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Abstract 

Biomagnetic fluid (Blood) is a fluid that exists in a living creature and its flow is influenced 

by the presence of a magnetic field. Blood is considered to be a typical biomagnetic fluid due 

to the interaction of intercellular proteins, membrane and the hemoglobin. Studies on 

biomagnetic fluid flow and heat transfer under the influence of external magnetic fields have 

been received much attention of researchers owing to their important applications in 

bioengineering and clinical sciences. Design and development of magnetic devices for cell 

separation, reduction of blood flow during surgery, targeted transport of drugs through the 

use of magnetic particles as drug carriers, magnetic resonance imaging (MRI) of specific 

parts of the human body, electromagnetic hyperthermia in cancer treatment are among these 

applications. 

         In this thesis, we emphasized to the theoretical and numerical investigations of both 

two-three dimensional, steady-unsteady, Newtonian, viscous, incompressible and laminar 

biomagnetic fluid flow and heat transfer over stretching-shrinking sheets under various 

boundary geometry with the action of an applied magnetic field.  

         Throughout this thesis, we first perform the biomagnetic fluid flow (BFD) over an 

elastic flat stretching sheet in the presence of a magnetic dipole. For the mathematical 

formulation of this problem both magnetization and electrical conductivity of blood are taken 

into account and consequently both principles of Magnetohydrodynamics (MHD) and 

FerroHydroDynamics (FHD) are adopted. The biomagnetic fluid flow and heat transfer in 

three-dimensional unsteady stretching/shrinking sheet in the presence of ferromagnetic 

phenomena has also been investigated.  The main contribution is the study of three 

dimensional time dependent BFD flow which has not been considered yet to our best 

knowledge.   Then, we investigate the time-dependent two-dimensional biomagnetic fluid 

flow (BFD) over a stretching sheet under the action of electrical conductivity and 

magnetization.  A detailed stability and convergence analysis is performed to determine the 

restrictions for the values of the problem parameters like magnetic parameter which are of 

crucial importance for the formation of the flow fields. This could be predicted numerically 

by the application of the simple efficient finite difference method (EFDM). 

           Later on, we have analyzed the steady biomagnetic fluid flow which is stretched with a 

velocity proportional to  n
cedis tan  i. e. nonlinear stretching sheet considering variable 

thickness. In this model, we assume that the fluid is electrically conducting due to an applied 

magnetic field and mathematical formulation also incorporates the space and time dependent 
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internal heat generation. Internal heat generation accelerates the mechanical strength of fluid 

flows throughout the boundary layer. We have also investigated the effects of variable fluid 

properties on the flow and heat transfer of three dimensional biomagnetic fluid over a 

stretching surface in the presence of a magnetic dipole. In this problem, the dynamic viscosity 

and thermal conductivity of biomagnetic fluid is considered to be temperature dependent 

whereas the magnetization of the fluid varies as a linear function of temperature and magnetic 

field strength. Also the surface temperature distribution across the sheet is non-linear.  

           To solve the above mathematical problem, the governing boundary layer equations 

with associated boundary conditions, are transformed into a system of nonlinear coupled 

ordinary differential equations by using suitable similarity transformations. Numerical 

solutions for the governing momentum and energy equations are obtained by efficient 

numerical techniques based on the common finite difference method with central 

differencing, on a tridiagonal matrix manipulation and on an iterative procedure. 

        Our next intention is to characterize the existence of duality of mathematical problem 

solutions and their physical realizable. The dual solutions are obtained by setting different 

initial guesses for the missing values of the skin friction coefficient and the local Nusselt 

number, where all profiles satisfy the far field boundary conditions asymptotically. For the 

first time, we have examined the dual solutions in biomagnetic fluid flow and heat transfer 

over a nonlinear stretching or shrinking sheet in the presence of a magnetic dipole 

with/without prescribed heat flux. This problem has been treated mathematically by using Lie 

group transformation and the resulting equations are solved numerically by using bvp4c 

function available in MATLAB and reported the existence of dual solution (stable solution 

and unstable solution) in the flow analysis. A stability analysis has also been carried out and 

presented here. Results from the stability analysis depict that the first solution (upper branch) 

is stable and physically realizable, while the second solution (lower branch) is unstable. 

         In all these analysis, influence of various physical parameters involved like as 

hydrodynamic, magnetohydrodynamic and ferromagnetic interaction parameters, 

unsteadiness parameter, suction/injection parameters, stretching ratio and heat generation 

parameter, viscosity parameter, thermal conductivity parameter, and velocity/temperature 

index parameter on the fluid flow are investigated and the results have been presented 

graphically. Missing slope like as the skin friction coefficient, , heat transfer rate and relative 

wall pressure is revealed and special case with change in hydrodynamic and ferromagnetic 

parameters have also been illustrated. The results of the present study have been compared 

with those of an earlier study reported in available literatures in order to ascertain the validity 
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of the computational results. Once we achieved good accuracy we go further for detailed 

results. The numerical results of the study reveal that the characteristics of blood flow are 

significantly affected by the presence of a magnetic dipole which gives rise to a magnetic 

field, sufficiently strong to saturate the biofluid. 
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Chapter 1 

Introduction 

 

In this chapter, the main terminologies used in the thesis are defined. The synthesis of 

biomagnetic fluid namely, blood and its properties are briefly discussed. A detailed review of 

the applications of biofluid is given in this chapter. The aims, objectives and important of the 

study are also discussed here.   

1.1 Boundary Layers Concept 

           On August 12, 1904 at the third international mathematical congress in Heidelberg, 

Germany, Ludwig Prandtl presented a paper entitle “Uber Fliiussigkeitsbewegungen bei sehr 

kleiner Reibung” (English) “On fluid flow with very little friction”.  He explained that the 

viscosity of a fluid plays a vital role in a thin layer adjacent to the surface, which he called 

“Uebergangsschicht” or “Grenzschicht”. The English terminology is boundary layer or shear 

layer. He also simplified the equations of fluid flow by dividing the flow field into two areas: 

one inside the boundary layer, dominated by viscosity and creating the majority 

of drag experienced by the boundary body; and one outside the boundary layer, where 

viscosity can be neglected without significant effects on the solution. 

           The first summary of boundary layer theory is to be found in two articles by Tollmien 

(1931) in the Handbuch der Experimental physic. Some years later, Prandtl’s comprehensive 

contribution appeared in Aerodynamic Theory, edited by W. F. Durand, Prandtl (1935). In 

the six decades since then, the extent of this research area has become extraordinary large. Cf. 

Schlichting (1960) and also Evans (1968), Alfred Walz (1969),  Tani (1977), Young (1989), 

Oleinik, Samokhin (1999). In spite of these developments concerning the numerical solutions 

of the full Navier-Stokes equations it can also be noticed that in recent years the extensions of 

boundary layer theory received increasing attention. Several text books have been published 

recently.  Such as the interactive boundary layer theory by Sobey (2000), Schlichting and 

Gersten (Ed.) (2017), Kluwick (2014), Ruban (2017). 

          In physics and fluid mechanics, boundary layer is an important concept and refers to 

the layer of fluid in the immediate vicinity of a bounding surface where the effects of 

viscosity are significant. The boundary layer provides an important link between ideal fluid 

https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Drag_(physics)
https://www.google.com.bd/search?tbo=p&tbm=bks&q=inauthor:%22Alfred+Walz%22&source=gbs_metadata_r&cad=6
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and real fluid flow. For fluids having relatively small viscosity, the effect of internal friction 

in a fluid is appreciable only in a narrow region surrounding the fluid boundaries. Since the 

fluid at the boundaries has zero velocity, there is a steep velocity gradient from the boundary 

into the flow. This velocity gradient in a real fluid sets up shear forces near the boundary that 

reduce the flow speed to that of the boundary. That fluid layer which has had its velocity 

affected by the boundary shear is called the boundary layer. The overall flow field is found by 

coupling the boundary layer and the inviscid outer region. The coupling process (both 

physically and mathematically) will also receive ample attention. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Boundary layer formulation. 

Depending on the nature of the fluid flow in consideration, we can study either one or a 

combination of the boundary layers discussed below.  

(a) Velocity boundary layer  1 : Fluid particles in contact with a stationary surface assume 

zero tangential velocity. Similarly, fluid particles in contact with a moving surface will move 

at the velocity of the surface. 

In fluid dynamics this phenomenon is called the no slip condition. When a fluid flows, there 

occurs a net momentum transport from regions of high velocity to regions of low velocity 

thus creating a viscous shear stress in the direction of the flow. The significance of the 

velocity boundary layer is to determine the surface (or skin) friction of the fluid. 

(b) Thermal boundary layer  2 : The thermal boundary layer develops due to the presence 

of temperature gradients between the surface and the free stream region. The thermal 

boundary layer is important in determining the rate of convection heat transfer. 
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(c) Concentration boundary layer  3 : A concentration boundary layer develops in a fluid 

region where concentration gradients exist between the surface and the free stream. The 

significance of this boundary layer is in determining the rate of convection mass transfer. 

 

1.2 Heat Transfer 

          Heat transfer involves the study of energy transfer taking place between material 

bodies as a result of temperature difference. The different modes of heat transfer include 

conduction, convection and radiation. 

(a) Conduction heat transfer: This is the energy transfer from the more energetic to the less 

energetic particles of a substance as a result of interactions between the particles. 

(b) Radiation heat transfer: This is the energy emitted by matter due to changes in electron 

configuration of the constituent atoms or molecules. It is transported by electromagnetic 

waves (or alternatively photons). 

(c) Convection heat transfer: If the heat transport process is affected by the flow of a fluid 

such that two different portions of a fluid mix then the mode of heat transfer is termed as 

convection. This mode of heat transfer can further be classified as free, forced or mixed 

convection. In free or natural convection, fluid motion is as a result of density gradients 

created by temperature or concentration gradients existing in the fluid mass. Forced 

convection fluid motion takes place due to external forces such as those from a pump or fan 

acting on the fluid. A special case called mixed convection arises when both free and forced 

convection fluid motions exist simultaneously. 

 

1.3 Basic Definitions 

1.3.1 Magnetic field: A magnetic field is the magnetic effect of electric current and magnetic 

materials. The magnetic field at any given point is specified by both a direction and a 

magnitude: such as it is represented by a vector field. The term is used for two distinct but 

closely related fields denoted by the symbols B and H, where H is measured in units of 

Amperes per meter (symbol: A/m). B is measured in Teslas (Symbol: T) and Newton per 

meter per ampere (symbol: N/A/m). B is almost commonly define in terms of Lorentz force it 

exerts on moving electric charges.  

1.3.2 Magnetic Field Intensity (H): Magnetic field intensity at a point is the number of 

magnetic lines of force crossing per unit area around that point, the area being held 
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perpendicular to the direction of lines of force. In SI system, the unit of magnetic intensity is 

Ampere per metre (symbol: A/m). 

1.3.3 Magnetic Induction (B): When a magnetic material is placed in a uniform magnetising 

field of magnetic field strength intensity (H), it acquires magnetism and develops its own 

magnetic field due to induction. As a result of this induction, the original magnetic field is 

modified both inside as well as outside the magnetic material. This modified or resultant field 

is called magnetic induction and is measured as the number of lines of induction passing 

normally through unit area of the material and is denoted by B. It is expressed in Tesla in SI 

units. Thus total number of magnetic lines crossing per unit area normally through a magnetic 

substance is called magnetic induction. 

1.3.4 Intensity of Magnetization (M): It is a measure of the extent to which a substance gets 

magnetized. Intensity of magnetization M of a magnetic substance is defined as its magnetic 

moment per unit volume, the specimen being so small that its magnetization can be supposed 

to be uniform. In SI system, the unit of intensity of magnetization is Weber/metre2. 

1.3.5 Magnetic Susceptibility   : It measures the ease with which a specimen takes 

magnetism. Magnetic susceptibility of a magnetic substance is defined as the ratio of the 

intensity of magnetization M induced in the substance to the strength of magnetizing field H 

in which the substance is placed. Mathematically, HM /    

Susceptibility is zero for air, is positive in case of paramagnetism, ferromagnetism and 

negative in case of diamagnetism. As it is the ratio of same quantities, so it has no units. 

1.3.6 Magnetic Permeability  0 : It measures the degree to which the specimen can be 

penetrated. The magnetic permeability of a material is defined as the ratio of magnetic 

induction B to the strength of magnetization H. Mathematically, HB /0  . 

Units: In SI system, the unit 0  is henry/metre. For free space, permeability is  7104   

henry/metre. 

1.4 Curie Temperature 

         In physics and materials science, the Curie temperature )( cT is the temperature at which 

certain materials loses their permanent magnetic properties, to be replaced by induced 

magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism 

was lost at a critical temperature The force of magnetism is determined by the magnetic 

moment, a dipole moment within an atom which originates from the angular momentum 

https://en.wikipedia.org/wiki/Magnetic_moment
https://en.wikipedia.org/wiki/Magnetic_moment
https://en.wikipedia.org/wiki/Magnetic_moment#Magnetic_dipoles
https://en.wikipedia.org/wiki/Angular_momentum
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and spin of electrons. Materials have different structures of intrinsic magnetic moments that 

depend on temperature; the Curie temperature is the critical point at which a material's 

intrinsic magnetic moments change direction. 

          Permanent magnetism is caused by the alignment of magnetic moments and induced 

magnetism is created when disordered magnetic moments are forced to align in an applied 

magnetic field (Fan (1987)). For example, the ordered magnetic moments (ferromagnetic, 

Figure 1) change and become disordered (paramagnetic, Figure 2) at the Curie temperature. 

Higher temperatures make magnets weaker, as spontaneous magnetism only occurs below the 

Curie temperature. Magnetic susceptibility above the Curie temperature can be calculated 

from the Curie–Weiss law, which is derived from Curie's law (Jullian and Guinier (1989)). 

         In analogy to ferromagnetic and paramagnetic materials, the Curie temperature can also 

be used to describe the phase transition between ferroelectricity and Para electricity. In this 

context, the order parameter is the electric polarization that goes from a finite value to zero 

when the temperature is increased above Curie temperature. 

Below cT  Above cT  

Ferromagnetic          Paramagnetic 

Ferrimagnetic          Paramagnetic 

Antiferromagnetic             Paramagnetic 

 

 

 

 

 

       Figure 1.2                                   Figure 1.3(a)                         Figure 1.3(b) 

Figure 1.2. Below the Curie temperature, neighbouring magnetic spins align parallel to each 

other in ferromagnet in the absence of an applied magnetic field. 

Figure 1.3. Above the Curie temperature, the magnetic spins are (a) disordered in the absence 

of an applied magnetic field and (b) ordered in the presence of an applied magnetic field. 

 

          Ferromagnetic, paramagnetic, ferrimagnetic and antiferromagnetic materials have 

different intrinsic magnetic moment structures (Harald and Hans (2009), (Robert (1968)). At 

https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Paramagnetism
https://en.wikipedia.org/wiki/Magnetic_susceptibility
https://en.wikipedia.org/wiki/Curie%E2%80%93Weiss_law
https://en.wikipedia.org/wiki/Curie%27s_law
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Paramagnetism
https://en.wikipedia.org/wiki/Ferrimagnetism
https://en.wikipedia.org/wiki/Antiferromagnetism
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a material's specific Curie temperature, these properties change. The transition from 

antiferromagnetic to paramagnetic (or vice versa) occurs at the Néel temperature, which is 

analogous to Curie temperature. 

1.5 Stretching Sheet/Surface 

       The analysis of the magnetohydrodynamic (MHD) flow field of an electrically 

conducting fluid in a boundary-layer due to the stretching sheet/surface is an important part 

in fluid dynamics and heat transfer in  the  recent years due to the extensive engineering 

applications as well as bioengineering applications,  such as the cooling of metallic plates in 

a cooling bath, the aerodynamic extrusion of plastic sheets, polymer sheet extruded 

continuously from a dye and heat-treated materials that travel between feed and wind-up rolls 

or on a conveyer belt possesses the characteristics of a moving continuous surfaces.  

       Blood flows in the whole body through capillaries, arties and veins. Capillaries carry the 

blood through skin and muscles and arteries carry the blood away from the heart where veins 

carry the blood towards the heart. Also we know skins, muscles, arteries and veins are 

stretched continuously and we say skin and muscles as a stretching/shrinking surface whereas 

artery and vein as a stretching/shrinking cylinder. That’s why blood flow is applicable in 

stretching/shrinking surfaces. 

        The assumption of steady flow in many physical situations offers a serious limitation 

because in some situations such as sudden stretching of the sheet or due to sudden change in 

temperature of the sheet, the flow becomes unsteady. Thus, it becomes necessary to consider 

time variation of velocity, temperature and physical quantities of ow. In such situations, the 

flow behavior as well as the heat transfer rate vary with time, depending upon the associated 

engineering and industrial processes. Unsteady fluid flow hinges upon time dependent flow 

properties: velocity, pressure, temperature etc. This type of fluid flow can be observed in 

human body due to much impulsive body movement, vibration, unintentional abrupt body 

acceleration while riding any vehicle or in various kinds of physical competition.  

         Non-linearity arises in different biomagnetic fluid flow under various circumstances. 

Such as if the blood flow in human body encounters stenosis arteries, and then the flow can 

be assumed as a non-linear one. The concern of this study is the non-linear flow. 

         Some of the significant research work based on biomagnetic fluid published in different 

journals. Haik et al. (1996) first developed biomagnetic model.  As far as the BFD flow over 

a stretching sheet is concerned the first work has been carried out by Tzirtzilakis and 

Kafoussias (2003) which was the study of a biomagnetic fluid flow over a stretching sheet 

https://en.wikipedia.org/wiki/N%C3%A9el_temperature
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with nonlinear temperature-dependent magnetization. Moreover, Tzirtzilakis and Tanoudis 

(2003) have presented a numerical method for the study of laminar incompressible two-

dimensional biofluid over a stretching sheet with heat transfer. Flows of biomagnetic 

viscoelastic fluids in different situations were investigated theoretically by Misra and Shit 

(2009a, 2009b). These studies reveal that the presence of external magnetic field bears the 

potential of influencing the flow behaviour of biomagnetic viscoelastic fluids quite 

appreciably. Several problems of flow and heat transfer on sheets/channels under the action 

of external magnetic/electric fields that have applications to physiological fluid dynamics 

have been treated mathematically among others (Misra and Sinha (2013), Sinha and Misra 

(2014), Misra and Chandra (2013), Misra and Adhikary (2016, 2017), Misra et al. (2015, 

2017, 2018)). 

 

1.6 Magnetohydrodynamics (MHD) 

          Magnetohydrodynamics (MHD) is the academic discipline concerned with the 

dynamics of electrically conducting fluids in the present of a magnetic field. On another way, 

Magnetohydrodynamics (MHD) is the branch of physics that’s deals with the motion of 

electrically conducting fluids in the presence of magnetic field, especially where currents 

established in the matter of induction modify the field (Jackson (1998), Griffiths (1999)). The 

field of MHD was initiated by the Swedish Physicist Hannes Alfven, who received the Nobel 

Prize in Physics in 1970 for fundamental work and discovered in Magnetohydrodynamics 

with fruitful applications in different parts of plasma physics by Cambel (1963).  

             First historically documented MHD experiment was performed by Michael Faraday 

in 1832.  He carried out experiments with the flow of mercury in glass tubes placed between 

poles of a magnet, and discovered that a voltage was induced across the tube due to the 

motion of mercury across the magnetic fields, perpendicular to the direction of flow and to 

the magnetic field. He observed that the current generated by this induced voltage interacted 

with the magnetic field to slow down the motion of the fluid, and this current produced its 

own magnetic field, and that obeyed Ampere’s right hand law and thus, in turn distorted the 

magnetic field. 

             Alfven (1942) discovered the MHD waves in the sun. These wave are produce by 

disturbances which propagate simultaneously in the conducting fluid and the magnetic field. 

The current trend for the application of magneto fluid dynamics is toward a strong magnetic 

field and towards a low density of the gas. 
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           The motion of the conducting fluid moved across the magnetic field, there arises an 

interaction between the flow field and the magnetic field by Davidson (2001). The magnetic 

field exerts a force on the fluid due to induced currents and these induce currents creates 

forces on the fluid and also modify the original magnetic field. The action of magnetic field 

on these currents give rise to mechanical forces, which modify the fluid. MHD covers those 

phenomena, where, in an electrically conducting fluid, the velocity field V and magnetic field 

B are coupled, which arises partially as a result of the Ampere laws and Faraday laws, and 

partially because of the Lorentz force experience by a current carrying body. This situation 

can comfortably be described splitting the process into three parts  

(i)     According to the Faraday laws the electromagnetic force BV    produced due to 

the movement of a conducting fluid and a magnetic field. In general, electrical 

currents will ensue, the current density being of order   ,BV  being the 

electrical conductivity. 

(ii)      These induced currents must, according to Ampere's law, give rise to a second 

magnetic field. This adds to the original magnetic field and the change is such that 

the fluid appears to 'drag' the magnetic field lines along with it.  

(iii)      The magnetic field (imposed and induced) interacts with the induced electric 

currents density J in the moving conducted fluid, to give rise to a Lorentz force 

BJ  . This acts on the conductor and is generally directed so as to inhibit the 

relative movement of the magnetic field and the fluid. 

(iv)       The electrical field, which may be characterized by E is of the same order of 

magnitude as the induced electric field. For electromagnetic problems, an 

equation, namely the law of conduction is added to the Maxwell's equation. This 

equation is known as Ohm's law, and is given by )( BuEJ        

           The coupling requires the study of the fluid and the electromagnetic problems, making 

MHD a couple, complex and interdisciplinary problem. The set of equations which describes 

MHD flows, the equation involves are Navier-Stokes equations of fluid dynamics and 

Maxwell’s equation of electromagnetism through Ohm’s law. 

           The most widespread application of MHD in engineering is the use of electromagnetic 

stirring. Here the liquid metal, which is to be stirred, is placed in a rotating magnetic field. 

The resulting effect is an induction motor. This is regularly used in casting operation to 

homogenize the liquid zone of a partial ingot. In another casting operations, magnetic fields 
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are used to dampen the motion of liquid metal. Since the magnetic field is static here, so, it 

can convert kinetic energy into heat via Joule dissipation. The magnetic levitation or 

confinement relies on the fact that a high-frequency induction coil repels conducting material 

by inducing opposite currents in any adjacent conductor. MHD is also important in 

electrolysis, particularly in those electrolysis cells used to reduce aluminium oxide to 

aluminium. This process is highly energy intensive. This is due to the fact that electrolyte is 

high electrical resisting. For example, in the USA, around 3% of all generated electricity is 

used for aluminium production. There are many other applications of MHD in engineering 

and metallurgical industry by Cramer and Pai (1973). Theses includes electromagnetic 

casting of aluminium, vacuum-arc remelting of titanium and nickel-based super alloys, 

electromagnetic removal of non-metallic inclusions from melts, electromagnetic launchers 

and the so-called 'cold-crucible' induction melting process in which the melt is protected from 

the crucible walls by a thin solid crust of its own material. This latter technology is currently 

finding favour in the nuclear waste. MHD is using in military arena as a propulsion 

mechanism for submarine. All in all, it would seem that MHD has now found a substantial 

and permanent place in the world of material processing. MHD principles are using in 

medical sciences, particularly for the treatment of those diseases, which are related with the 

blood flow. Hence Biomathematics is the branch of science in which MHD principles would 

be used for the days to come by Murray (1993), Anderson et al. (1999), Misra (2006). 

 

1.7 Ferrohydrodynamics (FHD) 

          Ferrohydrodynamics (FHD) is the mechanics of fluid motion influenced by strong 

forces of magnetic polarization and in this branch. The importance of Ferro hydrodynamics 

(FHD) was realized, because of large potential application in various fields. We study the 

interaction of magnetic fields with non-conducting ferromagnetic fluids. Many physicists and 

engineers gave great contributions (theoretical and experimental) to Ferrohydrodynamics and 

its applications. 

           Ferrofluids were first discovered at National Aeronautics and Space Administration 

(NASA) Research Center in mid 1960‟s. The scientists at NASA found that they could make 

to flow this amazing ferrofluid by varying the external magnetic field. After the discovery of 

ferrofluid, not only original publications in journals and conferences have been released, but 

some textbooks like “Ferrohydrodynamics” by Rosensweig (1985), “Magnetic Fluids: 

Engineering Applications” by Berkovsky et al. (1993), “Magnetic Fluids and Applications 
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Handbook” by Berkovsky and Bastovoy (1996), “Magnetic Fluids” by Blums et al. (1997), 

“Magnetoviscous Effects in  Ferrofluids” by Odenbach (2002) etc. also have been published 

in this area to supplement the basis for its engineering applications. 

         These fluids have variety of applications in the field of sciences and engineering like 

instrumentation, electrical and electronics engineering etc. which are being commercialized. 

Ferrofluids are widely used in sealing of computer hard disk drives, rotating X-ray tubes, 

rotating shafts, rods and sink-float systems for separation of materials. These are used as 

lubricants in bearing and dumpers. They are also used as heat controller in electric motors 

and hi-fi speaker systems without the need of change in their geometrical shape (Hathaway 

1979). Ferrofluids are being greatly used in many magnetic fluid based scientific devices like 

sensors, densimeters, accelerometer, pressure transducers etc. and are also used in actuating 

machines like electromechanical converters, energy converters etc.(Raj and Moskowitz 

1990). One special application of ferrofluids is their use as magnetic ink for high-speed, 

inexpensive and silent printers (Maruno et al. 1983).  

          They are also found to be very useful in the field of biomedicine due to magnetically 

targeted drug delivery (anti-cancer agents such as radio-nuclides, cancer specific antibodies, 

genes etc.) (Ruuge and Rusetski 1999) to a certain area of human body, targeted destruction 

of tumors, in-vivo monitoring of chemical activity in the brain and toxin removal from the 

body for cancer treatment (Goodwin et al. 1999, Pulfer and Gallo 2000, Kim et al. 2001). Due 

to its viscous action, in a non-uniform magnetic field, a drop of magnetic fluid can move as a 

whole fluid body. Magnetic nanoparticles can reach even the smallest capillaries of the body, 

which are 5-6 m  in diameter. Magnetic fluids are also used in the contrast medium in X-ray 

examinations (Papisov et al. 1993) and for positioning tamponade for retinal detachment 

repair in eye surgery (Dailey et al. 1999). A potential application of ferrofluids is found in the 

subsurface environmental engineering, in which externally applied magnetic fields are used 

to direct and control the flow of ferrofluids. 

 

1.8 Force due to magnetic field 

          In this study, we considered when blood flow under the influence of a magnetic field, 

two major force will act upon it. The first one is magnetization force due to the tendency of 

the RBC (erythrocyte) to orient with magnetic field, and second one is Lorentz force arising 

from electric current which generate the moving ions in the plasma. In the presence of an 

external magnetic field, the ferromagnetic colloidal particles suspended in the carrier liquid of 
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a ferrofluid become magnetized and produce attractive forces on each particle that produce a 

body force on the liquid. The magnetic (Kelvin) force F on ferrofluid per unit volume is 

given by HMBMF )()( 0    where 0  is magnetic permeability of free space, M 

is magnetization, H is magnetic field strength of the external magnetic field. The body force 

in FHD is due to polarization force. 

The expression for the electromagnetic forces:  

BJF  ,  where, current density )( BVJ   

The magnetic (Kelvin) force F on ferrofluid per unit volume is                  
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field is finally by Tzirtzilakis (2005) 
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1.9 Biomagnetic Fluid Dynamics  

           Biomagnetic fluid dynamics (BFD) has emerged as a new area of research in the study 

of a certain class of biological/physiological problems from fluid mechanics under the action 

of a magnetic fluid. Biomagnetic fluid is a fluid that exists in a leaving creature and its flow is 

influenced by the present of a magnetic field. In this thesis, we adopts the biomagnetic fluid 

model in representing the blood flow. Blood is one of the fluid that has characteristic of 

biomagnetic fluid and is considered a magnetic fluid. The characteristics of blood which 

indicate the nature of a magnetic fluid due to the complex interaction of the cell membrane, 

intercellular protein and the hemoglobin molecule which is a form of iron oxides that exist at 

a uniquely high concentration in the mature red blood cells. Blood has been recorded to have 

different magnetic susceptibility values depending on its oxygenation state. Deoxygenated 

blood, such as that which travels in veins towards the heart, behaves as a paramagnetic 

solution and has a magnetic susceptibility of 6105.3  . Oxygenated blood, which is found in 

arteries and is pumped from the heart, has diamagnetic properties, with a magnetic 

susceptibility of 71067.6  . The BFD flow studies have been attracted many researchers in 

recent years due to its wide range of applications in bioengineering and medical sciences.  

           Biomagnetic fluid mechanics is the study of a certain class of biological problems 

from fluid mechanics point of view. For an organism, biomechanics helps us to understand its 

normal function, predict changes due to alteration, and propose methods of artificial 

intervention. Thus diagnosis, surgery, and prosthesis are closely associated with 

biomechanics. Different mathematical models, using the principle of fluid mechanics have 

been developed with a view to understand the complex phenomena associated with the 

dynamics of blood flow. These mathematical models are currently being used for diagnosis of 

various arterial diseases, appraisal of newly found treatment procedures like drug delivery, 

developing and designing various artificial organs, Kleinstreure (2006), Goyal (2013), 

Schneck (2013). 

1.10 Applications of Biomagnetic Fluid 

          This study will have an important due to to its wide range of applications in biomedical 

engineering sciences, in particular, it is directed towards finding and developing the solutions 

to some of the human body related diseases and disorders such as designing artificial organs, 

creating nan-robots for surgery and developing advanced imaging and signal processing 

techniques for cancer, tumor, magnetic drug targeting, accelerating blood flow, measuring 

blood flow and other life threating diseases. These research works can have a direct real 
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world impact such as in the field of medical imaging based diagnostics (MRI, CT scan, 

ultrasound etc.) will possess the expertise to work with medical practitioners on interpreting 

clinical data. It has also important applications in the development ofmagnetic devices for 

cell separation, targeted transport of magnetic particles as drug carriers, cancer tumor 

treatment causing magnetic hyperthermia, provocation of occlusion of the feeding vessels of 

cancer tumors and the development of magnetic tracers. So study of blood flow is very 

important not only for understanding of blood flow characteristics through the arteries but 

also for taking prevention measures or curing many diseases which occurs in the blood 

vessels.   

 

1.10.1 Nanotechnology and drug delivery 

          Nanotechnology has applications in several areas which include drug delivery, tissue 

engineering, biosensors, microfluidic, microarrays and bioengineering. The nano technology 

based drug delivery system has emerged as mainstream research in advance medical 

diagnosis and treatment. Corporate investment on nanotechnology for drug delivery 

diagnostic increased year by year nanotechnology based drug delivery has already been 

commercialized by many reputed companies (Safari and Zarnegar (2014)). Nanotechnology 

based drug delivery has many advantages and provides the insight for solving problems 

associated with conventional drug delivery systems. It has control over delivery of drugs to 

specific sites and to certain cells only, without affecting neighbouring normal cells. Different 

types of carrier particles are used in the targeting of nanotechnology based drug delivery 

systems, some of them are PH-sensitive carrier, thermally responsive carrier, ultrasound-

medicated drug delivery and targeting. 

 

1.10.2 Magnetic drug targeting 

         Magnetic targeting is one of the major drug delivery methods which are used for 

treatment in different parts of our circulatory system. The therapy is very fruitful because it 

helps in the development of functional magnetic nanoparticles that are designed to target a 

specified tissue and it also reduces side effects. Magnetic carrier particles with surface bound 

drug molecules are injected into the vascular system upstream from the malignant tissue, are 

capture at the tumor via a local applied magnetic field. Upon achieving a sufficient 

concentration, the drug molecules are released from the carrier by changing many 

physiological conditions such as pH, temperature or different enzymatic activity, which help 

in realising a drug molecules from the carrier particles. Sometimes higher dosage can be 
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applied for more effective treatment as the therapeutic agents are localized to regions of 

diseases tissue (Speziale, 2008).   

 

1.10.3 Magnetic resonance imaging (MRI) 

          Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology 

to form pictures of the anatomy and physiological processes of the specific part of the body in 

both health and diseases. The major components of an MRI required a magnetic field which 

is both strong and uniform, magnetic field gradients and radio waves to generate images of 

the organs of the body. The field strength of magnetic field is measured in tesla and while the 

majority of systems operate at 1.5 T, commercial system are available between 0.2T and 7 T. 

Most clinical magnets are superconducting magnets, which required liquid helium. . Lower 

field strengths can be achieved with permanent magnets, which are often used in "open" MRI 

scanners for claustrophobic patients (Sassaki (1990)). MRI has a wide range of applications 

in medical diagnosis and more than 25,000 scanners are estimated to be in use worldwide 

(Kolka et al. (2013)). MRI affects diagnosis and treatment in many specialties although the 

effect on improved health outcomes is uncertain (Hollingworth et al. (2000)). 

1.10.4 Magnetic hyperthermia in cancer therapy 

          Magnetic hyperthermia is a term used to describe the generation of heat by magnetic 

particles in response to the application of an external magnetic field. It is one of the many 

possible applications of biomagnetic fluid in the treatment of cancer and infectious diseases. 

Tumour vasculature has been shown to possess distinctive anatomical and biochemical 

characteristics arising from a lack of adequate perfusion leading to the generation of hypoxia 

and acidosis rending cancerous cells thermally sensitive (Baillie, et al.(1995), Fenton et al., 

(1999)). Tumour growth can be halted by heating cells to 40°C for 30 min or more; however, 

it is difficult to raise whole body temperature without also promoting adverse biochemical 

side effects. In 2010, Balivada et al. demonstrated the production of a localized thermo-

ablative effect that did not induce systemic hyperthermia in vivo. Here, the researchers 

reported an increase of 11°C–12°C in C57/BL6 mice mediated by the accumulation and 

subsequent activation of MNPs. In addition, Balivada et al. (2010) demonstrated that as the 

iron concentration of the magnetic nanocomposites increased from 5 μg/ml to 25 μg/ml, the 

number of viable tumour cells decreased from approximately 480 000 to 150 000 indicating 

the increase in iron concentration had an in vivo cytolytic action. Yanase et al. (1998) suggest 

https://en.wikipedia.org/wiki/Claustrophobia
https://en.wikipedia.org/wiki/Medical_diagnosis
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that the used of magnetic hyperthermia in the treatment of cancers may be more technically 

demanding.  

1.11 Governing Equations 

          The physical aspects of any fluid are governed by three fundamental principles, i.e., 

conservation of (i) mass, (ii) momentum and (iii) energy. These fundamental physical 

principles can be expressed in terms of basic mathematical equations known as equation of 

continuity, equations of momentum or motion and equation of energy respectively. 

The continuity equation for a viscous compressible electrically conducting fluid in vector 

form is  

              0)( 



q

t



 

Where   is the density of the fluid; ),,( wvuq  is the fluid velocity vector in three 

dimensional Cartesian coordinates system and vu,  and w are yx, and z component of flow 

velocity respectively. 

For incompressible fluid (  constant) the equation yields 
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The momentum equations for viscous incompressible fluid in vector form are: 

               qPFqq
t

q 21
)( 







 

Where F the body force per unit mass, P is the fluid pressure,   is the kinematic viscosity. 

when a fluid flow under the influence of a magnetic field, two major force will act upon it. 

The first one is magnetization force due to the tendency of the RBC (erythrocyte) to orient 

with magnetic field, and second one is Lorentz force arising from electric current which 

generate the moving ions in the plasma.  

                )(
1

)(
11

)( 0

2 BJHMqPFqq
t

q













 

H is the magnetic field strength, B is the magnetic induction, J  is the current density, M is 

the magnetization. The term )( BJ  represent the Lorentz force per unit volume and the term 

HM )(0   represent the components of the magnetic force per unit volume. 
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From the Maxwell equation we have 
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i.e. yB constant 0B  

thus ).0,,0( 0BB   

        In MHD phenomenon the current density )(J  is composed of two terms: external 

electric field (E) and induced current field )( Bu . In this study there is no external electric 

field; therefore, the current density equation is as follows from the MHD generalized Ohm’s 

law we have 
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Hence ),0,0( 0uBJ  and where   is the conductivity of the material. 

Now from Lorentz’s force, we have   
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Therefore, the x component of Lorentz’s force is   uBBJ x
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       Therefore, the x momentum equation is  
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Energy equation. 

        In the mathematical model, the energy equation containing the temperature T of the 

fluid. This equation can be written as 
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D
,   is the density of the fluid; ),,( wvuq  is the fluid velocity vector 

in three dimensional Cartesian coordinates system and vu,  and w are yx, and z component 

of flow velocity respectively. The term  Hq
T

M
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  is a magneto caloric effect and 

represent the thermal power per unit volume.  This term arises due to the FHD, whereas the 

term 


JJ 
represent magnetohydrodynamic effect and known as joule heating and arises due 

to the MHD.  
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1.12 Lie Symmetry Analysis for Differential Equations 

      Here, we present some basics of Lie symmetry methods for solving differential equations, 

Olver (1986), Ovsiannikov (1982), Bluman and Kumei (1991). 

 

1.12.1 Symmetry transformations of differential equations 

A transformation under which a differential equation remains invariant (unchanged) is called 

a symmetry transformation of the differential equation. 

Consider a kth  order )1( k  system of differential equations 

muuuxF k ,...,1;0),....,,,( )()1(  
                                                                                   (1.1) 

where ),....,( 1 muuu  called the dependent variable, is a function of the independent 

variable ),....,( 1 nxxx  and )2()1( ,uu upto )(ku are the collection of all first, second, up to kth -

order derivatives of .u  

A transformation of the variable x and u, viz. 

.,...,1;,...,1),,(),,( mniuxguuxfx ii  
                                                         (1.2) 

is called a symmetry transformation of the system (1.1) if (1.1) is form-invariant in the 

new variables x  and u , that is 

muuuxF k ,...,1;0),....,,,( )()1(  
                                                                                  (1.3) 

whenever 

muuuxF k ,...,1;0),....,,,( )()1(  
                                                                                   (1.4) 

 

1.12.2 Lie symmetry method for partial differential equations 

Here we discuss the classical Lie symmetry method to obtain all possible symmetries of 

a system of partial differential equations. 

Let us consider a p-th order system of partial differential equations in n independent 

variables ),....,( 1 nxxx   and m dependent variable ),....,( 1 muuu  , viz. 

               ;0),....,,,( )()1( puuuxE                                                                                        (1.5) 

where pku k 1,)(  denotes the set of all kth order derivative of u; with respect to the 

independent variables defined by 
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With  niii k  ,...,,1 21                                                                                                         (1.7) 

For finding the symmetries of Eq. (1.5), we first construct the group of invertible 

transformations depending on the real parameter a; that leaves Eq. (1.5) invariant, 

namely 

                  ),,(),,,(...,),,,(1

1 auxguauxfxauxfx n

n

  .                                     (1.8)        

The above transformations have the closure property, are associative, admit inverses and 

identity transformation and are said to form a one-parameter group. 

Since a is a small parameter, the transformations (1.8) can be expanded in terms of 

a series expansion as 

                  )(),(.........,),(),( 22

11 aOuxaxxaOuxaxx nn    

                   )(),(.........,),(),( 22

11 aOuxauuaOuxauu nn                   (1.9) 

The transformations (2.32) are the infinitesimal transformations and the finite transformations 

are found by solving the Lie equations 

                       
da

ud
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da

xd
ux
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xd
ux n

n  ),(,),(,...,),( 1

1                                           (1.10) 

with the initial conditions 

                    nana
xauxxxauxx 

 0101 ),,(...,,),,(  

                     mana
uauxuuauxu 

 0101 ),,(...,,),,(                                                   (1.11) 

Where ),....,( 1 nxxx   and ),....,( 1 nuuu   

 

 1.13 Survey of Literature 

          Biofluid dynamics may be considered as the discipline of biological engineering or 

biomedical engineering in which the fundamental principles of fluid dynamics are used to 

explain the mechanisms of biological flows and their interrelationships with physiological 

processes, in health and in diseases/disorder. It can be considered as the conjuncture of 

mechanical engineering and biological engineering. It spans from cells to organs, covering 

aspects of functionality of systemic physiology, including cardiovascular, reproductive, 

urinary, musculoskeletal and neurological system etc. Biofluid dynamics and its simulations 

through computational fluid dynamics (CFD) apply to both internal and external flows. 

Internal flow such as cardiovascular blood flow and respiratory airflow and external flow 

such as flying and aquatic locomotion.  Biological fluid dynamics involves the study of the 

motion of biological fluids. It can be either circulatory system or respiratory system. The 
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study of biofluid dynamics is also directed towards finding solutions to some of the human 

body related diseases and disorders. The usefulness of the subject can can also be understood 

by seeing the use of biofluid dynamics in the areas of physiology in order to explain how 

living thing work and about their motions, in developing an understanding of the origins and 

development of various diseases related to human body and diagnosing them, in finding the 

cure for the diseases related to cardiovascular and pulmonary system. Observations also 

derived from related investigation are useful in the design and development of magnetic 

devices for cell separation, reduction of blood flow during surgery, targeted transport of drugs 

through the use of magnetic particles as drug carriers, magnetic resonance imaging (MRI) of 

specific parts of the human body, electromagnetic hyperthermia in cancer treatment etc., as 

mentioned in earlier communications 

         Heat is continuously generated in the human body by metabolic processes and 

exchanged with the environment and among internal organ through a complex combination 

of conduction, convection, evaporation and radiation. Transport of heat by the circulatory 

system makes heat transfer in the body. Heat transfer in biological systems is relevant in 

many diagnostic and therapeutic applications that involve changes in temperature. As we 

know, the cardiovascular system is sensitive to change in the environment, and flow 

characteristics of blood are modified to satisfy changing demands of the orgasm. In addition 

to transporting of oxygen, metabolites and other dissolved substance to and from the tissue, 

blood flow alter heat transfer within the body.  

         Heat transfer of blood flow is an important subject of research, because it has got 

significant applications in biomedical engineering and several medical treatment, particularly 

in thermal therapeutic procedures. It is also used in the treatment of muscle pumps, myalgia 

(muscle pain), chronic wide-spreed pain (in medical term, fibromyalgia), permanent 

shortening of muscle (medically called as contracture)  and also used in the treatment of 

bursitis, that is, inflammation of the fluid-filled sac that lies between tendon and bone, or 

between tendon and skin. Several experimental investigations have been carried out by some 

researchers (Kobu (1999), Nishimoto et al. (2006)) to examine the effects of infrared 

radiation on blood flow.  The effect of radiative heat transfer on blood flow in a stenosis 

artery was studied by Prakash and Makinde (2011). He et al. (2006) discussed the effect of 

temperature on blood flow in human breast tumor under laser irradiation. While flowing 

through the arterial tree, blood carries a large quantity of heat to different parts of the body. 

On the skin surface, the transfer of heat can take place by any of the four processes: radiation, 

evaporation, conduction and convection. It is known that in the case of radiative heat transfer, 
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energy is transferred through space by means of electromagnetic wave propagation. There are 

several determinants for the quantity of heat that blood can carry with it, namely, (1) heat 

transfer coefficient of blood, (2) density of blood, (3) velocity of blood flow, (4) radius of the 

artery and (5) temperature of the tissues that surround the artery. Out of these, since Reynolds 

number is related to the velocity and density of blood as well as the arterial radius, the 

quantity of heat carried by blood can be regarded as dependent only on Reynolds number and 

heat transfer coefficient of blood, and the temperature of the tissues surrounding the artery. 

         The effect of a magnetic field on blood flow has been analyzed theoretically. Chen 

(1985) treating blood as an electrically conducting fluid. Tzirtzilakis and Tanoudis (2003) 

studied the biomagnetic fluid flow over a stretching sheet. Pulsed magnetic fields have been 

used to treat various conditions, such as soft-tissue injury by Wilson (1974), chronic pelvic 

pain by Varcaccio et al. (1995). Keeping all these in mind, presence of an external magnetic 

field has been paid due consideration in the present study. 

         Two major functions that blood performs while flowing in the circulatory system are to 

carry nutrients and to supply heat to body tissues. The exchange of materials mainly takes 

place at the capillary level. However, there exists evidence to support that materials are also 

transported across the permeable walls of arteries (and veins) by Caro et al. (1978). The 

transport of water across the arterial wall is of interest in the study of metabolism and 

pathology of an artery. The nourishment of the arterial wall depends predominantly on the 

transport of materials from the arterial lumen. This transport can, sometimes, cause the 

genesis and the progression of arterial diseases such as atherosclerosis, atherogenesis, 

atheroma. Oka and Murata (1970) discussed the steady flow of blood through a permeable 

capillary wall.  

          Since blood is an electrically conducting fluid, in the presence of a magnetic field, its 

flow exhibits magnetohydrodynamic (MHD) behaviour. Misra, et al. (1998) investigated the 

steady MHD flow of an electrically conducting fluid (with particular reference to blood flow 

in arteries) in a slowly varying channel in the presence of a uniform transverse magnetic 

field. Misra and Shit (2009) developed a mathematical model of the flow of a biomagnetic 

viscoelastic fluid over a stretching sheet. Misra et al. (2008) also investigated the flow and 

heat transfer of an MHD viscoelastic fluid in a channel with stretching walls. All these 

investigations carried out by Misra and his research group have been recognized as 

benchmark contributions in the field of physiological fluid dynamics. 

          Cardiovascular disease is now the leading global cause of death. During a heart attack, 

a clot forms in an artery that supplies blood to the heart and blocks blood flow to the area of 



22 
 

heart muscle supplied by that artery. The portion of the heart muscle deprived of blood 

carrying the needed oxygen begins to become damaged. This is called a “myocardial 

infarction,” more commonly known as a heart attack. The amount of lasting damage to the 

heart muscle depends on a number of factors—the size of the clot, the location of the clot, 

and how long the clot blocks blood flow to the muscle. The longer the heart muscle is without 

blood and oxygen, the more extensive the damage to the muscle and the greater the size of 

the heart attack. There are other kinds of diseases which are concerned with narrowing of 

blood vessels such as peripheral artery disease, vascular diseases, atherosclerosis etc. 

Peripheral artery disease is a common circulatory problem in which narrowed arteries reduce 

blood flow to human limbs. Arteries carry oxygen-rich blood from the heart to nourish every 

part of the body, including the brain, kidneys, intestines, arms, legs, and heart itself. When 

peripheral artery disease (PAD) is developed, extremities such as legs don't receive enough 

blood flow to keep up with body demand. Vascular disease is an abnormal condition of the 

blood vessels which commonly occurs where turbulent blood flow takes place, such as when 

the direction of blood flow in the arteries changes abruptly. Atherosclerosis is the narrowing 

and / or blockage of the blood vessels that supply the heart, due to fat deposit built up in the 

artery walls. Hereby the inevitable usefulness of the study of blood flow in a narrow blood 

vessel. This study uses the extract of Biofluid Dynamics (BFD), Magnetohydrodynamics 

(MHD) and Ferrohydrodynamics (FHD). Biofluid Dynamics studies the fundamental 

principles of fluid dynamics that are used to explain the mechanisms of biological flows and 

their interrelationships with physiological processes, in health and in diseases. 

Magnetohydrodynamicsis the study of the magnetic properties of electrically conducting 

fluids and Ferrohydrodynamics treats the flow of strongly magnetized fluid media. 

          Unsteady fluid flow hinges upon time dependent flow properties: velocity, pressure, 

temperature etc. This type of fluid flow can be observed in human body due to much 

impulsive body movement, vibration, unintentional abrupt body acceleration while riding any 

vehicle or in various kinds of physical competition. In addition, this type of flow might occur 

in a cardiovascular disease: the leading global cause of death. According to the World Health 

Organization (WHO), an estimated 17.7 million people died from cardiovascular diseases in 

2015, representing 31% of all global deaths. Of these deaths, an estimated 7.4 million were 

due to coronary heart disease and 6.7 million were due to stroke. A great deal of work has 

been carried out on biological fluids. Among them the most important and characteristic one 

is blood. Also some extensive amounts of works have been along with the effects of magnetic 

field and heat transfer. 
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         A symmetry group of a system of differential equation is a group of transformations, 

which maps any solution to another solution of system. According to Lie‘s (1875) frame 

work such a group depends on continuous parameters and consist of either point 

transformation (point symmetry) acting on a systems space of independent and dependent 

variables, or more generally, contact transformations (contact symmetry) acting on the space 

including all first order derivatives of dependent variables. Elementary examples of Lie 

groups include translation, rotation and scaling and autonomous system of first order ordinary 

differential equation essentially defines one parameter Lie group of point transformation. 

Whereas discrete groups of point transformation, acting on the space of its dependent and 

independent variables that can be determine by Lie‘s algorithm. Mathematicians have studied 

the theory of continuous transformation of group extensively since the late of nineteenth 

century. First, it was Sophus Lie (1842-1899), the Russian mathematician, who has 

introduced the notations continuous groups, known as Lie groups, in order to unify and 

extend various specialized solution methods for the ordinary differential equations. Lie show 

then, one can reduce the order of ordinary differential equation, constructively, if the said 

differential equation is invariant under a one-parameter Lie group of point transformation.  

          Lie’s work systematically relates miscellany of topics in ordinary differential equations 

including integrating factor, separable equation, homogeneous equation, reduction of order of 

an equation, method of undetermined coefficient and the method of variation of parameter for 

linear equation, Euler‘s equation and the use of Laplace transform. Further Lie has also 

indicated that linear partial differential equation invariant under a group, so called Lie group, 

leads directly to superposition of solutions in terms of transformations. 

           In the recent past, several researchers are focused on obtaining the similarity solutions 

of the convective transport phenomena problems arising in fluid dynamics, aerodynamics, 

plasma physics, meteorology, and some branches of engineering by using different 

procedures. One such procedure is Lie group analysis. The concept of Lie group analysis also 

called symmetry analysis is developed by Sophius Lie 1976 to determine transformations 

which map a given differential equation to itself and it unifies almost all known exact 

integration techniques, Ovsiannikov (1982), Olver (1993), Bluman and Kumei (1991). Lie 

group analysis used to find the similarity reduction of the non-linear differential equations. In 

such analysis, one reduces the number of variable governing the partial differential equations. 

This reduction of variables changes the system of partial differential equations to self-similar 

system of the ordinary differential equations. Lie group analysis has been used to analyze 

convective phenomena under various flow configurations that arise in various branch of 
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science and engineering. It provides a potent, sophisticated, and systematic tool for 

generating the invariant solutions of the system of nonlinear partial differential equations 

(PDEs) with relevant initial or boundary conditions. A special form of Lie group 

transformations, known as the scaling group, has been suggested by various researchers to 

study convection flows of different flow phenomena (see Ferdows et al. (2013), Aziz et al. 

(2012), Prabhu et al. (2009), . Rashidi et al. (2014) etc.; they are worth observing). 

 

1.14 Research Objectives 

The main objectives of this thesis is a theoretical investigation of boundary layer flow of a 

biomagnetic fluid and heat transfer on a stretching/shrinking sheet in the presence of a 

magnetic dipole. Here we have examined the cases of (i) Hydrodynamic, (ii) Pure MHD, (iii) 

Pure FHD, and (iv) BFD. For all the cases, the specific aims of the study are as follows: 

 To investigate the blood flow patterns considering a two/three dimensional 

steady/unsteady, laminar, incompressible and in the presence of magnetic dipole. 

  To incorporating both magnetization and electrical conductivity into BFD model. 

  To use the temperature dependent magnetization. 

 To construct the mathematical and physical model. 

 The problem has been treated mathematically by using Lie group transformation. 

  To solve the systems of transformed equations with boundary conditions through the 

use of finite difference method/ bvp4c function available in FORTRAN/MATLAB 

software. 

 To analyze the features of the dual solutions. 

  To perform the stability analysis that determine which solution is stable that can be 

physically realistic and which is not. 

 To determine the effects of the flow control parameters on fluid velocity, temperature, 

pressure and relative pressure distributions. 

 To show the behavior of the physical quantities such as the skin friction coefficient, 

rate of heat transfer and relative pressure against the flow parameters. 
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1.15 Structure of the thesis 

           In the thesis, we have constructed the mathematical models for steady-unsteady, 

linear-nonlinear, stretching-shrinking sheet for biomagnetic fluid flow and heat transfer has 

been analyzed for various boundary conditions. The work contained in the thesis has 

adequately met the objectives outlined above. The main body of the thesis consists of eight 

chapters and the conclusion. In each chapter a specific problem is investigated. In chapter 1, 

we shall build up a strong structure in logical manner to provide knowledge of very basic 

concepts of biofluid dynamics. It is the essential part of study to have better understanding of 

behavior of particle in flow. This chapter deals with definitions and a brief discussion of bio 

fluids and its important applications, magnetohydrodynamic, ferrodydrodynamic, Lie group 

analysis, magnetization, magnetic field and other related research area of biomagnetic fluid 

dynamics. Clearly, this chapter provides strong foundation for next coming chapters.  

            In chapter 2, the solution techniques have been described in details. The solution 

techniques are involving the Finite difference method (FDM), Efficient Numerical Technique 

of two point boundary value problem based on the common finite difference method with 

central differencing, a tridiagonal matrix manipulation and an iterative procedure. And finally 

the boundary value problem solver, bvp4c function technique in MATLAB are discussed 

here. 

          The mathematical models developed to meet the specific objectives are presented in the 

eight subsequent chapters, from Chapter 3 to Chapter 9. In Chapter 3, we investigate the 

Biomagnetic Fluid Flow (BFD) (blood) over a stretching sheet in the presence of a magnetic 

field. For the mathematical formulation of the problem both magnetization and electrical 

conductivity of blood are taken into account and consequently both principles of 

Magnetohydrodynamics (MHD) and FerroHydroDynamics (FHD) are adopted. The physical 

problem is described by a coupled, nonlinear system of ordinary differential equations subject 

to appropriate boundary conditions. This solution is obtained numerically by applying an 

efficient numerical technique based on finite differences method. The obtained results are 

presented graphically for different values of the parameters entering into the problem under 

consideration, Murtaza et al. (2017). 

           A study of three dimensional time dependent biomagnetic fluid flow and heat transfer 

over a stretching/shrinking sheet has been carried out in Chapter 4. In this chapter, impact of 

unsteadiness parameter, ferromagnetic interaction parameter, stretching parameter and other 

involved parameters on bio-fluid velocity, temperature and pressure as well as skin friction 
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coefficient, rate of heat transfer and wall pressure has been investigated, Murtaza et al. 

(2018). 

          Chapter 5 deals with the time-dependent two-dimensional biomagnetic fluid (blood) 

flow (BFD) over a stretching sheet under the action of strong magnetic field. In this chapter 

we discuss the stability and convergence analysis of this problem. The stability and 

convergence analysis have been used for measuring the restriction of the useful parameters 

and this restrictions. The explicit finite difference methods (EFDM) have been used to solve 

the transform equations. To obtained results are presented graphically and discuss for 

different values of the dimensionless parameter entering into it.  

          A study of BFD flow and heat transfer over a non-linearly stretching sheet with 

variable thickness has been carried out in Chapter 6. The governing PDEs are transformed 

into a system of couple non-linear ODEs subject to appropriate boundary conditions. The 

numerical solution is obtained by an efficient numerical technique based on common finite 

differences method. The effect of various governing parameters on the flow, pressure and 

temperature profile as well as skin friction coefficient, rate of heat transfer and wall pressure 

are presented graphically and briefly discussed.  

        A study of temperature dependent viscosity and thermal diffusivity on BFD boundary 

layer flow and heat transfer over a stretching sheet has been carried out in Chapter 7. It was 

assumed that the thermal conductivity varies linearly with temperature, whereas fluid 

viscosity varies inversely with temperature and also assume that wall temperature are varies 

in the ),( yx plane. The influence of various parameters namely the viscosity parameter, 

thermal conductivity parameter, ferromagnetic interaction parameter on the velocity and 

temperature fields have been discussed and presented in Chapter eight through graphs.   

            Chapter 8 and 9 deal with a theoretical and numerical investigation of stability and 

dual solutions of a biomagnetic fluid flow. It was assumed that the stretching velocity and 

temperature are vary as a power of the distance from the origin.  The problem has been 

treated mathematically by using Lie group transformation. Lie group analysis used to find the 

similarity reduction of the non-linear differential equations. In such analysis, one reduces the 

number of variable governing the partial differential equations. This reduction of variables 

changes the system of partial differential equations to self-similar system of the ordinary 

differential equations. Existence of dual solutions (stable or unstable) has been reported in 

this chapter. A stability analysis has also been carried out and presented in the chapter. This 

enables one to determine which solution is stable that can be realized physically, and which is 
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not. The numerical solution is done by using bvp4c function available in Matlab software. 

The effect of various physical parameter on the velocity and temperature profiles as well as 

skin friction coefficient and rate of heat have been drawn and adequate discussion.  

Finally, the overall conclusions are summarized in Chapter 10. 

All references of this thesis are listed in the bibliography section just after Chapter 10.  
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Chapter 2 

Numerical Technique 

 

The world is defined by structure in space and time, and it is forever changing in complex 

ways that can’t be solved exactly. Therefore the numerical solution of partial differential 

equations leads to some of the most important, and computationally intensive, tasks in all of 

numerical analysis. Many physical phenomena in applied science and engineering when 

formulated into mathematical models fall into a category of systems known as non-linear 

coupled partial differential equations. Most of these problems can be formulated as second 

order partial differential equations. A system of non-linear coupled partial differential 

equations with the boundary conditions are very difficult to solve analytically. For 

obtaining the solution of such problems advanced numerical methods have been employed. 

Hence two numerical procedures have been adopted to obtain solutions.  The governing 

equations are transformed by usual transformation into a non-dimensional system of non-

linear coupled partial differential equations with initial and boundary conditions. Hence the 

solution of our problem would be based on advanced numerical methods. The Explicit as 

well as Implicit Finite Difference Method will be used for solving the obtained non-similar 

coupled partial differential equations. Then we discuss a simple and efficient approximate 

numerical technique of two-point boundary value similarity problems which is based on the 

common finite difference method with central differencing, a tridiagonal matrix manipulation 

and an iterative procedure. After that we discuss the boundary value problem solver bvp4c in 

Matlab. 

2.1 Finite Difference Methods (FDM)  

         We use the finite difference methods to solve the boundary value problem by 

discretizing the continuous solution domain and approximating the exact derivatives by finite 

difference approximation and substitute into the boundary value problem to obtain the finite 

difference equation.  

        The finite difference techniques are based upon the approximations that permit replacing 

differential equation by finite difference equation by Strikwerda (1989), Mitchell and 

Griffiths (1980). There finite difference approximations are algebraic in form, and the 
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solutions are related to grid points. Thus, a finite difference solution basically involves three 

steps:- 

1) Dividing the solution into grids of notes. 

2) Approximating the given differential equation by finite difference equivalence that relates 

the solutions to grid points. 

3) Solving the difference equations subject to the prescribed boundary conditions and/or 

initial conditions. 

 

Fig. 2.1 Finite difference space grid 

           We now construct common finite difference approximations to common partial 

derivatives. For simplicity we suppose that  U  is a function of two special coordinates x ,  

y  and time t . We adopt the following notation. Let the subscripts i  and j  represent x  

and y  coordinates and superscript n  represents time. Let the mesh spacing in x  and y  

directions are denoted by x  and y  also the time step by t . We will approximate the 

partial derivatives of U  with respect to x . As t  and y  are held constant U is effectively a 

function of the single variable x, so we can use Taylor’s formula, where the ordinary 

derivative terms are partial derivatives and the arguments are ),,( yxt  instead of x. Finally we 

will replace the step size h by x  to indicate the change of x, so that we have 
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Now with truncating error of order )( 2xO  then we have 
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Rearranging the equation (2.2), we get 
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Equation (2.3) holds at any points ),( 0xt . In numerical schemes for solving PDEs we are 

restricted to a grid of discrete x values, Nxxxx ...,,, 321  and discrete t levels Ntttt ...,,, 321 . We 

will assume a constant grid spacing x  in x, so that .1 xxx ii   Evaluating equation (2.3) 

for a point ),( in xt , on the grid gives,  
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We will use common subscript/superscript notation, 
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So the dropping the xO ( term, equation (2.4) becomes, 
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Equation (2.6) is the first order forward difference approximation to ),,( jinx yxtU .  

We now derive another FD approximation to ),,( jinx yxtU . Replacing x by x  in (2.2), 

we get 
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Evaluating (2.7) at ),,( jin yxt  and rearranging as previously gives, 
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Equation (2.8) is the first order backward difference approximation to ),,( jinx yxtU .  
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Our first two FD approximations are first order in x but we can increase the order by taking 

more terms in the Taylor’s series as follows. Truncating (2.2) to )( 2xO  , then replacing 

x by x  and subtracting this new expression from (2.2) evaluating at ),( in xt gives, after 

some calculation, we have 
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Equation (2.9) is the first order central difference approximation to ),,( jinx yxtU . 

Many PDEs contain second order or higher order partial derivatives, so we need to derive 

approximations to them. Equation (2.1) becomes 
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replacing x by x in (2.10), we get 
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Adding (2.10) and (2.11), we get 
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Using our discrete notation at the point ),,( jin yxt  and dropping the )( 4xO  term, we have 
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Equation (2.12) is the second order central difference approximation to ),,( jinxx yxtU . 

The expressions for mixed derivatives can be obtained by differentiating with respect to 

each variable in turn. Thus for example, 
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Proceeding in a similar manner, approximation can be obtained even to higher order 

derivatives. 
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2.2 Efficient Numerical Technique for two point boundary value problem  

 

          Here we described a simple and efficient approximate numerical technique for solving 

a wide class of two-point boundary value similarity problems in fluid mechanics (Kaffaussias 

and Williams (1993). This numerical technique is based on the common finite difference 

method with central differencing, a tridiagonal matrix manipulation and an iterative 

procedure. So, it can be programmed and applied easily. The whole numerical scheme is 

stable, accurate and rapidly converging. These facts suggest this is a powerful and accurate 

method suitable for application to a wide class of two-point boundary value similarity 

problems in fluid mechanics (Tzirtzilakis and Kafoussias (2010)). 

           First we consider the flow and heat transfer of two dimensional, steady, laminar, 

viscous and incompressible fluid over a stretching sheet. Assume that the boundary layer 

problem is governed by the following set of partial differential equations 
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The boundary conditions for the velocity and temperature field are given by the following: 

               wTTvcxuy  ,0,:0                                                                                      

 constqpTTuy c  22/1,,0:                   (2.17) 

Using the suitable similarity variable and dimensionless temperature and stream function,  
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The governing equations reduced to the following ordinary differential equations 

02'''''' 2  Pffff                  (2.19) 

0'4'Pr'' 2  ff                   (2.20) 

and the boundary conditions are transformed to: 

                1,0,1':0   ff                                                                    

                PPf 1,0,0':                                                                       (2.21)                     
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To calculate the numerical solution of a class of similarity problems. Now we demonstrate 

this technique by solving the system of equations (2.19)-(2.20) with associated boundary 

conditions (2.21). 

The Equation (2.19) can be written as  

           Pffff 2'''''' 2                                                                                    (2.22) 

       The above equations can be considered as a second order linear differential equation by 

setting )(')( fxy   provided that P and )(f are considered known functions.  In this case 

equation (2.22) can be written as  

                   Pfffff 2'''''''   

which is of the form 

           )()()()(')()('')( xSxyxRxyxQxyxP                                                               (2.23) 

where PxSfxRfxQxP 2)(),(')(),()(,1)(     

         In an analogous manner all equations of the system can be reduced in this form of 

equation (2.23).  Equation (2.22) can be solved by a common finite difference method, based 

on central differencing and tridiagonal matrix manipulation. 

       To start the solution procedure, we assume initial guesses (distribution curves) for )(' f  

and )(P  between 0  and )(     which satisfy the boundary conditions (2.21). 

For this problem indicative initial guesses are  
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
 1)(1   

         The )(f distribution is obtained by the integration from )(' f curve. The next step is 

to consider the ,, Pf  known and to determine a new estimation for )('),('  newff  by 

solving the non-linear equation (2.23) using the above method. The distribution is updated by 

the integration of new )(' f  curve. These new profiles of )(' f  and )(f are then used for 

new inputs and so on. In this way the momentum equation (2.19) is solved iteratively until 

convergence up to a small quantity   is attained. 

        After )(f  is obtained the solution of the energy equation (2.20) with boundary 

condition (2.21) is solved by using the same algorithm, but without iteration now as for as 

equation (2.20) is linear. Equation (2.20) is 

        0'4'Pr'' 2  ff   
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Fig 2.2. Flow chart of the computer program for the approximation numerical technique 

 

This equation can be written as 

        2'4'Pr'' ff                                                                                                        (2.24)  

Equation (2.24) is a second order linear differential equation in setting )()(  y  which is 

of the form  
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considering )(),( P are known 

 '''' ff new  
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)()()()(')()('')( xSxyxRxyxQxyxP                          (2.25) 

    where    2'4)(,0)(,Pr)(,1)( fxSxRfxQxP   

         Considering )('),(  ff are known, we obtain a new approximation new  for   and this 

process is continue until convergence up to a small quantity   is attained and finally we 

obtain  . 

 

2.3 Boundary value problem solver bvp4c in Matlab 

          The system of nonlinear ordinary differential equations (ODEs) have been solved 

numerically by using the boundary value problem solver, bvp4c function technique in 

MATLAB by Shampine et al. (2000). To obtain the solution we need three necessary 

conditions: (i) first order ODEs which are to be solved (ii) their associated boundary 

conditions and (iii) initial guesses for these functions.  

         Since the transformed governing equation (2.19) and (2.20) are of third and second 

order we reduce them to a system of first order differential equations. New variables are now 

defined by the equations 54321 ',,'',', yyyfyfyf   . Thus, the two coupled higher 

order differential equations and the corresponding boundary conditions, can be transformed 

to five equivalent first ODEs subject to corresponding boundary conditions.  The system of 

first order ODEs is: 

2

2515

5

2

2313

32

2

4Pr'''

'

2''''

'

'

yyyy

y

Pyyyyf

yy

yf















                                                                                                    

The above equation is then integrated numerically as an initial valued problem to a given 

terminal point. All these simplifications are done for using the MATLAB package.  

The numerical procedure of bvp4c followed is: 

 Nonlinear PDEs are reduced to 1st order ODEs . 

 The solution is returned by bvp4c as a structure called sol 

 Mesh selection is generated and returned in the field sol.x 

 Solution can be fetch from array sol.y corresponding to sol.x  

 let )0(y   be the left boundary, )(y be the right boundary. 
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Chapter 3 

Effect of electrical conductivity and magnetization 

on the biomagnetic fluid flow over a stretching sheet 

 

The aim of this chapter is to investigate the Biomagnetic Fluid Flow (BFD) (blood) over a 

stretching sheet in the presence of magnetic field. For the mathematical formulation of the 

problem both magnetization and electrical conductivity of blood are taken into account and 

consequently both principles of Magnetohydrodynamics (MHD) and FerroHydroDynamics 

(FHD) are adopted. The physical problem is described by a coupled, nonlinear system of 

ordinary differential equations subject to appropriate boundary conditions. This solution is 

obtained numerically by applying an efficient numerical technique based on finite differences 

method. The obtained results are presented graphically for different values of the parameters 

entering into the problem under consideration. Emphasis is given to the study of the effect of 

the MHD and FHD interaction parameters on the flow field. It is apparent that both 

parameters effect significantly on various characteristics of the flow and consequently neither 

electrical conductivity nor magnetization of blood could be neglected by Murtaza et al. 

(2017).   

  3.1 Introduction 

         Biomagnetic fluid dynamics (BFD) is a relatively new area of fluid mechanics. 

Numerous applications have been proposed in bioengineering and medical science, and some 

of them include cancer tumor treatment by using magnetic hyperthermia or development of 

magnetic devices for cell separation, Alimohamadi and Sadeghy (2015), Misra et al. (2010), 

Haik et al. (1999). BFD is the study of the effect of an applied magnetic field on biological 

fluid flow. An initial model of BFD was developed by Haik et al. (1996) and is actually based 

on the principles of Ferrohydrodynamics (FHD). According to this information, blood is 

considered as an electrically non-conducting magnetic fluid and the flow is affected by the 

magnetization of the fluid in the magnetic field. 

         Thus, the arising force is due to magnetization and depends on the existence of a 

spatially varying magnetic field. However, blood also possesses properties of an electrically 
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conducting fluid due to the ions in the plasma. The flowing ions produce a slight electric 

current which interacts with magnetic fields. The formulation of electrically conducting fluids 

is made by adopting the principles of the well-known magnetohydrodynamics (MHD) which 

in contrast to FHD ignores the effect of polarization and magnetization, Rosensweig (1987). 

In order to formulate the entire magnetic properties of blood, i.e., electrical conductivity 

along with polarization an extended BFD model was developed by Tzirtzilakis (2005). This 

model is consistent with the properties of MHD as well as with those of FHD and also 

includes the energy equation. 

        The shear-driven flow over a stretching sheet constitutes a classical physical problem 

first studied by Crane (1970) for a Newtonian fluid. Later, Anderson (1995) derived an exact 

similarity solution for velocity and pressure of the magnetohydrodynamic flow past a 

stretching sheet. The study of MHD flow over a stretching sheet still constitutes a topic of 

current ongoing research. The radiation effects on the MHD flow near the stagnation point of 

a stretching sheet were studied by Jat and Chaudhary (2010) and Pop et al. (2011). Das et al. 

(2015) studied the unsteady MHD flow of nanofluids over an accelerating convectively 

heated stretching sheet in the presence of a transverse magnetic field with heat source/sink. 

The MHD flow of a viscous liquid film over a stretching sheet under different nonlinear 

stretching velocities was studied by Dandapat et al. (2010). Finally, a characteristic study 

concerning applications of MHD flow problems to hemodynamics is that of the steady 

incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a 

parallel plate channel with stretching walls in the presence of a magnetic field, Misra et al. 

(2008). 

          Furthermore, analogous FHD flows over a stretching sheet have been investigated as 

well. A classical study flow of a heated ferrofluid over a stretching sheet in the presence of a 

magnetic dipole is that of Anderson and Valnes (1998). Recently, Zeeshan et al. (2015) 

studied the effect of thermal radiation and heat transfer on the flow of ferromagnetic fluid on 

a stretching sheet. The appropriate combination of nonmagnetic viscous base fluid, magnetic 

solid and surfactant composes magnetic fluid in the presence of magnetic dipole. Finally, 

Tzirtzilakis and Kafoussias (2010) studied the three-dimensional laminar and steady 

boundary layer flow of an electrically non-conducting and incompressible magnetic fluid, 

with low Curie temperature and moderate saturation magnetization, over an elastic stretching 

sheet. It was also assumed that the magnetization of the fluid varied with the magnetic field 

strength H and the temperature T. 
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         As far as the BFD flow over a stretching sheet is concerned the first work has been 

carried out by Tzirtzilakis and Kafoussias (2003) which was the study of a biomagnetic fluid 

flow over a stretching sheet with nonlinear temperature-dependent magnetization. Moreover, 

Tzirtzilakis and Tanoudis (2003) have presented a numerical method for the study of laminar 

incompressible two-dimensional biofluid over a stretching sheet with heat transfer. It was 

assumed that the magnetization of the fluid varied with the magnetic field strength H and the 

temperature T. Recently, Misra and Shit (2009) studied the BFD flow of a non-Newtonian 

viscoelastic fluid over a stretching sheet under the influence of an applied magnetic field 

generated by a magnetic dipole. The magnetization of the fluid is considered to vary linearly 

with temperature as well as the magnetic field intensity. 

         To the authors’ knowledge all the above-mentioned BFD flows over a stretching sheet 

have been studied using either the formulation consistent with the principles of FHD or the 

formulation consistent with the principles of MHD. So, the present study concerns the flow of 

biomagnetic fluid over a stretching sheet, in the present of an applied magnetic field using the 

extended BFD model incorporating both FHD and MHD formulations. The magnetization is 

considered to vary with the temperature and the magnetic field strength intensity, and the 

biofluid is treated as an electrically conducting magnetic fluid which also exhibits 

magnetization. The formulation of the problem is obtained by an analogous manner presented 

in previous studies by Anderson and Valnes (1998) and Tzirtzilakis and Kafoussias (2003), 

and the numerical solution is obtained by applying an efficient numerical technique based on 

the common finite difference method which have been presented by Kafoussias and Williams 

(1993). The obtained results for critical flow characteristics like velocity, pressure and 

temperate as well as rate of heat transfer, skin friction or pressure on the stretching sheet are 

presented graphically for specific parameters entering into the problem under consideration. 

Special detailed analysis is performed for the variation of these physical quantities with the 

FHD and MHD interaction parameters which formulate the forces arising due to 

magnetization and the electrical conductivity, respectively. 

 

 3.2 Mathematical Formulation 

          Let us consider the viscous, steady, two-dimensional, laminar flow of an 

incompressible and electrically conducting biomagnetic fluid past a flat elastic sheet which is 

stretched with a velocity proportional to distance ,.. cxuei   where c is a dimensional 

constant. The temperature of the stretched sheet is kept at fixed wT  and the temperature of the 
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fluid far away from the sheet is cT , where wc TT  . The fluid is confined to the half space 

)0( y   above the sheet, and magnetic dipole is located at distance d below the sheet, giving 

rise to a magnetic field of sufficient strength to saturate the biomagnetic fluid. The flow 

configuration is shown schematically at Fig. 3.1. 

 

Fig. 3.1. Flow configuration of the flow field 

Under the above assumptions the equations governing the flow under consideration are, 

Rosensweig (1987) and Tzirtzilakis and Xenos (2013): 

Continuity equation: 
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Energy equation: 
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with boundary conditions: 

 wTTvcxuy  ,0,:0                                                                                 (3.5)     

 constqpTTuy c  22/1,,0:  .                                                        (3.6) 

        In the above equations ),( vuq  the dimensional velocity, p is the pressure,  is the 

biomagnetic fluid density,   is the electrical conductivity,   is the dynamic viscosity, 

pC the specific heat at constant pressure and k  the thermal conductivity, 0 is the magnetic 

permeability and ),( yx HHH  s the magnetic field strength, B is the magnetic induction 

)).,(),(( 00 yxyx HHBBHB    

         The terms vBBuB yxy   2
 and uBBvB yxx   2

in (3.2) and (3.3), respectively, 

represent the Lorentz force per unit volume towards the x  and y directions respectively, 

whereas the term 22uB in the energy equation (3.4) represents the Joule heating. These 

terms arise due to the electrical conductivity of the fluid and are known in MHD, Rosensweig 

(1987), Das et al. (2015), Misra et al. (2008). The terms
x

H
M




0  and 

y

H
M




0  in (3.2) and 

(3.3), respectively, represent the components of the magnetic force per unit volume and 

depend on the existence of the magnetic gradient on the corresponding  x  and y directions. 

The second term on the left-hand side of the energy equation (3.4), accounts for heating due 

to the adiabatic magnetization. These terms are known from FHD, Rosensweig (1987), 

Tzirtzilaki (2005), Tzirtzilakis and Kafoussias, (2003, 2010).  

      The magnetic dipole gives rise to a magnetic field, sufficiently strong to saturate the 

biofluid, and its scalar potential is given by Andersson and Valnes (1998) 
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Thus, the magnitude HH  of the magnetic field intensity by 
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where    and 
yx HH , are the component of the magnetic field  

yx HHH , given by 
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       Following analogous manipulations to previous studies by Andersson and Valnes (1998), 

Tzirtzilaki (2005), Tzirtzilakis and Kafoussias (2003, 2010) the gradients of the magnetic 

field strength can be obtained from Eq. (3.8) after having expanded in powers of x and 

retained terms up to 2x , thus  
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The magnetic field intensity  can be expressed by analogous manner, as 
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        The above relations of the magnetic field strength H and its gradients, i.e., (3.12) and 

(3.11), respectively, are valid close to region where x = 0 and are used for the further 

transformation of the system of the governing equations. 

        Moreover, under the assumption that the applied magnetic field H  is sufficiently strong 

to saturate the biomagnetic fluid, the magnetization M is generally determined by the fluid 

temperature and magnetic field intensity H. There is a variety of equations that can be used 

for the variation of the magnetization under the equilibrium assumption. In this study the 

relation derived experimentally is adopted by Matsuki et al. (1977). This relation expresses 

the magnetization as a function of the magnetic field strength intensity H and the temperature 

of the fluid T. 

                                         )( TTKHM c                                                                         (3.13) 

where K is a constant called pyromagnetic coefficient and Tc is the Curie temperature. The 

above relation for the magnetization M has also proposed for the formulation of BFD by 

Tzirtzilakis (2005) and used for stretching sheet flow problems, Tzirtzilakis and Kafoussias, 

(2003a, 2003b, 2010). 
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3.3 Mathematical Analysis 

          Following Anderson and Valnes (1998) we introduce the following non-dimensional 

coordinates  
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and the dimensionless variables 
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where ),(),,(  and ),( p  are the dimensionless stream function, temperature and 

pressure respectively. 

The velocity components can be calculate as 
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Substituting the above equations into the momentum equations in (3.2) and (3.3), we get 
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Divided by xc 2
on both side, we get 
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Again from equation (3.3), we get  
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Equate the coefficient of 
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and equating the coefficient of 
2  we have 
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Finally, we get the following system of differential equations 

           
 

0'
2

2''''''
6

1

2

2

2 


 MfPffff



                                                                  (3.19) 

 
 

0
2

'''
5

1

2
'

1 


 MffffP



                                                                            (3.20) 

 
   

0
26

5

2

2

7

1

2
'

2 













P                                                                                   (3.21) 

 
 

 
0'42

2
Pr 2

25

1

2

'

1

''

1 



 f

fT
f 




                                                   (3.22) 

              
    




















761

2'

22

2''

2

3'
2'2Pr''


 

ff
Tfff  

                                   
 

 
0'

2 2

5

2

2





 fM

T




                                                         (3.23)                                        

and the boundary conditions (3.5) and (3.6) are transformed to: 

                .0,1,0,1':0 21   ff                                                                    (3.24) 

               .0,,0,0,0': 2121   PPPf                                         (3.25) 

The dimensional parameters appearing in the above governing equations are: 

k

c p
Pr                                               Prandtl number 

wc

c

TT

T
T


                                          Dimensionless temperature parameter 

 wc TTk
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
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
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2

                                   Viscous dissipation parameter 
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          The ferromagnetic interaction parameter arises in the governing equations due to the 

magnetization (polarization) of the fluid and is consistent to the FHD properties. If one set 

0M  and 0 to the governing equations (3.19)-(3.23) then the polarization is “switched 

off” and the governing equations along with the corresponding boundary conditions 

correspond to the MHD flow over a stretching sheet. On the other hand the 

Magnetohydrodynamic interaction parameter arises in the governing equations due to the 

electrical conductivity of the biofluids. If now one set 0M  and 0 then the electrical 

conductivity is omitted and the governing equations along with the corresponding boundary 

conditions formulate the pure FHD flow over a stretching sheet. It is clear that if  0 M  

then the set of equations corresponds to a pure hydrodynamic flow.  

          The system of equations (3.19)-( 3.23) subject to the boundary conditions (3.24) and 

(3.25), constitute a six parameter   TM Pr,,,,, coupled and non-linear system of 

ordinary differential equations, describing the BFD flow over a stretching sheet when the 

fluids exhibits both electrical conductivity and magnetization which is given as a function of 

temperature T and the magnetic field strength H. 

 

3.4 Numerical Method 

          For the numerical solution of the problem under consideration we apply an 

approximate technique that has better stability characteristics than classical Runge-Kutta 

combined with a shooting method, is simple, accurate and efficient. The essential features of 

this technique are the following: (i) It is based on the common finite difference method with 

central differencing (ii) on a tridiagonal matrix manipulation and (iii) on an iterative 

procedure. This numerical method is described in detail in Kafoussias and Williams (1993). 

For reasons of completeness of this study we demonstrate the application of this methodology 
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for the numerical solution of the system of equations (3.19), (3.22) and (3.23), subject to the 

boundary conditions (3.24) and (3.25). 

     The momentum Equation (3.19) can be written as  

           
 

26

1

2
2 2

2
''''''' PMfffff 







                                                                        (3.26) 

       The above equations can be considered as a second order linear differential equation by 

setting )(')( fxy   provided that 2P and )(f are considered known functions.  In this case 

equation (3.26) can be written as  
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which is of the form 

           )()()()(')()('')( xSxyxRxyxQxyxP                                                               (3.27) 
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         In an analogous manner all equations of the system can be reduced in this form of 

equation (3.27) except for equation (3.20) and (3.21) which are already first order differential 

equations. Equation (3.26) can be solved by a common finite difference method, based on 

central differencing and tridiagonal matrix manipulation. 

       To start the solution procedure, we assume initial guesses (distribution curves) for )(' f  

and )(2 P  between 0  and )(     which satisfy the boundary conditions (3.24) 

and (3.25). For this problem indicative initial guesses are  
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         The )(f distribution is obtained by the integration from )(' f curve. The next step is 

to consider the 12 ,, Pf  known and to determine a new estimation for )('),('  newff  by 

solving the non-linear equation (3.27) using the above method. The distribution is updated by 

the integration of new )(' f  curve. These new profiles of )(' f  and )(f are then used for 

new inputs and so on. In this way the momentum equation (3.26) and consequently (3.19) is 

solved iteratively until convergence up to a small quantity   is attained. 
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        After )(f  is obtained the solution of the energy equation (3.22) with boundary 

condition (3.24) and (3.25) is solved by using the same algorithm, but without iteration now 

as for as equation (3.22) is linear. Equation (3.22) is 
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Equation (3.28) is a second order linear differential equation in setting )()( 1  y    

which is of the form  

)()()()(')()('')( xSxyxRxyxQxyxP                          (3.29) 
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         Considering )('),(  ff and 2  known, we obtain a new approximation new1  for 1  

and this process is continue until convergence up to a small quantity   is attained and finally 

we obtain 1  

        Hereafter the energy equation (3.23) with boundary condition (3.24) and (3.25) is 

solved. Equation (3.23) can be written as  
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Equation (3.30) is a second order linear differential equation by setting )()( 2  y  which 

is of the form (3.27) with 
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         Considering '',', fff  and 1  known we calculate the new approximation 
)(2 new for 

2  and continue this iteration until convergence up to a small quantity   is attained and 

finally we obtain 2  Considering now 1  and 2  known, we obtained a new estimate for 1P  

and 2P  (Eqs. (3.20)-(3.21)). Next the computational procedure reverts to its starting point 

using the most current distribution of of 1,,' andPf  as inputs. This process is continuing 

until final convergence of the solution is attained. 

         In order to apply to our numerical computation a proper step size 01.0 h and 

appropriate   value as )( y   must be determined. By “trial and error” we set 6 , 

01.0 and the tolerance between the iterations is set at 410 defined as 













 
 

)(

)()(
max ,1

if

ifif

old

newold

Ni . Computations were also performed for 001.0  and no 

significant differences were found. 

 

3.5 Results and Discussion 

          For the derivation of the numerical solution it is necessary to assign some numerical 

values to the parameters involved in the problem under consideration. In this study we adopt 

case scenarios also discussed in previous study by Tzirtzilakis (2008, 2015) according to 

which the fluid is blood with density 
31050  kgm  and viscosity 

113102.3  skgm . 

The electrical conductivity of blood is 18.0  sm . The temperature of the plate is 

KCTw 310370   whereas the temperature of the fluid is KCTc 314410  . Although the 

viscosity   the specific heat under constant pressure
pC  and thermal conductivity  of any 

fluid and hence of the fluid is blood, are temperature dependent the Prandtl number can be 

considered constant. Thus, for the temperature range considered in this 

problem 113109.3  KJkgC p and 1115.0  KsJmk .  
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          For the definition of ferromagnetic parameter and magnetohydrodynamic parameter, 

we have 

2

0 ))(0,0(

2 






 wc TTKH 
 ,     





c

H
M

22

0                                                               (3.31) 

For magnetization, we have 

)( TTKHM c                                                                                                                  (3.32) 

magnetic field intensity is  
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and the magnetic induction is HB 0                                                                             (3.34)                                                           

        Let us consider the magnetization very close to the wall at the point ).0,0( then the 

magnetization equation becomes ))(0,0(0 wc TTKHM  , magnetic intensity becomes 

  









2

1

2
0,0

d
H




and magnetic induction is ).0,0(00 HB   

Using the above relation, equation (3.31) becomes 
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For these values, the dimensionless temperature number is 
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If we take 4105 d  and 4105.3     then the ferromagnetic parameter is 
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and magnetohydrodynamic parameter is  
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           As far as the values of the magnetic parameters M and   are concerned there exist 

extended discussions in various studies among them are Tzirtzilakis (2005, 2008, 2015) and 

Misra et al. (2008). Especially the biomagnetic interaction parameter can take a quite large 

range of values depending by the magnetic field gradient. For   in the present study we 

adopt values in the range of 0-10 used also in the studies of Tzirtzilakis and Kafoussias 

(2003), Tzittzilakis and Tanoudis (2003), Misra and Shit (2009). For the magnetic parameter 

M the range that could be adopted is also large and could reach the value of 600 for very 

strong magnetic fields used by Misra et al. (2008). In this study we perform calculations for 

the range 0-10 for M. The above ranges of the magnetic parameters albeit correspond to low 

values of the magnetic field strength we will see that result to considerable changes in the 

flow field comparable to the hydrodynamic case which is given for 0 M  

        As far as the relevance of this flow case with a realistic situation with blood as the fluid 

is concerned, the studies Tzirtzilakis (2005, 2008, 2015) contain discussion of general flow 

conditions and corresponding parameter values for blood. For this specific physical problem, 

one could say that these parameters are corresponding to a flow problem of heated blood 

( C041 ) over a stretched tissue (at C037 ) during a hyperthermia treatment. However, it is 

admitted that this type of flow is investigated as a basic BFD flow problem for the 

understanding of the influence of the magnetic field on blood flow possessing properties of a 

magnetic material rather than a very realistic physical problem. 
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Fig. 3.2. Variation of the dimensionless velocity component ( )f   

          In order to compare the obtained numerical results with others documented in the 

literature, computations were carried out by setting M = 0 and for β = 0, 2 and 5. The results 

are identical with those obtained by Tzirtzilakis and Tanoudis (2003) as well as with those 

obtained by Tzirtzilakis and Kafoussias (2003) for the values of the critical exponent δ = 0 

and β = 0, 5, and the corresponding values of the parameters refereed in that study. It is noted 

that the results obtained by Tzirtzilakis and Tanoudis (2003) have been also validated with 

results obtained by Anderson and Valnes (1998) and are in accordance with the 

hydrodynamic case (M = β = 0) with the results obtained by Crane (1970). 

          Furthermore, additional comparisons were performed for the MHD case with analytical 

results provided by Anderson for the dimensionless stream function f , for β = 0 and M = 5. It 

is found that the absolute difference at all the points of calculation between the theoretical 

and numerical estimated value is less than 5105  . It is noted that the Lorentz force at the 

study of Anderson is risen only due to the u-velocity component, whereas, in the present 

study, both velocity components are taken into account (see Eqs. 3.2, 3.3). This accordance 

between the present results and the analytical ones presented by Anderson indicate an 

interesting matter as far as the physical problem is concerned. The consideration of both 
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velocity components in the Lorentz force does not significantly alter the flow field, and Eqs. 

(3.2) and (3.3) can be simplified. This is justified due to the fact that the u velocity 

component is dominant to the boundary layer flow field and the v-velocity component is 

insignificant to cause further changes in the Lorentz force. Moreover, the above results 

indicate that the simplification made in the energy equation concerning the joule heating 

term, i.e., the consideration that only the u-velocity component gives rise to the joule heating, 

is valid.  
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Fig. 3.3. Variation of the dimensionless temperature )(1   

 

           From relation (3.18) it is apparent that cxuf /)('  . The function )(' f  is called 

dimensionless velocity component and its variation is pictured at Fig. 3.2. The curves are 

plotted for M = β = 0 which corresponds to pure hydrodynamic flow, M = 0, β = 10 which 

corresponds to pure FHD flow, M = 5, β = 0 which corresponds to pure MHD flow and 

finally for M = 5, β = 10 which correspond to the mixed FHD and MHD flow of the extended 

BFD model. It is observed that the dimensionless velocity is reduced considerably with the 

increment of β or M. Increment of β causes reduction of the dimensionless velocity. However, 

the major reduction of the velocity is observed with the increment of M and the differences 

by increasing β is negligible comparable to those occur by the increment of M. 
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          Figure 3.3 shows the variation of the dimensionless temperature )(1   for the same 

values of M and β as with the dimensionless velocity above. Generally, the temperature in the 

flow field increases with the increment of the magnetic parameters M or β. Again the greater 

increment of 1  occurs with the increment of M and when β increases smaller increments are 

noticed. The higher temperature distribution is similar to the corresponding one obtained in 

previous studies by Tzirtzilakis and Tanoudis (2003) and Tzirtzilakis and Kafoussias (2003). 

The calculations show that the dimensionless temperature ),(   is represented only by the 

function )(1  , whereas )(2  is negligible. Namely, the calculated absolute values of the 

distribution of 2  were <10−5 which is well below the accuracy of the numerical method 

used, and thus 2  is practically zero. 
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Fig. 3.4. Variation of the dimensionless relative pressure ΔP1(η) 

           The dimensionless pressure P1 is estimated from integration of Eq. (3.20) under the 

boundary condition (3.25), i.e., P1 → −P∞. It is noted that this equation is not coupled to the 

rest of the system of the governing equations and is solved once at the end of the procedure. 

The boundary condition is derived from the initial set of the equations and the Bernoulli 

equation at conditions (3.6) holding far away from the stretching sheet. If one consider the 
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relative pressure ΔP1 = P1−P∞ then Eq. (3.20) can be integrated for unknown function the 

relative pressure ΔP1 under the boundary condition ΔP1 → 0 as η→∞. 

          The variation of the relative pressure ΔP1 for various numbers M and β is shown at Fig. 

3.4. It is obtained that the determining factor of the reduction of the relative pressure is the 

parameter M. The arrows point increases, for a specific value of M, it is observed that the 

relative pressure also increases almost all over the flow field except a region close to the 

stretching sheet  2.00   where the opposite happens. The decrement of the relative 

dimensionless 1P  is almost one order of magnitude for M = 5 close to the area of magnetic 

field. 
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                      Fig. 3.5. Variation of the dimensionless pressure P2(η) 

 

         Indeed, the results for 1P  and consequently for 1P  seem to be dependent on the choice 

of the integration domain and this could be explained by the following reasons. First, from 

the problem formulation the boundary condition of 1P lay at the end of the physical domain. If 

for example P  is the atmospheric pressure, then 1P  corresponds to the relative pressure and 

the integration starts from the outer region of the boundary layer toward to the plate  0 . 
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On the other hand, the integration domain, i.e., length of  , corresponds to the physical 

thickness of the boundary layer. This thickness cannot be determined without experimental 

data and seems that the appearance of MHD effect  0M , plays role in the distribution of 

the relative pressure which is not asymptotically tends to 0. Nevertheless, due to the fact that 

Eq. (3.20) under the boundary condition (3.25) from which 1P  is estimated is uncoupled from 

the rest of the system of the governing equations, the observed domain dependency is of 

minor importance.  

            Figure 3.5 shows the variation of the dimensionless pressure 2P with the magnetic 

parameters M and β. A general observation is that the variations of 2P  are limited close to the 

stretching sheet and for 5.00  . It is obtained that this time the important parameter for 

the increment of 2P is β. For a specific value of β increment of M results to further small 

increment of 2P . The curve for M = 0, β = 5 is similar to the corresponding one obtained in 

the aforementioned previous studies by Tzirtzilakis and Tanoudis (2003) and Tzirtzilakis and 

Kafoussias (2003). 
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Fig. 3.6 (a) Variation of the dimensionless wall shear parameter )0(''f  with β. 

           Another important parameters investigated in stretching sheet problems are the 

dimensionless wall shear parameter )0(''f  and the dimensionless wall heat transfer 
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parameter )0(* . These parameters are related to the local skin friction coefficient and the 

local rate of heat transfer respectively by Tzirtzilakis and Kafoussias (2003). The variation of 

)0(''f  is shown at Fig. 3.6(a), 3.6(b). The increment of β leads to linear increment of 

)0(''f . The line for M = 0 is similar to corresponding one obtained in previous studies of 

Tzirtzilakis and Tanoudis (2003) and Tzirtzilakis and Kafoussias (2003). Moreover, further 

increment is observed if M increases for a specific value of β. The increment of )0(''f with 

M is not linear and is depicted at Fig. 3.6(b). Increment of either M or β results to almost 

equivalent significant increment of )0(''f . 

            Figure 3.7(a) and 3.7(b) shows the variation of the dimensionless relative wall 

pressure )0(1P with β and various values of M and with M for β = 0, 5 and 10, respectively. 

The relative wall pressure )0(1P reduces linearly with the increment of β. It is apparent from 

Fig. 3.7(b) that the reduction of )0(1P  is much greaterwith the increment of M than that 

caused by the increment of β.  
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Fig. 3.6 (b) Variation of the dimensionless wall shear parameter )0(''f  with M. 
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Fig. 3.7 (a). Variation of the dimensionless relative wall pressure )0(1P  with β 
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Fig. 3.7(b). Variation of the dimensionless relative wall pressure )0(1P  with M. 
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Fig. 3.8. Variation of the dimensionless wall pressure )0(2P  with β. 
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Fig. 3.9 (a).Variation of the wall heat transfer parameter )0(*  with β. 
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                 On the other hand from Fig. 3.8 it is obtained that the dimensionless wall pressure 

)0(2P  increases linearly with the increment of β and the increment of M does not have 

significant effects in the flow field. The line for M = 0 is similar to the corresponding one 

obtained in the aforementioned previous studies of Tzirtzilakis and Tanoudis, (2003) and 

Tzirtzilakis and Kafoussias (2003).  

             Another interesting parameter for the study of the thermal problem is the so-called 

coefficient of the heat transfer rate at the wall (sheet) which is independent of the distance ξ 

and is defined by the ratio 

0

'

1

'

1*

)0(

)0(
)0(
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







M

. The variation of the wall heat transfer 

parameter )0(* with β and M is shown at Fig. 3.9(a) and 3.9(b). For the case of the variation 

with β pictured at Fig. 3.9(a), )0(* reduces linearly. The reduction is greater comparable to 

the hydrodynamic case (M = β = 0) as M increases. 
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Fig. 3.9(b).Variation of the wall heat transfer parameter )0(*  with M. 

                  Figure 3.9(b) shows the variation of )0(* with M which for this case is not linear. 

It is generally obtained that the increment of M or β results to similar amount of reduction for 

this parameter. The maximum rate of heat transfer at the wall is attained for β = 10 and M = 
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5. The line for M = 0 at Fig. 3.9(a) is similar to the corresponding one obtained in previous 

study of Tzirtzilakis and Tanoudis (2003) and Tzirtzilakis and Kafoussias (2003).  

 

3.6 Summary of the chapter 

For the problem of the BFD flow over a stretching sheet it is concluded that the electrical 

conductivity and the polarization of the fluid are both determining factors of the flow field. 

The dimensionless velocity of the fluid over the stretching sheet is reduced by the application 

of the magnetic field. This reduction is caused almost exclusively from the electrical 

conductivity whereas the reduction caused by the polarization is negligible. Analogous 

behavior is observed for the dimensionless temperature 1 .  The effect of the electrical 

conductivity of the fluid prevails over the one caused by the polarization effect on the values 

of the dimensionless relative pressure 1P  whereas the opposite is true for the dimensionless 

pressure P2. 

         As far as the very important characteristics of the flow on the stretching sheet are 

concerned the dimensionless wall shear parameter )0(''f  is almost equally affected by the 

variation of M or β. Increment of β results to increment of )0(''f . On the other hand the 

electrical conductivity plays the dominant role in the variation of dimensionless relative wall 

pressure )0(1P which reduces as M increases. Moreover, the dimensionless wall pressure P2 

is not affected by the increment of M and increases linearly with the increase of  β. The 

coefficient of the heat transfer rate at the wall (sheet) )0(* decreases with the increase of β 

and/or M. The polarization has less, nonetheless significant effect on the variation of 

)0(* than the electrical conductivity of the biofluid. 

         Overall, the adoption of the extended BFD model combining the principles of MHD and 

FHD is necessary to be adopted for the study of stretching sheet problems since for the values 

of the parameters used both electrical conductivity and polarization play important role in the 

formation of the flow field.  
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Chapter 4 

Numerical solution of three dimensional unsteady 

biomagnetic flow and heat transfer through 

stretching/shrinking sheet using temperature 

dependent magnetization 

 

The problem of biomagnetic fluid flow and heat transfer in three-dimensional unsteady 

stretching/shrinking sheet is examined in this chapter. Our model is the version of 

biomagnetic fluid dynamics (BFD) which is consistent with the principles of 

ferrohydrodynamics (FHD). Our main contribution is the study of three dimensional time 

dependent BFD flow which has not been considered yet to our best knowledge. The physical 

problem is described by a coupled, nonlinear system of ordinary differential equations subject 

to appropriate boundary conditions. The solution is obtained numerically by applying an 

efficient numerical technique based on finite differences method. Computations are performed 

for a wide range of the governing parameters such as ferromagnetic interaction parameter, 

unsteadiness parameter, stretching parameter and other involved parameters. The effect of 

these parameters on the velocity and the temperature field are examined. We observed that 

for decelerated flow, the velocity profile overlap with increasing unsteadiness parameter and 

we also found that skin friction coefficient is decreased for shrinking sheet whereas, opposite 

behavior is shown for the stretching sheet. We also monitored the rate of heat transfer 

coefficient with ferromagnetic interaction parameter and showed opposite behavior for 

stretching and shrinking sheet (Murtaza et al. (2018)).  

4.1 Introduction 

        When the human body is moving to the various environments, such as travelling or any 

hard working then the body accelerated or decelerated with time and space as well as flow 

behavior of blood and temperature are also changes in time. In this situation the blood flow of 

artery is not normal and heat transfer from surface of skin or body loses heat by sweating or 

conducting.  Most of the author’s analysis biomagnetic fluid is steady state. The most 
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common example of biomagnetic fluid is blood and this type of fluid is a living creature. 

Since the body always moving in various position in time, so the unsteady state condition 

analysis is an important of that flow problem. 

         The influence of the magnetic field on biofluid flow has been extensively investigated 

for bioengineering and medical applications, Rusetski et al. (1999), Lauva et al. (1993), 

particularly by controlling blood flow for surgery, cancer treatment, drug targeting, Haik et 

al. (1999).  The mathematical model of ferrofluid over a stretching sheet was used by 

Andersson and Valnes (1998) and found that the flow has significantly affected in the 

presence of magnetic dipole. Yasmeen et al. (2016) investigated the flow and heat transfer of 

ferrofluid over a stretched surface and reported that the velocity profile decreases due to the 

increases in magnetic number. Zeeshan et al. (2016) studied ferrofluid over stretching sheet 

and shows the effect of magnetic dipole on flow behavior. Majeed et al. (2016) studied the 

ferromagnetic flow in unsteady stretching sheet with prescribe heat flux. Abbasbandy and 

Roohani (2013) studied the MHD viscous flow by using Hankel-Pade method over a 

shrinking sheet. Rosca et al. (2016) analyzed the fluid flow over a stretching/shrinking sheet 

with convective boundary condition. Pop et al. (2016) investigated the MHD flow over a 

stretching / shrinking sheet with electrical conductivity. 

         Many authors have investigated their several works on blood flow and heat transfer 

under the action of external magnetic field. Haik et al. (1999) first introduced the 

mathematical model of BFD. This model is based on the principles of FHD, Rosensweig 

(1985, 1987). On the base of FHD Tzirtzilakis and Tanoudis (2003) studied the biomagnetic 

fluid flow over a stretching sheet using Chebyshev pseudospectral method.  Further an 

extended BFD mathematical model was developed by Tzirtzilakis (2005) and this model was 

based on both the principle of FHD and MHD. 

         The magnetic field H which is generated by magnetic dipole is affecting on the fluid 

flow and the magnetization M is attained when the magnetic field is sufficiently strength to 

saturate the biomagnetic fluid. There are various magnetization equations describing the 

variation of M. Anderson and valnes (1998) considered the magnetization equation varying 

linearly with temperature dependent whereas Tzirtzilakis and Kafoussia (2010) considered 

the nonlinear magnetization equation.   

         Further, mathematical models have been developed for blood flow and many authors 

assumed blood as Newtonian fluid. Eldesoky (2012) studied the MHD blood flow of 

unsteady parallel plate in the presence heat source. Misra and Sinha (2013) studied the MHD 
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flow of blood in a capillary with lumen being porous and wall permeable. Tzirtzilakis et al. 

(2010) investigated the magnetic fluid over a three dimensional stretching sheet.  

         Singh and Rathee (2010) studied the blood flow through an artery in the presence of 

magnetic field with variable blood viscosity. Under the periodic body movement, the MHD 

pulsatitle flow presented by Das and Saha (2009).  Dulal and Ananda (2010) investigated the 

blood flow through an artery in the presence of magnetic field. Unsteady MHD blood flow 

through a parallel plate studied by Ali et al. (2015).  

         Most of the researchers studied steady flow of stretching sheet problems. However the 

interest of the unsteady flow over a shrinking sheet has considerably increased among 

researchers. Bachok et al. (2010, 2012) and Fang et al. (2009) studied the unsteady fluid flow 

over a stretching/shrinking sheet and they emphasized the deviation in flow behaviour’s for 

an unsteady shrinking sheet compared with an unsteady stretching sheet. Further the 

problems of steady and unsteady stretching/shrinking sheets were also considered by several 

authors; namely, Nik long et al. (2011), Naramgari et al. (2016), Thumma et al. (2017) etc.  

         This chapter analyze the BFD flow and heat transfer in case of blood flow along a 

stretching/shrinking sheet. In the present analysis, the sheet is unsteady and the flow is 

influenced by the magnetic field. The governing equations are shown to be controlled by 

several thermophysical parameters governing the physics of the problem under consideration 

together with the boundary conditions. For the numerical solution we use common finite 

differences technique together with central difference schemes. Furthermore comparison is 

performed within some limitations through existing results.  
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4.2 Mathematical Formulation  

         We consider an unsteady three dimensional incompressible, viscous, laminar 

biomagnetic fluid past a stretching/shrinking sheet whose flow direction in the coordinate 

system is taking place in the ),,( zyx  plane with velocities ),(),( txUtxU w , 

),(),( tyVtyV w  and 0),( tzw  whereas, z is perpendicular to the ),( yx  plane (Fig 4.1). 

Assume that the fluid occupies the upper half plane 0z .  The flow field is subject to the 

presence of a magnetic field generated by a magnetic wire which is located below the sheet at 

a distance d . The temperature of the sheet wT  is kept fixed and  cT  is the temperature far 

away from the sheet, with cw TT  .  

 

 

Stretching sheet 

 

Shrinking sheet 

Fig 4.1 Geometry of the model 
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         The governing equations of the unsteady three-dimensional flow of viscous 

incompressible biomagnetic fluid and heat transfer equations under the influence of magnetic 

field are Tzirtzilakis and Tanoudis (2003), Tzirtzilakis (2005, 2010), Hafizuddin (2014): 

Continuity equation:  
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Momentum equation: 
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 Energy equation:            
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       (4.5)           

Where  is dissipation function and is given by the expression mentioned in Tzirtzilakis and 

Kafoussias (2010) 
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The initial and boundary conditions for the velocity, temperature and pressure are: 

0),,(,0),,(,0),,(:0  zyxwzyxvzyxut  for any zyx ,,  

:0t  1)1(),(  taxtxuu w  , 1)1(),(  taytyvv w  , 0w , wTT   at 0z   (4.7) 

           constpqpTTvu c  

2

2

1
,,0,0    as z                                    (4.8) 
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         Here ),,( wvuq   are the velocity of the fluid in x , y  and z  axis, respectively. t  is the 

time, a  is positive constants, p ,  , ,   , , , MkCp ,,,0 are the pressure, density, 

dynamic viscosity, kinematic viscosity, unsteadiness parameter, stretching parameter, 

magnetic permeability, specific heat at constant pressure, thermal conductivity and 

magnetization respectively. Note that for 0  the sheet is stretching whereas for 0  the 

sheet is shrinking.  

     The terms
y

H
M




0  and 

z

H
M




0  in (4.3) and (4.4), respectively, represent the magnetic 

force in y and z  direction which is known as Kelvin forces and  the term  
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T0  in (4.5) represents the Joule heating and  the thermal power per unit 

volume. 

         The magnetic wire is located below the sheet at a distance d which generates the 

magnetic field whose components are given by Tzirtzilakis and Kafoussias (2010)  
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Therefore, the magnitude HH  of the magnetic field is given by  
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         The flow behavior of the biofluid is affected by the magnetic field which is described 

by the magnetization M. In this analysis, we consider that the magnetization varies with the 

magnetic field intensity H and temperature T and use the magnetization equation which 

proposed by Tzirtzilakis and Tanoudis (2003) and Matsuki et al. (1977).   

 TTKHM c                                                                                                                  (4.10) 
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4.3. Mathematical Analysis 

        We introducing the following non-dimensional variables and velocity as Hafidzuddin et 

al. (2014) and Tzirtilakis (2010). 
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     where primes denote derivative with respect to  . The continuity equation (4.1) is 

satisfied using the similarity variables (4.12). The dimensionless pressure ),,( P  and 

temperature ),,(  of the magnetic fluid are given by the following expressions: 
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The dimensionless form of the equation (4.9) is  
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where   is the dimensionless distance of the dipole from the  axis 
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          Now substituting all the above expression into the momentum equation (4.2), we have 
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Again from momentum equation (4.3), we have 
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From the momentum equation (4.4), we have 

      

  
     






























7

4

5

2

32

2

5

2

43

2

212

0

'

5

2'

4

'

3

2'

2

'

1

4

321

4

)''''()'')((''
2

1





















wc TTK

PPPPPgfgfgfgfgf
a

 

User
Typewriter
Dhaka University Institutional Repository 



71 
 

Equating the coefficients of equal power of 
220 ,,  and , we get 
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Equating the coefficients of equal power of ,2 we get 
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Equating the coefficients of equal power of ,2 we get 
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Now from energy equation, we have 
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From the energy equation (4.4) and equating the coefficients of equal power of 
22 ,,,  , 

we get the following system of equations.  
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         By substituting equation (4.10) and all the above expressions (4.11)-(4.17) into the 

momentum equations (4.2)-(4.4) and energy equation (4.5), and equating the coefficients of 

equal power of 
22 ,,,  , we get the following system of equations.  
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                               (4.25) 

Also, the boundary conditions (4.7) and (4.8) become 

0,0,1,',' 531  gfgf     at 0                                                     (4.26) 

0,,0',0' 531   PPPPgf  as                                                                  (4.27) 

The dimensionless parameters are: 

   
k

c
P

p

r


                                    Prandtl number 

   
22

3

)( dTTk wc

a






                viscous dissipation parameter 
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wc

c

TT

T


                                 dimensionless Curie temperature 

    
2

0

2

2 )(

4 






 wc TTK 
          ferromagnetic interaction parameter 

     
)1( t

a
d





                        dimensionless distance 

   
a

A


                                        dimensionless unsteadiness parameter 

For the present work, when )0( A  we have the case of the accelerated flow whereas for 

)0( A  we have decelerated flow. 

4.4 Numerical Method 

         The essential features of the numerical technique used in the present paper are the 

following: (i) It is based on the common finite difference method with central differencing (ii) 

on a tridiagonal matrix manipulation and (iii) on an iterative procedure. This methodology 

developed by Kafoussias and Williams (1993). The equations (4.18)-(4.19) are highly 

nonlinear. So first we consider the first momentum equation and reduce it to a second order 

linear differential equation by considering 

)(''')(''),('')('),(')(  fxFfxFfxF    

Now we rewrite the equation (4.18) as follows 

0))('
2

)((2)(')(')()('' 3  xFxFAPxFfxFgfxF


 

02)()'()(')
2

)(()('' 3  PxFAfxFAgfxF


 

which is of the form 

 )()()()(')()('')( xSxFxRxFxQxFxP                                                                       (4.28) 

where 32)(),'()(,
2

)(,1)( PxSAfxRAgfxQxP 

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           In an analogous manner all equations of the system can be reduced in this form of 

equation (4.28) except equations (4.20)-(4.22) which are already first order differential 

equations. Equation (4.18) and (4.19) can be solved by two point boundary value problem 

which execute the following steps: (i) based on central differencing (ii) tridiagonal matrix 

manipulation and (iii) iteration procedure. This method is detail in Kaffoussias and Williams 

(1993). 

          To start the solution procedure we first have to set initial guesses for )(' f , )(' g , 

)(1  , )(3  , )(5  between 0   and )(     which should obviously satisfy 

the boundary conditions (4.26) and (4.27). For the present problem we insert the following 

initial guesses: 












 )(')(' gf , 













 1)(1 , 



















 






 15.0)( 53 .  

By integration of )(' f  we determine the value of )(f . Hereafter we assume that 

153 ,,,, PPgf  are known and calculate new estimations for  

)('),(')('),('  newnew ggandff . These values are used for new inputs, the profiles are 

updated and so on. Finally, the solution is achieved iteratively until the criterion of 

convergence is satisfied.  

           After )(f   is obtained the solution of the energy equation (4.23) with boundary 

conditions (4.26) and (4.27) is solved by using the same algorithm, but without iteration now 

as far as Eq. (4.23) is linear. Equation (4.23) is 

   
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a
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which can be written as  
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By setting )()( 1  y  is again a second-order linear differential equation of the form  

)()()()(')()('')( xSxFxRxFxQxFxP   

Where  
 
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)(,1)(
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 
 

 ''''4)(2)( 222

3

2

53 gfgfgfxS a

a 


 



  

Considering 53 ,,',,', ggff  known, we obtain a new approximation new1  for 1  and this 

process continues until convergence is attained up to a small quantity ε and finally we 

obtain 1 .  

           In this problem we use discretization step 01.0  and by trial and error we 

consider the value of  ,6  and convergence criterion 410  defined as 













 


 )(

)()(
max

,1 if

ifif

old

newold

Ni
 . The process is repeated until the results are corrected up to a 

desired accuracy.   

4.5 Results and Discussion 

           In this chapter, unsteady biomagnetic fluid flow along a three dimensional 

stretching/shrinking sheet under the action of a magnetic field has been investigated 

numerically. The governing parameters such as unsteadiness parameter A , Stretching 

parameter ,  Prandtle number rP , and ferromagnetic interaction parameter   have a 

significant impact on flow and heat transfer. As far as the values of the magnetic parameters 

are concerned, there have been extended discussions in various studies for the possible case 

scenarios corresponding to plausible physical problems,  Tzirtzilakis (2005, 2008), 

Tzirtzilakis and Xenos (2013), Loukopoulos and Tzirtzilakis (2004). Especially the 

biomagnetic interaction parameter   can take a quite large range of values depending by the 

magnetic field gradient. So, for the fluid which is considered to be blood we have that: 

3/1050 mkg , 
113102.3  skgm , 18.0  sm , 

11.65.14  KJKgC p , 

1113102.2  ksJmk  by Tzirtzilakis (2013) and hence 21
k

C
P

p

r


, for a human body 

temperature by Loukopoulos and Tzirtzilakis (2004) CTw

037  whereas the body curie 

temperature is CTc

041 , hence the dimensionless temperature is 5.78 . 

 The ferromagnetic number ,  is defined as 
 

2

2

2

0

2

2

4 




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
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where ))(0,0( wcs TTKHM  , ),0,0(0 HBs   )0,0(H  are the magnetization, the magnetic 

field induction and the magnetic field strength intensity at the wall, respectively.  

         For magnetic field 1T to 10T, the blood has reached magnetization of 140 Am  by 

Tzirtzilakis (2005). Ferromagnetic interaction parameter is calculated from the above relation 

and the corresponding range is from 
53 101101  to . Note that 0.0  corresponds to 

hydrodynamic flow. 

        In order to verify the accuracy of the present method, the values of skin frictions 

)0(''f , )0(''g compared with the results in Hafizuddin et al. (2014) and Surma Devi et al. 

(1986) for 5.0)0(',1)0('0  gfand . The comparison indicates excellent agreement 

with previous data. 

Table 4.1. The value of skin friction coefficients )0(''f , )0(''g  varying with unsteadiness 

parameter.  

Unsteadiness 

Parameter 

Present result Hafizuddin et al. 

(2014) 

Surma Devi et al. (1986) 

A  )0(''f  )0(''g  )0(''f

 

)0(''g  )0(''f  )0(''g  

-1.0 0.79127 0.29566 0.7912 0.2956 0.7912 0.2956 

-0.75 0.86731 0.33839 0.8673 0.3384 0.8673 0.3384 

-0.5 0.94301 0.38092 0.9430 0.3809 0.9430 0.3809 

0.25 1.01833 0.42325 1.0183 0.4232 1.0183 0.4232 

0.0 1.09323 0.46533 1.0931 0.4652 1.0931 0.4652 

0.25 1.16753 0.50706 1.1674 0.5059 1.1674 0.5059 

0.5 1.24074 0.54806 1.2407 0.5480 1.2407 0.5480 

0.75 1.31217 0.58784 1.3122 0.5878 1.3122 0.5878 

1.0 1.38132 0.62604 1.3814 0.6261 1.3814 0.6261 

 

User
Typewriter
Dhaka University Institutional Repository 



77 
 

        Fig. 4.2-4.4 show the effect of unsteadiness parameter on velocity and temperature 

profiles in reducing mode (A < 0) and accelerated mode (A>0).  

        In Fig. 4.2, we observe the velocity profiles for the variation of unsteady parameter for 

the stretching/shrinking sheet respectively. For decelerated flow (A<0), the fluid velocity 

increases with the increment of the unsteadiness parameter A and this behavior is happening 

approximately near the wall within the region (η<1.2) whereas, far away from the wall this 

behavior is reversed. On the other hand, for accelerated flow (A>0), the velocity is decreased 

with the increment of the unsteadiness parameter A in whole region.  

       Fig. 4.3 shows that velocity profile )(' g  for y  axis. It is evident from the plots that for 

decelerated flow (A<0), the velocity decreases with the increment of the unsteadiness 

parameter near the wall and the opposite behaviour is observed away from the boundary. For 

accelerated flow, increment of the unsteadiness parameter results to the decrement of the 

boundary layer thickness in the whole region. 
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Fig. 4.2: The velocity profile )(' f for different values of unsteadiness parameter A 
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Fig. 4.3: The velocity profile )(' g  for different values of unsteadiness parameter A 
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Fig 4.4: The velocity profile for ))()((  gf   for different values of unsteadiness 

parameter A 
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        Figure 4.4 present the velocity profile ))()((  gf   for the z axis. We observe that 

for A<0, the velocity is found to decrease with the increment of the unsteadiness parameter 

near the wall and the reverse trend is observed at 0.2appro . For the accelerated flow the 

boundary layer thickness decreases monotonically with the increment of the unsteadiness 

parameter A. 

         Fig. 4.5 demonstrates the temperature profiles  1 , for various values of the 

unsteadiness parameter for decelerated flow. The temperature profile  1  is increased with 

the increment of the unsteadiness parameter.  

         Figs.4.6-4.13 show the combine impact of stretching and shrinking sheet for various 

parameters. In fig. 4.6 we see that for a stretching sheet, the velocity profile decreases with 

the increment of the unsteady parameter but this result is reversed for the shrinking sheet. 

Hence we conclude that for stretching sheet, increment of the unsteady parameter results to 

resistant of the flow i.e. reduction the momentum boundary layer thickness.  
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Fig 4.5: The temperature profile )(1   for different values of unsteadiness parameter A 
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Fig 4.6: The velocity profile for )(' f  for different values of unsteadiness parameter A          

              with stretching/shrinking sheet.                 
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 Fig 4.7: The velocity profile for )(' g for different values of unsteadiness parameter                                  

A with stretching/shrinking sheet. 
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       From Fig. 4.7, we observe that increasing the unsteadiness parameter results to the 

increment of the velocity profile )(' g  for both stretching and shrinking case.  

       On the other hand, Fig. 4.8 shows that the increasing of the unsteadiness parameter 

results to decrement of the distribution of the velocity profile ))()((  gf  for the 

shrinking case whereas, the opposite occurs for the stretching case. The temperature profile 

 1  is pictured at Fig. 4.9. We observe that the increment of the unsteadiness parameter 

results to the increment of the temperature profile for both stretching and shrinking case. In 

all cases the effect of unsteadiness parameter is more effective in shrinking sheet than the 

stretching one.                                        
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Fig 4.8: The velocity profile for ))()((  gf  for different values of unsteadiness 

parameter A with stretching/shrinking sheet. 

          Fig. 4.10-4.12 exhibit the impact of the magnetic field on velocity profiles for 

stretching and shrinking cases, respectively. We observe that for stretching sheet, )(' f  and 

)(' g  exhibit the reverse behavior as the magnetic field is increased. From Fig. 4.10 it is 

observed that )(' f  is greater than that of the corresponding hydrodynamic case and is 

increased with the increment of the magnetic parameter for the stretching case. The opposite 

is happening for the shrinking case.  
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Fig 4.9: The temperature profile )(1  for different values of unsteadiness parameter A with 

stretching/shrinking sheet. 
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Fig. 4.10 The velocity profile )(' f  of stretching/shrinking sheet with different ferromagnetic 

parameter   
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 Fig 4.11 The velocity profile for )(' g of stretching/shrinking sheet with different 

ferromagnetic parameter        

 

         The behavior of )(' g  is pictured at Fig 4.11. The distribution of )(' g  is reduced with 

the increment of the magnetic parameter for the shrinking and the stretching sheet as well. 

The opposite is observed for the distributions of ))()((  gf   pictured at Fig. 4.12. This is 

happening because the Kelvin force acts on the sheet towards the y and z axis.   

           Fig. 4.13 depicts the impact of magnetic field on temperature profiles for 

stretching/shrinking cases respectively. From this figure it is apparent that the temperature 

profiles are increased in both stretching and shrinking case with the increment of the 

magnetic field parameter. The reason of this behavior is that the increment in magnetic field 

results to the reduction of the boundary layer thickness and enhances the thermal conductivity 

of the fluid in the stretching/shrinking sheet.  This effect is more intense for the shrinking 

case compared to the one of the stretching case.  
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Fig. 4.12: The velocity profile ))()((  gf  for different values of ferromagnetic 

parameter   with stretching/shrinking sheet.                   
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Fig 4.13: The temperature profile )(1   for different values of ferromagnetic   with 

stretching/shrinking sheet. 
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          Figs. 4.14 and 4.15 depict the skin friction coefficients ( )0(''f , )0(''g )  with respect to 

the parameter   for various values of A . It is noted that as the unsteadiness parameter A is 

increased, the velocity gradients near the wall are decreased for shrinking sheet whereas are 

increased for the stretching one.  

        Figs. 4.16-4.17 depict the skin friction coefficient (- )0(''g ) with respect to the 

unsteadiness parameter A and shrinking/stretching parameter   for different values of 

ferromagnetic parameter  . It is observed that the skin friction coefficient increases with the 

increment of the magnetic parameter  . Finally, Fig 4.18 shows that the wall temperature 

gradient is increased with the increment of the ferromagnetic field parameter   in the 

shrinking region whereas is reduced in the stretching region. 
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Fig 4.14: Skin friction coefficient )0(''f  with   for different values of A 
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Fig 4.15: Skin friction  coefficient )0(''g with   for different values of A 
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Fig 4.16: Skin friction coefficient  )0(''g with A for different values of   
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Fig 4.17: Skin friction coefficien  )0(''g  with   for different values of   
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Fig 4.18: Local Nusselt number )0('1  with for different values of ferromagnetic 

parameter  . 
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4.6 Summary of the chapter 

In this work, three dimensional biomagnetic fluid flow past unsteady stretching/shrinking 

sheet has been investigated numerically. The results indicate the following: 

1) For accelerated flow, the velocity profile )(' f decreases with the increment of the 

unsteadiness parameter over a stretching sheet and the opposite behavior shown for 

the shrinking sheet. On the other hand the velocity profile )(' g  is decreased for both 

stretching and shrinking sheet (Fig. 4.7) with the increment of the unsteadiness 

parameter.   

2) For decelerated flow, we observed that all the flow profile has a cross flow, i.e, near 

the wall initially the flow motion is decreased and far away from the wall is increased 

and the reverse is true. 

3) For the effect of magnetic parameter, the velocity profile )(' f  is increased with the 

increment of the magnetic number in stretching sheet but this observation is reversed 

for the shrinking sheet. On the other hand the velocity profiles )(' g  and 

))()((  gf   are decreased with the increment of the magnetic number in both 

stretching and shrinking sheet.  

4) The thermal boundary layer thickness is increased in both stretching and shrinking 

sheet with the increment of the unsteady parameter and magnetic number. Note that 

the profile is higher in shrinking sheet than that of the stretching one. 

5) Skin friction coefficient is decreased/increased with the increment of the unsteady 

parameter for the shrinking/stretching sheet, respectively. Also skin friction is 

increased with the increment of the ferromagnetic number   in both sheets. 

6) Wall temperature gradient is increased/decreased with the increase of the unsteady 

parameter for the shrinking/stretching sheet, respectively. 

This study is intended to constitute an initial inside for all kinds of applications that deal with 

blood flow aiming to control the flow rate and rate of heat transfer such as magnetic drug 

targeting or/and magnetic hyperthermia. 
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Chapter 5 

Stability and Convergence analysis of biomagnetic 

fluid flow over a stretching sheet in the presence of 

magnetic field  

 

The aim of this chapter is to investigate the time-dependent two-dimensional biomagnetic 

fluid (blood) flow (BFD) over a stretching sheet under the action of strong magnetic field. 

Blood is considered as a biomagnetic fluid which is homogeneous and Newtonian and is 

treated as an electrical conducting magnetic fluid is also exhibits magnetization. To obtain the 

transform non-similar coupled non-linear momentum and energy equation, usual non-

dimensional variable have been used. The explicit finite difference methods (EFDM) have 

been used to solve the transform equations. A detailed stability and convergence analysis is 

also conducted. The stability and convergence analysis have been used for measuring the 

restriction of the useful parameters and this restrictions are 

81073.1,733.0Pr  FM and .101.2 4MM  The combine effect of 

Magnetohydrodynamics number )( MM  and Ferromagnetic number )( FM  are studied here. 

The obtained results are presented graphically and discussed for different values of the 

dimensionless parameter entering into it. The flow and temperature distribution are found to 

be increased as the values )( FM  and )( MM are increasing. With the progression in time, 

flow profile and temperature distribution are increased. This study will have an important 

bearing for a high targeting efficiency; a high magnetic field is required in the targeted body 

compartment.   
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5.1 Introduction 

        Nowadays, the study of Biomagnetic Fluid Dynamics (BFD) exhibits interest due to 

potential biomedical applications. Several applications in bio engineering and medical 

science have been proposed by several researchers. Among them is the development of 

magnetic device for cell separation (Plavins et al. (1993), Haik et al. (1999)), delivery system 

for anticancer agents in localized tumor therapy (Ruuge and Rusetski (1993), Voltairas et al. 

(2002)), magnetic wound or cancer tumor treatment causing magnetic hyperthermia 

(Fiorentini and Szasa (2006), Misra et al. (2008)). 

        The biofluids, the flow of which is affected by the application of magnetic field, are 

called biomagnetic fluids. The most characteristic biomagnetic fluid is blood, which 

possesses properties of a magnetic fluid because of the red blood cells which contain in high 

concentration the hemoglobin molecule, a form of iron oxides. This iron oxide molecule 

constitute a magnetic dipole which is affected by the application of a magnetic field. Thus, it 

is verified that blood could be considered as a magnetic fluid with the red blood cells playing 

the role of the magnetic dipoles in a fluid carrier i.e. the plasma. The behavior of a 

biomagnetic fluid is basically determined by the magnetization force which is the measure of 

the how much the magnetic field is affecting the magnetic fluid. In general, Magnetization is 

a function of magnetic field intensity (H) and the temperature (T).  

        The effect of the magnetic field on the flow behavior of blood has been studied by 

several researchers. The first formulation of BFD, for the investigation of the flow of a 

biofluid under the influence of an applied magnetic field has been developed by Haik et al 

(1996). This BFD model is consistent with the principles of Ferrohydrodynamics (FHD) 

which deals with no induced electric current and considers that the isothermal flow is affected 

by the magnetization of the fluid in the magnetic field (Rosensweig (1985), Bashtovoy et al. 

(1988)). However, blood also possesses properties of an electrically conducting fluid due to 

the ions in the plasma. The flowing blood due to the plasma ions produce a slight electric 

current which interacts with magnetic fields. The inclusion in the formulation of the electrical 

conductivity of the fluid is made by adopting the principles of the MagnetoHydroDynamics 

(MHD). Thus, an extended mathematical model of BFD, taking into account the electrical 

conductivity of blood, has been proposed in Tzirtzilakis (2005). This model is derived by 

adopting the properties of both MHD and FHD considering both magnetization and electrical 

conductivity of blood and, in addition, includes the energy equation for the investigation of 

biomedical applications like magnetic hyperthermia. 
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        Crane in 1970, studied for the first time the classical physical problem of a shear-driven 

flow over a stretching sheet for a Newtonian fluid. Another classical study is that of MHD 

stretching sheet flow of a heated ferrofluid in the presence of a magnetic dipole of Anderson 

and Valnes (1998). Recently, Zeeshan et al. (2016) studied the effect of thermal radiation and 

heat transfer on the flow of ferromagnetic fluid on a stretching sheet. Tzirtzilakis and 

Kafoussias (2003) analyzed the mathematical model of the flow of a heated ferrofluid over a 

linearly stretching sheet under the action of a magnetic field which is generated by a magnetic 

dipole. Tzirtzilakis and Tanoudis (2003) have presented a numerical method for the study of 

laminar incompressible two dimensional biofluid over a stretching sheet with heat transfer 

with the magnetization given as a function of both magnetic field strength intensity H and 

temperature T.  

         Murtaza et al. (2017) studied the flow of biomagnetic fluid over a stretching sheet, in 

the present of an applied magnetic field using the extended BFD model incorporating both 

FHD and MHD formulations. The magnetization was considered to vary with the temperature 

and the magnetic field strength intensity, and the biofluid was treated as an electrically 

conducting magnetic fluid which also exhibits magnetization. Finally, Ali et al. (2011) 

studied the MHD stagnation point flow, taking into account the effects of the induced 

magnetic field. 

       The study of unsteady stretching sheet flow constitutes also a topic of ongoing research. 

More specifically, Das et al. (2015) studied the unsteady MHD flow of nanofluids over an 

accelerating convectively heated stretching sheet in the presence of a transverse magnetic 

field with heat source/sink. Hayat et al. (2016) studied the unsteady MHD stretching sheet 

flow which was also investigated in three-dimensions considering velocity and thermal slip 

boundary conditions. Finally, a characteristic study concerning applications of MHD flow 

problems to hemodynamics is that of the steady incompressible viscoelastic and electrically 

conducting fluid flow and heat transfer in a parallel plate channel with stretching walls in the 

presence of a magnetic field by Misra et al. (2008). 

       In the present chapter we study the unsteady biomagnetic fluid flow over a stretching 

sheet with the influence of magnetic field. The present study, as far as the physical problem is 

concerned, is similar to the one studied before Murtaza et al. (2017) with the consideration of 

the time dependency. Moreover, in the present chapter the mathematical problem is solved by 

numerical treatment of the initial set of partial differential equations in conjunction with the 

previous study by Murtaza et al. (2017)  where, a similarity problem governed by a system of 
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ordinary differential equations subject to corresponding boundary conditions, was solved 

numerically. The explicit finite difference methods (EFDM) have been used to solve the 

transformed equations presented by Mitchell and Griffiths (1980) and Charnahan et al. 

(1969). A detailed stability and convergence analysis is also conducted. The stability and 

convergence analysis have been used for measuring the restriction values of important flow 

parameters. The present study is hoped to have an important bearing for a high targeting 

efficiency; a high magnetic field is required in the targeted body compartment. 

5.2. Mathematical Formulation 

         Let us consider the time-dependent (unsteady) two-dimensional laminar flow of an 

incompressible viscous and electrically conducting biomagnetic fluid past a stretching sheet 

with a velocity proportional to distance i.e. ,cxu   where c is a dimensional constant. The 

temperature of the stretched sheet is kept at fixed wT  and the temperature of the fluid far 

away from the sheet is cT , where wc TT  . The fluid is confined to the half space 0y   

above the sheet and magnetic dipole is located at distance  below the sheet, giving rise to a 

magnetic field of sufficient strength to saturate the biomagnetic fluid. The flow configuration 

is shown schematically at figure 5. 1. 

 

Figure 5.1. Flow configuration of the flow field 

       Under the above assumptions the flow governing equations are the valid one of the 

extended BFD model, (Tzirtzilakis (2005), Tzirtzilakis and Xenos (2013), Murtaza et al. 

(2017)) i.e: 
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Continuity equation: 
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Momentum equation: 
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Energy equation: 
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subject to the following initial and boundary conditions: 

 cTTvut  ,0,0:0                 everywhere                                                  (5.5)     

           cTTvut  ,0,0:0                          at 0x  

                        wTTvcxUu  ,0,0              at  0y                                       

                        cTTvu  ,0,0                        as y                                            (5.6)                                                                                

        In the above equations ),( vuq   is the dimensional velocity, p  is the pressure,   is the 

biomagnetic fluid density,  is the electrical conductivity,  is the dynamic viscosity, pC  the 

specific heat at constant pressure and k  the thermal conductivity, 0  is the magnetic 

permeability and ),( yx HHH   is the magnetic field strength, B is the magnetic induction 

  )),(,( 00 yxyx HHBBHB    

       The terms vBBuB yxy   2
  and uBBvB yxx   2

 in (5.2) and (5.3), respectively, 

represent the Lorentz force per unit volume towards the x  and y   directions respectively, 
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whereas the term 22uB  in the energy equation (5.4) represents the Joule heating. Clearly, 

for the energy equation only the primary velocity u is considered for the generation of the 

Joule heating term. The aforementioned terms arise due to the electrical conductivity of the 

fluid and are known in MHD. The terms 
x

H
M




0  and 

y

H
M




0   in (5.2) and (5.3), 

respectively, represent the components of the magnetic force per unit volume and depend on 

the existence of the magnetic gradient on the corresponding x   and y  directions, 

respectively. The second term on the left-hand side of the energy equation (5.4), accounts for 

heating due to the adiabatic magnetization. These terms are known from FHD (Rosensweig 

(1985)).  

       The magnetic dipole gives rise to a magnetic field, sufficiently strong to saturate the 

biofluid, and its scalar potential is given by Andersson and Valnes (1998) 
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Thus the magnitude HH  of the magnetic field intensity by 
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where    and yx HH , are the component of the magnetic field  
yx HHH , given by 
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and the gradients are given by  
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The magnetic field intensity  H , can be expressed by analogous manner, as 
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       Under the assumption that the applied magnetic field H is sufficiently strong to saturate 

the biomagnetic fluid, the magnetization M is generally determined by the fluid temperature 

and magnetic field intensity H . There is a variety of equations that can be used for the 

variation of the magnetization under the equilibrium assumption by Tzirtzilakis (2005). In 

this study the relation of Matsuki et al. (1977) derived experimentally is adopted. This 

relation expresses the magnetization as a function of the magnetic field strength intensity H  

and the temperature of the fluid T  

  TTKHM c                                                                                                      (5.13) 

where K is a constant called pyromagnetic coefficient is and cT  is the Curie temperature. The 

above relation for the magnetization M has also proposed in Tzirtzilakis (2005) and used in 

Murtaza et al. (2017). 

 

5.3. Mathematical Analysis 

Since the solution of the governing equations (5.1) to (5.4) under the initial and boundary 

conditions (5.5) to (5.6) will be based on the finite difference method, it is required to make 

the said equations dimensionless. For this purpose we now introduce the following 

dimensionless quantities;   

           
0

2

000

00 ,,,,,
H

H
H

U

p
P

U

v
V

U

u
U

yU
Y

xU
X 


 

                   



2

0

00

,,,
tU

TT

TT
T

H

H
H

H

H
H

wc

cy

y

x

x 



  

  From the above dimensionless variable we have 
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 Now after using dimensionless quantities into the equations (5.1) to (5.4), the following 

nonlinear coupled partial differential equations in terms of dimensionless variables are 

obtained as: 
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The non-dimensional boundary conditions are: 

                    0,0,0:0  TVU           everywhere                                            (5.18) 

                    0,0,0:0  TVU   at 0X  

                                 1,0,1  TVU     at 0Y  

                               0,0,0  TVU     as Y                                                  (5.19)                                 

where 
k

c
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p
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 is Prandtl number, 
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dimensionless temperature parameter, 
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M wc

F


 
  is   Ferromagnetic (FHD) 

parameter and 
2

0

2

0

2

0

U

H
M M




  is Magnetohydrodynamic (MHD) parameter. 

       The most important parameters entering to the problems of BFD are the two magnetic 

parameters,  FM  and MM , which is defined above. Especially, the MM  parameter is the 

square of the widely known in MHD Hartmann number. Increment of the above mentioned 
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dimensionless parameters, for specific fluid  const0,,  and for a specific flow 

problem  consth  means increment of the magnetic field strength induction 0B . 

       It is worth mention here, that when these magnetic parameters 0 MF MM the 

problem is a common hydrodynamic fluid flow with heat transfer. For a specific Reynolds 

number and temperature difference, an increase the value of these magnetic parameters 

means a corresponding increase in the value of the magnetic field strength 0H . 

5.5. Numerical Method 

         In this section, the non-linear equations (5.14)-(5.17) subject to the initial and boundary 

conditions (5.18) and (5.19) are solved numerically for the velocity and temperature using the 

explicit finite differences scheme of Callahan and Marner (1976) technique which is 

conditionally stable.  

 

Figure: 5.2. Finite difference space grid 

       From the concept of above discussion, for simplicity the explicit finite difference method 

has been used to solve equations (5.14) to (5.17) subject to the conditions given by (5.18) and 

(5.19).To obtained the difference equation the region of the flow is divided into a grid or 

mesh of lines parallel to X and Y axes where x-axis is taken along the plate and y-axis is 

normal to the plate.  
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Fig. 5.3  Algorithm of finite difference procedure.  
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Here the plate height )100(max X  i.e. X varies from 0 to 100 and regard )10(max Y   as 

corresponding to Y   i.e. Y varies from 0 to 10. There are 600m   and 600n  grid  

spacing in the X and Y directions respectively as shown figure 5.2. 

It is assumed that YX  ,  are constant mesh sizes along X and Y directions respectively and 

taken as follows 

 1000166.0  XX  

 100016.0  YY  

with the smaller time step 0001.0 . 

        Let ',' VU and 'T  denote the values of VU , and T  at the end of time step respectively. 

Using the explicit finite difference approximation, the following relation obtained, 
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         From the system of partial differential equations (5.14) to (5.17) by substituting the 

above relations into the corresponding differential equations, an appropriate set of finite 

difference equations is obtained as: 
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  with initial and boundary conditions  

            0
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,  jijiji TVU                             (5.24) 
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n

li TVU   where  l                                   (5.25) 

        Here the subscripts i  and j  designate the grid points with x  and y coordinates 

respectively and the subscript n represent the value of time,   n where ....,2,1,0n    

From the initial condition (5.24) The value of TandVU ,  are known at 0 . During any 

one time step, the coefficients jiU , and jiV ,   appearing the equations (5.20) to (5.23) are 

treated as constants. Then at the end of any time step  , the new temperature 
'

T , the new 
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velocity 'U  and 'V  at all interior nodal points may be obtained by successive applications of  

(5.23), (5.21), (5.22) and (5.20) respectively. This process is repeated in time and provided 

the time step is sufficiently small, TandVU ,  should eventually converge to values which 

approximate the steady state solution of equations (5.20) –(5.23).  

5.5. Stability and Convergence Analysis 

Since the explicit procedure is being used, so we need to discuss the stability and 

convergence of the finite difference scheme. For a constant mesh sizes the stability criteria of 

the scheme may be established as follows: 

The equation (5.20) will be ignored since   does not appear in it. The general terms of the 

Fourier expansion for TandVU ,  at a time arbitrary called 0  are all YiXi ee  , apart from 

a constant, where .1i  At a time  , these terms becomes 
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After time step these terms will become 
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Substituting (5.26) and (5.27) in equation (5.21)-(5.23), regarding the coefficients U and V as 

constant over any time step, the following equations upon simplification obtained: 
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The equations (5.28)-(5.30) can be written in the following form 
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   Again using equation (5.33) in (5.31) and (5.32), we get 
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Hence the equations (5.31), (5.32) and (5.33) can be expressed in matrix notation and these 

equations are  
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        For obtaining the stability condition, it is necessary to find out eigenvalues of the 

amplification matrix T, but this study is very difficult because it is a third order square matrix 

and all element are nonzero. For this explicit finite difference solution the dimensionless time 

difference   is very small that is tends to zero.      

Under this consideration,  

0,0,0,0,0,0 335544  BACACB  

and the amplification matrix becomes 
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After simplification of the matrix  we get the following eigenvalues, 

                                                    335241 ,, CBA     

For stability each eigenvalues 321 ,,   must not exceed unity in modulus. Hence the 

stability condition is  
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         The coefficient a, b, c are real and non-negative. Demonstrated that the maximum 

modulus of 354 , CandBA occurs when  mX   and  nY  , m and n are integer and 

hence 354 , CandBA are real.   The value of 354 , CandBA is greater when both m and n 

are odd integers.  

To satisfy the condition 13 C , the most negative allowable value is 13 C  therefore the 

first stability condition is  
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  Likewise, the second and third conditions are 1,1 44  BA  required that 
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Therefore, the stability conditions of the method are: 
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 Using the initial condition, 0 TVU  at ,0 we have the stability and convergence 

criteria of the method to be 81073.1,733.0Pr  FM and .101.2 4MM  
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5.6 Results and Discussion:  

5.6.1 Justification of grid space: 

       To verify the effects of space grid for  m  and n , the code is run with different space grid 

such as ,600,500,400,300,200  nmnmnmnmnm  700 nm and 

.750 nm  It is seen that there is a little change between 600 nm  and 750 nm  

which are shown in Fig. 5.4. According to this solution the result of velocity and temperature 

have been carried out for 600 nm . 

 

Fig 5.4: Velocity profile for different grid space 

 

5.6.2 Steady state solution: 

        The computation has been carried out up to dimensionless time 25 . The results of 

the computation however, show graphical changes in the below mentioned quantities to time 

25  have been reached and after this at 2510 to . The primary velocity do not exhibit 

any subsequent variation. Thus the solution for dimensionless time 25   for steady-state 
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solution for this problem. The figure 5.5 shows the solution for different time step. Therefore 

the steady state numerical results have been obtained for .600,600,25  nm  
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Fig 5.5: Steady case analysis for different time step 

 

5.6.3 Estimation of Parameters: 

        For the numerical solution it is necessary to assign some numerical values in the 

dimensionless parameters entering into the problem under consideration. For these values, in 

order to be realistic, a similar case scenario is adopted with the one in (Tzirtzilakis (2003), 

(2005), Murtaza et al. (2017)) according to which the fluid is blood with density 

31050  mkg  and viscosity 113102.3  smkg  , flowing with maximum velocity 

12

0 sec1022.1  mU . The electrical conductivity of blood is 18.0  sm . The 

temperature of the plate is cTw

037 whereas the temperature of the fluid is cTc

041 . For 

these values the temperature number  is equal to 78.5.  Although the viscosity  , the 

specific heat under constant pressure pC  and thermal conductivity k of any fluid and hence of 

the fluid is blood, are temperature dependent the prandtl number can be considered constant. 
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Thus, for the temperature range considered in this problem 113109.3  KJKgC p and  

1115.0  KsJmk  and hence .25Pr   

The magnetic parameter FM  can be written as 
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Where B and M are the magnetic induction and magnetization respectively. For magnetic 

field equal to 6T to 10T,  the blood has reached magnetization of 160 Am  by Misra et al. 

(2013) 

Thus, for the problem under consideration FM and MM  is determined from equation (5.46) 

which is  given in the following table 5.1 

Table 5.1: Magnetic field induction and corresponding values of FM and MM . 

Magnetic induction (B) Magnetohydrodynamics 

Number  MM  

Ferromagnetic 

number  FM  

6 T 0.00054 2303 

8 T 0.00096 3071.2 

9 T 0.0013 3455.1 

10 T 0.0016 3839.2 

 

In order to discuss the results of the problem, the numerical solutions are computed by the 

explicit method. For analyzing the physical situation of the model, we have the steady-state 

numerical value of the non-dimensional primary velocity U, secondary velocity V and 

temperature T  for Eckert number, 9105.9 cE , Prandtl number, 25Pr  , 

Magnetohydrodynamic (MHD) parameter,  00054.0,00094.0,0013.0,0016.0,0MM  and 

Ferromagnetic (FHD) parameter, 2303,2.3071,1.3455,2.3839,0FM .  
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Fig 5.6: Primary velocity for different value of MM and MF 
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Fig 5.7: Secondary velocity for different value of MM and MF 
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Fig 5.8: Temperature profile for different value of MM and MF 

 

        The effect of Magnetohydrodynamic (MHD) parameter and ferromagnetic parameter on 

the primary velocity, secondary velocity and temperature distributions have been shown in 

figures 5.6-5.8. We observed from these figures, fluid primary velocity decreases but 

secondary velocity and temperature distribution increases with increase of MHD and FHD 

parameter which is represented at fig. 5.6, 5.7 and 5.8, respectively.  

         Figure 5.9 shows the stream function contour for the value of the above mentioned 

parameters and for MM and MF numbers are 0.0, 0.00054, 0.00096 ,0.0016 and 0, 2303, 

3071.2, 3839.2, respectively. 
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0,0,0  FM MMTB  

 

                                                         2303,00054.0,6  FM MMTB  

 

2.3071,00094.0,8  FM MMTB  

 

2.3839,0016.0,10  FM MMTB  

Fig. 5.9 Stream function contours for different value of MF and MM 
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5.7 Summary of the chapter 

A mathematical model with mixed FHD and MHD unsteady fluid flow of the extended BFD 

has been studied. 

The boundary layer equations have been non-dimensionalized by using non-dimensional 

variable. The non-dimensional boundary layer equations are non-linear partial differential 

equations. These equations are solved by using an explicit finite difference method (EFDM),  

details of the stability and convergence characteristics are also included. A detailed study of 

the effect of several key parameters controlling the flow characteristics has been conducted. 

The computations have shown that: 

The primary velocity and secondary velocity and temperature profile is increased with the 

increase of  Magnetic number arising from MHD and FHD. 

With grater elapse of time   , velocity and temperature profiles found to be enhance 

subsequently.  
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Chapter 6 

Influence of magnetic field on biomagnetic fluid over a 

nonlinearly stretching sheet with variable thickness 

 

The aim of this chapter is to investigate the fundamental problem of biomagnetic fluid flow over 

a new dimension in the field of stretching sheet with variable thickness in the presence of applied 

magnetic field. The model used takes into account both magnetization and electrically 

conductivity arising in a magnetic fluid. The governing PDEs are transformed into a system of 

couple non-linear ODEs subject to appropriate boundary conditions. The numerical solution is 

obtained by an efficient numerical technique based on common finite differences method. The 

effect of wall thickness parameter  , ferromagnetic parameter  , magnetohydrodynamic 

parameter nM , velocity index parameter m  on the flow, pressure and temperature profile are 

presented graphically for specific values of dimensionless parameters entering into the problem 

under consideration. It is interesting to note that all over the sheet the skin friction coefficient, 

rate of heat transfer and wall pressure are increased linearly as the ferromagnetic parameter 

increases but are increased nonlinearly with the increment of the magnetohydrodynamic and 

velocity power index parameter. It is also noted that a dominant factor for the formation of the 

BFD flow field is m along with the magnetic parameters   and nM  . 

6.1 Introduction 

           Biomagnetic fluid dynamics (BFD) is the investigation of biological fluid and the flows 

which are affected by the influence of external magnetic field. A fluid that is present in a living 

creature is known as a biomagnetic fluid. Blood is one of the fluids that has characteristic of 

biomagnetic fluid and is considered a magnetic fluid.  

           Many research works have been done on the biomagnetic fluids in theoretical and 

experimental due to the applications of medical and bioengineering since the last decades.  The 

investigation of the effect of magnetic field on fluids is valuable because there are many 

applications in a wide range of fields. There are numerous applications on BFD study in 
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medicine and bioengineering research work. The magnetic devices development for cell 

separation, high-gradient magnetic separation, reduction of blood flow during surgeries, targeted 

transport of drugs using magnetic particles as drug carries, treatment of cancer tumor causing 

magnetic hyperthermia and magnetic wound treatment and development of magnetic tracers, 

(Haik et al. (1999), Fiorentini and Szasz (2006), Andra and Nowak (1998), Voltaira and Fotiadis 

(2002), Misra et al. (2011), Ruuge and Rusetski (1993)). 

          Based on the mathematical model of BFD, the flow of biofluid under the effect of 

magnetic field consider both principles of ferrohydrodynamics (FHD) and 

magnetohydrodynamics (MHD). Usually, FHD is considered for the formulation of electrically 

non-conducting magnetic fluids and the flow is influenced by the fluid magnetization in the 

magnetic field. On the other hand, MHD is considered for conducting fluids and ignores the 

effect of polarization and magnetization. The magnetization property M  is the behavior of a 

biological fluid when it is exposed to magnetic field. This measures how much the magnetic field 

is affecting the fluid in various aspects. There are various equations describing the dependence of 

M . Another variable important to BFD problems, is the temperature field as well as the heat 

transfer on the walls. These flow characteristics are of interest for problems investigating the 

possible influence of the application of the magnetic field during a hyperthermia treatment, 

(Andersson and Valnes (1998), Tzirtzilakis and Kafaussias (2003), Tzirtzilakis and Tanoudis 

(2003), Higashi et al. (1993)). 

         In general, biological systems are affected by an application of external magnetic field on 

blood flow through human arterial system. Many mathematical models have already been 

investigated by several research workers to explore the nature of blood flow under the influence 

of an external magnetic field. The flow of BFD, mathematical model has been developed first 

Haik el al. (1999). This model is conformed with the principles of FHD, Rosensweig (1985, 

1987). For a full description of blood flow, the contribution of the Lorentz force due to the 

induced electric current of MHD should be taken into account. Therefore, an extended BFD 

mathematical model, which include the Lorentz force was developed by Tzirtzilakis (2005). He 

studied the mathematical model of biomagnetic fluid dynamics (BFD), suitable for the 

description of the Newtonian blood flow under the action of magnetic field. This model is 

consistent with the principles of ferrodynamics and magnetohydrodynamics and takes into 

account both magnetization and electrical conductivity of blood. Ramamurthy and Shanker 
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(1994) studied magnetohydrodynamic effects on blood flow through a porous channel. They 

considered the blood as a Newtonian and electrically conducting fluid. 

          The problem of biomagnetic fluid flow under the action of a spatially varying magnetic 

field was developed by Nursalasawati (2012).  She assumed that the magnetization force was due 

to FHD interaction. From her investigation, the results regarding the velocity showed that the 

presence of magnetic field appreciably influenced the flow field. In addition, she considered the 

Lorentz forces due to MHD and FHD interaction only. The Lorentz force just gives a small 

influence to the flow behaviors. 

         Tzirtzilakis and Kafoussias (2003) analyzed the mathematical model of the flow of a heated 

ferrofluid over a linearly stretching sheet under the action of a magnetic field which is generated 

by a magnetic dipole. Tzirtzilakis and Tanoudis (2003) presented a numerical method for the 

study of laminar incompressible two dimensional biofluid over a stretching sheet with heat 

transfer. It was assumed that the magnetization of the fluid varied with the magnetic field 

strength H and the temperature T. Tzirtzilakis et al. (2006) further analyzed a problem of a 

turbulent biomagnetic fluid flow in a rectangular channel under the action of localized magnetic 

field. Misra and Shit (2009) investigated the biomagnetic viscoelastic fluid flow over a stretching 

sheet. 

           Many investigators were studied the influence of a uniform magnetic field on the flow and 

heat transfer of an electrically conducting fluid past a stretching sheet/surface. Pavlov (1974) 

obtained a closed form solution for the velocity field, within the boundary layer approximation. 

He investigated the effect of a magnetic field on the viscous flow of an electrically conducting 

fluid past a stretching sheet. The same solution was shown by Andersson (1995) to be an exact 

solution of the Navier-Stokes equations. Andersson (2002), Ishak et al. (2006, 2009, 2010) were 

also made to examine the flow characteristic over a stretching sheet under the influences of 

magnetic field.  Further Anderson (1992) investigated the MHD flow of a viscoelastic fluid past 

a stretching surface. He consider the combined effects of viscoelasticity and a magnetic field and 

concluded that an increase of the magnetic field has the same influence on the flow field as 

increased viscoelasticity. El-Mistikawy (2016) studied the MHD flow due to a linearly stretching 

sheet with induced magnetic field. Ali et al. (2011) examined MHD boundary layer flow and heat 

transfer over a stretching sheet with induced magnetic field. They found that the external 

magnetic field affects the flow and heat transfer. Further Ali et al. (2011) also studied 
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numerically the MHD mixed convection boundary layer flow towards a stagnation point flow on 

a vertical surface with the effect of induced magnetic field. Their study indicates that the induced 

field is most affected by the reciprocal of the magnetic Prandtl number when compared with the 

skin friction and heat transfer coefficients. Devi and Thiyagarajan (2006) solved the steady 

nonlinear MHD flow of an incompressible, viscous and electrically conducting fluid with heat 

transfer over a surface of variable temperature stretching with a power law velocity in the 

presence of variable transverse magnetic field. Their study shows that the surface velocity 

gradient and heat transfer increase with an increase in magnetic.  

          Most of the researchers studied the biomagnetic fluid flow over a linearly stretching sheet. 

First Fang et al. (2012) examined the fluid flow using a special form of non-linear stretching 

sheet which is called a stretching sheet with variable thickness. It was found that the adoption of 

vartiable thickness leads to significantly different results for the boundary layer development, 

comparable to those obtained for the plain stretching sheet. After then Lee (1967) studied the 

boundary layer flow over a slender body with variable thickness. Ishak et al. (2007) examined 

the boundary layer flow over a horizontal thin needle. Khader and Megahed (2015), Prasad et al. 

(2016) and Vajravelu et al (2017) explained the effects of various physical parameters on the 

flow and heat transfer by considering the special form of stretching sheet (i.e. stretching sheet 

with variable thickness). 

          Therefore, the objective of this chapter is to study the biomagnetic fluid flow over a 

stretching sheet with variables thickness in the presence of an applied magnetic field. Various 

methodologies for numerical solutions are adopted in order to solve the biomagnetic fluid flow 

problem. For the present study, this model is solved by applying and efficient numerical 

technique based on the common finite difference method described by Kafoussias and Williams 

(1993). The obtained results for critical flow characteristics like velocity, pressure and temperate 

as well as rate of heat transfer, skin friction or pressure on the stretching sheet are presented 

graphically for specific parameters entering into the problem under consideration.  
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6.2 Mathematical Formulation 

We consider a steady, two-dimensional boundary layer flow of an incompressible and electrical 

conducting biomagnetic fluid over a non-linear stretching sheet with variable thickness. The 

origin of the Cartesian system is located at a slit, through which the sheet is drawn through the 

fluid medium. The sheet moves with the non-uniform velocity m

w bxUU )(0  , 0U   is the 

reference velocity, b  is the physical parameter related to the stretching sheet, x  is the 

coordinates measured along the stretching surface. The flow is confined to the region 0y , 

where y  is the coordinate measured normal to the stretching surface.  

 

Fig.6.1 Schematic diagram of the stretching sheet with variable thickness 

       We assume that the sheet is not flat and its thickness is defined by 2

1

)(

m

bxA



 , where A  is 

a very small constant so that the sheet is sufficiently thin and m  is the nonlinear parameter. 

Since the sheet is not flat so we must observe that our problem is valid for 1m  because for 

1m  the problem is reduced to that of a flat sheet. Also, the fluid is electrically conducted due 
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to an applied magnetic field normal to the stretching sheet. We consider a non-uniform heat 

source/ sink applied to the flow. Let the wall temperature wT   assumed constant at the stretching 

surface, while far away from the sheet temperature is cT , where wc TT   Here the magnetic 

dipole is located at the distance d  below the sheet which gives rise to a magnetic field of 

sufficient strength to saturate the biomagnetic fluid.  The coordinate system and the flow model 

are shown in Fig. 6.1 

         Under the boundary layer approximation and the assumptions that the basic equations of 

continuity, momentum and energy are given by, (Haik et al. (1999), Tzirtzilakis (2005), 

Tzirtzilakis and Xenos (2013)) 

Continuity equation:  
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Momentum equation: 
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Energy equation: 
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The relevant boundary conditions at the sheet    2
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  Whereas, the boundary conditions infinitely far away from the sheet, i.e. as  y   

                       constqpTTyxu c  2
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        where u  and v  are the velocity components in x  and y  directions, respectively.   and k  

are the fluid density and thermal conductivity respectively. T  is the temperature of the fluid and 

pc  is the specific heat at constant pressure,   is the fluid viscosity,  is the electrical 

conductivity, 0  is the magnetic permeability, '''q  is the space and temperature dependent 

internal heat generation / absorption (non-uniform heat source/sink) and ),( yx HHH   is the 

magnetic field strength, B  is the magnetic induction where  HB 0  

         Here, the second terms on the right-hand side of the ferrohydromagnetic momentum 

equations (6.2) and (6.3) represent the magnetic body force per unit volume oM H  , and the 

second term on the left-hand side of the thermal energy equation (6.4) accounts for heating due 

to adiabatic magnetization. These two terms arise due to the principles of FHD. Also, the terms 

known in MHD vBBuB yxy   2  and uBBvB yxx   2  in (6.2) and (6.3), respectively, 

represent the Lorentz force per unit volume towards the x  and y  directions respectively.  

         An important flow characteristic is expressed by the term '''q  which is the space and 

temperature dependent internal heat generation/absorption (non-uniform heat source/sink) which 

can be express in simplest form as Abel and Mahesha (2008), Abel et al. (2007)  

               ccwm
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Where *A  and *B  are the coefficient of space and temperature dependent heat source/ sink, 

respectively. The value of *A  and *B  are arise two cases (i) 0* A  and 0* B   which 

corresponds to internal heat generation and (ii) 0* A  and 0* B   which corresponds to 

internal heat absorption. 

       We consider that the components  yx HH ,  of the magnetic field ),( yx HHH    due to the 

electric current following through the wire with intensity  , are given by 
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Thus, the magnitude HH    of the magnetic field intensity by 
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and the gradient are given by  
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        According to FHD the magnetization M , under the equilibrium assumption, is generally a 

function of the magnetic field strength H , temperature T  and fluid density  . In the present 

formulation of BFD, the blood is actually considered as a electrically non-conducting magnetic 

fluid. Thus, for the variation of the magnetization M  with the magnetic field intensity H  and 

temperature ,T  the following relation derived experimentally by Matsuki et al. (1977)  and also 

used in Tzirtzilakis (2008, 2015) is  

               )( TTKHM c                                                                                                           (6.8) 

where K  is a constant and cT  is the Curie temperature. 

 

6.3 Mathematical Analysis 

The mathematical analysis of the problem is simplified by introducing the following non-

dimensionless variables, (Fang et al. (2012), Khader and Megahed (2015), Vajravelue et al. 

(2017))  
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Where 1  is the dimensionless similarity variable, ),( yx  is the dimensionless stream function 

and )( 1  is the dimensionless temperature distribution.  

The velocity components can be defined as  
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          In the present work, it is assumed that 1m   for the validity of the similarity 

transformations. Substituting equations (6.9)-(6.12), into equations (6.2)-(6.4), the non-

dimensional governing equations become  
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 Subject to the following boundary conditions: 
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where


 0

2

1Um
A


 is a parameter related to the thickness of the wall and  


 0

1
2

1Um
A


   indicates the plate surface. In order to proceed to the numerical 

computations, we define )()()( 1  fFF   and )()()( 1    and 

)()()( 1  pPP   

          Then the similarity equations (6.13), (6.14) and (6.15) along with associated corresponding 

boundary conditions (6.16) become:  
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The non-dimensional parameters entering now into the problem under consideration are  

Where      
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          The physical quantities of primary interest are the local skin friction coefficient fxC  and 

the local Nusselt number  uN  which are defined as  
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  is the local Reynolds numbers. 
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6.4 Numerical Method 

For the numerical solution of the problem under consideration we apply an approximate 

technique that has better stability characteristics than classical Runge-Kutta combined with a 

shooting method, is simple, accurate and efficient. The essential features of this technique are the 

following: (i) It is based on the common finite difference method with central differencing (ii) on 

a tridiagonal matrix manipulation and (iii) on an iterative procedure. This numerical method is 

described in detail in Kafoussias and Williams (1993). For reasons of completeness of this study 

we demonstrate the application of this methodology for the numerical solution of the system of 

equations (6.17) and (6.19), subject to the boundary conditions (6.20). 

     The momentum Equation (6.17) can be written as  

p
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                                           (6.21) 

       The above equations can be considered as a second order linear differential equation by 

setting )(')( fxy   provided that P and )(f are considered known functions.  In this case 

equation (6.21) can be written as  
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which is of the form 

           )()()()(')()('')( xSxyxRxyxQxyxP                                                               (6.22) 
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         In an analogous manner all equations of the system can be reduced in this form of equation 

(6.22) except for equation (6.18) which are already first order differential equations. Equation 

(6.22) can be solved by a common finite difference method, based on central differencing and 

tridiagonal matrix manipulation. 

       To start the solution procedure, we assume initial guesses (distribution curves) for )(' f  

and )(P  between 0  and )(     which satisfy the boundary condition (6.20). For 

this problem indicative initial guesses are  
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The )(f distribution is obtained by the integration from )(' f curve. The next step is to 

consider the ,, Pf  known and to determine a new estimation for )('),('  newff  by solving 

the non-linear equation (6.22) using the above method. The distribution is updated by the 

integration of new )(' f  curve. These new profiles of )(' f  and )(f are then used for new 

inputs and so on. In this way the momentum equation (6.21) and consequently (6.17) is solved 

iteratively until convergence up to a small quantity   is attained. 

        After )(f  is obtained the solution of the energy equation (6.19) with boundary condition 

(6.20) is solved by using the same algorithm, but without iteration now as for as equation (6.19) 

is linear. Equation (6.19) is 
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Equation (6.23) is a second order linear differential equation in setting )()(  y    

which is of the form  

)()()()(')()('')( xSxyxRxyxQxyxP                          (6.30) 
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         Considering )('),(  ff and   known, we obtain a new approximation new  for   and this 

process is continue until convergence up to a small quantity   is attained and finally we obtain 

 . This process is continuing until final convergence of the solution is attained. 
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         In order to apply to our numerical computation a proper step size 01.0 h and 

appropriate   value as )( y   must be determined. By “trial and error” we set 8 , 

01.0 and the tolerance between the iterations is set at 410 defined as 


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

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 
 

)(

)()(
max ,1

if

ifif

old

newold

Ni . Computations were also performed for 001.0  and no 

significant differences were found. 

 

6.5 Assignment of the parameter values 

The dimensionless parameters are required to allocate the values for entering into the problem in 

order to continue to derivation of the numerical results. For this problem, we can assume that the 

fluid is blood with 3/1050 mkg   and 113102.3  skgm (Tzirtzilakis (2008, 2015)). The 

electrical conductivity of blood is 18.0  sm (Tzirtzilakis (2005)).  A range is adopted for the 

temperature field under the influence of the applied magnetic field.  The temperature of the fluid 

is cTc

041  while the plate temperature is cTw

037 . For these values of temperature, the 

temperature number is 5.78   and the viscous dissipation number is  14104.6  . Generally, 

the specific heat under a constant pressure pc  and thermal conductivity k  of any fluid are 

temperature dependent. However, the ratio including the above quantities expressed by the 

Prandtl number can be considered constant with the temperature variation. Therefore, for the 

temperature range consider in this problem, 
113109.3  kJkgc p  and 1115.0  ksJmk  and 

hence 25rP   

         As far as the parameters related with the magnetic field, in the present study we adopted the 

value of   to be 0 to 10, used also in the studies, Tzirtzilakis (20015), Tzirtzilakis and 

Kafaussian (2003). Moreover, similar range is adopted for the Magnetohydrodynamics parameter 

nM  which is 0 to 10 
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6.6 Results and Discussion 

In this section, we discuss the influence of different parameters ** ,,,,, BAMm n   on 

velocity, pressure and temperature fields.  The numerical results are presented graphically in 

figures 6.2-6.18. 

         In the absence of the magnetic field i.e β=0, Μn=0 and for α=0.5 or 0.25 the numerical 

values for )0(''f  are found to be in excellent agreement with Fang et al. (2012) and Kader and 

Megahed (2015) which displayed in table 6.1. 

 

Table 6.1: Comparison of numerical values of  )0(''f  

  m  Present result 

)0(''f  

Fang et al. (2012) Kader and Megahed 

(2015) 

0.5 

 

10 1.0602 1.0603 1.0602 

9 1.0590 1.0589 1.0589 

7 1.0557 1.0550 1.0550 

5 1.0503 1.0486 1.0486 

3 1.0397 1.0359 1.0358 

2 1.0295 1.0234 1.0235 

-0.5 1.1647 1.1667 1.1667 

0.25 10 1.1432 1.1434 1.1434 

9 1.1404 1.1405 1.1405 

7 1.1327 1.1326 1.1326 

5 1.1198 1.1186 1.1186 

3 1.0933 1.0905 1.0905 

         

          For the biomagnetic flow (β=10, Mn=5), first we analyze the effects of wall thickness 

parameter on the fluid flow, pressure and temperature distribution. The obtained results are 

presented in figures 6.2, 6.3 and 6.4, respectively. 

         From figure 6.2 it is clear that, for the velocity power index 1.0m , the velocity at any 

point near to the plate decreases as the wall thickness parameter  increases and the reverse is 

true for 2m . Figure 6.3 shows that the temperature distribution is decreased with the 

increment of the wall thickness parameter   for 1.0m , whereas, the reverse is observed for 

2m .  Generally speaking the temperature distribution for any value of  , is greater for 2m  

than that observed for 1.0m . 
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Fig 6.2(a) Velocity distribution for various values of   with 1.0m  
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Fig 6.2(b) Velocity distribution for various values of   with 2m  
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Fig 6.3(a) Temperature distribution for various values of   with 1.0m  
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Fig 6.3(b) Temperature distribution for various values of   with 2m  
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Fig 6.4(a) Variation of pressure distribution for various values of   with 1.0m  
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Fig 6.4(b) Variation of pressure distribution for various values of   with 2m  
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            Figure 6.4 shows the variation of the dimensionless pressure P  for different values of 

wall thickness parameter for 1.0m  and 2m .  It is observed that the dimensionless pressure 

P  decreases with the increment of   for 1.0m  and the reverse is true for 2m   Generally 

speaking the values of the dimensionless pressure close to the wall are greater for 2m  than 

those obtained for 1.0m .  

        Figure 6.5, 6.6, 6.7 show that the effect of velocity power index m  on the velocity, 

temperature and pressure distribution for a fixed value of α=0.5. It is observed that all the values 

of the aforementioned variable are increasing with the increment of m .  
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Fig 6.5 Velocity distribution for various values of m . 
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Fig 6.6 Temperature distribution for various values of m . 
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Fig 6.7 Variation of pressure distribution for different values of .m  
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Fig 6.8 Variation of temperature distribution for different values of *A  
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Fig. 6.9 Variation of temperature distribution for different values of 
*B  
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          Figures 6.8 and 6.9 depict the effect of space dependent heat source/sink parameter *A  

and temperature dependent heat source/sink parameter *B . It is observed that the values of the 

temperature distribution of the fluid are increased with the increment of A* (heat source) for 

B*=0.6 and analogous behavior is observed when 6.0* A  and *B  increases. It is concluded 

that the application of the magnetic field does not alter qualitatively the expected behavior of the 

temperature field and in the presence of heat sources or sinks is formed accordingly.  

          Figures 6.10, 6.11 and 6.12 depict the effect of the magnetic force applied due to the 

electrical conductivity of the fluid for a given polarization force  10 . This is achieved by 

setting 10  and letting nM  vary from 0 to 10. It is obtained from Figure 6.10 that the 

dimensionless velocity   f    is significantly reduced throughout the flow field as nM  is 

increased. On the contrary, the temperature and the pressure values throughout the flow field are 

increased with the increment of nM shown in Fig. 6.11-6.12.  
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  Fig. 6.10 Variation of velocity profile with different values of  nM  
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Fig. 6.11 Variation of temperature distribution profile with different values of nM  
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Fig. 6.12 Variation of Pressure distribution with different values of nM  
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Fig 6.13 Variation of velocity profile with different values of   and nM  

          Figures 6.13, 6.14 and 6.15 picture the dimensionless velocity, pressure and temperature 

distribution profiles, respectively. The curves are plotted for pure hydrodynamic flow 

)0,0(  nM  , pure FHD flow )0,0(  nM , pure MHD flow )0,0(  nM  and BFD 

flow )0,0(  nM . It is observed that the velocity is reduced with the increment of   or nM . 

It is noted that the major impact on the velocity is observed with the increment of 

magnetohydrodynamic parameter nM  which is also shown in fig 6.10. Generally speaking the 

impact of ferromagnetic interaction parameter   is negligible comparable to that caused by the 

increment of nM , whereas the reverse is observed for the temperature and pressure distribution 

shown at figures 6.14 and 6.15. Namely, the temperature and pressure profiles are increased with 

the increase of magnetohydrodynamics parameter nM  and ferromagnetic interaction parameter 

 , but the major impact is observed with the increment of the magnetohydrodynamics parameter 

nM  as shown at fig. 6.11 and  fig. 6.12. 
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Fig. 6.14 Variation of temperature distribution with different values of   and nM  
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Fig. 6.15 Variation of dimensionless pressure with different values of   and nM  
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             The important characteristics of the present study are the local skin friction 

coefficient  )0(''f  and local rate of heat transfer  )0(* and wall pressure )0(P . The skin 

friction at the surface as shown at figure 6.16.  It is found that the skin friction is increased with 

the increment of the ferromagnetric parameter   for specific value of nM  and its increment is 

linear. Furthermore, )0(''f  is increased, not linearly this time, with the increment of nM  for 

specific values of  , (see fig 6.16(b)). The variation of the dimensionless wall shear parameter 

)0(''f  with the increment of m is shown at Fig 6.16 (c) and 6.16(d). In figure 6.16(c) observed 

that as m increased and up to 7m , the wall shear parameter is increased as   increases. The 

opposite is happening when m exceeds the value of 7. It is worth mentioning here, that as   

increases, there is a value of m for which the dimensionless wall shear parameter takes its 

maximum value and this is attained for m 3 . For 7m  the value of the wall shear parameter 

is not affected by the application of the magnetic field and the polarization effect.  
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Fig. 6.16(a) Variation of the wall shear parameter with   for different values of nM . 



139 
 

0 2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

 

M
n

f''
(0

)

=0,5,10 

m=2, P
r
=25, =78.5, =0.5

 
                    Fig. 6.16(b) Variation of the wall shear with nM for different values of  . 
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Fig. 6.16(c) Variation of the wall share parameter with m for different values of  . 
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Fig. 6.16(d) Variation of the wall shear parameter with m for different values of nM . 

 

            At figure 6.16(d) it is observed that as m is increased and up to 3m , the wall share 

parameter increases as nM  increases, and the reverse is true when m exceeds the value of 3.  It is 

mention that its increase or decrease is not linear. 

           The heat transfer rate at the sheet can be measured by the ratio 

0|)0('

)0('
)0(*






nM
 . The variation of the wall heat transfer parameter )0(*  with   

and nM  is shown at figures 6.17. For the case of the variation with   pictured at figure 6.17(a),  

)0(*  reduces linearly. Figure 6.17(b) shows the variation of )0(*  which is decreased with the 

increment of nM  in a non-linear way. The variation of the wall pressure )0(P  is displayed at 

figure 6.18 which shows that the wall pressure is monotonically increased with the increment of 

the magnetic parameter  . It is interesting to note that all over the sheet the skin friction 

coefficient  )0(''f and  rate of heat transfer  )0(*   and wall pressure )0(P , all vary linearly 

with the ferromagnetic parameter but nonlinearly with magnetohydrodynamic and velocity 

power index parameter. 
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Fig. 6.17(a) Variation of the wall heat transfer parameter with   for different values of nM . 
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Fig 6.17(b) Variation of the wall heat transfer parameter with nM for different values of   
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Fig 6.18 Variation of the wall pressure parameter with   for different values of nM . 

 

 

6.7 Summary of the chapter   

In this study of biomagnetic fluid flow over a stretching sheet with variable thickness in the 

presence of applied magnetic field which is generated by a magnetic dipole. This model takes 

into accounts both magnetization and electrically conductivity.  

        The observations on the effect of various physical parameter, the velocity and temperature 

of fluid is increased or decreased with wall thickness parameter in depend on velocity power 

index. It is generally observed that the thickness of the boundary layer plays very important role 

in the determination of the BFD flow field. 

         In FHD and MHD case the velocity component decreases with both ferromagnetic 

interaction parameter and magnetohydrodynamics parameter, but the major impact on the fluid 

velocity is causes rather than the variation of the magnetohydrodynamics parameter rather than 

the ferrohydrodynamics one.  On the contrary, pressure and temperature profiles are increased on 

the effect of ferromagnetic interaction parameter and magnetohydrodynamics parameter.  
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          Another important characteristic of biofluid are wall shear parameter, wall pressure and 

rate of heat transfer. The wall shear parameter and wall pressure increase with the increment of 

the value of ., nM  but the rate of heat transfer is decreased with the increment of ., nM It is 

noted that wall share parameter, wall pressure and rate of heat transfer are linearly 

increase/decrease with the value of   but nonlinearly with  nM . This information is useful for 

all kinds of applications that deal with blood flow in the presence of a magnetic field and also 

use in medical diagnosis such as for clearer imaging, MRI etc. 
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Chapter 7 

Three dimensional Biomagnetic flow and heat 

transfer over a stretching surface with variable fluid 

properties 

 

 

In this chapter, we investigate the effects of variable fluid properties on the flow and heat 

transfer of three dimensional biomagnetic fluid over a stretching surface in the presence of 

magnetic dipole. In our model, we assume that the fluid viscosity and thermal conductivity 

are varying with temperature and the wall temperature varies in the ),( yx plane. The model 

used takes into account both magnetization and electrically non-conductivity which described 

by the principle of FHD. The governing equations are transformed into system of ordinary 

differential equations by using similarity transformations and solved by using an efficient 

numerically technique. The influence of various parameters namely the viscosity parameter, 

thermal conductivity parameter, ferromagnetic interaction parameter on the velocity and 

temperature fields is analyzed and presented graphically. This result analysis shows that the 

magnetic force controls the fluid behavior and the friction coefficient. The accuracy of the 

numerical result is checked by comparisons with previously published work and the results 

are found to be in good agreement, Murtaza et al. (2018). 

7.1 Introduction 

       Biomagnetic fluid flow has a relatively new area in fluid dynamics because there are 

numerous applications in bioengineering and medicine. Hyperthermia or hypothermia is one 

of the treatments in which body tissue is exposed to slightly higher temperatures to destroy 

and kill cancer cells. By the magnetic fluid application, hyperthermia can also be used for the 

eye injuries treatment. The magnetic devices development for cell separation, high-gradient 

magnetic separation, reduction of blood flow during surgeries, targeted transport of drugs 

using magnetic particles as drug carries, treatment of cancer tumor causing magnetic 
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hyperthermia and magnetic wound treatment and development of magnetic tracers are some 

applications.  

           The mathematical model for flow of BFD, has been developed first Haik et al. (1999). 

This model is conformed with the principles of FHD by Rosensweig (1985, 1987). According 

to this model, they consider that biomagnetic fluid is Newtonian, electrically non-conducting 

magnetic fluid formulated on the principles of ferrohydrodynamics (FHD). An extended 

mathematical model developed by Tzirtzilakis (2005). According to this model, the biofluid 

flow under the influence of an applied magnetic field is consistent with the principles of 

Ferrohydrodynamics (FHD) and the Magnetohydrodynamics (MHD) by Davidson (2001). 

Tzirtzilakis and Kafoussias (2003) analyzed the mathematical model of the flow of a heated 

ferrofluid over a linearly stretching sheet under the action of a magnetic field which is 

generated by a magnetic dipole. Tzirtzilakis and Tanoudis (2003) presented a numerical 

method for the study of laminar incompressible two dimensional biofluid over a stretching 

sheet with heat transfer. He assumed that the magnetization of the fluid varied with the 

magnetic field strength H and the temperature T.  Further Misra and Shit (2009) investigated 

the Biomagnetic viscoelastic fluid flow over a stretching sheet and he indicate that the 

presence of an external magnetic field influences the flow of biomagnetic fluid quite 

appreciably.  

          The magnetization property M is the behaviour of a biological fluid when it is exposed 

to magnetic field. Anderson and Valnes (1998) used a linear and temperature dependent 

magnetization equation where as Tzirtzilakis and Kafoussias (2003, 2010) used a nonlinear 

and temperature dependent one. Haik et al. (2001) studied the viscosity of human blood in a 

high static magnetic field. They used the magnetization equation which is not temperature 

dependent. 

           All the above studies, they consider the uniform fluid viscosity and thermal 

conductivity. However, it is evident that the physical properties of fluid may change with 

temperature, especially the fluid viscosity and the fluid thermal conductivity. Vajravelu et al. 

(2013) investigated the Effects of variable fluid properties on the thin film flow of Ostwald-

de Waele fluid over a stretching surface.  Prasad et al. (2010) studied the effects of variable 

fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching 

sheet. Salawu and Dada (2016) studied the radiative heat transfer of variable viscosity and 

thermal conductivity effects on inclined magnetic field with dissipation in a non-Darcy 

medium. Makinde et al. (2016) investigated the MHD variable viscosity reacting flow over a 

convectively heated plane in a porous medium with thermophoresis and radiative heat 
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transfer. All above authors assume that the fluid viscosity and thermal conductivity very as a 

linear function of temperature. Kafoussias et al. (2008) investigated that free-forced 

convective boundary-layer flow of a biomagnetic fluid under the action of a localized 

magnetic field. They conclude that for increasing viscosity parameter, the skin friction 

coefficient increases, whereas the Nusselt number decreases. 

          The aim of the present study is to examine the temperature dependent viscosity and 

thermal conductivity of biomagnetic fluid flow over a three dimensional stretching sheet with 

variable surface temperature. Here we conclude that the effect of variable viscosity and 

thermal conductivity, the flow characteristic are significantly changed compared to constant 

physical properties. This study will help the development of medical treatment by controlling 

blood velocity and blood temperature. 

 

 7.2 Mathematical Formulation  

         Let us consider a steady three-dimensional boundary layer flow and heat transfer of a 

viscous incompressible and electrically non-conducting biomagnetic fluid over a stretching 

surface in the presence of applied magnetic field. A magnetic dipole is placed parallel to the 

x  axis and at a distance d  below it. It is also assumed that this magnetic dipole gives rise 

to a magnetic field of sufficient strength to saturate the magnetic fluid so that the equilibrium 

magnetization is accounted. Assume that the flat surface is stretching in two lateral directions 

x  and y  with the velocities ax  and by . The stretching sheet is placed in the plane 0z , 

whereas the fluid occupies the upper half plane 0z . Here we consider the plates are kept at 

a constant temperature wT , while the fluid is at temperature cT , such that cw TT  . Let the 

surface be maintained at a power law temperature. The geometry and magnetic dipole of the 

problem is shown in Fig. 7.1. 

The boundary layer equations of the fluid and energy equation in the presence of variable 

fluid properties can be written as  

Continuity equation:  

            0
zy

v

x

u














 w
                                                                                                     (7.1) 
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Fig. 7.1 Physical configuration and coordinate system  

Momentum equation: 

           


























 z

u

zz
wu 



1u

x

u
                                                                                   (7.2) 

           
y

H
M

z

v

zz
w

v
v


































0

11v

y






                                                             (7.3) 

          
z

H
M

z

w

zz

p

z
w


































0

111w






                                                     (7.4)                                                      

Energy equation: 
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With boundary conditions are  

axuu w  , byvv w  , 0w , nm

cw yAxTTT   at 0z   (7.6)           

constpqpTTvu c  

2

2

1
,,0,0    at z                                               (7.7) 
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         Here vu,  and w  are the velocity components along the yx, and z axes, respectively.  

  is the fluid viscosity,   is the fluid density far away from the sheet, 0  is the magnetic 

permeability, H is the magnetic field. The terms
y

H
M




0   and 

z

H
M




0  in (7.3) and (7.4), 

respectively, represent the components of the magnetic force, per unit volume of the fluid, 

and depend on the existence of the magnetic gradient. These two terms are well known from 

FHD which is so-called Kelvin forces and the term 





















z

H
w

y

H
v

T

M
T0  of the thermal 

energy equation (7.5) represents the thermal power per unit volume due to magnetization that 

takes place as an adiabatic process. The power indices m and n indicate the variable surface 

temperature in the (x, y) plane. 

       Assumed that the viscosity and thermal conductivity of fluid is a temperature dependent 

and is of the form Salawu and Dada (2016) 

  



 TT


1
11

  or    rTTs 


1
                                                                         (7.8) 

Where 



s and 



1
 TTr  

         Here s and rT are the constant and their values depend on the reference state and   is a 

constant connected with the thermal property of the fluid.  Generally for the liquids 0s  and 

for gases .0s  

         On the other hand, for most liquids the thermal conductivity k is assumed to very as a 

linear function of temperature in the form Salawu and Dada (2016) 

    akk   1 ,                                (7.9) 

where 





k

kk
a w  is the thermal conductivity parameter.                                

         The biomagnetic fluid flow is affected by the magnetic field generated by the presence 

of a magnetic dipole and assumed that the magnetic dipole is located at distance d below the 

sheet. The magnetic dipole gives rise to a magnetic field, sufficiently strong to saturate the 

fluid and its scalar potential for the magnetic dipole whose components 
yH , zH of the 

magnetic field  zy HHH , , due to the electric current with the wire with intensity I , are 

given by Tzirtzilakis and Kafoussias (2010) 
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A linear equation involving the magnetic intensity H and Temperature T is given by 

Tzirtzilakis and Kafoussias (2010) 

     TTKHM c  ,                                (7.10) 

  where K is a constant                                                                                 

 

7.3 Mathematical Analysis 

         We are now introducing the non-dimensional coordinates as following Tzirtilakis and 

Kafoussias (2010). 

x
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x
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z


 )(          

the dimensionless velocity, pressure ),,( P and temperature ),,(  of the magnetic 

fluid are given by the following expressions:                                                                                                         

    )()(),('),('  gfawgavfau  .                                            (7.11) 
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And the magnitude H of the magnetic field strength is given by the expression  
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Where   is the dimensionless distance of the electric wire from the  axis 



a

d . By 

substituting equation (7.10) and all the above expressions (7.11)-(7.14) into the momentum 

equations (7.2)-(7.4) and energy equation (7.5), and equating the coefficients of equal power 

of  , we get the following system of ordinary differential equations.  
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The boundary conditions are 

0,1,',1'  gf
a

b
gf   at 0                                                                        (7.19) 

0,,0',0'   PPgf  as                                                                          (7.20) 
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    where   r  is negative for liquids and r  is positive for gases.   

The local Skin friction coefficient and local Nusselt number are important physical 

parameters of this flow and heat transfer which is define respectively  
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7.4 Numerical Method 

         For the numerical solution of the problem under consideration we apply an approximate 

technique that has better stability characteristics than classical Runge-Kutta combined with a 

shooting method, is simple, accurate and efficient. The essential features of this technique are 

the following: (i) It is based on the common finite difference method with central 

differencing (ii) on a tridiagonal matrix manipulation and (iii) on an iterative procedure. This 

numerical method is described in detail in Kafoussias and Williams (1993). For reasons of 

completeness of this study we demonstrate the application of this methodology for the 

numerical solution of the system of equations (7.15), (7.16) and (7.18), subject to the 

boundary conditions (7.19) and (7.20). 

     The momentum Equation (7.15) can be written as  
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The above equations can be considered as a second order linear differential equation by 

setting )(')( fxy   provided that P and )(f are considered known functions.  In this case 

equation (7.21) can be written as  
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which is of the form 
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         In an analogous manner all equations of the system can be reduced in this form of 

equation (7.22) except for equation (7.17) which are already first order differential equations. 

Equation (7.22) can be solved by a common finite difference method, based on central 

differencing and tridiagonal matrix manipulation. 

       To start the solution procedure, we assume initial guesses (distribution curves) for )(' f  

between 0  and )(     which satisfy the boundary conditions (7.19) and (7.20). 

For this problem indicative initial guesses are  



152 
 

 






















 
















 1)(',1)(',1)()( gfgf ,







 1)( . 

The )(f distribution is obtained by the integration from )(' f curve. The next step is to 

consider the ,, Pf  known and to determine a new estimation for )('),('  newff  by solving 

the non-linear equation (7.22) using the above method. The distribution is updated by the 

integration of new )(' f  curve. These new profiles of )(' f  and )(f are then used for new 

inputs and so on. In this way the momentum equation (7.21) and consequently (7.15) and 

(7.16) are solved iteratively until convergence up to a small quantity   is attained. 

        After )(f  is obtained the solution of the energy equation (7.18) with boundary 

conditions (7.19) and (7.20) is solved by using the same algorithm, but without iteration now 

as far as equation (7.19) is linear. Equation (7.19) is 
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This equation can be written as 
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Equation (7.23) is a second order linear differential equation in setting )()(  y    

which is of the form  
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         Considering )('),(),('),(  ggff and   known, we obtain a new approximation 

new  for   and this process is continue until convergence up to a small quantity   is attained 

and finally we obtain  . This process is continuing until final convergence of the solution is 

attained. 
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         In order to apply to our numerical computation a proper step size 01.0 h and 

appropriate   value as )( y   must be determined. By “trial and error” we set 6 , 

01.0 and the tolerance between the iterations is set at 410 defined as 













 
 

)(

)()(
max ,1

if

ifif

old

newold

Ni . Computations were also performed for 001.0  and no 

significant differences were found. 

7.4.1 Numerical validation 

       First we verify the accuracy of the present method, the present numerical results for 

)0('  are compared with the published results obtained by setting 

1Pr,5.0)0(',1)0('0  gfand  in boundary conditions (7.19). The comparisons are 

found to be in complete agreement, and thus we are confident that the present method is 

accurate with Liu et al. (2008). 

Table 7.1 Validation of the present results by comparing with the published literature for wall 

heat transfer rate coefficients )0('  when 5.0)0(',1)0('0,1Pr  gfand  

stretching 

ratio 

0,0  nm  0,2  nm  2,0  nm  

 Present Liu et al. 

(2008) 

Present Liu et al. 

(2008) 

Present Liu et al. 

(2008) 

25.0  -0.66721 -0.665933 -1.36331 -1.364890 -0.88301 -0.883125 

5.0  -0.73546 -0.735334 -1.39377 -1.395356 -1.10544 -1.106491 

75.0  -0.79599 -0.796472 -1.42341 -1.425038 -1.29056 -1.292003 

 

7.5 Results and Discussion 

         The values of the governing parameters are chosen to be physically representative of the 

actual blood fluids. We considered by Loukopoulos and Tzirtzilakis (2004), human blood as a 

biomagnetic fluid. At CTw

037 (human body temperature) where as the body curie 

temperature is CTc

041 , For these values of temperature, the temperature number is 
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5.78 .  Since the fluid is blood so we can assume 
3/1050 mkg   and   

113102.3  skgm by Tzirtzilakis (2008).  Generally, the specific heat under a constant 

pressure 
pc  and thermal conductivity k  of any fluid are temperature dependent. For the 

temperature range consider in this problem, 
11.65.14  KJKgC p  and 

1113102.2  ksJmk   respectively by Tzirtzilakis and Xenos (2013) and hence 21rP , 

Ferromagnetic interaction parameter  0 to 10  as in Tzirtzilakis and Kafoussias (2003). 

Noted that 0  corresponds to hydrodynamic flow.  Viscous dissipation parameter 

14104.6   
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Fig. 7.2 Velocity profile for various values of ar ,,  
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                                  Fig. 7.3 Velocity profile for various values of ar ,,       
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Fig. 7.4 Temperature profile for various of ar ,,  
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         Figures 7.2 to 7.4 display the influence of ferromagnetic parameter, viscosity parameter 

and thermal conductivity parameter on velocity and temperature distributions. It is evident 

from figures that an increase of the magnetic parameter results to greater the velocity profiles 

)(' f  than the corresponding hydrodynamics ones.  However, the opposite is true for the 

velocity component )(' g  (fig 7.3). This fact is due to the influences of Kelvin forces on the 

flow field in the y direction.                                       
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Fig. 7.5 Velocity profile )(' f for values various values of m,  

           From figure 7.4, it is observed that increase in magnetic field parameter increases the 

temperature profiles. The reason behind this is that increment of the magnetic field reduces 

the boundary layer thickness and enhances the thermal conductivity of the fluid. These figure 

also indicates that increment of the values of r , results to decrement of the velocity and 

enhances the temperature profile. This is due to fact that increment of r  results to an 

increment in the thermal boundary layer thickness which results to decrement the velocity 

and increment of the temperature.                        
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Fig. 7.6 Velocity profile )(' g for various values of m,  
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Fig. 7.7 Temperature profile for various values of m,  
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           Figure 7.5 to 7.9 exhibits effect of wall temperature parameter on velocity and 

temperature distribution.  For this figure it is observed that the variation of sheet temperature 

has a significantly effect on the velocity and temperature profile. From the figure we 

conclude that increment of the wall temperature parameter results to increment the velocity 

profile and the opposite behaviour occurs for the temperature profile. This is due to fact that, 

when 0, nm  the heat flows from the stretching sheet into the fluid and when 0, nm  the 

temperature gradient is positive and the heat flows from the fluid into the stretching sheet. 

When m  and n are both increased, then the temperature profile is decreased whereas the 

velocity is increased i.e. thermal boundary layer becomes thinner and momentum boundary 

layer is thicker.  
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Fig. 7.8 Velocity profile for various values of n,  

 

          Figure 7.10 to 7.14 depicts the skin friction coefficient and rate of wall heat transfer 

with respect to the viscosity parameter and thermal conductivity parameter for various values 

of magnetic number  .  It is observed from this figure that when the viscosity parameter is 

increase, the velocity gradient at the wall is increased and its reverse trend was found for the 

wall temperature gradient.  
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Fig. 7.10 Skin friction for various values for various of   with respect r  
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Fig. 7.11 Rate of heat transfer values of   with respect r  
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Fig. 7.12 Skin friction for various values of  and r  with respect a  
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Fig. 7.13 Skin friction )0(''g for various values of   and r with respect a  
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Fig. 7.14 Rate of heat transfer for various values of  and r  with respect a  
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7.6 Summery of the chapter 

          In this chapter, we studied the effect of variable fluid properties on BFD in the 

presence of applied magnetic field. The results are presented graphically to investigate 

influence of pertinent parameters on velocity and temperature field. Some important result 

are: 

(i) The effect the increment of variable thermal conductivity parameter is to enhance the 

temperature in the flow region and the reverse is true in the case of the wall temperature 

parameter. This parameter effect is negligible for velocity and skin friction. 

(ii) The effect of increasing value of viscosity parameter r  is to enhance the temperature and 

decrease the velocity. This parameter variation is more effective on the velocity profile and 

skin friction but negligible on the wall temperature gradient. 

(iii) For the effect of the magnetic parameter, as the magnetic number increases, it is apparent 

that the velocity profile )(' f  is increased but the velocity profile )(' g  decreases with the 

increment of the magnetic field. This is happen due to the Lorentz forces. 

(iv) The effect of thermal conductivity is more profound on the temperature gradient than 

other physical quantities. On the other hand the viscosity parameter is more affected from the 

skin friction than the temperature gradient variation. 
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Chapter 8 

 

Dual Solutions in Biomagnetic Fluid Flow and Heat 

Transfer over a nonlinear stretching/shrinking 

sheet: Application of Lie Group Transformation 

Method 

 

 

 

Of concern in this chapter is a theoretical investigation of boundary layer flow of a 

biomagnetic fluid and heat transfer on a stretching/shrinking sheet in the presence of a 

magnetic dipole. The problem has been treated mathematically by using Lie group 

transformation. The governing nonlinear partial differential equations are thereby reduced to 

a system of coupled nonlinear ordinary differential equations subject to associated boundary 

conditions. The resulting equations subject to boundary conditions are solved numerically by 

using bvp4c function available in MATLAB software. The plots for variations of velocity, 

temperature, skin friction and heat transfer rate have been drawn and adequate discussion has 

been made. The study reveals that the problem considered admits of dual solutions in 

particular ranges of values of the suction parameter and nonlinear stretching/shrinking 

parameter. A stability analysis has also been carried out and presented in the chapter. This 

enables one to determine which solution is stable that can be realized physically, and which is 

not. The results of the present study have been compared with those reported by previous 

investigators in order to ascertain the validity/reliability of the computational results.  

 

8.1 Introduction 

          Studies on biomagnetic fluid flow and heat transfer under the influence of external 

magnetic fields have been receiving growing attention of researchers owing to their important  

applications in bioengineering and clinical sciences. Observations derived from related 

investigation are useful in the design and development of magnetic devices for cell 

separation, reduction of blood flow during surgery, targeted transport of drugs through the 
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use of magnetic particles as drug carriers, magnetic resonance imaging (MRI) of specific 

parts of the human body, electromagnetic hyperthermia in cancer treatment etc., as mentioned 

in earlier communications, Misra and Shit (2009a, 2009b), Misra et al. (2010). 

         Base on the principles of Ferrohydrodynamics (FHD), a biomagnetic fluid model was 

developed by Haik et al. (1996). This was further extended by Tzirtzilakis (2005) by 

combining the principles of Magnetohydrodynamics with those of FHD and applied his 

model to analyze the flow of blood under the influence of a magnetic field. Tzirtzilakis and 

Kafoussias (2003) studied the flow of a heated ferrofluid over a linearly stretching sheet 

under the action of a magnetic field generated due to the presence of a magnetic dipole. 

Laminar two-dimensional flow of an incompressible biofluid over a stretching sheet was 

studied numerically by Tzirtzilakis and Tanoudis (2003). The effect of heat transfer on the 

flow behaviour was also studied by these authors. Flows of biomagnetic viscoelastic fluids in 

different situations were investigated theoretically by Misra and Shit (2009a, 2009b). These 

studies reveal that the presence of external magnetic field bears the potential of influencing 

the flow behaviour of biomagnetic viscoelastic fluids quite appreciably. 

         Existence of dual solutions have been reported in various studies by different 

researchers. Some of them have presented stability analysis also. Mukhopadhyay (2011) 

while dealing with a problem of heat transfer in a moving fluid over a moving flat surface 

observed the existence of dual solutions. Vajravelu et al. (2017) while studying the unsteady 

flow and heat transfer over a shrinking sheet with consideration of thermal radiation and 

viscous dissipation, reported the existence of dual solutions for the flow field. Krisna et al. 

(2016) observed dual solutions for an unsteady problem of flow past an inclined sheet. 

Naganthran and Nazar (2017) found the existence of dual solutions during MHD stagnation 

point flow over a stretching/shrinking sheet. It was reported by Hafidzuddin et al. (2016) that 

dual solutions exist for boundary layer flow and heat transfer over an exponentially 

stretching/shrinking sheet. Ray Mahapatra et al. (2014) also discussed the existence of dual 

solutions for MHD stagnation point flow over a shrinking surface with partial slip. Stability 

analysis has presented in several studies (cf. Ghosh et al. (2016), Yasin et al. (2016), 

Awaludin et al. (2016) and Mishra and Singh (2014)). 

           Use of Lie group transformation method has been found to be very effective in finding 

the solutions of highly nonlinear differential equations. It helps determine the invariants and 

similarity solutions for partial differential equations (Pakdemirli and Yurusoy (1998), Bluman 

and Kumei (1991)). Several researchers (cf. Prabhu et al., (2009), Jalil et al. (2010),  Reddy, 



165 
 

(2012), Rashidi et al. (2014), Ferdows et al. (2013)) have used Lie group analysis method for 

dealing with various problems of fluid flow and heat transfer. 

          Several problems of flow and heat transfer on sheets/channels under the action of 

external magnetic/electric fields that have applications to physiological fluid dynamics have 

been treated mathematically, among others are those of Misra and Sinha (2013), Sinha and 

Misra (2014), Misra and Chandra (2013), Misra and Adhikary (2016, 2017), Misra et al. 

(2013, 2015, 2017, 2018). However, in none of these studies, stability analysis/existence of 

multiple solutions has been considered. More particularly, to the best of our knowledge, there 

has not been any attempt to explore the existence of multiple solutions or to discuss the 

stability for any theoretical analysis for the flows of biomagnetic fluids. Considering this an 

attempt has been made, in this chapter to explore the stability and existence of dual solutions 

in the context of flow and heat transfer of biomagnetic fluids on stretching/shrinking sheets. 

The governing equations are highly nonlinear so we have made use of the Lie group 

transformation method. Finally, the computational results have been obtained with the help of 

bvp4c function available in Matlab software. Detailed discussion has been made for 

variations of biomagnetic fluid velocity, temperature, skin friction and heat transfer rate. The 

study reveals that there exist dual solutions in specific ranges of the vital parameters involved 

and that one of the two solutions is stable and physically realistic. The validity of the 

numerical results presented has also been established.  

 

8.2 Mathematical Formulation 

        Let us consider the two-dimensional incompressible boundary layer flow and heat 

transfer of a biomagnetic fluid over a stretching/shrinking sheet (Fig. 8.1), where x-axis is 

taken along the sheet and y-axis along the normal direction. We assume that 

stretching/shrinking has a velocity 
naxu  , where )0(a  is a constant that signifies the 

stretching situation. When ,0a  we have the case of a shrinking sheet. It is assumed that the 

free stream velocity is nbxxU  )( , where b is a positive constant. A magnetic dipole is 

supposed to be located below the sheet at a distance d which generates a magnetic field of 

constant strength. Also, we denote the temperature of the sheet by )(xTw  and the ambient 

temperature by )(xTc . 
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          Stretching sheet                                         Shrinking sheet                     

Fig. 8.1. The geometry of the problem. 

         Under the assumptions of boundary layer approximation, the governing equations for 

the problem can be written as 
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and the boundary conditions as 
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ww
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w
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n
                                                                                         (8.4) 

u and v being the velocity components along the x- and y-axes, respectively. Other parameters 

  and k  represent respectively the fluid density and the thermal conductivity, pc  is the 

specific heat at constant pressure,   the fluid viscosity and 0   the magnetic permeability. 
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We consider that the magnetic field strength varies linearly with temperature ,T  M  as a 

linear function of temperature ,T  given by )( TTKM c  , K being a constant. 

The horizontal and vertical components of the magnetic field generated by a magnetic dipole 

located at a distance d below the sheet are given by Tzirtzilakis and Tanoudis, (2003). 
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8.3 Mathematical Analysis 

We now introduce the following dimensionless quantities: 
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Substituting (8.6) into Equation (8.2), one obtains the non-dimensional equations: 
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Again, substituting (8.6) into Equation (8.3), one obtains the non-dimensional equations: 
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where the dimensionless form of the boundary conditions, expressed in terms of  , is 

obtained as  
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8.4 Lie Group Transformation 

        Since it is extremely difficult to solve the coupled nonlinear equations (8.9) and (8.10) 

subject to the boundary conditions (8.11) even numerically, we resort to the application of a 

novel type of similarity transformation, called the Lie group transformation (alternatively 

called the scaling group transformation) (cf. Ferdows et al. (2013)) given by  
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Here  is the group scaling parameter and i )8,...,2,1( i are arbitrary real numbers. Now we 

find out the values of i such that the form of (8.9)-(8.11) is invariant under the scaling group 

transformation (8.12). This transformation can be treated as point transformation, which 

transforms the coordinates ),,,,,,,( HUvuyx    to ),,,,,,,( ******** HUvuyx  
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The transformed equations (8.13) and (8.14) are invariant under the Lie group of 

transformation, if the following relations among the transform parameters are satisfied.  
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By using the equations (8.15) and the boundary conditions we obtain 

3211323   n  

12 )1(2   n  

12
2

)1(





n
 

Again  32321 322    

321    

1113
2

1

2

1








nn
 

also from equation (8.15) we have 
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If we insert (8.16) into the scaling (8.12), the set of transformations reduces to a one 

parameter group of transformations given by 
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Expanding by Tailor’s method and remaining terms up to )( 2O of the one parameter group, 

we further get 
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From Eq. (8.18), one can easily deduce the set of transformation in the form of the following 

characteristic equations: 
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Integrating the subsidiary equations  
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where  is the stream function and   is the dimensionless similarity variable, f  is the 

dimensionless stream function and   is the dimensionless temperature function. For the 

velocity field we define the dimensionless stream function ),( yx as 
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Now from the above transformation, equation (8.7) becomes 
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By equating the coefficient of 12 nx , we get 
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and equation (8.8) becomes, 
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The associated boundary conditions are: 
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In Eqn. (8.24), w  is the shear stress at wall, while wq represents the wall heat flux, defined 

by 
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Introducing (8.25) into Eqn. (8.24), the skin friction coefficient and local Nusselt number can 

be written in dimensionless form as 

)0(''Re
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1
fC xfx  and )0('Re/ xxNu                                                              (8.26) 

where 


xxuw

x

)(
Re  is the local Reynolds number based on the stretching velocity )(xuw . 

8.5 Stability Analysis 

         In this section, we present a stability analysis for the unsteady flow of the biomagnetic 

fluid, by considering the momentum equation in the form 
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where t  denotes the time. Here we define another set of dimensionless variables (in tune with 

equation (8.20)) as  
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In terms of these variables, the expression for the axial and transverse velocities read    
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Substituting the above expression in equation (8.27), we have           
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By equating the coefficient of 12 nx , we get                     
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The associated boundary conditions are: 
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To test the stability of the steady flow solution )()(  Ff   that satisfy the boundary value 

problem (8.2), we write 
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where γ is an unknown eigenvalue parameter and ),( g is small as compared to )(F . 
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By substituting the above expression into equation (8.29), we get  
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The linearized problem of the above expression as follow: 
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subject to the boundary conditions: 
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For ,0  we have ),()(  Ff   we have the case of steady flow of the fluid characterized 

by equation (8.21), while )()( 0  gg  in (8.32) characterizes the initial growth or decay of 

the solution (8.31). To test our numerical procedure, the following linear eigenvalue problem 

corresponding to the steady state problem: 
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along with the conditions: 
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 The smallest eigenvalue   will determine the stability of the corresponding steady flow 

solution )(F  for all the parameters involved.  

 

8.6 Numerical Method 

         Now we solve the set of nonlinear ordinary differential equations (8.21) and (8.22) with 

boundary conditions (8.23) numerically by using bvp4c function technique in MATLAB 

package. We consider 54321 ',,'',', yyyfyfyf   . Then the equations (8.7) and 

(8.8) are transformed into a system of first order ordinary differential equations as given 

below. 
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along with the initial boundary conditions: 

.0)(,1)(,1)0(,)0(,)0( 42421  yyyySy                                                         (8.37) 

Equations (8.36) and (8.37) are integrated numerically as an initial value problem to a given 

terminal point. All these simplifications are made by using bvp4c function available in 

MATLAB software. 

 

8.7 Results and Discussion 

The nonlinear ordinary differential equations (8.21) and (8.22) with boundary conditions 

(8.23), can be solved numerically using the bvp4c programme in MATLAB software. To 

have an insight of the flow physics, we have carried out numerical computation of various 

physical quantities, such as velocity, temperature, skin friction etc. Variations of the physical 

quantities with change in different parameters have been presented graphically/in tabular 

form. In order to establish the validity and accuracy of the method, we have computed the 
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skin friction coefficient for steady flow with 1,0,0,0  nMS n  and compared with 

those reported by Naganthran et al. (2016) in table 8.1. This table shows very clearly that our 

results are in good agreement with those of Naganthran et al. (2016). This observation serves 

as a confirmation of the accuracy of the results that are reported in this communication.  

 

Table 8.1: Comparison of skin friction coefficient for different values of   

 

  

Present Naganthran et al. (2016) 

First solution Second solution First solution Second solution 

-0.25 1.40224  1.402240  

-0.5 1.49567  1.495669  

-0.75 1.48929  1.489298  

-1.0 1.32882 0.00126 1.328816 0 

-1.15 1.08225 0.11576 1.082231 0.116702 

-1.2 0.93253 0.23286 0.932473 0.233649 

 

While carrying out numerical computations, we observe that dual solutions exist for a certain 

range of stretching/shrinking of the sheet and suction parameter. Since the dual solutions 

exist, we need to ascertain which solution is physically meaningful. With this end in view, we 

have performed stability analysis. For the sake of brevity, the details of the stability analysis 

are not being presented here. However, on the basis of the stability test, we find that one set 

of solutions is stable and physically realizable, while the other solution set is not so.  

          Figs. 8.2-8.7 depict the existence of dual solutions for skin friction )0(''f and wall heat 

transfer gradient )0(' for different values of the stretching/shrinking parameter and the 

suction parameter, when the value of ferromagnetic parameter and nonlinear stretching 

parameter changes. 

           The graphs presented in Figs. 8.2 and 8.3 have been plotted by considering different 

values of the ferromagnetic parameter and so they clearly depict the ferromagnetic effect of 

the fluid. It is interesting to note that there exist two solution branches. The first branch 
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represents the stable solution, while the second branch denotes the unstable solution for each 

value of    corresponding to a given value of .  
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Fig. 8.2. Variation of skin friction coefficient with   for various values of   

 

          From Fig. 8.2, we observe that unique solution exists for 2.0  or 3.0  or 

4.0  when 7,5,3 respectively,  while dual solutions exist when 4.0395.1    

for ,7  when 3.0248.1    for 5    and when 2.0136.1    for .3  

Also no solution exists when ,c  where  395.1,248.1,136.1 c  for .7,5,3  

respectively,  c  
being the critical value of , at which the two solution branches meet each 

other  and thus a unique solution is obtained. 

          Variation of wall heat transfer rate )0(' with stretching parameter for various values of 

the ferromagnetic parameter are shown in Fig. 8.3. From this figure, it can be seen that the 

solution is unique when c  , while dual solutions exist when 5.0 c  and no  

solutions exist, when ,c   where c  
is the critical value of  and the value of 

144.1,235.1,392.1 c  with specific values of .7,5,3  
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Fig. 8.3. Variation of heat transfer rate with   for different values of   

0.6 0.7 0.8 0.9 1.0
-12

-10

-8

-6

-4

-2

0

2

  First solution

  Second solution

 S
c
=0.712

 S
c
=0.658

 

 

 f''
(0

)

S



 S
c
=0.586

= -1, S=1, m=1, n=0.5, Pr=25, 

M
n
=1

 

Fig. 8.4. Variation of skin friction coefficient with S for various values of   
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          From this figure we also observe that the critical value c  decreases, as the value of the 

ferromagnetic parameter increases and that of the skin friction coefficient decreases. One way 

further observe that the effect of the ferromagnetic parameter diminishes in the range of   

for which the solution exists. 

          The variations of the skin friction coefficient  )0(''f and the local Nusselt number 

)0('  with suction parameter for different values of the ferromagnetic parameter are shown 

in Figs. 8.4 and 8.5 respectively. From these figures, it reveals that the solution is unique 

when cSS   , while dual solution exists up to 1 SSc  and no solutions for cSS  . One 

way further note that as the ferromagnetic parameter increases, both the skin friction 

coefficient and the heat transfer rate at the wall surface decrease. 
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Fig. 8.5. Variation of heat transfer rate with S for various values of   

 

          Figs. 8.6 and 8.7 depict the variation of the skin friction coefficient )0(''f  and heat 

transfer rate )0(' with the stretching/shrinking parameter  , for different values of nonlinear 

stretching parameter n . We also note that dual solution exists for a specific range of values of 
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the nonlinear stretching parameter. The aforesaid observations may be summarized as 

follows: 

(i) For ,0 c  dual solutions exist. 

(ii) When ,c  the solution exists and is unique. 

(iii) For ,c  no solution exists. 

(iv)  With an increase in n , there is a reduction in the skin friction coefficient and the heat 

transfer rate. 

(v) As the nonlinear stretching parameter n  increases, the range of similarity solution and 

that of the existence of dual solutions are both enlarged.  
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Fig. 8.6 Change in skin friction coefficient for different values of n  and  c  

         The effects of ferromagnetic parameter   on velocity and temperature distribution are 

shown in Figs. 8.8 and 8.9. These figures reveal that although the biomagnetic fluid velocity 

is enhanced as the ferromagnetic parameter increases for both cases (first and second 

solution), the fluid temperature is diminished, as the value of   rises. This reduction in fluid 

temperature may be attributed to be due to the influence of the external magnetic field. 
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Fig. 8.7 Change in heat transfer rate for different values of n  and  c  
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Fig. 8.8 Velocity profiles, )(' f  for different values of   
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Fig. 8.9 Temperature profiles, )(  for different values of   
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Fig. 8.10. Velocity profiles, )(' f  for different values of n  
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Fig. 8.11. Temperature profiles, )( for different values of n  

          Figs. 8.10 and 8.11 show that the effect of nonlinear stretching parameter )(n  on the 

velocity and temperature distributions for a particular situation, when 

1,1,1,1,10  mMS n  . Figure 8.10 indicates that the velocity of the biomagnetic 

fluid is significantly reduced throughout the flow field as n is increased, in the case of the 

first solution. This signifies that the momentum boundary layer thickness becomes thinner 

with a rise in the value of the parameter n .  But the result is to the contrary in the case of the 

second solution, except at points very close to the sheet. Fig. 8.11 shows that temperature 

reduces with increase in ,n  in the case of the first solution, while for the second solution, a 

reverse trend is observed. 

          The effect of suction parameter S on velocity and temperature distributions can be 

found from Figs. 8.12 and 8.13. According to the first solution (cf. Fig. 8.12), the fluid 

velocity increases, as the suction velocity enhances, while a reverse trend is observed in the 

case of the second solution. This can be interpreted physically by saying that since during 

suction, the fluid in the vicinity of the wall is sucked away, the boundary layer thickness is 

reduced due to suction and thereby the fluid velocity is enhanced. Fig. 8.13 demonstrates that 

the fluid temperature is reduced as the quantum of suction increases. This implies that the 
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thermal boundary layer thickness decreases with as suction proceeds.  This causes an increase 

in the rate of heat transfer. However, this is the observation from the first solution. A reverse 

trend is found to occur, if we consider the second solution. This observation implies that as 

the fluid is brought closer to the surface, the thermal boundary layer thickness diminishes. 
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Fig. 8.12. Velocity distribution for different values of S  

           The impact of temperature exponent )(m  on velocity and temperature distributions are 

displayed in Figs. 8.14 and 8.15, respectively. The dual velocity and temperature distributions 

are also presented in the same figures, alongside the first solutions. It may be noted that in the 

case of the first solution, as m  increases the velocity decreases. But a reverse trend is 

observed in the case of the second solution. The results imply that increase in the fluid index 

is accompanied by a reduction in temperature boundary layer thickness also. These are the 

observations, when we consider the first solution. But for the second solution, the 

observations are a bit different. Also, the temperature exponent )(m  parameter enhances the 

thermal overshoot near the sheet for the second solution. 
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Fig. 8.13. Temperature distributions for different values of S  
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Fig. 8.14 Velocity profiles, )(' f  for different values of  m  
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Fig. 8.15 Temperature profiles, )(  for different values of m  

 

8.8 Summary of the chapter 

         This chapter is devoted to a theoretical study on the flow of a biomagnetic fluid, by 

using Lie group transformation method. The flow is considered to take place over a 

stretching/shrinking sheet, under the influence of a magnetic field generated owing to the 

presence of a magnetic dipole. The study has been conducted under the purview of 

Biomagnetic Fluid Dynamics (BFD). Similarity solutions have been obtained for BFD 

boundary layer equations. The invariants and symmetries of equations were obtained for the 

determination of the similarity variables. This process could bring about a reduction in the 

number of independent variables. Stability analysis has been duly carried out. The resulting 

differential equation was then solved subject to appropriate boundary conditions by using 

bvp4c function available in the Matlab software. Adequate discussion has been made in 

respect of the dual solutions. The associated heat transfer has also been studied. On the basis 

of the computational results, we can draw the following conclusions: 

(i)   Dual solutions exist for some specific range of values of the suction parameter and         

stretching/shrinking parameters. 

(ii)   The stability analysis emphasizes the existence of dual solutions, one of them being 
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  stable and can be realized physically. But the second solution is not so.  

(iii)   The ferromagnetic parameter has a dominating control over the flow of the   

biomagnetic fluid and heat transfer. 

(iv)   As the ferromagnetic effect increases, the velocity, temperature and thermal   

boundary layer thickness are reduced. 

(v)   The skin friction coefficient fluid temperature increase as suction rate increases. 

(vi)    With an increase in nonlinear stretching, the heat transfer rate and skin friction are 

both diminished. 

(vii) The range of similarity solution and that for the existence of dual solutions are 

enlarged, as the (nonlinear) stretching increases. 
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Chapter 9 

Dual solutions in boundary layer flow and heat transfer 

of biomagnetic fluid over a stretching/shrinking sheet in 

the presence of a magnetic dipole and prescribed heat 

flux 

 

This chapter analyzes the steady boundary layer flow and heat transfer of biomagnetic fluid 

over a stretching/shrinking sheet with prescribed surface heat flux under the influence of a 

magnetic dipole. The governing equations are transformed into a set of ordinary differential 

equations (ODEs) by using similarity transformations. Numerical results are obtained using 

the boundary value problem solver bvp4c of MATLAB. The effect of various physical 

parameters on the velocity and temperature profiles as well as skin friction coefficient are 

discussed. Dual solutions exist for certain values of stretching/shrinking sheet and suction 

parameters. Stability analysis is performed to determine which solution is stable and 

physically valid. Results from the stability analysis depict that the first solution (upper 

branch) is stable and physically realizable, while the second solution (lower branch) is 

unstable, Murtaza et al. (2018). 

9.1 Introduction 

           Biomagnetic fluid dynamics (BFD) is a relatively new research area in fluid mechanics 

which is the study of the interaction of biological/physiological fluids in the presence of 

magnetic field. The investigation of biomagnetic fluid has been increasing due to its 

numerous potential applications in bioengineering and medical sciences. Among them are 

magnetic devices development for cell separation, high-gradient magnetic separation, 

reducing bleeding during surgeries, targeted transport of drugs using magnetic particles as 

drug carries, Magnetic Resonance imaging for imaging technique of a specific part of a body 

using strong magnetic fields and treatment of cancer tumor causing magnetic hyperthermia 
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by Haik et al. (1999), Ruesetski and Ruuge (1993), Lauva and Plavins (1993), Pulfer and 

Gallo (2000). 

            Biomagnetic fluid dynamics model which is conformed to the principles of FHD has 

been developed first by Haik et al. (1996). Recently, an extended biofluid dynamics (BFD) 

mathematical model, which includes the initial BFD model of Haik et al. (1996) was 

developed by Tzirtzilakis (2005). According to this model, the biofluid flow under the 

influence of an applied magnetic field is consistent with the principles of 

Ferrohydrodynamics (FHD) and the Magnetohydrodynamics (MHD). Tzirtzilakis and 

Kafoussias (2003) analyzed the mathematical model of the flow of a heated ferrofluid over a 

linearly stretching sheet under the action of a magnetic field which is generated by a magnetic 

dipole. Tzirtzilakis and Tanoudis (2003) presented a numerical method for the study of 

laminar incompressible two dimensional biofluid over a stretching sheet with heat transfer. 

Further Misra and Shit (2009) investigated the flow of a biomagnetic viscoelastic fluids in 

different situations and they indicated that the presence of an external magnetic field 

influences the flow of biomagnetic fluid quite appreciably. The problem of biomagnetic fluid 

flow under the influence of a spatially varying magnetic field was studied also by Nor 

Amirah Idris et al. (2014).   

            Recently, Murtaza et al. (2017) investigated the combined effect of electrical 

conductivity and magnetization on biomagnetic fluid over a stretching sheet.  Reddy et al. 

(2018) analyzed the magnetohydrodynamic flow of blood in a permeable inclined stretching 

surface in the presence of an external magnetic field with heat and mass transfer. Siddiqa et 

al. (2018) investigated the effect of thermal radiation and magnetic field on the two 

dimensional biomagnetic fluid. This study is conducted to determine the behavior of blood 

flow and heat transfer in the presence of magnetic field combined with thermal radiation 

effects. Sushma et al. (2018) studied the slip flow effect of MHD blood flow in the presence 

of heat source/sink and chemical reaction and reported that the blood velocity near the wall is 

decreased as the slip parameter is increased. 

          Most of the researchers reported the existence of the dual solutions of their study. Some 

of them have also presented stability analysis. Stability analysis is performed to determine 

which solution is stable and physically realistic and which is not. Mukhopadhyay  (2011) 

analyzed prescribed surface temperature and reported the dual solutions exist. Naganthran et 

al. (2016) studied the flow and heat transfer of a third grade fluid and proved the presence of 

dual solutions for the flow field. Krishna et al. (2016) reported the dual solutions existence 

for the unsteady flow with inclined stretching sheet. Naganthran and Nazar (2017) studied the 
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MHD Stagnation-point Flow and Heat Transfer over a Stretching/Shrinking Sheet and found 

dual solutions existence. Hafidzuddin et al. (2016) reported the dual solutions existence for 

the boundary layer flow and heat transfer with slip velocity over an exponentially 

stretching/shrinking sheet. It is worth mentioning that the stable and unstable solution (dual 

solutions) and stability analysis are also found in the papers of Ghosh et al. (2016), Yasin et 

al. (2016), Awaludin (2016), Mishra and Singh (2014) and Bhattacharyya (2011).  

            The study of MHD flow over a stretching sheet still constitutes a topic of current 

ongoing research. The two-dimensional MHD flow of a viscous nanofluid over a nonlinear 

stretching surface with the slip effects of the velocity, the temperature and the concentration 

was studied by Hayat et al. (2015).  Das et al. (2015) studied the unsteady MHD flow of 

nanofluids over an accelerating, convectively heated stretching sheet, in the presence of a 

transverse magnetic field with heat source/sink. The MHD stretching sheet flow was also 

investigated in three-dimensions considering velocity and thermal slip boundary conditions 

by Hayet et al. (2015) or in two dimensions considering the effects of the induced magnetic 

field by Ali et al. (2011). 

           The aim of the present study is to investigate the effects of the magnetic parameter and 

suction parameter on the flow and heat transfer of the biomagnetic fluid over a 

stretching/shrinking sheet with prescribe heat flux. The computational results have been 

obtained using the built-in bvp4c function in MATLAB. The study reveals that there exist 

dual solutions for some specific values of suction parameter, stretching parameter and 

ferromagnetic parameter.  Stability analysis has also been carried out that determine which 

solution is stable and physically realistic. The validity of the numerical results presented, has 

also been established.   

9.2 Mathematical Formulation 

           Consider the two-dimensional incompressible boundary layer flow and heat transfer of 

a biomagnetic fluid over a stretching/shrinking sheet as illustrated in Fig. 9.1, where yandx  

are Cartesian coordinates measured along the sheet and normal to it. It is assumed that the 

free stream velocity is bxxU  )( and the sheet is stretched or shrunk with the velocity 

,)( axxUw   where 0a  implies the stretching situation and 0a   indicates the shrinking 

condition and b as a positive constant. A magnetic dipole is located below the sheet, at a 

distance d , i.e. at the point ,0),,0( dd  giving rise to a magnetic field of magnetic field 
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strength intensity H. Moreover, we assumed that temperature of the sheet is )(xTw  while the 

temperature of the ambient far from the surface of the sheet is )(xTc  where )()( xTxT wc  . 

 

             Stretching sheet                                                Shrinking sheet 

Fig 9.1. The geometry of the problem. 

            Under the boundary layer approximation the governing equation for the problem can 

be written as indicated in the studies of Tzirtzilakis and Kafoussias (2003), Murtaza et 

al.(2017), Naganthran et al. (2016) and Majeed et al. (2016), 
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subject to the boundary conditions, Majeed et al. (2016) 
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where u and v are the velocity components along the x- and y-axes, respectively,    is the 

fluid density, k is the thermal conductivity, 
pc  is the specific heat at constant pressure,   is 
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the fluid viscosity, 0  is the magnetic permeability. We considered the variation of 

magnetization M  as a linear function of temperature ,T  that is )( TTKM c  . 

The magnetic dipole lies on the y-axis and a distance d below the x-axis which gives rise to a 

magnetic field, sufficiently strong to saturate the biofluid and  
yx HH , are the component of 

the magnetic field  
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The mathematical analysis of the problem is simplified by introducing the following 

dimensionless coordinates, Murtaza et al. (2017), Majeed et al. (2016),   
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where 
bk

Dx
TT wc


  and we assumed that temperature of the sheet is )(xTw  while the 

temperature of the ambient far from the surface of the sheet is )(xTc .  This implies that the 

magnetization, )( TTKM c  , far from the surface becomes zero and the magnetic field no 

longer affects the flow field.    

Finally,  is the stream function defined by 
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which identically satisfy 

equation (9.1). 

By substituting (9.6) and (9.5) into equations (9.2) and (9.3), we obtain:   
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The corresponding transformed boundary conditions are 
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stretching/shrinking parameter, where 0  indicates the stretching sheet, 0 represents 

the shrinking sheet and S is the suction/injection parameter where suction defined by 0S  

and 0S  refers to injection.               

 9.3. Stability Analysis 

            In order to carry out a stability analysis, we consider the unsteady case for (9.1)-(9.3). 

The continuity equation (9.1) holds while equations (9.2) and (9.3) can be written as 
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where t denotes the time. Based on the variables (9.6), we introduce the following new 

dimensionless variables: 
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Then equations (9.10) and (9.11) can be written as 
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and are subject to the boundary conditions 
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To test the stability of the steady flow solution we consider )()(),()( 00   ff  that 

satisfy the boundary value problem (9.1)-(9.3), we write 

),()(),( 0   Feff   

),()(),( 0  Ge                                                                                       (9.16)                                                                                              

where γ is an unknown eigenvalue parameter, and ),( F  and ),( G  are small as 

compared to )(0 f and  ).(0   By substituting (9.16) into equations (9.13) and (9.14), we get 

the following linearized governing equations 
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subject to the boundary conditions 




















asG
F

G
F

F

0),(,0),(

0),0(,0),0(,0),0(0

                                                               (9.19)                                                                                                   

Consider 0 , then the solution of the steady state equations (9.7) and (9.8) 

is )()( 0  ff  and )()( 0   . Hence, )()( 0  FF   and )()( 0  GG   in (17) and (18) 

identify initial growth or decay of the solution (9.16). To test our numerical procedure, the 

following linear eigenvalue problems will be solved: 
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along with the new boundary conditions: 

0)0(,0)0(,0)0( 0

'

00  GFF    

  asGF 0)(,0)( 0

'

0
                                                                                   (9.22)                                                                                                                  

The smallest eigenvalue   will determine the stability of the corresponding steady flow 

solution )(0 f  and )(0   for all parameters involved.  

Harris et al. (2009) suggests relaxing a boundary condition on )(0 F or )(0 G to better find 

the range of possible eigenvalues. Hence, for the present problem, we relax the condition that 

  asF 0)('0 and for a fixed value of   we solve the system (9.20-9.21) along with 

the new boundary condition .1)0(''0 F  
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9.4 Numerical Method 

The system of nonlinear ordinary differential equations (ODEs) (9.7) and (9.8) subject to 

boundary conditions (9.9) have been solved numerically by using the boundary value 

problem solver, bvp4c function technique in MATLAB. To obtain the solution we need three 

necessary conditions: (i) first order ODEs which are to be solved (ii) their associated 

boundary conditions and (iii) initial guesses for these functions.  

       Since our transformed governing equations are of third order we reduce them to a system 

of first order differential equations. New variables are now defined by the 

equations 54321 ',,'',', yyyfyfyf   . Thus, the two coupled higher order 

differential equations and the corresponding boundary conditions, can be transformed to five 

equivalent first ODEs subject to corresponding boundary conditions.  The system of first 

order ODEs is: 

                                 

  




























3

14
515

5

4

42

2313

32

2

)(2
Pr'

'

2
1'

'

'










yy
yyy

y

y
yyyy

yy

yf

a

                                               (9.23)                                            

subject to the initial boundary conditions: 

0)(,0)(,1)0(,)0(,)0( 42521  yyyySy                                             (9.24)      

Eq. (9.24), and Eq. (9.23) is then integrated numerically as an initial valued problem to a 

given terminal point. All these simplifications are done for using the MATLAB package. This 

programme is performed with the step size of 01.0  and then solved for the interval of 

 0 where by trial and error we set .3  

9.5 Results and Discussion 

         In order to continue to the derivation of the numerical results it is necessary to allocate 

values to the dimensionless parameters. For this problem, we can assume that the fluid is 

blood with 
3/1050 mkg   and 

113102.3  skgm , Murtaza et al. (2017). The 
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electrical conductivity of blood is 18.0  sm , Tzirtzilakis (2005), and the temperature of 

the fluid is cTc

041  whereas the plate temperature is cTw

037 . As it is known, for 

temperatures above 41oC, blood cell irreversible structural damages occur and this is the 

reason why someone’s life is in danger if he/she is exposed to such high fever. This 

biological limit of 41oC is by definition the Curie temperature, Tc, of blood since the 

definition of Tc in general Ferrohydrodynamics is the temperature, beyond of which, we no 

longer have the magnetization effect on the fluid )0( M , Tzirtzilakis (2005). For the above 

values of temperature, the temperature number is 5.78   and the viscous dissipation 

number is  14104.6  , Murtaza et al. (2017). Generally, the specific heat under a constant 

pressure 
pc  and thermal conductivity k  of any fluid are temperature dependent. However, 

the ratio including the above quantities expressed by the Prandtl number can be considered 

constant with the temperature variation. Therefore, for the temperature range consider in this 

problem, 
113109.3  kJkgc p  and 

1115.0  ksJmk and hence 25rP , Murtaza et al. 

(2017).  

           As far as the parameters related with the magnetic field, in the present study we 

adopted the values of   to be from 0  to 10, used also in the study of Tzirtzilakis and 

Kaffoussias (2003).  We note here that for a specific fluid, where ,,k  are considered 

constants and at constant temperatures cT  and wT  in the flow field, increasing   means 

increment the magnetic field strength of the magnetic dipole, whereas, 0  corresponds to 

the pure hydrodynamic flow. For the validation of the numerical method, the numerical 

results for the skin friction coefficient (for some limitation case) are compared with those of 

Naganthran et al.(2016) The obtained results for variable stretching parameter are presented 

in Table 9.1 and found to be in good agreement with those derived by Naganthran et al. 

(2016). 

            The effects of various physical parameters on the velocity and the temperature 

profiles are discussed through graphs Fig. 9.2 to Fig. 9.11. We also observe that dual 

solutions exist by setting different initial guesses of missing slope where all profiles satisfy 

the far field boundary conditions (9.9) asymptotically.  
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Table 9.1: Comparison of skin friction coefficient for 72.0Pr,0,0  S  


 

Present Naganthran et al. (2016) 

First solution Second solution First solution Second solution 

-0.25 1.40224  1.402240  

-0.5 1.49567  1.495669  

-0.75 1.48929  1.489298  

-1.0 1.32882 0.00126 1.328816 0 

-1.15 1.08225 0.11576 1.082231 0.116702 

-1.2 0.93253 0.23286 0.932473 0.233649 
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Fig. 9.2 Skin friction coefficient with  for various value of S  
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        Fig. 9.2 illustrates the variation of skin friction coefficient )0(''f  with the 

stretching/shrinking parameter for different values of suction parameter. It is interesting to 

note that there exist two solutions branches. The first branch represents the stable solution, 

while the second branch denotes the unstable solution commencing for a critical value 

of , c which corresponds to a given value of S .  From Fig 9.2, we observe that the unique 

solution exists for 75.0 when 9.0,5.0  S  when 7.0S and 1.1  

when ,8.0S while dual solutions exist for 75.031.1   when 5.0S ,   

9.0595.1   when 7.0S  and 1.171.1   when ,8.0S and no solution exists 

when c  where  71.1,595.1,31.1 c  8.0,7.0,5.0Sfor , respectively, where c is 

the critical value of  at which the two solution branches meet with each other thus a unique 

solution is obtained.  
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Fig. 9.3 Skin friction coefficient with  for various values of   

         The variation of the skin friction coefficient with stretching/shrinking parameter for 

different values of ferromagnetic number is displayed at Fig 9.3. In this figure, we observe 

that the solution is unique when 21.1 , multiple (dual) solutions exist up to 
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21.1 c  and no  solutions exists when c   where c is critical value of   and the 

value of 345.1,31.1,27.1 c for 10,5,1 . 

        We also observe that the magnitude of the critical value c  are stated in Figs 9.2 and 

9.3, which show that increasing the suction parameter results to increment of the range of 

 for which the similarity solution exists. The skin friction coefficient at the surface increases 

as the suction parameter increases. 

        Further, we observe that the range of  for which the similarity solution exists is 

increased, as the ferromagnetic parameter   increases. The skin friction coefficient at the 

surface decreases as the ferromagnetic parameter increases. Conclusively, the effect of the 

increment of the suction parameter, is the enlargement of the range of   for which unique 

solution exists. On the other hand, the increment of the ferromagnetic parameter results to 

reduced range of   for which the unique solution exists.  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 First solution

 Second solution

 S
c
=0.323

 S
c
=0.347

  f''
(0

)

S

  S
c
=0.372

 =3, 5, 10

= -1, Pr=25 

 

Fig. 9.4: Skin friction coefficient with S for various values of   
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Fig. 9.5: Skin friction coefficient with S for various values of .  

           Figs. 9.4 and 9.5 show the variation of skin friction coefficient )0(''f with suction 

parameter S for different values of stretching parameter and ferromagnetic number. It is 

observed that, dual solutions exist for some specific values of the suction parameter with 

different values of ferromagnetic parameter and stretching parameter. Numerically it is seen 

that for 3 , the unique solution exists for 42.0S , dual solutions exist for 

42.0323.0  S  and no solutions for .323.0S  Again for 5 , the solution is unique for 

43.0S , dual solutions for 43.0347.0  S  and no solution for 347.0S . Also, 

for 10 , the solution is unique for 44.0S , dual solutions for 44.0372.0  S  and no 

solutions for 372.0S . From fig. 9.4, it is seen that the critical values of 

624.0,347.0,137.0cS  for 5.1,0.1,5.0  , respectively. We also observe that 

for 0.1,5   , the solution is unique for 1S , no solution for 347.0S and multiple 

solutions is found for 1347.0  S . 



203 
 

 

Fig. 9.6 Velocity profile )(' f for different values of   

          Clearly, the increment of the ferromagnetic parameter  results in the increment of the 

range of the values of the suction parameter for which the unique solution exists. Moreover, 

the skin friction coefficient at the surface decreases as the ferromagnetic parameter increases. 

On the other hand, the range of the suction parameter S for which unique solution exists, is 

increased with the increment of the stretching parameter. Finally, the skin friction coefficient 

at the surface increases as the stretching parameter increases. 

            Figs. 9.6-9.11 depict the velocity and temperature profiles for different values of 

 ,, S . Figure 9.6 indicates that the velocity of the biomagnetic fluid is significantly reduced 

throughout the flow field as the ferromagnetic parameter increases, in the case of the first 

solution. This signifies that the momentum boundary layer thickness becomes thinner with a 

rise in the value of the parameter  .  But the result is to the contrary in the case of the second 

solution. The observation that the increment of the ferromagnetic parameter   results in the 

reduction of the velocity in the boundary layer is consistent with previous studies by 

Tzirtzilakis and Kafoussias (2003), Tzirtzilakis and Taoudis (2003), Murtaza et al. (2017). It 

is apparent that the magnetic field retards the flow and this resistance leads to the increment 

of the temperature inside the boundary layer as well as Tzirtzilakis and Kafoussias (2003), 
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Tzirtzilakis and Taoudis (2003), Murtaza et al. (2017). This is observed for the temperature 

profile of the first solution and opposite effects are observed for the second solution with the 

increment of the ferromagnetic parameter (See fig 9.7). From Fig. 9.7 it is also observed that 

thermal boundary layer increases for the first solution and decreases for the second solution 

with the increment of the ferromagnetic parameter.   

 

Fig. 9.7 Temperature profile )( for different values of   

            Figs. 9.8 and 9.9 display the velocity and temperature profiles for different values of 

the suction parameter. According to the first solution (cf. Fig. 9.8), the fluid velocity 

increases, as the suction velocity enhances, while a reverse trend is observed in the case of 

the second solution. This can be interpreted physically by saying that since during suction, 

the fluid in the vicinity of the wall is sucked away, the boundary layer thickness is reduced 

due to suction and thereby the fluid velocity is enhanced. Fig. 9.9 demonstrates that the fluid 

temperature is reduced as the quantum of suction increases. This implies that the thermal 

boundary layer thickness decreases as suction proceeds.  This causes an increase in the rate of 

heat transfer. However, this is the observation from the first solution. A reverse trend is found 

to occur, if we consider the second solution. This observation implies that as the fluid is 

brought closer to the surface, the thermal boundary layer thickness diminishes. 
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Fig. 9.8 Velocity profile )(' f for different values of S  

 

Fig. 9.9 Temperature profile )( for different values of S  
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Fig. 9.10 Velocity profile )(' f for different values of  

         Fig. 9.10 depicts the velocity profiles for different values of shrinking parameter 

).0(  From this figure, we can notice that when the shrinking parameter increases then it is 

strongly beneficial in decelerating the fluid flow. This is caused due to the opposite directions 

of shrinking and free stream velocities. 

          Fig. 9.11 illustrates the effect of shrinking parameter )0(  on the temperature 

profiles. In this case the thermal boundary layer increases as shrinking parameter increases 

for the first solution and completely opposite behaviour is observed for the second solution. 

From Figs. 9.6 to 9.11, it can be seen that the boundary layer thickness for the second 

solution is always larger than the first solution. 
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Fig. 9.11 Temperature profile )( for different values of   

 

9.6 Summary of the chapter 

             This chapter considered the stability analysis of dual solutions of flow and heat 

transfer of biomagnetic fluid with prescribed heat flux over a stretching/shrinking sheet. 

Numerical solutions were obtained using bvp4c function in MATLAB. Dual solutions can be 

obtained for a certain range of stretching/shrinking parameter and suction parameter. The 

stability analysis was performed and showed that the first solution was stable and physically 

reliable while second solution was unstable. From this study, we concluded that the skin 

friction coefficient increases with suction parameter and stretching parameter but decreases 

with the increment of the ferromagnetic parameter. Moreover, the boundary layer thickness 

of the velocity as well as temperature in the second solution is always larger than that 

observed for the first solution.  
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Chapter 10 

 

Conclusion and future scope 

 

 In this thesis, we have analyzed the biomagnetic fluid flow over a different type of stretched 

sheet/surface. The flow is considered for steady/unsteady and linear/nonlinear under the 

influence of a magnetic field. Basic principles of magnetohydrodynamics (MHD) and ferro-

hydrodynamics (FHD) have been employed in this thesis. The governing PDEs are 

transformed into a system of couple non-linear ODEs subject to appropriate boundary 

conditions by using similarity transformations. Similarity solutions have been obtained for 

BFD boundary layer equations. The resulting differential equation subject to appropriate 

boundary conditions was solved by using efficient numerical technique based on (i) the 

common finite difference method with central differencing (ii) on a tridiagonal matrix 

manipulation and (iii) on an iterative procedure in FORTRAN programming with the help of 

CodeBlocks software and BVP4C function available in the MATLAB software.  

       This thesis has started with introductory chapter in which a brief discussion of 

biomagnetic fluid namely, blood and its properties, applications of biofluid, aims, objectives 

and important of this study. Then, we investigate the Biomagnetic Fluid Flow (BFD) (blood) 

over a stretching/shrinking sheet in the presence of magnetic field. After that, the biomagnetic 

fluid flow and heat transfer in three-dimensional unsteady stretching/shrinking sheet in the 

presence of ferromagnetic interaction parameter has also been investigated. Then, we 

investigate the time-dependent two-dimensional biomagnetic fluid flow (BFD) over a 

stretching sheet under the action of strong magnetic field.  A study of BFD flow and heat 

transfer over a non-linearly stretching sheet with variable thickness has been carried out has 

also been investigated. Later on, we have analyzed the temperature dependent viscosity and 

thermal diffusivity on BFD boundary layer flow and heat transfer over a stretching sheet. 

Finally, we have analyzed the dual solutions in biomagnetic fluid flow and heat transfer over 

a nonlinear stretching/shrinking sheet in the presence of a magnetic dipole with/without 

prescribed heat flux using Lie group transformation.  Effects of various parameters, such as, 

magnetohydrodynamic parameter, ferromagnetohydrodynamic parameter, viscosity 

parameter, stretching parameter, wall thickness parameter, velocity index parameter and 
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internal heat generation parameter on velocity, pressure and temperature distributions, as well 

as on skin friction, relative wall pressure and heat transfer rate have been investigated 

numerically.   

Based on the present thesis, the following conclusions can be drawn.  

1) The magnetic parameter has a dominating control over the flow of the   biomagnetic 

fluid and heat transfer. 

2) In FHD and MHD case the velocity component decreases with both ferromagnetic 

interaction parameter and magnetohydrodynamics parameter increases, but the major 

impact on the fluid velocity is magnetohydrodynamics parameter than 

ferrohydrodynamics.  

3) The pressure and temperature profiles are increased on the effect of ferromagnetic 

interaction parameter and magnetohydrodynamics parameter.  

4) The temperature of the fluid increases with the increment of the MHD or FHD 

parameter. The greater increment found for BFD flows. 

5) For the effect of magnetic parameter, the velocity profile )(' f  is increased with the 

increment of the magnetic number in stretching sheet but this observation is reversed 

for the shrinking sheet. On the other hand the velocity profiles )(' g  and 

))()((  gf   are decreased with the increment of the magnetic number in both 

stretching and shrinking sheet.  

6) The thermal boundary layer thickness is increased in both stretching and shrinking 

sheet with the increment of the unsteady parameter and magnetic number. Note that 

the profile is higher in shrinking sheet than that of the stretching one. 

7) The effect of variable thermal conductivity parameter is to enhance the temperature in 

the flow region and this effect reversed in the case of the wall temperature parameter. 

This parameter effect is negligible for velocity and skin friction. 

8) The effect of increasing value of viscosity parameter r  is to enhance the temperature 

but decreases the velocity. This parameter are more affected on velocity profile and 

skin friction but negligible on wall temperature gradient. 

9) The effect of thermal conductivity is more affect in temperature gradient than other 

physical significance. On the other hand viscosity parameter is more affected in skin 

friction than temperature gradient. 
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10) The skin friction coefficient is increased with the increment of FHD and MHD 

parameters. Also the rate of heat transfer at the wall and the relative pressure are 

reduced with FHD and MHD parameter. 

11) Dual solutions exist for some specific range of values of the suction parameter and         

stretching/shrinking parameters. 

12) The stability analysis emphasizes the existence of dual solutions, one of them being 

 stable and can be realized physically. But the second solution is not so.  

13) The range of similarity solution and that for the existence of dual solutions are 

enlarged, as the (nonlinear) stretching increases. 

14) Skin friction coefficient is decreased/increased with the increment of the unsteady 

parameter for the shrinking/stretching sheet, respectively. Also skin friction is 

increased with the increment of the ferromagnetic number   in both sheets. 

15) Wall temperature gradient is increased/decreased with the increase of the unsteady 

parameter for the shrinking/stretching sheet, respectively. 

16) The skin friction coefficient fluid temperature increase as suction rate increases. 

17) With an increase in nonlinear stretching, the heat transfer rate and skin friction are 

both diminished. 

 

            This study will extended with three dimensional blood flows pattern through channel 

flow in horizontal cylinder, cylindrical geometry with significant narrowing (mimicking 

stenosis) and cylindrical geometry with significant swelling (mimicking aneurysm) allowing 

magnetisation and Lorentz forces. In addition, symmetry and three dimensional cylindrical 

system of blood flows through an artery will also be investigated which is more realistic 

mathematical models to interpret and enhance the understanding of blood flow characteristics 

under stenosis and aneurysmal conditions through mathematical behaviour that determine the 

effect of mass and flow transport phenomena associated with disease on geometries stated. 

The establishment of new numerical techniques finite volume method (FVM), finite element 

method (FEM), COMSOL Multiphysics will be used as the way for the solution of more 

difficult bio-fluid and mathematical problems. 
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