-
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ter 5 and Chapter 6.

The simulation studies showed that estimates of parameters of GEE and ALR

performed well in terms of bias and coverage probability when the outcome

variables are independent and identically distributed and the estimates of the

proposed model are competitive to GEE and ALR. When the outcome vari-

ables are correlated or the distribution of outcome variables are not identical,

estimates of the proposed method has less bias and a better coverage probability

than GEE or ALR and hence would be a better choice than those methods in

analysing correlated binary data. From the simulation study and the applica-

tion of GEE, ALR and the proposed method on HRS data, it is evident that the

proposed method is expected to provide more specified model in a simpler set

up and the results are expected to be more useful to the theoreticians and the

practitioners.
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Chapter 8

Conclusion

8.1 Introduction

The repeated responses on each individual are expected to be correlated which

is a major feature of the longitudinal data and this makes the analysis of such

data challenging. Two common approaches for analysing correlated binary out-

comes are marginal and conditional modelling. In the theoretical and applied

literature of statistical data analysis, there is an apparent agreement that the

selection of a model must depend on the question under study, but the disagree-

ment over when to choose which model is yet to be settled [60]. This study is an

attempt to contribute in this area by proposing a joint model based on marginal

conditional approach for analysing longitudinal data, using likelihood methods

when applicable (Chapter 5). We studied the properties of the proposed joint
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models in terms of bias and 95% coverage probability of the estimates (Chapter

6). We also developed a new model for repeated measures data with unknown

distribution under the set up of a quasi-likelihood method (Chapter 7).

8.2 Major Findings

The first objective of this study was to examine selected popular methods for

analysing repeated binary data in order to figure out the advantages and limita-

tions of the approaches and to examine the selected methods to study how these

methods addressed the dependence relationship among the repeated responses.

We discussed on the marginal models, GEE and ALR in details (Chapter 3

and Chapter 4) in terms of assumptions, correlation structures, estimation tech-

niques and the advantages and limitations of the approaches. We diagnosed

that a major limitation of the marginal models lie in the way they address the

correlation among repeated responses. We showed that

• GEE, ALR and the model suggested by Zeger et al. [80] are based on

induced correlations which may be far from the true scenario (section 4.3,

4.4 and 4.5, Chapter 4);

• inducing a correlation structure in GEE contradicts with the basic assump-

tions of GEE unless the correlation structure considered is independent

correlation (section 4.3, Chapter 4);

• the induced correlation used in Zeger et al. [80] does not reflect the true

correlation (section 4.5, Chapter 4);

• Darlington and Farewell [16]’s model was close to address the correlation

among the repeated responses, however, their method could not address

the correlation completely as they did not consider all possible transition

or conditional probabilities in second or higher follow ups (section 4.6,

Chapter 4).

124



Chapter 8 Conclusion

The second objective was to propose a joint model as an alternative to GEE or

ALR for the analysis of longitudinal binary data incorporating the true depen-

dence of repeated outcomes using likelihood based methodologies.

In Chapter 5 we proposed, as alternatives to GEE or ALR, three joint models

based on marginal conditional approach. Among the three models, the first one,

(MCM1), is an extension of Darlington and Farewell [16]’s model, second one,

MCM2, is the joint model proposed by Islam et al. [43]. The third one, MCM3,

is a joint model based on an extended regressive model Islam et al. [42].

Note that the joint models based on a marginal conditional approach is not a

new approach from the technical point of view. But the joint models of the

earlier works mainly focused on the estimates of marginal and transition prob-

abilities, testing the association parameter and/or order of dependence among

repeated outcomes [3, 35, 36, 38, 40, 43].

Although the estimation of parameters of the models to study the dependence

relationship among covariates and outcome variables are available in literature,

but the properties of the estimates were not. The following theoretical explo-

ration was done in the study.

• The idea of using a marginal conditional model to estimate the covariate

effects on repeated measures data is proposed in Chapter 5 and the proper-

ties of the joint models in terms of bias, standard error and 95% coverage

probability of the estimates are demonstrated in Chapter 6.

• The proposed model 2 (MCM2) for longitudinal binary data can easily

be extended for exponential family members. The likelihood function,

the score equations and information matrix as well as the relevant test

procedure to test the overall model and the individual parameters were

described for exponential family.
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• Since the number of parameters of proposed model 2 increases rapidly

with increase in the number of repeated outcomes on one individual, we

proposed the use of a joint model using extended regressive model ap-

proach [42] which we denoted as proposed model 3 or MCM3.

We conducted a number of simulation studies to examine the properties of the

proposed joint models based on marginal-conditional approach and to compare

them with GEE and ALR in terms of bias, standard error and 95% coverage

probability. The simulation studies are conducted under different conditions:

repeated outcomes are (i) independent and identically distributed, (ii) indepen-

dent but not identically distributed and (iii) associated (section 6.3, Chapter 6).

We observed that

• the biases of estimates of the proposed joint models are very small and

the coverage probability of the estimates are more than 90%.

• the estimates of the parameters of GEE and ALR performed well in terms

of bias and coverage probability when the outcome variables are identi-

cally and independently distributed and all three proposed joint models

show competitive bias and coverage probability.

• When the outcome variables are not identical and/or are correlated, the

estimates of the parameters of the proposed models perform better than

GEE or ALR with smaller bias and better coverage probability.

Another important objective of this study was to propose a new marginal con-

ditional model under a quasi-likelihood setup for the analysis of longitudi-

nal binary data when the distribution of the repeated outcomes are assumed

to be unknown. This study showed the development of a new model based

on quasi-likelihood approach. The corresponding quasi-likelihood functions,

quasi-estimating equations for parameters of the proposed models along with

score equations and information matrix, and related tests of hypothesis are also

developed (Chapter 7).
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To study the properties of the estimates of the parameters (bias, 95% coverage

probability) of the proposed new model under quasi likelihood set up, and to

compare the proposed model with GEE and ALR, we conducted another set of

simulation studies under varying conditions. We found that

• the estimates of the parameters of GEE and ALR performed well in terms

of bias and coverage probability only when the outcome variables are

identically and independently distributed. Note that the proposed new

model using quasi-likelihood approach shows competitive results (similar

bias and coverage probability).

• When the outcome variables are not identical and/or are correlated, the

estimates of the proposed method has less bias and a better coverage prob-

ability than GEE or ALR.

Finally, we used HRS data [73] to illustrate the proposed models and showed

that the proposed method is expected to provide more specified model in a

simpler set up as compared to popular GEE or ALR.

8.3 Recommendations

It is evident from the study that, marginal models can be useful, given that the

scientific question explicitly requires such a model formulation. But a joint

model based on a marginal-conditional approach is a more logical choice to

explain how covariates are associated with a nonnormal response at different

time points. We recommend the use of proposed marginal conditional models

(Proposed models 1, 2 and 3 or MCM1, MCM2 and MCM3), based on likeli-

hood methods and the newly developed marginal conditional model based on

quasi-likelihood approach as better alternatives of GEE or related approaches

for correlated binary outcomes because

• the proposed models are simple and easy to fit, understand and interpret;
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• they consider the true correlation among the repeated measures in a built-

in nature and there is no need to estimate any correlation parameter;

• they can be extended to any number of follow ups without complicating

the theory.

• performance of the proposed models is similar to GEE or ALR in terms

of bias of the estimators and coverage probability when the repeated out-

comes are independent and identically distributed;

• the proposed models perform better than GEE or ALR when the repeated

outcomes are not independent and/or identically distributed at different

time points.

8.4 Further Scope of Study

An extension of this study could be developing the procedure of missing data

analysis in marginal conditional models (MCM). Further scopes of this study

may also include a comparison of the proposed marginal conditional models

with generalized linear mixed models.
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Appendix

A1. R Codes for MCM2, GEE and ALR in Chapter 6

############################## FUNCTIONS ##########################

#################### Generating data Y1 and Y2 ###################

modsim<-function(N,intercept1,intercept2,beta1,beta2, gamma1,x1){

## simulate y1

id <- 1:N

xbeta <- intercept1 + beta1 *x1

proba1 <- exp(xbeta)/(1 + exp(xbeta))

Y1 <- ifelse(runif(N,0,1) < proba1,1,0)

# print(table(Y1)) # print(proba1)

# simulate y2

xbeta2 <- intercept2 + beta2 *x1 + gamma1 * Y1

proba2 <- exp(xbeta2)/(1 + exp(xbeta2))

Y2 <- ifelse(runif(N,0,1) < proba2,1,0)

# print(table(Y2))

dat <- data.frame(id,Y1,Y2,x1,x1)

alp<-cor(dat[2:3])

pij<-data.frame(proba1, proba2)

sdatacor<-list(alp, dat, pij)

# print(sdatacor)

return(sdatacor)

}

################## simulation ######################

# Data is generated for the models:

# Y1 = intercept1 + beta1 * x1;

# Y2 = intercept2 + beta2 * x2 + gamma1*Y1;

# initial values required are :

# totsim: total number of simulation,

# t.seed: seed,
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# N: sample size,

# intercept1 :

# intercept2 :

# beta1:

# beta2:

# x1:

newsimbr<-function(totsim,t.seed,N,intercept1,

intercept2,beta1,beta2,gamma1,x1)

{for (i in 1:totsim){

cat("i=",i,"\n")

dd<- modsim(N,intercept1,intercept2,beta1,beta2,

gamma1,x1)

sdata<-data.frame(dd[2])

colnames(sdata)<-c("id", "Y1","Y2","x1","x2")

pij<-data.frame(dd[3])

#correlation matrix of Y1, Y2

cmatr<-data.frame(dd[1])

#correlation between Y1 and Y2

calpha<-cmatr[1,2]

sdata01<-subset(sdata,Y1==0)

sdata11<-subset(sdata,Y1==1)

###### Fitting Models with parameters #############

##### beta1, beta2, beta01, and beta11 ############

print("++++++++models+++++++++")

# Fitting model with parameters beta1

mod1 <-glm(Y1~x1,family=binomial,data=sdata)

#### Fitting model with parameters beta2

mod2 <-glm(Y2~x1,family=binomial,data=sdata)

#### Fitting model with parameters beta01

mod01<-glm(Y2~x1,family=binomial,data=sdata01)

#### Fitting model with parameters beta11

mod11<-glm(Y2~x1,family=binomial,data=sdata11)

###### Add models for GEE

###### Rearrange the data

dat1<-sdata[,c(1,2,4)]

dat2<-sdata[,c(1,3,4)]

colnames(dat1)<-c("id","Y","x1")

colnames(dat2)<-c("id","Y","x1")

dat<-rbind(dat1,dat2)

dat<-arrange(dat,id)

#print(head(dat))

colnames(dat)<-c("id", "Y", "x1")

## Fitting GLM for beta

mod<-glm(Y~x1, family=binomial, data=dat)

geeI<-geeglm(Y~x1,family=binomial("logit"),id=id,

corstr="independence",std.err="san.se",data=dat)

print(summary(geeI))
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geeE<-geeglm(Y~x1,family=binomial(link="logit"),id=id,

corstr="exchangeable",std.err="san.se",data=dat)

print(summary(geeE))

geeA<-geeglm(Y~x1,family=binomial("logit"),

id=id, corstr="ar1",std.err="san.se",data=dat)

print(summary(geeA))

# Add models for ALR

alrmod <- alr(dat$Y ~ dat$x1, id=dat$id,

depm="exchangeable", ainit=0.2)

print(summary(alrmod))

alralpha<-alrmod$alpha

#### Test for the equality of parameters of

#### marginal and conditional models.

dpt<- dtest(trt01=mod01,trt11=mod11,trt2=mod2)

# print(dpt)

# Add results of GEE and ALR in allres

# "allres" is the collection of all results

allres<-data.frame(cbind(

matrix(mod$coefficients,nrow=1),

matrix(summary(mod1)$coeff[,4],nrow=1),

matrix(mod1$coefficients,nrow=1),

matrix(summary(mod1)$coeff[,4],nrow=1),

matrix(mod2$coefficients,nrow=1),

matrix(summary(mod2)$coeff[,4],nrow=1),

matrix(mod01$coefficients,nrow=1),

matrix(summary(mod01)$coeff[,4],nrow=1),

matrix(mod11$coefficients,nrow=1),

matrix(summary(mod11)$coeff[,4],nrow=1),

matrix(geeI$coefficients,nrow=1),

matrix(summary(geeI)$coeff[,4],nrow=1),

matrix(geeE$coefficients,nrow=1),

matrix(summary(geeE)$coeff[,4],nrow=1),

matrix(geeA$coefficients,nrow=1),

matrix(summary(geeA)$coeff[,4],nrow=1),

matrix(alrmod$coefficients, nrow=1), alralpha,

matrix(summary(mod)$coefficients[,2], nrow=1),

matrix(summary(mod1)$coefficients[,2], nrow=1),

matrix(summary(mod2)$coefficients[,2], nrow=1),

matrix(summary(mod01)$coefficients[,2], nrow=1),

matrix(summary(mod11)$coefficients[,2], nrow=1),

matrix(summary(geeI)$coefficients[,2], nrow=1),

matrix(summary(geeE)$coefficients[,2], nrow=1),

matrix(summary(geeA)$coefficients[,2], nrow=1),

matrix(summary(alrmod)$coefficients[,2], nrow=1),

intercept1,intercept2,beta1,beta2,gamma1,

cbind(dpt[1,c(2,4)],dpt[2,c(2,4)],dpt[3,c(2,4)],
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dpt[1,3]), t.seed

))

if(i==1){

myres<-allres

}

if(i>1){

myres<-rbind(myres,allres)

}} ## end of simulation

# Add column names to the results

colnames(myres)<-c("mb0","mb1","mp0","mp1",

"m1b0","m1b1","m1p0","m1p1", "m2b0","m2b1", "m2p0","m2p1",

"m01b0","m01b1","m01p0","m01p1", "m11b0","m11b1","m11p0","m11p1",

"geeIb0", "geeIb1","geeIb0p0","geeIb1p1",

"geeEb0", "geeEb1","geeEb0p0","geeEb1p1",

"geeAb0", "geeAb1","geeAb0p0","geeAb1p1",

"alrb0", "alrb1", "alralpha",

"mb0se", "mb1se","m1b0se", "m1b1se",

"m2b0se", "m2b1se","m01b0se", "m01b1se",

"m11b0se", "m11b1se","geeIb0se", "geeIb1se",

"geeEb0se", "geeEb1se","geeAb0se", "geeAb1se",

"alrb0se", "alrb1se",

"intercept1","intercept2","beta1","beta2","gamma1",

"b01b11ch","pv","b01b2ch","pv","b11b2ch","pv","df",

"t.seed")

res<-list(myres)

return(res)

} # end function

########Function for testing ######################

########the equality of beta 1 and beta 2##########

dtest<-function(trt01,trt11,trt2){

co1 <-matrix(trt01$coefficients,nrow=1) #Model 01

co2 <-matrix(trt11$coefficients,nrow=1) #Model 11

co4 <-matrix(trt2$coefficients,nrow=1) #Model 2(y2)

nvr <-dim(co4)[2]

# cat("nvr") # Number of variables

# print(nvr)

sc1 <- vcov(trt01)

sc2 <- vcov(trt11)

sc4 <- vcov(trt2)

#cat("sc1") # print(sc1) # print(sc2)

# print(dim(sc1)) # print(dim(sc2)) # print(sc4)

## testing beta01 vs. beta11

pab1 <- sc1+sc2

tt2 <- matrix((co1-co2),nrow=1)

ch3 <- tt2%*%solve(pab1)%*%t(tt2)

chp3 <- 1-pchisq(ch3, nvr,ncp=0,
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lower.tail = TRUE, log.p = FALSE)

## testing beta01 vs. beta2

pab4 <- sc1+sc4

tt3 <- matrix((co1-co4),nrow=1)

ch4 <- tt3 %*%solve(pab4)%*%t(tt3)

chp4 <- 1-pchisq(ch4, nvr,ncp=0,

lower.tail = TRUE, log.p = FALSE)

## testing beta11 vs. beta2

pab5 <- sc2+sc4

tt4 <- matrix((co2-co4),nrow=1)

ch5 <- tt4 %*%solve(pab5)%*%t(tt4)

chp5 <- 1-pchisq(ch5, nvr,ncp=0,

lower.tail = TRUE, log.p = FALSE)

chtv<-rbind(ch3,ch4,ch5)

chpv<-rbind(chp3,chp4,chp5)

rrn<-c("Beta_01 VS Beta_11:",

"Beta_01 VS Beta_2:","Beta_11 VS Beta_2:")

deres<-data.frame(Test=rrn,chi_square=chtv,

d.f.=nvr,p_value=chpv)

return(deres)

} # end of function

##################################################################

## Codes for the Simulation Studies for MCM2, GEE and ALR ########

## in Chapter 6 #####################

##################################################################

library(MASS)

library(magic)

library(geepack)

library(dplyr)

library(alr)

t.seed <- 3456

set.seed(t.seed)

totsim <- 1000 ## Number of Simulations

N <- 200 ## Sample Size

t <- 2 ## Number of observations per subject

#TRIAL1# Identical population, non-correlated data

intercept1 <- 0.5; intercept2 <- 0.5; beta1 <- 0.2

beta2 <- 0.2; gamma1 <- 0.0

#TRIAL2# Identical population, correlated data

intercept1 <- 0.5; intercept2 <- 0.5; beta1 <- 0.2

beta2 <- 0.2; gamma1 <- 1.0
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#TRIAL3# Non-Identical, non-correlated data

intercept1 <- 0.5; intercept2 <- 0.2; beta1 <- 0.2

beta2 <- 0.7; gamma1 <- 0.0

#TRIAL 4# Non-Identical, correlated data

intercept1 <- 0.5; intercept2 <- 0.2; beta1 <- 0.2

beta2 <- 0.7; gamma1 <- 1.0

#############################################

x0<- rep(1, N)

x1 <- rbinom(N, 1, .5)

init <-c(0.4, 25, 0.25)

bta<-c(init[1], init[2], init[3])

source("G:/phd/R_codes/model.R")

mysim2<- newsimbr(totsim,t.seed,N,intercept1,

intercept2,beta1,beta2,gamma1,x1)

mysim<-data.frame(mysim2)

i<-1

for(i in 1: length(mysim$m01b0))

{ if(mysim$m01b1se[i]> 2.0)

{mysim<-mysim[-i,]}

i<-i+1

}

totsim<-length(mysim$m01b0)

i<-1

for(i in 1: length(mysim$m01b0))

{ if(mysim$m11b1se[i]> 2.0)

{mysim<-mysim[-i,]}

i<-i+1

}

totsim<-length(mysim$m01b0)

est.mb0<-mean(mysim$mb0)

est.mb1<-mean(mysim$mb1)

bias1.mb0<-mean(intercept1-mysim$mb0)

#Bias from intercept1

bias1.mb1<-mean(beta1-mysim$m1b1)

#Bias from beta1

bias2.mb0<-mean(intercept2-mysim$mb0)

#Bias from intercept2

bias2.mb1<-mean(beta2-mysim$m1b1)

#Bias from beta2

lcimb0<-mysim$mb0 - 1.96*mysim$mb0se

ucimb0<-mysim$mb0 + 1.96*mysim$mb0se

lcimb1<-mysim$mb1 - 1.96*mysim$mb1se

ucimb1<-mysim$mb1 + 1.96*mysim$mb1se

### CP for intercept1 and beta1 ### Model P(Y_ij=1|X)

CP1mb0<-rep(0, totsim)
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CP1mb1<-rep(0, totsim)

for(i in 1: length(lcimb0)){

if(intercept1<=ucimb0[i] & intercept1>=lcimb0[i])

{CP1mb0[i]<-1}

if(beta1<ucimb1[i] & beta1>lcimb1[i])

{CP1mb1[i]<-1}

}

CP1m.b0<-mean(CP1mb0)

CP1m.b1<-mean(CP1mb1)

se.mb0<-mean(mysim$mb0se)

se.mb1<-mean(mysim$mb1se)

### CP for intercept2 and beta2 ## Model P(Y_ij=1|X)

CP2mb0<-rep(0, totsim)

CP2mb1<-rep(0, totsim)

for(i in 1: length(lcimb0)){

if(intercept2<=ucimb0[i] & intercept2>=lcimb0[i])

{CP2mb0[i]<-1}

if(beta2<ucimb1[i] & beta2>lcimb1[i])

{CP2mb1[i]<-1}

}

CP2m.b0<-mean(CP2mb0)

CP2m.b1<-mean(CP2mb1)

est.m1b0<-mean(mysim$m1b0)

est.m1b1<-mean(mysim$m1b1)

bias.m1b0<-mean(intercept1-mysim$m1b0)

bias.m1b1<-mean(beta1-mysim$m1b1)

lcim1b0<-mysim$m1b0 - 1.96*mysim$m1b0se

ucim1b0<-mysim$m1b0 + 1.96*mysim$m1b0se

lcim1b1<-mysim$m1b1 - 1.96*mysim$m1b1se

ucim1b1<-mysim$m1b1 + 1.96*mysim$m1b1se

### CP of intercept1 and beta1 ## Model P(Y1=1|X)

CPm1b0<-rep(0, totsim)

CPm1b1<-rep(0, totsim)

for(i in 1: length(lcim1b0)){

if(intercept1<=ucim1b0[i] & intercept1>=lcim1b0[i])

{CPm1b0[i]<-1}

if(beta1<ucim1b1[i] & beta1>lcim1b1[i])

{CPm1b1[i]<-1}

}

CPm1.b0<-mean(CPm1b0)

CPm1.b1<-mean(CPm1b1)

se.m1b0<-mean(mysim$m1b0se)

se.m1b1<-mean(mysim$m1b1se)

est.m2b0<-mean(mysim$m2b0)

est.m2b1<-mean(mysim$m2b1)

bias.m2b0<-mean(intercept2-mysim$m2b0)

bias.m2b1<-mean(beta2-mysim$m2b1)

lcim2b0<-mysim$m2b0 - 1.96*mysim$m2b0se
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ucim2b0<-mysim$m2b0 + 1.96*mysim$m2b0se

lcim2b1<-mysim$m2b1 - 1.96*mysim$m2b1se

ucim2b1<-mysim$m2b1 + 1.96*mysim$m2b1se

### CP for intercept2 and beta2 ## Model P(Y2=1|X)

CPm2b0<-rep(0, totsim)

CPm2b1<-rep(0, totsim)

for(i in 1: length(lcim2b0)){

if(intercept2<ucim2b0[i] & intercept2>lcim2b0[i])

CPm2b0[i]<-1

if(beta2<ucim2b1[i] & beta2>lcim2b1[i])

CPm2b1[i]<-1

}

CPm2.b0<-mean(CPm2b0)

CPm2.b1<-mean(CPm2b1)

se.m2b0<-mean(mysim$m2b0se)

se.m2b1<-mean(mysim$m2b1se)

est.m01b0<-mean(mysim$m01b0)

est.m01b1<-mean(mysim$m01b1)

bias.m01b0<-mean(intercept2-mysim$m01b0)

bias.m01b1<-mean(beta2-mysim$m01b1)

lcim01b0<-mysim$m01b0 - 1.96*mysim$m01b0se

ucim01b0<-mysim$m01b0 + 1.96*mysim$m01b0se

lcim01b1<-mysim$m01b1 - 1.96*mysim$m01b1se

ucim01b1<-mysim$m01b1 + 1.96*mysim$m01b1se

### CP of intercept2 and beta2 # Model 0-1 P(Y2=1|Y1=0,X)

CPm01b0<-rep(0, totsim)

CPm01b1<-rep(0, totsim)

for(i in 1: length(lcim01b0)){

if(intercept2<ucim01b0[i] & intercept2>lcim01b0[i])

CPm01b0[i]<-1

if(beta2<ucim01b1[i] & beta2>lcim01b1[i])

CPm01b1[i]<-1

}

CPm01.b0<-mean(CPm01b0)

CPm01.b1<-mean(CPm01b1)

se.m01b0<-mean(mysim$m01b0se)

se.m01b1<-mean(mysim$m01b1se)

est.m11b0<-mean(mysim$m11b0)

est.m11b1<-mean(mysim$m11b1)

bias.m11b0<-mean((intercept2+gamma1)-mysim$m11b0)

bias.m11b1<-mean((beta2)-mysim$m11b1)

lcim11b0<-mysim$m11b0 - 1.96*mysim$m11b0se

ucim11b0<-mysim$m11b0 + 1.96*mysim$m11b0se

lcim11b1<-mysim$m11b1 - 1.96*mysim$m11b1se

ucim11b1<-mysim$m11b1 + 1.96*mysim$m11b1se

### CP of intercept2 and beta2 # Model 1-1 P(Y2=1|Y1=1,X)

CPm11b0<-rep(0, totsim)
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CPm11b1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept2+gamma1<ucim11b0[i]

& intercept2+gamma1>lcim11b0[i])

CPm11b0[i]<-1

if(beta2<ucim11b1[i] & beta2>lcim11b1[i])

CPm11b1[i]<-1

}

CPm11.b0<-mean(CPm11b0)

CPm11.b1<-mean(CPm11b1)

se.m11b0<-mean(mysim$m11b0se)

se.m11b1<-mean(mysim$m11b1se)

est.geeIb0<-mean(mysim$geeIb0)

est.geeIb1<-mean(mysim$geeIb1)

bias1.geeIb0<-mean(intercept1-mysim$geeIb0)

bias1.geeIb1<-mean(beta1-mysim$geeIb1)

bias2.geeIb0<-mean(intercept2-mysim$geeIb0)

bias2.geeIb1<-mean(beta2-mysim$geeIb1)

lcigeeIb0<-mysim$geeIb0 - 1.96*mysim$geeIb0se

ucigeeIb0<-mysim$geeIb0 + 1.96*mysim$geeIb0se

lcigeeIb1<-mysim$geeIb1 - 1.96*mysim$geeIb1se

ucigeeIb1<-mysim$geeIb1 + 1.96*mysim$geeIb1se

### CP for intercept1 and beta1 ## Model geeI

CP1geeIb0<-rep(0, totsim)

CP1geeIb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept1<ucigeeIb0[i] & intercept1>lcigeeIb0[i])

CP1geeIb0[i]<-1

if(beta1<ucigeeIb1[i] & beta1>lcigeeIb1[i])

CP1geeIb1[i]<-1

}

CP1geeI.b0<-mean(CP1geeIb0)

CP1geeI.b1<-mean(CP1geeIb1)

### CP for intercept2 and beta2 ## Model geeI

CP2geeIb0<-rep(0, totsim)

CP2geeIb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept2<ucigeeIb0[i] & intercept2>lcigeeIb0[i])

CP2geeIb0[i]<-1

if(beta2<ucigeeIb1[i] & beta2>lcigeeIb1[i])

CP2geeIb1[i]<-1

}

CP2geeI.b0<-mean(CP2geeIb0)

CP2geeI.b1<-mean(CP2geeIb1)

se.geeIb0<-mean(mysim$geeIb0se)

se.geeIb1<-mean(mysim$geeIb1se)

est.geeEb0<-mean(mysim$geeEb0)
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est.geeEb1<-mean(mysim$geeEb1)

bias1.geeEb0<-mean(intercept1-mysim$geeEb0)

bias1.geeEb1<-mean(beta1-mysim$geeEb1)

bias2.geeEb0<-mean(intercept2-mysim$geeEb0)

bias2.geeEb1<-mean(beta2-mysim$geeEb1)

lcigeeEb0<-mysim$geeEb0 - 1.96*mysim$geeEb0se

ucigeeEb0<-mysim$geeEb0 + 1.96*mysim$geeEb0se

lcigeeEb1<-mysim$geeEb1 - 1.96*mysim$geeEb1se

ucigeeEb1<-mysim$geeEb1 + 1.96*mysim$geeEb1se

### CP for intercept1 and beta1 ## Model geeE

CP1geeEb0<-rep(0, totsim)

CP1geeEb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept1<ucigeeEb0[i] & intercept1>lcigeeEb0[i])

CP1geeEb0[i]<-1

if(beta1<ucigeeEb1[i] & beta1>lcigeeEb1[i])

CP1geeEb1[i]<-1

}

CP1geeE.b0<-mean(CP1geeEb0)

CP1geeE.b1<-mean(CP1geeEb1)

### CP for intercept2 and beta2 ### Model geeE

CP2geeEb0<-rep(0, totsim)

CP2geeEb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept2<ucigeeEb0[i] & intercept2>lcigeeEb0[i])

CP2geeEb0[i]<-1

if(beta2<ucigeeEb1[i] & beta2>lcigeeEb1[i])

CP2geeEb1[i]<-1

}

CP2geeE.b0<-mean(CP2geeEb0)

CP2geeE.b1<-mean(CP2geeEb1)

se.geeEb0<-mean(mysim$geeEb0se)

se.geeEb1<-mean(mysim$geeEb1se)

est.geeAb0<-mean(mysim$geeAb0)

est.geeAb1<-mean(mysim$geeAb1)

bias1.geeAb0<-mean(intercept1-mysim$geeAb0)

bias1.geeAb1<-mean(beta1-mysim$geeAb1)

bias2.geeAb0<-mean(intercept2-mysim$geeAb0)

bias2.geeAb1<-mean(beta2-mysim$geeAb1)

lcigeeAb0<-mysim$geeAb0 - 1.96*mysim$geeAb0se

ucigeeAb0<-mysim$geeAb0 + 1.96*mysim$geeAb0se

lcigeeAb1<-mysim$geeAb1 - 1.96*mysim$geeAb1se

ucigeeAb1<-mysim$geeAb1 + 1.96*mysim$geeAb1se

### CP for intercept1 and beta1 #### Model geeA

CP1geeAb0<-rep(0, totsim)

CP1geeAb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept1<ucigeeAb0[i] & intercept1>lcigeeAb0[i])
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CP1geeAb0[i]<-1

if(beta1<ucigeeAb1[i] & beta1>lcigeeAb1[i])

CP1geeAb1[i]<-1

}

CP1geeA.b0<-mean(CP1geeAb0)

CP1geeA.b1<-mean(CP1geeAb1)

### CP for intercept2 and beta_2 ## Model geeA

CP2geeAb0<-rep(0, totsim)

CP2geeAb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept2<ucigeeAb0[i] & intercept2>lcigeeAb0[i])

CP2geeAb0[i]<-1

if(beta2<ucigeeAb1[i] & beta2>lcigeeAb1[i])

CP2geeAb1[i]<-1

}

CP2geeA.b0<-mean(CP2geeAb0)

CP2geeA.b1<-mean(CP2geeAb1)

se.geeAb0<-mean(mysim$geeAb0se)

se.geeAb1<-mean(mysim$geeAb1se)

est.alrb0<-mean(mysim$alrb0)

est.alrb1<-mean(mysim$alrb1)

bias1.alrb0<-mean(intercept1-mysim$alrb0)

bias1.alrb1<-mean(beta1-mysim$alrb1)

bias2.alrb0<-mean(intercept2-mysim$alrb0)

bias2.alrb1<-mean(beta2-mysim$alrb1)

lcialrb0<-mysim$alrb0 - 1.96*mysim$alrb0se

ucialrb0<-mysim$alrb0 + 1.96*mysim$alrb0se

lcialrb1<-mysim$alrb1 - 1.96*mysim$alrb1se

ucialrb1<-mysim$alrb1 + 1.96*mysim$alrb1se

### CP for intercept1 and beta1 ## Model alr

CP1alrb0<-rep(0, totsim)

CP1alrb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept1<ucialrb0[i] & intercept1>lcialrb0[i])

CP1alrb0[i]<-1

if(beta1<ucialrb1[i] & beta1>lcialrb1[i])

CP1alrb1[i]<-1

}

CP1alr.b0<-mean(CP1alrb0)

CP1alr.b1<-mean(CP1alrb1)

## CP for intercept2 and beta_2 ### Model alr

CP2alrb0<-rep(0, totsim)

CP2alrb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept2<ucialrb0[i] & intercept2>lcialrb0[i])

CP2alrb0[i]<-1

if(beta2<ucialrb1[i] & beta2>lcialrb1[i])
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CP2alrb1[i]<-1

}

CP2alr.b0<-mean(CP2alrb0)

CP2alr.b1<-mean(CP2alrb1)

se.alrb0<-mean(mysim$alrb0se)

se.alrb1<-mean(mysim$alrb1se)

####### Simulation Outputs

# 1. Mean of estimates # 2. Bias # 3. Cov Prob

tab1<-rbind(

cbind(est.mb0, bias1.mb0, bias2.mb0, se.mb0,

CP1m.b0, CP2m.b0),

cbind(est.mb1, bias1.mb1, bias2.mb1, se.mb1,

CP1m.b1, CP2m.b1),

cbind(est.m1b0, bias.m1b0, , se.m1b0, CPm1.b0,),

cbind(est.m1b1, bias.m1b1, ,se.m1b1, CPm1.b1,),

cbind(est.m2b0,, bias.m2b0, se.m2b0, , CPm2.b0),

cbind(est.m2b1,,bias.m2b1,se.m2b1, , CPm2.b1),

cbind(est.m01b0,,bias.m01b0,se.m01b0, ,CPm01.b0),

cbind(est.m01b1,,bias.m01b1,se.m01b1, ,CPm01.b1),

cbind(est.m11b0,,bias.m11b0,se.m11b0,,CPm11.b0),

cbind(est.m11b1,,bias.m11b1,se.m11b1,,CPm11.b1),

cbind(est.geeIb0, bias1.geeIb0, bias2.geeIb0,

se.geeIb0, CP1geeI.b0, CP2geeI.b0),

cbind(est.geeIb1,bias1.geeIb1, bias2.geeIb1,

se.geeIb1, CP1geeI.b1, CP2geeI.b1),

cbind(est.geeEb0, bias1.geeEb0, bias2.geeEb0,

se.geeEb0, CP1geeE.b0, CP2geeE.b0),

cbind(est.geeEb1,bias1.geeEb1, bias2.geeEb1 ,

se.geeEb1, CP1geeE.b1, CP2geeE.b1),

cbind(est.geeAb0, bias1.geeAb0, bias2.geeAb0,

se.geeAb0, CP1geeA.b0, CP2geeA.b0),

cbind(est.geeAb1,bias1.geeAb1, bias2.geeAb1,

se.geeAb1, CP1geeA.b1, CP2geeA.b1),

cbind(est.alrb0,bias1.alrb0, bias2.alrb0,

se.alrb0, CP1alr.b0,CP2alr.b0),

cbind(est.alrb1, bias1.alrb1, bias2.alrb1,

se.alrb1, CP1alr.b1, CP2alr.b1))

write.csv(data.frame(tab1), "tab1.csv")

A2. R codes for MCM3, GEE and ALR in Chapter 6

######################## FUNCTIONS #####################################

############ Generating data Y1 , Y2, Y3 and Y4 ######################

modsimbonney<-function(N,intercept, beta1, gamma1, gamma2, gamma3, x1){

## simulate y1

id <- 1:N

xbeta <- intercept + beta1 *x1

proba1 <- exp(xbeta)/(1 + exp(xbeta))

Y1 <- ifelse(runif(N,0,1) < proba1,1,0)
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# simulate y2

xbeta2 <- intercept + beta1 *x1 + gamma1 * Y1

proba2 <- exp(xbeta2)/(1 + exp(xbeta2))

Y2 <- ifelse(runif(N,0,1) < proba2,1,0)

# simulate y3

xbeta3 <- intercept + beta1 *x1 + gamma1* Y1+ gamma2*Y2

proba3 <- exp(xbeta3)/(1 + exp(xbeta3))

Y3 <- ifelse(runif(N,0,1) < proba3,1,0)

# simulate y4

xbeta4 <- intercept + beta1 *x1 + gamma1* Y1+ gamma2*Y2 + gamma3*Y3

proba4 <- exp(xbeta4)/(1 + exp(xbeta4))

Y4 <- ifelse(runif(N,0,1) < proba4,1,0)

dat <- data.frame(id,Y1,Y2,Y3,Y4,x1,x1,x1, x1)

alp<-cor(dat[2:5])

pij<-data.frame(proba1, proba2, proba3, proba4)

sdatacor<-list(alp, dat, pij)

# print(sdatacor)

return(sdatacor)

}

newsimbonney<-function(totsim,t.seed,N,intercept,beta1,

gamma1,gamma2,gamma3,x1){

for (i in 1:totsim){

cat("i=",i,"\n")

dd<- modsimbonney(N,intercept,beta1,gamma1,gamma2,gamma3, x1)

sdata<-data.frame(dd[2])

colnames(sdata)<-c("id", "Y1","Y2","Y3","Y4", "x1","x2", "x3", "x4")

# sdata<-data.frame(sdata)

pij<-data.frame(dd[3])

cmatr<-data.frame(dd[1])# correlation matrix of Y1 Y2 and Y3

calpha12<-cmatr[1,2] # correlation between Y1 and Y2

calpha13<-cmatr[1,3] # correlation between Y1 and Y3

calpha23<-cmatr[2,3] # correlation between Y2 and Y3

print("++++++++SSSSS+++++++++")

## Regressive Models

dat1<-sdata[,c(1,2,6)]

dat2<-sdata[,c(1,3,7)]

dat3<-sdata[,c(1,4,8)]

dat4<-sdata[,c(1,5,9)]

colnames(dat1)<-c("id","Y","x1")

colnames(dat2)<-c("id","Y","x1")

colnames(dat3)<-c("id","Y","x1")

colnames(dat4)<-c("id","Y","x1")

dat<-rbind(dat1,dat2,dat3, dat4)

dat<-arrange(dat,id)

#print(head(dat))
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#colnames(dat)<-c("id", "Y", "x1")

geeI<-geeglm(Y~x1,family=binomial("logit"),id=id,

corstr="independence",std.err="san.se",data=dat)

# print(summary(geeI)); #print(head(dat))

geeE<-geeglm(Y~x1,family=binomial(link="logit"),id=id,

corstr="exchangeable",std.err="san.se",data=dat)

# print(summary(geeE))

geeA<-geeglm(Y~x1,family=binomial("logit"),id=id,

corstr="ar1",std.err="san.se",data=dat)

# print(summary(geeA))

# Add models for ALR

alrmod <- alr(dat$Y ~ dat$x1, id=dat$id, depm="exchangeable", ainit=0.2)

# print(summary(alrmod))

alralpha<-alrmod$alpha

## Fitting model with parameters beta and gamma

mbon<-glm(Y4~x1+Y1+Y2+Y3,family=binomial,data=sdata)

allres<-cbind(

matrix(mbon$coefficients,nrow=1),matrix(summary(mbon)$coeff[,4],nrow=1),

matrix(geeI$coefficients,nrow=1),matrix(summary(geeI)$coeff[,4],nrow=1),

matrix(geeE$coefficients,nrow=1),matrix(summary(geeE)$coeff[,4],nrow=1),

matrix(geeA$coefficients,nrow=1),matrix(summary(geeA)$coeff[,4],nrow=1),

matrix(alrmod$coefficients, nrow=1), alralpha,

matrix(summary(mbon)$coefficients[,2], nrow=1 ),

matrix(summary(geeI)$coefficients[,2], nrow=1 ),

matrix(summary(geeE)$coefficients[,2], nrow=1 ),

matrix(summary(geeA)$coefficients[,2], nrow=1 ),

matrix(summary(alrmod)$coefficients[,2], nrow=1),

intercept,beta1,gamma1,gamma2,gamma3, t.seed)

if(i==1){

myres<-allres

}

if(i>1){

myres<-rbind(myres,allres)

}

} ## end of simulation

# Add column names of results matrix

colnames(myres)<-c( "mbonb0", "mbonb1","mbong1","mbong2","mbong3",

"mbonb0p0","mbonb1p1","mbong1p1","mbong2p2","mbong3p3",

"geeIb0","geeIb1","geeIb0p0","geeIb1p1",

"geeEb0","geeEb1","geeEb0p0","geeEb1p1",

"geeAb0","geeAb1","geeAb0p0","geeAb1p1",

"alrb0", "alrb1", "alralpha",

"mbonb0se", "mbonb1se","mbong1se","mbong2se","mbong3se",

"geeIb0se", "geeIb1se", "geeEb0se", "geeEb1se",

"geeAb0se", "geeAb1se", "alrb0se", "alrb1se",

"intercept1", "beta1", "gamma1","gamma2","gamma3","t.seed")

res<-list(myres)

return(res)

} # end function
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##################################################################

## Codes for Running the Simulation Study for MCM3, GEE and ALR ##

##################################################################

library(MASS)

library(magic)

library(geepack)

library(dplyr)

library(alr)

t.seed <- 3456

set.seed(t.seed)

totsim <- 1000

N <- 500

t <- 4

## TRIAL 1 # non-Identical population, non-correlated data

intercept <- 0.2

beta1 <- 0.7

gamma1 <- 0.0

gamma2 <- 0.0

gamma3 <- 0.0

x0<- rep(1, N)

x1 <- rbinom(N, 1, .5)

init <-c(0.4, 25, 0.25)

bta<-c(init[1], init[2], init[3])

source("G:/phd/R_codes/model_bonney4.R")

myresultsbn<- newsimbonney(totsim,t.seed,N,

intercept,beta1,gamma1,gamma2,gamma3, x1)

mysim<-data.frame(myresultsbn)

est.mbonb0<-mean(mysim$mbonb0)

est.mbonb1<-mean(mysim$mbonb1)

est.mbong1<-mean(mysim$mbong1)

est.mbong2<-mean(mysim$mbong2)

est.mbong3<-mean(mysim$mbong3)

bias.mbonb0<-mean(intercept-mysim$mbonb0)

bias.mbonb1<-mean(beta1-mysim$mbonb1)

bias.mbong1<-mean(gamma1-mysim$mbong1)

bias.mbong2<-mean(gamma2-mysim$mbong2)

bias.mbong3<-mean(gamma3-mysim$mbong3)

lcimbonb0<-mysim$mbonb0 - 1.96*mysim$mbonb0se

ucimbonb0<-mysim$mbonb0 + 1.96*mysim$mbonb0se

lcimbonb1<-mysim$mbonb1 - 1.96*mysim$mbonb1se

ucimbonb1<-mysim$mbonb1 + 1.96*mysim$mbonb1se

lcimbong1<-mysim$mbong1 - 1.96*mysim$mbong1se

ucimbong1<-mysim$mbong1 + 1.96*mysim$mbong1se

lcimbong2<-mysim$mbong2 - 1.96*mysim$mbong2se

ucimbong2<-mysim$mbong2 + 1.96*mysim$mbong2se

lcimbong3<-mysim$mbong3 - 1.96*mysim$mbong3se

ucimbong3<-mysim$mbong3 + 1.96*mysim$mbong3se
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# Computing CP for b0 and b1 of model 1, P(Y1=1|X)

CPm1b0<-rep(0, totsim)

CPm1b1<-rep(0, totsim)

CPm1g1<-rep(0, totsim)

CPm1g2<-rep(0, totsim)

CPm1g3<-rep(0, totsim)

for(i in 1: length(lcimbonb0)){

if(intercept<=ucimbonb0[i] & intercept>=lcimbonb0[i])

{CPm1b0[i]<-1}

if(beta1<ucimbonb1[i] & beta1>lcimbonb1[i])

{CPm1b1[i]<-1}

if(gamma1<ucimbong1[i] & gamma1>lcimbong1[i])

{CPm1g1[i]<-1}

if(gamma2<ucimbong2[i] & gamma2>lcimbong2[i])

{CPm1g2[i]<-1}

if(gamma3<ucimbong3[i] & gamma3>lcimbong3[i])

{CPm1g3[i]<-1}

}

CPm1.b0<-mean(CPm1b0)

CPm1.b1<-mean(CPm1b1)

CPm1.g1<-mean(CPm1g1)

CPm1.g2<-mean(CPm1g2)

CPm1.g3<-mean(CPm1g3)

se.mbonb0<-mean(mysim$mbonb0se)

se.mbonb1<-mean(mysim$mbonb1se)

se.mbong1<-mean(mysim$mbong1se)

se.mbong2<-mean(mysim$mbong2se)

se.mbong3<-mean(mysim$mbong3se)

est.geeIb0<-mean(mysim$geeIb0)

est.geeIb1<-mean(mysim$geeIb1)

bias.geeIb0<-mean(intercept-mysim$geeIb0)

bias.geeIb1<-mean(beta1-mysim$geeIb1)

lcigeeIb0<-mysim$geeIb0 - 1.96*mysim$geeIb0se

ucigeeIb0<-mysim$geeIb0 + 1.96*mysim$geeIb0se

lcigeeIb1<-mysim$geeIb1 - 1.96*mysim$geeIb1se

ucigeeIb1<-mysim$geeIb1 + 1.96*mysim$geeIb1se

## Computing CP for b0 and b1 of model geeI P(Y2=1|Y1=1,X)

CPgeeIb0<-rep(0, totsim)

CPgeeIb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept<ucigeeIb0[i] & intercept>lcigeeIb0[i])

CPgeeIb0[i]<-1

if(beta1<ucigeeIb1[i] & beta1>lcigeeIb1[i])

CPgeeIb1[i]<-1

}

CPgeeI.b0<-mean(CPgeeIb0)

CPgeeI.b1<-mean(CPgeeIb1)

se.geeIb0<-mean(mysim$geeIb0se)
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se.geeIb1<-mean(mysim$geeIb1se)

est.geeEb0<-mean(mysim$geeEb0)

est.geeEb1<-mean(mysim$geeEb1)

bias.geeEb0<-mean(intercept-mysim$geeEb0)

bias.geeEb1<-mean(beta1-mysim$geeEb1)

lcigeeEb0<-mysim$geeEb0 - 1.96*mysim$geeEb0se

ucigeeEb0<-mysim$geeEb0 + 1.96*mysim$geeEb0se

lcigeeEb1<-mysim$geeEb1 - 1.96*mysim$geeEb1se

ucigeeEb1<-mysim$geeEb1 + 1.96*mysim$geeEb1se

## Computing CP for b0 and b1 of model geeE P(Y2=1|Y1=1,X)

CPgeeEb0<-rep(0, totsim)

CPgeeEb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept<ucigeeEb0[i] & intercept>=lcigeeEb0[i])

{CPgeeEb0[i]<-1}

if(beta1<ucigeeEb1[i] & beta1>lcigeeEb1[i])

{CPgeeEb1[i]<-1}

}

CPgeeE.b0<-mean(CPgeeEb0)

CPgeeE.b1<-mean(CPgeeEb1)

se.geeEb0<-mean(mysim$geeEb0se)

se.geeEb1<-mean(mysim$geeEb1se)

est.geeAb0<-mean(mysim$geeAb0)

est.geeAb1<-mean(mysim$geeAb1)

bias.geeAb0<-mean(intercept-mysim$geeAb0)

bias.geeAb1<-mean(beta1-mysim$geeAb1)

lcigeeAb0<-mysim$geeAb0 - 1.96*mysim$geeAb0se

ucigeeAb0<-mysim$geeAb0 + 1.96*mysim$geeAb0se

lcigeeAb1<-mysim$geeAb1 - 1.96*mysim$geeAb1se

ucigeeAb1<-mysim$geeAb1 + 1.96*mysim$geeAb1se

## Computing CP for b0 and b1 of model geeE P(Y2=1|Y1=1,X)

CPgeeAb0<-rep(0, totsim)

CPgeeAb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept<ucigeeAb0[i] & intercept>lcigeeAb0[i])

CPgeeAb0[i]<-1

if(beta1<ucigeeAb1[i] & beta1>lcigeeAb1[i])

CPgeeAb1[i]<-1

}

CPgeeA.b0<-mean(CPgeeAb0)

CPgeeA.b1<-mean(CPgeeAb1)

se.geeAb0<-mean(mysim$geeAb0se)

se.geeAb1<-mean(mysim$geeAb1se)

est.alrb0<-mean(mysim$alrb0)

est.alrb1<-mean(mysim$alrb1)

bias.alrb0<-mean(intercept-mysim$alrb0)

bias.alrb1<-mean(beta1-mysim$alrb1)
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lcialrb0<-mysim$alrb0 - 1.96*mysim$alrb0se

ucialrb0<-mysim$alrb0 + 1.96*mysim$alrb0se

lcialrb1<-mysim$alrb1 - 1.96*mysim$alrb1se

ucialrb1<-mysim$alrb1 + 1.96*mysim$alrb1se

CPalrb0<-rep(0, totsim)

CPalrb1<-rep(0, totsim)

for(i in 1: totsim){

if(intercept<ucialrb0[i] & intercept>lcialrb0[i])

CPalrb0[i]<-1

if(beta1<ucialrb1[i] & beta1>lcialrb1[i])

CPalrb1[i]<-1

}

CPalr.b0<-mean(CPalrb0)

CPalr.b1<-mean(CPalrb1)

se.alrb0<-mean(mysim$alrb0se)

se.alrb1<-mean(mysim$alrb1se)

####### Simulation OUtputs

bonres<- data.frame(rbind(

cbind(est.mbonb0, bias.mbonb0, se.mbonb0, CPm1.b0),

cbind(est.mbonb1, bias.mbonb1,se.mbonb1, CPm1.b1),

cbind(est.mbong1, bias.mbong1, se.mbong1, CPm1.g1),

cbind(est.mbong2, bias.mbong2, se.mbong2, CPm1.g2),

cbind(est.mbong3, bias.mbong3, se.mbong3, CPm1.g3),

cbind(est.geeIb0, bias.geeIb0, se.geeIb0,CPgeeI.b0),

cbind(est.geeIb1, bias.geeIb1, se.geeIb1, CPgeeI.b1),

cbind(est.geeEb0, bias.geeEb0, se.geeEb0,CPgeeE.b0),

cbind(est.geeEb1, bias.geeEb1, se.geeEb1, CPgeeE.b1),

cbind(est.geeAb0, bias.geeAb0, se.geeAb0,CPgeeA.b0),

cbind(est.geeAb1, bias.geeAb1, se.geeAb1, CPgeeA.b1),

cbind(est.alrb0, bias.alrb0, se.alrb0, CPalr.b0),

cbind(est.alrb1, bias.alrb1, se.alrb1, CPalr.b1)))

write.csv(bonres, ’G:\\phd\\bonres.csv’)

A3. R Codes for MCMQL, GEE and ALR in Chapter 7

### Generating data##

id<-c(1:N)

gendat<-function(N, id, intercept1, intercept2, beta1, beta2, ro12){

# STEP 1: generate x

x0<- rep(1, N)

x1 <- rbinom(N, 1, .5)

## STEP 2: Calculate marginal probabilities for population values

xbeta1 <- intercept1 + beta1 *x1

proba1 <- exp(xbeta1)/(1 + exp(xbeta1))

xbeta2 <- intercept2 + beta2 *x1

proba2 <- exp(xbeta2)/(1 + exp(xbeta2))

pij<-cbind(proba1, proba2)

simdat<-matrix(0, nrow=N, ncol=2)
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for(i in 1: N){

mm<-cbind(c(1, ro12), c(ro12, 1))# Correlation matrix

comprob<-bincorr2commonprob(c(pij[i,1], pij[i, 2]), mm)

simdat[i,]<-rmvbin(1, c(pij[i,1], pij[i,2]), comprob)

}

dat<-cbind(id, simdat, x1, x1)

# estimating rho from simulated data

dat1<-list(dat, pij)

return(dat1)

}

newsimqsi<-function(totsim,tsd, N,intercept1,intercept2,beta1,beta2,ro12)

{ for (i in 1:totsim){

cat("i=",i,"\n")

dd<- gendat(N,id, intercept1,intercept2,beta1,beta2,ro12)

sdata<-data.frame(dd[[1]])

colnames(sdata)<-c("id", "Y1","Y2","x1","x2")

Y1<-sdata[,2]

Y2<-sdata[,3]

#Estimating correlation of simulated data

freqtab<-table(Y1, Y2)

f00<-freqtab[1,1]

f11<-freqtab[2,2]

f10<-freqtab[2,1]

f01<-freqtab[1,2]

f0.<-f00+f01

f1.<-f10+f11

f.0<-f00+f10

f.1<-f01+f11

r12<-(f00*f11 - f10*f01)/(sqrt(f0.*f1.*f.0*f.1))# corr bet Y1 and Y2

sdata01<-subset(sdata,Y1==0)

sdata11<-subset(sdata,Y1==1)

# Proposed Model for beta1 and beta2|1

mod1 <-glm(Y1~x1,family=quasibinomial,data=sdata)

mod2 <-glm(Y2~x1,family=quasibinomial,data=sdata)

# Add models for GEE

### Rearrange the data

dat1<-sdata[,c(1,2,4)]

dat2<-sdata[,c(1,3,4)]

colnames(dat1)<-c("id","Y","x1")

colnames(dat2)<-c("id","Y","x1")

dat<-rbind(dat1,dat2)

dat<-arrange(dat,id)

#print(head(dat))

colnames(dat)<-c("id", "Y", "x1")

geeI<-geeglm(Y~x1,family=binomial("logit"),id=id,

corstr="independence",std.err="san.se",data=dat)

print(summary(geeI))

#print(head(dat))

geeE<-geeglm(Y~x1,family=binomial(link="logit"),id=id,
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corstr="exchangeable",std.err="san.se",data=dat)

print(summary(geeE))

geeA<-geeglm(Y~x1,family=binomial("logit"),id=id,

corstr="ar1",std.err="san.se",data=dat)

print(summary(geeA))

# Add models for ALR

alrmod <- alr(dat$Y ~ dat$x1, id=dat$id, depm="exchangeable", ainit=0.2)

print(summary(alrmod))

alralpha<-alrmod$alpha

# dpt<- dtest(trt01=mod01,trt11=mod11,trt2=mod2)

# print(dpt)

# Add results of GEE and ALR in allres

# "allres" is the collection of all results

allres<-data.frame(cbind(

matrix(mod1$coefficients,nrow=1),matrix(summary(mod1)$coeff[,4],nrow=1),

matrix(mod2$coefficients,nrow=1),matrix(summary(mod2)$coeff[,4],nrow=1),

matrix(geeI$coefficients,nrow=1),matrix(summary(geeI)$coeff[,4],nrow=1),

matrix(geeE$coefficients,nrow=1),matrix(summary(geeE)$coeff[,4],nrow=1),

matrix(geeA$coefficients,nrow=1),matrix(summary(geeA)$coeff[,4],nrow=1),

matrix(alrmod$coefficients, nrow=1), alralpha,

# self0, self1, selfalpha,

# gra.est, sigma.gra,

matrix(summary(mod1)$coefficients[,2], nrow=1 )

, matrix(summary(mod2)$coefficients[,2], nrow=1 )

, matrix(summary(geeI)$coefficients[,2], nrow=1 ),

matrix(summary(geeE)$coefficients[,2], nrow=1 ),

matrix(summary(geeA)$coefficients[,2], nrow=1 ),

matrix(summary(alrmod)$coefficients[,2], nrow=1),

# matrix(summary(bi.est)$par[,2], nrow=1),

intercept1,intercept2,beta1,beta2, r12,

# cbind(dpt[1,c(2,4)],dpt[2,c(2,4)],dpt[3,c(2,4)],dpt[1,3]),

t.seed

))

if(i==1){

myres<-allres

}

if(i>1){

myres<-rbind(myres,allres)

}

} ## end of simulation

# Add results of GEE and ALR in colnames

colnames(myres)<-c(

"m1b0","m1b1","m1p0","m1p1","m2b0","m2b1", "m2p0","m2p1",

"geeIb0", "geeIb1","geeIb0p0","geeIb1p1",

"geeEb0", "geeEb1","geeEb0p0","geeEb1p1",

"geeAb0", "geeAb1","geeAb0p0","geeAb1p1",

"alrb0", "alrb1", "alralpha",

"m1b0se", "m1b1se", "m2b0se", "m2b1se",

"geeIb0se", "geeIb1se","geeEb0se", "geeEb1se",

"geeAb0se", "geeAb1se","alrb0se", "alrb1se",
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"intercept1","intercept2","beta1","beta2", "rho",

# "b01b11ch","pv","b01b2ch","pv","b11b2ch","pv", "df",

"t.seed")

res<-list(myres)

return(res)

} # end function
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