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Abstract 

The aim of our study, which consists of six chapters, is to study some problems on heat 

transfer with convection in the micropolar fluids. In the following, a brief discussion of the 

chapters is given. 

Chapter Two contains a brief overview of research works on the boundary layer flow 

of a micropolar fluid along a vertical plate. The literature review exposes the necessity of 

investigation of this problem. It also gives the step by step development of the problem. 

Although there are numerous studies on the boundary layer characteristics of micropolar fluid 

along a vertical plate, nevertheless further investigation needs to be done. 

In Chapte Three, an analysis is performed to study the shear stress, the couple-stress 

and heat transfer characteristics of a laminar mixed convection boundary layer flow of a 

micropolar fluid past an isothermal permeable plate. The governing nonsimilar boundary 

layer equations are analyzed using the (i) series solution for small 𝜉, (ii) asymptotic solution 

for large 𝜉 and (iii) primitive-variable formulation and the stream function formulation are 

being used for all 𝜉. The effects of the material parameters, such as, the vortex viscosity 

parameter, 𝐾, and the transpiration parameter, 𝑠, on the shear stress, the couple-stress and 

heat transfer have been investigated. The agreement between the solutions obtained from the 

stream-function formulation and the primitive-variable formulation is found to be excellent. 

 The unsteady free convection boundary layer flow of a thermo-micropolar fluid along 

a vertical plate with effect of micropolar heat conduction has been investigated inChapter 

Four. The governing equations are transformed into a new form using a method of 

transformed coordinates. We then use an explicit finite difference scheme to solve the 

transformed equations. Here, the governing equations have been reduced to the forms that are 

valid for entire, small and large time regimes, by using stream-function formulation. The 

results obtained for the above mentioned three time regimes are compared and found in 

excellent agreement. Moreover, the effects of the physical parameters such as the viscosity 

parameter, K, and the heat conduction parameter, α*, are presented in terms of the transient 

shear stress, couple stress and surface heat transfer coefficient as well as transient velocity 

profiles, angular velocity profiles and temperature profiles.  
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In Chapte Five, the unsteady free convection boundary layer flow of a thermo-micropolar 

fluid along a vertical plate has been investigated in this paper. The temperature of the plate is 

assumed to be oscillating about a mean temperature, w(x), with small amplitude. The 

governing boundary layer equations are analyzed using straight forward finite difference 

method. The effects of the material parameters such as micropolar heat conduction parameter, 

N*, the vortex viscosity parameter, K, on the shear stress,, surface heat transfer, q, and the 

couple-stress, m, have been investigated. 

Chapter Six concerns the boundary layer characteristics of the free convection flow of 

a thermo-micropolar fluid from a vertical surface with the effect of stream wise sinusoidal 

variation of the surface temperature. The dimensionless boundary layer equations are solved 

using the straight forward finite difference method. Results are presented in terms of the skin 

friction, couple stress and heat transfer coefficients with the variation of the micropolar heat 

conduction parameter, the vortex viscosity parameter andthe amplitude of surface 

temperature. We also discussed the effects of these parameters on the streamlines, isoclines 

of angular velocity and isoclines of temperature. 
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Nomenclature 

a = amplitude of oscillation 

B = dimensionless modified Grashof number  

cp = specific heat capacity 

f  = dimensionless stream function 

g = the acceleration due to gravity 

g = dimensionless micro rotation 

G = dimensionless component of micro rotation 

G = dimensionless angular velocity 

Gr = Grashof number  

j = micro inertia per unit mass 

jo = reference value (L2) 

K = vortex viscosity parameter  ( /) 

L = characteristic length 

m = couple-stress 

mω = couple-stress 

n = a real number 

N  = dimensional angular velocity 

N  = component of micro rotation 

N =dimensionless angular velocity 

N* = micropolar heat conduction parameter   

Nu = Nusselt number 

Pr = Prandtl number  (ν/α) 

q = surface heat flux 

Re =Reynolds number (U0L / ν) 

T  = dimensional temperature 

T = temperature of the fluid in the boundary layer region 

T  = dimensional temperature of the ambient fluid 

s = transpiration parameter 

t = time 

U0 = free stream velocity 
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wT  = dimensional temperature of the fluid at the surface  Tw T  

V0 = surface mass flux 

u = dimensionless velocity components to the x co-ordinates 

v  = dimensionless velocity components to the y co-ordinates 

,u v  = velocity components 

,u v  = dimensional velocity components along the ,x y  axes 

,u v  = dimensionless fluid velocities components along the x, y axes 

U, V = fluid velocities in the X- and Y-direction respectively 

,x y  = dimensional stream wise and cross-stream Cartesian coordinate 

x, y = stream wise and cross-stream Cartesian coordinates 

X, Y = non dimensional stream wise and cross-stream Cartesian coordinates 

 similarity variable 

 

 = thermal conductivity  

 = stream function 

  = dimensionless temperature in the boundary layer 

 = dynamic viscosity of the fluid/ dynamic viscosity 

  = thermal diffusivity (/) 

 =  coefficient of volume expansion 

αc =  the micropolar conductivity 

α* = micro polar heat conduction parameter 

 = viscosity coefficient (/) 

 = density of the fluid  (m/ V) 

 = the shear stress the surface shear stress  

 = gyro viscosity  coefficient( spin-gradient viscosity) ( +  /2) j 

 = non-dimensional, reduced time 

ω = surface shear stress 

,  dimensionless temperature 
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Chapter One 

Introduction 
 

The concept of micropolar fluids introduced by Eringen [1] deals with a class of fluids, which 

exhibit certain microscopic effects arising from the local structure and micromotions of the 

fluid elements. These fluids contain dilute suspensions of rigid micromolecules with 

individual motions, which support stress and body moments and are influenced by spin-

inertia. The theory of micropolar fluid and its extension to thermomicropolar fluids [2] may 

form suitable non Newtonian fluid models which can be used to analyze the behavior of 

exotic lubricants [3, 4], colloidal suspensions or polymeric fluids [5], liquid crystals [6, 7], 

and animal blood [8]. Kolpashchikov et al. [9] have derived a method to measure micropolar 

parameters experimentally. A thorough  review of this subject and application of micropolar 

fluid mechanics has been provided by Ariman et al. [10, 11]. On the other hand, Rees and 

Bassom [12] investigated the Blasius boundary-layer flow of a micropolar fluid over a flat 

plate. In this investigation, detailed numerical results and an asymptotic analysis for large 

distances from the leading edge have been presented. 

Studies of heat convection in micropolar fluids have been focused on a flat plate [13–

17] and on a wavy surface [18]. Hossain and Chowdhury [19] investigated the effect of 

material parameters on the mixed convection flow of thermomicropolar fluid from a vertical 

as well as a horizontal heat surface taking into consideration that the spin-gradient viscosity is 

non-uniform. Later, Hossain et al. [20] investigated the problem for a viscous incompressible 

thermomicropolar fluid with uniform spin gradient over a flat plate with a small inclination to 

the horizontal. 

 The importance of suction and blowing in controlling the boundary layer thickness 

and the rate of heat transfer has motivated many researchers to investigate its effects on 

forced and free convection flows. Eichhorn [21] considered power law variations in the plate 

temperature and transpiration velocity and found similarity solutions of the problem. Sparrow 

and Cess [22] discussed the case of constant plate temperature and transpiration velocity and 

obtained series expansions for temperature and velocity distributions in powers of x1/2, where 

x is the distance in the stream-wise direction measured from the leading edge. Later, Merkin  

[23, 24] and Perikh et al. [25] presented numerical solutions for free convection heat transfer 

with blowing along an isothermal vertical flat plate. Hartnett and Eckert [26] and Sparrow 
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and Starr [27] reported the characteristics of heat transfer and skin-friction for pure forced 

convection with blowing; the former was dealt with a non-similar case. Local non-similar 

solutions for convection flow with arbitrary transpiration velocity were obtained by Kao [28, 

29] applying GoÈrtler-Meksin transformations. Free convection flow along a vertical plate 

with arbitrary blowing and wall temperature has also been investigated by Vedhanayagam et 

al. [30]. With this understanding, Yucel [31] investigated mixed convection micropolar fluid 

flow over horizontal plate with uniform surface mass flux blowing and suction through the 

surface. Recently, Attia [32] investigated the steady laminar flow of an incompressible 

micropolar fluid over a porous flat plate considering  the heat generation. Recently, the MHD 

boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature has 

been discussed by Ishak et al. [33]. In addition to, mixed convection flow of a micropolar 

fluid from an isothermal vertical plate has been investigated by Jena and Mathur [34].                                                                                 

Apart from permeable flat plate, the surface condition, buoyancy force and thermal 

conductivity of the micropolar fluid play an important role in the flow and heat transfer. 

Hossain et al. [19, 35] investigated two-dimensional mixed convection and natural 

convection flow of a viscous incompressible thermomicropolar fluid with uniform spin-

gradient over a flat plate. Later, Jena and Mathur [13–14] studied the similarity solutions for 

the steady laminar free convection boundary layer flow of a thermomicropolar fluid past a 

non-isothermal vertical flat plate.  Recently, a model on natural convection flow of a 

thermomicropolar fluid along a porous vertical surface has been studied by Mosharof et al. 

[36]. But all the above studies pertain to steady flows. 

However, Gorla and Takhar [37] examined the effect of buoyancy force on an 

unsteady incompressible micropolar fluid in the vicinity of the lower stagnation point of a 

circular cylinder. More or less recent studies on transient boundary layer flow of micropolar 

fluid without or with buoyancy effect have been done by Kumari and Nath [38], Lok et al. 

[39] and Xu et al. [40]. Unsteady mixed convection flow of thermomicropolar fluid along a 

vertical thin cylinder and a vertical wavy surface have been investigated in [41–45]. Very 

recently, Mahfooz et al. [46] have studied the fluctuating free convection boundary layer flow 

of a thermo-micropolar fluid along a vertical plate considering the small amplitude 

temperature oscillations about a variable surface temperature. 

In this regard, an important thermal condition which can significantly affect the 

boundary layer characteristics is the oscillating surface temperature about a mean temperature 

with small amplitude. 

 It is worth mentioning that unsteady laminar boundary layer theory, one area of study, 

which has received much attention in the past deals with boundary layer responses to 
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imposed oscillations. Lighthill [47] was the first to study the unsteady forced flow of a 

viscous incompressible fluid past a flat plate and a circular cylinder with small amplitude 

oscillation in free stream. The corresponding problem of unsteady free convection flow along 

a vertical plate with oscillating surface temperature was studied by Nanda and Sharma [48] 

and Eshghy et al. [49]. In consideration of this class of problems, Muhuri and Maiti [50] and 

Verma [51] analysed the effect of oscillation of the surface temperature on the unsteady free 

convection along a horizontal plate. All the above investigations are based on the assumption 

that the surface temperature oscillates with small amplitude about the uniform mean 

temperature and they were carried out employing the Karman-Pohlhausen approximate 

integral method. Based on the linearized theory, Kelleher and Yang [52] have studied the heat 

transfer responses of a laminar free convection boundary layer along a vertical heated plate to 

surface temperature oscillations, when the mean surface temperature T(x) is proportional to 

xn, where x is the distance measured from the leading edge of the plate. This study had been 

extended by Hossain et al [53, 54] for magnetohydrodynmic flows for variable mean surface 

temperature and surface heat flux. Recent investigation on fluctuating hydro-magnetic natural 

convection flow of an optically gray fluid past a magnetized vertical surface with effect of 

thermal radiation has been made by Ashraf et al. [55]. On the other hand, Jaman et al. [56] 

extend the problem posed by Kelleher and Yang [57] for the case of the flow past a circular 

cylinder. 

Above all, the streamwise variation of the surface temperature might have considerable 

influence on the skin friction and heat transfer along a vertical surface. 

Jena and Mathur [13] have focused on the laminar free convection boundary layer flow 

of a thermomicropolar fluid past a non-isothermal vertical flat plate. They obtained the 

similarity solutions of the problem assuming the variation in the temperature of the plate as a 

linear function of the distance. Authors also examined the influence of suction/injection in the 

laminar free convection flow of a thermomicropolar fluid subject to a nonuniform heating 

along the vertical flat plate [14]. Numerical solutions were presented in terms of the velocity, 

microrotation and temperature fields and the heat transfer coefficient with variation of the 

boundary condition parameter and suction/injection parameter. Gorla et al. [58] investigated 

the magnetohydrodynamic boundary layer characteristics for the steady free convection of a 

thermomicropolar fluid. They have presented the influences of the material properties and the 

Prandtl number. Hossain et al. [20] performed numerical simulation for the laminar free 

convection flow of a thermomicropolar fluid while an isothermal plate is taken to be inclined 
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at a small angle to the horizontal. Recently, Mosharof et al. [44, 59] analyzed the unsteady 

boundary layer characteristics for free convection flow considering fluctuating surface 

temperature and a non-uniformly heated vertical plate, respectively. However there are a 

number of studies [60–62] dealt with the free convection along a vertical plate with the 

stream wise variations of surface temperature. 

 In the present dissertation, some problems on free convection flow of 

thermomicropolar fluid from vertical plate have been investigated. Details discusses are given 

in the following problems [63] free convection flow of thermomicropolar fluid along a 

verticall plate with non-uniform surface temperature and surface heat flux, [64] natural 

convection of thermomicropolar fluid from an isothermal surface inclined at a small angle to 

the horizontal, [65] mixed convection flow of micropolar fluid with variable spin gradient 

viscosity along an isothermal vertical plate, and [66] mixed convection flow of a micropolar 

fluid over a horizontal plate with variable spin gradient viscosity. 

1.1  Outline of Thesis 

The problem considered in Chapter Three is concerned with the boundary layer flow and heat 

transfer from a permeable flat surface with uniform surface temperature and uniform surface 

mass flux. So far the authors concern, this has not been discussed in the literature. The 

transformed boundary layer equations are solved numerically near to and far from the leading 

edge, using extended series solutions and asymptotic series solutions. Solutions for 

intermediate locations are obtained using the primitive-variable formulation as well as by the 

stream-function formulation. In this investigation, we have considered only the suction case 

and the effects of the material parameters such as the vortex viscosity parameter, K, the 

transpiration parameter, , on the shear stress, the couple-stress and heat transfer are presented 

graphically. The results illustrate the different behavior that occurs when these parameters are 

varied. 

In Chapter Four, we propose to study the unsteady free convection boundary layer flow 

of a thermo-micropolar fluid along a heated vertical plate, considering the presence of 

micropolar heat conduction the reduced governing equations that are valid for entire time 

regimes are solved using explicit finite difference method. Asymptotic solutions for small 

and large time are also obtained.  The results thus obtained are  comparered and found in 

excellent agreement. We further have studied the effect of the physical parameters, such as, 

the vortex viscosity parameter, K, and the heat conduction parameter, α*, in terms of the 

transient shear stress, couple stress and surface heat transfer coefficients as well as transient 

velocity profiles, angular velocity profiles and temperature profiles. 
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The unsteady free convection boundary layer flow of a thermomicropolar fluid along a 

vertical plate has been investigated in Chapter Five considering that the surface temperature 

is oscillating about a mean temperature w(x) with a small amplitude  as posed by Kelleher 

and Yang [57]. With author's best knowledge, this problem has not been discussed in the 

literature.  

Chapter Six deals with the boundary layer characteristics of the free convection flow of 

a thermomicropolar fluid along a vertical plate with the effect of streamwise sinusoidal 

variation of the surface temperature. We solve the dimensionless governing equations 

employing the straight forward finite difference method. The effects of the physical 

parameters are discussed in terms of skin friction, couple stress and heat transfer coefficients. 

Moreover the variations of streamlines, isolines of angular velocity and isolines of 

temperature with the change of the parameters are presented.   
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Chapter Two 

Governing Equations 
 

  

2.1 Introduction 

This theory includes the effects of local rotary inertia and couple stresses which are not 

present in the theory of Newtonian fluids. The micropolar model has been proposed to study 

flows of fluids made up of large molecules and flows of suspensions. 

In the present chapter the boundary layers equations for a micropolar fluids are 

developed. Which are appropriate for the thermomicropolar fluids. As proposed by Peddieson 

and Nitt.    

 

2.2 The boundary layer equations for thermomicropolar fluids 

The mass, momentum, angular momentum and energy balance equations for the 

incompressible fluid as prescribed Peddieson and Nitt  are given below. 

 

T  

x  

WT  

u  

v  

y  

V0 

0  

Fig. 2.1: The flow configuration and the coordinate system 

Continuity equation 

. 0V ∇  

 

(2.1) 

  Momentum equation 

  2

0 
d

p
dt

          
V

V∇ ∇ N + g  

 

(2.2) 
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Angular momentum equation 

    2

0 . 2
d

j
dt

           ∇ ∇ ∇
N

V N V N  

 

(2.3) 

  Energy equation 

 2

0 .v T c

dT
c k T T

dt
    ∇ ∇N  

 

(2.4) 

Where ∇ , neblla vector, 2 , laplacian operatore, V, velocity vector, 0 , reference density, ρ, 

density, p, pressure, μ, dynamic viscosity, κ, thermal conductivity, N, the components of the 

gyration vector to the x, y, z plane, g, gravitational acceleration vector, j, microinertia 

constant,  ,   and   stands for micropolar coefficients of viscosity, vc , specific heat at 

constant volume, and c , coefficient giving account of the coupling between the spin flux 

and the heat flux which is also  micropolar thermal conductivity, T, temperature.  

1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , x y zi u j kw iN jN kN ig jg kg        V N gv  

u, v, w  are the vectors components of V 

d
u w

dt t x y z

   
   
   

v  is the material derivatives 

2 2 2
2

2 2 2
ˆˆ ˆ ,i j k

x y z x y z

     
     

     
∇ ∇  

 Where î , ĵ  and k̂  are unit vectors in x, y and z directions 

 Divergence of the velocity vector V 

.
u w

x y z

  
   

  
∇ V

v
 

Curl N is unit of the angular velocity vector 

3 32 1 2 1
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i j k
y z x z x y

        
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         
∇ N  

The gyration vector N is defined by 
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v v
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i j k

x y z

   
   

   
∇  T                                                                                       

 

 

 (2.5) 

 

 

 

 (2.6) 

 

  

 (2.7)  

 

 

 (2.8) 

2.3 For three dimensional flows the equations can be  

Under the above assumptions, the governing boundary layer equations are: 
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Continuity equation   

0
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 (2.9) 

Momentum equation   
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(2.10) 

y linear momentum equation   
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z linear momentum equation   
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x angular momentum equation  
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y angular momentum equation   
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z angular momentum equation   
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Energy equation   
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2.4 For two dimensional flows the equations can be  

Continuity equation 
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x y

 
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x linear momentum equation  
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y linear momentum equation  
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z angular momentum equation  
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Energy equation  
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Now, we introduce the following  dimensionless  variables 
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Continuity equation 
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x linear momentum equation  
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2.5 Order of magnitude analysis 

Consider flow past a plane wall coincident with the x axis. If 
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(2.25) 

This results for two dimensional flows the equations can be  
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x linear momentum equation  
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z angular momentum equation  
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Energy equation 
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 (2.30) 

Evaluating from equations (3.23) - (3.27) gives the final form of the two dimensional flows. 

All the governing equations are summarized below. 
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y linear momentum equation  
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z angular momentum equation  
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Chapter Three  
Boundary layer flow and heat transfer in a 

micropolar fluid past a permeable flat plate 
 

 

3.1 Introduction 

An analysis is performed to study the shear stress, the couple-stress and heat transfer 

characteristics of a laminar mixed convection boundary layer flow of a micropolar fluid past 

an isothermal permeable plate. The governing nonsimilar boundary layer equations are 

analyzed using the (i) series solution for small , (ii) asymptotic solution for large  and (iii) 

primitive-variable formulation and the stream function formulation are being used for all . 

The effects of the material parameters, such as, the vortex viscosity parameter, , and the 

transpiration parameter, , on the shear stress, the couple-stress and heat transfer have been 

investigated. The agreement between the solutions obtained from the stream-function 

formulation and the primitive-variable formulation is found to be excellent. 

 

3.2 Mathematical Formalisms 

A two-dimensional steady, laminar boundary layer flow of a micropolar fluid along a 

permeable vertical flat plate is considered. The temperature of the ambient fluid is assumed to 

be uniform at   and that of the surface at WT . The coordinate system and the flow 

configuration are shown in Fig. 4. 1. 

 

T  

x  

WT  

u  

v  

y  

V0 

0  

Fig. 3.1: The flow configuration and the coordinate system. 
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Under the usual boundary layer approximation, following Ahmadi [11] and Ress and Bossom 

[12], the equations of conservation of mass, momentum and energy that govern the flow are 

given as below:  
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(3.4) 

Here,  are the coordinates parallel with and perpendicular to the flat surface,  are the 

velocity component, p  the pressure, N  the component of the gyration vector normal to the 

 plane, and j is the microinertia density. Further,  is the fluid density,  the dynamic 

viscosity,  vortex viscosity and  is the spin-gradient viscosity given by  2 j    (see 

[11]). We follow the work of many recent authors by assuming that j is a constant and 

therefore it shall be set equal to a reference value, 0j ; consequently the equation for the 

microinertia density  (3.3) is trivially satisfied. 

The boundary conditions to be satisfied by equations (4.1)-(4.4) are 

0

0

0, , ,  at  0

, 0, 0,      as 

w

u
u V N n T T y

y

u U N T T y

 
       

 

    

v

v

 

 

 

(3.5) 

where  represents the suction velocity of the fluid through the surface of the plate. In this 

study we shall consider only the suction case (rather than blowing) and therefore  is taken 

as positive throughout. Furthermore,  is a constant, . The case n=0 corresponds to 

the strong concentration of micro-elements. This indicates 0N   near the wall other hand, 

indicates the vanishing of anti-symmetric part of the stress tensor and denotes weak 

suggesting that the concentration of the particles is strong enough so that the micro-elements 

near the walls are unable to rotate because of this concentration. The case, n=1/2, on the 

concentration. The case  n=1 may be used for the modeling of turbulent boundary layer flows 

([16]).  

Now we introduce the following  dimensionless dependent and independent variables:  



Boundary layer flow and heat transfer in a micropolar fluid past a permeable flat plate 

 

 

23 

 

1/ 2 1/ 2

0

1/ 2 1/ 20 0

, Re , , Re
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W
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x y u
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U V LT T
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L T T










   


  



v v

 

 

(3.6) 

In the above set of equations, where  are the non dimensional coordinate axis,  the non 

dimensional velocity components,  is reference length,  is the non dimensional angular 

momentum, and  is the non dimensional temperature. 

Thus the equations (3.1)–(3.4) take the following form:  

0
u

x y

 
 

 

v
 

 

(3.7) 

 
2

2
1

u u u N
u K K

x y y y

   
   

   
v                                                     

 

(3.8)                              

2

2
1 2

2

N N K N u
u K N

x y y y

     
      

      
v  

     

(3.9) 

2

2

1

Pr
u

x y y

    
 

  
v  

   

(3.10) 

In equation (3.6)  0Re /U L  is the Reynolds number,  /K   , appeared in equations 

(3.8) and (3.9), is termed as the vortex viscosity parameter and in equation (3.10)  /Pr    

is the Prandtl number. We also use 2

0j L   in equation (3.9).  

The boundary conditions now become  

0, , , 1 0

1, 0, 0, 0

u
u s N n at y

y

u N as y






     



    

v

v

 

 

(3.11) 

From application point of view, we need to find the values of shear stress,  , the couple-

stress, m , and rate of heat transfer, q , at the surface of the plate, that may be obtained by the 

relations given below:  

 
0 0 0

, ,
y y y

u N T
m q k

y y y
   

  

       
         

       
 

 

(3.12) 

Using the relation (3.6) on (3.12), we obtain 

 
0 0 0

1 1 , 1 ,
2

y y y

u K N
n K m q

y y y




  

        
                       

 
 

(3.13) 
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where ,   and  are dimensionless shear stress, the couple-stress and rate of heat transfer, 

respectively, which are define by  

 

1/ 2 1/ 2

2

0 0

Re Re
, ,

w

L m qL
m q

U U L k T T




 

 



  


 
 

 

 

3.3 Methods of solution 

To Investigate the present problem we have employed two formulations, namely, the 

primitive-variable formulation and the stream-function formulation, method of solution of 

which are presented in the following sections.  

3.3.1 Primitive-variable transformation 

To get the set of equations (3.7)-(3.10) in convenient form for integration, we define the 

following one parameter group of transformation for the dependent and the independent 

variables:  

 1 2 1 2 1 2 1 2, , , , ,u U x V s N x G x Y x y          v  (3.14) 

Thus the equations (3.7)-(3.10) are transformed to 

1 1
0

2 2

U U V
Y

Y Y




  
  

  
 

(3.15) 

 
2

2

1 1
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2 2

U U U G
U V s YU K K

Y Y Y
 



    
      

    
 

 

(3.16) 
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1 1 1
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2 2 2 2
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UG U V s YU K G

Y Y Y
  



        
             

        
 

(3.17) 

2

2

1 1 1
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Y Y
 



    
    

   
 

(3.18) 

Appropriate boundary conditions are  

0, 0, , 1 0

1, 0, 0, 0

U
U V G n at Y

Y

U V G as Y


      



     

 

 

(3.19) 

Once we know the values of  and  and their derivatives, we are at position to find the 

values of shear stress, , the couple-stress, , and rate of heat transfer, , from the following 

relations obtained from (3.13): 

  1 2 1

0 0 0

1 1 , 1 ,
2Y Y Y

U K G
n K m q

Y Y Y
     

  

         
                         

 
 

(3.20) 
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3.3.2 Stream function formulation 

To get the set of equations (3.7)-(3.10) in convenient form for integration, we define the 

following one parameter group of transformation for the dependent and the independent 

variables:  

     1 2 1 2

1/ 2 1/ 2

, , , , , ,

and

x f Y s N g Y h Y

x Y x y

      







     

 
 

 

(3.21) 

Here Y is the pseudo-similarity variable and   is the stream function that satisfies equation 

(3.7) and is defined by 

,u
y x

  
  
 

v  
 

(3.22) 

Equations (3.8), (3.9) and (3.10) thus reduce to 

 
1 1

1
2 2

f f
K f ff Kg s f f f 

 

  
           

  
 

 

(3.23) 
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(3.24) 
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h fh s h f h 
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  
        

  
 

 

(3.25) 

Boundary conditions take the form                    

         ,0 ,0 0, ,0 ,0 , ,0 1,f f g nf h           
 

 

     , 1, , 0, , 0.f g h          (3.26) 

In these equations, primes denote differentiation of the functions with respect to . Here 

solution of the set of equations (3.23)-(3.25) is obtained by implicit finite difference method 

together with the Keller-box elimination technique (also known as Keller box method), 

introduced by Keller and Cebeci [35] and described in more detail in Cebeci and Bradshaw 

[36]. In this case, the expressions for the shear stress, the couple-stress and rate of heat 

transfer given in [13] becouse 

       1 2 11 1 ,0 , 1 ,0 , ,0
2

K
n f m g q h         

           
 

 (3.27) 
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3.4  Asymptotic solutions 

3.4.1 Solutions for small  

Near the leading edge, or equivalently for small , we expand the functions  and  in 

powers of  as given below: 

           
0 0 0

, , , , , .i i i

i i i

i i i

f Y f Y g Y g Y h Y h Y     
  

  

      
(3.28) 

Substituting these into equations (3.23)-(3.25) and then equating the terms of like powers of  

to zero, we get the following pairs of ordinary differential equations for the functions ,  

and : 

  0 0 0 0

1
1 0

2
K f f f Kg       

(3.29) 

   0 0 0 0 0

1
1 / 2 0

2
K g f g g f       

(3.30) 

0 0 0

1 1
0

Pr 2
h f h    

(3.31) 

The boundary conditions appropriate to this set of equations are 

         0 0 0 0 00 0 0, 0 0 , 0 1,f f g nf h       
 

 

     0 0 01, 0, 0.f g h        (3.32) 

The higher order equations, for i 1, are as follows: 

    1

0

1
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i

i i i r i r r i r

r
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
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(3.33) 
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 
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(3.34) 
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r

h sh rf h r f h  



        
 

(3.35) 

The boundary conditions are as follows:  

         0 0 0, 0 0 , 0 1,i i i i if f g nf h       
 

 

     0, 0, 0.i i if g h        (3.36) 

for i  1, 2,3,  . 
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In the above equations the functions f0,  and  are the well-known free convection 

similarity solutions for flow around a constant temperature semi-infinite vertical plate and the 

functions ,  and   are effectively first and higher order corrections to the 

flow due to the effect of the transpiration of the fluid through the surface of the plate, Further 

the equations for each ) are linear, but coupled, and may be found by pair-wise 

sequential solution. These pair of equations has been integrated using an implicit Runge-

Kutta-Butcher (Butcher [37] initial value solver together with the iteration scheme of 

Nachtsheim and Swigert [38]. In the present investigation, solutions of 10 sets of equations 

have been obtained. 

     The solution of the above equations enables the calculation of the various flow parameters 

near the leading edge, such as the values of shear stress, , the couple-stress, m , and rate of 

heat transfer, q . Using the relation given in (3.27), the quantities , m and q can now be 

calculated respectively from the following expressions: 

       1 2 11 1 ,0 , 1 ,0 , ,0
2

K
n f m g q h         

           
 

 
 

(3.37) 

3.4.2 Asymptotic solution for large  

In this section attention has been given to the solution of equations (3.23)-(3.25) when  is 

large. The order of magnitude analysis of various terms in (3.23)-(3.25) shows that the largest 

terms are f   and f   in (3.23), g and g   in (3.24), and h  and h   in (3.25). In the 

respective equations both the terms have to be balanced in magnitude and the only way to do 

this is to assume that Y  be small and hence derivatives are large. Given that h = O(1) as 

, it is essential to find appropriate scaling for f and Y. On balancing f  and f   in 

(3.23), it is found that  1Y O    and  1f O    as . Therefore the following 

transformation may be introduced: 

     1 , , , , , ,f F g G h H Y              (3.38) 

Equations (3.23)-(3.25) together with the transformations given in (3.38) then become 

  11
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  
 

 

(3.39) 
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(3.40) 
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H sH F H

 
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(3.41) 
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For sufficiently large , we can write the above equations as follows 

 1 0K F KG sF       (3.42) 

 1 2 0
2

K
G K G F sG

 
       

 
 

 

(3.43) 

1
0

Pr
H sH    

 

(3.44) 

Boundary conditions take the form 

         

     

,0 ,0 0, ,0 ,0 , ,0 1,

, 1, , 0, , 0.

F F G nF H

F G H

    

  

     

      
 

 

(3.45) 

The various flow parameters such as the shear stress, the couple-stress and rate of heat 

transfer may be calculated from the following relations: 

       1 1 ,0 , 1 ,0 , ,0
2

K
n K F m G q H   

 
           

 
 

 

(3.46) 

Numerical values of , m and q thus obtained are compared with that obtained from primitive 

variable formulation through figures 3.2 and 3.3. 

 
 

Fig. 3.2: Development of wall shear stress f(,0) as a function of  for (a) n = 0 and (b) n = 1 and 

for various values of K. The solid lines represent primitive variable formulation and the dotted 

lines represent the stream-function formulation. 

 

3.5 Results and discussions 

Numerical computation were carried out mainly for fluid having a Prandtl number, Pr  10.0 

while the value of the vortex viscosity parameter, K  0.0, 2.0 and 5.0 and the transpiration 

parameter, s  0.5, 1.5 and 3.0. 
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Representative numerical values of X-1/2g(100,0) obtained from the present integration of 

equation (3.23) are entered into the Table1 for comparison with those of Rees and Bossom 

[12]. 

 

Table 3.1 

Numerical values of X-1/2g at X = 100 

and Y=0 for n = 0 and different values of K. 

K Rees et al. [8] Present 

0.1 -0.06895 -0.06908 

0.3 -0.1050 -0.10518 

0.5 -0.1211 -0.12124 

1.0 -0.1354 -0.13555 

3.0 -0.1285 -0.12859 

5.0 -0.1145 -0.11455 

 

From this table it may be seen that the present solutions are in excellent agreement with Rees 

and Bossom [12]. Further, throughout figures 3.2 to 3.5 the solid lines represent solutions 

from primitive variable formulation (PVF) and the dotted are from stream-function 

formulation (SFF). 

    

Fig. 3.3: Development of change of the gyration component at the wall, g(ξ,0) as a function of  ξ  for 

(a) n = 0 and (b) n =1 and for various values of K. The solid lines represent primitive variable 

formulation and the dotted lines represent the stream-function formulation.  
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       In Fig. 3.2 and 3.3 we have shown a comparison between the stream-function 

formulation and the primitive-variable formulation of the variations of both the shear stress 

and of the rate of change of the gyration component at the solid boundary with  considering s 

 0.0, Pr  10.0 and a range of values of K with n fixed. The agreement between these 

formulations is seen to be extremely good. We further observe that these figures are exactly 

similar to that of Rees et al. [12]. 

A comparison between the results obtained by the stream-function formulation and the 

primitive-variable formulation is shown in Fig. 3.4 and 3.5. From the figures, it is evident that 

there is an excellent agreement between these two results hence rest of the results presented 

and discussed here is based on primitive-variable formulation. 

   

 

Fig. 3.4: The surface shear stress,, the couple-stress, m, and the heat transfer, q, for n = 0.5, 

s = 1.0, Pr = 10.0 and for various values of K. The solid lines represent primitive variable 

formulation and the dotted lines represent the stream- function formulation. 

 

In Fig. 3.6, we depict the values of local shear stress, , the local heat transfer, q, at the 

surface and the distribution of the local couple-stress, m, in the boundary layer for different 
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values of the vortex viscosity parameter K ( 0.0, 2.0 and 5.0) while the Prandtl number, Pr  

10, the transpiration parameter, s  1.0, and the temperature gradient parameter, n  0.5.  

In these figures the curves marked by solid, broken and dotted curves represent respectively, 

the results obtained by the finite difference method, the series solution method and the 

asymptotic method. From these figures it may be seen that an increase in the value of the 

vortex viscosity parameter K leads to an increase in the value of the local shear stress, the 

local heat transfer and the local couple-stress. 

     

 

Fig. 3.5: The surface shear stress, , the couple-stress, m, and the heat transfer, q, for n = 

0.5, K = 0.5, Pr = 10.0 and for various values of s. The solid lines represent primitive 

variable formulation and the dotted lines represent the stream-function formulation. 

 

We further observe that for any selected value of the vortex viscosity parameter K, values of 

the shear stress, heat transfer and the couple-stress reach the respective asymptotic values 

smoothly. The heat transfer reaches its asymptotic values at smaller ; whereas the shear 

stress and the couple-stress does so at comparatively larger value of . We further observe 
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that as the value of K increases, the shear stress, the heat transfer and the couple-stress reach 

their asymptotic values faster. 

Finally, it may be concluded that the values of the shear stress, the heat transfer and the 

couple-stress obtained by the three methods are in excellent agreement with each other when 

the value of K is large.The effect of the transpiration parameter, s, on the local shear stress, 

the heat transfer and the couple-stress are presented graphically in Fig. 3.7.  

 

       

 

Fig. 3.6: The surface shear stress, , the couple-stress, m, and the heat transfer, q, for n = 0.5, s 

= 1.0, Pr = 10.0 and for various values of K. 

 

It is observed from these figures that an increase in the value of s increases the value of the 

shear stress, the heat transfer and the couple-stress. We also observe that for any selected 

value of s, values of the shear stress, the heat transfer and the couple-stress tend to their 

respective asymptotic values. As the value of s increases, the shear stress, the heat transfer 
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and the couple-stress reach their asymptotic values faster In this case we also found that the 

results from the three methods are in excellent agreement.  

     

 

Fig. 3.7: The surface shear stress,, the couple-stress, m, and the heat transfer, q, for 

n = 0.5, K = 0.5, Pr = 10.0 and for various values of s. 

 



Chapter Four 
Transient natural convection flow of thermo-

micropolar fluid of micropolar thermal conductivity 

along a non-uniformly heated vertical surface 
 

4.1 Introduction 

In this paper, the unsteady free convection boundary layer flow of a thermo-micropolar fluid 

along a vertical plate with effect of micropolar heat conduction has been investigated. The 

governing equations are transformed into a new form using a method of transformed 

coordinates. We then use an explicit finite difference scheme to solve the transformed 

equations. Here, the governing equations have been reduced to the forms that are valid for 

entire, small and large time regimes, by using stream-function formulation. The results 

obtained for the above mentioned three time regimes are compared and found in excellent 

agreement. Moreover, the effects of the physical parameters such as the viscosity parameter, 

K, and the heat conduction parameter, α*, are presented in terms of the transient shear stress, 

couple stress and surface heat transfer coefficient as well as transient velocity profiles, 

angular velocity profiles and temperature profiles.  

 

4.2 Mathematical Formalisms 

A two-dimensional unsteady laminar boundary layer flow of a thermo-micropolar natural 

convection incompressible fluid along a permeable vertical flat plate is considered. The flow 

configuration and the coordinate system is shown in Fig. 4.1.The dimensionless equations of 

continuity, momentum, angular velocity and energy that govern the flow are given as (Jena 

and Mathur [10], Hossain et. at. [13], [22]), 

0
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x y

 
 
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4.4) 

 

Fig. 4.1: Flow configuration and coordinate system. 

The set of equations (4.1)-(4.4) are dimensionless which are based on the following 

dimensionless dependent and independent variables  

  3

2 2 2

, , ,

, , .

yx
x y u u

L L L L

g T T L
N G t t

L L

 

 






   


  

v v

 

 

  

4.5 

Here,  ,x y  are the co-ordinates parallel with and perpendicular to the flat surface 

respectively,  ,u v  are the velocity components, t, time, N , the angular velocity, , 

dimensionless temperature,  j, the micro-inertia per unit mass, , the density of the fluid, g the 

acceleration due to gravity, κ, the thermal conductivity of the fluid,  = ( + /2)j, the gyro-

viscosity coefficient and α*, the micropolar heat conduction coefficient. Following Jena and 

Mathur [10], it is assumed that micro-inertia, j, is a constant and, therefore, it is set equal to a 

reference value, j0 = L2. Further, L is the characteristic length, K = (/) is vortex viscosity 

parameter, the dynamic viscosity, Pr = (ν/α) is the Prandtl number that gives the ratio of 
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momentum diffusivity to thermal diffusivity, , viscosity coefficient, α*= (N*/L2) is the 

micropolar heat conduction parameter. Corresponding boundary conditions are 

0, 0, , ( ) at 0

0,   G=0,  0 as

w

u
u G n x y

y

u y

 




     



  

v
 (4.6) 

In the above equation w(x) is the prescribed surface temperature. Here we have considered 

that w(x) = x. 

In the worthwhile Jena and Mathur [11-12] studied the same model for steady laminar 

free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate as 

well as for non-uniformly heated porous vertical flat plate. 

The values of the physical quantities namely, the shear stress, ω, the couple-stress, mω, 

and the rate of heat transfer, qω, at the surface of the plate, which are important from the 

experimental point of view are readily obtained    

 
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1 , 1 ,
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  


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        
           

        
 

(4.7) 

 

4.3 Methods of solution 

Here we are investigating the present problem in three time regimes, namely, i) entire, ii) 

small and iii) large time regimes. The method of solutions discussed in the following section 

has been adopted by Hossain et al. [23] and Mahfooz et al. [24] while analyzing the problems 

on unsteady mixed-convection boundary layer flow of viscous incompressible fluid along a 

symmetric wedge with variable surface temperature as well as on the radiation effects on 

transient magneto-hydrodynamic natural convection flow with heat generation. 

 

4.3.1 Solutions for entire time regime (all) 

To get the solutions for entire time regime here we introduce the following group of 

transformations ([23, 24]:  

       
13 1

22 21 , ,   , , 1 ,x e f x y e x t         


        
4.8) 

In equation 5.1)  is the similarity variable and   is the stream function defined by   

http://en.wikipedia.org/wiki/Thermal_diffusivity
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 
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 
  
 

v  
4.9) 

that satisfies the equation of continuity (4.1). 

Now, equations 4.1)4.4) together with the boundary conditions 4.6) and the 

transformations 4.8) are reduced to:              
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4.10 
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4.11 
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4.12 

The corresponding boundary conditions are  

Where, (') primes denote the differentiation with respect to. 

The starting point to obtain the solutions of the equations (4.10)-(4.12) is the set of the 

finite-difference equations obtained by spatial discretization of the transformed equations 

(4.10)–(4.12). The first-order central difference approximation is used for the first-order 

derivative with respect to η, and the second-order central difference approximation is used for 

the second-order derivative with respect to η. The forward differences are used for the time 

derivative. This discretization results in the following tridiagonal algebraic system of 

equations: 

1, , 1,k i j k i j k i j kA B C D        4.14 

In the above equations, the subscripts k (= 1, 2, and 3) represent the functions U, θ, and φ, 

respectively. i (= 1, 2,…. ,M) and j (= 1, 2, …., N) correspond to the grid points in η and τ 

directions, respectively. The coefficients Ak, Bk, Ck, and Dk may be obtained easily. These 

block tridiagonal systems for k = 1, 2, and 3 are solved by a block matrix version of the well-

known Thomas algorithm. Once the function U= f ’() is known, the function f may be found 

explicitly from the following relation: 
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, 1, ,i j i j i jf f U   4.15 

The computation is started at τ = 0.0, and then marches forward until it reaches a steady state. 

The convergence criteria for detecting the steady state solutions are set in such a way that the 

difference between the values of the function f(η, τ) obtained in two consecutive time steps is 

less than 10−4. The computational domain is discretized in the (τ, η) space by using the step 

sizes of Δτ and Δη. After some experimentation, the final mesh sizes are chosen to be Δη = 

0.005 and Δτ = 0.02. 

Solutions thus obtained are used to get the values of non-dimensional shear stress, the 

couple-stress, and the rate of heat transfer, from equations (4.5) are then transformed to  
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(4.16) 

Numerical values of the coefficients of shear stress, the couple-stress, and the rate of heat 

transfer are presented in tabular form as well as graphically in the following sections. 

In the next subsections, we will discuss the asymptotic solutions for small and large time τ. 

 

4.3.2 Asymptotic solutions for small time ( << 1) regime  

For small time regime we consider   1. Consequently, the value of e- 1 and 1-e-   . 

Thus equations 4.17)4.19) must now be written in the following form, which are more 

convenient for analysis at small times:  
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(4.19) 

The boundary conditions 4.13 becomes                      

         

     

1
0, 0, 0, 0, 0, , 0, 1

2

, , , 0 0 1

f f g f

f g

     

    

     

          

 

                    

4.20 

 



Transient natural convection flow of thermo-micropolar fluid of micropolar thermal 
conductivity along a non-uniformly heated vertical surface 

 

39 

 

By knowing the functions f, g and   and their derivatives we can readily get the values of the 

shear stress, the couple-stress, and the rate of heat transfer, q, from the following relations: 

At small values of  1), it can easily be verified that the solutions of equations 

4.17)4.19) take the following form:  
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(4.21) 

Now, substituting the series expressions given in 4.21) into the equations 4.17)4.19) and 

picking up the terms up to the o2, we get the following sets of boundary value problems:   
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(4.24) 

Corresponding  boundary conditions (4.20) becomes  
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Equations of O1  

  1 1 1 1 1
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Corresponding  boundary conditions (4.25) becomes  
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(4.29) 
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Equations of O2  
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(4.32) 

Corresponding  boundary conditions (4.29) becomes  

         2 2 2 2 2

1
0, 0, 0, 0, 0 , 0, 0

2
f f g f           at  0   

     2 2 2, , , 0 0f g                

 

(4.33) 

 

The set of equations (4.22)-(4.24), (4.26)-(4.28) and (4.30)-(4.32) are linear by nature which, 

although are solvable analytically, are solved numerical employing the linear shooting method 

(or the method of superposition). Results thus obtained for fi
”(0), gi

’(0) and i
’(0), i = 0,2 are 

used in obtaining the values of the shear stress, the couple-stress, and the rate of heat transfer, 

from  

Numerical values obtained from the above expressions for shear stress, couple stress and 

surface heat transfer entered in the Table 2 for comparison with other solutions obtained by 

the method discussed in forgoing section. 
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(4.34) 

For example we have obtained the solutions of the above sets of equations for K= 1 while Pr 

= 9.0 and α*= 0.25, for which we have the following expressions for  shear stress, ω/x, couple 

stress, mω/x, and surface heat transfer, qω/x: 

   

 

 

1/ 2 2

2

1/ 2 2

1 0.17551 0.00775 0.00547 ,

1 0.06352 0.05055 0.01803 ,
2

 1.69440 0.04697 0.01640

K
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m K

x
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4.3.3 Asymptotic solutions for large time  >>1 regime 

Now for large time regime equations (4.10)-(4.12) can be reduced to following form: 

2 1 1
(1 )

2

f
K f ff f Kg f f  



  
             

 
 

(4.36) 
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(4.37) 
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(4.38) 

Corresponding boundary conditions are obtained as follows:                        

       
1

0, 0, 0, 0, 0, , 0, 1
2

f f g f            at  0   
 

4.39 

Expanding the functions involving the set of equations (4.36)-(4.39) in powers of 1  as given 

below: 

     
0 0 0

, ( ) , , ( ) , , ( )
n n n

i i i

i i i
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       
 

(4.40) 

Now using the functions given in 4.40) into the equations 4.36)4.39) and taking the terms 

up to the 1( )O    we get 

Equations of O0  

  2

0 0 0 0 0 01 0K F F F F KG          (4.41) 

   0 0 0 0 0 0 01 / 2 2 0K G F G F G K F G          (4.42) 
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(4.43) 

Corresponding boundary conditions are obtained as follows (4.39)  

       

     

0 0 0 0 0
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1
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(4.44) 

Equations of O -1  

  1 0 1 1 0 0 1 1 1 0 0

1
1 2 0

2
K F F F F F F F KG f f
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4.45 
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(4.47 

Corresponding boundary conditions are obtained as follows (4.44)  

       

     

1 1 1 1 1
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(4.48 

Equations (4.41) to (4.43) are the leading order equations and represent the steady state flow 

at large . The same set of equations were obtained by Hossain et al. [22] as the steady mean 

part of the fluctuating flow of the thermomicropolar fluid past a flat surface that was 

maintained at small amplitude oscillating temperature about a non-uniform steady mean 

temperature. We should further mention that, Jena and Mathur [10] in studying the laminar 

free convective flow of a thermomicropolar fluid past a non-isothermal vertical flat plate 

obtained the same set of that given above.  It should be noted that the set of equations (4.41) 

to (4.43) are nonlinear. Hence solutions of these equations are obtained numerically by 

employing the non-linear shooting method. Typical values of F” (0), G’ (0) and Ф’ (0) thus 

obtained are compare with that of Jena and Mathur [10] in Table-4.1. 

 

Table-4.1: Numerical values of the coefficients of shear stress, surface heat transfer and 

couple-stress for K = 0.1 and 0.25 while Pr = 9.0 and α*= 1.0 a comparison. 

Comparison K= 0.1 K = 0.25 

F (0)  G (0)   (0) F (0)  G (0)   (0) 

Jena and Mathur [10 ] 0.1558  0.0365 0.3675 0.1480   0.0389 0.3561 

Present 0.15574   0.03652 0.36764 0.14829  0.03883 0.35787 

 

Here we have obtained the solutions of equations upto the O(-1) using the non-linear shooting 

method. Once we know the values of Fi
”(0), Gi

’(0) and Фi
’(0)  for i = 0,1 we may obtain the 
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numerical values of the coefficients of  shear stress, couple stress and surface heat transfer 

from the expressions are given below:  
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 
    

(4.49) 

For example, taking K =1.0, Pr = 9.0 and α* = 0.25, we get the following expressions for 

shear stress, ω/x, couple stress, mω/x, and surface heat transfer, qω/x:shear stress, couple stress 

and surface heat transfer: 

    
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1 1
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2
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(4.50) 

Numerical values thus obtained for shear stress, ω/x, couple stress, mω/x, and surface heat 

transfer, qω/x, are entered in the Table-4.2 for values of τ while K =1.0 and α* =0.25. This 

table also contained the asymptotic values of the above physical quantities for comparison. 

The comparison shows excellent agreement with the perturbation solutions for smaller value 

of τ up to 1.48 and for large value of τ from 40.0 that obtained for all τ. 

 

Table-4.2: Numerical values of shear stress,ω/x, couple stress, mω/x, and surface heat 

transfer, qω/x, while    K =1.0 and α* = 0.25 against τ. 

 ω/x mω/x qω/x 

All  Asymptotic All  Asymptotic All  Asymptotic 

0.01 0.03428 0.03512s 0.09375 0.09604s 17.21207 16.94869s 

0.02 0.04851 0.04968s 0.09449 0.09679s 12.17307 11.98789s 

0.05 0.07681 0.07866s 0.09667 0.09901s 7.70340 7.58826s 

0.10 0.10887 0.11146s 0.10020 0.10260s  5.45267 5.37353s 

0.20 0.15459 0.15817s 0.10692 0.10937s 3.86422 3.81126s 

0.4 0.22004 0.22482s 0.11907 0.12129s 2.74688 2.71293s 

0.6 0.27066 0.27514s 0.12974 0.13182s 2.25728 2.26240s 

1.0 0.35052 0.35557s 0.14740 0.14407s 1.77750 1.7577s 

1.50 0.42721 0.42823s 0.16417 0.14819s 1.49132 1.47113s 
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1.86 0.47167 0.46641s 0.17345 0.14278s 1.34835 1.34805s 

20.0 0.68453 0.65616l 0.20662 0.14273l 1.11083 1.55191l 

30.0 0.68454 0.66755l  0.20613 0.20743l 1.09406 1.10524l 

40.0 0.68455 0.67324l 0.20613 0.20784l 1.09410 1.10245l 

50.0 0.68455 0.67666l 0.20613 0.20808l 1.09410 1.10077l 

60.0 0.68455 0.67893l 0.20824 0.20739l 1.20824 1.09965l 

70.0 0.68455 0.68056l 0.20613 0.20836l 1.09410 1.09886l 

80.0 0.68455 0.68178l 0.20613 0.20845l 1.09410 1.09826l 

90.0 0.68455 0.68273l 0.20613 0.20851l 1.09410 1.09779l 

100.0 0.68455 0.68349l 0.20613 0.20857l 1.09410 1.09742l 

s stands for small time and l stands for large time. 

 

4.4 Results and discussion 

In the above sections, we have analyzed the problem of unsteady natural convection laminar 

boundary layer flow of thermo-micropolar viscous incompressible fluid along a non-

uniformly heated vertical surface. The governing dimensionless boundary layer equations are 

transformed into suitable forms appropriate for entire, small and large time regimes. Solutions 

of the resulting equations are then obtained numerically and the results are depicted in terms 

of the transient shear stress, ω/x, couple stress, mω/x, and surface heat transfer, qω/x. Here we 

have discussed the effects of the physical parameters, such as, the micropolar heat conduction 

parameter, α*
, and the vortex viscosity parameter, K, ω/x, mω/x, and qω/x against the time 

variable τ. The present analysis of the problem has been carried out considering the fluid for 

which Pr = 9.0 (Jena and Mathur [10]).  Further results have been presented and discussed in 

terms of axial velocity, angular velocity and the temperature profiles with effect of the 

aforementioned physical parameters. 
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Fig. 4.2: Numerical values of (a) shear stress (b) couple-stress and (c) surface heat transfer 

coefficient for different values of  α*  against values of   while Pr = 9.0, K =1.0. 

 

4.4.1 Effect of micropolar heat conduction parameter, α* on transient shear 

stress, couple stress coefficients and surface heat transfer  

The effects of the micropolar heat conduction parameter, α*, on the transient shear stress, ω/x, 

the couple stress, mω/x, and the surface heat transfer coefficient, qω/x are presented, 

respectively, in figures 4.2(a) to 4.2(c) taking value of the vortex viscosity parameter, K, equal 

to 1.0. It is seen from these figures that as the micropolar heat conduction, α* leads to decrease 

the value of the shear stress as well as the heat transfer; whereas, there is increase in the 

couple stress. These happen due to the fact that increase in the value of micropolar thermal 

conductivity enhances the fluid’s thermal conductivity. These figures also contain the 

representative values of ω/x, mω/x, and qω/x obtained from the asymptotic solution for 
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different values of α*. One can claim that the asymptotic values in the smaller and larger time 

regimes agree excellently with all time solutions. This claims that the results presented here 

for all time regime are accurate and hence may be useful for the experimentalists. 

    

 

Fig. 4.3: Numerical values of (a) shear stress (b) couple-stress and (c) surface heat transfer 

coefficient for different values of  K  against values of   while  α* =1.0. 

 

4.4.2 Effect of vortex viscosity parameter, K, on transient shear stress, 

couple stress coefficients and surface heat transfer  

Now we show the effect of the vortex viscosity parameter, K, on the transient shear stress, 

ω/x,  couple stress, mω/x, and surface heat transfer coefficient, qω/x. Fig 4.3(a)-(c) depict the 

values of  ω/x, mω/x, and qω/x for K=1.0, 3.0 and 5.0 while α* =1 against . From these figures 

one can see that an increase in the value of the vortex-viscosity leads to increase in shear 
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stress but decrease the couple stress the surface heat transfer. This is expected because 

increasing value of the vortex viscosity will increase the total viscosity of the fluid. 

  

 

Fig. 4.4: Numerical values of (a) velocity profiles (b) angular velocity profiles and (c) 

temperature profiles for different values of   against   when Pr = 9.0, K =1.0. 

 

4.4.3 Transient axial velocity, angular velocity and temperature profiles for 

different time (): 

The transient axial velocity, angular velocity and temperature profiles are shown in Figs 

4.4(a)-(c) against  for values of  in [0, 8] while vortex-viscosity parameter K=1 and 

micropolar thermal conductivity parameter *= 5.0. It is seen from figs 4.4(a) and 4.4(c) that 

the axial velocity and the temperature profiles increase with the increase of time which leads 

to increase in both the momentum boundary thickness.  On the other hand, one can also see 
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that in the vicinity of the surface, i.e., in the region   2 (approximately) the angular velocity 

profile decrease, whereas these profiles increase with the increase of time in the region  >2. 

Further we notice that all the profiles reach to the asymptotic profile (or the steady state 

profile at larger value to time parameter. In this case we found the maximum value of  to be 

8 to reach the profiles at steady state. 

 

4.4.4 Effect of micropolar heat conduction parameter, α* on axial and 

angular velocity and temperature profiles  

Here we show the effect of micropolar thermal conductivity, α*, on the transient axial 

velocity, angular velocity and the temperature profiles at  =2.0 while K=1.0 through figures 

 

 

Fig. 4.5: (a) Axial velocity profiles (b) angular velocity profiles and (c) temperature profiles 

for different values of α* against   at  = 2 when Pr = 9.0, K =1.0. 
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4.5(a) to (c), respectively. In this case α* = 0.0, 0.5, 1.0, 1.5, and 2.0. It is clear from these 

figures that  the axial velocity, angular velocity and temperature profiles increase due to 

increase in micropolar thermal conductivity, α*. But, owning to increase in the heat 

conduction parameter, no significant effect on the angular velocity profile is observed. 

 

4.4.5 Effect of vortex viscosity parameter, K on axial velocity, angular 

velocity and temperature profiles             

The effect of increasing values of the vortex viscosity parameter, K, on the transient axial 

velocity, angular velocity and temperature profiles are depicted in Figs 4.6(a)-(c) at  = 2.0 

and α*= 0.25.   

 

 

Fig. 4.6: Numerical values of (a) velocity profiles (b) angular velocity profiles and (c) 

temperature profiles for different  values of K against  at  = 2 when Pr = 9.0, α*= 0.25.  
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From Fig. 4.6(a) it can be seen that within the region  < 1.8, the velocity profile increases 

due to increase in the value of the vortex-viscosity of the fluid; whereas, this leads to decrease 

the velocity profile in the region  >1.8. This implies that increase in the vortex viscosity 

leads to decrease in the momentum boundary layer thickness. We further observe that the 

angular velocity profile decreases owing to increase in the value of K which leads to that this 

reduces the angular momentum boundary layer thickness. Finally, one can see that there is no 

significant contribution to the temperature profile due to increase in the vortex viscosity 

parameter K. 



51 

 

Chapter Five 
Fluctuating Flow of Thermomicropolar Fluid past a 

Vertical Surface 
 

5.1 Introduction 

The unsteady free convection boundary layer flow of a thermo-micropolar fluid along a vertical 

plate has been investigated in this paper. The temperature of the plate is assumed to be 

oscillating about a mean temperature, w(x), with small amplitude . The governing boundary 

layer equations are analyzed using straight forward finite difference method. The effects of the 

material parameters such as micropolar heat conduction parameter, N*, the vortex viscosity 

parameter, K, on the shear stress,, surface heat transfer, q, and the couple-stress, m, have 

been investigated.  

 

5.2 Mathematical Formalisms 

A two-dimensional unsteady laminar boundary layer flow of a thermo-micropolar fluid along a 

permeable vertical flat plate is considered. The temperature of the ambient fluid and the surface 

are assumed to be T and WT  respectively. The co-ordinate system and the flow configuration are 

shown in Fig. 5.1. 

 

Fig. 5.1: Flow configuration and coordinate system. 
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Under the usual Boussinesq approximation the dimensionless equations of conservation of mass, 

momentum, angular velocity and energy that govern the flow are given as (see Jena and Mathur 

(1981)), 

0
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x y
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 
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which are based on the following dimensionless dependent and independent variables 
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 5.5) 

Here,  ,x y  are the co-ordinates parallel with and perpendicular to the flat surface respectively, 

 ,u v  are the velocity components, t, time, N , the angular velocity, , dimensionless 

temperature,  j, the micro-inertia per unit mass, , the density of the fluid, g the acceleration due 

to gravity, κ, the thermal conductivity of the fluid,  = ( +  /2)j, the gyro-viscosity coefficient 

and α*, the micropolar heat conduction coefficient. 

Following Jena and Mathur (1981), it is assumed that micro-inertia, j, is a constant and, 

therefore, it is set equal to a reference value, j0 = L2. Further, L is the characteristic length, 

K  ( /) is vortex viscosity parameter, , the dynamic viscosity, Pr = (ν/α) is the Prandtl 

number that gives the ratio of momentum diffusivity to thermal diffusivity, , viscosity 

coefficient, N* = (α*/L2) is the micropolar heat conduction parameter and  is the amplitude of 

oscillation. 

 The corresponding boundary conditions are 

http://en.wikipedia.org/wiki/Thermal_diffusivity
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0, 0, , ( )(1 cos( ) ) at 0

0,    0 as

w

u
u N n x y

y

u y

   




      



  

v
 5.6) 

Where n is a constant such that 0 ≤ n ≤ 1. The case n = 0 corresponds to the strong concentration 

of microelements. Thus equation (5.6) suggests that when n = 0 (i.e., N = 0) near the walls, the 

concentration of the particles is strong enough so that the micro-elements near the walls are 

unable to rotate because of its concentration. The case, n = 1/2, on the other hand, indicates the 

vanishing of anti-symmetric part of the stress tensor and denotes weak concentration. 

 The boundary condition for  (, 0) given in 5.6) suggests the solutions of equations 5.1)-

(5.4) of the following form: 

   

   

0 1 0 1

0 1 0 1

exp , exp

exp , exp

u u i u i

N N i N i

   

      

   

   

v v v
 5.7) 

where, t . Further, u0, v0, 0N and 0  represent the flow variables for the steady mean flow 

and u1, v1, N1 and 1  are the fluctuating flow variables. The real parts of the functions defined in 

5.7) is our desired solutions.  

Now substituting the functions given in 5.7) into Eqs. 5.1)–5.4) and equating the terms up to 

O()  one gets 

0 0
u

x y

 
 

 

0v  5.8) 
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0 02
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x y y y
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   

    
   

0v  5.9) 
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     
      

      
0v  5.10) 
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           
    

       
0v  5.11) 

with boundary conditions 

 0
0 0 0

0 0

0, 0,   , at 0

0,    0 as .

w

u
u N n x y

y

u y

 




     



  

0v
 5.12) 
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and 

1 1 0
u

x y

 
 

 

v
 5.13) 
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1 0 1 1 12

1
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 5.16) 

subject to the boundary conditions 

 1
1 1 1 1

1 1

0, 0, , at 0

0, 0 as .

w

u
u N n x y

y

u y

 




     


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v
 5.17) 

Here the equations 5.8)–5.11) are the equations for the steady state flow and those 5.13)-5.16) 

are for the fluctuating flow. 

 

5.3 Methods of solution 

In this section, emphasis is given to the method of  solution which is used to solve the boundary 

layer equations 5.8)–5.11) will represent the steady mean flow and those 5.13)–5.16) the 

oscillating flow. The numerical solutions are obtained with the help of an efficient finite 

difference scheme.   

To get the similarity equations for the steady state equations 5.8) –5.11), we introduce the 

following group of transformations: 

     0 0 0 0, , ,xf N xg x y           5.18) 

where 0  is the stream function for the steady state flow defined by 

0 0
0 0,u

x

 



 
   
 

v  5.19) 
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Thus we have 

  2

01 0K f ff f Kg          5.20) 

 1 2 0
2

K
g fg f g K f g

 
         

 
 5.21) 

 0 0 0 0 0

1
0.

Pr
f f N g g              5.22) 

The boundary conditions to be satisfied by the above equations are 

 
0

0

0, 0, , 1 at 0

0 0, 0 at .

f f g nf y

f y

       

    
 5.23) 

Here   denotes differentiation with respect to  . 

Equations 5.20)–5.22) are considered by Jena and Mathur (1981). Representative numerical 

values of shear stress, surface heat transfer and couple stress obtained from the present 

investigation of these equations are entered in Table 1, for comparison with those of Jena and 

Mathur (1981). From this table it is seen that the present solutions are in excellent agreement 

with those of Jena and Mathur (1981). 

 

Table 5.1: The effect of variation of K on shear stress, surface heat transfer and couple-stress 

when  Pr = 9.0 and N= 1.0.  

Comparison K= 0.1 K = 0.25 

 F (0)  G (0)   (0) F (0)  G (0)   (0) 

Jena and Mathur (1981) 0.1558  0.0365 0.3675 0.1480  0.0389 0.3561 

Present 0.15574  0.03652 0.36764 0.14829  0.03883 0.35787 

 

Again, to get the similarity equations for the unsteady state equations 5.13)–5.16), we introduce 

the following group of transformations: 

     1 1 1 1, , ,xF N xG x y           5.24) 

where 1  is the stream function for the unsteady flow defined   by 

1 1
1 1, .u

x

 



 
  
 

v  5.25) 
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Thus equations 5.13)–5.16) then reduce to 

  12 1iF f F fF f F K F KG              5.26) 

 1 2
2

K
iG f G fG F g Fg G K F G

 
             

 
 5.27) 

 1 1 1 0 0 11 0 1 0 1

1
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i f f F F N G g G g                         5.28) 

and the boundary conditions become  

1

1

0, 0, , 1    at 0

0, 0, 0     as .

F F G nF y

F F y

       

    
 5.29) 

The set of equations (5.20)–(5.22) and (5.26)–(5.28) together with the boundary conditions 

(5.23) and (5.29) can be integrated by straight forward finite difference method. Before going to 

apply the aforementioned method we first set  f = V0, f’ = U0, F = V and F’ = U so that the 

equations (5.20)–(5.22)  reduce to  

   
2

0 0 0 0 01 0K U V U U Kg         5.30) 
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2
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   
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   
 5.31) 

 0 0 0 0 0 0 0
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Pr
V U N g g             5.32) 

with boundary conditions 

0 0 0 0

0 0

0, 0, , 1 at 0

0, 0 at .

V U g nU

U





      

   
 5.33) 

and the equations (5.26)–(5.28) take the form 

 0 0 0 12 1iU U U V U VU K U KG           5.34) 

 0 1 2
2

K
iG GU VG U g Vg G K U G

 
             

 
 5.35) 

 1 0 1 1 0 0 11 0 1 0 1

1

Pr
i U V U V N G g G g                        5.36) 

Now equations (5.30)–(5.32) are discretised by a simple numerical scheme, in which we use 

central-difference for diffusion terms and convection terms and thus, for example, (5.30) gives 
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 5.37) 

Equation (5.37) can be rewritten in the form 

     0 0 01 1j j j jj j j
A U B U C U D
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 

 

Similarly, the equations (5.31)–(5.32) can be rendered in the form (5.38). The resulted tri-

diagonal algebraic system is solved by Gaussian elimination technique. The computation is 

started at η = 0, and then marches downstream implicitly. The ordinary differential equations 

governing the upstream condition at η = 0 can be obtained by taking the limit of equations (5.38) 

that η approaches zero.  The associated boundary conditions are equations (5.33) with  η = 0. 

Now we define the functions 

1, ,r i r i r iU U iU i G G iG         5.39) 

Using (5.39) into (5.34)–(5.36) and then separating the real and imaginary parts, we can solve 

the resulting systems of equations employing the procedure described above.  

Again, from the set of relations (5.7) together with the transformations given in and(5.18)–(5.19) 

and (5.24)–(5.25), we get the expression for the dimensionless axial velocity, temperature and 

angular velocity functions as given below 

   

     

     

, os sin ( ) ,
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, cos sin .

r i
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u x f c U U
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N x g G G

    

      

    

    

      

    

 5.40) 

In equations (5.30)–(5.32), Ur, Θr, Gr and Ui, Θi, Gi are respectively, the real and imaginary parts 

of the velocity function, u1,, the temperature function, Θ1, and angular velocity, G,. 
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From the application point of view, it is needed to interpret the behavior of physical quantities 

such as surface shear stress, τ, surface heat flux, q, and the surface couple stress, m, which 

may be obtained from the following dimensionless relations 

 
0 00

, ,c c

y yy

u T N N T
k kN q k

y y x y x
m     
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 5.41)  

Using the equation 5.6 on equation 5.33 we obtain 
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 5.42)  

are, respectively, dimensionless surface shear stress, surface heat flux and the surface couple 

stress. 

Once the solutions of the equations 5.20)–5.22) and 5.26)–5.28) are known, the values of the 

physical quantities are readily obtained. These are the shear stress,, the rate of heat transfer, q, 

and the couple-stress, m, at the surface of the plate, which are important from the experimental 

point of view. Thus we obtain  

     
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 5.43) 

where ∂u0/∂y, ∂θ0/∂y and ∂N0/∂y are respectively the steady mean shear stress, surface  heat 

transfer and couple stress. 

Here it is proposed to express the available solutions in terms of amplitude (Au, AT, AN) and 

phase (u, T, N) of the shear stress, the heat transfer rate and the couple-stress having the 

following relations: 

2 2 2 2 2 2, ,u r i T r i N r iA A q q A m m        5.44) 

and 

1 1 1tan , tan , tani i i
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
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

      5.45) 
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where the real parts of the transverse velocity gradient, temperature gradient, and couple-stress at 

the surface are τr, qr and mr respectively and the imaginary parts of those are τi, qi and mi 

respectively.                                          

 

5.4 Results and discussion 

In this study, the straight forward finite difference method has been employed in finding the 

solutions of the equations governing the unsteady natural convection boundary layer flow of a 

viscous and incompressible fluid along a vertical plate. The results are expressed in terms of 

transient the shear stress, , surface heat transfer, q, and couple stress, m, showing the effects 

of the physical parameters involved in the flow field, such as, the micropolar heat conduction 

parameter, N, and vortex viscosity parameter, K .  

The effect of the vortex viscosity parameter, K, on the amplitude, Au, and phase, u, of the 

surface shear stress is presented in Fig. 5.2(a) and 5.2(b) respectively. It is evident from the 

figures that the amplitude and phase of the shear stress decrease as the value of the vortex 

viscosity parameter, K, increases. This is expected because an increase in the value of the vortex 

viscosity parameter gives rise to the total viscosity of the fluid flow, which in turn lowers the 

magnitude of the amplitude and phase of the surface shear stress. Surface heat transfer is the 

major cause of such reduction in the above mentioned quantities. Thus, micropolar fluids exhibit 

drag reduction behavior compared to viscous fluids. 

Figures 5.3(a) and 5.3(b) depict the effect of the vortex viscosity parameter, K, on the amplitude, 

AT, and phase, T, of the surface heat transfer. 
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Fig. 5.2: Amplitude and phase of the surface shear stress showing the effect of K when   = 

0.1, Pr = 9.0, N = 1.0. 

 

 

Fig. 5.3: Amplitude and phase of the surface heat transfer showing the effect of K when               

 = 0.1,   Pr = 9.0, N = 1.0. 

 

From the figures, it is seen that the amplitude of the surface heat transfer decreases while the 

phase increases when the value of the vortex viscosity parameter, K, is increased. In this case, an 

increase in the vortex viscosity parameter leads to an increase in the rotation of microelements 

which decelerates the fluid flow and ultimately diminishes the amplitude of heat transfer. 

However, the phase of the heat transfer increases which is expected since total viscosity of the 

fluid increases as K gets stonger and due to fluid friction T enhances within the boundary layer 

region.  
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The effect of varying the vortex viscosity parameter, K, on the amplitude, AN, and phase, N, of 

the couple stress is shown in Fig. 5.4(a) and 5.4(b). We observe that the amplitude and phase of 

the couple stress decrease owing to the increase of the vortex viscosity parameter, K. Here again, 

an increase in the vortex viscosity parameter gives rise to the rotation of microelements which 

decelerates the motion of the fluid and ultimately diminishes the amplitude as well as phase of 

the couple stress 

 

Fig. 5.4:  Amplitude and phases of the couple stress showing the effect of K when  = 0.1, Pr 

= 9.0, N = 1.0. 

 

 

Fig. 5.5: Amplitude and phase of surface shear stress showing the effect of N* when  = 0.1, 

Pr = 9.0, N=1.0. 
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In Fig. 5.5 the effect of micropolar heat conduction parameter, N*, is shown for N= 0.25, 0.50, 

0.75, 1.0 while other parameters are  = 0.1 and Pr = 9.0. It is observed from this fig. that the 

amplitude of the surface shear stress enhances due to the increase in the micropolar heat 

conduction parameter, N*. However, the phase of the shear stress does not vary much but if we 

look closely it is anticipated that it slightly diminishes. This result is due to the fact that 

micropolar fluids offer a greater resistance (resulting from dynamic viscosity and vortex 

viscosity) to the fluid motion compared to Newtonian fluids.  

The influence of micropolar heat conduction parameter, N* (= 0.25, 0.50, 0.75, 1.0) on 

amplitude and phase of heat transfer is shown in Fig. 5.6. It can be seen that the amplitude of 

heat transfer micropolar fluid decreases whereas the phase of heat transfer increases 

considerably. It happens because the rotation of microelements increases due to an increase in 

the micropolar heat conduction parameter which results in the decrease in the amplitude of heat 

transfer while phase of heat transfer increases.   

 

Fig. 5.6: Amplitude and phase of surface heat transfer showing the effect of N* when   = 0.1, 

Pr = 9.0, N=1.0. 

 

The effect of micropolar heat conduction parameter, N*, on the amplitude and phase of couple 

stress is  depicted in Fig. 5.7. The physical parameters are set to be N= 0.25, 0.50, 0.75, 1.0,  

= 0.1 and Pr = 9.0. One can find that amplitude of the couple stress increases while phase 

decreases extensively when micropolar heat conduction parameter enhances from 0.25 to 1.0.  
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Fig. 5.7: Amplitude and phase of couple stress showing the effect of N* when   = 0.1, Pr = 

9.0, N=1.0. 

 

5.4.1 Effect of micropolar heat conduction parameter, N* on transient shear 

stress, surface heat transfer and couple stress coefficients 

Attention is now given to see the effect of the micropolar heat conduction parameter N*(= 0.25, 

0.50, 0.75, and 1.0) on the transient shear stress, , while Pr = 9.0. These figures display the 

effect of N* on shear stress, . As N* increases, the shear stress, , increases. In Fig. 5.8(a), for 

every value of the heat conduction parameter N*, there exists a local maximum of the shear 

stress, . These maximum values of the shear stress, , are recorded to be 0.66683, 0.68414, 

0.70324, and 0.72449 at  = 6.6 for N* = 0.25, 0.50, 0.75, and 1.0, respectively. For  = 6.6, the 

shear stress increases by 2.3%, 5.5% and 8.7%, respectively, as N* increases from 0.25 to 0.50, 

0.75 and 1.0. Fig. 5.8(b) shows the surface heat transfer coefficient, q, against  for different 

values of the micropolar heat conduction parameter N* (= 0.25, 0.50, 0.75, and 1.0) while Pr = 

9.0. These figures display the effect of N* on the heat transfer coefficient, q. As N* increases, 

the surface heat transfer coefficient, q, decreases. In the same fig., for all values of the heat 

conduction parameter N*, there exists the local maximum of the surface heat transfer coefficient, 

q, in each case. These maximum values of the surface heat transfer coefficient, q, are seen to be 

0.62630, 0.56880, 0.50547, and 0.43516 at   = 5.7 for N* = 0.25, 0.50, 0.75, and 1.0, 

respectively. At  = 5.7, there are decreases in the heat transfer coefficient, q , by 9.18, 21.24 

and 30.51 percent respectively, as N* increases from 0.25 to 0.50, 0.75 and 1.0.   Fig. 5.8(c) 
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depicts the couple stress coefficient, m, against  for different values of the heat conduction 

parameter N* (= 0.25, 0.50, 0.75 and 1.0) while Pr = 9.0. These figures display the effect of N* 

on the couple stress coefficient, m. As N* increases, the couple stress coefficient, m, increases. 

This happens because the increase of N* means that the heat conduction through the fluid 

increases so that the viscosity of the fluid decreases. Again Fig. 5.8(c) shows that there exists a 

local maximum of the couple stress coefficient, m, for every values of the heat conduction 

parameter, N* .These maximum values of the couple stress coefficient, m, are found to be 

0.48063, 0.49328, 0.50724, and 0.52276 at  = 6.4 for N* = 0.25, 0.50, 0.75, and 1.0, 

respectively. At  = 6.4, the shear stress increases by 2.63, 5.53 and 8.76 percent, respectively, as 

N* increases from 0.25 to 0.50, 0.75 and 1.0. 

 

Table 5.2: Amplitudes and phases of oscillation in shear stress, surface heat transfer and couple 

stress showing the effect of  K  when   = 0.1, Pr = 9.0, N =1.0.  

 Au AT AN u T N 

K = 0.5 

0.0 0.54433 0.57995 0.13461 0.00000 0.00000 0.00000 

0.1 0.54402 0.58307 0.13459 -1.73080 5.07365 -0.50783 

0.2 0.54310 0.59256 0.13454 -3.51399 10.09909 -1.12000 

0.3 0.54156 0.60811 0.13445 -5.29338 14.86849 -1.74020 

0.5 0.53656 0.65521 0.13411 -8.83135 23.29560 -3.00369 

0.6 0.53309 0.68538 0.13383 -10.58221 26.87041 -3.64218 

0.7 0.52896 0.71900 0.13348 -12.31395 30.01566 -4.28100 

0.8 0.52420 0.75541 0.13305 -14.02027 32.75422 -4.91669 

0.9 0.51882 0.79401 0.13254 -15.69445 35.11944 -5.54549 

1.0 0.51287 0.83427 0.13195 -17.32975 37.14912 -6.16341 

K = 2.0 

0.0 0.38492    0.52198 0.10949      0.00000  0.00000 0.00000 

0.1 0.38482 0.52686 0.10944 -1.93426 6.47870 -1.11614 

0.2 0.38443 0.54166 0.10923 -4.01690 12.74616 -2.43792 

0.3 0.38362 0.56492 0.10890 -6.13324 18.41238 -3.73035 
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0.5 0.38015 0.63021 0.10794 -10.46187 -10.46187 -6.23926 

0.6 0.37727 0.66951 0.10734 -12.64779 31.23695 -7.47043 

0.7 0.37356 0.71188 0.10663 -14.82082 34.25848 -8.68800 

0.8 0.36904 0.75649 0.10582 -16.95900 36.76954 -9.88685 

0.9 0.36377 0.80265 0.10490 -19.04228 38.84107 -11.05924 

1.0 0.35784 0.84976 0.10387 -21.05359 40.53872 -12.19679 

 

5.4.2 Effect of vortex viscosity parameter, K, on transient shear stress, surface 

heat transfer and couple stress coefficients 

The effect of the vortex viscosity parameter, K, on the transient shear stress, , surface heat 

transfer coefficient, q, and coefficient of couple stress, m, are presented in Fig. 5.9 and in 

Table 5.2. It is evident from the figures and Table 5.2 that the shear stress coefficient, surface 

heat transfer coefficient and coefficient of couple stress decreases due to an increase in the value 

of the vortex viscosity parameter, K. Fig. 5.9(a) illustrates shear stress, , against  for different 

values of the vortex viscosity parameter K (= 0.5, 1.0, 1.5 and 2.0) while Pr = 9.0 . These figures 

display the effect of K on shear stress,. As K increases, the shear stress,, decreases. In the 

same figure, for all values of the vortex viscosity parameter K, we observe a local maximum of 

the shear stress, . These maximum values of the shear stress, , are 0.84163, 0.72448, 

0.63753,  and 0.57104 at  = 6.6 for K = 0.5, 1.0, 1.5 and 2.0, respectively. At  = 6.6, the shear 

stress decreases by 13.91, 24.25 and 32.15 percent, respectively, when K increases from 0.50 to 

1.0, 1.5 and 2.0. Fig. 5.9(b) shows the effect of the surface heat transfer coefficient, q, against  

for different values of the vortex viscosity parameter K (= 0.5, 1.0, 1.5, and 2.0) while Pr = 9.0. 

This fig. displays the effect of K on the heat transfer coefficient, q. As K increases, the surface 

heat transfer coefficient, q decreases. Again in Fig. 5.9(b), for all values of the vortex viscosity 

parameter, K, there is a local maximum of the heat transfer, q. These maximum values of the 

heat transfer coefficient, q, are seen to be 0.44791, 0.43549, 0.42693, and 0.41999 at  = 5.6 for 

K = 0.50, 1.0, 1.5 and 2.0, respectively. At  = 5.6, the surface heat transfer coefficient, q, 

decreases by 2.77, 4.68 and 6.23 percent, respectively, as K increases from 0.50 to1.0, 1.50 and 

2.0. Finally Fig. 5.9(c) depicts the couple stress coefficient, m, against  for different values of 

the vortex viscosity parameter K (= 0.5, 1.0, 1.5, and 2.0) while Pr = 9.0. This figure displays the 
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effect of K on the couple stress coefficient, m. With the increase of K, the couple stress 

coefficient, m decreases. In the same Figure, for all values of the vortex viscosity parameter K, 

there exists a local maximum of the couple stress coefficient, m. These maximum values of the 

couple stress coefficient, m, are noticed to be 0.59832, 0.52276, 0.46347, and 0.41697 at  = 6.4 

for K = 0.50, 1.0, 1.5, and 2.0 respectively. At  = 6.4, the shear stress decreases by 12.62, 22.53 

and 30.30 percent, respectively, as K increases from 0.50 to 1.0, 1.5 and 2.0. 

 

5.4.3 Effect of micropolar heat conduction parameter, N* on transient velocity 

profiles, temperature profiles and angular velocity profiles 

The effects of varying N on the velocity profiles, temperature profiles and angular velocity 

profiles against η are depicted in Fig. .10. It is clear from the figures that the velocity profiles, 

temperature profiles and angular velocity profiles increase with an increase in N. We also 

observe that there is local maximum for velocity profiles and temperature profiles while angular 

velocity always decreases as η increases. Fig. 5.10(a) illustrates velocity profiles, u(0, η), against 

η  for different values of the heat conduction parameter N* (= 0.25, 0.50, 0.75,  and 1.0). As N* 

increases, the velocity profiles, u(0, η), increase . In Fig. 5.10(a), for all values of the heat 

conduction parameter N*, there exists a local maximum of the velocity profiles, u(0, η). These 

maximum values of the velocity profiles, u(0, η), are 0.36891, 0.38174, 0.39588,  and 0.411529 

at  η =  1.53 for N* =  0.5,1.0, 1.5, and 2.0, respectively. At η = 1.53, the velocity profile 

increases by 3.47, 7.31 and 11.55 percent, respectively, when N* increases from 0.25 to 0.50, 

0.75 and 1.0. Fig. 5.10(b) also shows the temperature profiles, (0, η), against η for different 

values of the micropolar heat conduction parameter N*(= 0.25, 0.50, 0.75, and 1.0). The 

temperature profiles decrease along η for all values of the heat conduction parameter N*.  Fig. 

5.10(c) depicts the angular velocity profiles, N(0, η), against η for different values of the heat 

conduction parameter N* (= 0.25, 0.50, 0.75 and 1.0). As N* increases, the angular velocity 

profiles, N(0, η), increase. In the same figure, it is seen that for all values of the heat conduction 

parameter N*, there exists a local maximum of the angular velocity profiles, N(0, η). These 

maximum values of the angular velocity profiles, N(0, η), are  0.214790, 0.22260, 0.23209, and 

0.24973 at η  = 1.83 for N* = 0.25, 0.50, 0.75, and 1.0, respectively. Again at η = 1.83, the 



Fluctuating Flow of Thermomicropolar Fluid past a Vertical Surface 

 

67 

 

angular velocity increases by 3.63, 8.05 and 12.07 percent, respectively, when N* increases from 

0.25 to 0.50, 0.75, and 1.0. 

 

5.3.4 Effect of vortex viscosity parameter, K on transient velocity profiles, 

temperature profiles and angular velocity profiles 

Fig. 5.11 exhibits the velocity profiles, temperature profiles and angular velocity profiles against 

η for different values of the vortex viscosity parameter, K.    

      

 

 

Fig. 5.8: Numerical values of (a) surface shear stress (b) heat transfer coefficient  and (c) 

couple-stress for different values of N* against  while Pr = 9.0 and  = 1.  
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Fig. 5.9: Numerical values of (a) shear stress  (b) surface heat transfer coefficient and  (c) 

couple-stress for different values of  K  against values of  while Pr = 9.0 and  = 1. 

 

It is seen from the Fig. 5.11 that the velocity profiles attain a maximum value while 

temperature profiles and angular velocity profile decrease monotonically with the increase of 

η. Fig. 5.11(a) illustrates the velocity profiles, u(0, η), against η for different values of the 

vortex viscosity parameter K (= 0.5, 1.0, 1.5,  and 2.0). These figures display the effect of K 

on the velocity profiles, u(0, η). As K increases, the velocity profiles, u(0, η), increase. In the 

same fig., for each value of the vortex viscosity parameter K, there exists a local maximum of 

the corresponding velocity profile, u(0, η). These maximum values of velocity profiles, u(0, 

η), are 0.48234, 0.411529, 0.360379,  and 0.322369 at η = 1.56 for K =  0.5, 1.0, 1.5,  and 2.0 

respectively. Also η = 1.56, the velocity profiles increases by 14.68, 25.28 and 33.16 percent, 
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respectively, as K increases from 0.5 to 1.0, 1.5, and 2.0.  

 

 

Fig. 5.10: Numerical values of (a) velocity profiles (b) temperature profiles and (c) angular 

velocity profiles for different  values of N* against  while Pr = 9.0 and  = 1. 

 

Fig. 5.11(b) shows temperature profiles, (0, η), against η for different values of the 

micropolar heat conduction parameter K (= 0.5, 1.0, 1.5, and 2.0). The temperature profile 

decreases along η for all values of the vortex viscosity parameter K. Fig. 5.11(c) also depicts 

the angular velocity profile, N(0, η), against η for different values of the vortex viscosity 

parameter K (= 0.5, 1.0, 1.5, and 2.0). As K increases, the angular velocity profile, N(0, η), 

also increases. Finally, Fig. 5.11(c) shows that for every value of the vortex viscosity 

parameter, K, there exists a local maximum of the angular velocity profile, N(0, η). These 

maximum values of the angular velocity profile, N(0, η), are 0.27360, 0.24073, 0.214149, and 
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0.193509 at η = 1.83 for K = 0.5, 1.0, 1.5, and 2.0, respectively. At η = 1.83, the angular 

velocity increases by 12.01, 21.72 and 29.27 percent, respectively, as K increases from 0.5 to 

1.0, 1.5, and 2.0. 

 

 

 

Fig. 5.11: Numerical values of (a) velocity profiles (b) temperature profiles and (c) angular 

velocity profiles for different values of  K  against   while Pr = 9.0 and  = 1. 
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Chapter Six 
Free convection flow of a thermomicropolar fluid 

along a vertical surface with sinusoidal surface 

temperature 
 

6.1 Introduction 

The paper studies the problem of two-dimensional steady free convection about a vertical 

plate with the combined effect of stream wise sinusoidal variations of the surface temperature 

in a micropolar fluid flow with classical Newtonian fluid. Under these assumptions, the 

governing boundary layer equations are analyzed numerically by a straight forward finite 

difference method. 

The space of various the material parameters contains the micro polar heat conduction 

parameter, N*, the vortex viscosity parameter, K, and the amplitude of surface temperature, a, 

as well as the shear stress, , the surface heat transfer, q, and the couple-stress, m, are plotted 

graphically and discussed.  

Also, it was found that, the effects of non-dimensional physical parameters are 

obtained by the isolines of temperature, isolines of the species concentration and streamlines. 

 

6.2 Mathematical Formalisms 

The two-dimensional steady free convection laminar boundary layer flow of a thermo-

micropolar viscous incompressible fluid along a vertical flat plate is considered. The 

temperature of the ambient fluid and the surface are assumed to be T  and wT  respectively. 

The coordinate system and the flow configuration are shown in Fig. 7.1. 

In this figure δM,, δT and δN  
 represent approximate momentum, thermal and micro 

rotation boundary layer thickness, respectively.  
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Fig. 6.1: Flow configuration and coordinate system. 

 

Under the usual Boussinesq approximation the governing equations of conservation of mass, 

momentum, angular velocity and energy that govern the flow are given as  
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6.5 

Here, x , y  are the dimensional coordinates parallel with and perpendicular to the flat surface,  

u , v are the dimensional velocity component,  the fluid density,   the dynamic viscosity, κ 

the  thermal conductivity, N the dimensional angular velocity, g the acceleration due to 

gravity, β the coefficient of volume expansion, T  the dimensional temperature, wT (x)  the 
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mean surface temperature of the fluid in the surface, T the temperature of the ambient fluid, j 

the micro inertia per unit mass,  the spin-gradient viscosity, cp the specific heat capacity, 

 the thermal diffusivity, c  the micro polar conductivity and a is amplitude of oscillation in 

the surface temperature.  

We introduce the following dimensionless variables 
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    (6.6) 

where L is the wave length, N is the dimensionless angular velocity,  is the dimensionless 

temperature.   

Thus the dimensionless equations of conservation of mass, momentum, angular 

velocity and energy that govern the flow are given as  
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6.11 

In equations (6.8)-(6.10), K =/ is termed as vortex viscosity parameter, Pr = / is the 

Prandtl number,  = ( +/2)j is the gyro-viscosity coefficient and N*=c(gTL3)1/2/(L2cp) 

is the micropolar heat conduction parameter, B=L2(gTL3/2)1/2/j  is the material 

parameter. Finally, w(x) defined in equation (6.11) is assumed to be proportional to a linear 

function of x. From application point of view, we need to find the values of shear stress, , 

the couple-stress, m , and the rate of heat transfer, q , at the surface of the plate, that may be 

obtained by the relations given below:  
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 Using the relation (6.6) on (6.12), we obtain 
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Where τ,  and q are the dimensionless shear stress, couple-stress and rate of heat transfer, 

respectively, which are defined by 
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6.3 Method of Solution 

The set of equations (6.7)-(6.10) with the boundary conditions (6.11) can be integrated by 

straight forward finite difference method. For integration, we set the following group of 

transformation for the dependent and independent variables: 

, , , , ,u XU V x X y Y N XG X      v   (6.14) 

Therefore the equations (6.7)-(6.10) are transformed into 
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The boundary conditions to be satisfied by the above equations are by the equations 6.11) 

1
0, 0, , 1 sin( ) at 0

2

0, 0, 0, 0 as 0

U
U V G a X Y

Y

U V G Y




       


    

 

(6.19) 

Here w(X) = X   
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Now, equations (6.15)-(6.17) subject to the boundary conditions (6.19) are discredited by 

central difference scheme for the diffusion terms and backward-difference scheme for the 

convective terms. The resulting tridiagonal algebraic system is obtained as follows: 

For the momentum equation, we have 

1 1, 1 , 1 1, 1i j i j i jAU BU CU D     (6.20) 

where 

 , ,

1 1 , , 12 2 2

2 11 1
Pr , Pr , Pr

2 2

i j j i j

i j i j

V X VKK K
A B U U C

Y Y Y X Y Y

  
        

      
 

1, 1,

1 , , , 1and Pr .
2

i j i j j

i j i j i j

G G X
D K U U

Y X

 



 
    

  
 

For the angular velocity equation, we get 

2 1, 2 , 2 1, 2i j i j i jA G B G C G D     (6.21) 

   

 

,

2 2 , ,2 2

, 1, 1,

2 2 , , 12

1 / 2 2 1 / 2
whear  Pr , Pr 2 ,

2

1 / 2
Pr and .

2 2

i j j

i j i j

i j i j i j j

i j i j

V XK K
A B U KB U

Y Y Y X

V U U XK
C D KB U U

Y Y Y X

 



 
      

   

  
    

    

 

Finally, for the energy equation, we obtain 

3 1, 3 , 3 1, 3i j i j i jA B C D        (6.22) 

Where  
, , 1

3 , ,2

1 1 1
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The implicit tridiagonal algebraic system of equations (6.20)-(6.22) is solved using the 

Gaussian elimination method for the unknown U, W, and  independently. In the 

computation, the continuity equation is used to directly measure the normal velocity vector V 

from the following expression:                                                 

   , 1, , , 1 , 1, .
2

i j i j j i j i j i j i j

Y Y
V V X U U U U

X
  

 
    


 

(6.23) 
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The effects of the physical parameters, such as, the micropolar heat conduction parameter, 

N*, the vortex viscosity parameter, K, the amplitude of surface temperature, a, are discussed 

in terms of the coefficients of the shear stress, τ, rate of heat transfer, q, and couple stress, m, 

from the following expressions:                            

 
0 0 0

1 , , 1
2Y Y Y

U K G
K X q X m X

Y Y Y


  

         
            

         
 

(6.24) 

 

6.4 Results and discussion 

In this study we have analyzed numerically the natural convection flow of viscous 

incompressible fluid along a vertical flat surface with streamwise variations of the surface 

temperature. The dimensionless equations are solved using the straight forward finite 

difference method. Results have been presented in terms of the coefficients of the shear 

stress, rate of heat transfer and couple stress. We also investigate the effects of physical 

parameters on the isolines of temperature, isolines of angular velocity and the streamlines in 

the boundary layer regimes.  

In order to validate the numerical solutions, a comparison is made in Table 1. From 

the table, it is seen that the present solutions are good agreement with Jena and Mathur [8]. 

 

Table 6.1: Numerical values of U(0,0) and G(0,0) for Pr = 9.0, a = 0.0, K =0.1, B = 500.0           

and N* = 1.0 

U(0,0) G(0,0) 

Jena and Mathur [8] Present Jena and Mathur [8] Present 

0.1558 0.15574 0.0365 0.03650 

6.4.1 Effect of the physical parameters on coefficients of shear stress, τ, rate 

of heat transfer, q, and couple stress, m 

The effects of the micropolar heat conduction parameter, N*, on the coefficients of the shear 

stress, rate of heat transfer and couple-stress are shown in figures 6.2(a)-6.2(c). From the 

figures 6.2(a) and 6.2(c) it is seen that the amplitudes of oscillation of the surface shear stress 

and couple-stress decrease slowly, while figure 6.2(b) indicate that the amplitude of heat 

transfer coefficient increases with x as the value of N* increases.    
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Fig. 6.2:  Numerical values of (a) the shear stress (b) rate of heat transfer and (c) couple-

stress against x for different values of  N* while Pr = 9.0, K=5.0, a = 0.5. 

 

Figures 6.3(a)-(c) depict the effects of varying the vortex viscosity parameter, K, on the shear 

stress, rate of heat transfer and couple-stress. Figures suggest that the amplitude of oscillation 

of the shear stress, rate of heat transfer and couple-stress is higher for lower values of K. The 

reason for such an increase in the amplitude is that the value of K is higher for lower viscous 

fluid or higher vortex viscosity paraetemr. 
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Fig. 6.3: The coefficients of (a) the shear stress (b) coefficient of heat transfer and (c) couple-

stress against x for different values of  K while Pr = 9.0, N*=1.0, a = 0.5.  

 

The influence of the amplitude of the surface temperature on the surface shear stress, rate of 

heat transfer and couple-stress is shown in figures 6.4(a)-(c). Evidently, the surface shear 

stress, the rate of heat transfer and the couple-stress are found to be higher with an increase of 

the amplitude of the surface temperature oscillation. It is due to strong influence of heat 

transfer from the surface.  
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Fig. 6.4: Numerical values of (a) the shear stress (b) rate of heat transfer and (c) couple-stress 

against x for different values of a   while Pr = 9.0, N*=1.0, K=5.0. 

 

6.4.2 Effect of the physical parameters on the isolines of temperature, 

isolines of angular velocity and on streamlines 

In this section we discuss the effects of the micropolar heat conduction parameter, N*, the 

vortex viscosity parameter, K, and the amplitude of surface temperature, a, on the isolines of 

temperature, isolines of angular velocity as well as the streamlines in the boundary layer 

regimes. 

Figures 6.5(a)-(c) demonstrate the effects of N* on the isolines of temperature, isolines of 

angular velocity and the streamlines. Results indicate that for higher values of N* the thermal 

and momentum boundary layers become wider but the isolines of angular velocity reduces. 

Also it is found that there develops near wall layers within the main boundary layers of 

temperature and isolines of angular velocity fields. These layers increase when N* increases. 
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Moreover, the oscillation in the fluid flow is observed due to streamwise variations of the 

surface temperature. 

 

 

Fig. 6.5: (a) Isolines of temperature (b) isolines of  angular velocity and (c) streamlines in the 

boundary layer for different values of  N* while Pr = 9.0, K=5.0, a = 0.5.  

 

The influences of the variation of vortex viscosity parameter, K, on the isolines of 

temperature, isolines of angular velocity and the streamlines are depicted in figures 6.6(a)-(c). 

The thicknesses of the momentum and thermal boundary layers and the isolines of angular 

velocity become wider with the increase of K. It is because the vortex viscosity or the fluid 

viscosity significantly affects the fluid flow and heat transfer.  

Figures 6.7(a)-(c) exhibit the effects of the amplitude of oscillation, a, on the isolines of 

temperature, isolines of angular velocity and the streamlines. It is observed that the 

momentum and thermal boundary layer thicken and the isolines of angular velocity is higher 

for higher values of the amplitude of oscillation, a. Due to high amplitude of oscillation in the 

Anis
Typewritten text
Dhaka University Institutional Repository



Free convection flow of a thermomicropolar fluid along a vertical surface with sinusoidal 

surface temperature 

 

81 

 

surface temperature, the fluid flow and heat transfer are seen to be oscillating with larger 

amplitude.   

 

 

Fig. 6.6: (a) Isoclines of temperature (b) isoclines of angular velocity and (c) streamlines in 

the boundary layer for different values of K while Pr = 9.0, N* =1.0, a = 0.5. 
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Fig. 6.7: (a) Isolines of temperature (b) isolines of angular velocity and (c) streamlines in the 

boundary layer for different values of  a  while Pr = 9.0, N* =1.0, K = 5.0. 
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Chapter Seven 

Summary and Future Work 
 

The present dissertation deals with the effect of heat transfer of a steady free convection flow 

of Newtonian fluids along a uniform surface heat flux. We start by introducing a similarity 

transformation and the governing non-linear partial differential equations have been 

transformed into a system of non-linear ordinary differential equations which are locally 

similar and solved them numerically using shooting iterative technique. 

From the present study we have investigated the effects of the vortex viscosity 

parameter, K , and the transpiration parameter, s , on laminar mixed convection boundary 

layer flow of a micropolar fluid past a vertical permeable flat plate. The governing boundary 

layer equations have been simulated employing four distinct methods, namely: (1) the series 

solution for small ,  (2) the asymptotic solution for large ,  (3) the implicit finite difference 

method together with Keller-box scheme and (4) the primitive-variable formulation method 

for all . Results are expressed in terms of the surface shear stress, the couple-stress and heat 

transfer rate. From the present investigation it may be concluded that: 

 (i) Agreement between the solutions of the stream-function formulation and the primitive-

variable formulation found to be excellent. 

 (ii) An increase in the value of the vortex viscosity parameter, K , leads to an increase in the 

value of the surface shear stress, the heat transfer rate and the local couple-stress. 

 (iii) Values of the surface shear stress, the heat transfer rate or the couple-stress increases 

due to increase in the rate of increase in fluid injection parameter s.    

In this article we have investigated an unsteady free convection boundary layer flow 

of a thermo-micropolar fluid along a heated vertical plate, considering the presence of 

micropolar heat conduction. The reduced governing equations that are valid for entire time 

regimes are solved using explicit finite difference method. Asymptotic solutions for small 

and large time are also obtained. The results thus obtained are compared and found in 

excellent agreement. From the present investigation we may conclude the following: 

1. The micropolar heat conduction, α* leads to decrease the shear stress as well as the heat 

transfer; whereas, this leads to increase in the couple stress. 

2. There is decrease in the value of shear stress and the couple stress and increase in the 

surface heat transfer owing to increase in the value of the vortex viscosity. 
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3. Both the axial velocity and angular velocity along with temperature profile increase due to 

increase in the micropolar thermal conductivity, α*. 

4.  Increase in the vortex viscosity leads to decrease in the momentum boundary layer 

thickness; but leads to reduce the angular momentum boundary layer thickness. 

In this Thesis, the unsteady free convection boundary layer flow of a thermo-micro 

polar fluid along a vertical plate has been discussed. It is assumed that the temperature of the 

plate is oscillating about a constant mean temperature, w, with small amplitude, . The 

governing boundary layer equations are analyzed using, straight forward finite difference 

method for the entire values of locally varying variable, x. The effects of the material 

parameters such as angular velocity, N*, the vortex viscosity parameter, K, on the shear stress, 

surface heat transfer and the couple-stress have been investigated. Through the present 

investigation it is found that micro polar fluids have a greater resistance (resulting from 

dynamic viscosity and vortex viscosity) to the fluid motion compared to Newtonian fluids. 

The steady two-dimensional flow of an incompressible micropolar fluid about a 

vertical plate with the effect of stream wise sinusoidal variations of the surface temperature 

has been investigated. The governing boundary layer equations are solved numerically using 

the straight forward finite difference method. It is found that the vortex viscosity parameter 

and the amplitude of surface temperature strongly affect the shear stress, rate of heat transfer 

and couple stress while the influence of the micropolar heat conduction parameter is rather 

weak. The thicknesses of the momentum, thermal and angular velocity are found to be wider 

owing to an increase of the micropolar heat conduction parameter, the vortex viscosity 

parameter and the amplitude of surface temperature. But the exception is that the isoclines of 

angular velocity become lower for higher values of the micropolar heat conduction 

parameter. 

 

 

 

 

 

Scope of possible future works 
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The results of this study may be made applicable in different fields of science, technology 

and industry. The possible extensions of the present study are indicated below: 

 The present investigation can be extended for three dimensional studies. 

 This work can be applied for other non -Newtonian micro polar fluid. 

 Different numerical techniques can be applied to analyze this study and compare with 

existing methodologies. 

 Better knowledge of this work will be helpful in designing of related equipment. 

 The present analysis can be extended to study the influences of different parameters 

by changing the boundary conditions. 

 This problem can be extended to nano fluid flow with an objective to explore how 

nano particles with volume fraction as parameter, affect the velocity and particularly 

temperature field. 

 The future work can be carried out generalizing the geometry of the bearing shape, 

using different types of lubricants, types of loading and variation of magnetic field 

applied. 

 Further this can be extended by applying Finite Volume Method.  

 Velocity, temperature and concentration profiles for different variations of the 

parameters. This study may be helpful to do the two dimensional problems of 

unsteady MHD free convective flows. 

 Also this study may be helpful in investigating the nature of flows. 
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