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ABSTRACT

The aim of this thesis is to study interconnection among various branches of
differential geometry and its application to dynamical systems. At first, we discuss
about various branches of differential geometry and study interconnection among
these branches. Then some recent development on the application of differential
geometry to dynamical system, called Brusselator model, is studied. Organization of

the thesis is as follows.

Chapter-1 provides some background materials on which the rest of the thesis is
based. In this chapter basic definitions and theorems of real and complex manifolds

are provided. This chapter is mainly a review.

In Chapter-2, a brief review on connections on manifolds and Riemannian manifolds
is first of all provided. Given a connection on a manifold we can define geodesic,
Riemannian curvature tensor, Ricci tensor, Ricci scalar on it. It should be mentioned
here that, hand calculations become extremely tedious to evaluate components of
connection, Riemannian curvature tensor, Ricci tensor etc. on higher dimensional
manifolds. In this chapter we have developed some computer codes for computing
these components. Using computer techniques, the components of connection,
Riemannian curvature tensor, Ricci tensor etc. can be computed easily. The work is

original.

In Chapter-3, interconnections among manifolds with symplectic structure are
reviewed. This chapter is mainly a review. But there are some original calculations
also. In this chapter we have studied connections of symplectic geometry with the
contact geometry, Riemannian geometry and Kéihler geometry using existing

theorems.

In Chapter-4, a review on symplectic geometry and contact geometry with complex
manifold is provided. Here we have developed a special comparison between complex

symplectic geometry and complex contact geometry.

Vi



Chapter-5 is mainly a review on Kodaira, Legendre and isotropic moduli spaces.
However, there are some original calculations also. Here we have studied the
existence and stability of Kodaira and Legendre moduli spaces and also the existence,
completeness and maximality of isotropic moduli spaces. Also, interconnection among

Kodaira, Legendre and isotropic moduli spaces is established in this chapter.

Chapter-6 is original. It provides the main result. Here we analyze two slow-fast
dynamical systems named Brusselator model and Lorenz-Haken model through
differential geometry. First, we investigate the temporal and spatiotemporal
Brusselator model, respectively and find periodic traveling wave solutions. As a result,
we obtain a spot pattern of the model. Then, we investigate the Lorenz-Haken model.
Next, we apply an old strategy called the Geometric Singular Perturbation Theory and
another newly developed strategy that reflects the applications of differential geometry
in the slow-fast dynamical system called the flow curvature method to the two models
named as temporal Brusselator model and Lorenz-Haken model. According to the
Flow Curvature Method, we determine the curvature of the trajectory curve
analytically called flow curvature manifold by estimating the solution or trajectory
curve of the dynamical system as a curve in Euclidean space. Since this manifold
comprises the time derivatives of the velocity vector field and hence it receives
knowledge about the dynamics of the corresponding system. In Model 1 named
Brusselator model where we consider the temporal Brusselator model as a two
dimensional slow-fast dynamical system. According to the Flow Curvature Method,
we determine the flow curvature manifold which directly provides the slow invariant
manifold where the Darboux invariance theorem is then used to show the invariance of
the slow manifold. On the other hand, since the temporal Brusselator model has no
singular approximation and hence, Geometric Singular Perturbation Theory fails to
provide the slow invariant manifold associated with temporal Brusselator model.
After that, we describe the effect of growth and curvature with surface deformation
on pattern formation of the spatiotemporal Brusselator model. In Model 2 named
Lorenz-Haken model, we consider as a three dimensional slow-fast dynamical system.
By using Flow curvature method, we determined the flow curvature manifold which

directly provides the third order approximation of the slow manifold where the

vii



Darboux invariance theorem is then used to show the invariance of the slow manifold.
Then, we analyze the stability of the fixed point of the L-H model using the flow
curvature manifold. On the other hand, since L-H model has singular approximation
and it can be considered as a singularly perturbed system. Hence, by using Geometric
Singular Perturbation Theory we determine the order by order approximation in the
small multiplicative parameter of the slow manifold where the Fenichel’s invariance
theorem is used to show the invariance of the slow manifold. After that, we compare
the two geometric methods applied to the two slow-fast dynamical systems and

highlight the significant results.

Finally, some concluding remarks and scope for future work in this direction are given

in Chapter-7.
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CHAPTER 1
MANIFOLDS

1.1 Real Manifolds

A manifold of dimension n is a topological space which locally resembles n-
dimensional Euclidean space. More precisely, each point of an n-dimensional
manifold has a neighbourhood that is homeomorphic to R". Lines and circles are one-
dimensional manifolds. Two-dimensional manifolds are also called surfaces. Although
a manifold locally resembles Euclidean space, but globally a manifold may have
complicated structures. For example, the surface of the sphere is not a Euclidean
space, but in a region it can be charted by means of geographic maps: map projections
of the region into the Euclidean plane. When a region appears in two neighbouring
maps, the two representations do not coincide exactly and a transformation is needed

to pass from one to the other, called a transition map or transition function.

Definition 1.1. Let M be a topological space and U € M an open set. Let V € R" be
open. A homeomorphism ¢:U — V, where ¢(u) = (x;(w), -, x,(w)) is called a
coordinate system on U , and the functions x;(u),:-,x,(u) are the coordinate

functions. Also, ¢! is a inverse map that is parameterization of U.

Definition 1.2. A pair (U, ¢)of a topological manifold M is an open subset U of M
called the domain of the chart, together with a homeomorphism ¢: U — V of U onto
an open set V in R™. Roughly speaking, a chart of M, is an open subset U in M with

each point in U labeled by n numbers.

Definition 1.3. Two charts (U,,¢,)and (U,,¢,) are said to be compatible if
1. (1) <pa(Ua N Uﬁ) C R"™ open

(i1) (pﬁ(Ua N Uﬁ) C R™ open


http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Neighbourhood_%28mathematics%29
http://en.wikipedia.org/wiki/Homeomorphic
http://en.wikipedia.org/wiki/Line_%28geometry%29
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Map
http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Euclidean_plane

2. (i) ¢ao¢;1 (U, NU,)—>¢,(U,NU,) isa C* diffeomorphism.

(ii) (éﬁogb; :9,U,NU,) > @,(U,NU,) isa C” diffeomorphism.

Definition 1.4. An atlas of class C¥ on a topological manifold M is a set

{(Ua,¢a), ac I} of each chart, such that

(1) the domain U, covers M ie; M =0 U, .

ael

(i1) the homeomorphism ¢, satisfy the following compatibility conditions: the maps
(00(0(0;1 . qoﬂ (Ua mUﬁ) - (oa (Ua mUﬁ)
(050(0;1 9, U, mUﬂ) > Pp U, mUﬁ)'
must be of class C¥.

These homeomorphisms are the transition maps or coordinate transformations.

Re g2

Figure 1.1. Transition maps

Definition 1.5. An C” - atlas on M is a collection Az{(Ua,@)

ae[} of C” chart

which cover M and are C” - compatible.



Definition 1.6. A second countable, Hausdorff topological space M is an n-

dimensional topological manifold if it admits an atlas {(Ua,(éa), ae]} , where

@q Uy > R* neN.

Definition 1.7. A topological manifold is said to be a differential or smooth manifold
if all transition maps are C” diffeomorphisms, that is, all partial derivatives exist and

are continuous. Also, two smooth atlases are equivalent if their union is a smooth atlas.

Definition 1.8. A function f:M — R from an n-dimensional manifold M to the reals is

differentiable if and only if fo x” is differentiable for any local chart x : U — R™.

Figure 1.2. Differentiable function on a differentiable manifold

Definition 1.9. A map f:X — Y is called a homeomorphism if and only if f is

bijection (hence f~1:Y — X exist) both f and f~1 are continuous.

Definition 1.10. A diffeomorphism f: R"™ — R" is an injective (one - one) such that,
both f and its inverse f ! are C* functions. But, not necessary the domain of f will be

the whole at R™.



Definition 1.11. In vector calculus, the Jacobian matrix is the matrix of all first-order
partial derivatives of a vector-valued function.
Consider a map f : U— R™ which is a class of c¥.That is, every function

fi(xt, -, x™), i =1, m is differentiable up to k-th order. Then the matrix

ot L2
of oo
ox? ax"ly eu

is called the Jacobian matrix of the map f at the point x, € U.

1.1.1 Tangent Vector Space on Manifolds

Definition 1.12. Tangent vector at x is v = [(a, x)] . The set of all tangent vectors at

x denoted by T,)M and it is called the tangent space of M at x.

Definition 1.13. Let M be a manifold and xeM . Then for all x € M, T, M is defined as
tangent space. The tangent bundle TM is defined by

TM = Uxem T:M

Definition 1.14. The cotangent bundle T*M is the dual to the tangent bundle TM in the
sense that each tangent space has a dual cotangent space as a vector space. The

cotangent bundle T*M is a smooth manifold itself, whose dimension is 2n.

Definition 1.15. A fibre bundle is a space which locally looks like a product of two
spaces but may possess a different global structure. Tangent and cotangent bundles are
special cases of a fibre bundle. Every fiber bundle consists of a continuous surjective
map: 7 : E — B, where small regions in the total space E look like small regions in the

product space B X F. Here B is called the base space while F is the fiber space.


http://en.wikipedia.org/wiki/Vector_calculus
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Real_coordinate_space
http://en.wikipedia.org/wiki/Function_%28mathematics%29

Definition 1.16. A jet bundle is a generalization of both the tangent bundle and the
cotangent bundle. The Jet bundle is a certain construction which makes a new smooth
fiber bundle out of a given smooth fiber bundle. It makes it possible to write

differential equations on sections of a fiber bundle in an invariant form.

Definition 1.17. A (smooth) real vector bundle VV of rank k over a smooth manifold M
is a smoothly varying family of k-dimensional real vector spaces which is locally
trivial. More formally, a real vector bundle is a triple (M,V, ), where M and Vare
smooth manifolds and w:V — M is a smooth map. For each m € M, the fiber

V,, = m~1(m) of V over m is a real k-dimensional vector space.
Definition 1.18. The projection map of a manifold M is defined by

T:TM > M
given by
r(v)=x ifv € T,M.

Let (U, @) be any chart containing x € M. Define the map ¢: T, M — R™, where

T.M el(@,x)]=v= () = plla,x)]= (po)'(0)

Theorem 1.1. For the structure of tangent space 7./, the map 515 well- defined one-
one, onto map.

Proof. (i) ¢ is well-defined

Indeed, if [(ﬂ,x)}e[(a,x)] is another representative of [(a,x)] 1.€.

I:(,B,X):I = I:(Ol,x)] then,
ol(B.2)= (g 5) 0)

! !

But (¢o ) (0)=(¢oa) (0); [By definition]



So, we have,

ol.x]= gller.x)]

- ¢ -1is well defined.
(i1) ¢ is One—One
We assume that [(a,x)] and [( ﬁ,x)] are two tangent vectors

such that, ol(a.x)]= (;[(,3 x)]

Then by definition,

(poa) (0)=(p ) (0)

Hence,

o= (e, x)| =[(B.1)

So, ¢ is one — one.

(i11) ¢ is Onto
Let h € R™. Then we have to show that these exists [(a,x)] € T.M such that

g[(a, x):| = h . If there is some « like this, then we have,
(poa)(o)=h (1.1)

So, we look for some « satisfying (1.1).

Take the line - B(t) = th + @(x)

where @(x) is constant and set a(t) =¢~' (tfz+ ¢(x)) =¢7 (B(1)=(¢"0B)(1), for
same /3, restricted in a small interval of R say, J so that

a(J)cU

For such an « we have, Eﬁ[(a,x)} =(¢0a),t



=)
= (th + ()
= D + o)
dt
=h
So, ¢ is onto.
Hence ¢ is a well defined, one-one and onto. mi

Theorem 1.2. The projection map 7 :TM — M is C* map.

Proof . Let us prove that, 7 is C” at a tangent vector u € T M —TM. By definition,

we should find a chart of TM and a chart of M such that, the corresponding local

representation of 7 is smooth. For this purpose, if u € TM , we choose the chart
(U , ¢) €A with x e U and there corresponding chart 7~ ((U),p) of TM.
Clearly, u € #~'(U).Thus, we can form the local representation
porog” g (U)oU),
But o(77'U)) =p(U) x R™

So, pomop lip) X R™ - ¢(U) € R™
Now, we check that for every (a, h ) € (U) X R™.

(pore™ah) = (for) (¢ (a. 1))
= (gor)(v),whered ' (a,h) =v T..M



= p(x)

= p(z()).

= ol (@)

=a.
ie., (pomop™)(a, ﬁ) =a = Pry(a, ﬁ),v(a, ﬁ) € o(U) x R™
or, (pomo@™) =Pri:pU) X R™ - ¢(U).

Therefore, the local representation is now the map,
(pomop™) =Pri:pU) X R™ - ¢(U)

which is smooth map at every point of @ (U) X R™.

Hence, the local representation is the smooth map at ¢ (7' (U)). Therefore, since the
local representation is C” at (o(ﬂ_l (o )) so, 7 is C” at U. The same thing will be

true for every u € TM .Hence, 7 is C* (smooth map) for all# € TM.

Thus completes the proof of the theorem. mi

Definition 1.19. Let f: M — N be a C” map (smooth). The tangent map of f at x or
differential of f at some x € M, denoted by,

T.f=dif = f.,

is the map.

r.f:T.M—>T, N

And defined by T.f([(a.x])=[(foa, f(x))]eT,,,N.



1.1.2 Vector Fields on Manifolds

A vector field X on a manifold M is a cross-section in TM. Thus a vector field X
assigns to every point x € M , a tangent vector X (x) such that the map M — TM so
obtained is smooth. The vector fields on M form a module which will be denoted by

xX(M).

Definition 1.20. A C*-vector field on M isa C® map
XM - TM
such that
moX =1 gy , where i g, = identity of M

Definition 1.21. If (U, ¢) is a chart at x € U with coordinates (xq, X3, ..., X;n, ), then

we have a basis (% )i=12,..mof T, M .Thus
tix

X(x) = X% 4 2 ;where x EUC M
axix
and X)) = XM w % ;where y eU S M
tly
In general, X(x)= Y2 fi () %| ;where f; eUc M > R
tix

Instead of f;, we write X;. Hence X(x) = X%, X; (%) aixi

X

We call X; the coordinates of the vector field X with respect to the chart (U, ¢).

Definition 1.22. Let M be an n-dimensional smooth manifold with domain U, O, be
the set of smooth functions. A smooth vector field on M is a map X: Oy — O, such
that,

() X(af +Bg) = aX(f) + BX(9)

(i) X(fg) =X(f)g + fX(g);V f,9 € Oy anda,B € R

The set of all smooth vector fields on M is a vector space denoted by I'(TM).



Theorem 1.3. A vector field X is smooth if and only if its coordinates X;’s are

smooth for all charts of M.

Proof. Assume that X is smooth. Take any chart (U,¢) with coordinates
(%1, X3, o, X ). Then X[ is again smooth. Since X is smooth, if we take the charts

(U,9) of M and (m~1(U), @) of TM , then the corresponding local representation
@oXog~tip() > (n7' (1)) = p(U) X R™

is smooth (as the local representation is defined, because X(U) € n~1(U)).

Now for every a € ¢@(U) , we have

(poXop™(@ =X (97 (@)

= p(X(0) [+ @7 (a) =x]

= o (Xy)

= (p(r(x), 6(X)) i fX, € TM

= (p(x), p(X,))

= (@, ¢(x@)) [* ¢ (@ =x = &) =a]
(@ 6(x1y @)

=&$@)hm=&xi

(a, by X L axi]
< Xi ail ))
(

a, ity

) [ ¢ is a linear map]

= (@28, Xi(x) € [v er=dG)]

= (a, (X1 (x), Xz(x), ..., Xm(x)))

= (a, X1 (97" (@), X207 (@), ..., Xm (@7 (@))))

= (a, (X10 9™ H)(@), (X0 9™ (@), ..., Xm0 9~1) (@)
= (idyw)(@), (X120 071), ..., Xm0 ™)) (@)

10



= (idpwy X10907%, ..., Xmo @™ 1)(a)
Therefore (9 0 X 0 ¢™1) = (idpw), (X10 974 .., Xmo 9™1))

Hence the smoothness of @oXo@™! implies the smoothness of each
X090 tpU) - R

Since ¢~ !is diffeomorphism, so X;: U - R is smooth (because X; = X;0 ¢~ lo ¢
is a composition functions). The same thing is true for any other chart, say (V, ) and
the corresponding coordinates X(y;) =Y;.

Hence, a vector field X is smooth implies its coordinates X; are smooth for all charts
of M.

Conversely, we can show shat the coordinates X; of a vector field X are smooth for

all charts of M implies the vector field X is smooth.

This completes the proof of the theorem. i

Definition 1.23. The set of C -vector fields on manifold M is defined by X(M). Then
we have
(i) For X,Y € ¥X(M) € x(M)defined X + Y by
X +YV)():=Xx) +Y(x) =X,+Y,forallx e M
(i) For A € R and X € X(M),we define 1. X by
AX)x)=4X(x)=1.X,
(iii) For f € C* (M, R) and X € X¥(M)we define f.X by
(f. X)) =f(x).X(x) = f(x). X, forall x e M

The set of vector fields X(M) together with property (i) and (ii) is called vector space

on manifold M and the set of vector fields X(M) together with property (i) and (iii) is

called module on manifold M.
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Definition 1.24. Let M be a smooth n-dimensional manifold, Oy, be the set of smooth
functions and I'(TM) be the vector space of smooth vector fields. There is a well-

defined bilinear map called Lie-brackets or Commutator

[,]:(TM) XxXT'(TM) - T'(TM)
(X,Y) »[X,)Y]
Given by [X,Y]: Oy - Oy
frlXYlf:=X(Y())-Y(X(F))

1.1.3 Riemannian Manifolds

Definition 1.25. Let M be a smooth manifold. A Riemannian metric g on M assigns

to any smooth vector fields X and Y on M a smooth function g(X,Y ), where
D) gX1 +X2,Y) = g(X1,Y) + g(X2,Y),
i) gX Yy +Y) = gX,V)) + gX,Ys),
(i) g(fX,Y) = fgX,Y) = g(X,fY),
(iv)g X,Y) = g(¥,X)
for all smooth real-valued functions f and vector fields X , X;,X,,Y ,Y;,Y, and
g(X,X) > 0 wherever X # 0.

Definition 1.26. A Riemannian manifold (M, g) consists of a smooth manifold

M together with a (smooth) Riemannian metric g on M.
Definition 1.27. A C® connection ¥V on a manifold M is a mapping

V:X(M) X X(M) - X(M) denoted by V:(X,Y) — VyY which has the linearity

properties:
Forall f,g € C*(M)and X,X',Y,Y' € X(M), we have

(1) Vexagx'Y = fF(VxY) + g(Vy'Y),

12



(i) Vx (fY + gY") = fVxY + gV Y' + (Xf)Y + (Xg)Y’

Now the asymmetry in the rules of first and second vector fields X and Y; V is C* (M)
linear in X but not in Y. However if f is a constant function, then Xf = 0; thus V is

linear in both variables.

They do for M imbedded in Euclidean space. In addition, we have in these special case

two further properties:
(iii) [X, Y] = VyY — VX (symmetry), and
(V) X(Y,Y") = (VxY,Y") + (Y, VxY").

Definition 1.28. A C*® connection which also has properties (iii) and (iv) is called a

Riemannian connection.

Definition 1.29. A moduli space is a geometric space (usually a scheme or an
algebraic stack) whose points represent algebro-geometric objects of some fixed kind,

or isomorphism classes of such objects.

1.2 Preliminaries on C"

Definition 1.30. Let f:C" - C, U < C" open with € U, and let z = (z4, ..., z,,) be
the coordinates in C". f is holomorphic in a = (a4, ..., a,) € U if f has a convergent

power series expansion:

400

fD= ) iy sg(r—a) = a)

kl,...,kn=0
This means, in particular, that fis holomorphic in each variable. Moreover, we define
Ocn(U) = {f:U - C|f is holomorphic}

A map F = (F,, ..., E,): U - C™ is holomorphic if each Fjis holomorphic.
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Let f be a holomorphic function. One can write f(z) = g(z) + ih(z), with g, h: U —

R smooth. The condition for f to be holomorphic on U is equivalent to the Cauchy-

Riemann conditions:

%9 (ay = 2 99 3y = _ 2N
(@) = 5-() and 32 () = — 52 (a)

J

Forj =1, ...,n, where z; = x; + iy;.

Definition 1.31. Let V € C" be open, let F = (Fy, ...

map. The complex Jacobian matrix of F is

0F; d0F;

0z, 0z, 9F.
JcF =] : o= (—]>

oE, oOE, 0z

0z, 0z,

smooth R

,E,):V — C™ be a holomorphic

-valued functions.

Let F:V —» R?" defined as F = (G,(2),...,Gn(2),H,(2), ..., Hy(2)) . The real

Jacobian matrix of F is

9G; G
R T
0x,  0yx

Remark: If F: C* — C™ is holomorphic, then 96; _ oH; 96;

G
Ox  0yr’ dyk

A —-B . G O0H;
]RFz(B p )wnhAza—x;,B=a—y’fc

14
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Moreover,

aZk_z axk ayk J lj _2 axk layk ' axk layk

G, oH, |
Za—xk-}'la—y}c :Ajk+lBjk

=>JF=A+iB

_ (P 0Q (0 —Idn)
Lemmal.4.LetM—(R S)eMzn(R),andlet]_(Idn o ") Then

-1 _ _ _ _ (P —-R

JM'=M&P=S5,Q= R(:)M—(R P)

Proof.

= (F3)=(¢ D

U
Combining the above lemma and the previous remark, we can characterize a

holomorphic function F: C"* — C™ analyzing its real Jacobian matrix:

Proposition 1.5. A function F:C™ - C" is holomorphic if and only if

. 0 —Id,
JUsPY = JeFowit ) = (1g ")

Remark: It is worth to notice that J is the matrix representing the multiplication by
i from C™ to itself. Thus, one can also state: a function F: C"* — C" is holomorphic if
and only if its real Jacobian matrix is self-conjugate under the conjugation action of

the multiplication by i (or simply, its real Jacobian matrix commutes with J) [75].

Proposition 1.6. Let F: C" — C" is holomorphic. Then det(JgF) = 0.

Proof. Consider the matrix N defined as

(ld,  i-1d, L 1f Ild,  Id,
N_(Idn —i-Idn)EMZ"((C)’N _5<—i-1dn i-Idn>
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Notice that,

-1 _ lId)A —B( Id, Idn)

NJrk N < ad)E ) —i-ld, i-1d,
(A+lB —B+i ( I1d, Idn)
A—iB —-B—-iA/\-i-‘Id, i-ld,

( +iB B)
(o

Hence
det(JrF) = det(N)det(N 1)det(JgF) = det(N JgxF N71)
= det(JcF)det(JcF) = det(JcF)det(JcF) = |det(JcF)|? = 0. O

A holomorphic function in one variable is a conformal mapping from R? to itself, that
is, it preserves orientations of angles. The latter proposition shows that, when dealing
with a holomorphic function of several variables, the "orientation preserving" property
translates to a strict condition on the determinant of the real Jacobian of the function.
As we will see in the next section, this condition is related in some sensewith the
notion of orientation (it will imply the orientability of complex manifolds, seen as

differentiable manifolds).

Theorem 1.7. (Maximum Principle). Let g:V — C be holomorphic, V € C open,
connected. Assume there is a v € V such that |g(v)| = |g(2)| V z € V (|g|takes its

maximum on). Then g is constant, so g(z) = g(v)Vz € V.

This fundamental result about one-variable holomorphic function has many
consequences in complex analysis; we will only use it once in the following section to
see that a holomorphic function on a compact complex manifold is nothing but a
constant function. There exists also a "holomorphic version" of the Dini theorem (local

invertibility of maps with invertible Jacobian):

Proposition 1.8. LetV € Copen, F:C" — C" holomorphic. Assume that JcF has

rank n in a €V (i.e. JcF(a) has non-zero determinant). Then there is a
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neighborhood W of a and a holomorphic inverse G:F(W)— W such that
FoG=1idguw),,GoF =1idqy.

Proof. As det (JgxF) has rank 2n, det (JgxF) = |det(JcF)|?> # 0. So, by the Dini
theorem there exist a neighborhood Wof a such that it is possible to find an inverse G
for the map F regarded as a map from R?"to R?". We are going to show that Gis
already the map we need, that is, G is holomorphic; or equivalently, J(JgG)]™ = JrG,
J as in lemmal.l.

We know that G o F =idy = JgrG - JgF = I d; moreover, since F is holomorphic
JUrF)J™" = JgF. Then

JURG) ' =JrG™ = JURG)] ' = (JURG) ™D = (rG™H T = JgG. T

Definition 1.32. A function F is biholomorphic on W € C™ if there exists a

holomorphic inverse G: F(W) - W.

1.2.1 Basic Theory of Complex Manifolds

A complex manifold is a topological manifold equipped with an atlas of charts
onto open disks in €™, such that the transition maps are biholomorphic. Consequently,
each complex manifold is a real differentiable manifold. Moreover, since
biholomorphic maps are orientation-preserving, a complex manifold is canonically

oriented (not just orientable).

The theories of real (differentiable) manifolds and complex manifolds are substantially
different, the main reason being that holomorphic functions are much
more rigid than smooth (i.e. C*) functions. For example, there exists no holomorphic
function on a compact complex manifold, apart from the trivial case
of constant functions.The Whitney embedding theorem tells us that any real manifold
can be (diffeomorphically) embedded in RY, while most complex manifolds do
notadmit any holomorphic embedding into CV (nor in p", in the compact case).The
classification of complex manifolds is more complicated than that of real manifolds.

For example, a given topological manifold X admits only finitely many differentiable
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structures if dim X # 4, while a given complex manifold often admits uncountably
many complex structures. As a matter of fact, the set of all complex structures (up to
equivalence) on a given complex manifold, forms itself a continuous space, and in fact

can be given the structure of a complex algebraic variety, called moduli space.
1.2.1.1 Complex Charts and Atlases

Let X be a topological manifold of dimension 2n, that is, X is a Hausdorff topological
space such that each point of X admits an open neighborhood U which is
homeomorphic to an open subset V of R?". Such a homeomorphism x : U - V is
called coordinate neighborhood. In this section, we do not require Xto be second

countable (as it happened for differentiable manifolds).

Definition 1.33. A local complex chart (U, z) of X is an open subset U € X and an
homeomorphism z : U - V = z(U) c C*(= R?").

Two local complex charts (Ug 2q) , (Up,zg) are compatible if the map
fpa =2 ° Zg Yiz,(Uy, N Ug) = zg(Uy N Up) is holomorphic. The map f, is called

transition function or coordinate change. (We note that fz is holomorphic, too).

Definition 1.34. A holomorphic atlas (or complex analytical atlas) of X is a collection
A ={(U, z,)} of local complex charts, such that X =U, U, and such that all
transition functions f,p are biholomorphic, for each @, . (In this way, each pair of

charts is compatible).

A complex analytic structure on X is a maximal holomorphic atlas A = {(Uyg, 2,) }qer-
Maximal means: if (U,z) is a local complex chart and (U,z) is compatible with

Uy, 2z,) V a €1, then(U, 2) € A.

A complex (analytic) manifold is a topological manifold together with a complex

analytic structure.
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Remark: A holomorphic atlas B = {(Uﬁ», Zﬁ)} Be]determines a (unique) maximal atlas

A with B c A and hence it determines a complex manifold.

Given a complex manifold X, we can think about X without its complex structure,

that is: if di ;X = n, Xdefines a differentiable manifold X, with di mgX, = 2n,

wherea complex chart (U, z) gives rise to a real chart (U, Z) via the identification
z=(21,.,2n) ©Z= (X1, e, Xy Y1, =, Yn)Zj = X + 1Y), X5, y;: U & R

One can easily check that if(Ug, 2z4), (Ug, Zg) are compatible then (Ug, Z,), (Up, Zg)

are compatible too.

Proposition 1.9. Consider a complex manifold X as a differentiable manifold X,with

the coordinates inherited from the complex structure on X. Then X, is orientable.

Proof. Any transition map F = zg o Zy 1:C" -» C"on Xis holomorphic, and so is
the inverse. As we’ve seen at the previous section, det (JgF) = |det(J¢cF)|?* >0
(it 1s not zero since Fhas an inverse). It is easy to show that JgrF is nothing else that
the Jacobian matrix of the transition map F on X,. Then, each transition map of X,
has Jacobian with positive determinant, i.e, X, is equipped with a positive atlas and is
positively oriented. M
A simple consequence of this proposition is: not every differentiable manifold X, can

be the underlying differentiable manifold of a complex manifold X.

1.2.1.2 Holomorphic Functions

Definition 1.35. Let U € X be open, f: C™* — C be a function. Then f is holomorphic
on U if, taken (U, z,) such that N U, # @ , the function

foz, tiz,(U, NU) > C

is holomorphic. This definition does not depend on the choice of the coordinate

(Uq, Zg). In addition, we define
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0x(U) = {f:U - C|fis holomorphic}

Remark: Let(U,z = (24, ...,2,)) be a local complex chart on X. Let a € U with
z(a) = 0,andlet f: U = C be holomorphic, Then

+o0

(ForaD@ = Y s uge

kl,...,kn=0

where x € U, z(x) = u. This means that,

+o0

f0) = ez G = D a0 2 ()

kl,...,kn=0

Definition 1.36. A map ¢: X™ — Y™ between complex manifolds is holomorphic if

wgo@ozy 12Uy N~ (V) —» C™
is holomorphic for all charts (Ug, z,) of X, (V, V) of Y. It is sufficient to verify that
the above map is holomorphic for any (Ug,z,),(Vp,Vg) in one atlas of X,V
respectively.
Example: The projection map 7 : C"*1 — {0} - p™is holomorphic. To check this, we
use the atlases {C"* — {0},1 ¢n+1_ggy}for C*** — {0}and {(U}, 7))} =4, ndefined on
p"as in the example of the previous section. We will check the definition only

forj = 0.

: Uq Un
(zo o oi C&n+1_{0})(u0, o Up) = zo(Ug: i Uy) = (u_' ,u—>
0 0

This map is holomorphic on w~1(U,).
Proposition 1.10. Let ¢@: X" - Y™ be a holomorphic map between complex

manifolds. Let (U, z),(V,w) be local complex charts of X,Y respectively such that

(U) € V.Themap F := w o ¢ oz~ ! is holomorphic; assume that J¢F (a) has constant
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rank k Va € U (i.e., with the usual terminology, ¢ has constant rank on U). Then for
any a € U there exists a neighborhood W of a , local complex charts
(U, z"),(V',w") with a € U' € W such that (U") €V’,z'(a) = 0,w'(¢p(a)) =0

and F' := w' oo (z')7 Y (uy, ..., uy) = (Uq, ..., U, 0,...,0).

Proof. Similar to the proof for differentiable manifolds, using Proposition 1.8, too.

Theorem 1.11. Let X be a (connected) compact complex manifold, let f: X — Cbe a

holomorphic function. Then f is constant.

Proof. |f|: X —» R is a continuous function, X is compact = {|f|: x € X} is compact,
hence bounded. Thus, there is an x, € X such that |f(x,)| = M is maximal.
Leta = f(x,) € C. Obviously, f~1(a) is closed in X (it is a pre-image of a point); if
we are able to show that f~1(a) is open, too, then f~!(a) = X, that implies
f(x)=aVvVxeX.

Let x € f~(a), (U,z) be a chart with z(x) =0. Then F: foz 1: z(U) €C is
holomorphic on the open subset z(U) € C*;F (0) = f(x) =a and |f| has a
maximum inz = 0. Let € >0 such that B, :={y € C":||y|| < €} € z(U). For
Yy € B, the function g(t) := F (t)) is holomorphic on {t € C:||t)]| < €}and |g|
takes its maximum in t = 0. By the "maximum principle" (Theorem 1.4), gis
constant = a = g(0) = g(1) = F (y), that means f(y) = aVy € B,.

Hence f = a on z~1(B,), an open subset of X containing x. Hence f ~1(a) is open. [

This result is somewhat surprising and disappointing: the condition of compactness
for X, which usually makes life a lot easier when dealing with a manifold, does not

allow us to consider holomorphic functions on X, since all of them are constant.

1.2.2 Complex Submanifolds

In this section we present a short treatment of the local theory of submanifolds of
complex manifolds and the relation with the analytical theory of functions of several

complex variables.
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First, we must describe how complex manifolds are to be regarded from a
differential geometric point of view. To eliminate confusion, it is desirable to
eliminate complex numbers themselves from the definition, to regard complex

manifolds from a "real" point of view.

Suppose that M is a manifold of dimension 2n. Consider a coordinate chart
from an open subset of M to an open subset of R?". Now, 2n -dimensional
Euclidean space is justC", the space of m complex variables. We say that M
has a complex manifold structure if an atlas of coordinate charts can be chosen
so that the transition maps between two charts are defined by complex analytic
functions. We say that a map between two manifolds with such
structures is complex-analytic (or holomorphic) if, when referred C"* to by
the coordinate charts, it is defined by complex analytic functions. Two such structures
on the same manifold can be regarded as essentially the same if the identity map is
holomorphic. It is important to realize, however, that a given manifold may have many
different complex manifold structures and that a manifold need not admit any complex
manifold structure. For example, the 2n-dimensional spheres, for n # lor 3, do not
admit any. It is not known whether the six-dimensional sphere can admit one. Our first
aim is to make this remark clearer by exhibiting a complex structure as a geometric
structure defined by a tensor field on the manifold, just as, say, a Riemannian metric is
a structure defined by a tensorfield. As a first step in this direction, we describe how

the complex analytic structure on C" itself is determined by a tensor field.

Consider R?" or the space of variables (x;y;), with 1 <1i,j,..<n. Putting
z; = x; + V—1y; gives the identification of R?" with C™ that we have in mind; that is,
the coordinates of R?™ are considered as the real and imaginary parts of the complex
variables of C"* . Suppose F = f ++/—1 g is a complex valued function on R?" that is
holomorphic.

The holomorphic conditions can be described by the Cauchy-Riemann equations:

ox;  dy; dy; ox;

o _ 29,4 _ 2
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Define F(R?") linear map, that is, a tensor field, J: V(R?") - V(R?™") by setting

d 0 ) 3 .
](a_xi)_a_xl.']<_>——a—xjfor1§lgn

6xj

Then the Cauchy-Riemann equation becomes

X(f) =](X) (g) forall X € V(R?™) (1.2)
Note also that
JJX) = —X forall X € V(R?™) (1.3)

We can now characterize complex-analytic maps @: R?" —» R?™ by means of the
] —tensor, namely for each point p € R?",

each tangent vector v to p = (p*(] (v)) = Jo.(v) (1.4)
To prove this, note that to prove ¢ is holomorphic. It suffices to show that
@*(F) is holomorphic for every holomorphic function F on R?". However, the
characterization of the Cauchy-Riemann equations as (1.2) makes it obvious
that (1.3) is this condition.
Equation (1.4) tells us that a given complex structure on a manifold M
defines a tensor field J: V(M) — V(M), with J2 = —(identity). For if the J-tensor on
R?" is carried over to M by a coordinate chart, then (1.4) implies
that Jis actually independent of the coordinate chart associated with the complex
structure.
Now, not every tensor field J:V(M) - V(M) with J? = — (identity) arises
in this way from a complex structure: Certain integrability conditions must be
satisfied (Mis said to carry on almost complex structure if it merely has such a
tensor. The 6-sphere, for example, has such a tensor, which is not integrable).

Such conditions are given by [40], and take the form

X, Y1+JUXY]=J[X,J]+[JXY]=0 forX,Y € V(M) (1.5)

The key point is that the left-hand side, as a function of X € Y, is F(M)-bilinear;

hence, defines a genuine tensor field. The verification of this is straight forward.
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Having done this, notice that to prove it is zero, it suffices to show that it is zero for a
basis of vector fields, for example, the basis((d/dx;), (0/0x;)),which is obvious.
Then we can carry over (1.5) to a manifold with a complex structure. It turns out that,
conversely, a J-tensor satisfying (1.3) and (1.5) arises in this way from a complex
structure. If the data are real-analytic, this is not hard to prove. If the data are given as

only C®it is considerably more difficult to prove but is true.

At any rate, we shall take our beginning point that a complex structure is
defined on a manifold M by a J -tensor satisfying (1.3) and (1.5). Our main
concern in this chapter is with the properties of submanifolds of M. First we
must consider those submanifolds that themselves are complex manifolds. Let
N be a complex-analytic manifold and let ¢:N - M be a submanifold map
that is also complex-analytic. We shall call this acomplex submanifold of M .

From the characterization of holomorphic maps in terms of the J -tensor, we
see that/ ((p*(Np)) c (p*(Np) from now onlet us suppress the explicit notation for the

submanifold map. Then the condition for a complex submanifold becomes

J(N,) =N, forallp € N (1.6)
We now have:

Theorem 1.12. A submanifold N of M is a complex submanifold if and only if (1.6) is

satisfied.

Proof. We have already seen that (1.6) is necessary. To prove it is
sufficient, notice that (1.6) implies that N itself causes a | -tensor obtained by
restricting J to N . That the integrability conditions are satisfied, if for
the J -tensor restricted to N, is a consequence of the fact that [X,Y]is tangent

to N if Xand Y are vector fields of M that are tangent to N . 0

Turn now to consideration of a submanifold N of arbitrary dimension. We

want to find a method for describing the “maximal” complex submanifold
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of M that is contained in. Now if vis a tangent vector of N that is tangent to
such a complex submanifold, then J(v) is also tangent to N. Let us call a
tangent vector to Nwith this property a holomorphic tangent vector. Forp € N, let Hy,
be the subspace of N, consisting of all holomorphic tangent vectors; that is,

H, = {v € N,;J(v) € Np} (1.7)
Similarly, define H as the following subspace of V(M) :

H ={X € V(M):X(p) € Hyforallp € N} (1.8)

Now there is a possibility of “singularities” in the field p — H,of tangent subspaces;
that is, p - di mH, is not necessarily constant on N . However, we shall

not consider this sort of pathology here; then, also, for p € N,
H, ={X(p):X € H} (1.9)

In order that this be so, we must have [X,Y]€H for X,)Y€ H. We can
construct a tensor field that “measures” the extent to which this is true:
For X,Y € H, set

L(X,Y) =][] XY] projected into V(M)/H (1.10)

Now, we can verify that L(,) has a tensorial behavior as a function of Xand Y
(although the term in the right-hand side of (1.10) does not have a tensorial behavior

before it is projected).

LUGX,Y) =JUX. Y1 =]IfIX, Y1 =]@U XY =Y(H]X) = fIT X YT+ Y(/)X

which is equal to fL(X,Y) when the right-hand side is projected modH. Hence L
passes to the quotient with respect to the restriction mapping H — H,, and we get, for

each p € N, a bilinear mapping (which we again denote by L(,)) of H, X H, —

p/ Np.Thls field of bilinear mappings iscalled the Levi form of N . Explicitly, then,

forX,Y EH,p€EN,
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M
L(X(p),Y()) =JUJ X Y1(p) projected into p/N . (1.11)
P
Lemma 1.13. The Levi form is symmetric.

Proof. This follows from the integrability condition (1.5):
JUXYl=-JUYX]=1Y,X]1+[J Y] X.

The right-hand side projects into zero when projected mod N, .The left-hand side,

though, is L(X(p), Y(p)) —L(Y(p),X(p)). O

Let us examine now the consequences of the Levi form vanishing identically.

Theorem 1.14. If the Levi form vanishes, then the field p — H,, of tangent subspaces
of T(N) is completely integrable. The maximal integral manifolds of this field
then define a foliation of N by maximal complex submanifolds. In particular,
if N is a hypersurface of M (that is, if di mM = di mN + ), then these complex
submanifolds of N are hypersurfaces in N; hence N may be considered locally as a
one-parameter family of complex-analytic hypersurfaces of M. Conversely, if a real
hypersurface of M has this geometric property, then its Levi form

vanishes.

Proof. To prove integrability of p — H, we must show that [H,H]c H.
If X, YEH, L(X,Y)= 0 if and only if J[JX,Y]is tangent to N, hence if
[J X,Y ] also belongs to H. This condition is obviously equivalent to [H,H] c H.

That the maximal integral submanifolds of the field H,, — H,, are complex analytic
submanifolds of M, since J(H,) = H,, and the tangent space to the maximal integral

submanifolds is precisely H,. The converse is obvious. 0

Theorem 1.15. The hyperplanoids that are real-analytic are locally, precisely the

hypersurfaces that can be written as f = 0, wherefis the real part of a holomorphic

function f +V(~=1) g = F.
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Proof. First notice that a hypersurface determined by f = 0 can also be

written locally as the locus determined by,

v—1F —t =0, where ¢ is a real variable;

that is, the hypersurface is composed of a one-parameter family of complex analytic
hypersurfaces.

Conversely, suppose that A is a complex manifold of one complex dimension less than
M, and that ¢: A X R = M is a real-analytic submanifold mapping such that, for fixed
t, the mapping p = @(p,y)of A - M is holomorphic.

We can suppose without loss in generality that M is C" itself, and that A is
C™ 1, Since @ is real-analytic, we can extend ¢ to a mapping of C""1 x C - C"
by extending t to be a complex variable. The condition that ¢ be a submanifold map
requires that this extended map of C"1xC-C" have nonzero
Jacobian. Then, by the implicit function theorem, there is (always, locally, of
course) an inverse holomorphic map C" — C" ! x C. Following this map by
the projection C*"1x C - C, we obtain a holomorphic function F on C",
that is, on M. The image of N in M is characterized by the condition that F
take real values on; that is, N is obtained by setting the real part of V—1 F equal to

ZEero. UJ

Theorem 1.16. Suppose that, in addition to the complex structure, M has an affine
connection V with zero torsion tensor such that the covariant derivative of the
J-tensor defining the complex structure is zero. Let N be a submanifold of M, let S(,)
be its second fundamental form with respect to the affine connection, and let L(,) be

its Levi form with respect to the complex structure. Then

L(w,v) = S(w,v) + SJujJv foru,v € H,,p € N. (1.12)

Proof. The condition that the covariant derivative of the J-tensor be zero is explicitly

Vi J(Y) =] VyY  forX,Y € V(M)
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The torsion-free condition is Vy Y — Vy X = [X,Y]. Then, for X,Y € H,
JUXYI=](V)xY =Yy ] X) = V)xJ Y+ Vy X

Taking the value of both sides at p € Nand projecting modN,, , gives (1.12). 0

Theorem 1.17. Let N be a real hypersurface of a complex manifold. Suppose that the
Levi form of Nis nonzero at each point of N. Letf be a function on M that is
the real part of a holomorphic function. Then the derivatives of f at points of N in
direction normal to N are determined by derivatives of f in directions

tangential to V.

Proof. Let N € H. By hypotheses, for each p € N we can choose X so that
LIX(p),X(p))is not tangent to. Then J[J X X] is not tangent to N at p ;
hence, also in a certain neighborhood of p . Then any vector field Z in a

neighborhood of p can, after multiplication by a factor, be written as

JUU X X] +Y, where Y is tangent to N. Suppose f + vV —1 g is holomorphic on M ; that
is, fand g satisfy (1.2). Then

Z() =JUXXIf) +Y() =-UXXI(g) +Y(f)
=XU X)) - 09X (9 +Y(f)
=X +UDTDF) +Y()

The left-hand side involves a derivative of fin a normal direction to N, while
the right-hand side involves derivatives that are in direction tangent to N .The
argument can be iterated to show that all normal derivatives can be so

expressed. M
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CHAPTER 2

RIEMANNIAN GEOMETRY AND MODERN
DEVELOPMENTS

The beautiful subject initiated by Riemannin the 19th century on Riemann surfaces
had deep influence on the development of complex geometry in the 20th century.
While Hodge provided the fundamental structure relating complex analysis with
topology via Hodge groups, Kodaira provided fundamental methods to construct
holomorphic sections of bundles. With the works of Chern classes and Hirzebruch-
Riemann-Roch formula, the works of Hodge and Kodaira have been developed to be
most powerful tools in understanding Kéhler geometry. The modern development has
been emphasizing the use of non-linear elliptic equations, relating the concept of
Kéhler-Einstein metrics and Hermitian Yang-Mills equations to various fundamental
concepts of stability introduced to study moduli spaces. In this chapter, we describe
connections on manifolds and Riemannian manifolds. Given a connection on a
manifold we can define geodesic, Riemannian curvature tensor, Ricci tensor, Ricci
scalar on it. It should be mentioned here that, hand calculations become extremely
tedious to evaluate components of connection, Riemannian curvature tensor, Ricci
tensor etc. on higher dimensional manifolds. In this chapter we have developed some
computer codes for computing these components. Using computer techniques, the
components of connection, Riemannian curvature tensor, Ricci tensor etc. can be

computed easily.

The original work of this chapter exists in subsection 2.2.4 under section 2.2 where the

remaining part of this chapter indicates the brief review work.

2.1 The Work of Riemann

Riemann was one of the founders of complex analysis, along with Cauchy. Riemann

pioneered several directions in the subject of holomorphic functions:

29



1. The idea of using differential equations and variational principle. The majorwork
here is the Cauchy—Riemann equation, and the creation of Dirichlet principle to solve
the boundary value problem for harmonic functions.

2. He gave the proof of the Riemann mapping theorem for simply connected
domains. This theory of uniformization theorems has been extremely influential.
There are methods based on various approaches, including methods ofpartial
differential equations, hypergeometric functions and algebraic geometry. A natural
generalization is to understand the moduli space of Riemann surfaces where Riemann
made an important contribution by showing that itis a complex variety with dimension

3g — 3.

3. The idea of using geometry to understand multivalued holomorphic functions,
where he looked at the largest domain that a multivalued holomorphic function can
define. He created the concept of Riemann surfaces, where hestudied their topology
and their moduli space. In fact, he introduced the concept of connectivity of space by
cutting Riemann surface into pieces. The concept of Betti number was introduced by
him for spaces in arbitrary dimension. The idea of understanding analytic problems
through topology orgeometry has far-reaching consequences. It influenced the later
works ofPoincaré, Picard, Lefstchetz, Hodge and others. Important examples of
Riemann’s research are to use monodromy groups to study analytic functions. Such
study has deep influence on the development of discrete groups in the 20th century.
The Riemann—Hilbert problem was inspired by this and up tonow, is still an important
subject in geometry and analysis. The study of ramified covering and the Riemann—

Hurwitz formula gave an efficient technique in algebraic geometry and number theory.
4. The discovery of Riemann—Roch formula over algebraic curve. The generalizations
by Kodaira, Hirzebruch, Grothendieck, Atiyah—Singer have led to tremendous

progress in mathematics in the 20th century.

5. His study of period integrals related to Abel-Jacobi map and the hypergeometric

equations:
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z(-2)y""+[c—(a+b+c)z]y' —aby=0

6. The study of Riemann bilinear relations, the Riemann forms and the theta
functions. During his study of the periods of Riemann surfaces, he found that
the period matrix must satisfy period relations with a suitable invertible skew
symmetric integral matrix which is called Riemann matrix later. Riemann
realized that the period relations give necessary and sufficient condition for the

existence of non-degenerate Abelian functions.

First of all, we should say that Riemann was the mathematician that brought
us a new concept of space that was not perceived by any mathematician before
him. I believe that was the reason that Gauss was so touched by his famous
address on the foundations of geometry in 1854. It is surprised that Riemann had
rather liberal view about what geometry is supposed to be. His guiding principle was

nature itself. [86]

The theorems of geometry cannot be deduced from the general notion of magnitude
alone, but only from those properties which distinguished space from other
conceivable entities, and these properties can only be found experimentally. This takes

us into the realm of another science—physics.

He thinks a deep understanding of geometry should be based on concepts of physics.
And this is indeed the case as we experienced in the past century, especially in the past
50 years development of geometry. Although he was the one who introduced the
concept of Riemann surface, which is the largest domain that a multivalued
holomorphic function lives in, the precise modern conceptwas developed much later
through the efforts of Klein, Poincaré and others. While Felix Klein [50] already used
atlas to describe Riemann surface, it has to wait until Hermann Weyl [98] who first
gave the modern rigorous definition of Riemann surface, in terms of coordinate charts.
It was rather strange that a formal introduction of the concept of complex manifold

was quite a bit later. Historically, generalization of one complex variable to several

31



complex variables began by the study of functions on domains in C*. There were
fundamental works of Levi, Oka, and Bergman. The natural generalization of the
concept of two-dimensional surfaces to higher dimensional manifolds was done by O.
Veblen and J.H.C. Whitehead in 1931-32. H. Whitney (1936) clarified the concept by
proving that differentiable manifolds can be embedded into Euclidean space.
However, it was only in 1932 at the International Congress of Mathematicians in
Zurich, did Carathéodory study “four-dimensional Riemann surface” for its own sake.
In 1944, Teichmiiller mentioned “complex e analytische Mannigfaltigkeit” in his work
on “Verdnderliche Riemannsce Fldchen”. Chern was perhaps the first to use the
English name “complex manifold” in his work [13].The general abstract concept of
almost complex structure was introduced by Ehresmann and Hopf in the 1940s. In
1948, Hopf [41] proved that the spheres S* and S® cannot admit almost complex
structures.The concept of Kéhler geometry was introduced by Kéhler [46] in 1933
where he demanded the Kéhler form (which was first constructed by E. Cartan) to
have a Kéhler potential. Kdhler had already observed special properties of such metric.

He knew that the Ricci tensor associated to the metric tensor g;; can be written rather

simply as

2

Ry = (1 ogletg;y)

aZkaZ_l

which gave a globally defined closed form on the manifold. He knew that it defines a
topological invariant for the geometry. It defines a cohomology class independent of
the metric. It was found later that, after normalization, it represents the first Chern
class of the manifold. The simplicity of the Ricci form allows Kéhler to define the
concept of Kéhler—Einstein metricand he wrote down the equation locally in terms of
the Kéhler potential. He gave examples of the Kihler metric of the ball. Slightly
afterwards, Hodge developed Hodge theory, without knowing thework of Kéhler,
based on the induced metric from projective space to the algebraic manifolds. He
studied the theory of harmonic forms with special attention to algebraic manifolds.

The (p, q) decomposition of the differential forms have tremendous influence on the
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global understanding of Kidhler manifolds. A very important observation is that the
Hodge Laplacian commutes with the projection operator to the (p,q)-forms and
hence the (p, q) decomposition descends to the de-Rham cohomology. The theory was
soon generalized to cohomology with twisted coefficients. A very important
cohomology with twisted coefficient is cohomology with coefficient in the tangent
bundle or cotangent bundle, and their exterior powers. For the first cohomology with
coefficient in tangent bundle, Kodaira and Spencer developed the fundamental theory
of deformation of geometric structures, which gave far reaching generalization of the
works of Riemann, Klein, Teichmiiller and others on parametrization of complex
structures over Riemann surfaces. They realize that the first cohomology with
coefficient on tangent bundle, denoted by H!(T), parametrize the complex structure
infinitesimally and that the second cohomology with coefficient on tangent bundle,
denoted by H?(T), gives rise to obstruction to the deformation. The last statement was
made very precisely by Kurinishi using Harmonic theory of Hodge—Kodaira. It
describes the singular structure of the moduli space locally. Kodaira—Spencer
studied how elements in H'(T) acts on other cohomology, which leads to study
of variation of Hodge structures. The Hodge groups can be grouped in an appropriate
way to form a natural filtration of the natural de-Rham group. The Kodaira—Spencer
map plays a very important role in understanding the deformation of such filtrations.
Cohomology with coefficient of cotangent bundle or wedge product of cotangent
bundle gives to Hodge (p.q)-forms. The duality of tangent bundle and cotangent
bundle gives rise to something called mirror symmetry studied extensively in the last
thirty years in relation to the theory of Calabi—Yau manifolds. A very important tool in
complex geometry was the introduction of Chern classes to complex bundles over a
manifold and the representation of such classes by curvature of the bundle. When
Chern introduced the concept of Chern classes, he was influenced by the works of
Pontryagin classes. In the course of defining Chern classes by de-Rham forms given
by symmetric polynomial of the curvature form, Chern defined the Chern connection
for holomorphic bundles. He also proved that Chern classes of holomorphic bundles
are represented by algebraic cycles on algebraic manifolds. This has been the major

evidence of the Hodge conjecture: That every (p,p)class can be represented by
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algebraic cycles. Chern proved that three different ways to define Chern classes are
equivalent. In particular, he proved they are integral classes. Weil explained how they
are related to Lie algebra invariant polynomials. Weil remarked that the integrality of
Chern classes should play a role in quantum theory. Chern—Weil theory forms a bridge

between topology, geometry, and mathematical physics.

Kodaira was the first major mathematician who developed Hodge theory of harmonic
forms right after its announcement by Hodge and he generalized the theory of
harmonic forms to manifolds with boundaries, where various boundary conditions
must be imposed. Perhaps his most important work was his deep understanding that
the Bochner argument in Riemannian geometry can be used to prove a vanishing
theorem for cohomology classes under curvature condition of the manifold. He
realized that the natural place for such vanishing theorem is to deal with cohomology
with coefficient on bundle or sheaf. The vanishing theorem of Kodaira says that for

positive line bundle L on a compact complex manifold M:
HIM,Ky ® L) =0
for g > 0. Coupled with the following theorem of Serre duality:
HY(M,E) = H*9(M,K ® E*)
Kodaira vanishing theorem implies that the Euler characteristic of cohomology with

coefficients in a holomorphic vector bundle E with E @ K™ positive, is

simply the dimension of the group of holomorphic sections of E.

2.2 Computational Method on n-Dimensional Riemannian Manifolds

The purpose of this section is to discuss an implementation method on n-dimensional
Riemannian manifolds using a computer technique. A Riemannian manifold is a

differentiable manifold in which each tangent space is equipped with an inner product
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(-,) in a manner which varies smoothly from point to point. All differentiable
manifolds (of constant dimension) can be given the structure of a Riemannian
manifold. Geodesics plays an important role in many applications, especially in
nuclear physics, image processing. Ovidiu Calin and Vittorio Mangione [10]
considered the Heisenberg manifold structure to provide a qualitative characterization
for geodesics under non-holonomic constraints. Our implementation approach can
successfully well illustrate the important parameters such as Christoffel coefficients
that are required in the determination of tensors. This symbol appears in many
calculations in Geometry where we use non-Cartesian coordinates. In n-dimensions it
has a total of n3 components. Thus, whereas it is easy to compute this symbol in 2 or 3
dimensions, it becomes highly tedious to evaluate components of the Christoffel
symbols in higher dimensions, but it is quite an easy task to deal with such situations
if one can use algebraic computations for this purpose. However, it is not always
possible to have the ready-made routines available that can be used in situations like
this. Thus, it is of great use if one can write small routines to algebraically compute
such expressions. Nevertheless, these routines can be written only when one has a

reasonable knowledge of algebraic programming at the back of one’s mind [8, 96].

2.2.1 Riemannian Metrics and Levi-Civita Connection

Let M be a smooth manifold. A bilinear symmetric positive-definite form
9p oM X T,M - R

defined for every p € M and smoothly depending on p is called a Riemannian metric
on M. Positive-definite means that g,(v,v) > 0 for every v = 0,v € T,M.
Smoothly depending on p means that for every pair X, ,Y, of C* smooth vector

fields on M the expression g, (X, ,Y,) defines a C*-smooth function of p € M .

Alternatively, consider a coordinate neighbourhood on M containing p and let

xt, i =1,...,dimM be the local coordinates. Then any two tangent vectors

u,v € T,M may be written as u = u'(a/ax?) , v =v'(as0x!) and g,(u,v) =
pM may (0/0x"), (0/0x"),, and gy (u,v)

g; (p)u'v/ where the functions gl-j(p)=g((a/axi)p,(a/axi)p) express the
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coefficients of the metric g in local co-ordinates. One often uses the following
notation for a metric in local coordinates g = g; deidxj . The bilinear form
(metric) g will be smooth if and only if the local coefficients g; ;= g; (x) are smooth

functions of local coordinates x! on each coordinate neighbourhood.
Theorem 2.1. Any smooth manifold M can be given a Riemannian metric. [28]

Definition 2.1. A connection on a manifold M is a connection on its tangent bundle

TM. A choice of local coordinates x on M determines a choice of local trivialization of
. . d . o .
TM (using the basis vector fields S on coordinate patches). The transition function @

for two trivializations of TM is given by the Jacobi matrices of the corresponding

i

change of coordinates (¢ /) = (_)

axt

Let j‘}c be the coefficients (Christoffel symbols) of a connection on M in local

coordinates x‘. For any other choice x' of local coordinates the transition law on the

overlap becomes

axt axt axk' N axt 92xt
dxi" 0xJ dxk  9xi dxJoxk

, ./
[ — l
Ly = I;,k,

One can see from the above formula that if I;lk are the coefficients of a connection on
M then I"-l}( also are the coefficients of some well-defined connection on M (in general,

this would be a different connection). The difference T, = 6(— Il is called the

j

torsion of a connection (I}l}(). The transformation law for Tj‘k is

6x‘ 6x1 6x
T Tl ,
J'K" axi’ axJ axk

thus, the torsion of a connection is a well-defined anti-symmetric bilinear map sending

a pair of vector fields X, Y to a vector field T(X,Y) = kX JYk on M.

Theorem 2.2. On any Riemannian manifold (M, g) there exists a unique connection D

such that
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(Hd@X,Y)(Z) = gD;X,Y) + g(X,D;Y ) for any vector fields X,Y,Z on M,

and

(2) the connection D is symmetric, where D is called the Levi—Civita connection of the

metric g.
The condition (1) in the above theorem is sometimes written more neatly as

dg(X,Y) = g(DX,Y) + g(X,DY ).

2.2.2 Geodesics on a Riemannian Manifold

Let E - M be a vector bundle endowed with a connection (1}‘}(). A parameterized

smooth curve on the base M may be written in local coordinates by x!(t). A lift of this
curve to E is locally expressed as (x!(t), a’ (t)) using local trivialization of the bundle
E to define coordinates a’ along the fibres. A tangent vector (x(t),a(t)) €

T wiwyaienE to a lifted curve will be horizontal at every t precisely when a(t)

satisfies a linear ordinary differential equation
a' + L (x) adx* =0

Wherei,j =1,...,rank E,k =1,..., dim B.Now if E = TM then there is also a

canonical lift of any smooth curve y(t) on the base, as y(t) € T, M.

Definition 2.2. A curve y(t) on a Riemannian manifold M is called a geodesic if y(t)
at every t is horizontal with respect to the Levi—Civita connection. The condition for a

path in M to be a geodesic may be written explicitly in local coordinates as
2+ L) 23k =0

a non-linear second-order ordinary differential equation for a path x(t) = (x'(t))
(herei,j,k = 1,...,di mM). By the basic existence and uniqueness theorem from the

theory of ordinary differential equations, it follows that for any choice of the initial
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conditions x(0) = p,x(t) = a there is a unique solution path x(t) defined for |t| < &
for some positive €. Thus, for any p € M and a € T,,M there is a uniquely determined
(at least for any small |t|) geodesic with this initial data (i.e. ‘coming out of p in the

direction a’).

Proposition 2.3. If y(t) is a geodesic on(M, g) then |y(t)|g = constant.

2.2.3 Curvature of a Riemannian Manifold

Let g be a metric on a manifold M. The (full) Riemann curvature R = R(g) of g is,

by definition, the curvature of the Levi—Civita connection of g . Thus

R € Q% (End (TM)), locally a matrix of differential 2 -forms R = %(R},kl dxt A

dx®), i,j,k,l = 1...n = dimM . The coefficients (R}',kl) form the Riemann
curvature tensor of (M,g). Given two vector fields X,Y , one can form an
endomorphism field R(X,Y ) € I'(End(TM)) ; its matrix inlocal coordinates is
R(X,Y); = R}, X*Y* (as usualX = X*0,, Y =Y'9;). DenoteR, = R(dk,0l) €
End (T, M) (here p is any point in the coordinate neighbourhood). In local coordinates

a connection (covariant derivative) may be written asd + A, with A = I}‘}cdxk =

Apdx®. We write D, = D 5 = % + Aj. The definition of the curvature form of a
Erm K

connection yields an expression in local coordinates

i
R;,

3 2\
Kl = (Dleﬁ — Dy Dy ﬁ) ,0f Ry = —[Dy, D]
considering the coefficient at dx! A dx*. Now Dy = X*D,. So we have

—[DX: DY] = —[Xka:XlDl]
= —X*(0, YYD, — X*Y'D,D, + Y*(0, XD, + X*Y'D, D,
= X*Y'Ry; — [X,Y]'D,

We have thus proved.
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Pl'OpOSitiOIl 24 (l) Ri jkl = _Ri jlk = Rji,lk (11) kl + Rkl] + Rl]k 0 (111) Rl}kl

Ry j.

Proof. (i) The first equality is clear. For the second equality, one has, from the

definition of the Levi—Civita connection, ngl =g (D- 2 i) +g (aa?’Di %) and

Laxk’ gxl
further

%91 _

dxJoxt

g(DDlaxk’ al)+g(Diaa7’Dlax)+g(Df367’Dlax) +g(azk’DfDi%)

92 92
gl _ 99k The

The right-hand side of the above expression is symmetric in i, j as Sxioxt = 2uion]

anti-symmetric part of the right-hand side (which must be zero) equals R; ji; + R -

i , i
(i) F irstly,(Dk %) = [} = (Dj %) , by the symmetric property of the Levi—Civita.

The claim now follows by straight forward computation.

(111) Multlplylng (11) by gl-qgives Ri jkl + Ri klj+ Ri ljk = 0. Slmllarly Rjk,li+ le,i k+

Rjijg =0 Ry j+ Riiji+ Rjii=0and Ry + Ry jii + Ry j= 0.

Adding up the four identities and making cancellations using (i) (the ‘octahedron

trick’) gives the required result. 0

There are natural ways to extract “simpler” quantities (i.e. with less components) from

the Riemann curvature tensor.

Definition 2.3. The Ricci curvature of a metric g at apointp € M,Ri ¢ = Ri dg)y,
is thetrace of the endomorphism v — R,(x,v)y of T,M depending on a pair of
tangent vectors x,y € T,M. Thus in local coordinates Ri dp) is expressed as a matrix
Ric= (Rigp,Rig;= Zq i,jq- That is, the Ricci curvature at p is a bilinear form on
T,M. A consequence of Proposition 2.5(iii) is that this bilinear form is symmetric,
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Definition 2.4. The scalar curvature of a metric g at a pointp € M,s = scal(g), is
asmooth function on M obtained by taking the trace of the bilinear form Ri g ;jwith

respect to the metric g.

If local coordinates are chosen so that g; {p) = & i,jthen the latter definition means
that s(p) = X;R;; (p) =X;;Rijji (p). For a general g;;, the formula may be
writtenas s = Y; g'/Ri g j» where g'/is the induced inner product on the cotangent

space with respect to the dual basis, algebraically (g'/) is the inverse matrix of (g; ).

2.2.4 Computer Code

In the current section, we have presented our developed computer codes with an
example. We have developed this codes by using a mathematical programming

language MATLAB [99].

Example 2.1. Consider the metric for the three-sphere in coordinates x* = (Y, 8, @) is

given by [11]

ds? = dy? + si P (d6?*+si 170d p?)

MATLAB Code 1: (Calculating the Christoffel symbols of thefirst kind)

function [pl=christoffelsl (i, ], k,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O

(sin(shi) *sin(theta))"2];

result=diff (metric(j, k), coord(i))+diff (metric (i, k), coord (]
))-diff (metric (i, j),coord(k));

p=(1/2) *result;

end
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If we run the above code for a particular input, then we will get a corresponding
output. The followings are non-vanishing components and all other components are

Z€10.

Input: christoffelsl (1,2,2)
Output:cos (shi) *sin (shi)
Input:christoffelsl (1, 3, 3)

Output:cos (shi) *sin(shi) *sin (theta) "2
Input:christoffelsl (2,1,2)
Output:cos (shi) *sin (shi)
Input:christoffelsl (2,2,1)
Output:-cos (shi) *sin (shi)

Input: christoffelsl(2,3,3)

Output:cos (theta) *sin (shi) “"2*sin (theta)
Input:christoffelsl (3,1, 3)

Output:cos (shi) *sin (shi) *sin (theta) "2
Input:christoffelsl (3,2, 3)

Output:cos (theta) *sin(shi) *2*sin (theta)
Input: christoffelsl (3,3,1)

Output:-cos (shi) *sin(shi) *sin (theta) "2
Input: christoffelsl (3,3,2)

Output: -cos (theta)*sin(shi)"2*sin(theta)

MATLAB Code 2: (Calculating the Christoffel symbols of the second kind)

function [e]=christoffels2(1l,i,j,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O

(sin(shi) *sin(theta))"2];

inversemetric=inv (metric);

e=0;
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for k=1:3

e=e+ ((1/2)*sum(inversemetric (1, k) * (diff (metric (j, k), coord/(
i))+diff (metric (i, k), coord(j))-

diff (metric(i,j),coord(k))))):;

end

end

If we run the above code for a particular input, then we will get a corresponding
output. The followings are non-vanishing components and all other components are

ZCro.

Input: christoffels2(1,2,2)
Output:-sin (shi) *cos (shi)
Input:christoffels2 (1, 3, 3)
Output:-sin (shi) *cos (shi) *sin (theta) "2
Input:christoffels2(2,1,2)
Output:cos (shi) /sin (shi)
Input:christoffels2(2,2,1)
Output:cos (shi) /sin (shi)
Input: christoffels2(2,3,3)
Output:-cos (theta) *sin (theta)
Input:christoffels2 (3,1, 3)
Output:cos (shi) /sin (shi)
Input:christoffels2 (3,2, 3)
Output:cos (theta) /sin (theta)
Input: christoffels2(3,3,1)
Output:cos (shi) /sin (shi)
Input: christoffels2 (3, 3,2)

Output: cos (theta) /sin(theta)
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MATLAB Code 3: (Calculating the geodesic)

function [final]=geodesic(l)
symsshithetaphiderivative (shi)derivative (theta)derivative (
phi);

d=[derivative (shi) derivative (theta) derivative(phi)];
coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O
(sin(shi) *sin (theta))"2];

inversemetric=inv (metric) ;

s=0;
fori=1:3
for j=1:3
=0;
=1;
for k=1:3

g=g+ ((1/2)*sum(inversemetric (1, k) * (diff (metric(j, k), coord(
i))+diff (metric (i, k), coord(j))-
diff (metric(i,j),coord(k))))):;
end
p=p*g*d (i) *d(]);
S=s+p;
end
end
final=s*(-1);
disp('derivative of');
disp(d(l));
end
If we run the above code for a particular input, then we will get a corresponding
output.

Input: geodesic (1)
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Output:derivative of

derivative (shi)=

cos (shi) *sin(shi) *derivative (phi) *2*sin (theta) "2 +

cos (shi) *sin(shi) *derivative (theta) "2

Input: geodesic (2)

Output: derivative of

derivative (theta)=
derivative (phi) *2*cos (theta) *sin(theta) -

(2*cos (shi) *derivative (shi) *derivative (theta)) /sin (shi)
Input: geodesic (3)

Output: derivative of

derivative (phi)=

- (2*derivative (phi) *cos(shi) *derivative(shi))/sin(shi) -
(2*derivative (phi) *cos (theta) *derivative (theta)) /sin (theta

)

MATLAB Code 4: (Calculating the Riemann Christoffel tensor)

function [a]l=reichris(l,i,3j,rl,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

a=0;

for s=1:3

p=diff (christoffels2(1l,i,rl,shi,theta,phi),coord(j))-

diff (christoffels2(1l,i,j,shi,theta,phi),coord(rl));
g=g+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r
1,shi, theta,phi) -
christoffels2(l,s,rl,shi,theta,phi)*christoffels2(s,i,j,sh
i, theta,phi);

a=p+q;

end
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function [e]l=christoffels2(1l,i,j,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O

(sin(shi) *sin(theta))"2];

inversemetric=inv (metric);

e=0;

for k=1:3
e=e+((1/2)*sum(inversemetric (1, k) * (diff (metric (Jj, k), coord(
i))+diff (metric (i, k), coord(j)) -

diff (metric (i, j),coord(k))))):;

end

end

end

If we run the above code for a particular input, then we will get a corresponding
output. The followings are nonvanishing components and all other components are

zero or are related via symmetries.

Input: reichris(1,2,1,2)
Output:sin (shi) "2

Input: reichris(1,3,1,3)
Output:sin (shi) "2*sin (theta) "2
Input: reichris(2,3,2, 3)

Output:sin (shi) "2*sin (theta) "2

MATLAB Code 5: (Calculating the Ricci tensor)

function [f]l=ricci(i,rl,shi,theta,phi)
symsshithetaphi ;
£=0;
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for j=1:3

f=f+reichris(j,i,j,rl,shi, theta,phi);

end

function [a]l=reichris(l,i,3j,rl,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

a=0;

for s=1:3

p=diff (christoffels2(1l,i,rl,shi,theta,phi),coord(j))-

diff (christoffels2(1l,i,j,shi, theta,phi),coord(rl));
g=g+christoffels2(1l,s,j,shi,theta,phi)*christoffels2(s,i,r
1,shi, theta,phi) -
christoffels2(l,s,rl,shi,theta,phi)*christoffels2(s,i,j,sh
i, theta,phi);

a=p+g;

end

function [e]=christoffels2(1,i,j,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O

(sin(shi) *sin(theta))"2];

inversemetric=inv (metric);

e=0;

for k=1:3
e=e+((1/2)*sum(inversemetric (1, k) * (diff (metric (j, k), coord/(
i))+diff (metric (i, k), coord(j))-

diff (metric(i,j),coord(k))))):;

end

end

end

end
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If we run the above code for a particular input, then we will get a corresponding
output. The followings are nonvanishing components and all other components are

Z€10.

Input: ricci(1,1)
Output:2

Input: ricci(2,2)
Output:2sin (shi) ~2
Input: ricci (3, 3)

Output:2sin (shi) “2*sin (theta) "2

MATLAB Code 6: (Calculating the scalar curvature tensor)

function [c]=scalar (shi, theta,phi)
symsshithetaphi;

metric=[1 0 0;0 (sin(shi))”2 0;0 O
(sin(shi) *sin (theta))"2];

inversemetric=inv (metric) ;

c=0;

fori=1:3

for r1=1:3

c=c+ (inversemetric (i, rl) *ricci(i, rl,shi,theta,phi));
end

end

function [f]l=ricci(i,rl,shi,theta,phi)
symsshithetaphi ;

£=0;

for j=1:3

f=f+reichris(j,i,j,rl,shi, theta,phi);

end

function [a]l=reichris(l,i,3j,rl,shi,theta,phi)

symsshithetaphi;
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coord=[shi theta phil];

a=0;

for s=1:3

p=diff (christoffels2(1l,i,rl,shi,theta,phi),coord(j))-

diff (christoffels2(1l,i,j,shi,theta,phi),coord(rl));
g=g+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r
1,shi, theta,phi) -
christoffels2(l,s,rl,shi,theta,phi)*christoffels2(s,i,j,sh
i, theta,phi);

a=p+qg;

end

function [e]=christoffels2(1,i,j,shi,theta,phi)
symsshithetaphi;

coord=[shi theta phil];

metric=[1 0 0;0 (sin(shi))”2 0;0 O
(sin(shi) *sin (theta))"2];

inversemetric=inv (metric);

e=0;

for k=1:3

e=e+ ((1/2)*sum(inversemetric (1, k) * (diff (metric (j, k), coord/(
i))+diff (metric (i, k), coord(j))-

diff (metric(i,j),coord(k))))):;

end

end

end

end

end

If we run the above code, then we will get the following output.

Input: scalar

Output: 6
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2.3 Three-Dimensional Metrics as Deformations of a Constant

Curvature Metric

It is known, since an old result by Riemann, that a n-dimensional metric has
f = n(n—1)/ 2 degrees of freedom, that is, it is locally equivalent to the giving of f
functions. As this feature is related to some particular choices of local charts, which
are obviously non-geometric objects, it seems to be generically a not covariant
property.

According to it, a two-dimensional metric has f = 1 degrees of freedom.In this case,
however, a stronger result holds, as it is well known [18], namely: any two-
dimensional metric g is locally conformally flat, g = ¢n , ¢ being the conformal
deformation factor and 7 the flat metric.

Contrarily to what the above Riemann’s general result suggests, the two dimensional
case is intrinsic and covariant, 1i.e. it only needs the knowledge
of the metric g and only involves tensor quantities, specifically, the sole
degree of freedom is represented by a scalar, the conformal deformation
factor ¢. The question thus arises of, whether or not, for n > 2 there exist similar
intrinsic and covariant local relations between an arbitrary metric g, on the one
hand, and the corresponding flat one 1 together with a set of f covariant quantities
on the other.

To our knowledge, no result of this type has been published. Indeed, the
known results concerning the diagonalization of any three-dimensional metric do not
belong to this type. As a matter of fact, besides the f = 3 scalars and the (more or less
implicit) flat metric, these results also involve a particular orthogonal triad of vector
fields. Also, in the context of the General Theory of Relativity, such a n-dimensional
relation has been proposed by one of us, but unfortunately it remains for the moment

only a mere conjecture [15].

In this section we shall answer affirmatively the three-dimensional case. This
dimension is the solution to the equation f = n, so that one is tempted to take (the

components of) a vector field as the covariant set (of f = 3 quantities).
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On the other hand, the result being deliberately local, it would seem that the
essentials of the flat metric in this matter is its minimal freedom, i.e. the maximal
dimension of its isometry group, so that it should be possible to substitute it
by a prescribed constant curvature metric. We shall see that both assumptions
work.

In fact, this section is devoted to proving the following result:

Theorem 2.5. Any three-dimensional metric g may be locally obtained from a

constant curvature metric, h, by a deformation like

g=0ch+es @ s (2.1)

where o and s are respectively a scalar and a one-form, the sign ¢ = +1 and
a functional relation between o and the Riemannian norm of scan be arbitrarily
prescribed.

This result should be interesting in geometrical as well as in physical situations.
In geometry, perhaps one of the first questions to be answered is the following: In two
dimensions it is known that the gauge of the conformal factor o or,
equivalently, the set of flat metric tensors conformal to a given metric is given by
the solutions of the Laplacian, Ao = 0 [80].

In classical physics, the above theorem should be useful in (finite) deformation theory
of materials; equation (2.1) may be considered as an ideal universal
deformation law, allowing, from an unconstrained or not initial state (described
in material coordinates by the tensor h), to reach any other deformation state
(described in the same coordinates by the tensor g ). This ideal universal law
allows to associate, to every deformation state of a material, a vector field s among
those of the gauge class of the flat metric.

In general relativity, any vacuum space-time is locally equivalent to its Cauchy data,
{g, K}, g being the spatial metric and K is the extrinsic curvature of the initial instant.
These data have to verify the constraint equations, a set of four equations for which

many years ago Lichnerowicz showed [63] that to every arbitrarily given metric g’ it
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corresponds a unique solution {g, K} such that g = gg’ . This beautiful result is
however useless for precise physical situations because, g being initially unknown,
one does not see how to choose the good starting metric g’ , which has to give g by
conformity. Such an objection may be eliminated using (2.1) in the constraint
equations. Our theorem also allows to translate notions such as asymptotic flatness or

spatial singularity in terms of the differential 1-form sover a flat metric h.

2.3.1 Flat Deformation of a Given Metric

Instead of proving theorem 2.5 as stated in the introduction, we shall prove the

following equivalent result:

Theorem 2.6. Let (M,g) be a Riemannian 3-manifold. There locally exist a

function ¢ and a differential 1-form p such that the tensor

g =pg—ep@u (2.2)

(withe = £1) is also a Riemannian metric with constant curvature. Besides, an
arbitrary relation between ¢ and |p|? = gijuiuj can be imposed in advance. The

equivalence between both theorems follows immediately on substituting

1
h=g', c=¢ lo=¢ 2p

into equation (2.1). The present formulation (2.2) stresses that we seek to derive
g'from a given g. The proof is based on the comparison of the Riemannian geometries
respectively defined by g and g'.

We start by considering the Riemannian connections A and A’. In an arbitrary

frame {e;};=1 » 3 the expression (2.2) reads:

g'i ;= @gij=Viwith V= (2.3)
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We shall consider the difference tensor:

)| J
Bii =V ki~ Vai (2.4)
which is symmetric:

J ._ npJ
B,; == B}, (2.5)
because both connections are torsion free.

Now, since Ap g;j=A4"y g, i= Oand taking (2.5) into account, we easily obtain

that:

B!, = 20k Gir+ @i Gkr = Pr Gire— D Mip— D My + A My JR'™ - (2.6)

where

1

p—mg

W=7 (g7 + —— M), withmg = gt M; = elul? (27)

) . . ,
is the inverse metric for g i
For the sake of illustration, we shall consider an example of 3-dimensional

Riemannian manifolds and locally deform them into flat metrics, in the sense stated in

Theorem 2.6.

Example 2.2. (Schwarzschild Space)
The title is a shortening for the space 3-manifold for Schwarzschild coordinates in

Schwarzschild space-time. The metric is:
=k ldr@dr+r?2do ®@do+r?sitfdep Q@ dp (2.8)

with k =1 — ZTm, in the region r > 2m (otherwise the metric is not Riemannian).

This metric can be deformed into a flat metric in several ways. Among others:

(A) Choosing s = Vk~1 — 1 dr, we readily obtain:
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Gg=9 +sQs
Where g' = dr @ dr +r2d0 ® d8 + r?si 170 dop ® de is flat.

(B) It is well known that changing r into the coordinate

R=%(r@+r—m), 7"=R(1+%)2

the metric becomes:§ = og’, where

4
o=(1+3). g =dR®dR+R?d0®d6 +R%si 10 dp @ dp

2R

1s a flat metric.

We have shown that, locally, any Riemannian 3-dimensional metric g can
be deformed along a direction sinto a metric chthat is conformal to a metric of
constant curvature, as stated in theorem 2.5.The direction s is not uniquely determined
by the metric g and the decomposition (2.1) can be achieved in an infinite number of
ways. Determining more precisely the class of o and s which deform a given g into a
constant curvature metric h will be the object of future work. Specially the case where

both g and h, are flat.
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CHAPTER 3

CONNECTIONS WITH SYMPLECTIC
STRUCTURES

Symplectic geometry originated in Hamiltonian dynamics. Symplectic geometry is the
study of symplectic structures. These are certain topological structures, but these can
only exist on even dimensional manifolds. Since symplectic structures are purely
topological structures, so they do not depend on any metric structure of the underlying
space. In the earlier work, Nazimuddin and Rifat (2014) developed a comparison
between symplectic and Riemannian geometry [78]. After summarizes the basic
definitions, examples and facts concerning symplectic geometry this chapter will
proceed to discuss the connections of symplectic geometry with the contact geometry,

Riemannian geometry and Kadhler geometry.

This chapter is mainly a review. But there are some original calculations also. The
original part of this chapter is to make several connections with the symplectic

geometry which exists in section 3.4, section 3.5 and section 3.6.

3.1 Basic Concepts with Examples

Let M be an even dimensional smooth closed manifold, that is a compact smooth
manifold without boundary. A symplectic structure w on M is a closed (dw = 0),
non-degenerate (w" = wA...Aw # 0) smooth 2-form. The nondegeneracy
condition is equivalent to the fact that w induces an isomorphism. In symplectic
geometry, conformal changes to w (i.e., multiplying by g) would usually force

d(gw) # 0.

Example 3.1. The standard symplectic structure on R?" is given by

n
wy = Z dx; A\ dy;
i=1
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where (x4, X3, ..., X, Y1, V2, -., Vp) are the coordinates of R?™ It is clear that w, is

closed.

Example 3.2. All manifolds are not symplectic. For instance, S* is not. If w, is a
symplectic form on S*, then w, is exact, since the second homology class of S*
vanishes [69]. In other words, since w, is a closed 2-form w, = day, for some 1-form
ay and d(wy A ag) = wy A wg. Since wy A wy is a volume form on S*, Stokes

theorem implies that

f a)o/\a)():f 0)0/\0l0¢0
S4 654

Since S* has no boundary, the last integral vanishes and w, can have no symplectic

form.
3.2 Local Theory

The natural equivalence between symplectic structures is symplectomorphism. Two
symplectic structures w; and w, on manifolds M; and M, , respectively, are
symplectomorphic if there exists a diffeomorphism ¢ : M; - M, satisfying
¢ (w1) = w, . All symplectic structures are locally symplectomorphic. In
consequence, there are no local invariants in symplectic geometry according to the
following theorems. In particular case, we have Darboux’s theorem which states that,
all symplectic structures on a 2n dimensional manifold is locally symplectomorphic to

the standard structure on R?™.

Theorem 3.1. (Darboux’s theorem) Let M be a manifold of dimension 2nwith a
closed non-degenerate 2-form w,. For any point p on a symplectic manifold, there

exists a chart U with local coordinates (xy, X5, ..., Xp, V1, Y2, -, Yn), such that on U

n
Wy = Z dx; A dy;
i=1

Thus, locally all symplectic structures are symplectomorphic to example 3.1.
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Theorem 3.2. (Weinstein’s Theorem) If a submanifold Lof a symplectic manifold
(M, w), then there exists a neighborhood of L which is symplectomorphic to a

neighborhood of the zero section in the cotangent bundle T*L.

Furthermore, symplectic structures are “local in time”. That is symplectic

deformations of symplectic structures do not produce new symplectic structures.

Th e o r e3nB. (Moser’s theorem) Let M be a closed manifold and w,,t € [0,1] is
a family of cohomologous symplectic forms on M then there is an isotopy ¢, with

@y = i dsuch that ¢,."(w;) = w, for all t.

In particular, on a symplectic manifold all deformations of symplectic structures come
from diffeomorphisms of the underlying manifold. The theorem is not true if the

symplectic structures do not agree off of a compact set.
3.3 Existence and Classification

If a symplectic vector bundle is a pair (E, w ) over a smooth manifold M of rank 2n,
where E — M is a real vector bundle, then w, (skew-symmetric and non-degenerate)
is a symplectic form on each fiber E;, depending smoothly on q. Each of the following
two characteristics is equivalent to the existence of a symplectic structure (a) the
existence of a reduction of the structure group of Efrom general linear group GL (2n)
to symplectic group Sp(2n, R) and (b) the existence of an (almost) complex structure
onE: ] € End(E) such that J> = —I d

Now we discuss some recent results on the existence of symplectic structures on both
open and closed manifolds. The existence problem of symplectic structures on even
dimensional closed manifolds is quite difficult. However, Gromov has shown that
symplectic structures on open manifolds obey an h-principle rule. As the existence
problem of symplectic structures is based on a differential equation, but it can be

reduced to a differential inequality and then solved by the h-principle.

56



Theorem 3.4. (Gromov’s Theorem) Every 2n dimensional manifold M with almost
symplectic structure is homotopic through almost symplectic structures to a

symplectic structure, if M is open.

If the manifolds are closed, then the existence problem is much more subtle. Often
there are no A-principle rules. The following result was obtained using Seiberg—Witten

theory:

Theorem 3.5. (Taubes Theorem) The connected sum of an odd number of copies of
CP? does not admit a symplectic structure (even though it admits an almost

symplectic structure and a cohomology class f € H2(M) such that §? # 0).

In higher dimensions the uniqueness problem for symplectic forms on closed
manifolds does not reduce to topological obstruction theory. There is often a dramatic
difference between the space of non-degenerate two-forms and the space of symplectic

forms [70].
3.4 Connections with Contact Geometry

The even dimensional analogue theory to contact geometry is symplectic geometry. In
general, contact manifolds come naturally as boundaries of symplectic manifolds.
Also, a contact manifold by symplectic means by looking at its symplectization

[19, 42].
Consider (X, w) be a symplectic manifold. A vector field v satisfying
L,w = w

where L,w is the Lie derivative of w in the direction of v, is called a symplectic
dilation. A compact hypersurface M in (X, w)is said to have contact type if there exists
a symplectic dilation v in a neighborhood of M that is transverse toM. Given a
hypersurface M in (X, w) the characteristic line field LM in the tangent bundle of M is
the symplectic complement of TM in TX. (Since M is codimension one it is

coisotropic and thus the symplectic complement lies in TM and is one dimensional.)
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Theorem 3.6. Let M be a compact hypersurface in a symplectic manifold (X, w) and
denote the inclusion map i : M — X. Then M has contact type if and only if there
exists a 1-form aon M such that da = i*wand the form a is never zero on the

characteristic line field.

If M is a hypersurface of contact type, then the 1-form « is obtained by contracting the
symplectic dilation v into the symplectic form: a = [,w. It is easy to verify the
I-form a is a contact from on M. Thus, a hypersurface of contact type in a symplectic

manifold inherits a co-oriented contact structure.

Given a  co-orientable contact manifold (M,§) its  symplectization
Symp(M, &) = (X, w)is constructed as follows. The manifold X = M X (0, ) and
given a global contact form a for ¢ the symplectic form is w = d(t a), where t is the

coordinate on R.

Example 3.3. The symplectization of the standard contact structure on the unit
cotangent bundle is the standard symplectic structure on the complement of the zero

section in the cotangent bundle.

The symplectization is independent of the choice of contact from a. To see this fix a
co-orientation for ¢ and note the manifold X can be identified (in may ways) with the
subbundle of T*M whose fiber over x € M is{§ E TyM : B(&,) = Oand f > 0 on
vectors positively transverse to &, tand restricting dA the this subspace yields a
symplectic form w, where A is the Liouville form on T*M. A choice of contact form a
fixes an identification of X with the subbundle of T*M under which d(t @) is taken to
dA.

d . . e . .
The vector field v = 50N (X,w) is a symplectic dilation that is transverse to

M x {1} < X. Clearly, l,w|yx{1; = @. Thus, we see that any co-orientable contact

manifold can be realized as a hypersurface of contact type in a symplectic manifold. In

summary we have the following theorem.
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Theorem 3.7. If (M, §) is a co-oriented contact manifold, then there is a symplectic
manifold Synp (M, ) in which M sits as a hypersurface of contact type. Moreover,
any contact form a for ¢ gives an embedding of M into Synp (M, §) that realizes M

as a hypersurface of contact type.

We also note that all the hypersurfaces of contact type in (X, w) look locally, in X, like

a contact manifold sitting inside its symplectification.

Theorem 3.8. Given a compact hypersurface M of contact type in a symplectic
manifold (X, w)with the symplectic dilation given by v there is a neighborhood of M
in X symplectomorphic to a neighborhood of M X {1} in Symp (M, ) where the
symplectization is identified with M X (0, c0)using the contact form a¢ = l,w|, and

& = kera

The following proposition shows how symplectic structures can be generated from

contact structures.

Proposition 3.9. [71] Let a be a contact structure on a 3-manifold. Then d(ea) is a
symplectic form on the 4-dimensional manifold M X R, where 0 is the coordinate on

R. (Here a is written as a form on M X R).
Proof. We have w, = d(ega) =e%(dO A a + da). Thus,

wo Awy = e??(2do Aa Ada + da A da)

Since a A da is never zero and since da A dadoes not contain differentials of 8, the

claim follows. O

There are also other relations between contact and symplectic geometry [20].
3.5 Connections with Riemannian Geometry

The differentiable structure of a smooth manifold M gives rise to a canonical
symplectic form on its cotangent bundle T*M. Giving a Riemannian metric g on M is
equivalent to prescribing its unit cosphere bundle Sg*M C T*M and the restriction of

the canonical 1-form from T*M gives S*M the structure of a contact manifold.
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The following examples of known results are closely related to Riemannian and

symplectic aspects of geometry.

(a) A submanifold L of a symplectic manifold (M, w) is called lagrangian if w =0
onTL.

(i) Endow complex projective space CIP™ with the usual Kahler metric and the usual
Kahler form. The volume of submanifolds is taken with respect to this Riemannian
metric. According to a result of Givental-Kleiner—Oh, the standard RP™ in CPP™ has
minimal volume among all its Hamiltonian deformations [78]. A partial result for the
Clifford torus in CP" can be found in [27]. The torus S X S c §2? x S? formed by
the equators is also volume minimizing among its Hamiltonian deformations [42]. If L
is a closed Lagrangian submanifold of (R?", w,) there exists according to [94] a

constant C depending on L such that
Vol(py (L)) = C for all Hamiltonian deformations of L.

(i1)) The mean curvature form of a Lagrangian submanifold Lin a Kahler-Einstein

manifold can be expressed through symplectic invariants of L [12].

(b) To estimate the first eigenvalue of the Laplacian operator on functions for certain

Riemannian manifolds, symplectic methods can be used [84].

(c) Consider a bounded domain U c R?" with smooth boundary. There exists a

periodic billiard trajectory on U of length [ with
" < Cvol(U)
where C,, is an explicit constant depending only on n [20].

(d) Also Jacobi identity

filgh} + (hif. g3} + {g{hf}} =0

is satisfied as a consequence of the closure of the symplectic form, dw = 0.
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3.6 Connections with Kahler Geometry

Kahler manifolds are the remarkable class of symplectic manifolds. M. Gromov [29]
observed that some of the tools used in the Kdhler context can be used for the study of
symplectic manifolds. One part of his wondering work has grown into which is now
called Gromov—Witten theory [72]. All Kahler manifolds are symplectic, since the
Kahler form is closed and non-degenerate. For instance, the complex projective space
CP™ is Kahler so that this space is also symplectic. But the converse need not be true,

but we have the following theorem:

Theorem 3.10. A structure (M, w,]) on a smooth manifold X is a Kdhler structure if

w 1s a symplectic form, J is a complex structure, g is a Riemannian metric such that

g, Y) = wX,]Y).

Many techniques and constructions from complex geometry are most useful in
symplectic geometry. For instance, there is a symplectic version of blowing-up, which
is closely related to the symplectic packing problem [73, 74], also Donaldson’s

construction of symplectic submanifolds [17].

Also, any complex surface admits a Kahler structure if and only if the first Betti
number is even [9]. There are many symplectic 4-manifolds with even b1 (or b1 = 0)
admitting no Kahler structure [31]. For a minimal Kahler surface we have the

following theorem.

Theorem 3.11. Let (X, /) be a minimal Kahler surface. Then inside the symplectic
cone, the Kahler cone can be enlarged across any of its open face determined by an
irreducible curve with negative self-intersection. In fact, if the curve is not a rational
curve with odd self-intersection, then the reflection of the Kahler cone along the

corresponding face is in the symplectic cone.

In addition, for a minimal surface of general type, the canonical class K; is shown to

be in the symplectic cone in [14, 88].
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CHAPTER 4

SYMPLECTIC AND CONTACT GEOMETRY
WITH COMPLEX MANIFOLDS

In this chapter we discuss about almost complex structures and complex structures on
Riemannian manifolds, symplectic manifolds and contact manifolds. We have also
shown a special comparison between complex symplectic geometry and complex
contact geometry. Finally, we investigate the existence of a complex submanifold of
positive dimension in C™ that intersects a real submanifold along two absolutely and

real analytic submanifolds.

The first example of compact symplectic manifold with no Kdhler structure is
provided in [92]. Thurston’s example had already been discovered as a complex
manifold, by Kodaira during his work on the classification of compact complex
surfaces [50]. On the other side, the thought of complex contact manifold was
discovered as an end result of the works of Kobayashi and Boothby [56, 57, 58] in late
1950s and the early 1960s. Then in 1965, Wolf [97] studied homogeneous complex
contact manifolds. Ishihara and Konishi [44, 45] delivered a notion of normality for
complex contact structures. In this development however, the notion of normality
looks too robust due to the fact it precludes the complicated Heisenberg group as one
of the canonical examples, even though it does include complex projective spaces as
odd complex dimension as one would expect. Then B. Korkmaz [47, 48, 49] provide a

new situation for the normality.

In this chapter, we study on symplectic geometry and contact geometry with complex
manifold. Here we have developed a special comparison between complex symplectic
geometry and complex contact geometry. This chapter is mainly a review. But the
original part of this chapter is to develop a special comparison using some special

characteristic which exists in section 4.3.
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4.1 Complex Symplectic Manifolds

Let (M,w) be a complex-symplectic manifold with di mM = 2n and complex
structure J,. Then w is a closed, holomorphic 2-form with w™ # 0. Let w = w; +
iw,, where w; and w, are real 2-forms. Since w is closed, so are w; and w, .
Also, w being holomorphic means that w(X + iJoX,*) = 0 as al-form on T®M. It is
easy to see then that

W (X,Y) = —w01(JoX,Y) = —w1(X,]oY)

for any real vectors X and Y. Now, we may use the complex version of Darboux’s
theorem to find local holomorphic functions (zy,...,Z,, Wy,...,W;,) such that w =
dzy A dwy +-- +dz, A dwy. If we derive real coordinates z; = x; + iy;, w; =

s; + it;, then

wq = dx; AN ds;—dy, A dty +---+dx, A ds, —dy, A dt,

w; dx; A dt; —dy; A dsq +- +dx, A dt, —dy, A ds,

from which we see that 3™ # 0 and w35™ # 0. Thus, we have two distinct symplectic
structures on M. For now, we will assume that each represents an integral class in
cohomology.

Gromov proved that an open almost complex manifold M always carries a compatible
symplectic structure [30]. For compact manifolds existence of an almost complex
structure does not imply existence of a symplectic structure and the simplest additional
necessary condition is the existence of a closed 2-form w such that its powers w’ are

cohomologically for j = 1,++,N: [w]/ # 0 in H?/ (M).

A complex manifold Mis called a Kdhler manifold if it carries a Hermitian metric
h; szidz_j such that the form w = h; szidz_j is closed. This form is symplectic and
therefore any Kdhler manifold carries a natural symplectic structure.

The simplest examples of K dhler manifolds are algebraic manifolds which are

complex submanifolds of the complex projective spaces. For such manifold a Kdhler
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structure is given by the metric induced from the Fubiny-Study metric by the
embedding. Denote by (CP", wgs) the complex projective space CP™ with a Kdhler
form wgg induced by the Fubiny—Study metric. These symplectic manifolds serve as

universal symplectic manifolds in the following sense.

Proposition 4.1. [90] Let (M, w) be a compact symplectic manifold of dimension 2n
such that the form w is integer, i.e. [w] € H*(M; Z) < H?*(M; R). Then there exists
an embedding

f: M - cpt!

such that f * wps = w.

4.1.1 Complex symplectic structure on T*T (S)

It is a basic fact that if M is any complex manifold (in particular when M = T (S)),
the total space of its holomorphic cotangent bundle T*M is equipped with a canonical
complex symplectic structure.

The canonical 1-form & is the holomorphic (1, 0)-form on T*M defined at a point
¢ ET*M by y := "¢, wherem: T*M — M is the canonical projection and ¢ is
seen as a complex covector on M in the right-hand side of the equality. The canonical
complex symplectic form on T*M is then simply defined by wc,, = d&. If (z;) is a
system of holomorphic coordinates on M so that an arbitrary (1,0)-form has an
expression of the form a@ = ) wydz,, then (z;,wy) is a system of holomorphic
coordinates on T*M for which & = Y widz,and wey, = . dwy A dz .The canonical
1-form satisfies the following reproducing property. If a is any (1,0)-form on M, it is
in particular a map M — T*M and as such it can be used to pull back differential
forms from T*M to M. It is then not hard to show that a*¢ = « and as a consequence

a‘w .qn = da.
4.2 Complex Contact Manifolds

Let X be a complex manifold and TX its holomorphic tangent bundle. The complex

manifold X is called contact if there is a complex-codimension one holomorphic
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sub-bundle D of TX which is maximally non-integrable, i.e. the tensor

DxD - TX/D

(v,w) — [v,w]nod D

is non-degenerate for every point of X.

Let L := TX/D be the quotient line bundle and 8 : TX — L the tautological
projection, so that we have the short exact sequence

0—->D->TX->L - 0.
The projection 6 can be thought of as a 1-form with values in the line bundle L,0 €
I'(X,QY(L)), with ker(8) = D. The sub-bundle D must have even rank 2n and,
therefore, the manifold X has odd complex dimension 2n + 1 > 3. Moreover, the non-

degeneracy condition implies

8 A(dO)" € T(X, QZ+1(Ln+1Y)

is nowhere zero. This provides an isomorphism of the anti-canonical line bundle
[57, 60] of X and L™*1, Since L = TX/D, there is a C* isomorphism
TX=D @ L,
so that
c(X) = c(D) - c(L).

There is also the following isomorphism

D=D"Q® L
By means of the splitting principle we can write the Chern classes in terms of formal
roots
cD) =1+ yD@d + y2) (1 + y2n),
and
c(L) = (1 + yzn+1)s
so that

c1(X) = (n + Dysnya
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4.2.1 General facts about global complex contact structures

We will now review some facts about global complex contact structures and their
corresponding vertical sub-bundles. Throughout this section, we assume that
n = u — i vis a global holomorphic contact form (u and v are real 1-forms with
v = u oJ) and that V is the subbundle of TP defined as the span of {U,V = —] U}

where

u(U) =1,v(U) =0,(U)du =0,

u(¥)= 0,v(V) = 1,(V)dv = 0.
Theorem 4.2. If P is a complex contact manifold with a global holomorphic contact
formn = u — ivand corresponding vertical subbundleV = span{U,V = —]J U}
given by

u(U) =1,v0) =0,(U)du=0,

u(¥)= 0,v(V) = 1,(V)dv = 0.
Then
1. U and J Uare infinitesimal automorphisms of /, i.e., Ly, ] = L,y ] = 0.
2.1U,J U = 0,so thatV is a foliation of TP.
3.Lyu =Ljyu =Lyv =Lyv= 0.
4. Ly(du) = L;y (du) = Ly(dv) = L;y (dv) = 0.
Proof. If we use the complex Darboux Theorem to derive holomorphic coordinates
(z4,---, Zans1)such that

N = dz; — z,dzz — —Zy, dZap41,

then we see immediately that %(U —1J§J = 0/0zy . In other words, both
U= 0/0x; andJU = 0/0dy, are infinitesimal automorphisms of J. So, L] =
L;y] = 0. Inparticular, [U,] U = J[U,U] = 0,1i.e.,V is a foliation. Also, note that,

on each vertical leaf, we have a hermitian metric given by

g =u®Qu+vQu,
i.e., U and J U are taken to be orthonormal vector fields. By assumption, dn is a

holomorphic 2-form on P. In particular,
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dv(X,Y) = du(JXY) =du(X,]Y)
for any vectors X,Y on P .we also have dv(U,X) = du(U,JX) = 0 and
similarly, du(V,X) = Oforany X € TP. Thus,if X € H,then

v([U,X]) = —2dv(U,X) = 0,u([U,X]) =—2du(U,X) = 0.

So, [U,X] € H. Similarly, [V, X] € H.Furthermore, for any z € P, there is an open

subset Y of P such that the space ;, the space of maximal vertical leaves on Y given

the quotient topology, is an open manifold and Py, : ¥ — g is a submersion. Then, for
any basic vector field X on Y, i.e., X is horizontal and(Py),X is a well-defined vector

field on ;, we have

(Py).([U, XD = (P).([V.X]) = 0.

So, [U, X] and [V, X] are also vertical. Thus, [U,X] = [V,X] = 0.
If X is any horizontal vector and we extend X to be a local basic vector field on P, then
Lyu(X) =—-u([U,X]) = 0.
Hence, Lyu = 0. Similarly, we have
Lyv=0 = Liyv = Lyu.
Using this same argument, we have

Ly(du) = Ly (du) = Ly(dv) = L;y (dv) = 0.

This completes the proof. O

4.3 Comparison between Complex Symplectic Geometry and

Complex Contact Geometry

Complex Symplectic Geometry ComplexContact Geometry

1. Complex Symplectic Manifold 1. Complex Contact Manifold

The complex manifold X of complex | The complex manifold X of complex

dimension 2n is called symplectic if it has | dimension 2 n + lis called contact if
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a holomorphic symplectic 2-form w is
closed with w™ # 0.
Let

a):w1+iw2

These two closed forms w; and w, are real
symplectic forms and define the structure

of a complex symplectic manifold on X.

there is a complex co-dimension one
holomorphic sub-bundle D of TX which
is maximally non-integrable, i.e. the

tensor
D xD —->TX/D
(v,w) — [v,w]nod D

is non-degenerate for every point of X.

2. Examples

(i) Kodaira- Thurston manifold represents
a complex symplectic manifold. Let g be
the Lie algebra of Gand let g*be its dual.
We identify tensors on gand g* with left-
invariant objects on G. It is easy to check
that g has a basis < X;, X, X3, X4 >in
which  the
is [X1, X5] = —X3 .

only non-zero bracket
Let <xq, x5, X3,
x4 >be the dual basis of g*. The only non-
zero differential on g* is computed to be
dx; = x1\x, .The element w = x;Ax, +

x,/\ x31s closed and non-degenerate.

(i) Consider the holomorphic Lie groups

1 2z, 73
CdP=H = [(O 1 23) 1724, Zo, Z3 €
0 0 1

2 Z1
M3X3((C)} and C (21)' Then the map

m: C3 - C? is a surjective holomorphic Lie

group homomorphism. The holomorphic 2-

2. Examples

(i)The odd-dimensional complex projective

P?2"*1 is a complex contact

space
manifold. Any 2-homogeneous symplectic

form w on C?***2defines a contact form on

]P)2n+1

(ii) Complex Heisenberg group H¢

represents a complex contact manifold,

where
(C3 = H(C =
1 2z, z;
{(O 1 Z3> 121, Zg, Z3 € M3x3(C)
0 0 1

The complex contact structure of this

manifold is given by the left invariant 1-
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form w = —dz; Adz, on C?is a left-

invariant complex symplectic form.

form

n=dz; —zydzzand n Adn # 0

3. Equivalence

Let Uy (resp. Uy ) be an open subset of T*X
(resp. T*Y ) and let ¢ : Uy =~ Uy be a
symplectic isomorphism. Then, locally on
Uy, there exists a T -preserving contact
isomorphism

Y p~t(Ux) = p~" (Uy)
making the diagram below commutative

T"X o Uy — % Uy cTY

j I

PAXO . p(Uy)
> p~1(Uy) c P*(Y x C)

3. Equivalence

Let Vy (resp.Vy ) be an open subset of
P*(X X C) (resp. of P*(Y X C)) and let
Y : Vy =~ Vybe a contact isomorphism.
Then, we say thatyis a T -preserving
contact isomorphism if it lifts as a
homogeneous symplectic isomorphism
Dy V) =y ()
making the diagram below commutative

Y
P*(XXC) D Vy—>V, c P*(Y X C)

T [

T'XxT C Y 1(vy)
>y 1 (Vy) C T*Y X T*C

1

4. Quantization-deformation
modules
Let X be a complex symplectic manifold.
There exists canonically a K-Abelian stack
nod (W‘/;,X) on X such that if U € X is
an open subset isomorphic by a contact
transformation @ to an open subsetUy C

T*X, then nod (W‘/;, X)|y is equivalent

by ¢ to the stack nod (W)}/E|UX).

4. Quantization-deformation
modules
Let Ybe a complex contact manifold.

There exists canonically a C-Abelian

stack nod (E‘E, Y) on Y such that
if € Y is an open subset isomorphic

by a contact transformation ¥ to an open
subset I, < P*Y, then nod (e‘/;, Ny

by ¥ to stack

1S equivalent the

mod (& |Vy).
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5. Local Characteristic 5. Local Characteristic

Let X be a complex symplectic manifold. | Let Y be a complex contact manifold.
Now Darboux’s theorem implies that, the | Now Darboux’s theorem implies that,

local model of X is an open subset of the | the local model of Y is an open subset of

cotangent bundle T*M with M = C ~dimx |the projective cotangent  bundle

P*M with M = C 3 @mY+D).

4.4 Existence of complex submanifolds

We are interested in complex submanifolds S in C?" that intersect the real
submanifold Mat the origin. Recall that M has real dimension 2n. Generically, the
origin is an isolated intersection point if dim S = n. Let us consider the situation when
the intersection has dimension n. Without further restrictions, there are many such
complex submanifolds; for instance, we can take a n-dimensional totally real and real
analytic submanifold S; of M. We then let S be the complexification of §;. To ensure
the uniqueness or finiteness of the complex submanifolds, we therefore introduce the
following.

Definition 4.1. Let M be a formal real submanifold of dimension 2n in C?". We say
that a formal complex submanifold S is attached to M if S N M contains at least two
germs of totally real and formal submanifolds S;, S, of dimension n that intersect
transversally at the origin and S has dimension n. Such a pair {S;, S,} are called a pair

of asymptotic formal submanifolds of M.

We first derive the results at the formal level. We then apply the results of
[83, 89]. The proof of the co-existence of convergent and divergent attached
submanifolds will rely on a theorem of Pdschel on stable invariant submanifolds and
Siegel’s small divisor technique.We now describe the formal results. Whenn =1, a

non-resonant hyperbolic M admits a unique attached formal holomorphic curve [59].
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When n > 1, new situations arise. First, we show that there are obstructions to attach
formal submanifolds. However, the formal obstructions disappear when M admits the
maximum number of deck transformations and Mis non-resonant. We will consider a
real submanifold M which is a higher order perturbation of a non resonant product
quadrics. By adapting the proof of Klingenberg to the manifold M, we will show the
existence of a unique attached formal submanifold for a prescribed non-resonance
condition. We also show that the complexification of S in M'is a pair of invariant
formal submanifolds S';, S’, of o. Furthermore, S is convergent if and only if S’y is
convergent.

We now can prove the following theorem.

Theorem 4.3. Let M be a real analytic submanifold in C2" without elliptic
components. Assume that in (&,7n) coordinates, Do (0) is diagonal and has distinct
eigenvalues fq, Uy, oo, oy 1~ L 2", oo, iy~ L. Let v = v, then M admits a unique
pair of formal asymptotic submanifold {S¢;, S%,} such that the complexification of

S¢, in M'is an invariant formal submanifold H, of o that is tangent to

r]sj=1 {77]' = 0} N r]£]-=—1 {‘E] = 0}.

Furthermore, the complexification of S¢, equals t; H, .
Proof. Let S; = S¢; . We will follow Klingenberg’s approach for n = 1, byusing the
deck transformations. Suppose that S is an attached formal complex submanifold
which intersects with M at two totally real formal submanifolds S;, S,. We first embed
S; US, into M" as M is embedded into M'. Let S’; be the complexification of S; in M'.
Since p fixes S; pointwise, then pS; = S;.
We want to show that t,;(S';) = S§',; thus §'; is invariant under 0. We can see that
S';is defined by

p(z') =w'
On S';,we have L(z',w') + E(z',w") = — f (2'). The latter defines a complex

submanifold of dimension n. Thus, it must be S’;. On M’
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! ! ! ! 2
(Lj(z,w ) +Ei(z',w ) = Zp4j

are invariant by t;. Thus each L;j(z",w') + E;(z',w')is either invariant or skew-
invariant by t;. Computing the linear part, we conclude that they are all skew-
invariant by ;. Hence 1, (S";)is defined by L;(z",w’) + E;(z',w') = f(z"), which is

the defining equations for S’,. We must identify the tangent space of S’; at the origin.

Finally, if S’; is convergent, then p; is convergent. Hence S';, the fixed-point set of

p1, 1s convergent. O
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CHAPTER §

EXISTENCE AND STABILITY OF LEGENDRE
AND ISOTROPIC SUBMANIFOLDS IN CONTACT
MANIFOLDS

Without references to differential geometry or twistor theory a solution of a certain
moduli problem was solved by Kodaira [52] in 1962. Kodaira’s initial data is a pair,
X © Y consisting of a compact complex submanifold X of a complex manifold Y. He
showed that if the normal bundle Ny y of the initial submanifolds X & Y is such that
H(X, Ny|y) = 0, then the moduli set M has two properties: first, it is a manifold with
dim M = HO(X, Ny|y); second, a tangent vector at any pointt € M can be realized
canonically as a global section of the normal bundle N; of the associated submanifold
X ©Y, ie., there is a canonical isomorphism k, : T,M —H°(X,,N,), called the
Kodaira map. The manifold (parameter space) M is called the Kodaira moduli space.
In [68], Merkulov proved the completeness and maximality of moduli spaces as well
as the stability of compact Legendre submanifolds in complex contact manifolds. A
completeness and maximality of moduli spaces of compact complex isotropic
submanifolds in complex contact manifold are studied in [1]. This result generalizes

the result of Merkulov [68] on Legendre submanifolds.

This is mainly a review on Kodaira, Legendre, and isotropic moduli spaces. However,
there are some original calculations also. The original work of this chapter is to
establish an interconnection among Kodaira, Legendre, and isotropic moduli spaces

which exist in section 5.5.

5.1 Kodaira Moduli Spaces

In this part we recall some useful facts about relative deformation theory of compact

complex submanifolds of complex manifolds. [55]
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Let Y and M be complex manifolds and let 7, : Y xM — Y and z,:YxM — M be two

natural projections. An analytic family of compact submanifolds of the complex
manifold Y with the moduli space M is a complex submanifold F & Y X M such that

the restriction of the projection 7, on F is a proper regular holomorphic map [76]
(regularity means that the rank of the differential of v =7, |.: F — M is equal to dim M

at every point). Thus, the family F has double fibration structure [67]
M v
Y« F->M,
where u =, |, . For each reM we say that the F & Y X M compact complex

submanifolds X, := zzov™'(t) © Ybelong to the family. If is an analytic family of

compact submanifolds, then, for any ¢ e M , there is a natural linear map,
k,:T,M —H"(X,,N ),

from the tangent space at t to the vector space of global holomorphic sections of the

normal bundle N, , =TY|, /TX, to the submanifold X; < Y.

X, Y

An analytic family F < Y X Mof compact submanifolds is called complete if the
Kodaira map k;is an isomorphism at each point t in the moduli space M. It is called

maximal if for any other analytic family F & Y XM of compact complex
submanifolds such that gov™'(f)=fzov () for some points € M and 7 € M , there is

a neighborhood U M of the point 7 and a holomorphic map 7 :U — M such that

frov ' ") = puov ' (f({") forevery i'eU.

Theorem 5.1.[55] If X<V is a compact complex submanifold in complex manifold ¥
with normal bundle Ny y such that H ! (X,N X‘Y) =0, then X belongs to the complete
and maximal analytic family {X; & Y | t e M} of compact complex submanifolds with
the moduli space M being a H’(X,N xr) -dimensional complex manifold. This moduli

space is called Kodaira moduli space.
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5.2 Complex Contact Manifolds

Definition S5.1. A complex contact manifold is pair (Y,D) consisting of a
(2n+ 1) — dimensional complex manifold ¥ and a rank 2 n -holomorphic
subbundleD cTY of the holomorphic tangent bundle to Y such that the Frobenius

form

$:DxD—>TY /D
(v,w) > [v,wlmod D

is non-degenerate. Define the contact line bundleL:=TY /D, on Y by the exact

sequence

4
0> D" 5TV 5L -0,

where @1is the tautological projection and D =kerd. It may easily be verified that the
maximal non-degeneracy of the distribution D is equivalent to the fact that the above

defined “twisted” 1-form satisfies the condition
on(doO™ + 0.

Definition 5.2. A compact complex n-dimensional submanifold X of the complex

contact manifold Y is called Legendre Submanifold if TX — D. The normal bundle
N,y of any Legendre submanifold X < Y is isomorphic to J 'L, [61] where L, =L]|,,

and, therefore, fits into the exact sequence

pr
05>Q'X®Ly >N, >L, >0.

Definition 5.3. A compact complex p-dimensional submanifold X? & Y2"*1 of a

complex contact manifold Y2"*1 is called isotropic if TX < D|X.

An isotropic submanifold of possible maximal dimension n is called a Legendre

submanifold.
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Definition 5.4. The bundle Sy is defined to be the kernel of the canonical projection

PNy > J'L,

1.e., it is defined by the exact sequence

0>Sy >Ny, >J'Ly >0.

5.3 Legendre Moduli Spaces

5.3.1 Existence of Legendre Moduli Spaces

Let Y be a complex contact manifold. An analytic family {X; & Y | te M} of compact
submanifolds of Y [54] is called an analytic family of compact Legendre submanifolds
if, for any point € M, the corresponding subset X,:=uov™'(r) > Y is a Legendre

submanifolds. The parameter space M is called a Legendre moduli space.

Let F & Y X M be a family of compact Legendre submanifolds. If F & Y X M is an
analytic family of compact complex Legendre submanifolds, it is also an analytic
family of complex submanifolds in the sense of Kodaira and thus, for each re M,

there is a linear map
kt T;M _)HO(XHNX,\Y)'

Definition 5.5. The analytic family F < Y X Mof compact Legendre submanifolds is

complete at a point t € M if the composition
kt 0 pr
s i TM —>H(X,,Ny ) >H(X,,Ly,)

provides an isomorphism between the tangent space to M at the point t and the vector

space of global sections of the contact line bundle over X,. The analytic family

F & Y X M is called complete if it is complete at each point of the moduli space M.
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Lemma 5.2. [1] If an analytic family F & Y X M of compact complex Legendre

submanifolds is complete at a point 7, € M , then there is an open neighbourhood

U < M of the point #,such that the family F & Y X Mis complete at all points 7 U.

Definition 5.6. An analytic family F © Y X M of compact complex Legendre

submanifolds i1s maximal at a point ¢, eM , if for any other analytic family
Fo YXM of compact complex Legendre submanifolds such that
wov(t,) = fiov'(i,) for a point 7, € M , there exists neighbourhood U = M of 7,and
a holomorphic map f:U — M such that f({)=t,and gov (%)= uov ' (f(#)) for

each 7 e U . The family F & Y X Mis called maximal if it is maximal at each point ¢

in the moduli space M.

Lemma 5.3. [1] If an analytic family F © Y X Mof compact complex Legendre

submanifolds is complete at a point 7, € M, then it is maximal at the point ¢,.

The map s, : M — H 0(XI,LXr)studies by the Lemma 5.2 and Lemma 5.3 will also

play a fundamental role in our study of the rich geometric structure induced
canonically on moduli spaces of complete and maximal analytic families of compact

Legendre submanifolds described by the following theorem.

Theorem 5.4. [65] Let X be a compact complex Legendre submanifold of a complex
contact manifold Y with contact line bundle L. If H'(X,L,)=0, then there exists a
complete and maximal analytic family {X; & Y |te M} of compact Legendre
submanifolds containing X with Legendre moduli space M, is a H(X ,Ly) -

dimensional complex manifold.

This theorem is proved by working in local coordinates adapted to the contact
structure and expanding the defining functions of nearby compact Legendre
submanifolds in terms of local coordinates on the moduli space M. This is much in the
spirit of the original proof of Kodaira's theorem of the existence, completeness and

maximality of compact submanifolds of complex manifolds. The essential difference
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from the Kodaira case is that the infinite sequence of obstructions to agreements on

overlaps of formal power series is situated now in H'(X,L,) rather than in

H'(X,Nyy).

5.3.2 Stability of Legendre Moduli Spaces

A family of complex contact manifolds is by definition a quadruple

(Y,S,D,w), consisting of complex manifolds Yand §, a holomorphic submersion

@:Y © § and a maximally non-integrable codomain 1 vector subbundle, D C ker @, ,
of the bundle of @ -vertical tangent vectors. Therefore, each fibreY, = 77'(s), s € S,

is a complex contact manifold with contact line bundle L isomorphic to

(kera, / D)

y - The manifold S is often called a parameter space. For any se§

there is a canonical linear map
p,:T.S = H'(Y,L,).

According to Kodaira [53], if (Y,L)is a compact complex contact manifold with

H*(Y,L)=0, then there exists a complete analytic family (Y,S,®,®)of contact

manifolds such that

(1) each fibre Y, is compact,
(i) ¥ =¥, forsome s,€S,and
(iii) the map p, : 7,8 — H'(Y,,L,) is an isomorphism for each se M.

In the present section it is more suitable to call a family of complex contact manifolds
(Y,S,D,w) simply a complex contact fibre manifold and denote by Y .Then a

submanifold x & Y is called a complex Legendre fibre submanifold if the restriction of

@ tox defines a holomorphic submersion @:x — S whose fibres X, =@ '(s) are
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complex Legendre submanifolds of Y, . If all these fibres are compact, then x is called

a complex Legendre fibre submanifold with compact fibres.

Definition 5.7. A compact complex Legendre submanifold X of a complex contact

manifold Y is called stable if for any complex fibre manifold Y such that @ '(s,) =¥
for some point s, €S, there exists a neighborhood U of s, in S and a complex

Legendre fibre submanifold xc Y |, with compact fibres such that x N Y = X.

Let X © Ybe a compact complex Legendre submanifold and Y a complex contact

fibre manifold such that @ ~'(s,) = ¥ for some point s, €S . Then the normal bundle

Nyyof X & Y fits into the exact sequence
0 —)ley —> NX|-y _)(CP®OX —0

where Nxyis the normal bundle of X © Y and p=dimS . Therefore, the quotient

bundle V' = Nyy /i(Q X ® Ly) has the extension structure

[

0L, >N —>CPR0x —0

Theorem 5.5. Let X © Y be a compact complex Legednre submanifold and Y a

complex contact fibre manifold such that #'(s,)=Y for some point s,€S . If

H'(X,L,)=0, then there exists an analytic family of compact complex submanifolds
{X: © Y| te M } such that each Xis a Legendre submanifold of Y, for some seS

and such that there is a canonical isomorphism 7M — H°(X,, N;) forall teM .
p ¢ ‘

The proof is omitted since it is based on a rather straightforward generalization of the

arguments used in the proof of the existence Theorem [53].
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Theorem 5.6. [68] Let X be a complex compact Legendre submanifold of a complex
contact manifold (Y,L). If H'(X,L,)=0, then X is a stable Legendre submanifold of
Y.

This generalizes the result in Kodaira's stable submanifold. There are strong
indications in [66] that the Legendre moduli spaces we studied in this section will play

a pivotal role in the twistor theory of G-structures with restricted invariant torsion.

5.4 Isotropic Moduli Spaces

5.4.1 Families of Complex Isotropic Submanifolds

Let Y be a complex contact manifold. An analytic family F <Y xM of compact

submanifolds of the complex manifold Y is called an analytic family of isotropic
submanifolds, if for any teM, the corresponding subset X, = gov () & Yis an

isotropic submanifold. Use is made of the symbol {X; @Y |te M}to denote an

analytic family of isotropic submanifolds.

Let X = X, for some toe M. If XP & Y2"*1is an isotropic submanifold, then each

point in X has a neighbourhood U in Y such that the contact structure in a suitable

trivialization of L over U is
n N _ P
6=do’ + Z @ dw” +Za)”dz”
a=p+l1 a=1
and X in U is given by

0 a a a

o =0'=0"=0" =0.

There exists an adopted coordinate covering {U;} of a tubular neighbourhood of X

inside Y. As a consequence one can always choose local coordinate functions
(@°,0°,0" 0,2"), in U; where a,a =1,---,nand a=L--,p such that the contact

structure in U; is represented by
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n - P
0 a a a a
0. =do, + E o do + E o, dz,

a=1

a=p+l (n—p)—terms p—terms

with U;NX given by

and

9;‘ |UmUj: 4,0,

i |UiﬁU/'

for some nowhere vanishing holomorphic functions 4; (@j,z;). They satisfy the

condition

Ai= Ai Ajr
on every triple intersection U;\U;NUj . Clearly, {A; }are gluing functions of the
contact line bundle L.

On the intersection U;NU;, the coordinates @’ :=(a’,0",0",»") and z8 are

. . B._(. 0 b b _ b b
holomorphic functions of @,” = (@, ,0,",»;"®,”) and z;,

0),'0 =f,-jo(a)jB,Zjb)
o :f,ja(ijazjb)
wia :f;'ja(ijﬁzjb)
a)ii :ﬁji(a)jB’Zjb)

B b
z' =g, (@,,2,")

a)iA :fijA(a)jB,Zjb)

B b
Zia :gija(wj aZj )

S

withf(0, Zjb) =0,where A =0,a,a,a
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For any point t in a sufficient small coordinate neighbourhood Myc M of t, with

coordinate functions t%, o = 1,...,m = dim M, the associated isotropic submanifold

X, = pov™'(¢) is expressed in the domain U; by equations of the form [3]
A = ¢iA(Zia’ta)’ a= O,G,a,g .
Lemma 5.7. X, is isotropic if and only if

b (z,00) = - a¢6z(z”’) §¢ (z,.1) 6¢ (Z"”

holds.

Proof. Let XP & Y2"*1be an isotropic submanifold in complex contact manifold Y.

An arbitrary X;, deformation of X inside Y , is given by

wio = ¢i0(Zi’t)
wia :¢ia(zi9t)
wia :¢ia(zial)
wia :¢ia(zi9t)
a)zA :¢iA(Zi=t)

Then, {ag |0} is a global section of Ny|y.

X, is isotropic if and only if 8, =dw, + o do” +o,dz" vanishes on X;. Then
0=0|X,=do’(z,,0)+ 9 (z,,)d 0 (z,,t) + ¢, (z,,1)dz,"

_0p"(za0)

dz + ,t
P o (z, )

dz +¢ (z,,t)dz’

:[¢ia(zi,t)+% Z (Zl’t)a(P (Z,at)]

i b=p+1

82



Thus, we obtain

“ 04" (z.,t o 0 ; z.,t
¢i (Zi’t):_L;)_ z ¢[b (Znt)Lal)
0z, h=ptl 0z, 0

5.4.2 Completeness and Maximality of Isotropic Moduli Spaces

Let Y be a complex contact manifold and let F © Y xM be an analytic family of
compact complex isotropic submanifolds. The latter is also an analytic family of
compact complex submanifolds in the sense of Kodaira and thus, for each t € M, there

is a canonical linear map
ke : TeM — H(X,, Ny,y)
The exact sequence

0 - Sx, & Ny,y leXt - 0,

has an expansion as follows:

<+ O

Q'X, ® Ly,

<+

0— Sx, - NX|Y_>]1LXt_) 0

~

o

Hence, there is a canonical map represented by a dashed arrow,

0

v

HO(X,, QiXt ® Ly,)

0 - HO(X,, Sx,) » H(X. Nx,v) » HO(X.,J'Ly,) - 0

S~
S <

e HO(Xf' LXt)

0
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Thus, there is a canonical sequence of linear spaces,
0 - HO(X,Sx,) » HO(X, Nx,y) - H(X;, Ly,) > 0O
which is not exact in general.

Definition 5.8. The analytic family F @Y xM of compact complex isotropic
submanifolds is complete at a point t € M if the Kodaira map k; makes the induced

sequence
0 - H(X.Syx,) - k. (T:M) > H(X, Ly) - O

exact. The analytic family F © Y x M is complete if it is complete at each point of the

moduli space.

Theorem 5.8. [1] If an analytic family F <Y xM of compact complex isotropic
submanifolds is complete at a point t, € M, then there is an open neighbourhood
U € M of the point t, such that the family F © Y x M is complete at all points t € U.

Definition 5.9. An analytic family F Y xM of compact complex isotropic
submanifolds is maximal at a point t, € M, if for any other analytic family F & y x
M of compact complex isotropic submanifolds such that gov™'(z)) = jiov ' (Z,) for a
point 7 e M , there exists neighbourhood U < of 7, and a holomorphic map
f:U— M such that f({,)=t,and jiov ' (#)=puov ' (f(#)) for each 7/cU . The

family F © Y xM is called maximal if it is maximal at each point ¢ in the moduli

space M.
5.4.3 Existence Theorem of Isotropic Moduli Spaces

Theorem 5.9. [2] [f X & Y is a compact complex isotropic submanifold in a complex

contact manifold, then its normal bundle Ny y fits into an extension

0 - Sx = Nxyy = J'Ly = 0,
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If HY(X,Ly) = H'(X,Sx) = 0, then there exists a complete and maximal analytic
family {X; © Y | t € M} of isotropic submanifolds such that

(i) X;, = X for some t, € M;

(i1) the moduli space M is smooth;

(iiiydim M = H°(X,Ly) + H°(X, Sx);

(iv) the tangent space T;M, t € M, fits into the extension

0 - H°(X,, Sx,) = ke(T:M) > H°(X,, Ly,) = 0.

5.4.4 Stability of Isotropic Moduli Spaces

Theorem 5.10. Let (Y,D) be complex contact manifold and X — Y be a isotropic

submanifold of Y with contact line bundle L . Then there is a following exact

sequence
0 — Sx = Nxy =]y -0

Proof. Consider a particular 1-form 6 that represents the contact structure. Let, for
peEX,ZEeT,X be a vector in the normal bundle and Q € T,Y. Then there are two

equations

which uniquely determines the 1-jet on X at p of a function f. Consider rescaling

6 — g6 where g is a function on Y. If we set @ = g8 and f = gf, then we have
8(Q) = g0(Q) = gf®) = flp
d(Z,Q) = (dg A6)(Z,Q) + gdb (Z,Q)

= dg(2)0(Q) —dg(Q)8(2) +gZ(fl,
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=Z(@f®) -0+ 9Z(Hlp

= Z(gf)lp

:Z(f)ho

Since T,X € T,X* c D then Z € D so that 6(Z) = 0. Therefore this elementary
calculation shows that the above two conditions are satisfied by gf and so we
conclude that we have defined a map Nyjy — J'Ly . Furthermore, it is clear that the

kernel is TX1/TX.
This completes the proof . 0

Theorem 5.11. If an analytic family F Y xM of compact complex isotropic

submanifolds is complete at a point t, € M, then it is maximal at the point ¢,.

Proof. Let ' &y x M be any analytic family of compact complex isotropic
submanifolds such that X, = gov™'(t,) = jiov'(#,) for some point?, € M . Let {U;}
be a covering of Y by coordinate charts with coordinate functions (a)l.A ,Z; ) such that

n o p
do’i+ ) o'do’ |U,nU,+> o'dz" |U,NU,
a=1

a=p+1

n B _ P
=A; (do’; + z w'do’ |U;NU, +za)aidzai \U;nU;)

a=p+l1 a=1

for some non-vanishing holomorphic functions 4; ;, and the isotropic submanifold X,

is given in each intersection X, N U; by equations @' =0 . Define

4°(z.0) | 4°(z,.7) |

. 8 (z,,0) y 8, (z,,7)
¢i ( nt): — ¢i ( [at): — _
S LT I TS

" (z,,0) | 8" (z,,7)
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Then, for sufficiently small neighbourhoods U and U of points t, € M and A eM,

the submanifolds v (U) & YxU and 17_1(0) S YxU are given respectively by

equations
a 04" (z0) & 5 04" (D)
8 (z ) =—— =2 N gl (2, )
azi b=p+ Z;
and
. e T e
¢, (z,,1)= T . z ¢ib (Znt)—a
Oz, hoptl 0Oz,
where t = (t1,...,t™), m =dimM, and 7=(',....,i"),/ =dim M , are coordinates on

Uand U respectively, and @ (z.,t)and @ (z,,) are some holomorphic functions. We
may assume without loss of generality that coordinate functions t?,...,t™ vanish at

to € U, while coordinate functions 7 = (7',...,7') vanish at 7, e U .

To prove this Theorem 5.11, we have to construct a holomorphic map f :U — U such

that f'(Z,) =t,and
8" (z.t)=¢"(z,, f(D)) (5.1)

for all 7 in some sufficiently small neighbourhood of fo . Let us first prove the
existence of a unique formal power series f(7) satisfying this equation. For this

purpose, we introduce the following notations. If P(s) is a power series in variables

s = (s%,...,s%) we write
P(s) = Py(s) + Pi(s)+...+ F(s) +...

k

where each term F;(s)is a homogeneous polynomial of degreeq in s1,..., s, and

denote it by Pl (s) the polynomial
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Plal(s) = Py(s) + Py(s) +...+ P,(s)

If Q(s) is another power series in s, we write P(s) =, O(s) if Pladl(s) = Qldl(s). Let

us look for a solution of equation (5.1) in the form of a formal power series
()= f,(H)+ 1,(1) ot f, (t)+...
Then equations (5.1) are reduced to the system of congruencies
6 (. D)=, 8" . fUONiel, g=12,.. (5.2)
First, we shall construct polynomials f'91(7) by induction on q. Let
6 (D) = 4" (o) + B (20 + .

be the power series expansion of ¢."(z,,¢)in t1,...,t™. By hypothesis, the family

F Y xM is complete at ty, € M. According to Theorem 5.10, and definition 5.8, the

sequence

0 - H(X,Sx) - kto(TtOM) - H(X,Lyx) - 0,

is exact. On the other hand, if there exists a sheaf of Abelian groups N x> Which fits

into there exact sequence,
0 - HO(X,Sy) —» H° (x, NX‘Y) — HO(X,Ly) — O.

Moreover, the Kodaira map k, maps exactly T; M to the space of the global sections

of Ny, . Thus, we have an isomorphism

key @ TeyM—H (X, Ny )
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According to the local coordinate description of the map k., given in the proof of

A
Theorem 5.10, this means that the collection of 0 -cocycles {W} , o =
tﬂ{

1, ..., m, represents a basis of the vector space H° (X , N X‘Y). Since

0 ~
¢\l (Zz’t) Z ¢ (Zl’t) |z Oty

2

. e (z,,f , -
and each 1 — cochain {% |t~_0} v = 1,---, [ represents a global section of Ny

over X, we conclude that the collection {gﬁillA(zi,f)} may be interpreted as a

homogeneous polynomial of degree 1 in 7 with coefficients in H° (X, wa)-

Therefore, we can decompose

o, i
G (2, 1) = Zﬁ (7). =t ¢,| (Z 2

where coefficients f(7) are linear vector-valued functions of 7 ' ..t Thus, we have,
¢;|1A (Zn?) = ¢;\1A(an1(t~))’ iel,
which means that the functions f;(7) satisfy the congruence (5.2).

Assume the polynomials f'¥(7) satisfying (5.2)are already constructed. Define a

homogeneous polynomial @ (z,,7)of degree g +1 in 7 by the congruence

A -~ T A -~ A -~
2 (Zjat)E(ﬁl ¢i (Zjat)_¢i (Zjaf[q](t))'
From the obvious equalities

8" (2,8, (z,,0,2)t)= £, (8," (z,.0),2,),
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%A(gy‘(a/lg(zﬂt)’zj)’t) = fi/A(ng(Z./’t)’Z/)’

where

5ot a¢ (l, Z¢ - ‘“, 1)
and

o a¢ (z,,r) f¢ - ‘“, 0
we find

a)iA(Zi’T) |z, = 8 (O’Z_/) =4 wiA(ZistN) |z, = 8 (JjB(Zj’?)’ Z_/)
= (6" D=8 " Nz, =g,8,°(z,,T).z))

= 6"z, =2,8,"(,, D). 2) =" . f Nz, = 2,8, (2, 1)), 2,)

3 3 3 of."
Eq+1 fijA(ij(Zjat)aZj)_fijA(gojB(Zjaf[q](t))aZj) Eq+1 aa)—jBLUj:O ij(Zjat) .

J
The latter congruence means that the collection {a)l.A (zl.,tj} is a homogeneous
polynomial of degree g +1 in 7 =(7',...,7") with coefficients in H° (X, NX‘Y). Let us

now show that {a)iA(zl.,tS} takes values in Ny, in fact. For this, we have to show that

0, o~ 0w’ (z,,T
0 (z.7) =220
Z .

1

We have by definition,
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0 (z,0) =, 6, (z.0) =8 (z,, f1(D)) (5. 3)
and
0, (2,1) =, (2, 1) = ¢ (z,, f1D)) (5.4)

Differentiate (5.3) with respect to z;', we get

00, (z,1) _ 04 (z,1) 04" (z,,. /(@) (5.5)
oz.“ oz.“ oz.“

1 1 1

Equation (5.4) implies,

T nooo O 0 417
0 (5,1 == EeD 3 Gie 7y 0 Cel) 0 )
0z, h—pel 0Oz, 0Oz,
W b () (7 (5.6)
+ 72 ¢ib (Zi,l‘) a¢i (Zi’f (t ))

a
b=p+l aZ,-

As ¢ (z,0)=, 0" (z,0), 37 (z,0)=, ¢ (z,,1) and degree ", ¢ 21, degree ¢, 21
so the second and fourth terms of equation (5.6) cancel out by induction assumption,

and we obtain

AR N

1 1

).

Hence,

_aa)io(ziﬁ?)
oz

1

wia(ziatN) =

Therefore, {a)l.A(zi,tS} represents a global sections of bundle NXW so that we can

decompose again over the basis section {gomA (zl.,t)} ,
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0" (z,,1)

a)iA(ZiatN) ZquHa(tN) .
a=1 at

where coefficients f,  (7) are vector-valued homogeneous polynomials of degree

q+1in 7',..,7'. Defining
SUN@) = 1)+ £ (D),
we obtain,
6"z =0 8" G )+ 0, (2T
=0 8" (@ (D).

This completes our inductive construction of the polynomials f(7) satisfying

equations (5.2). The convergence of the resulting formal power series
f@) = i)+ fL(D)+.+ [, (D) +...

for all 7 in some open neighbourhood of the origin in C'follows from estimates
obtained by Kodaira in [54], which carry over verbatim to our case. This fact

completes the proof. M

5.5 Interconnections among Isotropic, Legendre and Kodaira Moduli

Spaces
If X & Yis a complex submanifold, there is an exact sequence of vector bundles
0->N ->QY|,—>Q'X -0,

which induces a natural embedding P(N*) — P(QY) of total spaces of the

associated projectivized bundles. The manifold ¥ = P(Q'Y) carries a natural contact
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structure such that the constructed embedding X = P(N*) - y is an isotropic as well

as Legendre one [3]. Indeed, the contact distribution DcTY at each point je¥

consists of those tangent vectors V; e Tyf which satisfy the equation < p,7.(V;) > =0,

where 7:Y — Y is a natural projection and angular brackets denote the paring of 1-
forms and vectors at 7($)eY. Since the submanifold X — Y consists precisely of

those projective classes of 1-forms in Q'Y |, which vanish when restricted on 7X, we

conclude that TX = D | I
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CHAPTER 6

MODERN DEVELOPMENTS IN DIFFERENTIAL
GEOMETRY APPLIED TO DYNAMICAL
SYSTEM

In this chapter we discuss about a slow-fast dynamical system called Brusselator
model through differential geometry. Differential geometry based new developed
approach called the flow curvature method is considered to analyze the temporal
Brusselator model. According to this method, the trajectory curve or flow of any
dynamical system of dimension 7 considers as a curve in Euclidean space of
dimension# . Then the flow curvature or the curvature of the trajectory curve may be
computed analytically. The set of points where the flow curvature is null or empty
defines the flow curvature manifold. This manifold connected with the dynamical
system of any dimension n directly describes the analytical equation of the slow
invariant manifold incorporated with the same dynamical system. We apply the flow
curvature method for the first time on the two-dimensional Brusselator model to
describe the main characteristics of this dynamical system. Also, we discuss about the
pattern formation phenomena of the spatiotemporal Brusselator model through

differential geometry.

This chapter is original and it provides the main result.

6.1 Preliminaries of Dynamical System and Differential Geometry
6.1.1 Dynamic System

We consider a system of differential equations defined on a compact £ of R by:

dX — —
7_F(X) (6.1)
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where

X = [xl,xz,...,xn}t eEc R"

F(X)=[£(X). (%)t (X)] e Ecrr

Here, F(f( ) is the velocity vector field whose components f, are C* continuous

1

functions in £ with values in R . Since each component of the speed vector field does

not depend here on time. So, the system (6.1) is autonomous.
6.1.2 Kinematic Vector Functions

According to the mechanics formalism, the integral curve defined by the vector
function Y(t) of a dynamical system is considered as the coordinates of a moving

point M at the instant t, then three following kinematics variables are attached to this

point which represents the trajectory curve of M:
X - parametric representation of orbit,
V — instantaneous velocity vector,

¥ — instantaneous acceleration vector.

Definition 6.1. Since the vector function X (2) of the scalar variable t represents the

trajectory of the point M, the total differential of Y(z) is the vector function I7(t) of the

scalar variable t which represents the instant velocity vector of the point M at the

moment t. Mathematically, this can be represented by the following formula:
_ dX = -
Vity=—=FX 6.2
(n=""=F(X) (62)

The instantaneous velocity vector I7(t) is tangent in every point to the trajectory.
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Definition 6.2. Since the vector function I7(t) of the scalar variable t represents the

velocity vector of the point M, the total differential of V(t) is the vector functionj;(t)

of the scalar variable t which represents the instantaneous acceleration vector of the

point M at the instant t. Mathematically, we can write

a7
y()= 7 (6.3)

The components f; of the velocity vector are assumed to be continuous, of class C*®

on E and with values in R, it is possible to calculate the total differential of velocity

vector field defined by (6.1). We can write
a7 _dF a¥
dt dX dt

Here d—i represents the Jacobian functional matrix J of the system (6.1) and
dX

considering equations (6.2) and (6.3), we obtain the following relationship whose role

1s very important:

y=JV

Using the S-Frenet marker [22], i.e., a movable marker constructed from the trajectory

curve Y(t) oriented in the direction of the movement of the current point M, it is

possible to define 7, the unit vector tangent to the trajectory curve in M, 7, the normal

vector, i.e., the main normal in M directed inwards of the concavity of the curve and

—_—

B, the binormal unit vector at the trajectory curveso that the trihedron (;,ﬁ,ﬁ) is

direct (figure 6.1).

Definition 6.3. The osculating plane is the plane which passes through a fixed point

X" of the dynamical system and parallel to the unit tangent and normal vectors of a

tangent curve.
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Definition 6.4. The curvature, which expresses the rate of change of the tangent to the

trajectory curve which is defined by:

N2

3

K
"

where ‘R represents the radius of curvature.

Figure 6.1. S-Frenet Frame and Osculating Plane

Definition 6.5. A manifold M — R" is defined as a set of points in satisfying a system

of m scalar equations:

9(X)=0
where ¢: R" —» R™ for m < n with )?:[xl,xz,...,xn]t € Ec R". The manifold M is

differentiable if @is differentiable.

6.1.3 Slow-Fast Dynamical Systems

Dynamical system (6.1) comprising small multiplicative parameters in one or several
components of its velocity vector field may be defined in a compact E included in R

by:
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(6.4)

where X € R™,Z € R™, ¢ € R" and the prime denotes differentiation with respect to

the independent variable t. The functions f and g are assumed to be C* functions of
X, Zande in U X I, where U is an open subset of R™ X R” and I is an open interval
containing € = 0. When 0 < € K 1, i.e. is a small positive number, variable X is
called fast variable, and Z is called slow variable. Reformulating system (6.4) in terms

of the rescaled variable T = €t, we obtain the singularly perturbed systems:
(6.5)

Dots (-) represent the derivatives with respect to the new independent variable . The
independent variables t and 7 are referred to the fast and slow times, respectively, and
(6.4) and (6.5) are called fast and slow system, respectively. These systems are
equivalent whenever € # 0, and they are labeled singular perturbation problems when

€ K 1, i.e. is a small positive parameter.

A non-singularly perturbed dynamical system (6.1) defined in a compact E included in
R may be considered as slow-fast if its functional Jacobian matrix has at least one
“fast” eigenvalue, i.e. with the largest absolute value of the real part over a huge

domain of the phase space.

6.2 Dynamical System Analysis
6.2.1 Model 1: Brusselator Model
The Brusselator system describes the following chemical reactions [85]

A->U,B+U >V +D,
2D+V - 3U,U > E

Since it is important to consider at least a cubic nonlinearity in the rate equations, so

the non-dimensional form of the Brusselator model (spatiotemporal) is as follows:
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a—u=DMAu+ar—(b—i-l)u—i-uzv,

ot (6.6)

0
X D Av+bu— u'v.
ot
where u and v are the dimensionless concentration called activator and inhibitor and
a and b are the kinetic parameters. The equilibrium point for the system (6.6) is

(a,b/a).

6.2.1.1 Existence of Limit Cycles (Local Dynamics Analysis)

In this part, we establish the existence of limit cycle solutions of the local dynamics of
the model (6.6). Local dynamics of the model (6.6) without diffusion term can be
represented by the following system of ordinary differential equations (ODEs).

ﬂ = a—(b+1)u +u’y,

dt (6.7)
@ =bu—u’v.

dt

A periodic solution (u,v) is a periodic orbit or limit cycle of the system of ODEs
(6.7). Linear stability analysis shows that when b <1+a” then the equilibrium point
(a,b/a) is stable and all other non-equilibrium solutions of (6.7) approach to the
unstable limit cycle. Also, when b>1+a” then the equilibrium point (a,b/a) is

unstable and all other non-equilibrium solutions of (6.7) approach to the stable limit

cycle. Hence, we get an equation for the Hopf bifurcation points and which is

b=1+a’. Now, we investigate the system of ODEs (6.7) numerically to verify the

linear stability analysis results.
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Figure 6.2. An illustration of the local dynamics of the model (6.6) which is
represented by (6.7).

In fig. 6.2, we plot activator and inhibitor densities # and v with respect to time as
well as u versus v where we take a=3.0. In this case, the kinetics have a Hopf
bifurcation at 5=10.0 and we get a stable limit cycle solution for greater values of
b=10.0. Fig. 6.2(a) and fig. 6.2(b) represents the solutions of (6.7) when @=3.0 and
b=99, where we get the stable equilibrium point (3,3.3) and shows the existence of
the unstable limit cycle. Fig. 6.2(c) and fig. 6.2(d) represents the solutions of (6.7)
when ¢=30 and b =10.1where we get the unstable equilibrium point (3,3.37) shows

the existence of the stable limit cycle. Fig. 6.2(e) and fig. 6.2(f) represents the
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solutions of (6.7) whena=3.0 and b =14, where we get the unstable equilibrium point

(3,4.67) and shows the existence of the stable limit cycle. From the stable limit cycle
solutions of (6.7), we see that the cycles are of low amplitude for b close to the Hopf

bifurcation value 5=10.0 and they increase in amplitude as b is increased.

6.2.1.2 Existence of Periodic Solutions in the One-Dimensional Space through

Direct Partial Differential Equation Simulation

In this subsection, we perform the direct Partial Differential Equation (PDE) numerical
simulations of (6.6) in one dimensional space. Fig. 6.3 shows the qualitative behavior
of the periodic solutions of (6.6) with the periodic patterns. We use table 6.1 for the

numerical simulations.

Table 6.1. Typical parameter values of (6.6) for the numerical computations.

Parameters a b D, D,

u

Values 3.0 14.0 3.0 10.0

N&W\

7

o

.

N

W

N

-

TR N

N

<

7

(a) (b)

Figure 6.3. Space-time plot via direct PDE simulation. (a) Solutions of activator, u

(b) Solutions of inhibitor, v.
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Fig. 6.3(a) and Fig. 6.3(b) shows that the PTW solutions of the activator, u and the

inhibitor, v respectively. We apply an implicit scheme with periodic boundary

conditions over the domain [0,D.]. Here D, represents the system size which is
defined by D =nxp where n is the number of pulses and p is the spatial period. We

consider, dx =0.09 as space size and df =0.01 as time stepon 2181 grid elements.
Here, we consider a small perturbation of the steady state solution as the initial data
and continue our simulation process for a long time until we get a stable pattern. In

this simulation, we take D_ =200 as the system size with four pulses that means, the
spatial period is p =50 and also we take 50<7<150 as the time range for the

solutions of (6.6). Finally, we obtain periodic pattern solutions of the activator,u as
well as the inhibitor, v. Hence, we get a good agreement between the results obtained

from this subsection and the result from the subsection 6.2.1.1.

6.2.1.3 Periodic Patten Formation in the Two-Dimensional Spaces through Direct

PDE Simulation

In this subsection, we use alternating direction implicit (ADI) method with Neumann
boundary conditions to perform a series of direct PDE numerical simulations of (6.6)
in two dimensions. Numerical simulation is performed on the spatiotemporal grid
(,y;,) withx, =iAx, i =0,---,N, and y; = jAy, j=0,--,N, where Ax=Ayfor a uniform mesh
grid and time s, =nAt, n=0,1,2,3---, where Ar is the time step. Therefore, the space

steps in the x -direction and in the y -direction are as follows:

L L,
Av=—2, Ay=-"" NN, eZ, (6.8)
N, N,

where 0<x<L,and 0<y<L, is used as the domain in the (x,y)parameter plane. In
(6.6), we represent the grid approximations by U ~u(x,y;.t,) and

V" =v(x;,y;.t,) -Therefore, the full discrete grid approximation of U/, is as follows:
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umy2 _yn Uiz oy g2 U —2U" +U".
l,jA /2 i,j :Du i-l,j ,j2 i+l,j +D i,j-1 1,21 i,j+1 +f(U,~nj,Vinj) (69)
t Ax Ay e

u

Ut —ym? Uiz oy g urt oyt yyt!
i,j - /21,] _ Du i-1,j A;Cjz i+1,j +Du i,j-1 Az,; i,j+l +f U,”;I/Z,V}"fl/z) (610)
¢ Y% ’ ’

Equation (6.9) indicates the first half of the total time step and (6.10) indicates the rest
half of the total time step. The central difference operator is defined as

s.Ul, =Ufy,,;-UE,,; and a similar formula can be defined for &,. Equialently, we

xYi,j

can define the approximation equations for 1;";.

(a) (b) (©) (d)

Figure 6.4. Pattern evolution as a function of time. (a) at =0 (b) at =47

(c) at =122 (d) at +=2000.

In this simulation, we use Ax = Ay =0.5 as space step and As =0.04 as time step on a
grid of 220x 220 elements and eventually, we get a periodic spot pattern. Again, it
was checked that the decreasing values of step size did not lead to any changes in the
results. We continue our numerical simulations until they are in a stationary or until
they have behavior that the characteristics results do not seem anymore. Fig. 6.4
shows the dynamics of a periodic pattern of (6.6) as a function of time. Here, we
consider a small perturbation of the steady state solution as an initial guess and
continue our simulation process for a long time until we get a periodic pattern. We
use the parameter values of (6.6) as mentioned in tab.6.1. Fig. 6.4 (a) shows the initial
data at time 7=0. Fig. 6.4 (b), fig. 6.4 (c) shows the development process of the spot

pattern at time 7 =47 and ¢ =122 respectively. Finally, we get a periodic spot pattern at




time ¢ = 2000 which shows in fig. 6.4 (d). Hence, we get a good agreement among the
results obtained from this subsection and the results from the subsection 6.2.1.1 and

6.2.1.2.

6.2.2 Model 2: Lorenz-Haken Model

In [39], Haken introduced an optical model. Since the Haken model is similar to the
Lorenz model, hence the system is called Lorenz- Haken (L-H) model. The slow-fast
nonlinear system of equations in three variables for the standard L-H model is given

by:

d—E:/?(P—E),

j}t) 6.11)
—=nk-P,

dt

dn _

= =7(B-n-EP).

% 7(B-n )

In the laser system (6.11), the real amplitude of the electromagnetic field is denoted

by E, the polarization of the cavity medium is denoted by P and n is the inversion
of the state within the two levels of the development due to the pumping. Also, & and
y are the relaxation rate parameters and B is the pump parameter. If we consider
x,y,z in place of E, P,n respectively and also consider z,d in place of k ,7 , then

equation (6.11) can be written as the following system of non-linear ordinary

differential equations.

dx

dt—u(y x),

dy

L =zx—y, 6.12
ikt (6.12)
dz

= _5(B-z—xy).

% (B—z-xy)
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Figure 6.5. Numerical simulation of the model (6.12)

In fig. 6.5, we plot the state variables x,y and z with respect to time t. We use the

parameter values of (6.12) as mentioned in Table 6.2.

Table 6.2. Typical parameter values of (6.12) for the numerical computation.

Parameters # 0 B
Values 4.0 0.4 12.0

6.3 Dynamical System Analysis through Differential Geometry

6.3.1 Flow Curvature Method

Singularly perturbed systems can have invariant manifolds where the trajectories of
the flow move slowly and these slow manifolds are invariant with respect to the flow
[5, 62, 91]. Several methods have been developed to find out the analytical slow
manifold equations of the singularly perturbed systems. In[16, 23, 24, 25, 26, 81, 82,
95], introduces the geometric singular perturbation technique to establish the
existence of the slow manifold equation along with the local invariance of the slow
manifold for the singularly perturbed system. In the case of non-singularly perturbed

system this technique fails to provide the slow manifold.
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The flow curvature method [32, 33, 34, 35, 36] is the new method in recent
publications for computing the analytical implicit equation of the slow manifold. This
method can be applied to any autonomous or non-autonomous dynamical systems in
n-dimensions whether it is singularly perturbed or not. Recent applications of the
flow curvature method of the singularly perturbed systems are FitzHugh-Nagumo
model, Van der pol model, Chua’s model, etc and the applications of the flow
curvature method of the non-singularly perturbed systems are Lorenz model, Rikitake
model, etc. [37] used the flow curvature method to construct the slow invariant
manifold of the heartbeat model. In [38], author developed the slow invariant
manifold analytical implicit equation of the generalized Lorenz-Krishnamurthy model
and conservative generalized Lorenz-Krishnamurthy model. The most important
feature of this method is that, the flow curvature manifold directly gives us the
analytical equation of the slow manifold. Without using any asymptotic expansions,
this method allows us to find the flow curvature manifold and hence slow invariant
manifold equation. To the best of our knowledge, this method is the best to find the
analytical equation of the slow invariant manifold for any dimensional dynamical

system.

Now, we briefly discuss the flow curvature method in terms of differential geometry.
This method uses the properties of curvatures of trajectory curve or flow of the
dynamical system. Using this method, one can define the flow curvature manifold
corresponding to the dynamical system. Any n-dimensional dynamical system can
have the (n — 1) dimensional flow curvature manifold that means flow curvature

manifold contains the information about the flow with highest curvature.

6.3.1.1 Analytical Implicit Equation of the Slow Manifold of the Dynamical
System

Invariant manifold implies a very significant role to explain the stability as well as
dynamical behavior of a system, especially for a slow-fast dynamical system.

Although geometric perturbation technique is well known to find the analytical
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equation of slow manifold, the main difference between geometric perturbation
technique and the flow curvature method is that it neither uses asymptotic expansions
nor eigenvectors. Another difference is that this method can be used for any

dynamical system which may or may not singularly perturbed.

Proposition 6.1. The set of points where the curvature of the flow of the model (6.1)
vanishes represented by the following flow curvature manifold equation of the

dynamical system.

#(X) =det(},)'() 0

Proof. See [33, 34]

Note that for any n-dimensional dynamical system, maximum (n — 1)®" flow

curvature is possible.

Proposition 6.2. The flow curvature manifold of the dynamical system (6.1) directly

provides its implicit analytical equation of the slow manifold.
Proof. See [33, 34]
6.3.1.2 Darboux Invariance Theorem

According to [64, 87], the concept of the invariant manifold is first introduced by G.
Darboux (1878, p. 71). We consider the trajectories of the dynamical system (6.1) is

represented by a motion of a point in a two dimensional space and the coordinates of

the point is X = (u,v) and the velocity vector of this point is ¥ = (ii,v).

Proposition 6.3. Consider ¢()—():det()—(,})=0 is a slow manifold of the dynamical

system (6.1) where ¢is a first time continuously differentiable function, then this
manifold is invariant with respect to the flow of (6.1) if there exist a first time
continuously differentiable function called cofactor C(X) which satisfies the

following equation:
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Ly p(X) = C(X)P(X),

with the Lie derivative defined as the following:

Li(X)=V -Vp=dp/dt
Proof. See [33, 34]

6.3.1.3 The Osculating Plane Equation

Definition 6.5. The osculating plane is the plane which passes through a fixed point

X" of the dynamical system and parallel to the unit tangent and normal vectors to a
trajectory curve. The Osculating plane can be defined using for a dynamical system

(6.1) as the following

P()‘():()?—f(*)-?(: 0
Theorem 6.4. The Flow curvature manifold ¢(X) of the three-dimensional dynamical

system (6.1) merges with its Lie derivative £,¢(X) and with its osculating plane

P(X) in the vicinity of the fixed point X ".

Proof. See [34]

6.3.1.4 Stability Analysis of the Fixed Points

Definition 6.6. The fixed points X" of any dynamical system may also be fixed
points of the flow curvature manifold if the following two equations are satistied:
HXT)=0
Ve(X)=0

Definition 6.7. The Hessian of a function ¢(X) at the point X is denoted by H ) and

defined by
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3 ox>  oxoy
H %) 7| g2 )
0yox ay2

Theorem 6.5. (a) If H o) <0 then both eigenvalues are real and the fixed point X"
is a saddle or a node.

(b) If H¢()?*) >0 then both eigenvalues are complex conjugated and the fixed point

X"is a focus.

Proof. See [34]
6.3.2 Geometric Singular Perturbation Theory

Geometric Singular Perturbation Theory is based on the following assumptions and

theorem stated by Nils Fenichel in the middle of the seventies.

6.3.2.1 Assumptions

(A1) Functions f and g are C* functions in U X I, where U is an open subset of

R™ x R™ and I is an open interval containing &€ = 0.

(A2) There exists a set M, that is contained in {(%, Z) : f (%, Z,0) = 0} such that M, is
a compact manifold with boundary and M, is given by the graph of a C! function

% = X,(2) for Z € D, where D € R" is a compact, simply connected domain and the
boundary of D is an (n — 1) dimensional C” submanifold. Finally, the set D is

overflowing invariant with respect to (6.5) when € = 0.

(A3) M, is normally hyperbolic relative to the reduced fast system and in particular it

is required for all points p € M,, that there are k (resp.l) eigenvalues of D3 f (p,0)

with positive (resp. negative) real parts bounded away from zero, where k + 1 = m.
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6.3.2.2 Fenichel Persistence Theory for Singularly Perturbed Systems

For compact manifolds with boundary, Fenichel’s persistence theory states that,
provided the hypotheses (A1)—(A3) are satisfied, the system (6.4) has a slow (or

center) manifold and this slow manifold has fast stable and unstable manifolds.

Theorem 6.6. Let system (6.4) satisfying the conditions (Al)—(A3). If e >0 is
sufficiently small, then there exists a function X (Z,€) defined on D such that the
manifold M, = {(#,7) : ¥ = X(Z,€)} is locally invariant under (6.4). Moreover,
X (Z,€) is C" for any r < +oo and M, is C"0(¢) close to M. In addition, there exist
perturbed local stable and unstable manifolds of M.. They are unions of invariant
families of stable and unstable fibers of dimensions [ and k, respectively, and they are

C"0(¢) close for all r < 400, to their counterparts.

Proof. See [23-26]

6.3.2.3 Invariance

Generally, Fenichel theory enables to turn the problem for explicitly finding functions
=X (Z,€) whose graphs are locally slow invariant manifolds M, of system (6.4)

into regular perturbation problem. Invariance of the manifold M, implies that X (Z,€)

satisfies:

eD; X(Z,€) § ()?(Z, £),Z,€) = f ()?(Z, £),Z ) (6.13)
Then, plugging the perturbation expansion:
X(Z,€) = Xo(?) + £ X,(2) + 0(£?)

into (6.13) enables to solve order by order for X (Z,¢).

The Taylor series expansion for f ()? (Z,9), 7, 8) up to terms of order two in ¢ leads at

order €° to
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f (X,(2),%,0) =0

which defines Xo(Z) due to the invertibility of Dy f and the implicit function
theorem.

At order ! we have:

5 N 20 o\ = 200 N\ o A af g o\ o2
DZ XO(Z)g (XO(Z)rZr 0) = DQ_C)f(XO(Z)JZJ 0) Xl(Z) + g (XO(Z),Z, 0)
which yields X, (Z) and so forth.

So, regular perturbation theory enables to build locally slow invariant manifolds M.
But for high-dimensional singularly perturbed systems slow invariant manifold

analytical equation determination leads to tedious calculations.
6.3.3 Geometric Analysis of Dynamical Systems

In this section, we analyze two dynamical systems using two geometric methods. In
subsection 6.3.3.1, we analyze a two dimensional non-singularly perturbed dynamical
system called Brusselator model using two geometric methods named as flow
curvature method and geometric singular perturbation theory as well as we provide
the effect of growth and curvature with surface deformation on pattern formation of
the Brusselator model. In subsection 6.3.3.2, we analyze a three dimensional
singularly perturbed dynamical system called Lorenz-Haken model using two
geometric methods named as flow curvature method and geometric singular

perturbation theory.

6.3.3.1 Geometric Analysis of Model 1

6.3.3.1.1 Analysis Using the Flow Curvature Method

We consider an activator-inhibitor Brusselator model which represents an

autocatalytic oscillating chemical reaction. In paper [6], authors discussed the
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asymptotic behaviour of the solutions of the Brusselator model numerically. In paper
[7], author studied various types of pattern formation of the Brusselator model arising
in chemical reactions with the numerical investigation. We study the slow invariant
manifold of the Brusselator model for the first time and this study advances the field
from the previous related work. So, our goal of this section is to apply the flow
curvature method on the two-dimensional chemical system called Brusselator model
to find the analytical implicit equation of the slow invariant manifold. The invariance
of the slow manifold of the Brusselator model is then proved by using the Darboux
theory. To simulate the Brusselator model, we use MATHEMATICA as a software

tool.

According to the flow curvature method, the trajectory curves of any dynamical
system which may or may not singularly perturbed considered the curves in the
Euclidean space. We consider the system model (6.7) as the slow-fast dynamical

system.

We use the parameter values of (6.7) as mentioned in tab. 6.1 and for the numerical
simulation, we consider the range of the state variables connected with the dynamical

system (6.7) as the following

[umim umax] = ["19 10];
[Vmin’ Vmax] = [Oa 20]’

By putting the right hand side parts of the dynamical system (6.7) equal to zero, that

is,

a—(b+1)u+u2v=0, 6.14)

bu—u’v=0,

We obtain two following graphs for the two null-clines of the system (6.7).
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(a) (b)
Figure 6.6. Nullclines of the model (6.7). (a) first equation of the system
(6.11), (b) second equation of the system (6.11).

Thus, we get the following fixed point by solving the system (6.11)

u, =3;v,= %

We use explicit Runge-Kutta method to solve the model (6.7) numerically where we
use (u,,v,)=(L1)as an initial point. Fig. 6.7 shows the phase diagram along with the

two nullclines represented by (6.7) where ¢ ranges from 80 to 100. Also, the purple
point in the fig. 6.7 indicates the fixed point of the model (6.7).

25

Figure 6.7. Phase plot analysis for the model (6.7) along with the two nullclines and

single fixed point obtained from the same model.

113



Now, in order to calculate the flow curvature manifold of the model (6.7) using the
flow curvature method, we need the velocity and acceleration because of our 2-
dimensional dynamical model. The velocity vector field of the model (6.7) can be

represented by the following way.
V= {3 —15u+u’v,14u — uzv}
The Jacobian matrix corresponding to the model (6.7) may be written as

J= {{—15+ 2uv,u?} {14 - 2u, —uz}}

Now we get the acceleration vector by using the formula A=JV and hence, we

obtain

y = {u2(14u —u™V)+ (=154 2u)3=15u +u’y), —u* (14u —u*v) + (14— 2uv)(3 —15u +u2v)}
Then, we find the slow manifold function of the model (6.7) as the following

G(u,v) =126 — 6300 — 42u° + 14u* —18uv + 1350’y — 150’y + 3u'y — u’v — 6u*v* + u'y’
Now the analytical implicit equation of the slow manifold of the model (6.7) can be

written as

d(u,v)=0 (6.15)

In fig. 6.8 (a) shows the graphical representation of the analytical implicit equation of
the slow manifold represented by the equation (6.15) and fig. 6.8 (b) represents the

slow manifold as well as phase space diagram in the same graph.
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(a) (b)

Figure 6.8. (a) Graphical representation of the slow manifold analytical equation of
the model (6.7) using flow curvature method, (b) Graphical representation of the slow

manifold analytical equation along with the phase diagram represented by (6.7).

The Lie derivative of the slow manifold function is then evaluated as the following by
using the Darboux invariance theory to establish the flow curvature invariance of the
equation (6.15). We first find the normal vector of the flow curvature manifold and
we get

o {—630 —126u* +56u” —18v+270uv — 45u’v +12u’v — Su*v —18u*v? + 4u3v2,}

—18u+135u” —15u° +3u” —u’ —12u°v + 2u’y

Now according to proposition 6.3, we compute Lie derivative of the slow manifold as

follows

L;¢=—-1890+9450u —630u” +3948u° —1050u" +42u’ —14u° —54v +
1080uv — 4815u’v + 729u’v — 624u’*y +174u’v = 3uv +u'v —72u’v’ +

552u°v —105u*v? + 24u’v? — Tu®v* —18u*Vv? + 4u™V’
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In fig. 6.9 (a) shows the graphical representation of the equation £;¢ =0 that means

the graphical representation of the flow curvature invariance manifold where the rate
of change of y(u,v) is equal to zero and fig. 6.9 (b) shows the combined graph of the

invariance manifold and phase space plot.
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Figure 6.9. (a) Graphical representation of the invariance equation of the slow
manifold analytical equation of the model (6.7) according to the Darboux
theorem (b) Graphical representation of the invariance equation of the slow

manifold analytical equation along with the phase diagram represented by (6.7).

The osculating plane equation for the system (6.7) is obtained as follows:

P(X)=-14+3v+1/3u (336 - 45v +u (42 + v (-23 + 3u + 3v)))
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Figure 6.10. Graphical Representation of the Osculating Plane equation.

To perform the stability analysis of the fixed-point using flow curvature manifold of
the Brusselator model, we need to calculate the Hessian of flow curvature manifold

and we get

. 270y =205y +12x7(14+ 3y + y*) —18x(14+5y+2)%)  —18+270x—5x" +4x° (3+2y) —9x*(5+4y)
4%) —18+4270x = 5x* +4x°(3+2) —9x%(5+4y) 2-6+x)x°

and

H ) =1620

o x
Since, Hessian is positive, so the fixed point (ul,vl)is a focus.

6.3.3.1.2 Analysis Using the Geometric Singular Perturbation Theory

Geometric Singular Perturbation Theory is entirely devoted to singularly perturbed
system and provides their slow invariant manifold according to Fenichel’s theorem.
The Brusselator model has nosingular approximation, it has been numerically
checked that its functional jacobian matrix possesses at least a largest absolute value
of the real part over a huge domain of the phase space. So, it can be considered as a

slow fast dynamical system but not as a singularly perturbed system. Thus,
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Geometric Singular Perturbation Theory can not provide the slow invariant manifold

associated with Brusselator model.

6.3.3.1.3 The Effect of Growth and Curvature with Surface Deformation on

Pattern Formation of the Brusselator model

Since the seminal paper by Turing [93], reaction-diffusion models have been
proposed to account for pattern formation in a wide variety of biological situations.
The simplest version of the model consists of two coupled non-linear reaction-
diffusion equations describing the spatiotemporal evolution of the concentration of
two substances (termed morphogens by Turing). Turing showed that for conditions
under which the reaction kinetics admitted a linearly stable spatially uniform steady
state, it was possible for diffusion to cause instability, leading to spatially varying
profiles in morphogen concentration. These are the Turing patterns and they arise
from the so-called diffusion-driven instability. It has been shown that these models
exhibit a variety of spatial patterns consistent with those observed in a number of
biological systems. From a theoretical viewpoint, the hypothesis that spatial patterns
in early development arise via a Turing instability has been criticized for a number of
reasons. Murray [77] found that changes in spatial scale can produce dramatic
changes in the patterns exhibited by the Turing model. In [4], the effect of a growing
domain is incorporated by choosing a time-dependent scaling factor. This brief
review shows that understanding the effects of growth and geometry on Turing
patterns is currently an issue of importance. The main purpose of the section is to
provide a general framework for the study of pattern formation using reaction
diffusion equations in which the effects of both growth and geometry are taken into

account.

Consider a domain which grows in one dimension and also consider the parameter
se [O, 1] (the spatial parameter) and define the mapping ¥/, such that for every time

t20,
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x(s,t)
v, :[O,l]—)R3, ‘//t(S)EX(Sat): y(Sat)
z(s,t)

where X(s,t) represents a curve in space parameterized by s, for each time t. This

curve can be used to represent a one-dimensional spatial domain which grows in time.

It will be convenient to introduce at this stage the arc length as a function of s and ¢,

o(s,t)= “XS (s',t)|ds'
0

For two-dimensional growth we assume that for every timez > 0, there is a surface M
parametrized by (7, s) € € < R? that models the shape and size of the growing

domain (the organism). Hence, there is a mapping

x(r,s,t)

X(F,S,t):QCRZ _)Rs, l//t(r"S)EX(r’S’t): )/(”,S,t)
z(r,s,t)

that defines a two-dimensional surface embedded in R3.

We suppose that the evolution of the studied surface M is driven by the morphogens
u and v, where u is the inhibitor and v is the activator. In mathematical terms we

have that

M M = hu,v)N
o

where N is the normal to the surface and h a function of the two morphogens. The
simplest case for h that we have adopted in the following is a linear function of one

morphogen:

h(u,v)N = kvN
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where K is a parameter in R and also the normal vector is given by

Mr,s,0)=X.x X, #0,

Since we assume surface is regular for each t. We also have the expression for the

metric on the surface M, , which is given by
dl’ = dx* +dy* +dz*

By using Riemannian metric for two-dimensional space, we can rewrite the above

equation as
2 _
dl” = gdxdx;
where

X, =r,x,=S and g;=X, X,,ij=12.

.9
Y

We denote

2
. sl =8n

E:|X ’ =gE=X, X, :gIZ’G=|X

Here we are assuming that the parametrization (r,s) is such that it defines an

orthogonal system on the surface M, , that is,

X X =0

for each time t. Hence the matrix G of coefficients of the first fundamental form is

2

2

G:(gn glzj: |Xr 0
8y 8» 0 |X

s

with inverse

120



2

2

G71: 1 [gzz _g21]: ‘Xs 0
818» \—8n g 0 ‘Xr

Now, let ¢ be the morphogen concentration of a substance on the surface iz, .
¢ = ¢(X,t) is the number of molecules per unit area at time t, and X € M,. Consider
aregion()(¢) on the surface, where diffusion takes place, and assume Q(¢) =y, (QO)

for some open, bounded domain €, € R?, with 0C smooth. Then the diffusion

process for ¢ on Q(¢)is given by

d
T fd)(X,t)dSX:D f Vo - ndl
Qo) a0(t)

where 0Q(¢)is a regular curve on the surface and n is the unit vector normal to the

curve, which lies on the tangent plane.

Since the surface on which evolve the morphogens is modified with time, we have to
adapt the system of equations (6.6) to take into account the geometric changes. The
problem of reaction-diffusion on growing domains has been well-studied in the past

years. It leads generally to add convective and dilution terms to Ou
(0,v respectively) that can be combined in div(au) where

dX
a(X,t)=—7=2X,
dt

represents the flow velocity of the growing surface.

If the surface M is parameterized by X (r,s,t) then the reaction-diffusion System

(6.6) can be rewritten as

121



ou ol
SR

= DuAMtu+a—(b+1)u+u2v,

ot ot

0 ol

Dy ng:DVAMv+bu—u2v.
ot ot ’

where A, is the Laplace-Beltrami operator. It is well known that differential

geometry provides a convenient basis for describing the behavior of a shape. In
differential geometry, the Laplace operator can be generalized to operate on functions
defined on surfaces in Euclidean space and more generally on Riemannian manifolds.
This general operator is Laplace—Beltrami operator. Like the Laplacian, the Laplace—
Beltrami operator is defined as the divergence of the gradient, and is a linear operator

taking functions into functions.

Now, g can be defined as the following

81 8

8 :‘gﬁ‘ ) &1 En

and also, we can define

g” _ cofactor(g)
g

where g7, g; are the fundamental metric tensors associated to the Riemannian
manifold M.

6.3.3.2 Geometric Analysis of Model 2

6.3.3.2.1 Analysis Using the Flow Curvature Method

According to the flow curvature method, the trajectory curves of any dynamical
system which may or may not singularly perturbed considered the curves in the
Euclidean space. We consider the system model (6.12) as the slow-fast dynamical

system.
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We use the parameter values of (6.12) as mentioned in Table 6.2 and for the
numerical simulation, we consider the range of the state variables connected with the

dynamical system (6.12) as the following

[Xmin’ Xmax] = ['47 4],
[ymin > Ymax] = ['49 4]7
[Zmin’ Zrnax] = [07 15]9

By putting the right hand side parts of the dynamical system (6.12) equal to zero, that
is,
u(y—x) =0,
yzx—y =0, (6.16)
Oo(B—z—xy)=0,

We obtain three following graphs for the three null-clines of the system (6.12).




Figure 6.11. Nullclines of the model (6.12). (a) first equation of the system (6.16),
(b) second equation of the system (6.16) and (c) third equation of the system (6.16).

Thus, we get the following three fixed points by solving the system (6.16)

X; =-3.3166247903554; y,=-3.3166247903554; z, = 1;

X, =0y, =0;2z,=12;

X3 =3.31662479103554; y, =3.3166247903554; z; = 1;
We use explicit Runge-Kutta method to solve the model (6.12) numerically where we
use (x,,,2o)=(LL1) as an initial point. Fig. 6.12 shows the phase diagram
represented by (6.12) where ¢ ranges from 500 to 1000. Also, the three green points
in the fig. 6.12 indicate the fixed points of the model (6.12).

Figure 6.12. Phase plot analysis for the model (6.12) along with the three fixed points

obtained from the same model.
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Now, in order to calculate the flow curvature manifold of the model (6.12) using the
flow curvature method, we need the velocity, acceleration and over-acceleration
(Jerk) because of our 3-dimensional dynamical model. The velocity vector field of the

model (6.12) can be represented by the following way.
{/={4 (x+y),-yt+xz 04 (12 -xy-2z)}

The Jacobian matrix corresponding to the model (6.12) may be written as

~04y -04x -0.4

Now we get the acceleration vector by using the formula 4 = J¥ and hence, we obtain

A= 4(4x =5y +x2),-0.4(=12x 2.5y +x*y+13.5xz —=10yz),~1.6(1.2—1.35xy + y* — 0.1z +0.25x"2)

Then, the over-acceleration or jerk is calculated according to the formula

A" = J A+ Total Differential (J )I7

and we get the result as the following.

f:—1.6(—12x—2.5y+ny+13.5)<z—10y.7),3.2(—x+y)(12—xy—z)+4Z(4x—5y+)cz)—
L6x(1.2-1.35x+1" —0.1z+0.25x°2) +0.4~12x - 2.5y +x*y+13.5z 10y z),—
1.6y(4x—5y+x2)+0.64(1.2—1.35xy+1” —0.1z+0.25x2) +-0.16x(-12x 2.5y + X’ y+13.5x2 - 10)2)

After that, we find the slow manifold function of the model (6.12) as the following
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—8208 x* +144 x* +18702 x y+1218 x’y—24 x’y—13896 y° — 2226 x°y* +
18x*y° + x*y* +764 x y* =110 x°y* +720 y* +192 x°y* —120 x y° +
3186 X’z 282 x'z—4462.5x y z+672x’y z—1.5x"y z+4110 y’z -
718x°yz—20x"y’z2—24 x y’z+30 X’y z+160 y*z —808.5 x’z* +45 x*2* +
25X +1142 x y 22 =260 X’y 2> —1446 y*2* +425 x*y* 2> =300 x y’2* +
350 x°2° =50 X'z’ =75 x y 22 +75x’y 22 +100. y*2* =25 x*2*

w(x,y,z)=0.256

Now the analytical implicit equation of the slow manifold of the model (6.12) can be

written as
w(x,y,2)=0 (6.17)
In Fig.6.13 (a) shows the graphical representation of the analytical implicit equation

of the slow manifold represented by the equation (6.17) and Fig.6.13 (b) represents

the slow manifold as well as phase space diagram in the same graph.

(a) (b)
Figure 6.13. (a) Graphical representation of the slow manifold of the model (6.12)

using flow curvature method, (b) Graphical representation of the slow manifold along

with the phase diagram represented by (6.12).
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The Lie derivative of the slow manifold function is then evaluated as the following by
using the Darboux invariance theory to establish the flow curvature invariance of the
equation (6.17). We first find the normal vector of the flow curvature manifold and

we get

Vi ={0.256(—16416.x +576.x° +18702.y +3654.xy —120.x" y — 4452 x)° +
2.5y +6.x°y* +764.5° =330.x%y° +384.xp" —120.y° +6372.xz —1128.x°z —
4462.5yz +2016.x%yz —7.5x* yz — 1436 xy* 2 —80.x° y* 2 = 24.1° 2 + 90.x%)* z —
1617.xz% +180.x° 2% +15.x° 2% +1142.yz% —=780.x% yz* +850.xy° 2% —300.y°z* +
700.xz° —200.°2° = 75.y2° +225.x% yz* —50.x2%),0.256(18702.x +1218.x° —

24.x° —27792.y —4452.x* y +36.x" y +2.x%y + 2292 xp* —330.x° y* +2880.)° +
768.x%y° —600.xy" —4462.5xz +672.x°z —1.5x° 2 +8220.yz —1436.x* yz —40.x* yz —
72022 +90.x° y2 2 +640.1° 2 +1142.x2% —260.x° 2> —2892.yz% +850.x% yz* —
900.xy°z% —75.x2° +75.xX°2° +200.2°),0.256(3186.x% —282.x* —4462.5xy +
672.x°y—1.5x°y +4110.y* = 718.x*y* =20.x*y* —24.0° +30.x°y° +160.y* —
1617.x%2 +90.x*z + 5.x°2 + 2284 xyz — 520.x° yz — 2892.y% 2 +850.x% y* 2 — 600.x)° 2 +
1050.x%2% —150.x* 2% —=225xyz% +225x° yz* +300y% 2% —100x°2*)}

Now according to proposition 6.3, we compute Lie derivative of the slow manifold as

follows

318728 x% +144. ¥ + 7110 x y+455.858 X0y —24 x°y —4816.06 1> —1386.4 x2 1% +
46.0157 %)% + x0)2 980,913 x y° —93.2756 x> —1.25984 x0y° —37.1654 ™ +
142299 x2y* +0.472441 x*)* 100.472 x 3> +18.8976 y© +622.913 x22 —247.039 x2 —

1289.63 x y 2+ 780.236 Oy z—1.26378 x°y z +1637.62 y22—826.362 x>z —

8.50394 x*22 +173.606 x 122 +13.937 x3)32 +31.4961 y*2—4.37096x10 13 x2 )42 —

2 1234315 x y 22 ~139.055 Xy 2% —3.14961 Oy 22 —

Loy =—6.5024

302.846 x222 +31.6535 3722 +2.5x07
395.937 y222 +302.835 x% 222 —246.457 x y32% +47.2441 %22 1100709 223 ~23.622 x¥23 -

14.685 x y 20 +38.3858 X0y 25 +24.4094 y223 — 6.49606 x%2* —2.95276 x* 24 ~1.09274x10 P x y 24

In Fig.6.14 (a) shows the graphical representation of the equation lelﬂ =0 that

means the graphical representation of the flow curvature invariance manifold where
the rate of change of w(x,y,z) is equal to zero and Fig.6.14 (b) shows the combined

graph of the invariance manifold and phase space plot.
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(a) (b)

Figure 6.14. (a) Graphical representation of the invariance equation of the slow

manifold of the model (6.12) according to the Darboux theorem (b) Graphical
representation of the invariance equation of the slow manifold along with the phase

diagram represented by (6.12).

Now, we calculate the osculating plane equation for the fixed point

X, =-3.3166247903554, y,= -3.3166247903554, z, =1 . We find the first osculating

plane expression as the following

23.8797x—0.6x> —47.2619y+5.475xy +3.15079x% y + 0.35x y —11.3y* —
4.56036xy” +0.325x% y* —0.0829156x° y* —0.025x* y* +4.14578)° —
0.85x)° +1.5* +20.3972xz +0.175x%2 —0.829156x°z — 6.01138yz +
6.1375xyz +0.124373x yz +0.0375x" yz - 3.85)° 2 +

1.15069x 1070 x)* 2 —0.25x> y* 2 —1.8656xz> +1.1875x° 2% —

0.207289x2% —0.0625x* 2 +0.829156 2> —2.125x)2> +2.5y° 2> —0.625x° 2>

R(X)=6.4

Now the graphical representation of the osculating plane equation p(X) =0 can be

shown as follows:
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Figure 6.15. Graphical representation of the osculating plane equation

corresponding to the fixed point (x,,y,, z,).

Then we calculate the osculating plane equation for the fixed point

x,=0,y,=0,z,=12 . We find the second osculating plane expression as the

following

32.4x% —48.15xy — 2.4x°y +16.25% +3.075x2 % —0.025x*% —0.85x° +1.* -
P(X)=6.4| 9.45x%z+29.5125xz +0.0375x )z —31.35)°2 - 0.25x7 %2 +8.0625x°2° —
0.0625x*22 = 2.125x2% +2.5y%2% —0.625x%2°

Now the graphical representation of the osculating plane equation P,(X)=0can be

shown as follows:
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Figure 6.16. Graphical representation of the osculating plane equation

corresponding to the fixed point(x,, y,, z,).




Similarly, we calculate the osculating plane equation for the fixed point

X, =3.31662479103554, y, = 3.3166247903554, z, = 1. We find the third osculating

plane expression as the following

~23.8797x—0.6x° +47.2619y + 5.475xy —3.15079xy + 0.35x°y —11.3y% + 4.56036x% +
0.325x% +0.0829156x>y —0.025x*? — 4.14578y° —0.85x° +1.p* —20.3972xz +
B(X) =64 0.175x%2 +0.829156x°z + 6.01138yz + 6.1375xyz —0.124373x% yz +0.0375x° yz — 3.85)°z —
1.15069 x 1071022 —0.25x% %2 +1.8656xz° +1.1875x%2% +0.207289x°2% — 0.0625x* 2% —
0.829156y2% —2.125xy2% +2.5y%2> —0.625x%2°

Now the graphical representation of the osculating plane equation P,(X)=0can be

shown as follows:

Figure 6.17. Graphical representation of the osculating plane equation

corresponding to the fixed point (x,, y;, z;) .

Observation shows that, Fig.6.13 (a) merges with Fig.6.14 (a), Fig.6.15,
Fig.6.16 and Fig.6.17 in the vicinity of the three fixed points. That means
theorem 6.4 holds.

To perform the stability analysis of the fixed-points using flow curvature

manifold of the L-H model, we need to calculate the Hessian of flow
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curvature manifold.

The following expression represents the first row vector of the Hessian matrix of the

flow curvature manifold at the point X = (x, y,z)".

{~4202.5+98.304)* + x*1(—122.88— 7.682) +1631.232 —413.9522% +179.22° —12.82* +

x}(7.689% +19.22%) + y*(~1139.71-367.6162 +217.62%) + x> (442.368 + 1°(55.296 — 61.44z) —

866.304z +138.24z° —153.62°) + x1(1870.85+1032.192 —399.362° +115.22° + »*(~168.96 + 46.08z2)),
4787.71+3.072x y —153.6)* + x> 1(36.864 — 40.962) + x*(=30.72 —1.922) —1142.42 + 292.3522% —

19.22% +17(586.752—18.4322 —230.42%) + x(—2279.42 + 393.216)* — 7352322 + 435.22°) +

x2(935.424+ 516.0962 —199.682> + 57.62° + y*(-253.44+ 69.122)),—1.92x*y + 7.68x 2 +

x°(—288.768 — 20487 +92.162 —153.62%) + (~1142.4 + 17 (=6.144—153.62) + 584.704z — 57.62%) +
x21(516.096 +23.04)% —399.362 +172.82%) + x(1631.23 —827.904z + 537.62° — 51.22° + 17(-367.616 + 435.22))}

The following expression represents the second row vector of the Hessian matrix of

the flow curvature manifold at the point X .

{4787.71+3.072x°y—153.65* + x*1(36.864 — 40.962) + x*(-30.72 - 1.922) — 1142.4z +

292.3522% —19.22° + »%(586.752 —18.4322 — 230.42°) + x/(—2279.42 +393.216)° —

735.2322 +435.22%) + x(935.424+ 516.096z —199.682% + 57.62° + 1 (—253.44 + 69.122)),
—7114.75+0.512x5 + x*(9.216 -10.242) + 2104.322 - 740.3522% +51.22° + x> (—168.96 + 46.08z) +
17(2211.84+491.52z) + x(1173.5— 614.4> —36.864z — 460.82%) + x*(~1139.71+ 589.824)% —
367.6162+217.62%),-0.384x> —10.24xy + x> )(-367.616 + 435.22) + x(~1142.4+ y(—18.432 — 460.82) +
584.704z — 57.627) + x> (172.032 + 23.04)% —133.122 + 57.62) + 1/(2104.32 +163.84)% —1480.7z +153.62°)}

The following expression represents the third row vector of the Hessian matrix of the

flow curvature manifold at the point X .

(~1.92x*y + 7.68x°z + x> (—288.768 — 20.48y% +92.162 —153.62%) + y(—1142.4 + y*(—6.144 —153.62) +
584.704z — 57.62%) + x21(516.096 + 23.041% —399.362 +172.82%) + x(1631.23 —827.904z + 537.62% —
51.22° +1%(=367.616+ 435.22)),-0.384x° —10.24x*y + x*1(—367.616 + 435.22) + x(-1142.4 +

12 (—18.432 — 460.82) + 584.704z — 57.62°) + x> (172.032 + 23.04y% —133.122 + 57.62%) +

1(2104.32 +163.84 ) —1480.7z +153.62%),1.28x° + x1(584.704 - 153.6 % —115.22) +
x*(23.04-76.82) + X (~133.12+115.22) + y* (~740.352 +153.62) +

X2 (~413.952 +217.6y° + 537.62 — 76.82%)}
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By combining these three row vectors we find the complete Hessian matrix. The

determinant of this Hessian matrix is denoted by H, ;. The relative Hessian of the

flow curvature manifold w(X)can be defined as follows:

3 _ HV/()?)

H - = =
Y pX)

We now calculate the relative Hessian at the point (x, + &, y, + &,z, + €) and get the

following expression

(3.64235x107 + £(=3.71533%x107'® + £(—0.000552965 + £(—1.53476 x 10! + £(5.30899x10'! +
£(~8.87961x10" + £(9.18391x10" + £(—5.94088x 10! + £(2.21072x10'" + £(~2.68341x10'° +
£(—1.64071x10" + £(1.03109x10'° + £(=2.97524 x10° + £(5.26477 x10® + £(=5.95009x 107 +
£(4.16963x10° + £(—167288.+(3408.12—27.5251£)£) ))))))))))))) / (8.31538 x 10712 +
£(7.7956 710712+ £(=2.18279x 10711 + £(1844.25 + £(—1388.47 + £(288.525 + £(13.4831 +
£(=10.795+1.)))))))

By considering &€ — 0, we get the positive value of the above expression and which
is 4.38026x107*. Now according to theorem 6.5, the fixed point (x,,y,,z,) is a

saddle-node. Then we calculate the relative Hessian at the point

(x,+¢&,y, +¢&,z, + ) and get the following expression

(0.+£%(0.00224639 + £(—2.59169x10" + £(—3.29468 x 10" + £(—1.62118x10" + £(9.43401x10"* +
£(4.36915x10" + £(4.53163x10" + £(2.3954x 10" + £(6.03654x10" + £(7.94268x10" +
£(4.72054x10° + £(=7.13001x107 + £(—2.74377x10” + £(—1.22338x10° + £(12093.5+

(1462.76 —27.5251£)&))))MN)))/ (£*(~1.9749x 107" + £(~9904.71+ £(5526.71+
£(2178.+ £(343.714+ £(26.7143 +1.£)))))))

By considering £ — 0, we get the negative value of the above expression and which
is —1.13747x10°. Now according to theorem 6.5, the fixed point (x,,y,,z,) is a

saddle-focus or center. Similarly, we calculate the relative Hessian at the point

(x, +¢&,y,+¢&,2z, + &)and get the following expression
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(3.15053x 107 + £(3.55972x 107" + £(0.000208321 + £(—4.44938 x 10! + £(—1.79251x10% +
£(=2.97502x 10" + £(=2.69281x10' + £(=1.51324x 10" + £(=5.66076x 10" + £(~1.47005x 10" +
£(=2.74232x10" + £(=3.83535x10° + £(—4.22314x10® + £(-3.57007 x107 + &(—1.58142*10° +
£(86197.8+ £(15605.6 +(382.487 —27.5251))))))M)))) / (8.31538%10712 + £(2.91038 %107 +
£(2.39067*10711+ £(5346.61+ £(5115.9 + £(1914.62 + £(356.517 + £(32.795+ 1.£))))))))

By considering &€ — 0, we get the positive value of the above expression and which
is 3.7888x107* . Now according to theorem 6.5, the fixed point (x,y;,,z;) is a
saddle-node.

6.3.3.2.2 Analysis Using the Geometric Singular Perturbation Theory

In this part, we derive the slow manifold equation of the L-H system by using

geometric singular perturbation theory.

Taking € = % then we can treat the L-H system (6.12) as slow-fast autonomous

system. Therefore we can analyze it and can obtain the slow manifold equation by
using geometric singular perturbation method. Now, the equation (6.12) can be

rewritten as follows:

ed—’;=f<x,y,z) —(y—x),

dy o
E_g(xayaz)_zx Y, (618)

Z
= =h(x,y,z) = 6(B—z—xp).
7 (x,,2)=6(B-z—xy)

where x is the fast variable, y and z are slow variables. We use the parameter values

of (6.18) as mentioned in Table 6.2.

L-H model (6.18) which is checking Fenichel’s assumptions (A1)—(A3), the singular
approximation M, is contained in {(x, y, z): f (x,y, z) = 0} such that M, is a compact

manifold with boundary given by the graph of the C1function: x = X,(y, z) = y.
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So, the problem is to find a function x = X(y, z,€) whose graph is locally slow

invariant manifold M; of the L-H system. Let’s pose:

X(y,z,8) =Xo(y,2) + € X,(y,2) + 2 X,(y,2) + 0(&3) (6.19)

As previously stated in section 6.3.2.3,

At order €°;

09X,
a—yf(Xo(}’, 2),y,z2) =0 x=X,(y,2) =y

which defines the singular approximation X,(y, z) = y due to the invertibility of Z—£

and the implicit function theorem.

At order €1:

0XoOf ax1

Xy, z 3y %

%y [ Ko, 2),y,2) + —°h(Xo(y, z),y,z) = g(Xo(y,2),y,2)
Since according to implicit function theorem f (X,(y, z),y,z) = 0 we have:

X,
g(XO(Y;Z);Y;Z) - a_ZOh(XO(y,Z),y,Z)
Xl(y,Z) = X, Of

6ya

X (z2)=y—yz

At order €?:
0Xo Of | 09X, 02 f M 0f axz

X2y, 2) 5 5 T 3% ‘o, 2) 5 e T X0 2) ot (Ko, 2), y,2) +
X, 0h = AX

Xl(y'Z 600)6 T;h(XO(yrZ)ryrz) :X1(}’;Z)£

Since according to implicit function theorem f(X,(y, z),y,z) = 0 we have:
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ag 1, 2 X2 f aX10f dXgdh 0Xq

). ). Y _

X1.2)5, 3% 05, 57X 05 5 - X (v, 2) 5 5 =7 (X (v,2),.2)
X,(y,2) = 9X0df

dy ox

& X,(v,2z) =04y3+y(—5.8+1.47)

and so on.

Now, from the equation (6.19) we can write the slow manifold equation associated

with the L-H system as

X(y,z,e)=y+e(y—yz)+e*{04y3+y(-58+1.47)} (6.20)
Equation (6.20) represents the second order approximation in € of the slow manifold
associated with the L-H model.

Now the graphical representation of the slow manifold equation (6.20) associated

with the L-H model can be shown as follows:

Figure 6.18. Graphical representation of the slow manifold determimned by the

geometric singular perturbation theory
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6.3.4 Comparison and Discussion

In this section, we compare the two geometric methods applied to the two slow-fast

dynamical systems and highlight the significant results discussed in this chapter.

(1

2)

)

(4)

)

Flow Curvature Method can be applied to any n -dimensional slow-fast
dynamical systems not only singularly perturbed systems but also non-singularly
perturbed systems. On the other hand, Geometric Singular Perturbation Theory

can be applied to only n-dimensional singularly perturbed dynamical systems.

Flow Curvature Method uses the local metrices properties of curvatures inherent
to differential geometry and does not require the use of asymptotic expansions.
On the other side, Geometric Singular Perturbation Theory uses regular

asymptotic expansions.

Using the Flow Curvature Method, we can form flow curvature manifold where
the curvature of the flow directly provides the slow invariant manifold analytical
equation determination of any high-dimensional slow-fast dynamical systems.
On the contrary, using the Geometric Singular Perturbation Theory, the
determination of the slow invariant manifold analytical equation turned into a
regular perturbation problem and for dimension greater than three, slow manifold
determination with the Geometric Singular Perturbation Theory leads to tedious

calculations.

In Flow Curvature Method, Darboux invariance theorem is used to show the
invariance of the flow curvature manifold whereas that in the Geometric Singular
Perturbation Theory, Fenichel’s invariance theorem is used to show the

invariance of the slow manifold.

In this chapter, we use Model 1 named Brusselator model where we consider the
temporal Brusselator model as a two dimensional slow-fast dynamical system.

By using Flow curvature method, we determine the flow curvature manifold
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(6)

which directly provides the slow invariant manifold where the Darboux
invariance theorem is then used to show the invariance of the slow manifold.
After that, we analyze the stability of the fixed point of the temporal Brusselator
model using the flow curvature manifold. Besides, since the Brusselator model
has no singular approximation and it can be considered as a slow fast dynamical
system but not as a singularly perturbed system. Hence, Geometric Singular
Perturbation Theory fails to provide the slow invariant manifold associated with

temporal Brusselator model.

In this chapter, we use another model Model 2 named Lorenz-Haken model as a
three dimensional slow-fast dynamical system. By using Flow curvature method,
we determine the flow curvature manifold which directly provides the third order
approximation of the slow manifold where the Darboux invariance theorem is
then used to show the invariance of the slow manifold. Then, we analyze the
stability of the fixed point of the L-H model using the flow curvature manifold.
Furthermore, since L-H model has singular approximation and it can be
considered as a singularly perturbed system. Hence, by using Geometric
Singular Perturbation Theory we determine the order by order approximation in
the small multiplicative parameter of the slow manifold where the Fenichel’s
invariance theorem is then used to show the invariance of the slow manifold and

the calculations of the higher order approximations are very tedious.

According to the above discussions comparing two geometric methods, we can

conclude that the Flow Curvature Method is the best to find the analytical equation of

the slow invariant manifold for any dimensional slow-fast dynamical system.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the significant results discussed in this thesis and we

suggest some ideas for future work.
7.1 Conclusions

In the first part of this thesis, we discussed various branches of differential geometry.
We developed some computer codes to compute several important components of
Riemannian geometry. We developed a special comparison between symplectic and
contact geometry with complex manifolds. We then reviewed Kodaira, Legendre and
isotropic moduli spaces and established interconnection among Legendre, isotropic

and Kodaira moduli spaces.

In the second part of this thesis, we applied an old strategy called the Geometric
Singular Perturbation Theory and another newly developed strategy that reflects the
applications of differential geometry in the slow-fast dynamical system called the flow
curvature method to the two models named as temporal Brusselator model and
Lorenz-Haken model. According to the Flow Curvature Method, we determined the
curvature of the trajectory curve analytically called flow curvature manifold by
estimating the solution or trajectory curve of the dynamical system as a curve in
Euclidean space. Since this manifold comprises the time derivatives of the velocity
vector field and hence it receives knowledge about the dynamics of the corresponding
system. In Model 1 named Brusselator model where we considerd the temporal
Brusselator model as a two dimensional slow-fast dynamical system. According to the
Flow Curvature Method, we determined the flow curvature manifold which directly
provides the slow invariant manifold where the Darboux invariance theorem is then
used to show the invariance of the slow manifold. On the other hand, since the
temporal Brusselator model has no singular approximation and hence, Geometric

Singular Perturbation Theory fails to provide the slow invariant manifold associated
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with temporal Brusselator model. Finally, we described the effect of growth and
curvature with surface deformation on pattern formation of the spatiotemporal
Brusselator model. In Model 2 named Lorenz-Haken model, we considered as a three
dimensional slow-fast dynamical system. By using Flow curvature method, we
determined the flow curvature manifold which directly provides the third order
approximation of the slow manifold where the Darboux invariance theorem is then
used to show the invariance of the slow manifold. Then, we analyzed the stability of
the fixed point of the L-H model using the flow curvature manifold. On the other hand,
since L-H model has singular approximation and it can be considered as a singularly
perturbed system. Hence, by using Geometric Singular Perturbation Theory we
determined the order by order approximation in the small multiplicative parameter of
the slow manifold where the Fenichel’s invariance theorem is used to show the

invariance of the slow manifold.

7.2 Future Extensions

We suggest the following ideas which are the extensions to our future work. The

following ideas may be tested:

(a) We may further analyze any n-dimensional dynamical model through differential

geometry.

(b) We may investigate the stationary periodic wave solutions of the dynamical
system through differential geometry comparing with periodic traveling wave

solutions of the dynamical system.

(c) We may analyze the whole reaction-diffusion model in terms of differential

geometry analytically and numerically.
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