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ABSTRACT 
 

The aim of this thesis is to study interconnection among various branches of 

differential geometry and its application to dynamical systems. At first, we discuss 

about various branches of differential geometry and study interconnection among 

these branches. Then some recent development on the application of differential 

geometry to dynamical system, called Brusselator model, is studied. Organization of 

the thesis is as follows. 

Chapter-1 provides some background materials on which the rest of the thesis is 

based. In this chapter basic definitions and theorems of real and complex manifolds 

are provided. This chapter is mainly a review. 

In Chapter-2, a brief review on connections on manifolds and Riemannian manifolds 

is first of all provided. Given a connection on a manifold we can define geodesic, 

Riemannian curvature tensor, Ricci tensor, Ricci scalar on it. It should be mentioned 

here that, hand calculations become extremely tedious to evaluate components of 

connection, Riemannian curvature tensor, Ricci tensor etc. on higher dimensional 

manifolds. In this chapter we have developed some computer codes for computing 

these components. Using computer techniques, the components of connection, 

Riemannian curvature tensor, Ricci tensor etc. can be computed easily. The work is 

original. 

In Chapter-3, interconnections among manifolds with symplectic structure are 

reviewed. This chapter is mainly a review. But there are some original calculations 

also. In this chapter we have studied connections of symplectic geometry with the 

contact geometry, Riemannian geometry and Kähler geometry using existing 

theorems. 

In Chapter-4, a review on symplectic geometry and contact geometry with complex 

manifold is provided. Here we have developed a special comparison between complex 

symplectic geometry and complex contact geometry.  



vii 
 

Chapter-5 is mainly a review on Kodaira, Legendre and isotropic moduli spaces. 

However, there are some original calculations also. Here we have studied the 

existence and stability of Kodaira and Legendre moduli spaces and also the existence, 

completeness and maximality of isotropic moduli spaces. Also, interconnection among 

Kodaira, Legendre and isotropic moduli spaces is established in this chapter. 

Chapter-6 is original. It provides the main result. Here we analyze two slow-fast 

dynamical systems named Brusselator model and Lorenz-Haken model through 

differential geometry. First, we investigate the temporal and spatiotemporal 

Brusselator model, respectively and find periodic traveling wave solutions. As a result, 

we obtain a spot pattern of the model. Then, we investigate the Lorenz-Haken model. 

Next, we apply an old strategy called the Geometric Singular Perturbation Theory and 

another newly developed strategy that reflects the applications of differential geometry 

in the slow-fast dynamical system called the flow curvature method to the two models 

named as temporal Brusselator model and Lorenz-Haken model. According to the 

Flow Curvature Method, we determine the curvature of the trajectory curve 

analytically called flow curvature manifold by estimating the solution or trajectory 

curve of the dynamical system as a curve in Euclidean space. Since this manifold 

comprises the time derivatives of the velocity vector field and hence it receives 

knowledge about the dynamics of the corresponding system. In Model 1 named 

Brusselator model where we consider the temporal Brusselator model as a two 

dimensional slow-fast dynamical system. According to the Flow Curvature Method, 

we determine the flow curvature manifold which directly provides the slow invariant 

manifold where the Darboux invariance theorem is then used to show the invariance of 

the slow manifold. On the other hand, since the temporal Brusselator model has no 

singular approximation and hence, Geometric Singular Perturbation Theory fails to 

provide the slow invariant manifold associated with temporal Brusselator model. 

After that, we describe the effect of growth and curvature with surface deformation 

on pattern formation of the spatiotemporal Brusselator model.  In Model 2 named 

Lorenz-Haken model, we consider as a three dimensional slow-fast dynamical system. 

By using Flow curvature method, we determined the flow curvature manifold which 

directly provides the third order approximation of the slow manifold where the 
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Darboux invariance theorem is then used to show the invariance of the slow manifold. 

Then, we analyze the stability of the fixed point of the L-H model using the flow 

curvature manifold. On the other hand, since L-H model has singular approximation 

and it can be considered as a singularly perturbed system. Hence, by using Geometric 

Singular Perturbation Theory we determine the order by order approximation in the 

small multiplicative parameter of the slow manifold where the Fenichel’s invariance 

theorem is used to show the invariance of the slow manifold. After that, we compare 

the two geometric methods applied to the two slow-fast dynamical systems and 

highlight the significant results. 

Finally, some concluding remarks and scope for future work in this direction are given 

in Chapter-7. 
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CHAPTER 1 

MANIFOLDS 

 

1.1 Real Manifolds 
 

A manifold of dimension n is a topological space which locally resembles n-

dimensional Euclidean space. More precisely, each point of an n-dimensional 

manifold has a neighbourhood that is homeomorphic to ℝ�. Lines and circles are one-

dimensional manifolds. Two-dimensional manifolds are also called surfaces. Although 

a manifold locally resembles Euclidean space, but globally a manifold may have 

complicated structures. For example, the surface of the sphere is not a Euclidean 

space, but in a region it can be charted by means of geographic maps: map projections 

of the region into the Euclidean plane. When a region appears in two neighbouring 

maps, the two representations do not coincide exactly and a transformation is needed 

to pass from one to the other, called a transition map or transition function. 

 

Definition 1.1. Let � be a topological space and � ⊆� an open set. Let � ⊆ℝ� be 

open. A homeomorphism �:� → � , where �(�)= (��(�),⋯ ,��(�)) is called a 

coordinate system on �  , and the functions ��(�),⋯ ,��(�) are the coordinate 

functions. Also, ��� is a inverse map that is parameterization of �. 

 

Definition 1.2. A pair (�,�)of a topological manifold � is an open subset � of � 

called the domain of the chart, together with a homeomorphism �:� → � of � onto 

an open set � in ℝ� . Roughly speaking, a chart of �, is an open subset � in � with 

each point in � labeled by � numbers.  

 

Definition 1.3. Two charts ( , )Ua a and ( , )U    are said to be compatible if  

1. (i) ����� ∩ ���⊆ℝ
� open 

    (ii) ����� ∩ ���⊆ℝ
� open 

http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Neighbourhood_%28mathematics%29
http://en.wikipedia.org/wiki/Homeomorphic
http://en.wikipedia.org/wiki/Line_%28geometry%29
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Map
http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Euclidean_plane
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2. (i) 
1 : ( ) ( )o U U U Ua   a  a a      ®   is a C  diffeomorphism.  

    (ii) 
1 : ( ) ( )o U U U U a a a   a      ®   is a C diffeomorphism.  

 

Definition 1.4. An atlas of class ��  on a topological manifold �  is a set  

  , ,U Ia a a Î  of each chart, such that  

(i) the domain Ua  covers � i.e.; 
I

M Ua
aÎ

  .  

(ii) the homeomorphism a  satisfy the following compatibility conditions: the maps  

).()(:

)()(:

1

1

aaaa

aaaa





UUUUo

UUUUo

®

®





 

must be of class �� . 

These homeomorphisms are the transition maps or coordinate transformations.          

 

Figure 1.1. Transition maps 

 

Definition 1.5. An C - atlas on � is a collection   ,A U Ia a a Î  of C  chart 

which cover � and are C - compatible.  

 

 



 

Definition 1.6. A second countable, Hausdorff topological space 

dimensional topological manifold if it admits an atlas 

φ� ∶�� → ℝ
�  , n ∈ ℕ

 

Definition 1.7. A topological manifold is said to be a differential or smooth manifold 

if all transition maps are 

are continuous. Also, two

 

Definition 1.8. A function

differentiable if and only if  

 

 

Figure 1.2.

Definition 1.9. A map 

bijection (hence  ���:�

 

Definition 1.10. A diffeomorphism 

both � and its inverse �

the whole at ℝ�. 
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A second countable, Hausdorff topological space 

dimensional topological manifold if it admits an atlas   , ,U Ia a a

. 

A topological manifold is said to be a differential or smooth manifold 

if all transition maps are C∞ diffeomorphisms, that is, all partial derivatives exist and 

two smooth atlases are equivalent if their union is a smooth atlas.

A function  f :M → ℝ from an n-dimensional manifold 

differentiable if and only if  f o x-1 is differentiable for any local chart x

2. Differentiable function on a differentiable manifold

 

A map �:� →  �  is called a homeomorphism if and only if 

� →  � exist) both  � and ���  are continuous. 

A diffeomorphism �:ℝ� → ℝ� is an injective (one 

��� are �∞ functions. But, not necessary the domain of 

A second countable, Hausdorff topological space M is an n-

, ,U Ia a a Î  , where  

A topological manifold is said to be a differential or smooth manifold 

diffeomorphisms, that is, all partial derivatives exist and 

smooth atlases are equivalent if their union is a smooth atlas. 

dimensional manifold M to the reals is 

x : U →  ℝ� . 

 

Differentiable function on a differentiable manifold 

is called a homeomorphism if and only if �  is 

is an injective (one - one) such that, 

functions. But, not necessary the domain of � will be 
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Definition 1.11. In vector calculus, the Jacobian matrix is the matrix of all first-order 

partial derivatives of a vector-valued function. 

Consider a map f : U→ ℝ�  which is a class of ��.That is, every function 

��(��,⋯ ,��), i = 1,������� is differentiable up to k-th order. Then the matrix 

                                             �(
��

��
)�
��
=  ��

���

���
⋯

���

���

⋮ ⋱ ⋮
���

���
⋯

���

���

��

��∈ � 

 

is called the Jacobian matrix of the map f at the point �� ∈  �.  

 

1.1.1 Tangent Vector Space on Manifolds 

 

Definition 1.12. Tangent vector at � is � =  , xa   . The set of all tangent vectors at 

� denoted by ��� and it is called the tangent space of � at �. 

  

Definition 1.13. Let � be a manifold and x MÎ . Then for all x ∈ �, ��� is defined as 

tangent space. The tangent bundle �� is defined by 

 

                                                       �� ≔ ⋃ ����∈�   

 

Definition 1.14. The cotangent bundle �∗� is the dual to the tangent bundle �� in the 

sense that each tangent space has a dual cotangent space as a vector space. The 

cotangent bundle �∗� is a smooth manifold itself, whose dimension is 2�. 

 

Definition 1.15. A fibre bundle is a space which locally looks like a product of two 

spaces but may possess a different global structure. Tangent and cotangent bundles are 

special cases of a fibre bundle. Every fiber bundle consists of a continuous surjective 

map: � ∶� → �, where small regions in the total space � look like small regions in the 

product space � × �. Here �  is called the base space while � is the fiber space. 

 

http://en.wikipedia.org/wiki/Vector_calculus
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Real_coordinate_space
http://en.wikipedia.org/wiki/Function_%28mathematics%29
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Definition 1.16. A jet bundle is a generalization of both the tangent bundle and the 

cotangent bundle. The Jet bundle is a certain construction which makes a new smooth 

fiber bundle out of a given smooth fiber bundle. It makes it possible to write 

differential equations on sections of a fiber bundle in an invariant form. 

 

Definition 1.17. A (smooth) real vector bundle � of  rank � over a smooth manifold � 

is a smoothly varying family of �-dimensional real vector spaces which is locally 

trivial. More formally, a real vector bundle is a triple (�,�,�), where � and �are 

smooth manifolds and � ∶� → �  is a smooth map. For each � ∈ � , the fiber 

�� ≡ �
��(� ) of � over �  is a real �-dimensional vector space. 

 

Definition 1.18. The projection map of a manifold � is defined by 

 

                                                     MTM ®:   

given by                             

                                              ( )v x   if � ∈ ���.  

Let (�, ) be any chart containing x ∈ �. Define the map ��:��� → ℝ
� , where     

 

                               
      )()'(:,)(, oxvvxMTx aaa Î

. 
 

 

Theorem 1.1. For the structure of tangent space 
xT M , the map  is well- defined one-

one, onto map.  

Proof.  (i)  �� is well-defined 

Indeed, if    , ,x x a   Î    is another representative of  , xa    i.e.

   , ,x x a        then,  

                                                              ox


  :, . 

But        ;o o   a
 

     [By definition] 
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So, we have,  

                                                               xx ,, a  . 

  - is well defined. 

(ii) �� is One–One  

We assume that  , xa    and  , x    are two tangent vectors  

 

such that,                                      xx ,, a   

 

Then by definition, 

                                                     oo



 a   

Hence, 

                                                  xxx ,,~ aa  . 

So, �� is one – one.  

 

(iii) �� is Onto  

Let ℎ�∈ ℝ� . Then we have to show that these exists  , xx T Ma Î    such that 

 , x h a   


. If there is some a like this, then we have,    

                                                      (� ∘�)′(�)= ℎ�⃗                                                     (1.1)    

So, we look for some a  satisfying (1.1).  

 

Take the line -                            �(�)≔ �ℎ�+ �(�) 

 

where ( )x  is constant and set ( )ta    1 1. ( ) ( )t h x t      


= 1( ) ( )o t  , for 

same  , restricted in a small interval of ℝ say, � so that  

                                                                              UJ )(a  

For such an a  we have,            , x a     o t a


  
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 

 
 

h

xht
dt

d

xht

t

too

















 

)(

)(

)(

1









 

 

So, �� is onto.          

               

Hence �� is a well defined, one-one and onto.                                                                 □ 

 

Theorem 1.2. The projection map :TM M ® is C   map.  

Proof . Let us prove that,   is C   at a tangent vector .xu T M TMÎ Ì  By definition, 

we should find a chart of �� and a chart of �  such that, the corresponding local 

representation of  is smooth. For this purpose, if xu T MÎ , we choose the chart 

 ,U A Î  with x UÎ  and there corresponding chart  1 ( ),U   of ��.  

Clearly,  1( ).u U Î Thus, we can form the local representation  

                                                ).()(: 11 UU  ®  

But                                            1( )U    =�(�)× ℝ�  

So,                                       � ∘� ∘���:�(�)× ℝ� → �(�)⊆ℝ�  

 

Now, we check that for every (�,h

)∈ �(�)× ℝ� . 

 

),)(( 1 ha


 
 

 
1

1

1

( )

( ) ( , )

( )( ), ( , )
a

o a h

o v where a h v T M


  

   







  Î


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 
 
.

)(

.)(

)(

1

a

a

v

x















 

i.e.,             (� ∘� ∘���)��,ℎ�⃗�= � = �����,ℎ�⃗�,∀��,ℎ�⃗�∈ �(�)× ℝ
�  

 

or,                            (� ∘� ∘���)= ���:�(�)× ℝ
� → �(�). 

 

Therefore, the local representation is now the map,  

 

                           (� ∘� ∘���)= ���:�(�)× ℝ
� → �(�)  

 

which is smooth map at every point of �(�)× ℝ� . 

 

Hence, the local representation is the smooth map at 1( ( )).U   Therefore, since the 

local representation is C   at  1( ) .U  
 so,   is C   at �. The same thing will be 

true for every .u TMÎ Hence,   is C   (smooth map) for all .TMu Î   

 

Thus completes the proof of the theorem.                                                                      □  

 

Definition 1.19. Let :f M N®  be a C   map (smooth). The tangent map of � at � or 

differential of � at some ,x MÎ denoted by,  

xx fdxffT ,
 

is the map.  

NTMTfT xfxx )(: ®
  

 

And defined by                    ( )( , : , ( ) .x f xT f x fo f x T Na a Î    
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1.1.2 Vector Fields on Manifolds 

 

A vector field  � on a manifold  � is a cross-section in  ��. Thus a vector field � 

assigns to every point  � ∈ � , a tangent vector �(�) such that the map  � → �� so 

obtained is smooth. The vector fields on � form a module which will be denoted by 

 �(�). 

 

Definition 1.20. A  �� -vector field on � is a  ��  map  

                                                             �:� → �� 

such that        

                                   ��� = ���  , where ��� =  identity of � 

 

Definition 1.21. If  (�,�) is a chart at � ∈ �  with coordinates (��,��,… ,��  ), then 

we have a basis (�
�

���
�
�
)���,�,…,�  of   ��� . Thus  

                                        �(�)=  ∑ ��
�
���   �

�

���
�
�
          ; where  � ∈ � ⊆� 

and                                       �(�)=  ∑ ��
�
���   �

�

���
�
�
           ; where  � ∈ � ⊆� 

In general,                       �(�)=  ∑ ��
�
��� (�) �

�

���
�
�
      ; where  �� ∈ � ⊂ � →  ℝ  

Instead of   ��, we write ��. Hence   �(�)=  ∑  ��
�
��� (�) �

�

���
�
�
 

We call  �� the coordinates of the vector field � with respect to the chart  (�,�). 

 

Definition 1.22. Let  � be an �-dimensional smooth manifold with domain  �,��  be 

the set of smooth functions. A smooth vector field on  � is a map  �: �� →  ��   such 

that, 

      (i) �(�� + ��)= ��(�)+ ��(�) 

      (ii) �(��)= �(�)� + ��(�); ∀ �,� ∈ ��   and α ,β ∈ ℝ 

 

The set of all smooth vector fields on � is a vector space denoted by Γ(��). 

 



 
10 

Theorem 1.3. A vector field  �  is smooth if and only if its coordinates  ��’s are 

smooth for all charts of �. 

Proof. Assume that  �  is smooth. Take any chart  (�,�) with coordinates 

(��,��,… ,��  ).Then  ��|�  is again smooth. Since  � is smooth, if we take the charts  

(�,�) of � and  (���(�),�)  of  �� , then the corresponding local representation 

 

                           � � � � ���:�(�)→ �����(�)�= �(�)× ℝ�  

 

is smooth (as the local representation is defined, because   �(�)⊆���(�)). 

Now for every � ∈ �(�) , we have 

 

            (� � � � ���)(�)= �(�(���(�))) 

                                          = ���(�)�              [ ∵ ���(�)= �]      

                                          = �(��) 

                                          = ����(��)�,��(��)�   �� �� ∈ ��  

                                          = (�(�),��(��)) 

                                          = ��,����(�)��     [ ∵ ���(�)= � ⇒ �(�)= �] 

                                          = ��,�����|� (�)�� 

                                           = ��,���∑  ��
�
���  

�

���
�(�)�      [∵ ��|� = ∑  ��

�
���  

�

���
 ]     

                                           = ��,���∑  ��
�
���  �

�

���
�
�
��          

                                           = ��,∑  ��(�)
�
���  ��(�

�

���
�
�
)�     [∵ �� is a linear map] 

                                            = (�,∑  ��(�)
�
���  � �)                 [ ∵ � � = ��(�

�

���
�
�
) ] 

                                            = (�, (��(�), ��(�),… ,�� (�)))  

                                            = (�, (��� �
��(�)�, ��� �

��(�)�,… ,�� ( �
��(�)))) 

                                            = (�, ((��� �
��)(�), (��� �

��)(�),… ,(�� � �
��)(�)) 

                                             = (���(�)(�), ((��� �
��),… ,(�� � �

��))(�)) 



 
11 

                                             = (���(�), (��� �
��,… ,�� � �

��)(�) 

 

Therefore  (� � � � ���)= (���(�), (��� �
��,… ,�� � �

��)) 

 

Hence the smoothness of  � � � � ���  implies the smoothness of each  

 ��� �
��: �(�)→ ℝ.  

Since   ��� is diffeomorphism, so   ��: � → ℝ  is smooth (because  ��=  ��� �
��� � 

is a composition functions). The same thing is true for any other chart, say (�,�) and 

the corresponding coordinates  �(��)= ��. 

Hence, a vector field  � is smooth implies its coordinates  �� are smooth for all charts 

of �. 

Conversely, we can show shat the coordinates  �� of a vector field  � are smooth for 

all charts of � implies the vector field  � is smooth. 

 

This completes the proof of the theorem.                                      □ 

 

Definition 1.23. The set of 
C -vector fields on manifold � is defined by �(�). Then 

we have 
 
 

          (i) For �,� ∈ �(�) ( )x MÎ defined � +  � by  

                            (� +  �) (�)∶ =  �(�) +  �(�) =  �� + ��  for all � ∈ � 

    (ii) For � ∈ ℝ and � ∈ �(�),we define �.� by 

                                                  xXxXxX .)(.:))(.(  
 

     (iii) For � ∈ �� (�,ℝ) and � ∈ �(�)we define �.� by 

                                          (�.�)(�)≔ �(�).�(�)= �(�).�� for all � ∈ � 

 

The set of vector fields �(�) together with property (i) and (ii) is called vector space 

on manifold � and the set of vector fields �(�) together with property (i) and (iii) is 

called module on manifold �.  
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Definition 1.24. Let � be a smooth �-dimensional manifold, ��  be the set of smooth 

functions and Γ(��) be the vector space of smooth vector fields. There is a well-

defined bilinear map called Lie-brackets or Commutator  

 

[  ,]∶(��) × Γ(��) → Γ(��) 

                                                                ( � ,� )  ↦ [ �,� ] 

 Given by                                            [ �,� ]∶   ��   →    ��     

                                                   � ↦ [ �,� ]� ∶ =  �( �(�) )− �( �(�) ) 

 

1.1.3  Riemannian Manifolds               

Definition 1.25. Let �  be a smooth manifold. A Riemannian metric � on � assigns 

to any smooth vector fields � and � on � a smooth function �(�,� ), where 

(i) �(�� + ��,�) =  �(��,�)+  �(��,�),  

                  (ii) � (�,�� + ��) =  �(�,��)+  �(�,��),  

                  (iii) �(��,�) =  � �(�,�) =  �(�,��), 

(iv) � (�,�) =  �(�,�) 

for all smooth real-valued functions f and vector fields � ,��,��,� ,��,�� and 

                                        �(�,�) >  0 wherever � ≠  0. 

Definition 1.26. A Riemannian manifold (�,�) consists of a smooth manifold 

� together with a (smooth) Riemannian metric � on �. 

Definition 1.27. A ��  connection � on a manifold � is a mapping 

 �:�(�)× �(�)→ �(�)  denoted by �:(�,�)→ ���  which has the linearity 

properties: 

For all �,� ∈ �� (�) and �,��,�,�� ∈ �(�), we have 

                  (i) ������ �� = �(���)+ �(����), 
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(ii) ��(�� + ��
�)= ���� + ����

�+ (��)� + (��)��  

Now the asymmetry in the rules of first and second vector fields � and �; � is �� (�) 

linear in � but not in �. However if � is a constant function, then �� = 0; thus � is 

linear in both variables. 

They do for � imbedded in Euclidean space. In addition, we have in these special case 

two further properties: 

                  (iii) [�,�]= ��� − ��� (symmetry), and 

                  (iv) �(�,��)= (∇��,�
�)+ (�,∇��

�). 

Definition 1.28. A ��  connection which also has properties (iii) and (iv) is called a 

Riemannian connection. 

Definition 1.29. A moduli space is a geometric space (usually a scheme or an 

algebraic stack) whose points represent algebro-geometric objects of some fixed kind, 

or isomorphism classes of such objects. 

 

1.2 Preliminaries on ℂ� 

 

Definition 1.30.  Let �:ℂ� → ℂ , � ⊆ℂ� open with ∈ � , and let � = (��,… ,��) be 

the coordinates in ℂ�. � is holomorphic in � = (��,… ,��)∈ � if � has a convergent 

power series expansion: 

 

�(�)= � ���,…,��(�� − ��)
��

�∞

��,…,����

… (�� − ��)
��  

 

This means, in particular, that �is holomorphic in each variable. Moreover, we define  

 

�ℂ�(�)≔ {�:� → ℂ|� is holomorphic} 

 

A map � = (��,… ,�� ):� → ℂ
�  is holomorphic if each ��is holomorphic.  
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Let � be a holomorphic function. One can write �(�) =  �(�)+ �ℎ(�), with �,ℎ:� →

ℝ  smooth. The condition for � to be holomorphic on � is equivalent to the Cauchy-

Riemann conditions:  

 

    
��

���
(a)=

��

���
(a)  and 

��

���
(a)= −

��

���
(a) 

 

For �= 1,… ,�, where �� = �� + ���. 

 

Definition 1.31.  Let � ⊆ℂ�  be open, let � = (��,… ,�� ):� → ℂ
�  be a holomorphic 

map. The complex Jacobian matrix of  � is 

 

�ℂ� ≔

⎝

⎜
⎛

���
���

⋯
���
���

⋮ ⋱ ⋮
���
���

⋯
���
���⎠

⎟
⎞
= �
���

���
� 

 

Now let �� = �� + ���  with ��,�� :� → ℝ  smooth ℝ -valued functions.                                       

Let ��:� → ℝ��  defined as ��= (��(�),… ,�� (�),��(�),… ,�� (�)) . The real 

Jacobian matrix of � is   

 

�ℝ� ≔ �ℝ��=

⎝

⎜
⎛

���

���

���

���
���

���

���

���⎠

⎟
⎞

 

 

Remark: If �:ℂ� → ℂ�  is holomorphic, then 
���

���
=
�� �

���
 , 
���

���
= −

�� �

���
 that means 

 

�ℝ� = �
� −�
� �

� with � =
���

���
, � =

���

���
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Moreover,  

 

���

���
=
1

2
�
�

���
− �

�

���
���� + ����=

1

2
�
���

���
+ �
���

���
+ ��

���

���
− �
���

���
�� 

                   =
���

���
+ �
���

���
 = ��� + ���� 

⇒ �ℂ� = � + �� 

 

Lemma 1.4. Let � = �
� �
� �

� ∈ ���(ℝ), and let �= �
0 −���
��� 0

�. Then 

����� = � ⟺ � = �, � = −� ⟺ � = �
� −�
� �

� 

 

Proof.  

����� = � ⟺ ��= ��⟺ �
−� − �
� �

� = �
� −�
� −�

� 

                 � 

Combining the above lemma and the previous remark, we can characterize a 

holomorphic function �:ℂ� → ℂ� analyzing its real Jacobian matrix: 

 

Proposition 1.5. A function �:ℂ� → ℂ�  is holomorphic if and only if         

�(�ℝ�)�
�� = �ℝ�, with �= �

0 −���
��� 0

�. 

Remark: It is worth to notice that � is the matrix representing the multiplication by 

� from ℂ� to itself. Thus, one can also state: a function �:ℂ� → ℂ� is holomorphic if 

and only if its real Jacobian matrix is self-conjugate under the conjugation action of 

the multiplication by � (or simply, its real Jacobian matrix commutes with J) [75].  

 

Proposition 1.6. Let �:ℂ� → ℂ� is holomorphic. Then det(�ℝ�)≥ 0. 

Proof. Consider the matrix �  defined as 

 

� = �
���    �∙���
��� −�∙���

� ∈ ���(ℂ), �
�� =

�

�
�
 ��� ���
−�∙��� �∙���

� 
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Notice that,  

� �ℝ� �
�� =

1

2
�
���    �∙���
��� −�∙���

��
� −�
� �

��
 ��� ���
−�∙��� �∙���

� 

           =
1

2
�
� + ��   −� + ��
� − �� −� − ��

��
 ��� ���
−�∙��� �∙���

� 

                                                              = �
� + ��   0
0 � − ��

�  

                                           = �
�ℂ� 0

0 �ℂ�����
�  

Hence 

             det(�ℝ�)= det(�)det(�
��)det(�ℝ�)= det(� �ℝ� �

��) 

                 = det(�ℂ�)det(�ℂ�����)= det(�ℂ�)det(�ℂ�)�����������= |det(�ℂ�)|
� ≥ 0.        � 

 

A holomorphic function in one variable is a conformal mapping from ℝ� to itself, that 

is, it preserves orientations of angles. The latter proposition shows that, when dealing 

with a holomorphic function of several variables, the "orientation preserving" property 

translates to a strict condition on the determinant of the real Jacobian of the function. 

As we will see in the next section, this condition is related in some sensewith the 

notion of orientation (it will imply the orientability of complex manifolds, seen as 

differentiable manifolds). 

 

Theorem 1.7. (Maximum Principle). Let �:� → ℂ  be holomorphic, � ⊆ℂ  open, 

connected. Assume there is a � ∈ � such that |�(�)|≥ |�(�)|  ∀ � ∈ � (|�|takes its 

maximum on). Then � is constant, so �(�)= �(�) ∀ � ∈ �. 
 

This fundamental result about one-variable holomorphic function has many 

consequences in complex analysis; we will only use it once in the following section to 

see that a holomorphic function on a compact complex manifold is nothing but a 

constant function. There exists also a "holomorphic version" of the Dini theorem (local 

invertibility of maps with invertible Jacobian): 

 
 

Proposition 1.8. Let � ⊆ℂ open, �:ℂ� → ℂ� holomorphic. Assume that �ℂ� has 

rank � in � ∈ � (i.e. �ℂ�(�) has non-zero determinant). Then there is a 



 
17 

neighborhood � of � and a holomorphic inverse �:�(� )→ � such that                      

� ∘� = ���(� ), � ∘� = ��� . 

Proof. As det(�ℝ�) has rank 2� , det(�ℝ�)= |det(�ℂ�)|
� ≠ 0 . So, by the Dini 

theorem there exist a neighborhood � of � such that it is possible to find an inverse �  

for the map �  regarded as a map from ℝ�� to ℝ�� . We are going to show that � is 

already the map we need, that is, �  is holomorphic; or equivalently,  �(�ℝ�)�
�� = �ℝ� , 

� as in lemma1.1. 

We know that � ∘� = ��� ⇒ �ℝ� ∙�ℝ� = ��; moreover, since � is holomorphic 

 �(�ℝ�)�
�� = �ℝ�. Then  

 

     �(�ℝ�)
����� = �ℝ�

�� ⇒  �(�ℝ�)�
�� = ( �(�ℝ�)

�����)�� = (�ℝ�
��)�� = �ℝ�.    � 

 

Definition 1.32. A function � is biholomorphic on � ⊆ℂ� if there exists a 

holomorphic inverse �:�(� )→ � . 

 

1.2.1 Basic Theory of Complex Manifolds 

 

A complex manifold is a topological manifold equipped with an atlas of charts 

onto open disks in ℂ�, such that the transition maps are biholomorphic. Consequently, 

each complex manifold is a real differentiable manifold. Moreover, since 

biholomorphic maps are orientation-preserving, a complex manifold is canonically 

oriented (not just orientable). 

 

The theories of real (differentiable) manifolds and complex manifolds are substantially 

different, the main reason being that holomorphic functions are much 

more rigid than smooth (i.e. ℂ� ) functions. For example, there exists no holomorphic 

function on a compact complex manifold, apart from the trivial case 

of constant functions.The Whitney embedding theorem tells us that any real manifold 

can be (diffeomorphically) embedded in ℝ� , while most complex manifolds do 

notadmit any holomorphic embedding into ℂ�  (nor in �� , in the compact case).The 

classification of complex manifolds is more complicated than that of real manifolds. 

For example, a given topological manifold � admits only finitely many differentiable 
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structures if dim � ≠ 4, while a given complex manifold often admits uncountably 

many complex structures. As a matter of fact, the set of all complex structures (up to 

equivalence) on a given complex manifold, forms itself a continuous space, and in fact 

can be given the structure of a complex algebraic variety, called moduli space. 

 

1.2.1.1 Complex Charts and Atlases 

 

Let � be a topological manifold of dimension 2�, that is, � is a Hausdorff topological 

space such that each point of �  admits an open neighborhood �  which is 

homeomorphic to an open subset �  of ℝ�� . Such a homeomorphism � ∶� → �  is 

called coordinate neighborhood. In this section, we do not require � to be second 

countable (as it happened for differentiable manifolds). 

 

Definition 1.33. A local complex chart (�,�) of � is an open subset � ⊆� and an 

homeomorphism � ∶� → � ≔ �(�)⊂ ℂ�(≡ ℝ��). 

 

Two local complex charts (��,��) , (��,��)  are compatible if the map                 

��� ≔ �� ∘��
��:��(�� ∩ ��)→ ��(�� ∩ ��) is holomorphic. The map ���  is called 

transition function or coordinate change. (We note that ���  is holomorphic, too). 

 

Definition 1.34. A holomorphic atlas (or complex analytical atlas) of � is a collection 

� = {(��,��)} of local complex charts, such that � =∪� ��  and such that all 

transition functions ���  are biholomorphic, for each �,�. (In this way, each pair of 

charts is compatible). 

 

A complex analytic structure on � is a maximal holomorphic atlas � = {(��,��)}�∈�. 

Maximal means: if (�,�) is a local complex chart and (�,�)  is compatible with 

(��,��) ∀ � ∈ �, then(�,�)∈ �. 
 

A complex (analytic) manifold is a topological manifold together with a complex 

analytic structure. 
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Remark: A holomorphic atlas � = �(��,��)��∈�
determines a (unique) maximal atlas 

� with � ⊂ � and hence it determines a complex manifold.  
 

Given a complex manifold �, we can think about � without its complex structure, 

that is: if ���ℂ� =  � , �defines a differentiable manifold �� with ���ℝ�� =  2� , 

wherea complex chart (�,�) gives rise to a real chart (�,�̃) via the identification 

        �= (��,… ,��)↔ �̃ = (��,… ,��,��,… ,��)�� = �� + ���, ��,��:� → ℝ 

One can easily check that if(��,��), (��,��) are compatible then (��,�̃�), (��,�̃�) 

are compatible too. 

 

Proposition 1.9. Consider a complex manifold � as a differentiable manifold ��with 

the coordinates inherited from the complex structure on �. Then �� is orientable. 

 

Proof. Any transition map � ≔ �� ∘��
��:ℂ� → ℂ�on � is holomorphic, and so is 

the inverse. As we’ve seen at the previous section, det(�ℝ�)= |det(�ℂ�)|
� > 0 

(it is not zero since �has an inverse). It is easy to show that �ℝ� is nothing else that 

the Jacobian matrix of the transition map �� on ��. Then, each transition map of �� 

has Jacobian with positive determinant, i.e, �� is equipped with a positive atlas and is 

positively oriented.                  � 

A simple consequence of this proposition is: not every differentiable manifold �� can 

be the underlying differentiable manifold of a complex manifold �. 

 

1.2.1.2 Holomorphic Functions 

 

Definition 1.35. Let � ⊆� be open, �:ℂ� → ℂ be a function. Then � is holomorphic 

on � if, taken (��,��) such that ∩ �� ≠ ∅ , the function 

 

� ∘��
��:��(�� ∩ �)→ ℂ 

 

is holomorphic. This definition does not depend on the choice of the coordinate 

(��,��). In addition, we define 
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��(�)≔ {�:� → ℂ|�is holomorphic} 

 

Remark: Let (�,� = (��,… ,��))be a local complex chart on � . Let � ∈ �with 

�(�)=  0, and let �:� → ℂ  be holomorphic, Then 

(� ∘��
��)(�)= � ���,…,����

��

�∞

��,…,����

… ��
��  

 

where � ∈ �,�(�)= �. This means that, 

�(�)= (� ∘��
��)(�(�))= � ���,…,����

��(�)

�∞

��,…,����

… ��
��(�) 

                         ⇒ � = � ���,…,����
��

�∞

��,…,����

… ��
��  

 

Definition 1.36. A map �:�� → ��  between complex manifolds is holomorphic if 

 

�� ∘� ∘��
��:��(�� ∩ �

��(��))→ ℂ
�  

is holomorphic for all charts (��,��) of �, (��,��) of �. It is sufficient to verify that 

the above map is holomorphic for any (��,��), (��,��) in one atlas of �,� 

respectively. 

Example: The projection map � ∶ℂ��� − {0}→ ��is holomorphic. To check this, we 

use the atlases {ℂ��� − {0},idℂ����{�}}for ℂ��� − {0}and {(��,��)}���,…,�defined on 

�� as in the example of the previous section. We will check the definition only 

for� =  0. 

��� ∘� ∘idℂ����{�}�(��,… ,��)= ��(��:… :��)= �
��
��
,… ,
��
��
� 

This map is holomorphic on ���(��). 

 

Proposition 1.10. Let �:�� → �� be a holomorphic map between complex 

manifolds. Let (�,�),(�,� ) be local complex charts of �,�  respectively such that 

(�)⊆�. The map � ∶=  � ∘� ∘��� is holomorphic; assume that �ℂ�(�) has constant 
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rank  � ∀� ∈ � (i.e., with the usual terminology, � has constant rank on �). Then for 

any � ∈ �  there exists a neighborhood � of � , local complex charts 

(��,��),(��,� �)with � ∈ ��⊆� such that �(��)⊆��,��(�)= 0,� ���(�)�= 0 

and �� ∶=  � �∘� ∘(��)��:(��,… ,��)→ (��,… ,��,0,...,0). 

 

Proof. Similar to the proof for differentiable manifolds, using Proposition 1.8, too. 

 

Theorem 1.11. Let X be a (connected) compact complex manifold, let �:� → ℂ be a 

holomorphic function. Then � is constant. 

 

Proof. |�|:� → ℝ is a continuous function, � is compact ⇒ {|�|:� ∈ �} is compact, 

hence bounded. Thus, there is an �� ∈ �  such that |�(��)|= � is maximal. 

Let� = �(��)∈ ℂ. Obviously, ���(�) is closed in � (it is a pre-image of a point); if 

we are able to show that ���(�) is open, too, then ���(�)= � , that implies         

�(�)=  � ∀ � ∈ �. 

Let � ∈ ���(�), (�,�) be a chart with �(�)= 0 . Then � ∶ � ∘��� ∶ �(�)∈ ℂ  is 

holomorphic on the open subset �(�)⊆ℂ�;� (0)= �(�)= � and |�|  has a 

maximum in � =  0 . Let � > 0  such that �� ∶= {� ∈ ℂ
�:‖�‖ < �}⊆ �(�). For 

� ∈ �� , the function �(�)≔ � (��) is holomorphic on {�∈ ℂ:‖��‖ < �}and |�| 

takes its maximum in � =  0 . By the "maximum principle" (Theorem 1.4), � is 

constant ⇒ � = �(0)= �(1)= � (�), that means �(�)=  � ∀ � ∈ ��.  

Hence � ≡  � on ���(��), an open subset of � containing �. Hence ���(�) is open. � 

 

This result is somewhat surprising and disappointing: the condition of compactness 

for �, which usually makes life a lot easier when dealing with a manifold, does not 

allow us to consider holomorphic functions on �, since all of them are constant.  

 

1.2.2 Complex Submanifolds 

 

In this section we present a short treatment of the local theory of submanifolds of 

complex manifolds and the relation with the analytical theory of functions of several 

complex variables. 
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First, we must describe how complex manifolds are to be regarded from a 

differential geometric point of view. To eliminate confusion, it is desirable to 

eliminate complex numbers themselves from the definition, to regard complex 

manifolds from a "real" point of view.  

 

Suppose that � is a manifold of dimension 2� . Consider a coordinate chart 

from an open subset of � to an open subset of ℝ�� . Now, 2� -dimensional 

Euclidean space is just ℂ� , the space of �  complex variables. We say that � 

has a complex manifold structure if an atlas of coordinate charts can be chosen 

so that the transition maps between two charts are defined by complex analytic 

functions. We say that a map between two manifolds with such 

structures is complex-analytic (or holomorphic) if, when referred ℂ� to by 

the coordinate charts, it is defined by complex analytic functions. Two such structures 

on the same manifold can be regarded as essentially the same if the identity map is 

holomorphic. It is important to realize, however, that a given manifold may have many 

different complex manifold structures and that a manifold need not admit any complex 

manifold structure. For example, the 2�-dimensional spheres, for � ≠ 1or 3, do not 

admit any. It is not known whether the six-dimensional sphere can admit one. Our first 

aim is to make this remark clearer by exhibiting a complex structure as a geometric 

structure defined by a tensor field on the manifold, just as, say, a Riemannian metric is 

a structure defined by a tensorfield. As a first step in this direction, we describe how 

the complex analytic structure on ℂ� itself is determined by a tensor field. 

 
 

Consider ℝ�� or the space of variables (��,��) , with 1 ≤ �,�,… ≤ � . Putting             

�� = ��+ √−1 �� gives the identification of ℝ�� with ℂ� that we have in mind; that is, 

the coordinates of ℝ�� are considered as the real and imaginary parts of the complex 

variables of ℂ� . Suppose � = � + √−1  � is a complex valued function on ℝ�� that is 

holomorphic.  

The holomorphic conditions can be described by the Cauchy-Riemann equations: 

 

��

���
=
��

���
  and 

��

���
= −

��

���
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                 Define F(ℝ��) linear map, that is, a tensor field, �:�(ℝ��)→ �(ℝ��) by setting  

 

��
�

���
� =

�

���
; ��

�

���
� = −

�

���
 for 1 ≤ �≤ � 

 

Then the Cauchy-Riemann equation becomes 
 

                                                          �(�)= �(�) (�) for all � ∈ �(ℝ��)                               (1.2) 

Note also that 

�(��)= −� for all � ∈ �(ℝ��)                                  (1.3) 

 

We can now characterize complex-analytic maps �:ℝ�� → ℝ��  by means of the 

�− tensor, namely for each point � ∈ ℝ��, 

each tangent vector � to � =  �∗��(�)�= ��∗(�)                    (1.4) 

To prove this, note that to prove � is holomorphic. It suffices to show that 

�∗(�)is holomorphic for every holomorphic function � on ℝ�� . However, the 

characterization of the Cauchy-Riemann equations as (1.2) makes it obvious 

that (1.3) is this condition. 

Equation (1.4) tells us that a given complex structure on a manifold � 

defines a tensor field �:�(�)→ �(�), with �� = − (identity). For if the �-tensor on 

ℝ�� is carried over to � by a coordinate chart, then (1.4) implies 

that �is actually independent of the coordinate chart associated with the complex 

structure. 

Now, not every tensor field �:�(�)→ �(�) with �� = − (identity) arises 

in this way from a complex structure: Certain integrability conditions must be 

satisfied (� is said to carry on almost complex structure if it merely has such a 

tensor. The 6-sphere, for example, has such a tensor, which is not integrable). 

Such conditions are given by [40], and take the form 

 

   [�,�]+ �[��,�]= �[�,��]+ [��,�]= 0   for �,� ∈  �(�)           (1.5) 

 

The key point is that the left-hand side, as a function of � ∈  � , is �(�)-bilinear; 

hence, defines a genuine tensor field. The verification of this is straight forward. 
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Having done this, notice that to prove it is zero, it suffices to show that it is zero for a 

basis of vector fields, for example, the basis((� ���⁄ ),(� ���⁄ )),which is obvious. 

Then we can carry over (1.5) to a manifold with a complex structure. It turns out that, 

conversely, a �-tensor satisfying (1.3) and (1.5) arises in this way from a complex 

structure. If the data are real-analytic, this is not hard to prove. If the data are given as 

only ℂ� it is considerably more difficult to prove but is true.  

 

At any rate, we shall take our beginning point that a complex structure is 

defined on a manifold � by a �-tensor satisfying (1.3) and (1.5). Our main 

concern in this chapter is with the properties of submanifolds of �.First we 

must consider those submanifolds that themselves are complex manifolds. Let 

� be a complex-analytic manifold and let �:� → � be a submanifold map 

that is also complex-analytic. We shall call this acomplex submanifold of� . 

From the characterization of holomorphic maps in terms of the �-tensor, we 

see that���∗����� ⊂ �∗���� from now onlet us suppress the explicit notation for the 

submanifold map. Then the condition for a complex submanifold becomes 

�����= ��          for all � ∈ �                                      (1.6) 

 

We now have: 

 

Theorem 1.12. A submanifold � of � is a complex submanifold if and only if (1.6) is 

satisfied. 

 

Proof. We have already seen that (1.6) is necessary. To prove it is 

sufficient, notice that (1.6) implies that � itself causes a �-tensor obtained by 

restricting � to � . That the integrability conditions are satisfied, if for 

the �-tensor restricted to � , is a consequence of the fact that [� ,�]is tangent 

to �  if �and � are vector fields of � that are tangent to � .                                          � 

 

Turn now to consideration of a submanifold � of arbitrary dimension. We 

want to find a method for describing the “maximal” complex submanifold 
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of � that is contained in. Now if � is a tangent vector of � that is tangent to 

such a complex submanifold, then �(�) is also tangent to � . Let us call a 

tangent vector to �with this property a holomorphic tangent vector. For � ∈ � , let ��  

be the subspace of ��  consisting of all holomorphic tangent vectors; that is, 

�� = {� ∈ ��;�(�)∈ ��}                                      (1.7) 

Similarly, define �  as the following subspace of �(�) : 

 

� = {� ∈ �(�):�(�)∈ ��for all� ∈ �}                        (1.8) 

 

Now there is a possibility of “singularities” in the field � → ��of tangent subspaces; 

that is, � → dim�� is not necessarily constant on � . However, we shall 

not consider this sort of pathology here; then, also, for � ∈ � , 

 

  �� = {�(�):� ∈ � }                                              (1.9) 

 

In order that this be so, we must have [�,�]∈ � for �,� ∈ � . We can 

construct a tensor field that “measures” the extent to which this is true: 

For �,� ∈ � , set 

�(�,�)= �[��,�] projected into �(�)/�                        (1.10) 

 

Now, we can verify that �( ,) has a tensorial behavior as a function of � and � 

(although the term in the right-hand side of (1.10) does not have a tensorial behavior 

before it is projected).  

 

�(��,�)= �[�(��),�]= �[��(�),�]= �(�[��,�]− �(�)��)= ��[��,�]+ �(�)� 
 

which is equal to ��(� ,�) when the right-hand side is projected mod� . Hence � 

passes to the quotient with respect to the restriction mapping � → ��  and we get, for 

each � ∈ � , a bilinear mapping (which we again denote by �( ,)) of  �� × �� →

��
��
� .This field of bilinear mappings iscalled the Levi form of � . Explicitly, then, 

for � ,� ∈ � ,� ∈ � , 
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���(�),�(�)�= �[��,�](�) projected into 
��
��
� .                  (1.11) 

Lemma 1.13. The Levi form is symmetric. 

 

Proof. This follows from the integrability condition (1.5): 

 

�[��,�]− �[��,�]= [�,�]+ [��,��]. 

 

The right-hand side projects into zero when projected mod ��  .The left-hand side, 

though, is ���(�),�(�)�− �(�(�),�(�)).                                                                   � 

Let us examine now the consequences of the Levi form vanishing identically. 

 

Theorem 1.14. If the Levi form vanishes, then the field � → ��  of tangent subspaces 

of �(�)is completely integrable. The maximal integral manifolds of this field 

then define a foliation of � by maximal complex submanifolds. In particular, 

if �  is a hypersurface of M (that is, if ��� � =  ��� � +  �), then these complex 

submanifolds of N are hypersurfaces in N; hence N may be considered locally as a 

one-parameter family of complex-analytic hypersurfaces of M. Conversely, if a real 

hypersurface of � has this geometric property, then its Levi form 

vanishes. 

 

Proof. To prove integrability of � → �� we must show that [� ,� ]⊂  �. 

If �,� ∈ � , �(�,� )=  0  if and only if �[� � ,� ]is tangent to N, hence if 

[�� ,� ] also belongs to � . This condition is obviously equivalent to [� ,� ]⊂  �. 

That the maximal integral submanifolds of the field �� → ��  are complex analytic 

submanifolds of �, since �(��)= ��  and the tangent space to the maximal integral 

submanifolds is precisely �� . The converse is obvious.                                                � 

 

Theorem 1.15. The hyperplanoids that are real-analytic are locally, precisely the 

hypersurfaces that can be written as � = 0, where�is the real part of a holomorphic 

function  � + √(−1) � = �. 
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Proof. First notice that a hypersurface determined by � =  0 can also be 

written locally as the locus determined by, 
 

   √−1 � − �=0, where t is a real variable; 

 

that is, the hypersurface is composed of a one-parameter family of complex analytic 

hypersurfaces. 

Conversely, suppose that � is a complex manifold of one complex dimension less than 

� , and that �:� × � → � is a real-analytic submanifold mapping such that, for fixed 

�, the mapping � → �(�,�)of � → � is holomorphic.  

We can suppose without loss in generality that � is ℂ� itself, and that � is 

ℂ���.Since � is real-analytic, we can extend � to a mapping of ℂ��� × ℂ → ℂ� 

by extending � to be a complex variable. The condition that � be a submanifold map 

requires that this extended map of ℂ��� × ℂ → ℂ� have nonzero 

Jacobian. Then, by the implicit function theorem, there is (always, locally, of 

course) an inverse holomorphic map ℂ� → ℂ��� × ℂ.Following this map by 

the projection ℂ��� ×  ℂ →  ℂ , we obtain a holomorphic function � on ℂ� , 

that is, on � . The image of � in � is characterized by the condition that � 

take real values on; that is, �  is obtained by setting the real part of √−1 � equal to 

zero.                                                                                                                                 � 

 

Theorem 1.16. Suppose that, in addition to the complex structure, � has an affine 

connection ∇  with zero torsion tensor such that the covariant derivative of the 

�-tensor defining the complex structure is zero. Let �  be a submanifold of �, let �( ,) 

be its second fundamental form with respect to the affine connection, and let �( ,) be 

its Levi form with respect to the complex structure. Then 

 

�(�,�) =  �(�,� ) +  �(��,��) for �,� ∈ �� , � ∈  �.              (1.12) 

 

Proof. The condition that the covariant derivative of the �-tensor be zero is explicitly 

 

∇� �(�)= � ∇� �       for �,� ∈ �(�) 
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The torsion-free condition is ∇� � − ∇� � = [�,�]. Then, for �,� ∈ � , 

 

�[��,�]= ��∇�� � − ∇� ���= ∇�� ��+ ∇� � 

 

Taking the value of both sides at � ∈ � and projecting mod��  , gives (1.12).               � 

 

Theorem 1.17. Let �  be a real hypersurface of a complex manifold. Suppose that the 

Levi form of � is nonzero at each point of � . Let�  be a function on � that is 

the real part of a holomorphic function. Then the derivatives of � at points of �  in 

direction normal to � are determined by derivatives of � in directions 

tangential to N. 

 

Proof. Let � ∈ �.By hypotheses, for each � ∈ � we can choose � so that 

�(� ( � ) ,� ( � )) is not tangent to. Then �[��,�] is not tangent to � at � ; 

hence, also in a certain neighborhood of �  . Then any vector field � in a 

neighborhood of � can, after multiplication by a factor, be written as 

�[��,�]+ �, where � is tangent to � . Suppose � + √−1 � is holomorphic on � ; that 

is, �and � satisfy (1.2). Then 

 

�(�)= �[��,�](�)+ �(�)= −[��,�](�)+ �(�) 

                                                                           = �(��)(�)− (��)(�)(�)+ �(�) 

                                                                           = �(�)(�)+ (��)(��)(�)+ �(�) 

The left-hand side involves a derivative of � in a normal direction to � , while 

the right-hand side involves derivatives that are in direction tangent to � .The 

argument can be iterated to show that all normal derivatives can be so 

expressed.                                                                                                                        � 
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CHAPTER 2 

RIEMANNIAN GEOMETRY AND MODERN 

DEVELOPMENTS  

 

The beautiful subject initiated by Riemannin the 19th century on Riemann surfaces 

had deep influence on the development of complex geometry in the 20th century. 

While Hodge provided the fundamental structure relating complex analysis with 

topology via Hodge groups, Kodaira provided fundamental methods to construct 

holomorphic sections of bundles. With the works of Chern classes and Hirzebruch-

Riemann-Roch formula, the works of Hodge and Kodaira have been developed to be 

most powerful tools in understanding Kähler geometry. The modern development has 

been emphasizing the use of non-linear elliptic equations, relating the concept of 

Kähler-Einstein metrics and Hermitian Yang-Mills equations to various fundamental 

concepts of stability introduced to study moduli spaces. In this chapter, we describe 

connections on manifolds and Riemannian manifolds. Given a connection on a 

manifold we can define geodesic, Riemannian curvature tensor, Ricci tensor, Ricci 

scalar on it. It should be mentioned here that, hand calculations become extremely 

tedious to evaluate components of connection, Riemannian curvature tensor, Ricci 

tensor etc. on higher dimensional manifolds. In this chapter we have developed some 

computer codes for computing these components. Using computer techniques, the 

components of connection, Riemannian curvature tensor, Ricci tensor etc. can be 

computed easily.  

The original work of this chapter exists in subsection 2.2.4 under section 2.2 where the 

remaining part of this chapter indicates the brief review work. 

 

2.1 The Work of Riemann 

 

Riemann was one of the founders of complex analysis, along with Cauchy. Riemann 

pioneered several directions in the subject of holomorphic functions: 
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1. The idea of using differential equations and variational principle. The majorwork 

here is the Cauchy–Riemann equation, and the creation of Dirichlet principle to solve 

the boundary value problem for harmonic functions.  

2. He gave the proof of the Riemann mapping theorem for simply connected 

domains. This theory of uniformization theorems has been extremely influential. 

There are methods based on various approaches, including methods ofpartial 

differential equations, hypergeometric functions and algebraic geometry. A natural 

generalization is to understand the moduli space of Riemann surfaces where Riemann 

made an important contribution by showing that itis a complex variety with dimension 

3� − 3. 

 

3. The idea of using geometry to understand multivalued holomorphic functions, 

where he looked at the largest domain that a multivalued holomorphic function can 

define. He created the concept of Riemann surfaces, where hestudied their topology 

and their moduli space. In fact, he introduced the concept of connectivity of space by 

cutting Riemann surface into pieces. The concept of Betti number was introduced by 

him for spaces in arbitrary dimension. The idea of understanding analytic problems 

through topology orgeometry has far-reaching consequences. It influenced the later 

works ofPoincaré, Picard, Lefstchetz, Hodge and others. Important examples of 

Riemann’s research are to use monodromy groups to study analytic functions. Such 

study has deep influence on the development of discrete groups in the 20th century. 

The Riemann–Hilbert problem was inspired by this and up tonow, is still an important 

subject in geometry and analysis. The study of ramified covering and the Riemann–

Hurwitz formula gave an efficient technique in algebraic geometry and number theory. 

 

4. The discovery of Riemann–Roch formula over algebraic curve. The generalizations 

by Kodaira, Hirzebruch, Grothendieck, Atiyah–Singer have led to tremendous 

progress in mathematics in the 20th century. 

 

5. His study of period integrals related to Abel–Jacobi map and the hypergeometric 

equations: 
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�(1 − �)���+ [�− (� + � + �)�]��− ��� = 0 

 

6. The study of Riemann bilinear relations, the Riemann forms and the theta 

functions. During his study of the periods of Riemann surfaces, he found that 

the period matrix must satisfy period relations with a suitable invertible skew 

symmetric integral matrix which is called Riemann matrix later. Riemann 

realized that the period relations give necessary and sufficient condition for the 

existence of non-degenerate Abelian functions. 

 

First of all, we should say that Riemann was the mathematician that brought 

us a new concept of space that was not perceived by any mathematician before 

him. I believe that was the reason that Gauss was so touched by his famous 

address on the foundations of geometry in 1854. It is surprised that Riemann had 

rather liberal view about what geometry is supposed to be. His guiding principle was 

nature itself. [86] 

 

The theorems of geometry cannot be deduced from the general notion of magnitude 

alone, but only from those properties which distinguished space from other 

conceivable entities, and these properties can only be found experimentally. This takes 

us into the realm of another science–physics. 

 

He thinks a deep understanding of geometry should be based on concepts of physics. 

And this is indeed the case as we experienced in the past century, especially in the past 

50 years development of geometry. Although he was the one who introduced the 

concept of Riemann surface, which is the largest domain that a multivalued 

holomorphic function lives in, the precise modern conceptwas developed much later 

through the efforts of Klein, Poincaré and others. While Felix Klein [50] already used 

atlas to describe Riemann surface, it has to wait until Hermann Weyl [98] who first 

gave the modern rigorous definition of Riemann surface, in terms of coordinate charts. 

It was rather strange that a formal introduction of the concept of complex manifold 

was quite a bit later. Historically, generalization of one complex variable to several 
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complex variables began by the study of functions on domains in ℂ� . There were 

fundamental works of Levi, Oka, and Bergman. The natural generalization of the 

concept of two-dimensional surfaces to higher dimensional manifolds was done by O. 

Veblen and J.H.C. Whitehead in 1931–32. H. Whitney (1936) clarified the concept by 

proving that differentiable manifolds can be embedded into Euclidean space. 

However, it was only in 1932 at the International Congress of Mathematicians in 

Zurich, did Carathéodory study “four-dimensional Riemann surface” for its own sake. 

In 1944, Teichmüller mentioned “complex e analytische Mannigfaltigkeit” in his work 

on “Veränderliche Riemannsce Flächen”. Chern was perhaps the first to use the 

English name “complex manifold” in his work [13].The general abstract concept of 

almost complex structure was introduced by Ehresmann and Hopf in the 1940s. In 

1948, Hopf [41] proved that the spheres ��  and ��  cannot admit almost complex 

structures.The concept of Kähler geometry was introduced by Kähler [46] in 1933 

where he demanded the Kähler form (which was first constructed by E. Cartan) to 

have a Kähler potential. Kähler had already observed special properties of such metric. 

He knew that the Ricci tensor associated to the metric tensor ���̅  can be written rather  

simply as 

 

���̅ =
��

������̅
(log������̅) 

 

which gave a globally defined closed form on the manifold. He knew that it defines a 

topological invariant for the geometry. It defines a cohomology class independent of 

the metric. It was found later that, after normalization, it represents the first Chern 

class of the manifold. The simplicity of the Ricci form allows Kähler to define the 

concept of Kähler–Einstein metricand he wrote down the equation locally in terms of 

the Kähler potential. He gave examples of the Kähler metric of the ball. Slightly 

afterwards, Hodge developed Hodge theory, without knowing thework of Kähler, 

based on the induced metric from projective space to the algebraic manifolds. He 

studied the theory of harmonic forms with special attention to algebraic manifolds. 

The (�,�) decomposition of the differential forms have tremendous influence on the 
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global understanding of Kähler manifolds. A very important observation is that the 

Hodge Laplacian commutes with the projection operator to the  (�,�)-forms and 

hence the (�,�) decomposition descends to the de-Rham cohomology. The theory was 

soon generalized to cohomology with twisted coefficients. A very important 

cohomology with twisted coefficient is cohomology with coefficient in the tangent 

bundle or cotangent bundle, and their exterior powers. For the first cohomology with 

coefficient in tangent bundle, Kodaira and Spencer developed the fundamental theory 

of deformation of geometric structures, which gave far reaching generalization of the 

works of Riemann, Klein, Teichmüller and others on parametrization of complex 

structures over Riemann surfaces. They realize that the first cohomology with 

coefficient on tangent bundle, denoted by � �(�), parametrize the complex structure 

infinitesimally and that the second cohomology with coefficient on tangent bundle, 

denoted by � �(�), gives rise to obstruction to the deformation. The last statement was 

made very precisely by Kurinishi using Harmonic theory of Hodge–Kodaira. It 

describes the singular structure of the moduli space locally. Kodaira–Spencer 

studied how elements in � �(�) acts on other cohomology, which leads to study 

of variation of Hodge structures. The Hodge groups can be grouped in an appropriate 

way to form a natural filtration of the natural de-Rham group. The Kodaira–Spencer 

map plays a very important role in understanding the deformation of such filtrations. 

Cohomology with coefficient of cotangent bundle or wedge product of cotangent 

bundle gives to Hodge (�.�)-forms. The duality of tangent bundle and cotangent 

bundle gives rise to something called mirror symmetry studied extensively in the last 

thirty years in relation to the theory of Calabi–Yau manifolds. A very important tool in 

complex geometry was the introduction of Chern classes to complex bundles over a 

manifold and the representation of such classes by curvature of the bundle. When 

Chern introduced the concept of Chern classes, he was influenced by the works of 

Pontryagin classes. In the course of defining Chern classes by de-Rham forms given 

by symmetric polynomial of the curvature form, Chern defined the Chern connection 

for holomorphic bundles. He also proved that Chern classes of holomorphic bundles 

are represented by algebraic cycles on algebraic manifolds. This has been the major 

evidence of the Hodge conjecture: That every (�,�)class can be represented by 
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algebraic cycles. Chern proved that three different ways to define Chern classes are 

equivalent. In particular, he proved they are integral classes. Weil explained how they 

are related to Lie algebra invariant polynomials. Weil remarked that the integrality of 

Chern classes should play a role in quantum theory. Chern–Weil theory forms a bridge 

between topology, geometry, and mathematical physics. 

 

Kodaira was the first major mathematician who developed Hodge theory of harmonic 

forms right after its announcement by Hodge and he generalized the theory of 

harmonic forms to manifolds with boundaries, where various boundary conditions 

must be imposed. Perhaps his most important work was his deep understanding that 

the Bochner argument in Riemannian geometry can be used to prove a vanishing 

theorem for cohomology classes under curvature condition of the manifold. He 

realized that the natural place for such vanishing theorem is to deal with cohomology 

with coefficient on bundle or sheaf. The vanishing theorem of Kodaira says that for 

positive line bundle L on a compact complex manifold �: 

 

� �(�,�� ⊗ �)= 0 

 

for � > 0. Coupled with the following theorem of Serre duality: 

 

� �(�,�)≅ � ���(�,� ⊗ �∗) 

 

Kodaira vanishing theorem implies that the Euler characteristic of cohomology with 

coefficients in a holomorphic vector bundle � with  � ⊗ � ∗ positive, is 

simply the dimension of the group of holomorphic sections of �. 

 

2.2 Computational Method on �-Dimensional Riemannian Manifolds 
 

The purpose of this section is to discuss an implementation method on �-dimensional 

Riemannian manifolds using a computer technique. A Riemannian manifold is a 

differentiable manifold in which each tangent space is equipped with an inner product 
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⟨⋅,⋅⟩ in a manner which varies smoothly from point to point. All differentiable 

manifolds (of constant dimension) can be given the structure of a Riemannian 

manifold. Geodesics plays an important role in many applications, especially in 

nuclear physics, image processing. Ovidiu Calin and Vittorio Mangione [10] 

considered the Heisenberg manifold structure to provide a qualitative characterization 

for geodesics under non-holonomic constraints. Our implementation approach can 

successfully well illustrate the important parameters such as Christoffel coefficients 

that are required in the determination of tensors. This symbol appears in many 

calculations in Geometry where we use non-Cartesian coordinates. In �-dimensions it 

has a total of �� components. Thus, whereas it is easy to compute this symbol in 2 or 3 

dimensions, it becomes highly tedious to evaluate components of the Christoffel 

symbols in higher dimensions, but it is quite an easy task to deal with such situations 

if one can use algebraic computations for this purpose. However, it is not always 

possible to have the ready-made routines available that can be used in situations like 

this. Thus, it is of great use if one can write small routines to algebraically compute 

such expressions. Nevertheless, these routines can be written only when one has a 

reasonable knowledge of algebraic programming at the back of one’s mind [8, 96]. 

2.2.1 Riemannian Metrics and Levi-Civita Connection 

Let � be a smooth manifold. A bilinear symmetric positive-definite form 

                                              �� ∶��� × ��� →  ℝ 

defined for every � ∈ � and smoothly depending on p is called a Riemannian metric 

on � . Positive-definite means that    ��(�,�) >  0  for every � =  0,� ∈ ��� . 

Smoothly depending on � means  that  for every pair  �� ,��    of ℂ�  smooth  vector  

fields on �  the  expression  ��(�� ,��) defines a ℂ� -smooth  function of  � ∈ � . 

Alternatively, consider a coordinate neighbourhood on �  containing � and let 

�� ,� = 1,...,����  be the local coordinates. Then any two tangent vectors        

�,� ∈ ��� may be written as � = ���� �⁄ ���
�

 , � = ���� �⁄ ���
�

 and ��(�,�) =

 ���(�)�
���  where the functions ���(�)= �(�� �⁄ �

��
�
,�� �⁄ ���

�
) express the 
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coefficients of the metric �  in local co-ordinates. One often uses the following 

notation for a metric in local coordinates � = �����
���� . The bilinear form 

(metric) � will be smooth if and only if the local coefficients ���=  ���(�) are smooth 

functions of local coordinates �� on each coordinate neighbourhood.  

Theorem 2.1. Any smooth manifold � can be given a Riemannian metric. [28] 

Definition 2.1. A connection on a manifold � is a connection on its tangent bundle 

��. A choice of local coordinates � on � determines a choice of local trivialization of 

�� (using the basis vector fields 
�

���
 on coordinate patches). The transition function ∅ 

for two trivializations of �� is given by the Jacobi matrices of the corresponding 

change of coordinates �∅��
� �= �

���

���
��. 

Let ���
�  be the coefficients (Christoffel symbols) of a connection on �  in local 

coordinates ��. For any other choice ��
�
 of local coordinates the transition law on the 

overlap becomes 

���
� = �����

�� ��
�

���
�

���
�

���
���

�

���
+
���

���
�

����
�

������
 

One can see from the above formula that if ���
� are the coefficients of a connection on 

� then ���
� also are the coefficients of some well-defined connection on � (in general, 

this would be a different connection). The difference ���
� = ���

� − ���
�  is called the 

torsion of a connection (���
�). The transformation law for ���

�  is  

���
� = �����

�� ���

���
�

���
�

���
���

�

���
, 

thus, the torsion of a connection is a well-defined anti-symmetric bilinear map sending 

a pair of vector fields �,� to a vector field �(�,�)= ���
� ����  on �. 

Theorem 2.2. On any Riemannian manifold (�,�) there exists a unique connection �  

such that 
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(1) �(�(�,� ))(�) =  �(���,� ) +  �(�,��� ) for any vector fields �,�,�  on � ; 

and 

(2) the connection �  is symmetric, where �  is called the Levi–Civita connection of the 

metric �. 

The condition (1) in the above theorem is sometimes written more neatly as 

��(�,� ) =  �(��,� ) +  �(�,�� ). 

 

2.2.2 Geodesics on a Riemannian Manifold 

Let E →  M  be a vector bundle endowed with a connection (���
�). A parameterized 

smooth curve on the base � may be written in local coordinates by ��(�). A lift of this 

curve to E is locally expressed as (��(�),��(�)) using local trivialization of the bundle 

E to define coordinates ��  along the fibres. A tangent vector (�(̇�),�̇(�))∈

�(��(�),��(�))�   to a lifted curve will be horizontal at every � precisely when �(�) 

satisfies a linear ordinary differential equation 
 

�̇�+ ���
�(�) ���̇� = 0 

Where �,� =1, . . . , rank �,� = 1, . . . , dim �. Now if � =  �� then there is also a 

canonical lift of any smooth curve �(�) on the base, as �̇(�)∈ ��(�)�. 

Definition 2.2. A curve �(�) on a Riemannian manifold � is called a geodesic if �̇(�) 

at every � is horizontal with respect to the Levi–Civita connection. The condition for a 

path in � to be a geodesic may be written explicitly in local coordinates as 

�̈�+ ���
�(�) �̇��̇� = 0 

a non-linear second-order ordinary differential equation for a path �(�)= (��(�)) 

(here �,�,� =  1,...,��� �). By the basic existence and uniqueness theorem from the 

theory of ordinary differential equations, it follows that for any choice of the initial 
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conditions �(0)= �,�(̇�) =  � there is a unique solution path �(�) defined for |�|< � 

for some positive ε. Thus, for any � ∈ � and � ∈ ��� there is a uniquely determined 

(at least for any small |�|) geodesic with this initial data (i.e. ‘coming out of � in the 

direction �’). 

Proposition 2.3. If �(�) is a geodesic on(�,�) then |�̇(�)|� =  constant. 

 

2.2.3 Curvature of a Riemannian Manifold 

Let � be a metric on a manifold M . The (full) Riemann curvature � =  �(�) of � is, 

by definition, the curvature of the Levi–Civita connection of � . Thus                        

� ∈ Ω�
� (��� (��)),locally a matrix of differential 2 -forms � =

�

�
(��,��
�  ��� ∧

 ���), �,�,�,� =  1 ...� =  ��� � . The coefficients (��,��
� ) form the Riemann 

curvature tensor of (�,�). Given two vector fields �,�  , one can form an 

endomorphism field �(�,� )∈  �(���(��)); its matrix inlocal coordinates is 

�(�,� )�
� =  ��,��

� ����  (as usual� = ����,� = �
���). Denote �� =  �(��,��) ∈

���(���) (here � is any point in the coordinate neighbourhood). In local coordinates 

a connection (covariant derivative) may be written as� +  � , with � = ���
���� =

����
� . We write ��  =  � �

���

=
�

���
+ �� . The definition of the curvature form of a 

connection yields an expression in local coordinates 

��,��
� = �����

�

���
− ����

�

���
�
�

, or ��� = − [��,��] 

considering the coefficient at ��� ∧ ��� . Now �� = �
���. So we have 

       −[��,��]= −[�
���,�

���]

= −��(���
�)��− �

�������+ �
�(���

�)��+ �
�������                   

= �������− [�,�]
��� 

We have thus proved. 
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Proposition 2.4 (i) ���,�� = − ���,�� = ���,�� (ii) ��,��
� + ��,��

� + ��,��
� = 0 (iii) ���,�� =

���,��. 

Proof. (i) The first equality is clear. For the second equality, one has, from the 

definition of the Levi–Civita connection, 
����

���
= � ���

�

���
,
�

���
�+ � �

�

���
,��

�

���
� and 

further 

�����

������
=

� �����
�

���
,
�

���
�+ � ���

�

���
,��

�

���
�+ � ���

�

���
,��

�

���
� + � �

�

���
,����

�

���
� 

The right-hand side of the above expression is symmetric in �,� as
�����

������
=

�����

������
.The 

anti-symmetric part of the right-hand side (which must be zero) equals ���,��+ ���,��. 

(ii) Firstly,���
�

���
�
�

= ���
� = ���

�

���
�
�

 , by the symmetric property of the Levi–Civita. 

The claim now follows by straight forward computation. 

(iii) Multiplying (ii) by ��� gives ���,��+ ���,��+ ���,�� = 0. Similarly ���,��+ ���,��+

���,�� = 0 ���,��+ ���,��+ ���,��= 0 and ���,�� + ���,��+ ���,��= 0. 

Adding up the four identities and making cancellations using (i) (the ‘octahedron 

trick’) gives the required result.                                                                                      � 

There are natural ways to extract “simpler” quantities (i.e. with less components) from 

the Riemann curvature tensor. 

Definition 2.3. The Ricci curvature of a metric � at a point � ∈  �,���� =  ���(�)� , 

is thetrace of the endomorphism � →  ��(�,�)� of ���  depending on a pair of 

tangent vectors �,� ∈ ���. Thus in local coordinates ���(�) is expressed as a matrix 

��� =  (�����), �����=  ∑ ��,��
�

� .That is, the Ricci curvature at � is a bilinear form on 

���. A consequence of Proposition 2.5(iii) is that this bilinear form is symmetric, 

����� =  �����. 
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Definition 2.4. The scalar curvature of a metric � at a point � ∈  �,� =  ����(�)�  is 

asmooth function on � obtained by taking the trace of the bilinear form  ����� with 

respect to the metric �. 

If local coordinates are chosen so that ���(�) =  ���, then the latter definition means 

that �(�) =  ∑ ���� (�)= ∑ ���,���,�  (�). For a general ���, the formula may be 

writtenas � =  ∑ ��������� , where ��� is the induced inner product on the cotangent 

space with respect to the dual basis, algebraically (���) is the inverse matrix of (���). 

 

2.2.4 Computer Code 
 

In the current section, we have presented our developed computer codes with an 

example. We have developed this codes by using a mathematical programming 

language MATLAB [99].  

Example 2.1. Consider the metric for the three-sphere in coordinates �� = (�,�,�) is 

given by [11] 

��� = d� � + �����(�θ�+������φ�) 

 

MATLAB Code 1: (Calculating the Christoffel symbols of thefirst kind) 

function [p]=christoffels1(i,j,k,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

result=diff(metric(j,k),coord(i))+diff(metric(i,k),coord(j

))-diff(metric(i,j),coord(k)); 

p=(1/2)*result; 

end 
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If we run the above code for a particular input, then we will get a corresponding 

output. The followings are non-vanishing components and all other components are 

zero. 

 

Input: christoffels1(1,2,2) 

Output:cos(shi)*sin(shi) 

Input:christoffels1(1,3,3) 

Output:cos(shi)*sin(shi)*sin(theta)^2 

Input:christoffels1(2,1,2) 

Output:cos(shi)*sin(shi) 

Input:christoffels1(2,2,1) 

Output:-cos(shi)*sin(shi) 

Input: christoffels1(2,3,3) 

Output:cos(theta)*sin(shi)^2*sin(theta) 

Input:christoffels1(3,1,3) 

Output:cos(shi)*sin(shi)*sin(theta)^2 

Input:christoffels1(3,2,3) 

Output:cos(theta)*sin(shi)^2*sin(theta) 

Input: christoffels1(3,3,1) 

Output:-cos(shi)*sin(shi)*sin(theta)^2 

Input: christoffels1(3,3,2) 

Output: -cos(theta)*sin(shi)^2*sin(theta) 

 
MATLAB Code 2: (Calculating the Christoffel symbols of the second kind) 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 



 
42 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(

i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k))))); 

end 

end 

 

If we run the above code for a particular input, then we will get a corresponding 

output. The followings are non-vanishing components and all other components are 

zero. 

 

 

Input: christoffels2(1,2,2) 

Output:-sin(shi)*cos(shi) 

Input:christoffels2(1,3,3) 

Output:-sin(shi)*cos(shi)*sin(theta)^2 

Input:christoffels2(2,1,2) 

Output:cos(shi)/sin(shi) 

Input:christoffels2(2,2,1) 

Output:cos(shi)/sin(shi) 

Input: christoffels2(2,3,3) 

Output:-cos(theta)*sin(theta) 

Input:christoffels2(3,1,3) 

Output:cos(shi)/sin(shi) 

Input:christoffels2(3,2,3) 

Output:cos(theta)/sin(theta) 

Input: christoffels2(3,3,1) 

Output:cos(shi)/sin(shi) 

Input: christoffels2(3,3,2) 

Output: cos(theta)/sin(theta) 
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MATLAB Code 3: (Calculating the geodesic) 

function [final]=geodesic(l) 

symsshithetaphiderivative(shi)derivative(theta)derivative(

phi); 

d=[derivative(shi) derivative(theta) derivative(phi)]; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

s=0; 

fori=1:3 

for j=1:3 

            q=0; 

            p=1; 

 

for k=1:3 

q=q+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(

i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k))))); 

end 

p=p*q*d(i)*d(j); 

s=s+p; 

end 

end 

    final=s*(-1); 

disp('derivative of'); 

disp(d(l)); 

end 

If we run the above code for a particular input, then we will get a corresponding 

output.  

Input: geodesic(l) 
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Output:derivative of 

derivative(shi)= 

cos(shi)*sin(shi)*derivative(phi)^2*sin(theta)^2 + 

cos(shi)*sin(shi)*derivative(theta)^2 

Input:  geodesic(2) 

Output: derivative of 

derivative(theta)= 

derivative(phi)^2*cos(theta)*sin(theta) - 

(2*cos(shi)*derivative(shi)*derivative(theta))/sin(shi) 

Input: geodesic(3) 

Output: derivative of 

derivative(phi)= 

- (2*derivative(phi)*cos(shi)*derivative(shi))/sin(shi) - 

(2*derivative(phi)*cos(theta)*derivative(theta))/sin(theta

) 

 
MATLAB Code 4: (Calculating the Riemann Christoffel tensor) 

function [a]=reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

q=0; 

for s=1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-

diff(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q=q+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r

1,shi,theta,phi)-

christoffels2(l,s,r1,shi,theta,phi)*christoffels2(s,i,j,sh

i,theta,phi); 

a=p+q; 

end 
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function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(

i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k))))); 

end 

end 

 

end 

 

If we run the above code for a particular input, then we will get a corresponding 

output. The followings are nonvanishing components and all other components are 

zero or are related via symmetries. 

 

Input: reichris(1,2,1,2) 

Output:sin(shi)^2 

Input: reichris(1,3,1,3) 

Output:sin(shi)^2*sin(theta)^2 

Input: reichris(2,3,2,3) 

Output:sin(shi)^2*sin(theta)^2 

 

MATLAB Code 5: (Calculating the Ricci tensor) 

function [f]=ricci(i,r1,shi,theta,phi) 

symsshithetaphi ; 

f=0; 
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for j=1:3 

f=f+reichris(j,i,j,r1,shi,theta,phi); 

end 

function [a]=reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

q=0; 

for s=1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-

diff(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q=q+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r

1,shi,theta,phi)-

christoffels2(l,s,r1,shi,theta,phi)*christoffels2(s,i,j,sh

i,theta,phi); 

a=p+q; 

end 

 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(

i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k))))); 

end 

end 

end 

end 
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If we run the above code for a particular input, then we will get a corresponding 

output. The followings are nonvanishing components and all other components are 

zero. 

 

Input: ricci(1,1) 

Output:2 

Input: ricci(2,2) 

Output:2sin(shi)^2  

Input: ricci(3,3) 

Output:2sin(shi)^2*sin(theta)^2 

 

MATLAB Code 6: (Calculating the scalar curvature tensor) 

function [c]=scalar(shi,theta,phi) 

symsshithetaphi; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

c=0; 

fori=1:3 

for r1=1:3 

c=c+(inversemetric(i,r1)*ricci(i,r1,shi,theta,phi)); 

end 

end 

function [f]=ricci(i,r1,shi,theta,phi) 

symsshithetaphi ; 

f=0; 

for j=1:3 

f=f+reichris(j,i,j,r1,shi,theta,phi); 

end 

function [a]=reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 
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coord=[shi theta phi]; 

q=0; 

for s=1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-

diff(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q=q+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r

1,shi,theta,phi)-

christoffels2(l,s,r1,shi,theta,phi)*christoffels2(s,i,j,sh

i,theta,phi); 

a=p+q; 

end 

 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 

(sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(

i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k))))); 

end 

end 

end 

end 

end 

 

If we run the above code, then we will get the following output. 
 

Input: scalar 

Output:6 
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2.3 Three-Dimensional Metrics as Deformations of a Constant 

Curvature Metric 

 

It is known, since an old result by Riemann, that a � -dimensional metric has            

� =  �(� − 1)/ 2 degrees of freedom, that is, it is locally equivalent to the giving of � 

functions. As this feature is related to some particular choices of local charts, which 

are obviously non-geometric objects, it seems to be generically a not covariant 

property. 

According to it, a two-dimensional metric has � = 1 degrees of freedom.In this case, 

however, a stronger result holds, as it is well known [18], namely: any two-

dimensional metric �  is locally conformally flat, � = ��  , �  being the conformal 

deformation factor and � the flat metric. 

Contrarily to what the above Riemann’s general result suggests, the two dimensional 

case is intrinsic and covariant, i.e. it only needs the knowledge 

of the metric � and only involves tensor quantities, specifically, the sole 

degree of freedom is represented by a scalar, the conformal deformation 

factor �. The question thus arises of, whether or not, for � > 2 there exist similar 

intrinsic and covariant local relations between an arbitrary metric � , on the one 

hand, and the corresponding flat one � together with a set of � covariant quantities 

on the other. 

To our knowledge, no result of this type has been published. Indeed, the 

known results concerning the diagonalization of any three-dimensional metric do not 

belong to this type. As a matter of fact, besides the � = 3 scalars and the (more or less 

implicit) flat metric, these results also involve a particular orthogonal triad of vector 

fields. Also, in the context of the General Theory of Relativity, such a �-dimensional 

relation has been proposed by one of us, but unfortunately it remains for the moment 

only a mere conjecture [15]. 

 

In this section we shall answer affirmatively the three-dimensional case. This 

dimension is the solution to the equation � = �, so that one is tempted to take (the 

components of) a vector field as the covariant set (of � = 3  quantities). 
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On the other hand, the result being deliberately local, it would seem that the 

essentials of the flat metric in this matter is its minimal freedom, i.e. the maximal 

dimension of its isometry group, so that it should be possible to substitute it 

by a prescribed constant curvature metric. We shall see that both assumptions 

work. 

In fact, this section is devoted to proving the following result: 

 

Theorem 2.5. Any three-dimensional metric � may be locally obtained from a 

constant curvature metric, ℎ, by a deformation like 

 

� = � ℎ + � � ⊗  �                                             (2.1) 

 

where � and � are respectively a scalar and a one-form, the sign � = ±1  and 

a functional relation between � and the Riemannian norm of � can be arbitrarily 

prescribed.  

This result should be interesting in geometrical as well as in physical situations. 

In geometry, perhaps one of the first questions to be answered is the following: In two 

dimensions it is known that the gauge of the conformal factor � or, 

equivalently, the set of flat metric tensors conformal to a given metric is given by 

the solutions of the Laplacian, ∆� = 0 [80]. 

In classical physics, the above theorem should be useful in (finite) deformation theory 

of materials; equation (2.1) may be considered as an ideal universal 

deformation law, allowing, from an unconstrained or not initial state (described 

in material coordinates by the tensor ℎ ), to reach any other deformation state 

(described in the same coordinates by the tensor � ). This ideal universal law 

allows to associate, to every deformation state of a material, a vector field � among 

those of the gauge class of the flat metric. 

In general relativity, any vacuum space-time is locally equivalent to its Cauchy data, 

{�,�},� being the spatial metric and �  is the extrinsic curvature of the initial instant. 

These data have to verify the constraint equations, a set of four equations for which 

many years ago Lichnerowicz showed [63] that to every arbitrarily given metric �� it 
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corresponds a unique solution {�,�} such that � = ��� . This beautiful result is 

however useless for precise physical situations because, �  being initially unknown, 

one does not see how to choose the good starting metric �� , which has to give � by 

conformity. Such an objection may be eliminated using (2.1) in the constraint 

equations. Our theorem also allows to translate notions such as asymptotic flatness or 

spatial singularity in terms of the differential 1-form �over a flat metric ℎ. 

 

2.3.1 Flat Deformation of a Given Metric 

Instead of proving theorem 2.5 as stated in the introduction, we shall prove the 

following equivalent result: 

 

Theorem 2.6. Let (�,�) be a Riemannian 3-manifold. There locally exist a 

function � and a differential 1-form μ such that the tensor 

 

��≔ �� − �μ⊗ μ                                               (2.2) 

 

(with� = ±1 ) is also a Riemannian metric with constant curvature. Besides, an 

arbitrary relation between �  and |μ|� = ���μ�μ� can be imposed in advance. The 

equivalence between both theorems follows immediately on substituting 

 
 

ℎ = ��,   � = ���,� = ��
�

�μ 

 

into equation (2.1). The present formulation (2.2) stresses that we seek to derive 

��from a given �. The proof is based on the comparison of the Riemannian geometries 

respectively defined by � and ��.  

We start by considering the Riemannian connections ∆ and ∆�. In an arbitrary 

frame {��}���,�,� the expression (2.2) reads:  

 

��
��
≔ ����− ���with   ���≔ μ�μ�                              (2.3) 
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                 We shall consider the difference tensor: 
 

���
�
≔ ��

��
�
− ���

�
                                              (2.4) 

which is symmetric: 

���
�
≔ ���

�
                                                   (2.5) 

 

because both connections are torsion free. 

 

Now, since ∆� ���= ∆
�
� �

�
��
= 0and taking (2.5) into account, we easily obtain 

that: 

���
�
=
�

�
[�� ���+ �� ��� − �� ���− ∆� ���− ∆� ��� + ∆� ���]ℎ

���     (2.6) 

 

where 

 

ℎ�
��
≔ ��� ���� +

�

��� �
����, with � � ≔ �

�����= �|μ|
�          (2.7) 

is the inverse metric for ��
��

. 

 

For the sake of illustration, we shall consider an example of 3-dimensional 

Riemannian manifolds and locally deform them into flat metrics, in the sense stated in 

Theorem 2.6.  
 

Example 2.2. (Schwarzschild Space) 

The title is a shortening for the space 3-manifold for Schwarzschild coordinates in 

Schwarzschild space-time. The metric is: 

 

��= ��� ��⊗ ��+ �� �� ⊗ �� + ������� �� ⊗ ��                 (2.8) 

 

with � = 1 −
��

�
, in the region �> 2�  (otherwise the metric is not Riemannian). 

This metric can be deformed into a flat metric in several ways. Among others: 

(A) Choosing � = √��� − 1 ��, we readily obtain: 
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��= ��+ � ⊗ � 

 

Where �� =  ��⊗ ��+ �� �� ⊗ �� + ������� �� ⊗ �� is flat. 

 

(B) It is well known that changing r into the coordinate 

                                      � =
�

�
��√� + �− � �,           �= � �1 +

�

��
�
�

 

the metric becomes:��= ���, where 

 

              � = �1 +
�

��
�
�

,       ��≔ �� ⊗ �� + �� �� ⊗ �� + ������� �� ⊗ �� 

 

is a flat metric. 

 

We have shown that, locally, any Riemannian 3-dimensional metric � can 

be deformed along a direction � into a metric �ℎthat is conformal to a metric of 

constant curvature, as stated in theorem 2.5.The direction � is not uniquely determined 

by the metric � and the decomposition (2.1) can be achieved in an infinite number of 

ways. Determining more precisely the class of � and � which deform a given � into a 

constant curvature metric ℎ will be the object of future work. Specially the case where 

both � and ℎ, are flat. 
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CHAPTER 3 

CONNECTIONS WITH SYMPLECTIC 

STRUCTURES 
 

Symplectic geometry originated in Hamiltonian dynamics. Symplectic geometry is the 

study of symplectic structures. These are certain topological structures, but these can 

only exist on even dimensional manifolds. Since symplectic structures are purely 

topological structures, so they do not depend on any metric structure of the underlying 

space. In the earlier work, Nazimuddin and Rifat (2014) developed a comparison 

between symplectic and Riemannian geometry [78]. After summarizes the basic 

definitions, examples and facts concerning symplectic geometry this chapter will 

proceed to discuss the connections of symplectic geometry with the contact geometry, 

Riemannian geometry and Kähler geometry.  

This chapter is mainly a review. But there are some original calculations also. The 

original part of this chapter is to make several connections with the symplectic 

geometry which exists in section 3.4, section 3.5 and section 3.6.  

 

3.1 Basic Concepts with Examples 

Let �  be an even dimensional smooth closed manifold, that is a compact smooth 

manifold without boundary. A symplectic structure � on �  is a closed (�� =  0), 

non-degenerate (�� =  � ∧ ...∧ � ≠  0)  smooth 2-form. The nondegeneracy 

condition is equivalent to the fact that ω induces an isomorphism. In symplectic 

geometry, conformal changes to �  (i.e., multiplying by � ) would usually force 

�(��)≠  0. 

Example 3.1. The standard symplectic structure on ℝ��  is given by 

�� =  � ���∧ ���

�

���
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where(��,��,… ,��,��,��,… ,��)are the coordinates of ℝ�� .It is clear that ��  is 

closed.  

Example 3.2. All manifolds are not symplectic. For instance, ��  is not. If �� is a 

symplectic form on �� , then ��  is exact, since the second homology class of  �� 

vanishes [69]. In other words, since �� is a closed 2-form �� = ���, for some 1-form 

��  and �(�� ∧ ��)= �� ∧ ��. Since �� ∧ ��  is a volume form on �� , Stokes 

theorem implies that 

� �� ∧ �� =
��

� �� ∧ ��
���

≠ 0 

Since �� has no boundary, the last integral vanishes and �� can have no symplectic 

form. 

3.2 Local Theory 

 

The natural equivalence between symplectic structures is symplectomorphism. Two 

symplectic structures �� and ��  on manifolds ��  and �� , respectively, are 

symplectomorphic if there exists a diffeomorphism � ∶ �� → ��  satisfying 

�∗(��)= �� . All symplectic structures are locally symplectomorphic. In 

consequence, there are no local invariants in symplectic geometry according to the 

following theorems. In particular case, we have Darboux’s theorem which states that, 

all symplectic structures on a 2� dimensional manifold is locally symplectomorphic to 

the standard structure on ℝ��. 

Theorem 3.1. (Darboux’s theorem) Let �  be a manifold of dimension 2�with a 

closed non-degenerate 2-form ��. For any point � on a symplectic manifold, there 

exists a chart � with local coordinates (��,��,… ,��,��,��,… ,��), such that on � 

�� =  � ���∧ ���

�

���

 

Thus, locally all symplectic structures are symplectomorphic to example 3.1.  
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Theorem 3.2. (Weinstein’s Theorem) If a submanifold �of a symplectic manifold 

(�,�), then there exists a neighborhood of �  which is symplectomorphic to a 

neighborhood of the zero section in the cotangent bundle �∗�. 

Furthermore, symplectic structures are “local in time”. That is symplectic 

deformations of symplectic structures do not produce new symplectic structures. 

������� �.�. (Moser’s theorem) Let � be a closed manifold and  �� ,�∈ [0,1]  is 

a family of cohomologous symplectic forms on � then there is an isotopy �� with 

�� =  �� such that ��
∗(��)= �� for all �. 

In particular, on a symplectic manifold all deformations of symplectic structures come 

from diffeomorphisms of the underlying manifold. The theorem is not true if the 

symplectic structures do not agree off of a compact set. 

3.3 Existence and Classification 
 

If a symplectic vector bundle is a pair (�,� ) over a smooth manifold � of rank 2�, 

where � → � is a real vector bundle, then �� (skew-symmetric and non-degenerate) 

is a symplectic form on each fiber �� , depending smoothly on q. Each of the following 

two characteristics is equivalent to the existence of a symplectic structure (a) the 

existence of a reduction of the structure group of �from general linear group ��(2�) 

to symplectic group ��(2�,ℝ) and (b) the existence of an (almost) complex structure 

on �: �∈ ���(�) such that �� = −��. 

Now we discuss some recent results on the existence of symplectic structures on both 

open and closed manifolds. The existence problem of symplectic structures on even 

dimensional closed manifolds is quite difficult. However, Gromov has shown that 

symplectic structures on open manifolds obey an h-principle rule. As the existence 

problem of symplectic structures is based on a differential equation, but it can be 

reduced to a differential inequality and then solved by the ℎ-principle.  
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Theorem 3.4. (Gromov’s Theorem) Every 2� dimensional manifold � with almost 

symplectic structure is homotopic through almost symplectic structures to a 

symplectic structure, if � is open.  

If the manifolds are closed, then the existence problem is much more subtle. Often 

there are no h-principle rules. The following result was obtained using Seiberg–Witten 

theory: 

Theorem 3.5. (Taubes Theorem) The connected sum of an odd number of copies of 

ℂℙ�  does not admit a symplectic structure (even though it admits an almost 

symplectic structure and a cohomology class � ∈ � �(�) such that �� ≠  0). 

In higher dimensions the uniqueness problem for symplectic forms on closed 

manifolds does not reduce to topological obstruction theory. There is often a dramatic 

difference between the space of non-degenerate two-forms and the space of symplectic 

forms [70]. 

3.4 Connections with Contact Geometry 

 

The even dimensional analogue theory to contact geometry is symplectic geometry. In 

general, contact manifolds come naturally as boundaries of symplectic manifolds. 

Also, a contact manifold by symplectic means by looking at its symplectization       

[19, 42]. 

Consider (�,�) be a symplectic manifold. A vector field � satisfying 

��� =  � 

where ���  is the Lie derivative of �  in the direction of �, is called a symplectic 

dilation. A compact hypersurface � in (�,�)is said to have contact type if there exists 

a symplectic dilation �  in a neighborhood of �  that is transverse to� . Given a 

hypersurface � in (�,�) the characteristic line field �� in the tangent bundle of � is 

the symplectic complement of ��  in �� . (Since �  is codimension one it is 

coisotropic and thus the symplectic complement lies in �� and is one dimensional.) 
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Theorem 3.6. Let � be a compact hypersurface in a symplectic manifold (�,�) and 

denote the inclusion map �∶ � → �. Then � has contact type if and only if there 

exists a 1-form �on �  such that �� =  �∗� and the form � is never zero on the 

characteristic line field. 

If � is a hypersurface of contact type, then the 1-form � is obtained by contracting the 

symplectic dilation � into the symplectic form: � =  ��� . It is easy to verify the         

1-form � is a contact from on �. Thus, a hypersurface of contact type in a symplectic 

manifold inherits a co-oriented contact structure. 

Given a co-orientable contact manifold (�,�) its symplectization              

Symp(�,�)= (�,�)is constructed as follows. The manifold � =  � ×  (0,∞) and 

given a global contact form � for � the symplectic form is � =  �(��), where � is the 

coordinate on ℝ.  

Example 3.3. The symplectization of the standard contact structure on the unit 

cotangent bundle is the standard symplectic structure on the complement of the zero 

section in the cotangent bundle. 

The symplectization is independent of the choice of contact from �. To see this fix a 

co-orientation for � and note the manifold � can be identified (in may ways) with the 

subbundle of �∗�  whose fiber over � ∈ �  is{� ∈ ��
∗� ∶ �(��)=  0 and � >  0 on 

vectors positively transverse to �� }and restricting ��  the this subspace yields a 

symplectic form �, where � is the Liouville form on �∗�. A choice of contact form � 

fixes an identification of � with the subbundle of �∗� under which �(��) is taken to 

��. 

The vector field � =
�

��
on (�,�) is a symplectic dilation that is transverse to         

� × {1} ⊂ �. Clearly, ���|� ×{�} = �. Thus, we see that any co-orientable contact 

manifold can be realized as a hypersurface of contact type in a symplectic manifold. In 

summary we have the following theorem. 



 
59 

Theorem 3.7. If (�,�) is a co-oriented contact manifold, then there is a symplectic 

manifold ����  (�,�) in which � sits as a hypersurface of contact type. Moreover, 

any contact form � for � gives an embedding of � into ����  (�,�) that realizes � 

as a hypersurface of contact type. 

We also note that all the hypersurfaces of contact type in (�,�) look locally, in �, like 

a contact manifold sitting inside its symplectification. 

Theorem 3.8. Given a compact hypersurface �  of contact type in a symplectic 

manifold (�,�)with the symplectic dilation given by � there is a neighborhood of � 

in �  symplectomorphic to a neighborhood of � × {1} in Symp(�,�) where the 

symplectization is identified with � × (0,∞)using the contact form � = ���|�  and 

� =  ����. 

The following proposition shows how symplectic structures can be generated from 

contact structures. 

Proposition 3.9. [71] Let � be a contact structure on a 3-manifold. Then �(���) is a 

symplectic form on the 4-dimensional manifold  � × ℝ , where θ is the coordinate on 

ℝ. (Here � is written as a form on � × ℝ). 

Proof. We have �� =  ���
���= ��(�� ∧ � + ��). Thus, 

�� ∧ �� = �
��(2�� ∧ � ∧ �� + �� ∧ ��) 

Since � ∧ �� is never zero and since �� ∧ ��does not contain differentials of �, the 

claim follows.                                                                                                                  � 
 

There are also other relations between contact and symplectic geometry [20]. 

3.5 Connections with Riemannian Geometry 

 

The differentiable structure of a smooth manifold �  gives rise to a canonical 

symplectic form on its cotangent bundle �∗�. Giving a Riemannian metric � on � is 

equivalent to prescribing its unit cosphere bundle ��
∗� ⊂ �∗� and the restriction of 

the canonical 1-form from �∗� gives �∗� the structure of a contact manifold.  
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The following examples of known results are closely related to Riemannian and 

symplectic aspects of geometry. 

(a) A submanifold  � of a symplectic manifold (�,�) is called lagrangian if  � = 0 

on ��. 

(i) Endow complex projective space ℂℙ� with the usual Kähler metric and the usual 

Kähler form. The volume of submanifolds is taken with respect to this Riemannian 

metric. According to a result of Givental–Kleiner–Oh, the standard ℝℙ� in ℂℙ� has 

minimal volume among all its Hamiltonian deformations [78]. A partial result for the 

Clifford torus in ℂℙ� can be found in [27]. The torus �� × �� ⊂ �� × �� formed by 

the equators is also volume minimizing among its Hamiltonian deformations [42]. If � 

is a closed Lagrangian submanifold of(ℝ��,��) there exists according to [94] a 

constant � depending on � such that  

                             ���(�� (�))≥ � for all Hamiltonian deformations of �. 

 (ii) The mean curvature form of a Lagrangian submanifold �in a Kähler-Einstein 

manifold can be expressed through symplectic invariants of � [12]. 

(b) To estimate the first eigenvalue of the Laplacian operator on functions for certain 

Riemannian manifolds, symplectic methods can be used [84]. 

(c) Consider a bounded domain � ⊂ ℝ��  with smooth boundary. There exists a 

periodic billiard trajectory on �� of length � with 

�� ≤ �����(�) 

where �� is an explicit constant depending only on � [20]. 

(d) Also Jacobi identity 

{�,{�,ℎ}} +  {ℎ,{�,�}} +  {�,{ℎ,�}} =  0  

is satisfied as a consequence of the closure of the symplectic form, �� =  0. 
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3.6 Connections with K�̈hler Geometry  
 

Kähler manifolds are the remarkable class of symplectic manifolds. �. Gromov [29] 

observed that some of the tools used in the Kähler context can be used for the study of 

symplectic manifolds.  One part of his wondering work has grown into which is now 

called Gromov–Witten theory [72]. All Kähler manifolds are symplectic, since the 

Kähler form is closed and non-degenerate. For instance, the complex projective space 

ℂℙ� is Kähler so that this space is also symplectic. But the converse need not be true, 

but we have the following theorem: 

Theorem 3.10.  A structure (�,�,�) on a smooth manifold � is a Kähler structure if 

� is a symplectic form, � is a complex structure, � is a Riemannian metric such that 

�(�,�)= �(�,��). 

Many techniques and constructions from complex geometry are most useful in 

symplectic geometry. For instance, there is a symplectic version of blowing-up, which 

is closely related to the symplectic packing problem [73, 74], also Donaldson’s 

construction of symplectic submanifolds [17]. 

Also, any complex surface admits a Kähler structure if and only if the first Betti 

number is even [9]. There are many symplectic 4-manifolds with even �1 (or �1 =  0) 

admitting no K ähler structure [31]. For a minimal K ähler surface we have the 

following theorem. 

Theorem 3.11. Let (�,�) be a minimal Kähler surface. Then inside the symplectic 

cone, the Kähler cone can be enlarged across any of its open face determined by an 

irreducible curve with negative self-intersection. In fact, if the curve is not a rational 

curve with odd self-intersection, then the reflection of the Kähler cone along the 

corresponding face is in the symplectic cone. 

In addition, for a minimal surface of general type, the canonical class �� is shown to 

be in the symplectic cone in [14, 88]. 
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CHAPTER 4 

SYMPLECTIC AND CONTACT GEOMETRY 

WITH COMPLEX MANIFOLDS 

 

In this chapter we discuss about almost complex structures and complex structures on 

Riemannian manifolds, symplectic manifolds and contact manifolds. We have also 

shown a special comparison between complex symplectic geometry and complex 

contact geometry. Finally, we investigate the existence of a complex submanifold of 

positive dimension in ℂ� that intersects a real submanifold along two absolutely and 

real analytic submanifolds. 

 

The first example of compact symplectic manifold with no K �̈hler structure is 

provided in [92]. Thurston’s example had already been discovered as a complex 

manifold, by Kodaira during his work on the classification of compact complex 

surfaces [50]. On the other side, the thought of complex contact manifold was 

discovered as an end result of the works of Kobayashi and Boothby [56, 57, 58] in late 

1950s and the early 1960s. Then in 1965, Wolf [97] studied homogeneous complex 

contact manifolds. Ishihara and Konishi [44, 45] delivered a notion of normality for 

complex contact structures. In this development however, the notion of normality 

looks too robust due to the fact it precludes the complicated Heisenberg group as one 

of the canonical examples, even though it does include complex projective spaces as 

odd complex dimension as one would expect. Then B. Korkmaz [47, 48, 49] provide a 

new situation for the normality.  

In this chapter, we study on symplectic geometry and contact geometry with complex 

manifold. Here we have developed a special comparison between complex symplectic 

geometry and complex contact geometry. This chapter is mainly a review. But the 

original part of this chapter is to develop a special comparison using some special 

characteristic which exists in section 4.3. 



 
63 

4.1 Complex Symplectic Manifolds 

 

Let (�,�)be a complex-symplectic manifold with ���ℂ� = 2�  and complex 

structure ��. Then � is a closed, holomorphic 2-form with �� ≠  0. Let � =  �� +

 ��� , where ��  and �� are real 2-forms. Since �  is closed, so are ��  and �� .          

Also, � being holomorphic means that  �(� + ����,∗) =  0 as a1-form on �ℂ�. It is 

easy to see then that 

��(�,�) = −��(���,�) = −��(�,���) 

 

for any real vectors � and �. Now, we may use the complex version of Darboux’s 

theorem to find local holomorphic functions (��,...,��,��,...,��) such that � =

 ��� ∧ ��� + ··· +��� ∧ ��� . If we derive real coordinates �� =  �� +  ���, �� =

 �� +  ���, then 

 

�� =  ��� ∧ ��� − ��� ∧ ��� + ··· +��� ∧ ��� − ��� ∧ ��� 

�� =  ��� ∧  ��� − ��� ∧ ��� + ··· +��� ∧  ��� − ��� ∧ ��� 

 

from which we see that ��
�� ≠ 0 and ��

�� ≠ 0. Thus, we have two distinct symplectic 

structures on M. For now, we will assume that each represents an integral class in 

cohomology. 

Gromov proved that an open almost complex manifold � always carries a compatible 

symplectic structure [30]. For compact manifolds existence of an almost complex 

structure does not imply existence of a symplectic structure and the simplest additional 

necessary condition is the existence of a closed 2-form � such that its powers �� are 

cohomologically for �= 1,⋯ ,� :[�]� ≠ 0 in � ��(�). 
 

A complex manifold �is called a K�̈hler manifold if it carries a Hermitian metric 

ℎ����
���̅� such that the form � =  ℎ����

���̅� is closed. This form is symplectic and 

therefore any K�̈hler manifold carries a natural symplectic structure. 

The simplest examples of K �̈hler manifolds are algebraic manifolds which are 

complex submanifolds of the complex projective spaces. For such manifold a K�̈hler 
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structure is given by the metric induced from the Fubiny–Study metric by the 

embedding. Denote by (ℂℙ�, ���) the complex projective space ℂℙ� with a K�̈hler 

form ���  induced by the Fubiny–Study metric. These symplectic manifolds serve as 

universal symplectic manifolds in the following sense. 

 

Proposition 4.1. [90] Let (�,�) be a compact symplectic manifold of dimension 2� 

such that the form � is integer, i.e. [�] ∈ � �(�; ℤ) ⊂ � �(�; ℝ). Then there exists 

an embedding 

� ∶ � → ℂℙ���� 

such that � ∗��� =  �. 

 

4.1.1 Complex symplectic structure on �∗� (�) 
 

It is a basic fact that if � is any complex manifold (in particular when � =  � (�)), 

the total space of its holomorphic cotangent bundle �∗�  is equipped with a canonical 

complex symplectic structure. 

The canonical 1-form �  is the holomorphic (1, 0)-form on �∗�  defined at a point 

� ∈ �∗� by �� ∶=  �
∗ϕ, where � ∶ �∗� →  � is the canonical projection and �  is 

seen as a complex covector on � in the right-hand side of the equality. The canonical 

complex symplectic form on �∗� is then simply defined by ����  = dξ. If (��) is a 

system of holomorphic coordinates on �  so that an arbitrary (1,0)-form has an 

expression of the form � =  ∑ ����� , then (��,��) is a system of holomorphic 

coordinates on �∗� for which � = ∑ �����and ���� =  ∑ ��� ∧ ��� .The canonical 

1-form satisfies the following reproducing property. If � is any (1,0)-form on �, it is 

in particular a map � → �∗� and as such it can be used to pull back differential 

forms from �∗� to �. It is then not hard to show that �∗� =  � and as a consequence 

�∗� ��� =  ��. 

 

4.2  Complex Contact Manifolds 
 

Let � be a complex manifold and �� its holomorphic tangent bundle. The complex 

manifold � is called contact if there is a complex-codimension one holomorphic  
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sub-bundle �  of �� which is maximally non-integrable, i.e. the tensor 

 

� ×  � →  � �/�  

(�,� )⟼ [�,� ] ��� �  

 

is non-degenerate for every point of �. 

 

Let � ∶=  ��/�  be the quotient line bundle and � ∶ �� →  �  the tautological 

projection, so that we have the short exact sequence 

0 →  � →  �� →  � →  0. 

The projection � can be thought of as a 1-form with values in the line bundle �,� ∈

Γ(�,Ω�(�)), with ���(�) =  � . The sub-bundle �  must have even rank 2�  and, 

therefore, the manifold � has odd complex dimension 2� + 1 ≥  3. Moreover, the non-

degeneracy condition implies 

� ∧ (��)� ∈ Γ(�,Ω����(����)) 
 

is nowhere zero. This provides an isomorphism of the anti-canonical line bundle       

[57, 60] of � and ����. Since � =  ��/� , there is a ��  isomorphism 

�� ≅  � ⊕ �, 

so that 

�(�) =  �(�)· �(�). 

There is also the following isomorphism 

� ≅ �∗ ⊗  � 

By means of the splitting principle we can write the Chern classes in terms of formal 

roots 

�(�) = (1 +  ��)(1 +  ��) ··· (1 +  ���), 

and 

�(�) =  (1 +  �����), 

so that 

��(�) =  (� +  1)�����. 
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4.2.1 General facts about global complex contact structures 
 

We will now review some facts about global complex contact structures and their 

corresponding vertical sub-bundles. Throughout this section, we assume that           

� =  � −  �� is a global holomorphic contact form (�  and � are real 1-forms with 

� =  � ∘�) and that � is the subbundle of �� defined as the span of {�,� = −��} 

where 

 

�(�)= 1,�(�)= 0,�(�)�� = 0, 

�(�)=  0,�(�)=  1,�(�)�� = 0. 

Theorem 4.2. If � is a complex contact manifold with a global holomorphic contact 

form � =  � −  �� and corresponding vertical subbundle � =  ����{�,� = −��} 

given by 

�(�)= 1,�(�)= 0,�(�)�� = 0, 

�(�)=  0,�(�)=  1,�(�)�� = 0. 

Then 

1. � and �� are infinitesimal automorphisms of �, i.e., ℒ� � = ℒ�� � =  0. 

2. [�,��] =  0, so that � is a foliation of ��. 

3. ℒ�� = ℒ�� � = ℒ� � = ℒ�� � =  0. 

4. ℒ�(��)= ℒ�� (��) = ℒ�(��)= ℒ�� (��)=  0. 

Proof. If we use the complex Darboux Theorem to derive holomorphic coordinates 

(��,...,�����)such that 

� =  ��� −  ����� − ··· − ��� ������, 

then we see immediately that 
�

�
(� −  ���) =  �/��� . In other words, both             

� =  �/∂ ��  and�� =  �/���  are infinitesimal automorphisms of �. So, ℒ� � =

ℒ�� � =  0. In particular, [�,��] =  �[�,�] =  0, i.e., � is a foliation. Also, note that, 

on each vertical leaf, we have a hermitian metric given by 
 

�� =  � ⊗  � +  � ⊗  �, 

i.e., �  and �� are taken to be orthonormal vector fields. By assumption, ��  is a 

holomorphic 2-form on �. In particular, 
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��(�,�) =  ��(��,�) = ��(�,��) 

for any vectors �,�  on � .we also have ��(�,�) =  ��(�,��) =  0 and 

similarly, ��(�,�) =  0 for any � ∈  ��. Thus, if � ∈  � , then 
 

�([�,�]) = −2��(�,�) =  0,�([�,�]) = −2��(�,�) =  0. 

 

So, [�,�] ∈  ℋ. Similarly, [�,�]∈  ℋ. Furthermore, for any � ∈  �, there is an open 

subset � of � such that the space 
�

�
, the space of maximal vertical leaves on � given 

the quotient topology, is an open manifold and �� ∶ � →
�

�
 is a submersion. Then, for 

any basic vector field � on �, i.e., � is horizontal and(��)∗� is a well-defined vector 

field on  
�

�
, we have 

(��)∗([�,�])=  (��)∗([�,�]) =  0. 

 

So, [�,�] and [�,�] are also vertical. Thus, [�,�] =  [�,�] =  0. 

If � is any horizontal vector and we extend � to be a local basic vector field on �, then 

ℒ��(�) = −�([�,�]) =  0. 

Hence, ℒ�� =  0. Similarly, we have 

ℒ��= 0 =  ℒ��� =  ℒ���. 

Using this same argument, we have 

ℒ�(��)= ℒ�� (��) = ℒ�(��)= ℒ�� (��)=  0. 

This completes the proof.                             � 
 

 

4.3 Comparison between Complex Symplectic Geometry and 

Complex Contact Geometry 

 

    Complex Symplectic Geometry      ComplexContact Geometry 

 
1.  Complex Symplectic Manifold 

 

The complex manifold �  of complex 

dimension 2� is called symplectic if it has 

 
1.  Complex Contact Manifold 

 
The complex manifold �  of complex 

dimension 2 � + 1is called contact if 
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a holomorphic symplectic 2-form �  is 

closed with  �� ≠ 0. 

Let 

� = �� + � �� 

These two closed forms �� and �� are real 

symplectic forms and define the structure 

of a complex symplectic manifold on �. 

there is a complex co-dimension one 

holomorphic sub-bundle � of ��which 

is maximally non-integrable, i.e. the 

tensor 

� ×  � →  � �/�  

(�,� )⟼ [�,� ] ��� �  

is non-degenerate for every point of �. 

 
2.  Examples 

 
(�) Kodaira- Thurston manifold represents 

a complex symplectic manifold. Let g be 

the Lie algebra of �and let g∗be its dual. 

We identify tensors on gand g∗ with left-

invariant objects on � . It is easy to check 

that g  has a basis < ��,��,��,�� > in 

which the only non-zero bracket 

is [��, ��] =  −�� . Let < ��,��,��,

�� > be the dual basis of g∗. The only non-

zero differential on g∗ is computed to be 

���  = ��⋀�� .The element  � = ��⋀�� +

��⋀ ��is closed and non-degenerate. 
 

(��) Consider the holomorphic Lie groups 

ℂ� ≅ �ℂ = ��
1 �� ��
0 1 ��
0 0 1

� :��, ��, �� ∈

��×�(ℂ)�  andℂ� = �
��
��
� . Then the map 

�:ℂ� → ℂ� is a surjective holomorphic Lie 

group homomorphism. The holomorphic 2-

 
2.  Examples 

 
(�)The odd-dimensional complex projective 

space    ℙ���� is a complex contact 

manifold. Any 2-homogeneous symplectic 

form � on ℂ����defines a contact form on 

ℙ����. 

 

 

 

 

 

 

 
 

(��) Complex Heisenberg group �ℂ 

represents a complex contact manifold, 

where 

ℂ� ≅ �ℂ =  

��
1 �� ��
0 1 ��
0 0 1

� :��, ��, �� ∈ ��×�(ℂ)� 

The complex contact structure of this 

manifold is given by the left invariant 1-
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form � = −��� ⋀���  on ℂ� is a left-

invariant complex symplectic form. 

form 

� = ��� − ����� and  � ⋀ �� ≠ 0 

 
3.  Equivalence 

 

Let �� (resp. ��  ) be an open subset of �∗� 

(resp. �∗� ) and let � ∶�� ≃ �� be a 

symplectic isomorphism. Then, locally on 

�� , there exists a � -preserving contact 

isomorphism  

                  � ∶ ���(��)≃ �
�� (��)  

making the diagram below commutative 

 

  �∗� ⊃ ��                        �� ⊂ �
∗� 

 
 
 

        �∗̇(� × ℂ)                              ���(��) 
      ⊃ ���(��)                         ⊂ �

∗̇(� × ℂ) 

 
3.  Equivalence 

 

Let ��  (resp.��  ) be an open subset of  

�∗̇(� × ℂ) (resp. of �∗̇(� × ℂ)) and let 

� ∶�� ≃ �� be a contact isomorphism. 

Then, we say that� is a � -preserving 

contact isomorphism if it lifts as a 

homogeneous symplectic isomorphism 

��: ���(��)≃ �
�� (��) 

making the diagram below commutative 

 

�∗̇(� × ℂ)⊃ ��              �� ⊂ �
∗̇(� × ℂ) 

 

�∗� × �̇
∗
ℂ                               �−1(��) 

⊃ ���(��)                         ⊂ �
∗� × �̇∗ℂ  

 
4.  Quantization-deformation 

modules 
 

Let �  be a complex symplectic manifold. 

There exists canonically a � -Abelian stack 

��� (�√�,�) on �  such that if � ⊂ �  is 

an open subset isomorphic by a contact 

transformation � to an open subset��  ⊂

 �∗� , then ��� (�√�,�)|�  is equivalent 

by � to the stack  ��� (��
√�|��). 

  

 
4.  Quantization-deformation 

modules 
 

Let � be a complex contact manifold. 

There exists canonically a ℂ -Abelian 

stack ��� (�√�,�)  on �  such that 

if� ⊂  �  is an open subset isomorphic 

by a contact transformation �  to an open 

subset ��  ⊂  �
∗� , then ��� (�√�,�)|� 

is equivalent by � to the stack  

��� (��
√�|��). 

 

� 

� 

�  

�  

� 
� 

�� 

� 
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5.  Local Characteristic 

 
Let �  be a complex symplectic manifold. 

Now Darboux’s theorem implies that, the 

local model of � is an open subset of the 

cotangent bundle �∗� with � = ℂ 
�

�
��� �  . 

 
5.  Local Characteristic 

 
Let �  be a complex contact manifold. 

Now Darboux’s theorem implies that, 

the local model of � is an open subset of 

the projective cotangent bundle 

�∗� with � = ℂ 
�

�
(��� ���). 

 

 

4.4 Existence of complex submanifolds 

 

We are interested in complex submanifolds �  in ℂ��  that intersect the real 

submanifold �at the origin. Recall that �  has real dimension 2�. Generically, the 

origin is an isolated intersection point if dim � = �. Let us consider the situation when 

the intersection has dimension �. Without further restrictions, there are many such 

complex submanifolds; for instance, we can take a �-dimensional totally real and real 

analytic submanifold �� of �. We then let � be the complexification of ��. To ensure 

the uniqueness or finiteness of the complex submanifolds, we therefore introduce the 

following. 

Definition 4.1. Let M  be a formal real submanifold of dimension 2n in ℂ�� . We say 

that a formal complex submanifold � is attached to � if � ∩  � contains at least two 

germs of totally real and formal submanifolds �� , ��  of dimension �  that intersect 

transversally at the origin and � has dimension �. Such a pair {��, ��} are called a pair 

of asymptotic formal submanifolds of �.  

 

We first derive the results at the formal level. We then apply the results of               

[83, 89]. The proof of the co-existence of convergent and divergent attached 

submanifolds will rely on a theorem of Pöschel on stable invariant submanifolds and 

Siegel’s small divisor technique.We now describe the formal results. When � = 1, a 

non-resonant hyperbolic � admits a unique attached formal holomorphic curve [59]. 
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When � > 1, new situations arise. First, we show that there are obstructions to attach 

formal submanifolds. However, the formal obstructions disappear when � admits the 

maximum number of deck transformations and �is non-resonant.We will consider a 

real submanifold � which is a higher order perturbation of a non resonant product 

quadrics. By adapting the proof of Klingenberg to the manifold �, we will show the 

existence of a unique attached formal submanifold for a prescribed non-resonance 

condition. We also show that the complexification of � in ��is a pair of invariant 

formal submanifolds ���, �
�
� of �. Furthermore, � is convergent if and only if ��� is 

convergent. 

                 We now can prove the following theorem. 
 

Theorem 4.3. Let �  be a real analytic submanifold in ℂ��  without elliptic 

components. Assume that in (�,�) coordinates, ��(0) is diagonal and has distinct 

eigenvalues ��,��,… ,��,��
��,��

��,… ,��
��. Let � = ��, then � admits a unique 

pair of formal asymptotic submanifold {���, ���} such that the complexification of 

��� in ��is an invariant formal submanifold �� of � that is tangent to 

 

∩���� {�� =  0} ∩ ∩����� {�� = 0}. 

 

Furthermore, the complexification of ��� equals τ��� . 

Proof. Let �� =  �
�
� . We will follow Klingenberg’s approach for � = 1, byusing the 

deck transformations. Suppose that �  is an attached formal complex submanifold 

which intersects with � at two totally real formal submanifolds ��, ��. We first embed 

�� ∪ �� into �� as � is embedded into ��. Let ��� be the complexification of �� in ��. 

Since � fixes �� pointwise, then ��� = ��. 

We want to show that τ�(�
�
�)= �

�
�; thus ��� is invariant under �. We can see that 

���is defined by 

���(�
�)= � � 

On ��� ,we have �(��,� �)+ �(��,� �)= − � (��). The latter defines a complex 

submanifold of dimension �. Thus, it must be ���. On ��, 
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���(�
�,� �)+ ��(�

�,� �)�
�
= ���� 

 

are invariant by τ� . Thus each ��(�
�,� �)+ ��(�

�,� �)is either invariant or skew-

invariant by τ� . Computing the linear part, we conclude that they are all skew-

invariant by τ�. Hence τ�(�
�
�)is defined by ��(�

�,� �)+ ��(�
�,� �)= �(��), which is 

the defining equations for ���. We must identify the tangent space of ��� at the origin.  

 

Finally, if  ���  is convergent, then  ����� is convergent. Hence ���, the fixed-point set of 

��, is convergent.                  � 
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CHAPTER 5 

EXISTENCE AND STABILITY OF LEGENDRE 

AND ISOTROPIC SUBMANIFOLDS IN CONTACT 

MANIFOLDS 

 

Without references to differential geometry or twistor theory a solution of a certain 

moduli problem was solved by Kodaira [52] in 1962. Kodaira’s initial data is a pair, 

� ↪ � consisting of a compact complex submanifold � of a complex manifold  �. He 

showed that if the normal bundle ��|�  of the initial submanifolds � ↪ � is such that 

� �(�,��|�) =  0, then the moduli set � has two properties: first, it is a manifold with 

dim � = � �(�,��|�); second, a tangent vector at any point�∈ � can be realized 

canonically as a global section  of the normal bundle �� of the associated submanifold 

�� ↪ � , i.e., there is a canonical isomorphism �� ∶ ��� ®�
�(��,��), called the 

Kodaira map. The manifold (parameter space) � is called the Kodaira moduli space. 

In [68], Merkulov proved the completeness and maximality of moduli spaces as well 

as the stability of compact Legendre submanifolds in complex contact manifolds. A 

completeness and maximality of moduli spaces of compact complex isotropic 

submanifolds in complex contact manifold are studied in [1]. This result generalizes 

the result of Merkulov [68] on Legendre submanifolds.  

This is mainly a review on Kodaira, Legendre, and isotropic moduli spaces. However, 

there are some original calculations also. The original work of this chapter is to 

establish an interconnection among Kodaira, Legendre, and isotropic moduli spaces 

which exist in section 5.5.  

 

5.1 Kodaira Moduli Spaces 

 

In this part we recall some useful facts about relative deformation theory of compact 

complex submanifolds of complex manifolds. [55] 
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Let � and � be complex manifolds and let 1 :Y M Y ´ ® and 2 :Y M M ´ ®  be two 

natural projections. An analytic family of compact submanifolds of the complex 

manifold � with the moduli space � is a complex submanifold � ↪  � × � such that 

the restriction of the projection 2  on �  is a proper regular holomorphic map [76] 

(regularity means that the rank of the differential of 2 | :F F M  ® is equal to dim � 

at every point). Thus, the family � has double fibration structure [67] 

,MFY
m

®  

where 1 | .Fm  For each t MÎ we say that the  � ↪  � × �  compact complex 

submanifolds 1: ( )tX tm    ↪ � belong to the family. If is an analytic family of 

compact submanifolds, then, for any t MÎ , there is a natural linear map,  

),,(: |
0

YXttt t
NXHMTk ®

 

from the tangent space at � to the vector space of global holomorphic sections of the 

normal bundle | | /
t tX Y X tN TY TX  to the submanifold �� ↪ �. 

An analytic family � ↪  � × �of compact submanifolds is called complete if the 

Kodaira map ��is an isomorphism at each point � in the moduli space �. It is called 

maximal if for any other analytic family ��↪  � × ��  of compact complex 

submanifolds such that 1 1( ) ( )t tm  m      for some points t MÎ and t MÎ  , there is 

a neighborhood U MÌ   of the point t and a holomorphic map :f U M® such that 

1 1( ') ( ( '))t f tm  m      for every ' .t UÎ   

Theorem 5.1.[55] If  X↪Y  is a compact complex submanifold in complex manifold Y 

with normal bundle NX |Y  such that 1
|( , ) 0,X YH X N  then X belongs to the complete 

and maximal analytic family {�� ↪  � | �Î �} of compact complex submanifolds with 

the moduli space M  being a 0
|( , )X YH X N -dimensional complex manifold. This moduli 

space is called Kodaira moduli space. 
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5.2 Complex Contact Manifolds 

 

Definition 5.1. A complex contact manifold is pair (�,�)  consisting of a 

( 2 � + 1 )− dimensional complex manifold �  and a rank 2 � -holomorphic 

subbundle� Ì ��  of the holomorphic tangent bundle to � such that the Frobenius 

form 

 

 
 

: /

, [ , ]mod

D D TY D

v w v w D

 ´ ®


 

 is non-degenerate. Define the contact line bundle�:= ��/� , on �  by the exact 

sequence 

    00 122 ®®®®  LTYD nn
q

, 

where q is the tautological projection and � =kerq. It may easily be verified that the 

maximal non-degeneracy of the distribution �  is equivalent to the fact that the above 

defined “twisted” 1-form satisfies the condition 

q ∧ (�q)� ≠  0. 

Definition 5.2. A compact complex n-dimensional submanifold �  of the complex 

contact manifold �  is called Legendre Submanifold if .TX DÌ  The normal bundle 

|X YN of any Legendre submanifold � ↪ � is isomorphic to 1
XJ L  [61] where |X XL L , 

and, therefore, fits into the exact sequence  

.00 |
1 ®®®® X

pr

YXX LNLX
 

Definition 5.3. A compact complex � -dimensional submanifold �� ↪ �����  of a 

complex contact manifold ����� is called isotropic if  �� Ì �|�. 

An isotropic submanifold of possible maximal dimension �  is called a Legendre 

submanifold.  
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Definition 5.4. The bundle ��  is defined to be the kernel of the canonical projection  

XYX LJNp 1
|: ®

, 

i.e., it is defined by the exact sequence 

.00 1
| ®®®® XYXX LJNS

 

5.3 Legendre Moduli Spaces 

 

5.3.1 Existence of Legendre Moduli Spaces 

 

Let � be a complex contact manifold. An analytic family {�� ↪  � | �Î �} of compact 

submanifolds of � [54] is called an analytic family of compact Legendre submanifolds 

if, for any point t MÎ , the corresponding subset 1: ( )tX tm    ↪  �  is a Legendre 

submanifolds. The parameter space � is called a Legendre moduli space. 

Let  � ↪  � × � be a family of compact Legendre submanifolds. If � ↪  � × � is an 

analytic family of compact complex Legendre submanifolds, it is also an analytic 

family of complex submanifolds in the sense of Kodaira and thus, for each t MÎ , 

there is a linear map  

).,(: |
0

YXttt t
NXHMTk ®

 

Definition 5.5. The analytic family � ↪  � × �of compact Legendre submanifolds is 

complete at a point t MÎ  if the composition  

0: ( , )
t

kt

t t t X Y
s T M H X N® 0 ( , )

t

pr

t XH X L®  

provides an isomorphism between the tangent space to � at the point � and the vector 

space of global sections of the contact line bundle over tX . The analytic family   

� ↪  � × � is called complete if it is complete at each point of the moduli space �. 
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Lemma 5.2. [1] If an analytic family � ↪  � × �of compact complex Legendre 

submanifolds is complete at a point 0t MÎ , then there is an open neighbourhood

U M of the point 0t such that the family � ↪  � × �is complete at all points .t UÎ  

Definition 5.6. An analytic family � ↪  � × � of compact complex Legendre 

submanifolds is  maximal at a point 0t MÎ , if for any other analytic family              

��↪  � × ��  of compact complex Legendre submanifolds such that 

1 1
0 0( ) ( )t tm  m     for a point 0t MÎ  , there exists neighbourhood U MÌ  of 0t and 

a holomorphic map :f U M® such that 0 0( )f t t and 1 1
0( ) ( ( ))t f tm  m       for 

each t UÎ  . The family � ↪  � × �is called maximal if it is maximal at each point � 

in the moduli space �. 

Lemma 5.3. [1] If an analytic family � ↪  � × �of compact complex Legendre 

submanifolds is complete at a point 0t MÎ , then it is maximal at the point 0t . 

The map 0: ( , )
tt t t Xs T M H X L® studies by the Lemma 5.2 and Lemma 5.3 will also 

play a fundamental role in our study of the rich geometric structure induced 

canonically on moduli spaces of complete and maximal analytic families of compact 

Legendre submanifolds described by the following theorem. 

Theorem 5.4. [65] Let � be a compact complex Legendre submanifold of a complex 

contact manifold �  with contact line bundle �. If 1( , ) 0XH X L  , then there exists a 

complete and maximal analytic family {�� ↪  � | �Î �}  of compact Legendre 

submanifolds containing �  with Legendre moduli space � , is a 0 ( , )XH X L -

dimensional complex manifold. 

This theorem is proved by working in local coordinates adapted to the contact 

structure and expanding the defining functions of nearby compact Legendre 

submanifolds in terms of local coordinates on the moduli space �. This is much in the 

spirit of the original proof of Kodaira's theorem of the existence, completeness and 

maximality of compact submanifolds of complex manifolds. The essential difference 
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from the Kodaira case is that the infinite sequence of obstructions to agreements on 

overlaps of formal power series is situated now in 1( , )XH X L  rather than in 

).,( |
1

YXNXH
 

 

5.3.2 Stability of Legendre Moduli Spaces 
 

A family of complex contact manifolds is by definition a quadruple 

(�,�,�,�), consisting of complex manifolds �and � , a holomorphic submersion 

�:� ↪ � and a maximally non-integrable codomain 1 vector subbundle, � *kerÌ , 

of the bundle of  -vertical tangent vectors. Therefore, each fibre 1( ),sY s s S  Î , 

is a complex contact manifold with contact line bundle sL isomorphic to           

*(ker /  � )
sY . The manifold � is often called a parameter space. For any s SÎ  

there is a canonical linear map  

).,(: 1
ssss LYHST ®

 

According to Kodaira [53], if ( , )Y L is a compact complex contact manifold with

2 ( , ) 0,H Y L   then there exists a complete analytic family (�,�,�,�)of contact 

manifolds such that 

(i) each fibre sY  is compact, 

(ii) 
0sY Y for some 0s SÎ , and 

(iii) the map 1: ( , )s s s sT S H Y L ®  is an isomorphism for each .s MÎ  

In the present section it is more suitable to call a family of complex contact manifolds 

(�,�,�,�)simply a complex contact fibre manifold and denote by � .Then a 

submanifold � ↪ � is called a complex Legendre fibre submanifold if the restriction of 

 to �  defines a holomorphic submersion : x Sw ® whose fibres 1( )sX sw are 
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complex Legendre submanifolds of sY . If all these fibres are compact, then x is called 

a complex Legendre fibre submanifold with compact fibres. 

 

Definition 5.7. A compact complex Legendre submanifold X of a complex contact 

manifold Y is called stable if for any complex fibre manifold � such that 1
0( )s Y    

for some point 0s SÎ , there exists a neighborhood U of 0s  in S and a complex 

Legendre fibre submanifold �Ì  � |�   with compact fibres such that � ∩ � = �. 

Let � ↪ �be a compact complex Legendre submanifold and �  a complex contact 

fibre manifold such that 1
0( )s Y   for some point 0s SÎ . Then the normal bundle 

��|�of � ↪ � fits into the exact sequence  

                                                                 0®��|�
i

®��|�®ℂ�⨂��®0 

  

where ��|� is the normal bundle of � ↪ �  and dimp S . Therefore, the quotient 

bundle � = ��|�
1/ ( )Xi X L   has the extension structure  

[ 

 

                                                                             0 XL® ®�®ℂ�⨂��®0
 

 

 

Theorem 5.5. Let � ↪ �  be a compact complex Legednre submanifold and �  a 

complex contact fibre manifold such that 1
0( )s Y   for some point 0s SÎ . If 

1( , ) 0,XH X L   then there exists an analytic family of compact complex submanifolds 

{�� ↪ �| t MÎ } such that each Xtis a Legendre submanifold of sY for some s SÎ  

and such that there is a canonical isomorphism 0 ( ,t tT M H X®  �t ) for all t MÎ .  

The proof is omitted since it is based on a rather straightforward generalization of the 

arguments used in the proof of the existence Theorem [53].  
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Theorem 5.6. [68] Let � be a complex compact Legendre submanifold of a complex 

contact manifold ( , )Y L . If 1( , ) 0,XH X L   then � is a stable Legendre submanifold of 

�. 

This generalizes the result in Kodaira's stable submanifold. There are strong 

indications in [66] that the Legendre moduli spaces we studied in this section will play 

a pivotal role in the twistor theory of �-structures with restricted invariant torsion. 

 

5.4 Isotropic Moduli Spaces 
 

5.4.1 Families of Complex Isotropic Submanifolds 

Let �  be a complex contact manifold. An analytic family � ↪ � ́ � of compact 

submanifolds of the complex manifold �  is called an analytic family of isotropic 

submanifolds, if for any �Î� , the corresponding subset �� =  m
1( )t  ↪ � is an 

isotropic submanifold. Use is made of the symbol {�� ↪ � | �Î �}to denote an 

analytic family of isotropic submanifolds. 

Let � = ��� for some ��Î � . If �� ↪ ����� is an isotropic submanifold, then each 

point in � has a neighbourhood � in �  such that the contact structure in a suitable 

trivialization of  � over � is 

aa
p

a

aa
n

pa

dzdd wwwwq 



11

0

 

and � in � is given by 

.00  aaa wwww  

There exists an adopted coordinate covering {��} of a tubular neighbourhood of � 

inside �. As a consequence one can always choose local coordinate functions 

0( , , , , ),a a a a
i i i i izw w w w  in �� where , 1, ,a a n  and 1, ,a p   such that the contact 

structure in �� is represented by  
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with ��⋂� given by  

,0
0


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i
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a

ii wwww  

and 

UjUijijUjUii A   || qq
 

for some nowhere vanishing holomorphic functions ���(w�,��). They satisfy the 

condition  

��� = ������ 

on every triple intersection ��⋂��⋂�� . Clearly, {���}are gluing functions of the 

contact line bundle �. 

On the intersection ��⋂�� , the coordinates 0: ( , , , )A a a a
i i i i iw w w w w and ��

�  are 

holomorphic functions of 0: ( , , )B b b b
j j j j jw w w w w and ��

�, 
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with���
�(0,��

�) = 0, where � = 0,�, ,a a  
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For any point � in a sufficient small coordinate neighbourhood ��Ì �of ��  with 

coordinate functions �a,a = 1,...,�  =  dim �, the associated isotropic submanifold 

�� =  m
1( )t   is expressed in the domain �� by equations of the form [3]  

),,( aw tz
a

i

A

i

A

i  aaa ,,,0a . 

Lemma 5.7. �� is isotropic if and only if  
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holds. 

Proof. Let �� ↪ �����be an isotropic submanifold in complex contact manifold �. 

An arbitrary ��, deformation of � inside � , is given by 
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Then, 
0
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i
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 
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 

 is a global section of ��|� .  

�� is isotropic if and only if 0     a a a a
i i i i i id d dzq w w w w    vanishes on ��.  Then 

00 ( , ) ( , ) ( , ) ( , )a a a a
i t i i i i i i i i iX d z t z t d z t z t dzq         
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 Thus, we obtain 
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5.4.2 Completeness and Maximality of Isotropic Moduli Spaces 
 

 

Let �  be a complex contact manifold and let � ↪ � ́ �  be an analytic family of 

compact complex isotropic submanifolds. The latter is also an analytic family of 

compact complex submanifolds in the sense of Kodaira and thus, for each �Î �, there 

is a canonical linear map 

     �� ∶ ��� → �
�(��,���|�) 

The exact sequence 

      0 →  ��� →  ���|� →  �
����  →  0, 

 

has an expansion as follows:                      0 

Ω���⊗ ��� 

0 →  ��� →  ���|� →  �
���� →  0 

���  

                                                                    0 

 Hence, there is a canonical map represented by a dashed arrow, 

                                                                    0 

H����,Ω
���⊗ ���� 

                 0 →  H����,����→  H
����,���|��→ H

����,�
����� →  0 

H����,���� 

                                                                    0 



 
84 

Thus, there is a canonical sequence of linear spaces, 

0 →  H����,����→  H
����,���|��→ H

����,���� →  0 

which is not exact in general. 

Definition 5.8. The analytic family � ↪ � ́ �  of compact complex isotropic 

submanifolds is complete at a point �∈ � if the Kodaira map �� makes the induced 

sequence  

0 →  H����,����→  ��(���)→ H
����,���� →  0 

exact. The analytic family � ↪ � ́ � is complete if it is complete at each point of the 

moduli space. 

Theorem 5.8. [1] If an analytic family � ↪ � ́ �  of compact complex isotropic 

submanifolds is complete at a point �� ∈ � , then there is an open neighbourhood   

� ⊆� of the point �� such that the family � ↪ � ́ � is complete at all points �∈ �.  

Definition 5.9. An analytic family � ↪ � ́ �  of compact complex isotropic 

submanifolds is maximal at a point �� ∈ �, if for any other analytic family F ↪ � ×

M  of compact complex isotropic submanifolds such that 1 1
0 0( ) ( )t tm  m     for a 

point 0t MÎ  , there exists neighbourhood U MÌ  of 0t and a holomorphic map 

:f U M® such that 0 0( )f t t and 1 1
0( ) ( ( ))t f tm  m       for each t UÎ  . The 

family � ↪ � ́ � is called maximal if it is maximal at each point � in the moduli 

space �. 

5.4.3 Existence Theorem of Isotropic Moduli Spaces 
 

Theorem 5.9. [2] If � ↪  � is a compact complex isotropic submanifold in a complex 

contact manifold, then its normal bundle ��|�  fits into an extension 

 

0 → �� → ��|� →   �
��� →  0, 
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If � �(�,��)= �
�(�,��)= 0, then there exists a complete and maximal analytic 

family {�� ↪  � | �∈ �} of isotropic submanifolds such that 

 

(i) ���  =  � for some �� ∈ �; 

(ii) the moduli space � is smooth; 

(iii) dim � =  � �(�,��)+ �
�(�,��); 

(iv) the tangent space ���,�∈ �, fits into the extension 

 

0 → � �(��, ���)→  ��(���)→ �
����, ����→ 0. 

 

5.4.4 Stability of Isotropic Moduli Spaces 

 

Theorem 5.10. Let ( , )Y D  be complex contact manifold and X YÌ be a isotropic 

submanifold of Y  with contact line bundle L . Then there is a following exact 

sequence 

0 → �� → ��|��→ �
��� → 0 

Proof. Consider a particular 1-form � that represents the contact structure. Let, for 

� ∈ �,� ∈ ��� be a vector in the normal bundle and � ∈ ��� . Then there are two 

equations  

�(�)= �(�),��(�,�)= �(�)|� 

which uniquely determines the 1-jet on � at � of a function � . Consider rescaling 

� → �� where � is a function on Y. If we set �� = �� and �� = ��, then we have 

��(�)= ��(�)= ��(�)= ��|�  

���(�,�)= (�� ∧ �)(�,�)+ ���(�,�) 

                                   = ��(�)�(�)− ��(�)�(�)+ ��(�)|�  
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            = �(�)�(�)− 0 + ��(�)|�  

                                                           = �(��)|�   

                                                           = �����|�   

Since ��� ⊆���
� ⊂ � then � ∈ �  so that �(�)= 0. Therefore this elementary 

calculation shows that the above two conditions are satisfied by ��  and so we 

conclude that we have defined a map ��|��→ �
���  . Furthermore, it is clear that the 

kernel is ���/��. 

This completes the proof .                                                                                               � 

Theorem 5.11. If an analytic family � ↪ � ́ �  of compact complex isotropic 

submanifolds is complete at a point �� ∈ �, then it is maximal at the point  ��. 

Proof. Let F ↪ � × M  be any analytic family of compact complex isotropic 

submanifolds such that 1 1
0 0( ) ( )tX t tm  m       for some point 0t MÎ  . Let {��} 

be a covering of � by coordinate charts with coordinate functions  ,A a
i izw such that  
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for some non-vanishing holomorphic functions ��� , and the isotropic submanifold �� 

is given in each intersection ��⋂ �� by equations 0A

iw  . Define 
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Then, for sufficiently small neighbourhoods U and U of points �� ∈ � and  0t MÎ  , 

the submanifolds 1( )U  ↪ Y U´ and 
1( )U   ↪ Y U´  are given respectively by 

equations 


 









n

pb
a

i

i

b

i
i

b

ia

i

ii
i

a

i
z

tz
tz

z

tz
tz

1

0
),(

),(
),(

),(







, 

and 


 









n

pb
a

i

i

b

i
i

b

ia

i

ii
i

a

i
z

tz
tz

z

tz
tz

1

0
)~,(

~

)~,(
~)~,(

~

)~,(
~ 





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where �= (��,...,�� ),� =  dim�, and  1( ,..., ), dimlt t t l M     , are coordinates on 

U and U  respectively, and ( , )A
i iz t and ( , )A

i iz t  are some holomorphic functions. We 

may assume without loss of generality that coordinate functions ��,...,��  vanish at 

�� ∈ �, while coordinate functions 1( ,..., )lt t t   vanish at 0t UÎ  . 

To prove this Theorem 5.11, we have to construct a holomorphic map :f U U® such 

that 0 0( )f t t and 

))
~

(,(),(
~

tfztz i

A

ii

A

i  
 

for all t  in some sufficiently small neighbourhood of 0t . Let us first prove the 

existence of a unique formal power series ( )f t  satisfying this equation. For this 

purpose, we introduce the following notations. If �(�) is a power series in variables 

� =  (��,...,��) we write 

�(�) =  ��(�) +  ��(�) + ...+ ��(�) + ... 

where each term ��(�)is a homogeneous polynomial of degree� in ��,...,�� , and 

denote it by �[�](�) the polynomial  

(5.1) 
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�[�](�)= ��(�) +  ��(�) + ...+ ��(�)  

If �(�) is another power series in �, we write ( ) ( )qP s Q s  if �[�](�)= �[�](�). Let 

us look for a solution of equation (5.1) in the form of a formal power series 

...)
~

(...)
~

()
~

()
~

( 21  tftftftf q  

Then equations (5.1) are reduced to the system of congruencies 

)),~(,()~,(
~ ][ tfztz q

i

A

iqi

A

i   ,IiÎ ,...2,1q                     

First, we shall construct polynomials [ ] ( )qf t  by induction on �. Let 

...),(),(),( 2|1|  tztztz i

A

ii

A

ii

A

i 
 

be the power series expansion of ( , )A
i iz t in ��,...,�� . By hypothesis, the family 

� ↪ � ́ � is complete at �� ∈ �. According to Theorem 5.10, and definition 5.8, the 

sequence 

0 →  H�(�,��)→  ���������→ H
�(�,��) →  0, 

is exact. On the other hand, if there exists a sheaf of Abelian groups |X YN , which fits 

into there exact sequence, 

0 →  H�(�,��)→  H
� ��, |X YN � → H�(�,��) →  0. 

Moreover, the Kodaira map �� maps exactly ���� to the space of the global sections 

of |X YN . Thus, we have an isomorphism  

��� ∶ ����®H
� ���, |X YN � 

        (5.2) 
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According to the local coordinate description of the map ���, given in the proof of 

Theorem 5.10, this means that the collection of 0 -cocycles |1 ( , )A
i iz t

ta
  

 
  

 , a =

 1,… ,� , represents a basis of the vector space H� ��, |X YN �.  Since 
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and each 1 – cochain 0
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,� = 1,⋯ ,� represents a global section of |X YN  

over �, we conclude that the collection  |1 ( , )A
i iz t   may be interpreted as a 

homogeneous polynomial of degree 1 in t  with coefficients in  H� ��, |X YN � .  

Therefore, we can decompose  
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where coefficients 1( )f t  are linear vector-valued functions of 1,..., lt t  . Thus, we have, 
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which means that the functions 1( )f t  satisfy the congruence (5.2). 

Assume the polynomials [ ]( )qf t satisfying (5.2)are already constructed. Define a 

homogeneous polynomial ( , )A
i iz tw  of degree � + 1 in t  by the congruence 
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we find 
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. 

The latter congruence means that the collection  ( , )A
i iz tw   is a homogeneous 

polynomial of degree � + 1 in 1( ,..., )lt t t   with coefficients in � � ��, |X YN �.  Let us 

now show that  ( , )A
i iz tw    takes values in |X YN in fact. For this, we have to show that 
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We have by definition, 
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Differentiate (5.3) with respect to a
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a

i

q
ii

a

i

ii

a

i

ii

z

tfz

z

tz

z

tz













 ))
~

(,()
~

,(
~

)
~

,( ][000 w

    

Equation (5.4) implies, 





























n

pb
a

i

q
i

b

i
i

b

i

a

i

q
ii

n

pb
a

i

i

b

i
i

b

ia

i

ii
i

a

i

z

tfz
tz

z

tfz

z

tz
tz

z

tz
tz

1

][

][0

1

0

))~(,(
),(

))
~

(,()
~

,(
~

)~,(
~)

~
,(

~

)~,(








w

  

As ( , ) ( , )a a
i i q i iz t z t  ,  ( , ) ( , )a a

i i q i iz t z t   and degree , 1a a
i i   , degree , 1a a

i i     

so the second and fourth terms of equation (5.6) cancel out by induction assumption, 

and we obtain 
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Therefore,  ( , )A
i iz tw   represents a global sections of bundle |X YN  so that we can 

decompose again over the basis section  |1 ( , )A
i iz t , 

(5. 3) 

 (5.4) 

 (5.5) 

(5.6) 
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where coefficients 1( )qf t
  are vector-valued homogeneous polynomials of degree 

� + 1 in 1,..., .lt t   Defining 
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we obtain, 
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This completes our inductive construction of the polynomials [ ] ( )qf t  satisfying 

equations (5.2). The convergence of the resulting formal power series 

...)
~

(...)
~

()
~

()
~

( 21  tftftftf q  

for all t  in some open neighbourhood of the origin in 1 follows from estimates 

obtained by Kodaira in [54], which carry over verbatim to our case. This fact 

completes the proof.                                                                                     �  

 

5.5 Interconnections among Isotropic, Legendre and Kodaira Moduli 

Spaces 

 

If � ↪ �is a complex submanifold, there is an exact sequence of vector bundles 

,0|0 11* ®®®® XYN X  

which induces a natural embedding ℙ(� ∗) → ℙ 1( )Y  of total spaces of the 

associated projectivized bundles. The manifold Ŷ  ℙ 1( )Y  carries a natural contact 
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structure such that the constructed embedding X̂ ℙ(� ∗) → Ŷ is an isotropic as well 

as Legendre one [3]. Indeed, the contact distribution ˆD TYÌ at each point ˆŷ YÎ

consists of those tangent vectors ˆ ˆ
ˆ

y yV T YÎ which satisfy the equation ˆ*ˆ, ( ) 0,yy V    

where ˆ:Y Y ® is a natural projection and angular brackets denote the paring of 1-

forms and vectors at ˆˆ( ) .y Y Î  Since the submanifold ˆ ˆX YÌ consists precisely of 

those projective classes of 1-forms in 1 |XY which vanish when restricted on TX , we 

conclude that ˆ
ˆ | .

X
TX DÌ
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CHAPTER 6 

MODERN DEVELOPMENTS IN DIFFERENTIAL 

GEOMETRY APPLIED TO DYNAMICAL 

SYSTEM 

 

In this chapter we discuss about a slow-fast dynamical system called Brusselator 

model through differential geometry. Differential geometry based new developed 

approach called the flow curvature method is considered to analyze the temporal 

Brusselator model. According to this method, the trajectory curve or flow of any 

dynamical system of dimension n considers as a curve in Euclidean space of 

dimension n . Then the flow curvature or the curvature of the trajectory curve may be 

computed analytically. The set of points where the flow curvature is null or empty 

defines the flow curvature manifold. This manifold connected with the dynamical 

system of any dimension n  directly describes the analytical equation of the slow 

invariant manifold incorporated with the same dynamical system. We apply the flow 

curvature method for the first time on the two-dimensional Brusselator model to 

describe the main characteristics of this dynamical system. Also, we discuss about the 

pattern formation phenomena of the spatiotemporal Brusselator model through 

differential geometry. 

 

This chapter is original and it provides the main result.  

 

6.1 Preliminaries of Dynamical System and Differential Geometry  

6.1.1 Dynamic System 

We consider a system of differential equations defined on a compact E of ℝ by: 

( )
d X

F X
dt




 

                                                    
(6.1) 
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where              

                                                  1 2

t

nX x x x E 
  

    Î Ì


  ℝ� 

and 

                                           
       1 2, ,...,

t

nF X f X f X f X E  Î Ì
 

    
ℝ� 

Here,  F X
 

is the velocity vector field whose components if  are C continuous 

functions in E with values in ℝ  . Since each component of the speed vector field does 

not depend here on time. So, the system (6.1) is autonomous. 

6.1.2 Kinematic Vector Functions 

According to the mechanics formalism, the integral curve defined by the vector 

function ( )X t


of a dynamical system is considered as the coordinates of a moving 

point � at the instant �, then three following kinematics variables are attached to this 

point which represents the trajectory curve of �: 

 X ®


parametric representation of orbit, 

                                              V ®


instantaneous velocity vector, 

 ®


instantaneous acceleration vector. 

Definition 6.1. Since the vector function ( )X t


of the scalar variable � represents the 

trajectory of the point �, the total differential of ( )X t


is the vector function ( )V t


of the 

scalar variable � which represents the instant velocity vector of the point �  at the 

moment �. Mathematically, this can be represented by the following formula: 

 
 ( )

dX
V t F X

dt
 


  

                                                     
(6.2)         

The instantaneous velocity vector ( )V t


is tangent in every point to the trajectory. 
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Definition 6.2. Since the vector function ( )V t


 of the scalar variable � represents the 

velocity vector of the point �, the total differential of ( )V t


is the vector function ( )t


 

of the scalar variable � which represents the instantaneous acceleration vector of the 

point � at the instant �. Mathematically, we can write 

( )
dV

t
dt

 




                                                              
(6.3) 

The components if  of the velocity vector are assumed to be continuous, of class ��  

on E and with values in ℝ, it is possible to calculate the total differential of velocity 

vector field defined by (6.1). We can write 

     

dV d F dX

dt dtd X


  

  

Here d F

d X



 represents the Jacobian functional matrix J of the system (6.1) and 

considering equations (6.2) and (6.3), we obtain the following relationship whose role 

is very important: 

   JV 
 

 

Using the S-Frenet marker [22], i.e., a movable marker constructed from the trajectory 

curve ( )X t


oriented in the direction of the movement of the current point � , it is 

possible to define 


, the unit vector tangent to the trajectory curve in �, ��⃗, the normal 

vector, i.e., the main normal in M directed inwards of the concavity of the curve and

,


  the binormal unit vector at the trajectory curveso that the trihedron  , ,n 
  

is 

direct (figure 6.1). 

Definition 6.3. The osculating plane is the plane which passes through a fixed point 

*X


of the dynamical system and parallel to the unit tangent and normal vectors of a 

tangent curve. 
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Definition 6.4. The curvature, which expresses the rate of change of the tangent to the 

trajectory curve which is defined by: 

3

1 V

V





 


 

  

                 where  represents the radius of curvature. 

 

Figure 6.1. S-Frenet Frame and Osculating Plane 

 

Definition 6.5. A manifold M Ì ℝ� is defined as a set of points in satisfying a system 

of �  scalar equations: 

 

 

where :  ℝ� → ℝ�  for m n with  1 2, ,...,
t

nX x x x E Î Ì


 ℝ� . The manifold M is 

differentiable if  is differentiable. 

6.1.3 Slow-Fast Dynamical Systems 

Dynamical system (6.1) comprising small multiplicative parameters in one or several 

components of its velocity vector field may be defined in a compact � included in ℝ 

by: 

n


 




 

  0X 

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                                                   �
�⃗� = �⃗(�⃗,�⃗,�)

�⃗� = � �⃗(�⃗,�⃗,�)
�                                                    (6.4) 

where �⃗ ∈ ℝ� ,�⃗ ∈ ℝ�,� ∈ ℝ�  and the prime denotes differentiation with respect to 

the independent variable �. The functions �⃗ and �⃗ are assumed to be �∞ functions of 

�⃗, �⃗ and � in � × �, where � is an open subset of ℝ� × ℝ�  and � is an open interval 

containing � = 0. When 0 < �≪ 1 , i.e. is a small positive number, variable �⃗  is 

called fast variable, and �⃗ is called slow variable. Reformulating system (6.4) in terms 

of the rescaled variable � = ��, we obtain the singularly perturbed systems: 

                                                   �
� �⃗ =̇ �⃗(�⃗,�⃗,�)

�⃗̇ = �⃗(�⃗,�⃗,�)
�                                                    (6.5) 

Dots (·) represent the derivatives with respect to the new independent variable �. The 

independent variables � and � are referred to the fast and slow times, respectively, and 

(6.4) and (6.5) are called fast and slow system, respectively. These systems are 

equivalent whenever � ≠ 0, and they are labeled singular perturbation problems when 

�≪ 1, i.e. is a small positive parameter. 

A non-singularly perturbed dynamical system (6.1) defined in a compact � included in 

ℝ may be considered as slow-fast if its functional Jacobian matrix has at least one 

“fast” eigenvalue, i.e. with the largest absolute value of the real part over a huge 

domain of the phase space. 

 

              6.2 Dynamical System Analysis  

6.2.1 Model 1: Brusselator Model    

The Brusselator system describes the following chemical reactions [85] 

 

 

Since it is important to consider at least a cubic nonlinearity in the rate equations, so 

the non-dimensional form of the Brusselator model (spatiotemporal) is as follows: 

, ,

2 3 ,

A U B U V D

D V U U E

®  ® 

 ® ®
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  21 ,

u

u
D u a b u u v

t


     

                                            (6.6)
 

                                                  

2 .
v

v
D v bu u v

t


   

                                                    
 

where � and � are the dimensionless concentration called activator and inhibitor and 

� and �  are the kinetic parameters. The equilibrium point for the system (6.6) is

 , / .a b a  

6.2.1.1 Existence of Limit Cycles (Local Dynamics Analysis) 

In this part, we establish the existence of limit cycle solutions of the local dynamics of 

the model (6.6). Local dynamics of the model (6.6) without diffusion term can be 

represented by the following system of ordinary differential equations (ODEs).  

 

                                                         
  21 ,

du
a b u u v

dt
   

                                    (6.7)                      

2 .
dv

bu u v
dt

 
                                                                                                                        

A periodic solution ( , )u v  is a periodic orbit or limit cycle of the system of ODEs 

(6.7). Linear stability analysis shows that when 21b a   then the equilibrium point 

 , /a b a is stable and all other non-equilibrium solutions of (6.7) approach to the 

unstable limit cycle. Also, when 21b a   then the equilibrium point  , /a b a is 

unstable and all other non-equilibrium solutions of (6.7) approach to the stable limit 

cycle. Hence, we get an equation for the Hopf bifurcation points and which is 

21 .b a   Now, we investigate the system of ODEs (6.7) numerically to verify the 

linear stability analysis results.  
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                                     (a)                                                              (b)          

 
                                    (c)                                                               (d) 

  
                                    (e)                                                             (f) 
 

Figure 6.2. An illustration of the local dynamics of the model (6.6) which is 
represented by (6.7). 

 
In fig. 6.2, we plot activator and inhibitor densities u  and v with respect to time as 

well as u  versus v  where we take 3.0a  . In this case, the kinetics have a Hopf 

bifurcation at 10.0b  and we get a stable limit cycle solution for greater values of 

10.0b  . Fig. 6.2(a) and fig. 6.2(b) represents the solutions of (6.7) when 3.0a   and 

9.9b , where we get the stable equilibrium point (3,3.3)  and shows the existence of 

the unstable limit cycle. Fig. 6.2(c) and fig. 6.2(d) represents the solutions of (6.7) 

when 3.0a  and 10.1b  where we get the unstable equilibrium point (3,3.37)  shows 

the existence of the stable limit cycle. Fig. 6.2(e) and fig. 6.2(f) represents the 
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solutions of (6.7) when 3.0a  and 14b  , where we get the unstable equilibrium point 

(3, 4.67)  and shows the existence of the stable limit cycle.  From the stable limit cycle 

solutions of (6.7), we see that the cycles are of low amplitude for � close to the Hopf 

bifurcation value 10.0b  and they increase in amplitude as � is increased. 

 

6.2.1.2 Existence of Periodic Solutions in the One-Dimensional Space through 

Direct Partial Differential Equation Simulation 

 

In this subsection, we perform the direct Partial Differential Equation (PDE) numerical 

simulations of (6.6) in one dimensional space. Fig. 6.3 shows the qualitative behavior 

of the periodic solutions of (6.6) with the periodic patterns. We use table 6.1 for the 

numerical simulations. 
 
 

 

 

Table 6.1. Typical parameter values of (6.6) for the numerical computations. 

 

Parameters          a                   b                uD
                 vD  

Values                3.0               14.0               3.0                10.0 
 

 

         (a)                                                           (b) 

 

Figure 6.3. Space-time plot via direct PDE simulation. (a) Solutions of activator, u    

(b) Solutions of inhibitor, v . 
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Fig. 6.3(a) and Fig. 6.3(b) shows that the PTW solutions of the activator, u and the 

inhibitor, v  respectively. We apply an implicit scheme with periodic boundary 

conditions over the domain  0,
x

D . Here 
x

D represents the system size which is 

defined by 
x

D n p ´ where n  is the number of pulses and p  is the spatial period. We 

consider, 0.09dx   as space size and 0.01dt   as time stepon 2181 grid elements. 

Here, we consider a small perturbation of the steady state solution as the initial data 

and continue our simulation process for a long time until we get a stable pattern. In 

this simulation, we take 200xD   as the system size with four pulses that means, the 

spatial period is 50p   and also we take 50 150t  as the time range for the 

solutions of (6.6). Finally, we obtain periodic pattern solutions of the activator, u as 

well as the inhibitor, v . Hence, we get a good agreement between the results obtained 

from this subsection and the result from the subsection 6.2.1.1. 

6.2.1.3 Periodic Patten Formation in the Two-Dimensional Spaces through Direct 

PDE Simulation 

In this subsection, we use alternating direction implicit (ADI) method with Neumann 

boundary conditions to perform a series of direct PDE numerical simulations of (6.6) 

in two dimensions. Numerical simulation is performed on the spatiotemporal grid 

( , )i jx y with ,ix i x  0, , xi N  and ,jy j y  0, , yj N  where x y   for a uniform mesh 

grid and time ,nt n t  0,1,2,3n   , where t  is the time step. Therefore, the space 

steps in the x -direction and in the y -direction are as follows: 

 

                                                 
,x

x

L
x

N
  ,

y

y

L
y

N
  , ,x yN N Î

                                     
(6.8) 

 

 

where 0 xx L  and 0 yy L  is used as the domain in the ( , )x y parameter plane.  In 

(6.6), we represent the grid approximations by , ( , , )n
i j i j nU u x y t  and 

, ( , , )n
i j i j nV v x y t  .Therefore, the full discrete grid approximation of  ,

n
i jU  is as follows: 
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1 2 1 2 1 21 2
,, , 1, 1, , 1 , , 1

, ,2 2

2 2
( , )

2

n n nn n n n n
i ji j i j i j i j i j i j i j n n

u u i j i j

U U UU U U U U
D D f U V

t x y

  
      

  
                   

(6.9) 

1 2 1 2 1 21 21 1 1 1
,, , 1, 1, , 1 , , 1 1 2 1 2

, ,2 2

2 2
( , )

2

n n nnn n n n
i ji j i j i j i j i j i j i j n n

u u i j i j

U U UU U U U U
D D f U V

t x y

     
     

   
  

  
     (6.10) 

 

Equation (6.9) indicates the first half of the total time step and (6.10) indicates the rest 

half of the total time step. The central difference operator is defined as 

, 1 2, 1 2,
k k k

x i j i j i jU U U      and a similar formula can be defined for y . Equialently, we 

can define the approximation equations for , .n
i jV  

 

 
 

                  (a)                            (b)                              (c)                            (d)  

 

Figure 6.4. Pattern evolution as a function of time. (a) at  0t   (b) at 47t                    

(c) at 122t   (d) at 2000t  . 

 

In this simulation, we use 0.5x y     as space step and 0.04t   as time step on a 

grid of 220 220´ elements and eventually, we get a periodic spot pattern. Again, it 

was checked that the decreasing values of step size did not lead to any changes in the 

results. We continue our numerical simulations until they are in a stationary or until 

they have behavior that the characteristics results do not seem anymore. Fig. 6.4 

shows the dynamics of a periodic pattern of (6.6) as a function of time. Here, we 

consider a small perturbation of the steady state solution as an initial guess and 

continue our simulation process for a long time until we get a periodic pattern. We 

use the parameter values of (6.6) as mentioned in tab.6.1. Fig. 6.4 (a) shows the initial 

data at time 0t  . Fig. 6.4 (b), fig. 6.4 (c) shows the development process of the spot 

pattern at time 47t  and 122t  respectively. Finally, we get a periodic spot pattern at 
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time 2000t  which shows in fig. 6.4 (d). Hence, we get a good agreement among the 

results obtained from this subsection and the results from the subsection 6.2.1.1 and 

6.2.1.2. 

 

6.2.2 Model 2: Lorenz-Haken Model  

 

In [39], Haken introduced an optical model. Since the Haken model is similar to the 

Lorenz model, hence the system is called Lorenz- Haken (L-H) model. The slow-fast 

nonlinear system of equations in three variables for the standard L-H model is given 

by:    

 

 

                                    (6.11) 

 

 

      

                                                                                                                                    

In the laser system (6.11), the real amplitude of the electromagnetic field is denoted 

by E , the polarization of the cavity medium  is denoted by P  and n  is the inversion 

of the state within the two levels of the development due to the pumping. Also, k and 

  are the relaxation rate parameters and B is the pump parameter. If we consider 

, ,x y z  in place of , ,E P n  respectively and also consider ,m   in place of ,k  , then 

equation (6.11) can be written as the following system of non-linear ordinary 

differential equations. 

 

 

                                                                                                        

                                  (6.12) 

 

( ),

,

( ).

dE
k P E

dt

dP
nE P

dt

dn
B n EP

dt


 

 

  

( ),

,

( ).

dx
y x

dt

dy
zx y

dt

dz
B z xy

dt

m



 

 

  
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Figure 6.5. Numerical simulation of the model (6.12) 

 

In fig. 6.5, we plot the state variables �,� and � with respect to time �. We use the 

parameter values of (6.12) as mentioned in Table 6.2.  

 

Table 6.2. Typical parameter values of (6.12) for the numerical computation. 
 

Parameters   m                                    B  

  Values        4.0                 0.4              12.0 

      

 

6.3 Dynamical System Analysis through Differential Geometry 

 

6.3.1 Flow Curvature Method  

Singularly perturbed systems can have invariant manifolds where the trajectories of 

the flow move slowly and these slow manifolds are invariant with respect to the flow 

[5, 62, 91]. Several methods have been developed to find out the analytical slow 

manifold equations of the singularly perturbed systems.  In [16, 23, 24, 25, 26, 81, 82, 

95], introduces the geometric singular perturbation technique to establish the 

existence of the slow manifold equation along with the local invariance of the slow 

manifold for the singularly perturbed system. In the case of non-singularly perturbed 

system this technique fails to provide the slow manifold.  
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The flow curvature method [32, 33, 34, 35, 36] is the new method in recent 

publications for computing the analytical implicit equation of the slow manifold. This 

method can be applied to any autonomous or non-autonomous dynamical systems in 

�-dimensions whether it is singularly perturbed or not. Recent applications of the 

flow curvature method of the singularly perturbed systems are FitzHugh-Nagumo 

model, Van der pol model, Chua’s model, etc and the applications of the flow 

curvature method of the non-singularly perturbed systems are Lorenz model, Rikitake 

model, etc. [37] used the flow curvature method to construct the slow invariant 

manifold of the heartbeat model.  In [38], author developed the slow invariant 

manifold analytical implicit equation of the generalized Lorenz-Krishnamurthy model 

and conservative generalized Lorenz-Krishnamurthy model. The most important 

feature of this method is that, the flow curvature manifold directly gives us the 

analytical equation of the slow manifold. Without using any asymptotic expansions, 

this method allows us to find the flow curvature manifold and hence slow invariant 

manifold equation. To the best of our knowledge, this method is the best to find the 

analytical equation of the slow invariant manifold for any dimensional dynamical 

system.  

 

Now, we briefly discuss the flow curvature method in terms of differential geometry. 

This method uses the properties of curvatures of trajectory curve or flow of the 

dynamical system. Using this method, one can define the flow curvature manifold 

corresponding to the dynamical system. Any n-dimensional dynamical system can 

have the (� − 1) dimensional flow curvature manifold that means flow curvature 

manifold contains the information about the flow with highest curvature. 

 

6.3.1.1 Analytical Implicit Equation of the Slow Manifold of the Dynamical 

System 

Invariant manifold implies a very significant role to explain the stability as well as 

dynamical behavior of a system, especially for a slow-fast dynamical system. 

Although geometric perturbation technique is well known to find the analytical 
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equation of slow manifold, the main difference between geometric perturbation 

technique and the flow curvature method is that it neither uses asymptotic expansions 

nor eigenvectors. Another difference is that this method can be used for any 

dynamical system which may or may not singularly perturbed. 

 

Proposition 6.1. The set of points where the curvature of the flow of the model (6.1) 

vanishes represented by the following flow curvature manifold equation of the 

dynamical system. 

           
 ( ) det , 0X X X  
 
 


 

Proof. See [33, 34] 

Note that for any n-dimensional dynamical system, maximum (� − 1)�� flow 

curvature is possible.  

Proposition 6.2. The flow curvature manifold of the dynamical system (6.1) directly 

provides its implicit analytical equation of the slow manifold. 

 

Proof. See [33, 34] 

6.3.1.2 Darboux Invariance Theorem 

According to [64, 87], the concept of the invariant manifold is first introduced by G. 

Darboux (1878, p. 71). We consider the trajectories of the dynamical system (6.1) is 

represented by a motion of a point in a two dimensional space and the coordinates of 

the point is ( , )X u v


and the velocity vector of this point is ( , )V u v


  . 

 

Proposition 6.3. Consider  ( ) det , 0X X X  




is a slow manifold of the dynamical 

system (6.1) where  is a first time continuously differentiable function, then this 

manifold is invariant with respect to the flow of (6.1) if there exist a first time 

continuously differentiable function called cofactor ( )C X


which satisfies the 

following equation: 



 
108 

( ) ( ) ( ),
V

X C X X 
  


 

with the Lie derivative defined as the following: 

 

( )V X V d dt     
  

  

Proof. See [33, 34] 

 

6.3.1.3 The Osculating Plane Equation  

 

Definition 6.5. The osculating plane is the plane which passes through a fixed point 

*X


of the dynamical system and parallel to the unit tangent and normal vectors to a 

trajectory curve. The Osculating plane can be defined using for a dynamical system 

(6.1) as the following 

 

 *( ) 0P X X X X   
 



 

 

Theorem 6.4. The Flow curvature manifold ( )X


 of the three-dimensional dynamical 

system (6.1) merges with its Lie derivative ( )
V

X


  and with its osculating plane 

( )P X


 in the vicinity of the fixed point *X


. 

 

Proof. See [34] 

 

6.3.1.4 Stability Analysis of the Fixed Points 

 

Definition 6.6. The fixed points *X


of any dynamical system may also be fixed 

points of the flow curvature manifold if the following two equations are satisfied:  

*

*

( ) 0

( ) 0

X

X







 



   

Definition 6.7. The Hessian of a function ( )X


at the point X


is denoted by 
( )X

H

 and 

defined by 
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 

2 2

2

2 2

2

X

x yx

y x y



 

 

 

 
 

 

  


 

Theorem 6.5. (a) If                  then both eigenvalues are real and the fixed point *X


 

is a saddle or a node. 

(b) If                   then both eigenvalues are complex conjugated and the fixed point

*X


is a focus. 
 

Proof. See [34] 

6.3.2 Geometric Singular Perturbation Theory  

Geometric Singular Perturbation Theory is based on the following assumptions and 

theorem stated by Nils Fenichel in the middle of the seventies. 

 

 

6.3.2.1 Assumptions 
 

(A1) Functions �⃗  and �⃗  are �∞  functions in � × �, where �  is an open subset of 

ℝ� × ℝ� and � is an open interval containing � = 0. 

 

(A2) There exists a set �� that is contained in {(�⃗,�⃗)∶�⃗(�⃗,�⃗,0)= 0} such that �� is 

a compact manifold with boundary and �� is given by the graph of a �� function 

�⃗ = �⃗�(�⃗) for �⃗ ∈ � , where � ⊆ℝ� is a compact, simply connected domain and the 

boundary of �  is an (� − 1) dimensional �∞  submanifold. Finally, the set �  is 

overflowing invariant with respect to (6.5) when � = 0. 

 

(A3) �� is normally hyperbolic relative to the reduced fast system and in particular it 

is required for all points �⃗ ∈ ��, that there are � (resp.�) eigenvalues of ��⃗ �⃗(�⃗,0) 

with positive (resp. negative) real parts bounded away from zero, where � + � = � . 

 

 

 

 * 0
X

 

 * 0
X

 
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6.3.2.2 Fenichel Persistence Theory for Singularly Perturbed Systems 

 

For compact manifolds with boundary, Fenichel’s persistence theory states that, 

provided the hypotheses (A1)–(A3) are satisfied, the system (6.4) has a slow (or 

center) manifold and this slow manifold has fast stable and unstable manifolds. 

 

Theorem 6.6. Let system (6.4) satisfying the conditions (A1)− (A3). If � > 0  is 

sufficiently small, then there exists a function �⃗(�⃗,ε) defined on �  such that the 

manifold �� = {(�⃗,�⃗)∶�⃗ = �⃗(�⃗,ε)}is locally invariant under (6.4). Moreover, 

�⃗(�⃗,ε) is �� for any �< +∞ and �� is ���(�) close to ��. In addition, there exist 

perturbed local stable and unstable manifolds of ��. They are unions of invariant 

families of stable and unstable fibers of dimensions � and �, respectively, and they are 

���(�) close for all � < +∞, to their counterparts. 

 

Proof. See [23-26] 

 

6.3.2.3 Invariance 

 

Generally, Fenichel theory enables to turn the problem for explicitly finding functions 

�⃗ = �⃗(�⃗,ε)  whose graphs are locally slow invariant manifolds �� of system (6.4) 

into regular perturbation problem. Invariance of the manifold �� implies that �⃗(�⃗,ε)  

satisfies: 

                              ε ��⃗  �⃗(�⃗,ε) �⃗ ��⃗(�⃗,ε),�⃗,ε�= �⃗ ��⃗(�⃗,ε),�⃗,ε�                      (6.13) 

 

Then, plugging the perturbation expansion: 

 

�⃗(�⃗,ε)= �⃗�(�⃗)+ ε �⃗�(�⃗)+ �(ε
�) 

 

into (6.13) enables to solve order by order for �⃗(�⃗,ε). 

The Taylor series expansion for �⃗ ��⃗(�⃗,ε),�⃗,ε� up to terms of order two in � leads at 

order �� to 
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�⃗ ��⃗�(�⃗),�⃗,0�= 0�⃗ 

 

which defines �⃗�(�⃗) due to the invertibility of ��⃗ �⃗  and the implicit function 

theorem. 

At order �� we have: 

 

 ��⃗  �⃗�(�⃗) �⃗ ��⃗�(�⃗),�⃗,0�= ��⃗ �⃗ ��⃗�(�⃗),�⃗,0� �⃗�(�⃗)+  
��⃗

��
 ��⃗�(�⃗),�⃗,0� 

 

which yields �⃗�(�⃗) and so forth. 

 

So, regular perturbation theory enables to build locally slow invariant manifolds ��. 

But for high-dimensional singularly perturbed systems slow invariant manifold 

analytical equation determination leads to tedious calculations. 

6.3.3 Geometric Analysis of Dynamical Systems 

In this section, we analyze two dynamical systems using two geometric methods. In 

subsection 6.3.3.1, we analyze a two dimensional non-singularly perturbed dynamical 

system called Brusselator model using two geometric methods named as flow 

curvature method and geometric singular perturbation theory as well as we provide 

the effect of growth and curvature with surface deformation on pattern formation  of 

the Brusselator model. In subsection 6.3.3.2, we analyze a three dimensional 

singularly perturbed dynamical system called Lorenz-Haken model using two 

geometric methods named as flow curvature method and geometric singular 

perturbation theory. 
 

6.3.3.1 Geometric Analysis of Model 1 

6.3.3.1.1 Analysis Using the Flow Curvature Method  

 

We consider an activator-inhibitor Brusselator model which represents an 

autocatalytic oscillating chemical reaction. In paper [6], authors discussed the 
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asymptotic behaviour of the solutions of the Brusselator model numerically. In paper 

[7], author studied various types of pattern formation of the Brusselator model arising 

in chemical reactions with the numerical investigation. We study the slow invariant 

manifold of the Brusselator model for the first time and this study advances the field 

from the previous related work. So, our goal of this section is to apply the flow 

curvature method on the two-dimensional chemical system called Brusselator model 

to find the analytical implicit equation of the slow invariant manifold. The invariance 

of the slow manifold of the Brusselator model is then proved by using the Darboux 

theory. To simulate the Brusselator model, we use MATHEMATICA as a software 

tool.   
 

According to the flow curvature method, the trajectory curves of any dynamical 

system which may or may not singularly perturbed considered the curves in the 

Euclidean space. We consider the system model (6.7) as the slow-fast dynamical 

system.  
 

We use the parameter values of (6.7) as mentioned in tab. 6.1 and for the numerical 

simulation, we consider the range of the state variables connected with the dynamical 

system (6.7) as the following 

 

min max

min max

[u , u ] = [-.1, 10];

[v , v ] = [0, 20];
 

 

By putting the right hand side parts of the dynamical system (6.7) equal to zero, that 

is, 

 

  2

2

1 0,

0,

a b u u v

bu u v

   

                                             

(6.14) 

We obtain two following graphs for the two null-clines of the system (6.7). 
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(a) (b) 

Figure 6.6. Nullclines of the model (6.7). (a) first equation of the system 

(6.11), (b) second equation of the system (6.11). 

 

Thus, we get the following fixed point by solving the system (6.11)  

 

 

We use explicit Runge-Kutta method to solve the model (6.7) numerically where we 

use 0 0( , ) (1,1)u v  as an initial point. Fig. 6.7 shows the phase diagram along with the 

two nullclines represented by (6.7) where t  ranges from 80 to 100. Also, the purple 

point in the fig. 6.7 indicates the fixed point of the model (6.7). 

 

 

 

Figure 6.7. Phase plot analysis for the model (6.7) along with the two nullclines and   

single fixed point obtained from the same model. 
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Now, in order to calculate the flow curvature manifold of the model (6.7) using the 

flow curvature method, we need the velocity and acceleration because of our 2-

dimensional dynamical model. The velocity vector field of the model (6.7) can be 

represented by the following way. 

 

 2 2
V = 3 15 ,14u u v u u v  


 

 

The Jacobian matrix corresponding to the model (6.7) may be written as 

 

    2 215 2 , , 14 2 ,J uv u uv u      

 

Now we get the acceleration vector by using the formula A JV
 

and hence, we 

obtain 

 

 2 2 2 2 2 2(14 ) ( 15 2 )(3 15 ), (14 ) (14 2 )(3 15 )u u u v uv u u y u u u v uv u u v             


 
 

Then, we find the slow manifold function of the model (6.7) as the following 

 

3 4 2 3 4 5 3 2 4 2( , ) 126 630 42 14 18 135 15 3 6u v u u u uv u v u v u v u v u v u v             

 

Now the analytical implicit equation of the slow manifold of the model (6.7) can be 

written as 

 

 

In fig. 6.8 (a) shows the graphical representation of the analytical implicit equation of 

the slow manifold represented by the equation (6.15) and fig. 6.8 (b) represents the 

slow manifold as well as phase space diagram in the same graph. 

 

 

( , ) 0u v  (6.15) 
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(a)                 (b) 

 

Figure 6.8. (a) Graphical representation of the slow manifold analytical equation of 

the model (6.7) using flow curvature method, (b) Graphical representation of the slow 

manifold analytical equation along with the phase diagram represented by (6.7). 

 

The Lie derivative of the slow manifold function is then evaluated as the following by 

using the Darboux invariance theory to establish the flow curvature invariance of the 

equation (6.15). We first find the normal vector of the flow curvature manifold and 

we get 

 

2 3 2 3 4 2 2 3 2

2 3 4 5 3 4

630 126 56 18 270 45 12 5 18 4 ,

18 135 15 3 12 2

u u v uv u v u v u v u v u v

u u u u u u v u v


           
   

        


 

 

Now according to proposition 6.3, we compute Lie derivative of the slow manifold as 

follows 

  

2 3 4 5 6

2 3 4 5 6 7 2 2

3 2 4 2 5 2 6 2 4 3 5 3

1890 9450 630 3948 1050 42 14 54

1080 4815 729 624 174 3 72

552 105 24 7 18 4

u u u u u u v

uv u v u v u v u v u v u v u v

u v u v u v u v u v u v

          

       

    




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In fig. 6.9 (a) shows the graphical representation of the equation 0 

  that means 

the graphical representation of the flow curvature invariance manifold where the rate 

of change of ( , )u v  is equal to zero and fig. 6.9 (b) shows the combined graph of the 

invariance manifold and phase space plot. 

 

 

  

(a) (b) 

Figure 6.9. (a) Graphical representation of the invariance equation of the slow 

manifold analytical equation of the model (6.7) according to the Darboux 

theorem (b) Graphical representation of the invariance equation of the slow 

manifold analytical equation along with the phase diagram represented by (6.7). 

 

The osculating plane equation for the system (6.7) is obtained as follows: 
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
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                    Figure 6.10. Graphical Representation of the Osculating Plane equation. 

To perform the stability analysis of the fixed-point using flow curvature manifold of 

the Brusselator model, we need to calculate the Hessian of flow curvature manifold 

and we get 

 

3 2 2 2 4 3 2

4 3 2 3

270 20 12 (14 3 ) 18 (14 5 2 ) 18 270 5 4 (3 2 ) 9 (5 4 )

18 270 5 4 (3 2 ) 9 (5 4 ) 2( 6 )
X

y x y x y y x y y x x x y x y

x x x y x y x x


             
 

        


 

and  

 * 1620
X

   

Since, Hessian is positive, so the fixed point  1 1,u v is a focus. 

6.3.3.1.2 Analysis Using the Geometric Singular Perturbation Theory 

Geometric Singular Perturbation Theory is entirely devoted to singularly perturbed 

system and provides their slow invariant manifold according to Fenichel’s theorem. 

The Brusselator model has nosingular approximation, it has been numerically 

checked that its functional jacobian matrix possesses at least a largest absolute value 

of the real part over a huge domain of the phase space. So, it can be considered as a 

slow fast dynamical system but not as a singularly perturbed system. Thus, 

0 2 4 6 8 10
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Geometric Singular Perturbation Theory can not provide the slow invariant manifold 

associated with Brusselator model. 

6.3.3.1.3 The Effect of Growth and Curvature with Surface Deformation on    

Pattern Formation of the Brusselator model 

Since the seminal paper by Turing [93], reaction-diffusion models have been 

proposed to account for pattern formation in a wide variety of biological situations. 

The simplest version of the model consists of two coupled non-linear reaction-

diffusion equations describing the spatiotemporal evolution of the concentration of 

two substances (termed morphogens by Turing). Turing showed that for conditions 

under which the reaction kinetics admitted a linearly stable spatially uniform steady 

state, it was possible for diffusion to cause instability, leading to spatially varying 

profiles in morphogen concentration. These are the Turing patterns and they arise 

from the so-called diffusion-driven instability. It has been shown that these models 

exhibit a variety of spatial patterns consistent with those observed in a number of 

biological systems. From a theoretical viewpoint, the hypothesis that spatial patterns 

in early development arise via a Turing instability has been criticized for a number of 

reasons. Murray [77] found that changes in spatial scale can produce dramatic 

changes in the patterns exhibited by the Turing model. In [4], the effect of a growing 

domain is incorporated by choosing a time-dependent scaling factor. This brief 

review shows that understanding the effects of growth and geometry on Turing 

patterns is currently an issue of importance. The main purpose of the section is to 

provide a general framework for the study of pattern formation using reaction 

diffusion equations in which the effects of both growth and geometry are taken into 

account. 

 

Consider a domain which grows in one dimension and also consider the parameter

 0,1sÎ  (the spatial parameter) and define the mapping t , such that for every time 

0t  , 
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:[0,1]t ®ℝ�, 

( , )

( ) ( , ) ( , )

( , )
t

x s t

s X s t y s t

z s t

 

 
 

  
 
 

 

where ( , )X s t represents a curve in space parameterized by �, for each time �. This 

curve can be used to represent a one-dimensional spatial domain which grows in time. 

It will be convenient to introduce at this stage the arc length as a function of � and �, 

 

0

( , ) ( , )
s

ss t X s t ds     

For two-dimensional growth we assume that for every time 0t  , there is a surface M  

parametrized by ( , )r s Î  Ì ℝ� that models the shape and size of the growing 

domain (the organism). Hence, there is a mapping 

 

( , , ):X r s t Ω ⊂ ℝ� → ℝ�,         

( , , )

( , ) ( , , ) ( , , )

( , , )

t

x r s t

r s X r s t y r s t

z r s t

 

 
 

  
 
 

 

that defines a two-dimensional surface embedded in ℝ�. 

 

We suppose that the evolution of the studied surface � is driven by the morphogens 

� and �, where � is the inhibitor and � is the activator. In mathematical terms we 

have that 

 

( , )t

M
M

t
h u v N







 

 

where �  is the normal to the surface and ℎ a function of the two morphogens. The 

simplest case for ℎ that we have adopted in the following is a linear function of one 

morphogen: 

 

( , )h u v N kvN  
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where �  is a parameter in ℝ and also the normal vector is given by 

 

( , , ) 0r sN r s t X X ´  ,  

 

Since we assume surface is regular for each �. We also have the expression for the 

metric on the surface tM , which is given by 

 

2 2 2 2dl dx dy dz    

 

By using Riemannian metric for two-dimensional space, we can rewrite the above 

equation as 

2
ij i jdl g dx dx  

where 

1 2,x r x s       and    , , 1,2
i jij x xg X X i j   . 

We denote 

2 2

11 12 22, ,r r s sE X g E X X g G X g      
 

 

Here we are assuming that the parametrization ( , )r s is such that it defines an 

orthogonal system on the surface tM , that is, 

 

0r sX X 
 

 

for each time �. Hence the matrix �  of coefficients of the first fundamental form is 

 

2

11 12

2
21 22

0

0

r

s

Xg g
G

g g X

  
        

 

with inverse 
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2

22 211

2
12 1111 22

01

0

s

r

Xg g
G

g gg g X


  
        

 

 

Now, let  be the morphogen concentration of a substance on the surface
tM . 

( , )X t  is the number of molecules per unit area at time t, and tX MÎ . Consider 

a region ( )t  on the surface, where diffusion takes place, and assume  0( ) tt   

for some open, bounded domain 0 Îℝ�, with 0  smooth. Then the diffusion 

process for   on ( )t is given by 

 

�

��
� �(�,�)��� = � � ∇� ∙���

��(�)�(�)

 

 

where ( )t is a regular curve on the surface and � is the unit vector normal to the 

curve, which lies on the tangent plane.  

 

Since the surface on which evolve the morphogens is modified with time, we have to 

adapt the system of equations (6.6) to take into account the geometric changes. The 

problem of reaction-diffusion on growing domains has been well-studied in the past 

years. It leads generally to add convective and dilution terms to 
tu                              

(
tv  

respectively) that can be combined in  div au where 

( , ) t

dX
X

dt
a X t   

represents the flow velocity of the growing surface.  

If the surface 
t

M is parameterized by  , ,X r s t  then the reaction-diffusion System 

(6.6) can be rewritten as 
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  2ln

1 ,
tu M

u
D u a b u u v

t t

g
u

 
     

 


 

       

2ln
.

tv M

v
D v bu u v

t t

g
v

 
   

 


 

where
tM is the Laplace-Beltrami operator. It is well known that differential 

geometry provides a convenient basis for describing the behavior of a shape. In 

differential geometry, the Laplace operator can be generalized to operate on functions 

defined on surfaces in Euclidean space and more generally on Riemannian manifolds. 

This general operator is Laplace–Beltrami operator. Like the Laplacian, the Laplace–

Beltrami operator is defined as the divergence of the gradient, and is a linear operator 

taking functions into functions. 

 

Now, g can be defined as the following  

11 12

21 22

ij

g g
g g

g g
 

 

and also, we can define 

( )ij cofactor g
g

g
  

where ,ij
ijg g are the fundamental metric tensors associated to the Riemannian 

manifold �. 
 

6.3.3.2 Geometric Analysis of Model 2  

6.3.3.2.1 Analysis Using the Flow Curvature Method  

According to the flow curvature method, the trajectory curves of any dynamical 

system which may or may not singularly perturbed considered the curves in the 

Euclidean space. We consider the system model (6.12) as the slow-fast dynamical 

system.  
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We use the parameter values of (6.12) as mentioned in Table 6.2 and for the 

numerical simulation, we consider the range of the state variables connected with the 

dynamical system (6.12) as the following 

 

                                                    

min max

min max

min max

[x , x ] = [-4, 4];

[y , y ] = [-4, 4];

[z , z ] = [0, 15];
 

 

By putting the right hand side parts of the dynamical system (6.12) equal to zero, that 

is, 

                                                       

( ) 0,

0,

( ) 0,

y x

yzx y

B z xy

m



 

 

  
                                                           

 

We obtain three following  graphs for the three null-clines of the system (6.12). 

 

 

                                (a)                                          (b) 

(6.16) 
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                                                                        (c) 
 

Figure 6.11. Nullclines of the model (6.12). (a) first equation of the system (6.16),   

(b) second equation of the system (6.16) and (c) third equation of the system (6.16). 

 
 

Thus, we get the following three fixed points by solving the system (6.16)  
 

1 1 1

2 2 2

3 3 3

x  = -3.3166247903554; y = -3.3166247903554; z  = 1;

x  = 0; y  = 0; z = 12;

x  = 3.31662479103554; y  = 3.3166247903554; z  = 1;  
 

We use explicit Runge-Kutta method to solve the model (6.12) numerically where we 

use 0 0 0( , , ) (1,1,1)x y z  as an initial point. Fig. 6.12 shows the phase diagram 

represented by (6.12) where t  ranges from 500 to 1000. Also, the three green points 

in the fig. 6.12 indicate the fixed points of the model (6.12). 

 

 

Figure 6.12. Phase plot analysis for the model (6.12) along with the three fixed points 

obtained from the same model. 
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Now, in order to calculate the flow curvature manifold of the model (6.12) using the 

flow curvature method, we need the velocity, acceleration and over-acceleration 

(Jerk) because of our 3-dimensional dynamical model. The velocity vector field of the 

model (6.12) can be represented by the following way. 

 

V={4 (-x + y), -y + xz, 0.4 (12 - xy - z)}


 

 

The Jacobian matrix corresponding to the model (6.12) may be written as 

 

4 4 0

1

0.4 0.4 0.4

J z x

y x

 
 

  
      

 

Now we get the acceleration vector by using the formula A JV
 

and hence, we obtain 

 

2 2 24(4 5 ), 0.4( 12 2.5 13.5 10 ), 1.6(1.2 1.35 0.1 0.25 )A x y xz x y x y xz yz xy y z x z             


 

Then, the over-acceleration or jerk is calculated according to the formula  

 

*A J A 
 

Total Differential ( )J V


 

 

and we get the result as the following. 

 

* 2

2 2 2

2 2

1.6( 12 2.5 13.5 10 ),3.2( )(12 ) 4 (4 5 )

1.6 (1.2 1.35 0.1 0.25 ) 0.4( 12 2.5 13.5 10 ),

1.6 (4 5 ) 0.64(1.2 1.35 0.1 0.25 ) 0.16 ( 12 2.5

A x y x y xz yz x y xy z z x y xz

x xy y z x z x y x y xz yz

y x y xz xy y z x z x x y x

             

          

          



2 13.5 10 )y xz yz   

 

After that, we find the slow manifold function of the model (6.12) as the following 

 



 
126 

2 4 3 5 2 2 2

4 2 6 2 3 3 3 4 2 4 5

2 4 3 5 2

2 2

8208 144 18702  1218 24 13896 2226 

18  764  110 720 192 120  

3186 282 4462.5   672  1.5  4110 
( , , ) 0.256 

718 

x x x y x y x y y x y

x y x y x y x y y x y x y

x z x z x y z x y z x y z y z
x y z

x y


       

      

     


4 2 3 3 3 4 2 2 4 2

6 2 2 3 2 2 2 2 2 2 3 2

2 3 4 3 3 3 3 2 3 2 4

20 24  30 160 808.5 45 

2.5 1142   260  1446 425 300  

350 50 75   75  100. 25 

z x y z x y z x y z y z x z x z

x z x y z x y z y z x y z x y z

x z x z x y z x y z y z x z

      

   

 
 
 
 
 


 

  


 


  



 

 

 Now the analytical implicit equation of the slow manifold of the model (6.12) can be 

written as 

 

                                                      (6.17) 

 

In Fig.6.13 (a) shows the graphical representation of the analytical implicit equation 

of the slow manifold represented by the equation (6.17) and Fig.6.13 (b) represents 

the slow manifold as well as phase space diagram in the same graph. 

 

 

 
 

                             (a)                   (b) 

Figure 6.13. (a) Graphical representation of the slow manifold of the model (6.12) 

using flow curvature method, (b) Graphical representation of the slow manifold along 

with the phase diagram represented by (6.12). 

 

( , , ) 0x y z 
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The Lie derivative of the slow manifold function is then evaluated as the following by 

using the Darboux invariance theory to establish the flow curvature invariance of the 

equation (6.17). We first find the normal vector of the flow curvature manifold and 

we get 

 

3 2 4 2

3 2 5 2 3 2 3 4 5 3

2 4 2 3 2 3 2 3

2

{0.256( 16416. 576. 18702. 3654. 120. 4452.

72. 6. 764. 330. 384. 120. 6372. 1128.

4462.5 2016. 7.5 1436. 80. 24. 90.

1617. 180.

x x y x y x y xy

x y x y y x y xy y xz x z

yz x yz x yz xy z x y z y z x y z

xz x

        

       

      





3 2 5 2 2 2 2 2 2 3 2

3 3 3 3 2 3 4 3

5 2 4 6 2 3 2 3

2 3 4

15. 1142. 780. 850. 300.

700. 200. 75. 225. 50. ),0.256(18702. 1218.

24. 27792. 4452. 36. 2. 2292. 330. 2880.

768. 600. 4462.5

z x z yz x yz xy z y z

xz x z yz x yz xz x x

x y x y x y x y xy x y y

x y xy x

     

     

       

  3 5 2 4

2 3 2 3 2 3 2 2 2 2

2 2 3 3 3 3 2 4

3 5 2 2 2

672. 1.5 8220. 1436. 40.

72. 90. 640. 1142. 260. 2892. 850.

900. 75. 75. 200. ),0.256(3186. 282. 4462.5

672. 1.5 4110. 718.

z x z x z yz x yz x yz

xy z x y z y z xz x z yz x yz

xy z xz x z yz x x xy

x y x y y x y

     

      

     

   4 2 3 3 3 4

2 4 6 3 2 2 2 3

2 2 4 2 2 3 2 2 2 2 3

20. 24. 30. 160.

1617. 90. 5. 2284. 520. 2892. 850. 600.

1050. 150. 225 225 300 100 )}

x y xy x y y

x z x z x z xyz x yz y z x y z xy z

x z x z xyz x yz y z x z

    

       

      

 

Now according to proposition 6.3, we compute Lie derivative of the slow manifold as 

follows 
  

2 4 3 5 2 2 23187.28 144. 7110  455.858 24 4816.06 1386.4 

4 2 6 2 3 3 3 5 3 446.0157  980.913  93.2756 1.25984 37.1654 

2 4 4 4 5142.299 0.472441 100.472  18.897

6.5024 

x x x y x y x y y x y

x y x y x y x y x y y

x y x y x y



       

     

  





6 2 46 622.913 247.039 

3 5 2 2 21289.63   780.236  1.26378  1637.62 826.362 

4 2 3 3 3 4 15 2 48.50394 173.606  13.937 31.4961 4.37096 10

2 2 4 2302.846 31.6535 2.5 

y x z x z

x y z x y z x y z y z x y z

x y z x y z x y z y z x y z

x z x z x

  

    

    ´ 

  6 2 2 3 2 5 2234.315   139.055  3.14961  

2 2 2 2 2 3 2 4 2 2 3 4 3395.937 302.835 246.457  47.2441 100.709 23.622 

3 3 3 2 3 2 4 4 414.685   38.3858  24.4094 6.49606 2.95276 1.

z x y z x y z x y z

y z x y z x y z y z x z x z

x y z x y z y z x z x z

   

     

     15 409274 10   x y z

 
 
 
 
 
 


´


 
 
 
 
 
 
 
 
 

 

In Fig.6.14 (a) shows the graphical representation of the equation 0 

  that 

means the graphical representation of the flow curvature invariance manifold where 

the rate of change of ( , , )x y z  is equal to zero and Fig.6.14 (b) shows the combined 

graph of the invariance manifold and phase space plot. 
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                           (a)                   (b) 

Figure 6.14. (a) Graphical representation of the invariance equation of the slow 

manifold of the model (6.12) according to the Darboux theorem (b) Graphical 

representation of the invariance equation of the slow manifold along with the phase 

diagram represented by (6.12). 

 

Now, we calculate the osculating plane equation for the fixed point 

1 1 1x  = -3.3166247903554, y = -3.3166247903554, z  = 1 . We find the first osculating 

plane expression as the following  

 

2 2 3 2

2 2 2 3 2 4 2 3

3 4 2 3

1 2

23.8797 0.6 47.2619 5.475 3.15079 0.35 11.3

4.56036 0.325 0.0829156 0.025 4.14578

0.85 1. 20.3972 0.175 0.829156 6.01138
( ) 6.4

6.1375 0.124373

x x y xy x y x y y

xy x y x y x y y

xy y xz x z x z yz
P X

xyz x yz

      

    

     


 



3 2

16 2 2 2 2 2 2

3 2 4 2 2 2 2 2 2 3

0.0375 3.85

1.15069 10 0.25 1.8656 1.1875

0.207289 0.0625 0.829156 2.125 2.5 0.625

x yz y z

xy z x y z xz x z

x z x z yz xyz y z x z



 
 
 
 
 
 

  
 ´    
 
        

 

Now the graphical representation of the osculating plane equation 
1 ( ) 0P X 


can be 

shown as follows: 
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Figure 6.15. Graphical representation of the osculating plane equation 

corresponding to the fixed point 1 1 1(x , y , z ) . 

 

Then we calculate the osculating plane equation for the fixed point 

2 2 2x  = 0, y  = 0, z = 12  . We find the second osculating plane expression as the 

following 
 

2 3 2 2 2 4 2 3 4

2 3 2 2 2 2 2
2

4 2 2 2 2 2 3

32.4 48.15 2.4 16.2 3.075 0.025 0.85 1.

( ) 6.4 9.45 29.5125 0.0375 31.35 0.25 8.0625

0.0625 2.125 2.5 0.625

x xy x y y x y x y xy y

P X x z xyz x yz y z x y z x z

x z xyz y z x z

        
 
       
 
   
 



 

Now the graphical representation of the osculating plane equation 2 ( ) 0P X 


can be 

shown as follows: 
 

 

Figure 6.16. Graphical representation of the osculating plane equation 

corresponding to the fixed point 2 2 2(x , y , z ) . 
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Similarly, we calculate the osculating plane equation for the fixed point 

3 3 3x  = 3.31662479103554, y  = 3.3166247903554, z  = 1. We find the third osculating 

plane expression as the following 

 

2 2 3 2 2

2 2 3 2 4 2 3 3 4

2 3 2
3

23.8797 0.6 47.2619 5.475 3.15079 0.35 11.3 4.56036

0.325 0.0829156 0.025 4.14578 0.85 1. 20.3972

( ) 6.4 0.175 0.829156 6.01138 6.1375 0.124373

x x y xy x y x y y xy

x y x y x y y xy y xz

P X x z x z yz xyz x yz

        

      

    


3 2

16 2 2 2 2 2 2 3 2 4 2

2 2 2 2 2 3

0.0375 3.85

1.15069 10 0.25 1.8656 1.1875 0.207289 0.0625

0.829156 2.125 2.5 0.625

x yz y z

xy z x y z xz x z x z x z

yz xyz y z x z



 
 
 
 
   
 

´       
 
   
   

 

Now the graphical representation of the osculating plane equation 3( ) 0P X 


can be 

shown as follows: 

 

Figure 6.17. Graphical representation of the osculating plane equation 

corresponding to the fixed point 3 3 3(x , y , z ) . 

 

Observation shows that, Fig.6.13 (a) merges with Fig.6.14 (a), Fig.6.15, 

Fig.6.16 and Fig.6.17 in the vicinity of the three fixed points. That means 

theorem 6.4 holds. 

 

To perform the stability analysis of the fixed-points using flow curvature 

manifold of the L-H model, we need to calculate the Hessian of flow 
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curvature manifold. 

 

The following expression represents the first row vector of the Hessian matrix of the 

flow curvature manifold at the  point ( , , )tX x y z


. 

4 3 2 3 4

4 2 2 2 2 2 2

2 3

{ 4202.5 98.304 ( 122.88 7.68 ) 1631.23 413.952 179.2 12.8

(7.68 19.2 ) ( 1139.71 367.616 217.6 ) (442.368 (55.296 61.44 )

866.304 138.24 153.6 ) (1870.85 1032.19 399.3

y x y z z z z z

x y z y z z x y z

z z z xy z

         

        

     2 3 2

5 4 3 4 2

3 2 2 2 2

2

6 115.2 ( 168.96 46.08 )),

4787.71 3.072 153.6 (36.864 40.96 ) ( 30.72 1.92 ) 1142.4 292.352

19.2 (586.752 18.432 230.4 ) ( 2279.42 393.216 735.232 435.2 )

(935.424 516

z z y z

x y y x y z x z z z

z y z z xy y z z

x

   

         

        

 2 3 2 4 5

3 2 2 2 2

2 2 2

.096 199.68 57.6 ( 253.44 69.12 )), 1.92 7.68

( 288.768 20.48 92.16 153.6 ) ( 1142.4 ( 6.144 153.6 ) 584.704 57.6 )

(516.096 23.04 399.36 172.8 ) (1631.23 827.904 537.

z z z y z x y x z

x y z z y y z z z

x y y z z x z

       

           

      2 3 26 51.2 ( 367.616 435.2 ))}z z y z   
 

 

The following expression represents the second row vector of the Hessian matrix of 

the flow curvature manifold at the  point X


. 

 

5 4 3 4

2 3 2 2 2

2 2 2 3 2

{4787.71 3.072 153.6 (36.864 40.96 ) ( 30.72 1.92 ) 1142.4
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The following expression represents the third row vector of the Hessian matrix of the 

flow curvature manifold at the  point X


. 
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2 2 2 2 2

3 2 5
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By combining these three row vectors we find the complete Hessian matrix. The 

determinant of this Hessian matrix is denoted by 
( )X

H

 . The relative Hessian of the 

flow curvature manifold ( )X


can be defined as follows: 

 

( )

( )
ˆ

( )

X

X X

H
H



 




 

 
 

We now calculate the relative Hessian at the point 1 1 1( , , )x y z     and get the 

following expression 

 

11

11 11 10

33 18 11

11 1

1

1

10 0

(3.64235 10 ( 3.71533 10 ( 0.000552965 ( 1.53476 10 (5.30899 10

( 8.87961 10 (9.18391 10 ( 5.94088 10 (2.21072 10 ( 2.68341 10

( 1.64071 10 (1.03109 10 ( 2.97524 10

   

    

  

 ´   ´     ´  ´ 

 ´  ´   ´  ´   ´ 

 ´  ´   ´ 9 8 7

6

11

(5.26477 10 ( 5.95009 10

(4.16963 10 ( 167288. (3408.12 27.5251 ) ))))))))))))))))) / (8.31538 10 12

(7.79567 10 12 ( 2.18279 10 (1844.25 ( 1388.47 (288.525 (13.4831

( 10.795 1. )))))

 

   

     

 



 

 ´   ´ 

´     ´ 

´   ´      

  )))  
 

By considering 0 ® , we get the positive value of the above expression and which 

is 224.38026 10´ . Now according to theorem 6.5, the fixed point 1 1 1(x , y , z )  is a 

saddle-node. Then we calculate the relative Hessian at the point 

2 2 2( , , )x y z     and get the following expression 

 

2 12 12 12 12

12 12 12 11 10

9 7 7

(0. (0.00224639 ( 2.59169 10 ( 3.29468 10 ( 1.62118 10 (9.43401 10
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(4.72054 10 ( 7.13001 10 ( 2.74377 10
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    

   

   ´   ´   ´  ´ 

´  ´  ´  ´  ´ 

´   ´   ´  6

2 11

( 1.22338 10 (12093.5

(1462.76 27.5251 ) )))))))))))))))) / ( ( 1.9749 10 ( 9904.71 (5526.71

(2178. (343.714 (26.7143 1. )))))))



    

   



 ´  

  ´    

    

 

By considering 0 ® , we get the negative value of the above expression and which 

is 81.13747 10 ´ . Now according to theorem 6.5, the fixed point 2 2 2(x , y , z )  is a 

saddle-focus or center. Similarly, we calculate the relative Hessian at the point 

3 3 3( , , )x y z     and get the following expression 
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33 18 11 12

12 12 12 11 11

10 9

(3.15053 10 (3.55972 10 (0.000208321 ( 4.44938 10 ( 1.79251 10

( 2.97502 10 ( 2.69281 10 ( 1.51324 10 ( 5.66076 10 ( 1.47005 10

( 2.74232 10 ( 3.83535 10 ( 4.22314 1

   

    

  
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      

 



  ´   

    

       

 

By considering 0 ® , we get the positive value of the above expression and which 

is 223.7888 10´ . Now according to theorem 6.5, the fixed point 3 3 3(x , y , z )  is a 

saddle-node.  

 

6.3.3.2.2 Analysis Using the Geometric Singular Perturbation Theory 

In this part, we derive the slow manifold equation of the L-H system by using 

geometric singular perturbation theory.  

 

Taking � =
�

�
 then we can treat the L-H system (6.12) as slow-fast autonomous 

system. Therefore we can analyze it and can obtain the slow manifold equation by 

using geometric singular perturbation method. Now, the equation (6.12) can be 

rewritten as follows: 

 
 

 

                (6.18) 

 

where � is the fast variable, � and � are slow variables. We use the parameter values 

of (6.18) as mentioned in Table 6.2. 

L-H model (6.18) which is checking Fenichel’s assumptions (A1)− (A3), the singular 

approximation �� is contained in {(�,�,�):�(�,�,�)= 0} such that �� is a compact 

manifold with boundary given by the graph of the ��function: � = ��(�,�)= �. 

( , , ) ( ),

( , , ) ,

( , , ) ( ).

dx
f x y z y x

dt

dy
g x y z zx y

dt

dz
h x y z B z xy

dt





  

  

   
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So, the problem is to find a function � = �(�,�,ε) whose graph is locally slow 

invariant manifold �� of the L-H system. Let’s pose: 

 

                    �(�,�,�)= ��(�,�)+ ε ��(�,�)+ ε
� ��(�,�)+ �(ε

�)                (6.19) 

 

As previously stated in section 6.3.2.3,  

 

At order ε�: 

 

���
��
�(��(�,�),�,�)= 0 ⟺ � = ��(�,�)= �  

 

which defines the singular approximation ��(�,�)= � due to the invertibility of  
��

��
 

and the implicit function theorem. 

 

At order ε�: 

 

��(�,�)
���

��

��

��
+
���

��
�(��(�,�),�,�)+

���

��
ℎ(��(�,�),�,�)= �(��(�,�),�,�)  

 

Since according to implicit function theorem �(��(�,�),�,�)= 0 we have: 

 

��(�,�)=
�(��(�,�),�,�)−

���

��
ℎ(��(�,�),�,�)

���

��

��

��

 

 

                                ⟺ ��(�,�)= � − ��  

 

At order ε�: 
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Since according to implicit function theorem �(��(�,�),�,�)= 0 we have: 

 



 
135 

��(�,�)=
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                    ⟺ ��(�,�)= 0.4 y
� + y (−5.8 + 1.4 z)  

 

and so on. 
 

Now, from the equation (6.19) we can write the slow manifold equation associated 

with the L-H  system as 

 

               �(�,�,�)= � + ε (� − ��)+ ε� {0.4 y� + y (−5.8 + 1.4 z) }             (6.20) 

 

Equation (6.20) represents the second order approximation in ε of the slow manifold 

associated with the L-H model. 

 

Now the graphical representation of the slow manifold equation (6.20) associated 

with the L-H model can be shown as follows: 

 
 

 

Figure 6.18. Graphical representation of the slow manifold determimned by the 

geometric singular perturbation theory 
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6.3.4 Comparison and Discussion 

In this section, we compare the two geometric methods applied to the two slow-fast 

dynamical systems and highlight the significant results discussed in this chapter. 

 

(1) Flow Curvature Method can be applied to any � -dimensional slow-fast 

dynamical systems not only singularly perturbed systems but also non-singularly 

perturbed systems. On the other hand, Geometric Singular Perturbation Theory 

can be applied to only �-dimensional singularly perturbed dynamical systems. 

 

(2) Flow Curvature Method uses the local metrices properties of curvatures inherent 

to differential geometry and does not require the use of asymptotic expansions. 

On the other side, Geometric Singular Perturbation Theory uses regular 

asymptotic expansions. 

 

(3) Using the Flow Curvature Method, we can form flow curvature manifold where 

the curvature of the flow directly provides the slow invariant manifold analytical 

equation determination of any high-dimensional slow-fast dynamical systems. 

On the contrary, using the Geometric Singular Perturbation Theory, the 

determination of the slow invariant manifold analytical equation turned into a 

regular perturbation problem and for dimension greater than three, slow manifold 

determination with the Geometric Singular Perturbation Theory leads to tedious 

calculations. 

 

(4) In Flow Curvature Method, Darboux invariance theorem is used to show the 

invariance of the flow curvature manifold whereas that in the Geometric Singular 

Perturbation Theory, Fenichel’s invariance theorem is used to show the 

invariance of the slow manifold. 

 

(5) In this chapter, we use Model 1 named Brusselator model where we consider the 

temporal Brusselator model as a two dimensional slow-fast dynamical system. 

By using Flow curvature method, we determine the flow curvature manifold 
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which directly provides the slow invariant manifold where the Darboux 

invariance theorem is then used to show the invariance of the slow manifold. 

After that, we analyze the stability of the fixed point of the temporal Brusselator 

model using the flow curvature manifold. Besides, since the Brusselator model 

has no singular approximation and it can be considered as a slow fast dynamical 

system but not as a singularly perturbed system. Hence, Geometric Singular 

Perturbation Theory fails to provide the slow invariant manifold associated with 

temporal Brusselator model. 

 

(6) In this chapter, we use another model Model 2 named Lorenz-Haken model as a 

three dimensional slow-fast dynamical system. By using Flow curvature method, 

we determine the flow curvature manifold which directly provides the third order 

approximation of the slow manifold where the Darboux invariance theorem is 

then used to show the invariance of the slow manifold. Then, we analyze the 

stability of the fixed point of the L-H model using the flow curvature manifold. 

Furthermore, since L-H model has singular approximation and it can be 

considered as a singularly perturbed system. Hence, by using Geometric 

Singular Perturbation Theory we determine the order by order approximation in 

the small multiplicative parameter of the slow manifold where the Fenichel’s 

invariance theorem is then used to show the invariance of the slow manifold and 

the calculations of the higher order approximations are very tedious. 

 

 

According to the above discussions comparing two geometric methods, we can 

conclude that the Flow Curvature Method is the best to find the analytical equation of 

the slow invariant manifold for any dimensional slow-fast dynamical system.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

In this chapter, we summarize the significant results discussed in this thesis and we 

suggest some ideas for future work. 

7.1 Conclusions 

In the first part of this thesis, we discussed various branches of differential geometry. 

We developed some computer codes to compute several important components of 

Riemannian geometry. We developed a special comparison between symplectic and 

contact geometry with complex manifolds. We then reviewed Kodaira, Legendre and 

isotropic moduli spaces and established interconnection among Legendre, isotropic 

and Kodaira moduli spaces.  

In the second part of this thesis, we applied an old strategy called the Geometric 

Singular Perturbation Theory and another newly developed strategy that reflects the 

applications of differential geometry in the slow-fast dynamical system called the flow 

curvature method to the two models named as temporal Brusselator model and 

Lorenz-Haken model. According to the Flow Curvature Method, we determined the 

curvature of the trajectory curve analytically called flow curvature manifold by 

estimating the solution or trajectory curve of the dynamical system as a curve in 

Euclidean space. Since this manifold comprises the time derivatives of the velocity 

vector field and hence it receives knowledge about the dynamics of the corresponding 

system. In Model 1 named Brusselator model where we considerd the temporal 

Brusselator model as a two dimensional slow-fast dynamical system. According to the 

Flow Curvature Method, we determined the flow curvature manifold which directly 

provides the slow invariant manifold where the Darboux invariance theorem is then 

used to show the invariance of the slow manifold. On the other hand, since the 

temporal Brusselator model has no singular approximation and hence, Geometric 

Singular Perturbation Theory fails to provide the slow invariant manifold associated 
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with temporal Brusselator model. Finally, we described the effect of growth and 

curvature with surface deformation on pattern formation of the spatiotemporal 

Brusselator model. In Model 2 named Lorenz-Haken model, we considered as a three 

dimensional slow-fast dynamical system. By using Flow curvature method, we 

determined the flow curvature manifold which directly provides the third order 

approximation of the slow manifold where the Darboux invariance theorem is then 

used to show the invariance of the slow manifold. Then, we analyzed the stability of 

the fixed point of the L-H model using the flow curvature manifold. On the other hand, 

since L-H model has singular approximation and it can be considered as a singularly 

perturbed system. Hence, by using Geometric Singular Perturbation Theory we 

determined the order by order approximation in the small multiplicative parameter of 

the slow manifold where the Fenichel’s invariance theorem is used to show the 

invariance of the slow manifold. 

 

7.2 Future Extensions 

We suggest the following ideas which are the extensions to our future work. The 

following ideas may be tested: 

(a) We may further analyze any �-dimensional dynamical model through differential 

geometry. 

 

(b) We may investigate the stationary periodic wave solutions of the dynamical 

system through differential geometry comparing with periodic traveling wave 

solutions of the dynamical system. 

 

(c) We may analyze the whole reaction-diffusion model in terms of differential 

geometry analytically and numerically.  
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