
Thesis for the Degree of Doctor of Philosophy

Design and Implementation of Reversible

Programmable Devices

Registration No: 174/2015 - 2016

Department of Computer Science and Engineering

University of Dhaka

Dhaka, Bangladesh

December 2019

Thesis for the Degree of Doctor of Philosophy

Design and Implementation of Reversible

Programmable Devices

Nazma Tara

Department of Computer Science and Engineering

University of Dhaka

Dhaka, Bangladesh

December 2019

Design and Implementation of Reversible

Programmable Devices

By

Nazma Tara

Registration No: 174/2015 - 2016

Supervised by

Moinul Islam Zaber, Ph.D.

Prof. Hafiz Md. Hasan Babu, Ph.D.

Submitted to the Department of Computer Science and Engineering

of the Faculty of the Engineering and Technology in

University of Dhaka for partial fulfillment

of the requirements of the degree of

Doctor of Philosophy

Dissertation Committee:

Prof. Md. Abdul Mottalib, Ph.D. (Convener)

Prof. Nazrul Islam Mondal, Ph.D. (External Member)

Moinul Islam Zaber, Ph.D. (Supervisor)

Design and Implementation of Reversible

Programmable Devices

By

Nazma Tara

Registration No: 174/2015 - 2016

Supervised by

Moinul Islam Zaber, Ph.D.

Prof. Hafiz Md. Hasan Babu, Ph.D.

Submitted to the Department of Computer Science and Engineering

of the Faculty of the Engineering and Technology in

University of Dhaka for partial fulfillment

of the requirements of the degree of

Doctor of Philosophy

Declaration

We declare that this thesis titled “Design and Implementation of Reversible Pro-

grammable Logic Devices” and the works presented in it are our. We confirm

that:

� The full part of the work is done during Ph.D. research study in University

of Dhaka, Bangladesh.

� Any part of this thesis has not previously been submitted for a degree or

any other qualification in this University or any other institution.

� We have consulted the published works of others with appropriate references.

� This thesis work is done entirely by us and our contributions and enhance-

ments from other works are stated.

Signed:

Candidate

Countersigned:

Supervisor: Dr. Moinul Islam Zaber

Co-supervisor: Dr. Hafiz Md. Hasan Babu

i

Abstract

Reversible logic is a computing design, where the ideal implementation would pro-

duce zero entropy gain. This unique feature causes the prominent use of reversible

computing. More integration capability and regular structure for synthesizing a

large number of logic functions made programmable devices enthusiastic to use.

In this thesis, we describe efficient design procedures of two programmable devices

namely Programmable Logic Array (PLA) and Field Programmable Gate Array

(FPGA) with reversible logic gate.

In the first part of this thesis, we design the reversible Programmable Logic Ar-

ray (RPLA). Here, we propose an efficient algorithm to design the RPLA with a

newly proposed 3 × 3 reversible TB (Tara-Babu) gate, which can realize multi-

output ESOP (Exclusive-OR Sum of Product) functions. We present a heuristic

algorithm to sort and realize the product terms of ESOP functions to share the

internal sub-products to reduce the number of gates in the proposed RPLA. Pro-

posed algorithms make the RPLA more efficient with improvement of 9.83% in

terms of the number of gates, 21.3% in terms of the number of garbage outputs

and 14.75% in terms of quantum cost than the counter metrics of the existing

RPLA averagely. Moreover, we compute the area requirement and the power

consumption of the proposed RPLA. We also analyze the performances by using

MCNC benchmark functions.

In the last part of this thesis, we design the most significant part of a Field Pro-

grammable Gate Array, the Plessey Logic Block with reversible gate. On the way

to design the proposed reversible Plessey Logic Block, we design each component

such as reversible D-Latch, reversible Decoder, reversible Multiplexer, reversible

Master-Slave Flip-Flop, and reversible RAM separately. The proposed design of

the individual component is primarily made efficient in terms of the number of

iii

gates, garbage outputs, quantum cost, and delay. In addition, area and power are

reduced to ensure the power efficiency of the circuits. Two 4× 4 reversible gates,

namely HNF (Hafiz-Naz-Flip-Flop) gate and HND (Hafiz-Naz-Decoder) gate are

proposed to achieve the optimization goal. Moreover, proposed algorithms, lem-

mas and theorems certify the novelty of the proposed design. Compared to pre-

vious works, the proposed counter-parts of Reversible Plessey Logic Block require

less number of gates, garbage outputs, quantum cost, and delay. Finally, the

proposed Reversible Plessey (4 × 2) Logic Block is compared with existing de-

signs. The Comparative results prove the efficacy and novelty of the proposed

design showing improvement of 51.62% in terms of number of Transistor, 73.57%

in terms of area requirement and 34.12% in terms of power consumption with

respect to the corresponding metrics of the best existing design in the literature.

User
Typewriter
Dhaka University Institutional Repository

Dedicated to Those People

Who are Honest, Spiritual and Patriot

Who Work for the Welfare of Human Being

iv

User
Typewriter
Dhaka University Institutional Repository

Acknowledgements
Praise be to Allah, Lord of the universe, most gracious, most merciful. No one

can anything without his blessings.

My deepest thanks and gratitude to Dr. Moinul Islam Zaber and Prof. Dr.

Hafiz Md. Hasan Babu, for suggesting the topic of this thesis, and their kind

supervision. It is a great honor to work under their supervision. Their guidance,

encouragement and confidence in me has transformed me into a better researcher.

I am conveying my gratefulness to them for facilitating the work environment also.

I am indebted to the CSE department faculties, especially Prof. Dr. Sabbir

Ahmed, Prof. Dr. Md. Abdur Razzaque, Dr. Asif Hossain Khan, Dr. Mamunur

Rashid, Abu Ahmed Ferdous and CSE department staffs for helping me to finish

the long journey successful. A special thanks to Dr. Ahsan Raja Chowdhury,

former faculty of CSE department, who is my mentor in this research area.

It is a great opportunity for me to be a member of the VLSI Research Group, De-

partment of Computer Science and Engineering, University of Dhaka. Along the

way, a great support comes directly or indirectly from every single group member.

I also thank the members of other groups for their cordial help, support, sugges-

tions during the whole period of research. Thanks go to my fellow researchers

Dr. Lafifa Jamal, Dr. Selina Sharmin and other researchers Md. Samsujjoha,

Md. Mubin Ul Haque and Zarrin Tasnim Sworna. Their direct support, inspiring

words and comments was appreciative.

I must thank the ministry of ICT of Government of the People’s Republic of

Bangladesh for the innovation fund of research.

Hartiest thanks to my husband S.M. Bashir Ahmed, sons S.M.F. Imbesat Ahmed

and S.M.N. Intesar Ahmed who continue assist me till the end of the journey. Their

support, understanding, encouragement and sacrifice make this thesis possible. I

am also deeply indebted to my mother Rokeya Begum, father Shah Md. Monsur

Ali, mother-in-law Rehana Begum and father-in-law S. M. Mansur Ahmed, whose

v

User
Typewriter
Dhaka University Institutional Repository

vi

affection, love, encouragement and prayers of day and night make me able to finish

the research. My other family members also show their continuous support during

this hard time.

Nazma Tara

December 2019

User
Typewriter
Dhaka University Institutional Repository

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Methodologies of this Research . 4

1.2 Challenges of this Research . 5

1.3 Contributions of this Research . 5

1.4 Organization of the Dissertation . 7

2 Background Studies 9

2.1 Introduction . 9

2.2 Basic Definitions in Reversible Logic 12

2.2.1 Reversible Gate . 12

2.2.2 Garbage Output . 15

2.2.3 Quantum Cost . 15

2.2.4 Delay . 18

2.2.5 More about Reversible Gates 19

2.2.5.1 Feynman Gate (CNOT Gate or Ex-OR Gate) . . . 20

2.2.5.2 Feynman Double Gate (F2G) 20

2.2.5.3 Toffoli Gate (TG) 21

2.2.5.4 Peres Gate (PG) 22

2.2.5.5 Fredkin Gate (FRG) 23

2.2.5.6 Modified Fredkin Gate (MFRG) 24

2.3 Physical Implementation Methodologies of Reversible Logic Circuits 24

vii

User
Typewriter
Dhaka University Institutional Repository

Contents viii

2.4 Overview of Programmable Logic Devices 25

2.4.1 Classification of PLDs . 27

2.4.2 The General Architecture of Programmable Logic Array (PLA) 27

2.4.3 The General Architecture of FPGA 29

2.5 Summary . 31

3 Reversible Programmable Logic Array 32

3.1 Introduction . 32

3.2 Contribution . 33

3.3 Organization of the Chapter . 33

3.4 Related Works on RPLA . 34

3.5 Proposed RPLA . 36

3.5.1 Proposed Reversible Tara-Babu (TB) Gate 36

3.5.2 Proposed AND-plane of RPLA 38

3.5.3 Proposed Ex-OR-plane of RPLA 40

3.6 Implementation of the proposed RPLA 41

3.7 Simulation and Performance Evaluation 47

3.7.1 Simulation Environment . 47

3.7.2 Simulation Results . 48

3.7.3 Performance Metrics . 48

3.7.4 Performance Analysis . 51

3.8 Summary . 56

4 Reversible Field Programmable Gate Array 58

4.1 Introduction . 58

4.2 Contribution . 59

4.3 Organization of the Chapter . 60

4.4 Related Works on Reversible FPGA 60

4.5 Design Methodology . 61

4.6 Proposed Components of the Reversible FPGA 61

4.6.1 Proposed Reversible D-Latch 62

4.6.2 Proposed Reversible Master-Slave Flip-Flop 65

4.6.3 Proposed Reversible Decoder 66

4.6.4 Proposed Reversible Random Access Memory 73

4.6.5 Proposed Reversible Multiplexer 78

4.6.6 Proposed Reversible NAND unit 80

4.7 Implementation of the Reversible Plessey Logic Block 80

4.8 Simulation and Performance Evaluation 83

4.8.1 Simulation Environment . 84

4.8.2 Simulation Results . 84

4.8.3 Performance Metrics . 87

4.8.4 Performance Analysis . 88

User
Typewriter
Dhaka University Institutional Repository

Contents ix

4.8.4.1 Performance of Proposed Reversible D-Latch . . . 88

4.8.4.2 Performance of Proposed Reversible Master-Slave
Flip-Flop . 89

4.8.4.3 Performance of Proposed Reversible Decoder . . . 90

4.8.4.4 Performance of Proposed Reversible Multiplexer . . 91

4.8.4.5 Performance of Proposed Reversible RAM 92

4.8.4.6 Other Performance analysis of Plessey Logic Block 92

4.9 Summary . 98

5 Conclusions 99

5.1 Summary of Research . 99

5.2 Future Work . 101

A Various Existing Reversible gates 116

B Transistor Realization of Proposed Reversible gates 118

C List of Acronyms 120

D List of Publications 122

User
Typewriter
Dhaka University Institutional Repository

List of Figures

2.1 Ex-OR function representations by block diagram and logical symbol. 12

2.2 n × n reversible gate . 12

2.3 Block diagram Toffoli gate. 13

2.4 Bijection properties of Toffoli gate. 14

2.5 Universal properties of Toffoli gate. 14

2.6 Basic quantum gates and their symmetric patterns. 15

2.7 Quantum circuit of Toffoli gate. 16

2.8 Reversible full-adder1 (a) Block diagram (b) Quantum circuit. . . . 16

2.9 Reversible full-adder2 (a) Block diagram (b) Quantum circuit. . . . 17

2.10 Rules in minimization of quantum circuit. 17

2.11 Delay assessment of reversible gates. 19

2.12 Feynman gate . 20

2.13 Feynman Double gate . 21

2.14 Popular reversible gates. 22

2.15 Transistor level realization of AND and OR gate. 25

2.16 Transistor level realization of reversible gate [74]. 26

2.17 Classification of the Programmable Logic Devices. 27

2.18 The architecture of irreversible Programmable Logic Array. 28

2.19 Different parts of an FPGA. 30

3.1 Proposed reversible TB gate : (a)block diagram (b) quantum circuit. 36

3.2 Implementation of all boolean functions using the proposed re-
versible TB gate. 37

3.3 Different AND terms produced simultaneously by the proposed TB
gate. 38

3.4 Different combinations of the F2G and TB gates. 38

3.5 The proposed AND-plane of RPLA for multi-output ESOP func-
tions given in Equ. 3.7. 42

3.6 The Proposed Ex-OR plane of RPLA for multi-output ESOP func-
tions given in Equ. 3.7. 44

3.7 The proposed reversible Programmble Logic Array for Equ. 3.7 . . . 45

3.8 Simulation of the proposed TB gate. 48

x

User
Typewriter
Dhaka University Institutional Repository

List of Figures xi

3.9 Architecture of the proposed RPLA for ESOP functions given in
Equ. 3.7 at physical-lavel in DSCH 3.5 [93]. 49

3.10 Simulation of the proposed RPLA for ESOP functions (Equ. 3.7). . 50

3.11 Graphical representations of Benchmark functions vs Number of
gates. 55

3.12 Graphical representations of Benchmark functions vs Number of
Garbage outputs. 55

3.13 Graphical representations of Benchmark functions vs Quantum cost. 56

4.1 The proposed reversible HNF gate. 63

4.2 The proposed design of D-Latch. 63

4.3 The proposed design of reversible Master-Slave D-Flip-Flops 65

4.4 The proposed reversible HND gate and its application 67

4.5 The designs of the proposed reversible decoders 70

4.6 The Proposed architecture of reversible RAM for Plessey FPGA. . 74

4.7 Modified Fredkin gate as reversible 2:1 multiplexer. 78

4.8 the proposed designs of reversible multiplexers. 79

4.9 The proposed reversible NAND unit of Plessey Logic Block. 80

4.10 Proposed Reversible Plessey Logic Block of FPGA 82

4.11 Simulation flow to get the waveforms, the area and the power of the
proposed reversible components. 84

4.12 Simulation of the proposed reversible D-Latch. 85

4.13 Simulation of the proposed reversible write enable Master-Slave
Flip-Flop. 85

4.14 Simulation of the proposed reversible 4 : 1 Multiplexer. 86

4.15 Simulation of the proposed reversible 2-to-4 Decoder. 86

4.16 Simulation of the proposed reversible 3-to-8 Decoder. 86

4.17 Performance analysis of different reversible Flip-Flops with simul-
taneous Q and Q’ output . 95

4.18 Performance analysis of different reversible Master-Slave Flip-Flops 95

4.19 Performance analysis of different reversible 2-to-4 decoders. 96

4.20 Performance analysis of different reversible 4 : 1 multiplexers. 96

4.21 Performance analysis of different reversible 4× 2 RAMs in terms of
gate and garbage. 97

A.1 Block diagram of BSP gate . 116

A.2 NH gate . 116

A.3 MUX gate . 117

B.1 Transistor realization of the proposed TB gate 118

B.2 Transistor realization of the proposed HND gate 119

B.3 Transistor realization of the proposed HNF gate 119

User
Typewriter
Dhaka University Institutional Repository

List of Tables

2.1 Truth table method . 9

2.2 Truth table for a 3-input 3-output function 10

2.3 Reversible function computing the logical Ex-OR 11

2.4 Reversible function computing the logical AND 11

2.5 Truth table of NOT gate . 13

2.6 Truth table of reversible Toffoli gate 13

3.1 Truth table of the proposed reversible TB gate 37

3.2 Frequency table for the ESOP functions in Equ. 3.7 41

3.3 Comparison of the proposed and the existing RPLA for the ESOP
functions in Equ. 3.7 . 51

3.4 Comparison of the proposed and the existing RPLAs by using MCNC
Benchmark functions in terms of the total number of gate. 52

3.5 Comparison of the proposed and the existing RPLAs by using MCNC
Benchmark functions in terms of the total number of garbage out-
puts). 53

3.6 Comparison of the proposed and the existing RPLAs by using MCNC
Benchmark functions in terms of quantum cost). 54

3.7 Area requirement and power consumption of the different MCNC
benchmark circuits by using the proposed method 54

4.1 The characteristic table of the D-Latch 62

4.2 Truth table of the proposed reversible HNF (Hasan-Naz-Flip-Flop)
gate . 64

4.3 Truth table of the proposed reversible HND (Hasan-Naz-Decoder)
gate . 68

4.4 Function of S0 and S1 select lines 79

4.5 Comparison of the proposed and the existing reversible D-Latches
with simultaneous Q and Q′ output 88

4.6 Comparison of the proposed and the existing reversible Master-
Slave Flip-Flops. (’-’ indicates not calculated) 90

4.7 Comparison of the proposed and the existing reversible 2-to-4 decoders 91

4.8 Comparison of the proposed and the existing reversible 3-to-8 decoders 91

xii

User
Typewriter
Dhaka University Institutional Repository

List of Tables xiii

4.9 Comparison of the proposed and the existing reversible 4 : 1 multi-
plexer (’-’ indicates not calculated). 92

4.10 Comparison of the proposed and the existing reversible 4× 2 RAMs. 93

4.11 Comparison of the proposed and the existing reversible elements of
reversible Plessey Logic Block in terms of the number of transistors 93

4.12 Comparison of the proposed and the existing reversible elements of
reversible Plessey Logic Block in terms of area 94

4.13 Comparison of the proposed and the existing reversible elements of
reversible Plessey Logic Block in terms of power 94

4.14 Comparison of the proposed and the existing reversible Plessey
Logic Block (4 × 2) in terms of the number of transistors, area
& power . 94

Chapter 1

Introduction

In 1961, Landauer presented a physical principle [1] of pertaining to the lower the-

oretical limit of energy consumption. This principle explores that the erasure of a

bit consumes KTln2 joules of energy while computing, where, K is the Boltzmann

constant and T the absolute temperature at which computation is performed.

This energy dissipation is very small (at room temperature 2.9 ∗ 10−21 Joules [2]),

which is not negligible but noticeable if Moore’s law is effective. The historical

trend in microelectronics (according to Moore [3]) shows the number of transistor

in a dense integrated circuit doubles about every two years. Investigation in [4]

also reveals that the lower limit of estimated energy density of a two-dimensional

system of binary switches is about 5-10 million W/cm2 which is much higher than

the energy dissipation of sun surface nearly 6000W/cm2. Hence, with the increas-

ing number of transistor in a single IC, the energy reducing capacity of the IC

must be ensured in physical and logical design. Therefore, to keep the trend of

scaling in modern ICs, reducing the energy dissipation during computation is get-

ting important. Modern fabrication process and material technologies are trying

to reduce the energy dissipation of ICs. In this context, in 1973, Bennett [5] has

shown reversible computing would be the future trend to trace the energy dissi-

pation problem as his research proclaims that the reversible computing produces

zero energy in ideal cases.

1

User
Typewriter
Dhaka University Institutional Repository

Chapter 1 Introduction 2

Importance of reversible logic is also comprehensible by its usages in quantum

computing which can solve some exponential problem in polynomial time [6, 7]

and all the quantum computations are necessarily reversible [6, 8]. Therefore,

research on reversible is beneficial to the development of future quantum tech-

nologies: reversible design methods might give rise to methods of quantum circuit

construction, resulting in much more powerful computers and computations. Be-

sides the quantum technologies [9, 10, 11, 12, 13, 14, 15], some other applications of

reversible logic are the optical computing [16, 17], particular adiabatic circuit [18],

nanotechnology [19, 20], and DNA technology [16]. These technologies exploit

reversible logic to reduce power consumption.

The research on reversible logic is expanding toward both design and synthesis.

Several researchers have been exploring techniques for synthesis of reversible logic

circuits and many interesting contributions have been made [21, 22, 23, 24, 25, 26,

27]. Authors in [28] propose a bidirectional, transformation based algorithm which

can synthesize any reversible logic function with minimum number of constant in-

puts, by using generalized Toffoli gates. Afterward, authors in [29, 30, 31] present

some automated reversible and quantum logic circuit synthesis methods based on

genetic algorithm (GA) and evolutionary algorithm (EA). They use the global

optimization properties of these algorithm to synthesize reversible and quantum

circuits for obtaining near optimal circuits. Recently, in [32, 33], interesting con-

tributions have been made toward deriving exact minimal elementary quantum

gate realization of reversible combinational circuits. However, in the synthesis of

the reversible logic, only few works address the optimization in terms of delay.

Reversible arithmetic units such as adder, subtractors, multiplier, divider which

form the essential components of a computing system have also been designed in

binary as well as ternary logic as in [34, 35]. Recent work on reversible sequential

Chapter 1 Introduction 3

circuits are presented in [36].

On the way of designing circuits in reversible logic, most of the constructed circuits

are application specific. This application Specific Integrated Circuit (ASIC) is vir-

tually every type of chip that performs a dedicated task. ASIC has limited usage

in industry level for lacking flexibility for changes, expensiveness and difficulty

to test and debug. To mitigate these problems, digital industry widely use the

programmable devices (PLDs). Zero NRE cost, dense architecture with very high

performance improvements make PLDs a very attractive alternative to ASICs.

This thesis emphasis on the two major categories of PLD, namely Programmable

Logic Array (PLA) and Field Programmable Gate Array (FPGA).

PLA has the advantages in terms of regularity over the other conventional circuits

like cascade networks [37, 38, 39, 40]. It ensures an understandable and designable

regular circuit. Authors in [38] also ensure that the PLA can be used to design

binary valued and multiple-valued logic circuits. Different synthesis methods exist

which can realize and minimize the PLA [37, 38, 39]. For example, adders are

realized using minimized PLA in [41]. ESOP synthesis in PLA gives out better

result than SOP realization [42, 43]. In consequence, authors in [44] propose the

reversible wave cascade of ESOP synthesis and authors in [45] propose garbage

minimization technique. Besides, authors in [46] [47] and [48] continue their

research in ESOP realization.

Over-whelmed opportunities of FPGAs and energy saving characteristics of re-

versible logic have caught the eyes of the researchers to design the FPGAs in power

recurring ways and it leads the design of the reversible FPGAs [49, 50, 51, 52].

Authors in [49] focus on the LUT based logic block of FPGA, whereas, others

researches focus on Plessey Logic block of FPGA. Their lacking in generality, scal-

ability and efficiency lead the proposed reversible FPGA.

User
Typewriter
Dhaka University Institutional Repository

Chapter 1 Introduction 4

This thesis propose enhanced design methodologies to design PLA and FPGA

with reduce cost matrics.

1.1 Methodologies of this Research

While working on this research, some important steps are followed:

• Understanding Reversible Logic and recent research trend in Reversible Logic.

Studying on Reversible circuit design procedure, its advantages in creating

low power devices over existing irreversible logic design. The basics of quan-

tum computation and quantum circuit synthesis are also studied.

• Understanding the properties and uses of various existing reversible logic

gates and construction procedure new gate from the existing one. Studding

on how the cost parameters of the reversible circuits are assigned and how

the circuits are realized in transistor level.

• Simulation processes of reversible circuits are also studied.

• Understanding Programmable Logic Devices such as PLA, FPGA and then

gain knowledge to implement the existing Programmable Logic Devices in

reversible way.

• Developing the idea for logic synthesis mechanism in reversible Programmable

Logic Devices and design the individual components of reversible FPGA.

• Experiment the proposed circuits with some of the popular simulation mech-

anisms to make a comparison of the new method with the existing methods.

Chapter 1 Introduction 5

1.2 Challenges of this Research

The synthesis methods of reversible logic circuits are quite different from the syn-

thesis methods of irreversible logic circuits. Two restrictions on reversible logic

synthesis must be followed [53]:

• The fanout of a logic gate must be one.

• A combinational reversible network has to be loop-free.

The first restriction is listed because a fanout structure is not reversible. To cope

up with this problem, we use the Feynman gate and Feynman double gate in

this thesis. As reversible combinational function is necessarily a finite one-to-one

function, the second restriction is considered when reversible circuits are designed.

To overcome this restriction in designing reversible sequential circuit, researchers

want to assure that the transition function of sequential circuit is constructed by

reversible logic [54].

The primary design criteria for efficient reversible logic synthesis are as follows:

• The reversible circuits maximize the gate utilization and thus minimize the

number of gates.

• They use as many outputs of every gate as possible, and thus minimize the

garbage outputs.

• Efficient circuits also ensures the minimization of quantum cost and delay.

• The reversible circuits should take minimum area and consume less power.

1.3 Contributions of this Research

In this dissertation, we have designed different reversible logic circuits associated

with the Reversible Programmable Logic Array and the Reversible Plessey Logic

Block of FPGA. We have also proposed design methodology to address the above

User
Typewriter
Dhaka University Institutional Repository

Chapter 1 Introduction 6

important points regarding reversible logic. The dissertation has the following

contributions toward the design and synthesis of reversible logic circuits regarding

PLA and FPGA.

• The first contribution of this dissertation is the design of three new reversible

gates namely the TB (Tara-Babu) gate, HNF (Hafiz-Naz-Flip-Flop) gate,

and HND (Hafiz-Naz-Decoder) gate.

The proposed reversible TB gate is a universal gate as it can implement all

basic boolean functions (AND, OR, NOT Ex-OR) by using one TB gate and

compound functions (NAND and NOR) by using two cascaded TB gates. In

this dissertation, we use this gate to realize multi-output ESOP (Exclusive-

OR Sum of Product) functions. Quantum cost of the proposed TB gate is

4 and the delay of this gate is 4∆ which are the least in the literature for

generating two AND terms simultaneously.

We propose the reversible HNF (Hafiz-Naz-Flip-Flop) gate to design differ-

ent sequential circuits like D-Latch and reversible Master-Slave Flip-Flop and

HND (Hafiz-Naz-Decoder) gate to design reversible Decoder circuit. These

two gates are also efficient in terms of the parameters such as garbage out-

puts, quantum cost and delay.

Construction of a new gate and its quantum circuit is a challenge in re-

versible logic synthesis as there is no specific guideline. Toffoli or Fredkin

synthesis do not give the optimal result all the time. Besides, quantum cir-

cuit generation for proposed gate is also laborious. In this thesis we have

done this successfully.

• The second contribution is the design of reversible Programmable Logic Ar-

ray. We have developed of two heuristic algorithms, one is to sort and realize

the product terms of ESOP functions and another is to reorder the output

Chapter 1 Introduction 7

functions. We have simulated the circuits and analyzed the performance of

PLAs constructed by the proposed algorithms. The design procedure ensure

the proposed circuits are efficient in terms of the number of gates, garbage

outputs, and quantum cost.

• The third and the final contribution of this dissertation is the design of

reversible Field Programmable Gate Array (FPGA). The significant part

of the FPGA is the array of logic blocks which execute the basic logical

and arithmetic calculations. Hence, this thesis emphasises on the design of

the Plessey logic block of FPGA. On the way to design reversible FPGA, a

set of different reversible combinational circuits such as decoder, multiplexer,

NAND unit as well as different sequential circuits such as reversible D-Latch,

reversible Master-Slave Flip-Flop, and reversible RAM are designed. Then,

the Plessey logic block is constructed by incorporating all of these proposed

components. The designs are optimal in terms of number of garbage outputs

as well as quantum cost and delay. We have also computed the number of

transistors, the area requirement and the power consumption of the proposed

components and then compared with the existing counterparts which also

show the efficiency for each individual case.

We expect that the proposed work will encourage a new paradigm of designing

programmable devices based on reversible logic.

1.4 Organization of the Dissertation

We organize the dissertation as follows.

In Chapter 2, theoretical aspects of reversible logic are described. Notations,

essential definitions, examples and analysis methods are presented here which are

associated with reversible logic theory as well as the architectural theory of pro-

grammable logic devices.

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 8

Chapter 3 focuses on the efficient design of Reversible Programmable Logic Ar-

ray (RPLA) for ESOP functions. An introduction regarding Programmable Logic

Array covers the architectural issues of the device. Then, previous work on RPLA

is analyzed and summarized to point out the weaknesses of previous approaches.

Proposed section also discusses the procedures to mitigate the problems of the

previous designs.

Then the Chapter 4 illustrates on efficient Reversible Plessey Logic Block of

FPGA. This chapter also describe the theoretical aspects of FPGA, indicate the

limitation of previous reversible Plessey Logic Block of FPGA and its components.

Finally, it discusses the design procedure to enrich the design of reversible Plessey

Logic Block of FPGA.

The dissertation concludes in Chapter 5 which summarizes the contributions

described in this thesis and gives some directions of the further research in the

reversible logic area and the reversible programmable devices.

Lenovo
Textbox

Chapter 2

Background Studies

2.1 Introduction

The underneath component of the digital computer is a digital circuit whose be-

havior is expressed as the binary function comprise with binary variables. Each of

these variables has only one truth value ’0’ or ’1’ but not both and follows the rules

of Boolean algebra. A binary function (Boolean function) can be represented in

many ways, among them the truth table method is the simplest one. Let a Boolean

function F has n variables x1, x2, x3, . . . , xn then the truth table will be as follows:

It is to note that the truth table for single function with n input variables has

Table 2.1: Truth table method

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

9

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 10

n+1 columns and 2n rows.

Example 1. For 3-input 1-output the truth values of the function are shown in

Table 2.1.

A multiple output function can also be represented by the truth table having 2n

rows representing the inputs and (n+m) columns, where n is the number of input

variables and m is the number of output variables.

Example 2. The 3-input 3-output multiple output Boolean function given in

Table 2.2.

Table 2.2: Truth table for a 3-input 3-output function

x1 x2 x3 f1 f2 f3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

The main object in reversible logic theory is the reversible function. The multi-

ple output Boolean function F= x1, x2, x3, . . . , xn of n Boolean variables is called

reversible if:

1. the number of outputs is equal to the number of inputs;

2. there is a unique one to one and onto relation between inputs and corre-

sponding outputs. In other words, reversible functions are those that per-

form permutations of the set of input vectors.

Example 3. A 2-input 2-output function given by formula f1 = x1, f2 = x ⊕ y

is reversible. The correctness of this statement can be verified by analyzing the

Table 2.3.

Chapter 2 Background Studies 11

Table 2.3: Reversible function computing the logical Ex-OR

x y x x⊕ y
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Example 4. A 2-input single output function given by formula f1 = x⊕ y is not

reversible, since it is not an n-input n-output function. However, it can easily be

made reversible by adding output x as given in Example 3.

Example 5. A 2-input 2-output function given by formula f1 = x, f2 = x.y is

not reversible also. Though it is an n-input n-output function, there is no unique

input-output mapping. This statement can be verified by analyzing the Table 2.4.

The two input combinations (0,0) and (0,1) have the same output combination

(0,0). In this case, additional input and output are required to make the function

reversible.

Table 2.4: Reversible function computing the logical AND

x y x x.y
0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1

The functions are represented by the small unit of circuit called gate. An irre-

versible Ex-OR gate is shown in Fig. 2.1 (a), where A, B and P are the inputs and

outputs respectively, whereas, a reversible Ex-OR gate (which is Feynman gate) is

shown in Fig. 2.1, where (A, B) and (P, Q) are the inputs and outputs respectively

and P = A, Q = A⊕B

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 12

(a) Irreversible Ex-OR gate (b) Reversible Ex-OR gate.

Fig. 2.1: Ex-OR function representations by block diagram and logical symbol.

2.2 Basic Definitions in Reversible Logic

In this section, we present the definition of the reversible gates and their uses,

quantum cost, the challenges of designing reversible circuits, delay computation

in reversible circuits.

2.2.1 Reversible Gate

Reversible gate [53] is the unit of the reversible circuit. It holds the property of

a bijection function, i.e., both the one-to-one and onto relationship between the

inputs and outputs vector are present so that the output can be easily retrive

from the unique output for each input. Let, the input vector be Iv, output vector

Ov and Iv = (I0, I1, I2, . . . In−1, In,) and Ov = (O0, O1, O2 . . . On−1, On). For each

particular input, there exits the relationship Iv ↔ Ov.

I1

I2

O1

In-1

n x n

Reversible

gate

O2

On-1

… …

In On

I3 O3

Fig. 2.2: n × n reversible gate

Chapter 2 Background Studies 13

Example 6. Fig. 2.2 shows the block diagram of the n× n reversible gate.

Example 7. For a specific example, let consider the NOT gate, the only con-

ventional gate which is reversible by its nature. The truth table of NOT gate is

shown in Table 2.5, which shows that the output 1 comes from the input 0 and

the output 0 comes from the input 1, thus the unique input-output patterns are

hold.

Table 2.5: Truth table of NOT gate

Input Output
0 1
1 0

!

"#$#

%#$#!

&

'())(*+

,#$# ! &

Fig. 2.3: Block diagram Toffoli gate.

Table 2.6: Truth table of reversible Toffoli gate

Input Output
A B C P = A Q = B R = AB ⊕ C
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 1 0

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 14

1

2

3

4

5

6

7

1

2

3

4

5

7

6

In
p

u
t

v
ec

to
r

(A
,B

,C
)

O
u

tp
u

t
v

ec
to

r
(P

,Q
,R

)

Fig. 2.4: Bijection properties of Toffoli gate.

Example 8. Fig. 2.3 shows the block diagram of the most popular reversible

Toffoli gate. Table 2.6 shows the truth table of this gate. Therefore, Fig. 2.4

reveals the bijection relationship collecting the information from the Toffoli’s truth

table.

The Toffoli gate plays an important role in reversible logic synthesis. The most

importantly, it is a universal gate which functions as any type of gate, such as,

AND gate, OR gate, NAND gate, and etc. Fig. 2.5 represents three basic functions

of a universal gate.

A

B

P = A

Q = B

0

Toffoli

R = AB

A'

B'

P = A'

Q = B'

1

Toffoli

R = A+B

A

B

P = A

Q = B

1

Toffoli

R = (AB)'

(a) (b)

(c)

Fig. 2.5: Universal properties of Toffoli gate.

The reversible gates are not uniform in terms of number of input-output, rather

than they are constructed such a fashion that they can represent one or more

Chapter 2 Background Studies 15

specific function. Therefore, there are a variety of reversible gate in the literature,

such as, Feynman gate [55], Feynman Double gate [55], Toffoli gate [53], Fredkin

gate [53], Peres gate [56], Modified Fredkin gate [57], HNG gate [58], MTSG

gate [59], etc.

2.2.2 Garbage Output

Garbage output is an additional output that makes an n-input and m-output

function reversible [53].

Example 9. Fig. 2.3 shows the block diagram of Toffoli gate. In case of performing

only one AND operation, the outputs P and Q are the garbage outputs.

2.2.3 Quantum Cost

Quantum cost is the cost associated with every reversible gate [9, 60]. Every

reversible gate has a corresponding quantum circuit which is the combination of

the basic quantum gates: NOT, V , V + and Ex-OR (CNOT) gate, where, V is a

square-root-of NOT gate and V + is V’s Hermitian. Fig. 2.6(a)-(d) represent all

! """"!

! #
$%"& '"()*+"#&! '"

,-"!

&.'"-/0123"4556"57"+8(

! #
9

$%"& '"()*+"#
9
&! '"

,-"!

&:'")32;<6<1="57"-4+

#

&7'&3'

#
9

#
9

&>' &?'

&@'"*AB84&1'"+8(

 C

Fig. 2.6: Basic quantum gates and their symmetric patterns.

of the four basic quantum gates, respectively. Each of these basic gates and their

symmetric patterns (Figure 2.6 (e)-(h)) has unit cost [9, 61, 62]. The quantum cost

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 16

of a reversible gate is the accumulated number of basic gates and their symmetric

patterns in the corresponding quantum circuit.

!

" ## #$ %&'& ! "

(&'&!

)&'&

Fig. 2.7: Quantum circuit of Toffoli gate.

Example 10. Fig. 2.7 shows the quantum circuit of the reversible Toffoli gate. It

shows the Toffoli gate has the quantum cost 5.

Quantum cost is one of the major cost parameters of the reversible circuit as it

relates with the physical implementation cost of that circuit [62]. In designing

a perticular circuit, lower value of quantum cost indicates the efficiency of that

design. Example 11 can clear this.

(b)

A B

Cin

VV V+ Carry = (A B)Cin AB

Sum = A B Cin

(a)

A

B

0

NG

Cin

G2

Peres

Carry = (A B)Cin AB

Sum = A B Cin

G1

A

B

C V V+

V+

V

V V

A

Fig. 2.8: Reversible full-adder1 (a) Block diagram (b) Quantum circuit.

Example 11. Fig. 2.8(b) and Fig. 2.9(b) shows two quantum circuits of the re-

versible full-adder having quantum cost 17 and 8, respectively. The later one has

less quantum cost, hence more efficient.

Chapter 2 Background Studies 17

(b)

A

B

0 VV V+

A

A B

Cin

VV V+ Carry = (A B)Cin AB

Sum = A B Cin

(a)

A

B

0

Peres

Cin

G2

Peres

Carry = (A B)Cin AB

Sum = A B Cin

G1

Fig. 2.9: Reversible full-adder2 (a) Block diagram (b) Quantum circuit.

 ! !"

##

$

$! !"

##

%

&

'()

% %

& &
 $

'*)
'+)

',)

'-)

Fig. 2.10: Rules in minimization of quantum circuit.

Minimization of quantum cost is desirable in reversible logic design and for this

reason the researchers give importance in reduction of quantum cost as possible.

There are several works [9, 61, 62] have been done to simplify the quantum cir-

cuit and reduce the cost of the circuit. Fig. 2.10(a)-(c) show some templates to

reduce the quantum cost, whereas, Fig. 2.10(d)-(e) show some properties of V and

V + gate. Section 2.2.5 shows the quantum circuits of some existing gates and

the quantum circuits of the proposed gates are shown in the respective proposed

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 18

sections (TB gate in Section 3.5.1, HNF gate in Section 4.6.1 and HNF gate in

Section 4.6.3).

2.2.4 Delay

Delay is an important issue in the design of any circuit. In some earlier research [46,

59] the number of the reversible gates (2 × 2, 3 × 3 or any order) in the critical

path is considered as a unit delay irrespective of their computational complexity.

According to this concept, the delay of full-adders of Fig. 2.8(a) Fig. 2.9(a) are

same,i.e. 2. However, it is not fair as the number of input and output and the

arrangement of the quantum gates in the quantum circuit vary.

Example 12. The block diagrams and quantum circuits of another two full-adders

are shown in Fig. 2.11 for delay assessment. Comparison between this Fig. 2.11

with Fig. 2.9 reveals that the construction procedure of a full adder varies not

only in terms of number of gate but also on the gate’s dimension. Full-adder in

Fig. 2.9(a) has two Peres gate, each of which is a three input-output gate, on the

other hand, each of the Full-adders in Fig. 2.11(a)& (c) has one reversible gate,

which are four input-output gates.

Based on this concept, some researcher considers the logical depth as a measure

of the delay [36, 63]. Here, the delay of each 1× 1 gate and 2× 2 reversible gate

is taken as unit delay and denoted as ∆.

Example 13. The full-adder using NG gate(2.8(b)) has delay 18∆, on the other

hand, each of the full-adder using Peres gate(2.9(b)), MTSG gate(2.11 (b) and

HNG gate(2.11 (d) has delay 8∆, 6∆ and 6∆, respectively.

As any n×n reversible gate can be designed from 1× 1 reversible gates and 2× 2

reversible gates, such as CNOT gate, Controlled-V, and Controlled-V + gates, the

delay of a n × n reversible gate can be computed by calculating its logical depth

when it is designed from smaller 1×1 and 2×2 reversible gates. Still, the quantum

cost and delay are not same though they may have same quantitive value.

Chapter 2 Background Studies 19

 !"#$ % $ &

$

'

%
 !"#$#%&'

("!"$

)"!"$

*"!"$ %

&

(a) MTSG gate.

 !"!# $

#

%

$

&"#

'!"!#

()))* +"!,# $ # ()

(b) Quantum circuit of MTSG gate, cost=

6, delay 5∆.

!

"

 !"#"$%&

#$%$

&$%$!

'$%$ "

()%$* " (

(c) HNG Gate.

 !"!# $

#

%

$

&"#

'!"!%

())))* +"!,# $ # (

(d) Quantum circuit of HNG gate, cost=

6, delay 5∆.

Fig. 2.11: Delay assessment of reversible gates.

Example 14. The block diagrams and quantum circuits of MTSG gate and HNG

gate of Fig. 2.11 for delay shows that the quantum cost of MTSG gate is 6 and

the delay is 5∆. On the other hand, the quantum cost of HNG gate is 6 and the

delay is 6∆.

2.2.5 More about Reversible Gates

Reversible circuits consist of a group of reversible gates. There are several re-

versible gates in the literature. Some of the reversible gates are described in this

section.

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 20

2.2.5.1 Feynman Gate (CNOT Gate or Ex-OR Gate)

The Feynman gate (FG) [55] is a 2-input 2-output reversible gate which has the

input-output pattern as follows,

(A, B) ↔ (P = A, Q = A⊕B)

where, A, B denote the input variables and P , Q denote the output variables, re-

spectively. Fig. 2.12(a) and (b) show the block diagram and the quantum circuit

of the Feynman gate, respectively. As the quantum circuit of Feynman Gate has

only one Ex-OR gate, the quantum cost of FG is 1 and delay is 1 ∆.

Other than as an Ex-OR gate, the Feynman gate copies the input to avoid the fan-

out problem in reversible logic (Fig. 2.12(c)). Besides, it generates the complement

of an input (Fig. 2.12(d)).

 !"

#

$

%&'&#

(&'&# $

)"

#

$

%&'&#

(&'&# $

*+,-.)-

/)0+

 1"

#

2

%&'&#

(&'&#

*+,-.)-

/)0+

 3"

#

4

%&'&#

(&'&#

*+,-.)-

/)0+

Fig. 2.12: Feynman gate

2.2.5.2 Feynman Double Gate (F2G)

The Feynman double gate (F2G) [55] is a 3-input 3-output reversible gate which

has the input-output pattern as follows,

(A, B, C) ↔ (P = A, Q = A⊕B, R = A⊕ C)

Chapter 2 Background Studies 21

where, A, B, C denote the input variables and P , Q, R denote the output variables,

respectively. Fig. 2.13(a) and (b) shows the block diagram and the quantum circuit

of the Feynman double gate, respectively.

F2G is a combination of two FG gates. Like the FG, it also serves the purpose of

copying (Fig. 2.13(c)) and generating the complement of the inputs (Fig. 2.13(d)).

It has quantum cost 2 and delay 2∆.

 !"

#

$

%&'&#

(&'&# $

)&'&# **

 +"

#

$

%&'&#

(&'&# $

,-./+0

123!4-

5+6-
)&'&# **

 7"

#

$

%&'&#
,-./+0

123!4-

5+6-
*

(&'&#

)&'&#

 8"

#

9

%&'&#

(&'&#

,-./+0

123!4-

5+6-
9)&'&#

 -"

#

:

%&'&#

(&'&#

,-./+0

123!4-

5+6-
9)&'&#

Fig. 2.13: Feynman Double gate

2.2.5.3 Toffoli Gate (TG)

Though the decription of Toffoli gate is ilustrated earlier in Section 2.2.1, the

formal definition is given here. A Toffoli Gate (TG) [53] is a 3-input 3-output

reversible gate which has the input-output pattern as follows,

(A, B, C) ↔ (P = A, Q = B, R = AB ⊕ C),

A, B, C denote the input variables and P , Q, R denote the output variables,

respectively. Fig. 2.3 and Fig. 2.7 show the block diagram and the quantum

circuit of the TG, respectively. Quantum circuit of TG needs two Controlled-V

gates, one Controlled-V + gate and two Ex−OR gates to implement it and all the

basic gates are serially placed. As a result, the quantum cost of Toffoli gate is 5

and delay of Toffoli gate is 5∆.

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 22

!

"#$#

%#$# !

&

"'(')

*+,'

-#$# ! &

(a) Peres gate.

!

" ## #$ %&'& ! "

(&'&

)&'&

(b) Quantum circuit of Peres gate.

!

"#$#

%#$# ! &

&

'()*+,-

./0)

1#$# & !

(c) Fredkin gate.

!

" ## #$

%&'&

(&'& ! "

)&'& " !

(d) Quantum circuit of Fredkin gate.

!

"#$#

%#$# ! &

&

'()*+*,)

-.,)/*0

123,

4#$# & !

(e) Modified Fredkin gate.

!

" ## #$

%&'&

(&'& ! "

)&'& " !

(f) Quantum circuit of Modified Fredkin
gate.

Fig. 2.14: Popular reversible gates.

As the Toffoli gate is a universal reversible gate, it has a great importance in

reversible logic synthesis.

2.2.5.4 Peres Gate (PG)

A Peres gate (PG) [56] is a 3-input 3-output reversible gate which has the input-

output pattern as follows,

(A, B, C) ↔ (P = A, Q = A⊕B, R = AB ⊕ C),

where, A, B, C denote the input variables and P , Q, R denote the output variables,

respectively. Fig. 2.14(a) shows the Peres gate [56] and Fig. 2.14(b) shows the

quantum circuit of the Peres gate (PG).

Chapter 2 Background Studies 23

Peres gate requires two Controlled-V + gates, one Controlled-V gate and one Ex−

OR gate in its quantum circuit, therefore, the quantum cost of Peres gate is 4.

Actually, Peres Gate is the combination of Feynman Gate (FG) and Toffoli Gate

(TG) and Peres gate can simultaneously generate two output functions (from Q

and R). This gate is popular to construct the full-adder circuits or other circuits

which require an Ex-OR operation and the operations done by Toffoli gate, even

with the lower cost than that of Toffoli gate.

2.2.5.5 Fredkin Gate (FRG)

A Fredkin gate (FRG) [53] is a 3-input 3-output reversible gate which has the

input-output pattern as follows,

(A,B, C) ↔ (P = A, Q = A′B ⊕ AC, R = AB ⊕ A′C)

where, A, B, C denote the input variables and P , Q, R denote the output variables,

respectively.

Fig. 2.14(c) and Fig. 2.14(d) shows the block diagram and the quantum circuit of

Fredkin gate, respectively.

Quantum circuit of Fredkin gate consists of two dotted rectangles, one Controlled-

V gate, and two Ex-OR gates. Thus, the quantum cost of Fredkin gate is 5. Each

basic gates and symmetric patterns of those gate (Fig. 2.6 (e)-(h)) has unit cost

and unit delay. The arrangement of the basic quantum gates and their symmetric

patterns estimates the delay of Fredkin gate 5∆.

Fredkin gate also has its importance in reversible literature for generating one out-

put is direct as input and two other outputs as two different Boolean functions. It

is also called SWAP gate, as, if the first input is 1, the other two inputs swap in the

output. Another use of Fredkin gate is to construct the multiplexer circuits [57].

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 24

2.2.5.6 Modified Fredkin Gate (MFRG)

A Modified Fredkin (MFRG) gate [57] is a 3-input 3-output reversible gate which

has the input-output pattern as follows,

(A, B, C) ↔ (P = A, Q = A′B ⊕ AC ′, R = AB ⊕ A′C)

where, A, B, C denote the input variables and P , Q, R denote the output vari-

ables, respectively. Fig. 2.14(e) and Fig. 2.14(f) are the block diagram and the

quantum circuit of Modified Fredkin (MFRG) gate, respectively. It is actually, the

modified version of 3-input 3-output Fredkin gate. When A=0, it does the same

as Fredkin gate.

Modified Fredkin gate consists of two dotted rectangles, one Controlled-V gate,

and one CNOT gates. Hence the quantum cost of Modified Fredkin gate is 4. The

arrangement of the quantum gates and their symmetric patterns in the quantum

circuit causes the delay of Modified Fredkin (MFRG) gate is 4∆.

2.3 Physical Implementation Methodologies of

Reversible Logic Circuits

Physical implementation of the reversible circuit plays a role to validate the cir-

cuit’s construction and its working principles. Among the implementation tech-

niques in literature, Charge Recovery Logic (CRL) is based on the explicit re-

versible pipelined logic gates [64], whereas, Split-level Charge Recovery Logic

(SCRL) is based on split-level voltages [65]. Several other implementation tech-

niques are Energy Recovery Logic (RERL) for ultra-low-energy consumption [66,

67] and nMOS Reversible Energy Recovery Logic (nRERL) [68]. The nano-

electronic and optoelectronic implementations of reversible gates are described

in [17, 69]. Besides, authors in [57, 70, 71, 72, 73] use a relatively new and ex-

tensively used idea which is Transistor Level Realization of reversible circuits.

Chapter 2 Background Studies 25

Authors in [72] describe several approaches for transistor level realization of basic

AND and OR operations. One possible way for implementing two transistors AND

or OR gate with VDD and GND (Fig. 2.15 (a) and (b)). This paper also describe

AND or OR without any VDD and GND (Fig. 2.15 (c) and (d)).

!

"##

$%&

!

"''

$%&

()* (+*

!

$%&

(,*

!

$%&

(#*

Fig. 2.15: Transistor level realization of AND and OR gate.

Authors in [72] shows the transistor level realization of reversible four-transistor

Fredkin gate and six-transistor Toffoli. Later on, authors in [74] presents an im-

proved version of transistor level realization of reversible gates. The transistor-level

realization of Feynman and Toffoli gate according to this designs are in Fig. 2.16

(a), and (b). In this thesis, we follow this design procedure for transistor-level

realization of the proposed gates given in the Appendix B.

2.4 Overview of Programmable Logic Devices

Reconfigurability of Programmable Logic Devices makes the prominent use of it

in designing digital circuits. A logic gate has a fixed function, whereas, PLD

has an undefined function. A PLD has to be programmed before to use it. While

designing a digital circuit, a question may arise, which one is preferable to use; logic

gates or PLD? Each of these devices has its own complexity such as area, power,

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 26

!

 "" !

(a) Feynman Gate.

!"#

!

"

"

!

(b) Toffoli gate.

Fig. 2.16: Transistor level realization of reversible gate [74].

density, and implementation cost. Cosequently, the choice will depend on the

particular circuit’s requirement. Some application use fixed logic gates while other

needs consideration. For example, the design of a simple circuit, which requires few

logic gates, may be implemented with fixed logic gate, whereas, a complex circuit,

considering the complexity, can be developed by using PLD [75]. According to

this author, followings are the characteristics and aptitude of programmable logic:

• A PLD is suited for all designs of different size.

• Prototype designs as well as final applicable designs can use the PLDs.

• The designs that might require modification also can use PLDs.

• It is easy to change the designs made by a PLD without changing the circuit

hardware and wiring.

• circuits designed by PLDs can use simple tools like the Boolean logic, the

Karnaugh map techniques, and the hardware description languages such as

VHDL and Verilog HDL.

• Combinational logic designs, sequential logic designs and memory designs,

etc., all suits the PLDs

Chapter 2 Background Studies 27

PLDs have a wide range of application including Glue Logic, State Machines,

Synchronization, Decoders, Counters, Bus Interfaces, Parallel-to-Serial conversion,

Serial-to-Parallel Conversion, Subsystems and many others. For these extensive

varieties of utility, PLD is the right choice for the development and amendment.

2.4.1 Classification of PLDs

There are variety of PLD both in architecture and functionality. Fig. 2.17 shows

a pictorial view of the classification of the PLD. Among the different PLDs, PLA

and FPGA are the most popular to construct the circuits. This section has a brief

description of these two PLDs.

Fig. 2.17: Classification of the Programmable Logic Devices.

2.4.2 The General Architecture of Programmable Logic

Array (PLA)

Architecturally, the PLA has two programmable planes: AND-plane and OR-plane

(Fig. 2.18(a)).

The AND-plane consists of programmable interconnect along with AND gates.

The OR-plane consists of programmable interconnect along with OR gates. In

Fig. 2.18(a), there are three inputs to the PLA and three outputs from the PLA.

Each of the inputs connects an AND gate with any of the other input by connecting

the crossover point of the vertical and horizontal interconnect lines in the AND

gate programmable interconnect. Initially, the crossover points are not electrically

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 28

 !"#$%

&#$"#$%
'()*+,,+-

&.*+,,+-

(a) AND-OR array.

 !"#$%

&#$"#$%

'()*+,,+-

./0&1*+,,+-

 2 3

45 46 4!

(b) AND-Ex-OR array.

Fig. 2.18: The architecture of irreversible Programmable Logic Array.

Chapter 2 Background Studies 29

connected, however, configuring the PLA with connects particular crossover points

together.

In this figure, the AND gate is connected with a single line to the input. This

view is by convention, still, this also means that any of the inputs (vertical lines)

can be connected. When the OR-plane Ex-OR, it is called AND-Ex-OR PLA.

Fig. 2.18(b) shows the architecture of AND-Ex-OR PLA.

2.4.3 The General Architecture of FPGA

Architecturally, FPGAs consist of an array of programmable logic blocks and a

hierarchy of reconfigurable interconnects that allow the blocks to be wired to-

gether [76]. Other than the logic block and interconnection, FPGA has input-

output blocks for external communication. This logic blocks implements different

combinational and sequential logic functions. Manufacturers configure the logic

blocks of an FPGA in such a way that they can provide functionality as that of

transistor or as complex as that of a microprocessor. The core component of the

logic blocks of an FPGA can be a transistor pairs, combinational gates like basic

NAND gates or Ex-OR gates, look-up tables, multiplexers or even a wide fan-in

AND-OR structure which are connected to each other to implement desired func-

tion. Fig. 2.19 shows the architecture of an FPGA with the magnified view of

different parts.

As the logic blocks execute the basic logical and arithmetic calculations, they are

the most significant parts of an FPGA. There are several type of Logic Blocks in

the literature. The Altra Logic Block [77] evolved from the PLA-based architec-

ture consists of wide fan-in AND gates feeding into an OR gate. This configuration

has disadvantage as it use pull-up devices that consume static power. An array

full of these pull-ups will consume significant amount of power [76].

User
Typewriter
Dhaka University Institutional Repository

Chapter 2 Background Studies 30

 !"#$%&'!$()*!%+'!$(

 !"#$,'%)-./0$!--/$.

1,"-#2#/3%#-./0$!--/$.

Fig. 2.19: Different parts of an FPGA.

The advantage of a Look-up tables [78, 79, 80] is that they exhibit high func-

tionality. A K-input LUT can implement any function of K inputs and there are

22
K
such functions, however, they are unacceptably large for more than about five

inputs, since the number of memory cells needed for a K-input lookup table is

2K . Though the number of implementable functions increase very fast, they all

are not commonly used in logic designs and are also difficult to exploit for a logic

synthesis tool. Hence, there is waste of LUTs.

Though the Actel Logic Block [81, 82] and the Quicklogic Logic Block [83] contain

multiplexers which also provide large degree of functionality, they achieve at the

expense of a large number of inputs.

However, the Plessey Logic Block [84] (Fig. 2.19) based on NAND unit along with

other clusters of components (e.g., Random Access Memories, multiplexers and

latches) can overcome the former difficulties [78, 79, 80, 84, 85, 86, 87, 88].

Chapter 3 Reversible Programmable Logic Array 31

In this thesis, we emphasize on the compactness of the physical architecture of

Logic Block and Plessey Logic Block is the right choice.

2.5 Summary

This chapter presents a brief study on the basic terminologies on reversible logic.

It also includes a short overview on programmable logic devices. Next chapter

deals with the design issues of the reversible Programmable Logic Array and then

some solutions are proposed to mitigate the deign issues.

Ideal Computer PC-1
Textbox
Chapter 2 Background Studies

Chapter 3

Reversible Programmable Logic

Array

3.1 Introduction

In the previous chapter, we gave the descriptions of the basic terminologies regard-

ing reversible logic synthesis and programmable logic devices. In this chapter, we

explore an efficient design methodology of the reversible Programmable Logic Ar-

ray (RPLA).

An elegant solution to the mapping of irregular combinational logic function into

a regular structure is provided by Programmable Logic Array. This array logic

is based on AND, OR and NOT synthesis to implement SOP or POS, whereas

reversible logic prefers Ex-OR operation as well as Exclusive Sum-of-Product

(ESOP) synthesis. ESOP synthesis gives out better result than SOP realization

where many useful methods are proposed for minimizing multi-output Boolean

functions into ESOP form [45, 89]. This chapter has proposed a new approach of

designing RPLA for ESOP synthesis.

32

Chapter 3 Reversible Programmable Logic Array 33

3.2 Contribution

The key contributions of this Chapter are as follows:

• We propose a low cost 3× 3 reversible universal Tara-Babu (TB) Gate.

• Then we develop a heuristic algorithm to sort and realize the product terms.

• We enables the sharing-property of the internal sub-products by using the

proposed algorithm to reduce the number of gates, garbage outputs and

quantum cost.

• The proposed algorithm also reorders the output functions to make the cir-

cuit optimum.

• Finally, we analyze the performance of the proposed algorithm by using

MCNC benchmark functions with compared to other existing designs.

3.3 Organization of the Chapter

The organization of rest of the chapter is as follows: in Section 3.4, we explore

the existing works in the relevant literature; while Section 3.5.1 proposes the re-

versible Tara-Babu gate. Then, Section 3.5.2 describes the proposed AND plane,

Section 3.5.3 describes the proposed Ex-OR plane and Section 3.6 describes the

implementation of the proposed RPLA. We Simulate the proposed circuits and

evaluate the performance of the circuits using the proposed algorithm in Sec-

tion 3.7, whereas, Section 3.8 summarizes the whole chapter.

User
Typewriter
Dhaka University Institutional Repository

Chapter 3 Reversible Programmable Logic Array 34

3.4 Related Works on RPLA

The Boolean function’s expression are of three forms, SOP, POS or ESOP form.

SOP, POS, and ESOP stand for Sum-of-Products, Products-of-Sum, and Exclusive-

Sum-of-Products respectively. A SOP expression is as follows:

FSOP = X1 +X2 + · · ·+Xn (3.1)

Where, Xi is a minterm of one or more literals or product of some minterms, for

1 < i <= n.

On the other hand, SOP expression is

FPOS = Y1Y2 . . . Ym (3.2)

Where Yj is a maxterm of one or more literals or sum of some maxterms, for

1 < j ≤ m.

ESOP stands for Exclusive-OR-Sum-of-Product, which can be expressed as

FESOP = X1 ⊕X2 ⊕ · · · ⊕Xn (3.3)

Where Xi is a minterm of one or more literals or product of some minterms, for

1 < i ≤ n and F is Ex-OR-ed with n terms.

Example 15. Equation 3.4 shows an example of SOP expression, Equation 3.5 is

a POS expression, and Equation 3.6 shows an example of ESOP expression .

F1 = AB′ + A′BC ′ + AC ′ (3.4)

F2 = (A′ +B).(A+B′ + C)(A′ + C) (3.5)

F3 = A′B′ ⊕ ABC ⊕ C ′ (3.6)

Chapter 3 Reversible Programmable Logic Array 35

Programmable Logic Array realizes the irregular logic function into a regular struc-

ture by using both the SOP and ESOP form. However, among all the forms even in,

as shown in the example 15, the ESOP is compact and hence cost effective [90, 91].

We can get the ESOP form from the SOP form by using EXORCISM4 [92]. Au-

thors in [90] generate the minimal ESOP and use to synthesize the reversible logic.

They wants to take advantage of shared minterms to minimize the garbage out-

puts. However, in this way, several other minterms cause more garbage outputs.

Factorization of ESOP may benefit from this synthesis approach but has penalties

regarding the number of gates and garbage outputs. The minimal form of ESOP

is also used in [44]. They use a different technique. This technique focuses on

rearranging the products in ascending order according to the decimal value of the

product terms. Then, an algorithm is provided in which each step consider a con-

figuration of the Toffoli gate. Though this method overcomes the penalties of the

method in [90], it suffers from time complexity described in [46]. However, the

design in [46] still follows the conventional architecture (both complement and

non-complement lines for copying input variables) of Programmable Logic Array.

Authors in [47] replace the complement and non-complement lines by one line.

This design uses Fredkin gates in AND plane of RPLA for AND operations and

F2G in Ex-OR plane of RPLA for Ex-OR operations. Though eliminating of

one line makes this design enhance, using these two gates elevates the number of

garbage and quantum cost. Parallel research on RPLA in [48] also attempt to

design the RPLA which minimize the cost, however, maximize the garbage output

than [47].

Analyzing all these, this chapter proposes an efficient RPLA for ESOP synthe-

sis which reduces the cost metrics.

Chapter 3 Reversible Programmable Logic Array 36

3.5 Proposed RPLA

This section describes the proposed design of Reversible Programmable Logic Ar-

ray (RPLA). On the way to design the RPLA, this dissertation assumes that the

functions are already been minimized and available in ESOP form. Still then, dif-

ferent output functions of multi-output ESOP may have some common products

and sub-products. Sharing these products or sub-products in RPLA is advanta-

geous. For this reason, we propose a reversible gate namely Tara-Babu (TB) gate

in Section 3.5.1. This gate enables the product-sharing property. Section 3.5.2

describes the proposed method to generate the AND-plane, whereas, Section 3.5.3

focuses on the generation of the Ex-OR-plane. Finally, Section 3.6 describes the

implementation of the proposed RPLA with these AND-plane and Ex-OR-plane.

3.5.1 Proposed Reversible Tara-Babu (TB) Gate

This section presents the proposed gate namely Tara-Babu (TB) which we use for

the AND operation in AND Plane. Let, A,B,and C are the inputs and P,Q,and

R are the outputs of TB gate, then the relationship between inputs and outputs are

(P,Q,R)↔ (A⊕B,BC ′ ⊕ AC,B′C ⊕ AC ′).

 !"!#$% &%$

&

#

%

'' '(

)!"!& #

*!"!#%$ &%

+,-+.-

&

#

%

/#

0.12

)!"!& #

*!"!#%$ &%

 !"!#$% &%$

Fig. 3.1: Proposed reversible TB gate : (a)block diagram (b) quantum circuit.

Fig. 3.1 (a) and Fig. 3.1 (b) shows the block diagram and the quantum circuit of

TB gate, respectively and Table 3.1 proves the reversibility of the proposed gate.

Quantum cost of the proposed TB gate is 4 and the delay of this gate is 4∆ which

is the least in the literature for generating two AND terms simultaneously.

Chapter 3 Reversible Programmable Logic Array 37

Table 3.1: Truth table of the proposed reversible TB gate

Input Output
A B C P = A⊕B Q = BC ′ ⊕ AC R = B′C ⊕ AC ′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 1 0

The proposed reversible TB gate is a universal gate as it can implement all basic

boolean functions (AND, OR, NOT Ex-OR) by using one TB gate and com-

pound functions (NAND and NOR) by using two cascaded TB gates. Fig. 3.2

(a) shows the utilization of TB gate as AND and OR gates, Fig. 3.2(b) shows the

implementation of NOT gate. Afterward, Fig. 3.2(c) presents the Ex-OR function

and Fig. 3.2(d) depicts the copy property to solve the fan-out problem. Finally,

Fig. 3.2(e) and Fig. 3.2(f) show the NAND function and the NOR function by

cascading two TB gates, respectively. Besides, Fig. 3.3 shows the AND terms

generated by the TB gate.

TB

Gate

A
B
0

P=A B

Q= B
R= A

 !"

TB

Gate

A
0
0

P= A

Q= 0
R= A

 #"

TB

Gate

A
0
B

P=A

Q=AB
R=A+B

 $"

TB

Gate

A
1
1

P=A’

Q=A
R=0

 %"

 &"

TB

Gate

A
0
B

g1TB

Gate g2

(AB)’

 '"

TB

Gate

A
0
B

g1TB

Gate g2

(A+B)’
((

Fig. 3.2: Implementation of all boolean functions using the proposed reversible
TB gate.

Chapter 3 Reversible Programmable Logic Array 38

 !

"#$%&

!

'
()*)&

+)*)&!,

-)*)&,!

Fig. 3.3: Different AND terms produced simultaneously by the proposed TB
gate.

3.5.2 Proposed AND-plane of RPLA

In the AND plane, the combination of the F2G and TB gates generate all forms

of the product of two variables and hence eliminate the necessity of dedicated

line to complement the input literals. These two gates also propagate the input

variables or its complement. (Fig. 3.4(a)-(h)) The elimination of complement line

0 A

B

0

B

ABTB2A

0

0

A

A

A

F2G

TB1

0

B

B

A’B

AB’

A

0

1

A

A

A’

F2G

TB1

0

B

B

AB

A’B’

A

1

1

A

A’

A’

F2G

B

0

B

A’BTB2A

1

1

A

A’

A’

F2G

(a) (b)

(c) (d)

(e) (f)

TB1

0

B

B

A’B

AB’

A

0

0

A

A

A

F2G

TB1

0

B

B

AB

A’B’

A

1

A

A’
F2G

(h)

y

0

y

Xy
X

TB

2

(g)

0

y

y

X

TB

1

Xy'

Fig. 3.4: Different combinations of the F2G and TB gates.

and properties of used gates in AND plane reduce the number of gates. Besides, the

simultaneous realization of two product terms of first two variables(Fig. 3.4(a)-(d))

enables the sharing property of sub- products, which ensure the further reduction

of gates. For the product terms of more than two variables, one TB gate is added

Chapter 3 Reversible Programmable Logic Array 39

whenever a sigle literal is appended. In this situation, two cases may arise, the

product terms may have any of the two forms Xy’ or Xy, where, ’X’ represent

the previous generated terms and ’y’ represents the latest appended variable. The

configuration of TB gate in Fig. 3.4(e) is used for the former one and Fig. 3.4(f)

is used for the later one. The minimization technique for the number of gates also

influence the AND plane to design with less garbage and low quantum cost.

Example 16 explores the construction of the RPLA of a multi-output function

based on the proposed algorithm (Algorithm 1). In this algorithm, line 3-7 de-

scribe the sorting procedure based on the products’ frequency and their sharing

affinity property, whereas, line 9-23 describe the procedure of product realization.

Afterwads, line 18, 19 ensure the sharing phenomena by the proposed gate and

the use of DOT indicates no gate is required in that percular case.

Definition 1. The Frequency of a product term is the number of output func-

tions that share the product term.

Definition 2. The cross point in RPLA, in which no gate is used, is termed as

DOT.

Example 16. Consider the following ESOP functions:

F1 = AB′C ⊕ A′B

F2 = A′B′C ⊕ AC

F3 = AB′C ⊕BC ′ ⊕ A′B (3.7)

F4 = AC

F5 = BC ′ ⊕ A′B ⊕ AC

In Equ. 3.7, the output functions F1, F3 & F5 share A′B, hence, the frequency of

A′B is 3, whereas, the frequency of A′B′C is one, as it is only in F2. Table 3.2

shows the frequency of each product term of the functions in Equ. 3.7. Now

following the Algorithm 1 we construct the proposed AND plane of RPLA for

multi-output ESOP functions(shown in Fig. 3.5).

Chapter 3 Reversible Programmable Logic Array 40

Algorithm 1: The proposed algorithm to construct the AND-plane of RPLA

Input : Several Benchmark Functions
Output: Number of gates used and number of garbage outputs produced to

realize AND plane of RPLA

1 begin
2 i = input, o = output
3 Sort the products in ascending form based on their frequency of a

benchmark function, then their index.
4 If Product X and Y have the same frequency and index(y)= index(x) +1,

realize product Y prior to the product X if all the conditions hold:
5 i. Both X and Y are the part of same output function Op.
6 ii. X is the first product of Op and Y is the second product of Op and not

shared by any other output function Oq, where p < q < = O, O denotes
the number of output functions.

7 If Inj is not the first input variable and used in product X, then produce
product X in later.

8 Set DOT := 0,Gtc := 0, Gbc:= 0; where Gtc=no.of total gates and
Gbc=no.of total garbage outputs; Put all literals into the stack

9 while for each ordered product (Pi) do
10 if Ini is the first variable of Product(Pi) then
11 if Ini or In′

i is used only once in total AND plane then
12 DOT + + ; Update Stack;
13 else if Ini or In′

i is used only twice then
14 Apply FG gate; Gtc++;
15 else

16 Apply F2G gate; Gtc++;

17 else if Ini or In′
i is the second variable of Product (Pi) then

18 if current sub-product is in the form In1′ .In2 or In1.In2′ and
complementary sub-product is already produced then

19 DOT + + ; Update Stack;
20 else

21 Apply TB Gate; Gtc++; Update Stack;

22 else

23 Apply TB Gate; Gtc++; Gbc++; Update Stack;

24 end while

25 end

3.5.3 Proposed Ex-OR-plane of RPLA

AND plane generates the product terms of each functions, then Ex-OR plane

performs the Ex-OR operations among the corresponding terms of and individual

Chapter 3 Reversible Programmable Logic Array 41

Table 3.2: Frequency table for the ESOP functions in Equ. 3.7

Product Frequency

A′B′C 1

A′B 3

AB′C 2

AC 3

BC ′ 2

output function. Suitable choice of the order of the output functions play a signifi-

cant role in construction of a minimize circuit. Elimination of the fan-out problem

is also considered as multiple use of a particular terms may occur. Keeping in

mind, these two consideration, we develop a heuristic approach in Algorithm 2 to

construct the Ex-OR plane. In this Algorithm, Line 4-5 set a specific condition

for ordering. Line 10-11 indicate, if there is a product term which is a first term

of a function and is used for single time (frequency 1), the DOT is used indicating

no gate is required for this term (There are four DOTs in Fig. 3.6). Line 12, 13

indicate if the first product is shared by other functions (Frequency more than 1),

a FG is required (Upper most FG for F1), whereas, if Fi is the last function that

shares any previously used product term, a FG is required as well as a garbage bit

is counted (BC’ in F5, right bottom FG in Fig. 3.6). Line 13, 16, 20 returns the

number of FG gates and Line 17 returns the number of garbage outputs. Fig. 3.6

shows the constructed Ex-OR plane for Equ. 3.7.

3.6 Implementation of the proposed RPLA

By using Algorithms 1 and 2, the realization of the proposed RPLA is shown in

Fig. 3.7. In Algorithm 2, Feynman gate is used to mitigate the fanout problem.

According to the proposed algorithms our RPLA requires 14 gates and it produces

6 garbage outputs for the ESOP given in Equ. 3.7.

Chapter 3 Reversible Programmable Logic Array 42

As the proposed RPLA is constructed by using only the reverible gate, is main-

taintains the revesibility of itself. The Fig. 3.7 ensures that the whole circuit is

reversible by showing that it preserve the equal number of input and output. In

this case, the number of input is 12 and the number of output is also 12.

The Theorem 3.6.1- Theorem 3.6.4 describe the properties of the proposed gener-

alized RPLA.

 !"##

$%&'

(

)

!

*+(

,+(!

-+ (.!

 !/##

$%&'
(

)

!

*+(

,+(!0

-+ (0!

1234&5

 !"!#

 "!#

 !"

 #

"#!

6/$!/ !"

 !" !/

 !"

 !/

(0

6/$

(

)

"

*#+#(

,#+#(

-+ (

Fig. 3.5: The proposed AND-plane of RPLA for multi-output ESOP functions
given in Equ. 3.7.

Chapter 3 Reversible Programmable Logic Array 43

Algorithm 2: The proposed algorithm to construct the Ex-OR plane of RPLA

Input : Several Benchmark Functions
Output: Number of gate used and number of garbage produced to realize

Ex-OR plane of RPLA circuit.

1 begin
2 i = input, o = output
3 For each output Functions Fi

4 if Fi has only one product then
5 generate Fi at last
6 Loop
7 For each product Pj of Fi

8 Loop
9 if Pj is the first product in Fi then

10 if Freq(Pj) = 1 then

11 Place DOT; else

12 Place Gate FG;
13 Gtc++;

14 else if Fi is the last function that shares Pj then
15 Place Gate FG;
16 Gtc++;
17 Gbc++;

18 else

19 Place Gate FG;
20 Gtc++;

21 end

Theorem 3.6.1. The AND plane of RPLA requires no more than q TB gates.

Where, q denotes the total number of 2-input AND operations among the literals

of the distinct product-terms.

Proof. Let, there are q number of 2-input AND operations for p products of a

ESOP function. TB gate generates three different 2-input AND operations. Two

of them are simultaneously generated. When, we use these two AND terms in the

AND plane, AND plane of RPLA requires less number of TB gates. Otherwise,

AND plane of RPLA requires q number of TB gates.

Therefore, the maximum number of TB gates to construct the AND plane of

RPLA is q. (Proved)

Chapter 3 Reversible Programmable Logic Array 44

 !"#!"$

 ! "

 ! "

 !

 "

!"

 !

 ! !

 !

 ! !

 !

Fig. 3.6: The Proposed Ex-OR plane of RPLA for multi-output ESOP func-
tions given in Equ. 3.7.

Example 17. Fig. 3.5 shows an RPLA which has total q=7 AND operations.

The AND-plane requires only 6 TB gates by sharing property, which is less than

q. If there will no scope of sharing, the AND-plane requires 7 TB gate, which is

the maximum number of TB gate used and that is equal q for this example.

Theorem 3.6.2. The AND plane of RPLA produces no more than i+q-DOT

garbage outputs. Where, q denotes the total number of 2-input AND operations

among the literals of the distinct product-terms, i denotes the number of input

variables of RPLA, and DOT denotes the number of cross-points in the AND

plane of RPLA.

Proof. The TB gate is a 3 × 3 gate, and each gate generates maximum 2 garbage

outputs. One is responsible for propagating the input-variable, another one is an

Chapter 3 Reversible Programmable Logic Array 45

 !"#$%

 !"!#

 "!#

 !"

 #

"#!

&'()*')*+

)*+)*'

)*+

)*'

,-

.

.

.

.

.

.

.

+

 + ' /

 0
 1

 2 3

 4
 5

 +.

 ++

6+

6/

6'

60

61 62

64 65 6+. 6++

63

 !"#!"$

&(+

&(' &('

&('

&(' &('

&('

 +' .

$%&

Fig. 3.7: The proposed reversible Programmble Logic Array for Equ. 3.7

unused AND term. If the propagating input variables are no longer used (after

last use of input-variables), then they increase the number of garbage outputs

by i−DOTin−var, where, DOTin−var denotes the DOTs for used propagating the

input-variables.

Each unused AND terms of TB gate increase the number of garbage outputs by

q −DOTAND, where, DOTAND denotes the DOTs for used AND terms.

Sharing the AND terms as well as used propagated input-variables (denoted by

Chapter 3 Reversible Programmable Logic Array 46

DOTs) decreases the number of garbage outputs.

Hence, the total number of garbage outputs = i−DOTin−var +q −DOTAND.

=i+ q−DOT Therefore, the AND plane of RPLA produces no more than i+ q−

DOT garbage outputs. (Proved)

Example 18. The products of ESOP function given in Equ. 3.7 has total 7 AND

operations, and 3 inputs. By adopting the sharing-Property, in the proposed ar-

chitecture of RPLA, the number of DOTs reaches at 4 and the number of garbage

outputs at 6. Thus, the theorem holds for this example.

Theorem 3.6.3. The Ex-OR plane of RPLA requires no more than n − DOT

gates. Where, n denotes the total number of product terms, and DOT denotes the

number of cross-points in the OR plane of RPLA.

Proof. Ex-OR plane uses Feynman gates for Ex-OR operations. This reversible

gate has two inputs and two outputs. If any of the products are not used further,

then a DOT is placed otherwise a gate is used. For example, if there is only

two product-terms are Ex-ORed in Ex-OR plane, Ex-OR plane requires only one

Feynman gate, and there is one DOT. In this way, the number of Feynman gates

in Ex-OR plane of RPLA can be reduced by DOT. As Feynman gates are used

for both propagation and Ex-OR operations, the total number of Feynman gates

in the Ex-OR plane of RPLA is n-DOT.

Therefore, the Ex-OR plane of RPLA requires no more than n − DOT gates.

(Proved)

Example 19. For multi-output function F in Equ. 3.7, the total number of

product-terms is 11, and the number of DOT is 4 in Fig. 3.6. Hence, the number

of Feynman gates is n−DOT = 11− 4 = 7, which holds the Theorem 3.6.3.

Chapter 3 Reversible Programmable Logic Array 47

Theorem 3.6.4. The Ex-OR plane of RPLA produces no more than p-DOT

garbage outputs. Where, p denotes the number of distinct products, and DOT be

the number of total cross-points in the Ex-OR plane.

Proof. Ex-OR plane uses Feynman gates for Ex-OR operations. This reversible

gate has two inputs and two outputs. Here, one output is the horizontally prop-

agated product-term, and another one is the Ex-ORed of the two consecutive

product-terms vertically. If any of the distinct products are not used further, then

a DOT is placed otherwise a gate is used. In this way, the number of garbage

outputs of Feynman gates in Ex-OR plane of RPLA can be reduced by DOT.

Moreover, the Ex-ORed term is propagated vertically to the next Feynman gate

to be EX-ORed with another product-term, and finally, we get the output of a

particular function. Therefore, the total number of possible garbage outputs in

the Ex-OR plane of RPLA is p-DOT. (Proved)

Example 20. Consider Fig. 3.6 for multi-output function F in Equ. 3.7. In

Fig. 3.6, the number of distinct products (p) is 5, the number of cross-points

(DOT) is 4, and the number of garbage outputs is 1 (p − DOT = 5 − 4 = 1),

which holds the Theorem 3.6.4.

3.7 Simulation and Performance Evaluation

In this section, the proposed reversible TB gate and the proposed RPLA for a

given ESOP function are simulated and the performance is analyzed to discover

the efficiency of the proposed design of RPLA.

3.7.1 Simulation Environment

Our proposed algorithms for realization and minimization of RPLA have been

written using language C and have tested extensively on windows microcomputer.

The simulations of the proposed circuits are done using DSCH 3.5 [93] software on

a computer, which has the Intel(R) Core(TM) i7 CPU with 2.50 GHz Clock Speed

Chapter 3 Reversible Programmable Logic Array 48

and 8.00 GB RAM. During the execution, it was ensured that no other application

is running.

3.7.2 Simulation Results

Fig. 3.8 shows the simulation result of TB gate. This waveform reveals that the

TB gate works correctly as the waveform reflexes the input-output combinations

properly. Moreover, Fig. 3.9 represents the implemented RPLA (for ESOP func-

tions of Equ. 3.7) in DSCH [93]. The simulation result of this proposed RPLA

(Fig. 3.10) exposes the functional responses of the Equ. 3.7 .

Fig. 3.8: Simulation of the proposed TB gate.

3.7.3 Performance Metrics

We consider five criteria as the metrics of the performance analysis of RPLA. Brief

description of these metrics are given below.

• Gates: Reversible gates are used to design a specific circuit. Accumulating

all the gates and counting the total number of gates will be found. This is

a performance metric of reversible circuits. Less number of required gate

certifies the high performance of the circuit.

• Garbage outputs: Garbage output is measured by counting the unused out-

put of a circuit. By accumulating all the garbage outputs, we can find the

Chapter 3 Reversible Programmable Logic Array 49

Fig. 3.9: Architecture of the proposed RPLA for ESOP functions given in
Equ. 3.7 at physical-lavel in DSCH 3.5 [93].

total number of garbage outputs. The minimum value of garbage outputs

proves the efficiency of the design.

• Quantum Cost: It is one of the primary performance metrics of the reversible

circuit. The quantum cost of a reversible gate is the cumulative number

of NOT , Controlled-V , Controlled-V +, and CNOT gates required in its

implementation.

• Area: The area of a logic circuit means the total area accumulated by the

individual circuit element. Microwind [94] can be used to calculate the area

of each individual element. As an example, if a circuit consists of n gates

Chapter 3 Reversible Programmable Logic Array 50

Fig. 3.10: Simulation of the proposed RPLA for ESOP functions (Equ. 3.7).

with area A1, A2,..., An, then the area (A) of that circuit is as follows-

A =
n∑

i=1

Ai (3.8)

Using Microwind [94], we can find the area of a 4:1 multiplexer (which has

three Modified Fredkin gate). The area of a Modified Fredkin gate 0.00152

mm2 and hence, the total area of 4:1 multiplexer is 0.00456 mm2.

• Power: The power consumption of a logic circuit means the total power

consumption by the individual circuit elements. Power of the reversible

circuit can be calculated using DSCH 3.5 [93] and Microwind 3.5 [94]. The

transistors or pass transistors are used to design the corresponding circuit

in DSCH. Then power can be estimated by using Microwind.

Chapter 3 Reversible Programmable Logic Array 51

3.7.4 Performance Analysis

Table 3.3 shows the experimental results comparing our proposed method with

the methods presented in [46, 47] and [48] in terms of the number of gates, the

number of garbage outputs and the quantum cost for ESOP functions given in

Equ. 3.7. Table 3.4-Table 3.6 show the comparison among the various methods to

Table 3.3: Comparison of the proposed and the existing RPLA for the ESOP
functions in Equ. 3.7

Method Gate Garbage Quantum Cost

Existing [46] 19 11 47
Existing [47] 18 7 39
Existing [48] 17 19 55
Proposed 14 6 31

realize the RPLA for ESOP expression of some particular benchmark functions.

The tables reveals that our method has effective results for these particular func-

tions. Each benchmark function has a different format in respect to the number of

inputs, number of outputs, number of product terms and pattern of product terms

and there is no straight-forward algorithm to minimize the performance metrics,

however, the optimum result from our proposed algorithm outcomes due to the

four reasons:

1. The first reason is the elimination of complementary lines, which by default

eliminates the use of NOT gate

2. Second, generation of sharable two sub-products

3. Sharing property also eliminate the use of the gate used for copy any literals

(as the first input of the shared term need not be copied).

4. Finally, ordering the output functions also has an impact on the reduction

of the performances metrics.

Chapter 3 Reversible Programmable Logic Array 52

For a more specific example, the benchmark function sao2 has 10 inputs, 4 outputs,

28 product terms, and there are 202 AND operations. All the reasons mentioned

above directly have an impact on the realization sao2 function.

Table 3.4: Comparison of the proposed and the existing RPLAs by using
MCNC Benchmark functions in terms of the total number of gate.

Function Name Existing [46] Existing [47] Existing [48] Proposed
5xp1 170 140 166 136
9sym 439 402 427 396
adr3 69 58 67 58
b12 170 147 159 144
bw 350 296 305 296

duke2 931 914 941 902
z5xp1 171 152 167 148
sao2 291 268 384 161
rd53 55 48 56 46
rd84 321 296 328 286
xor5 9 4 8 4

In case of gate reduction (Table 3.4), in the proposed method, sao2 function needs

10 F2G for the copy operation, 197 TB gates for AND operation, while 5 (five)

other AND operations eliminated by sharing sub-products, and finally, it needs 54

FG gates for EXOR operation. On the other hand, the method in [48] requires

24 FG gate for copy, 202 MUX gate for AND operation and 58 FG gate for

EXOR operation. Similarly, the method in [46] requires 291 gates and [47] requires

268 gates. The use of F2G, TB gate in AND plane and the product generation

procedure, output ordering all together outcome in reduction of the gate in the

proposed method.

It is evident that the proposed method does not assure the gate reduction for every

benchmark function, for example, for adr3, bw and xor5 the proposed method and

the method in [47] gives the same result, and in some cases the improvements are

marginal, for example, duke2 has an improvement of only 3.11%, 1.31% and 4.14%

Chapter 3 Reversible Programmable Logic Array 53

Table 3.5: Comparison of the proposed and the existing RPLAs by using
MCNC Benchmark functions in terms of the total number of garbage outputs).

Function Name Existing [46] Existing [47] Existing [48] Proposed
5xp1 80 157 112 102
9sym 330 411 385 354
adr3 50 61 48 40
b12 90 151 132 115
bw 46 293 64 55

duke2 579 923 667 635
z5xp1 85 153 114 97
sao2 243 274 236 115
rd53 23 50 42 33
rd84 269 187 265 115
xor5 4 8 8 4

with respect to [46, 47], and [48]. On the other hand, in some cases the proposed

method shows a significant improvement, such as for 5xp1, the proposed method

has an improvement of 20% and 18.07%, for sao2 the improvement is 10.31% and

32.03%, and for xor5, the improvement is 50.00%, and 55.56% compared to [48]

and [46], respectively.

In case of garbage output reduction(Table 3.5), though the proposed method does

not outperform compared to [46] in all cases, our method produces 20% and 57.25%

less garbage output for adr3 and rd84, respectively. Then, the proposed method

reduces the garbage output up to 56% with an average 19.75% improvement to [48]

and up to 50% with an average 32.75% improvement to [47].

Then, Table 3.6 indicates a significant reduction of quantum cost to all existing

designs [46, 47, 48]. The proposed method reduces the quantum cost up to 55%

with an average 21.22% improvement to [46], up to 50% with an average 14.74%

improvement to [47], while, in some cases, the proposed method deteriorates

to [47].

In a nutshell, analyzing all the particular benchmark function, we can conclude

Chapter 3 Reversible Programmable Logic Array 54

Table 3.6: Comparison of the proposed and the existing RPLAs by using
MCNC Benchmark functions in terms of quantum cost).

Function Name Existing [46] Existing [47] Existing [48] Proposed
5xp1 508 468 418 402
9sym 1737 1456 1405 1377
adr3 189 176 157 155
b12 562 490 453 546
bw 499 686 446 448

duke2 3361 3024 2735 2704
z5xp1 519 476 425 411
sao2 1099 940 890 862
rd53 162 148 134 126
rd84 1132 992 928 893
xor5 9 8 8 4

Table 3.7: Area requirement and power consumption of the different MCNC
benchmark circuits by using the proposed method

Name of the benchmark circuits Area (µm2) Power (mW)
5xp1 692.64 96.2
9sym 2427.84 337.2
adr3 266.4 37
b12 764.64 106.2
bw 712.8 99

duke2 4733.28 657.4
z5xp1 721.44 100.2
sao2 1524.96 211.8
rd53 210.24 29.2
rd84 1546.56 214.8
xor5 5.76 0.8

that the proposed algorithm works well to reduce the number of cost metrics for

ESOP functions if there is an opportunity of sharing the initial sub-products.

Area needed by the different MCNC benchmark circuits designed by the pro-

posed gates are guaranteed by using Equation 3.8. The power consumption by the

circuits are generated using Microwind 3.5 [94] which are shown in Table 3.7.

Based on the information of Table 3.4, Table 3.5 and Table 3.6, some graphical

Chapter 3 Reversible Programmable Logic Array 55

 !"# "$#% &$"% # '()(* +# '(,&!* "$-.)/ 0,12 33

3#4

4

#4

(44

(#4

*44

*#4

%44

%#4

.44

.#4

#44

56 7,879:;.<=

56 7,879:;.-=

56 7,879:;.0=

'"!'!,>$

?
@
2
)
>
"5
!
A5
B
&
8>

C>9DE2&"F5G@9D87!9,

Fig. 3.11: Graphical representations of Benchmark functions vs Number of
gates.

 !"# "$#% &' ($"% #)* +#)* &*, -(!, "$./ 0-12

3

#3

*33

*#3

,33

,#3

%33

%#3

/33

/#3

45 6-7689:/;<

45 6-7689:/.<

45 6-7689:/0<

)"!)!-=$

>
?
2
&
=
"4
!
@4
A
(
"&
(
9
=
4B

?
7)
?
7-

C=8DE2("F4G?8D76!8-

Fig. 3.12: Graphical representations of Benchmark functions vs Number of
Garbage outputs.

Ideal Computer PC-1
Textbox
[46]
[47]
[48]

Ideal Computer PC-1
Textbox
[46]
[47]
[48]

Chapter 4 Reversible Field Programmable Gate Array 56

 !"# "$#% &$"% '(#)* +#)* '*, -&!, "$./ 0-12

3,44

4

,44

/44

544

.44

*444

*,44

*/44

*544

*.44

6
7&

89
72

:;
!-

9

<=8>?2&"@:A78>9B!8-

:C B-9B8DE/FG

:C B-9B8DE/.G

:H"!)!-=$

Fig. 3.13: Graphical representations of Benchmark functions vs Quantum cost.

interpretations are drawn in Fig. 3.11, Fig. 3.11,and Fig. 3.13.

These graphs represent the value of performance metrics of the corresponding

benchmark functions, where, red triangles on red lines indicate the values of the

proposed method. It is clear that, most of the cases, the number of gate, garbage

output and the quantum cost are lower than the corresponding metrics of the

existing designs. More specifically, for sao2 function, the proposed method has 862

quantum cost, whereas, the method in [48], [47] and [46] have quantum cost 890,

940, and 1099, respectively, which implies the improvement in terms of quantum

cost are 3.24%, 9.05%, 27.49% with respect to [48], [47] and [46]. Though the

improvement (for different function and for different performance metrics) varies,

we can observe the improvement from the graphs and calculate the value from the

performance tables.

3.8 Summary

This chapter focuses on the detailed architecture of the proposed RPLA as well

as existing design procedures of the RPLA. We discuss the proposed design with

its complexities elaborately here. This chapter also provides the simulation of

Ideal Computer PC-1
Textbox
Chapter 3 Reversible Programmable Logic Array

Ideal Computer PC-1
Textbox
[46]
[47]

Chapter 4 Reversible Field Programmable Gate Array 57

the proposed designs and performance analysis of the proposed design compared

with the other existing designs. The next chapter provides the design issues of

reversible Field Programmable Gate Array and we develop some solutions those

can mitigate the challenges.

Ideal Computer PC-1
Textbox
Chapter 3 Reversible Programmable Logic Array

Chapter 4

Reversible Field Programmable

Gate Array

4.1 Introduction

In the previous chapter, we focus on the design procedure of the reversible Pro-

grammable Logic Array. In this chapter, we emphasis on the design of the re-

versible Field-Programmable Gate Array.

Field Programmable Gate Arrays (FPGAs) are the preeminent alternative to the

Application Specific Integrated Circuit (ASIC) and Mask Programmable Gate

Arrays (MPGAs) by providing re-programmability, higher speed, higher density,

zero recurring engineering costs and massive parallel operations. Architecturally,

FPGA is an array of programmable logic blocks and interconnections. These logic

blocks are used to implement the sequential and complex combinational functions.

As the blocks can be reconfigured, they influence the speed and density of an

FPGA [85]. Look-Up Table (LUT) and Plessey are the most popular SRAM-based

logic blocks. The former one has the exponential growth of complexity with respect

to inputs. However, the later one overcomes these difficulties through clusters of

components e.g., NAND units, Random Access Memories, multiplexers and latches

58

Chapter 4 Reversible Field Programmable Gate Array 59

[76, 84]. Overwhelmed opportunities of FPGAs and energy saving characteristics

of reversible logic have caught the eyes of the researchers to design the FPGAs in

power recurring ways leads the design of the reversible FPGAs [50, 51, 52]. All

of them have designed the FPGA’s core part ’Plessey Logic Block’ in reversible

way by using different number, different type of gates as well as they have used

different algorithms to construct the components of the Logic Block. This chapter

has proposed an efficient reversible Plessey Logic Block for FPGA.

4.2 Contribution

The key contributions of this chapter are summarized as follows:

• We design each individual component of Plessey logic block of FPGA such

as reversible D-Latch, reversible Decoder, reversible Multiplexer, reversible

Master-Slave Flip-Flop, and reversible RAM separately.

• We optimize the proposed components in terms of the number of gates,

garbage outputs, quantum cost, and delay.

• We also optimize the proposed components in terms of the area and power

to ensure the power efficiency.

• We proposed Two 4×4 reversible gates, namely HNF (Hafiz-Naz-Flip-Flop)

gate and HND (Hafiz-Naz-Decoder) gate, are proposed to achieve the opti-

mization goal.

• We develope algorithms, lemmas, and theorems to certify the novelty and

scalability of the proposed design.

• Finally, the proposed reversible Plessey (4×2) Logic Block of FPGA is com-

pared with the existing designs. The comparative result proves the efficacy

and novelty of the proposed design.

Chapter 4 Reversible Field Programmable Gate Array 60

4.3 Organization of the Chapter

The rest of the chapter is organized as follows: Section 4.4 explores the existing

works in the relevant literature; while Section 4.6.1, 4.6.2, and 4.6.3 propose

different components of the reversible Field Programmable Gate Array such as

reversible D-Latch, reversible Master-Slave Flip-Flop, and reversible Decoder, re-

spectively. Then, Section 4.6.4 describes the construction procedure and function-

ality of proposed reversible Random Access Memory. We propose the reversible

Multiplexer and NAND unit in Section 4.6.5 and Section 4.6.6, whereas, we as-

semble the components of reversible Field Programmable Gate Array and describe

its properties in Section 4.7. Section 4.8 depicts the simulation and performance

evaluations, and finally, Section 4.9 summarizes the whole chapter.

4.4 Related Works on Reversible FPGA

Reversible Plessey Logic Block of FPGA is first attempted in [50]. In this design,

authors used reversible Feynman gate (FG), Toffoli gates (TG), BSP gate, and

NH gate. The quantum cost of the used gate, such as reversible BSP gate, is not

analyzed even. Besides, the quantum circuit of NH gate shows that the quantum

cost of NH gate is 6. Therefore, the quantum circuit of NH gate is wrongly de-

signed or the claim of having 4 quantum cost is incorrect.

Later on, an improved version of Reversible FPGA is proposed in [51]. In this

design, MUX gate, Fredkin gate and Peres gates along with the Feynman gate

and Toffoli gates are used. Quantum cost of these gates is 4, 5, 4, 1 and 5, respec-

tively. Though this design is an enhanced method of the former one, the authors

did not compare the each component of FPGA comprehensively, not even with the

previous design presented in [50]. Only the design of n:1 multiplexer and D-Latch

are compared with the counterparts. The authors of [51] compared their design

Chapter 4 Reversible Field Programmable Gate Array 61

with only one paper. Therefore, the novelty of this design is not significant.

Afterward, reversible fault-tolerant FPGA is designed in [52]. However, provid-

ing fault-tolerant design for every component of a large circuit usually is not an

option. It may increase the chip-size, power consumption, and cost. Besides, it

will take more time to design, verify, and test. As a consequence, in this chapter,

a non-fault-tolerant strategy is widely investigated and implemented to make the

architecture of Plessey Logic Block (each component of the whole circuit) efficient

regarding every performance metrics.

4.5 Design Methodology

This section presents the design methodology of the reversible circuits. There

are several methods in the literature, i.e., direct transformation method, truth

table extension method, template matching. Direct transformation approaches

are easy to adopt. However, it requires a large number of gates and garbage

outputs [54]. Truth table extension methods are not applicable for the large circuit

with numerous input-output combinations [36]. Besides, template matching will

work well by the availability of the templates [36]. Analyzing all these, in this

dissertation, the template method is applied to design individual components of

the Plessey Logic Block.

4.6 Proposed Components of the Reversible FPGA

Fig. 2.19 shows the block diagram of the FPGA, where the logic block is the

Plessey Logic Block. This logic block consists of four different components: An

8:2 Multiplexer, a RAM, a D-Latch and a NAND unit. In this dissertation, all of

these components are designed with reversible logic.

Chapter 4 Reversible Field Programmable Gate Array 62

4.6.1 Proposed Reversible D-Latch

Architecturally, a D-Latch is a small memory unit which transfer ’Data’ input to

the output. The clock signal of D-Latch enables it to make possible the data entry

into the latch.

In the recent designs of D-Latch [54, 57, 95], each D-Latch has 6 quantum cost and

produce two garbage outputs irrespective their design methodology. We survey

and investigate that the garbage output of D-Latch cannot further be optimized,

only the quantum cost can further be reduced to 5 by using proposed method.

Let, D is the data-input, clk is the clock signal, Q is the output of a D-latch. Then,

the characteristic function of the D-Latch (Table 4.1) is Q+ = D· clk + clk′·Q. If

the clock (clk) is 1, the data-input D is transfered at the output that is Q+ = D,

otherwise, clk = 0, and the latch maintains its previous state, i.e, Q+ = Q.

Table 4.1: The characteristic table of the D-Latch

Clock (clk) Data (D) Previous State Q Current State Q+

0 0 0 0
0 1 0 0
0 0 1 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

We use the proposed reversible HNF (Hasan-Naz-Flip-Flop) gate to map the char-

acteristic function of the D-Latch. Fig. 4.1(a) and Fig. 4.1(b) show the block dia-

gram and the quantum circuit of the proposed HNF gate, respectively. Table 4.2

proves the reversibility of the proposed HNF gate. The propagation delay of HNF

gate is 5∆ and quantum cost of this gate is 5 (Fig. 4.1(b)).

Fig. 4.2(a) shows the Proposed design of the reversible D-Latch using the HNF

gate. By putting A = CLK, C= D (Data-input), and D= 0, the proposed HNF

Chapter 4 Reversible Field Programmable Gate Array 63

!

"

#

$%&% " # !

'%&% # "

(%&% " #

)&

 !"

#$%&

(a) Block diagram

'(' '

!

"

#

$%&% " # !

'%&% # "

(%&% " #

)&

(b) Quantum circuit

Fig. 4.1: The proposed reversible HNF gate.

 !"

#

$

%& !"

#$%& -

(a) D-Latch with only output Q

 !"

#

$

%& !"

#$%&

*+
,

-

%

(b) D-Latch with outputs Q and Q′

Fig. 4.2: The proposed design of D-Latch.

gate works ad the D-Latch, which produce two copies of Q output (second and

fourth output of HNF gate), one of these outputs acts as the feedback of the latch

and other is the Q+ output (current status). This circuit requires no other gate to

avoid the fan-out. Moreover, this design of D-Latch has only one HNF gate. Thus,

the propagation delay of the proposed D-Latch is 5∆, and it has five quantum cost.

The design in Fig. 4.2(a) does not produce the complement output Q′ which we

often require in sequential circuits [54]. For this reason, we propose a novel D-

Latch (that has both the outputs Q and Q′) is with the one HNF gate and the

one Feynman gate (Fig. 4.2(b)). In this design, the Feynman gate generates the

complement of the output Q.

Chapter 4 Reversible Field Programmable Gate Array 64

Table 4.2: Truth table of the proposed reversible HNF (Hasan-Naz-Flip-Flop)
gate

Input Output
A B C D P = A Q = A′C ⊕ AB R = A⊕B ⊕ C S = A′C ⊕ AB ⊕D
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 1 1 1
0 0 1 1 0 1 1 0
0 1 0 0 0 0 1 0
0 1 0 1 0 0 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 1 1 0 1 1
1 0 1 0 1 0 0 0
1 0 1 1 1 0 0 1
1 1 0 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0

Lemma 1. A reversible D-Latch with the simultaneous Q and Q’ requires 2 gates,

2 garbage outputs, 6 quantum cost, and 6∆ delay, respectively, where ∆ denotes the

unit delay. �

Example 21. The proposed design of D-Latch in Fig. 4.2(b) (with simultaneous

Q and Q’) has two gates, one is HNF gate and another is FG gate. HNF has 5

quantum cost and Feynman gate has one quantum cost. Therefore, the proposed

D-latch has total 6 quantum cost. Additionally, delay of HNF is 5∆ and delay of

FG is 1∆. Serial arrangement of these two gates causes delay in total 6∆.

The characteristics table of D-Latch (Table 4.1) tells us that, for the four in-

puts combinations (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 0, 1), the output Q+ is 0, and

the other four inputs combinations (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 0, 1), the out-

put Q+ is 1. To maintain the reversibility, there are at least log24 = 2 additional

outputs (garbage outputs). Between the two Q+ outputs of the D-Latch (one is

Chapter 4 Reversible Field Programmable Gate Array 65

from HNF gate, other is from Feynman gate), one acts as feedback (Fig. 4.2(b)).

Hence, the proposed D-Latch produces no additional garbage output.

4.6.2 Proposed Reversible Master-Slave Flip-Flop

Fig. 4.3(a) shows the proposed design of Master-Slave D-Flip-Flop and Fig. 4.3(b)

shows the proposed design of write-enable Master-Slave D-Flip-Flop. The method-

ology of using two latches, one as Master and other as Slave, has been used to

design the Master-Slave reversible Flip-Flops. Additionally, a Toffoli gate is used

to design write-enable Master-Slave D-Latch.

 !"

#

$

 !"

#$%&

#

 !"

#$%&

%&'()

(a) Master-Slave D-Flip-Flop

 !"

#

 !"

#$%&

#

 !"

#$%&

$%&'(
$

#

)

'#

*

(b) Write-enable Master-Slave D-Flip-Flop

Fig. 4.3: The proposed design of reversible Master-Slave D-Flip-Flops

Lemma 2. A reversible Master-Slave Flip-Flop can be designed with 3 gates and

3 garbage outputs. It also has 11 quantum cost, and 11∆ delay, where ∆ denotes

the unit delay. �

Example 22. The proposed design of Master-Slave Flip-Flop (Fig. 4.3(a)) has

three gates: two HNF gates and one NOT gate. HNF has 5 quantum cost and

Chapter 4 Reversible Field Programmable Gate Array 66

NOT gate has one quantum cost, as a result, the proposed Master-Slave Flip-Flop

has total 11 quantum cost. Additionally, delay of HNF is 5∆ and delay of NOT is

1∆. These two gates are arranged in serial and hence, their delay is in total 11∆.

The arrangement of these three gates causes three garbage outputs.

Lemma 3. A reversible write-enable Master-Slave Flip-Flop can be designed with

4 gates, 3 garbage outputs, 16 quantum cost and 16∆ delay, respectively, where ∆

denotes the unit delay. �

Example 23. From the Fig. 4.3(a), it can be viewed that proposed design of write-

enable Master-Slave Flip-Flop has four gates, two HNF gates, one Toffoli gate and

one NOT gate. HNF has 5 quantum cost, Toffoli gate also has 5 quantum cost and

NOT gate has one quantum cost, as a result, the proposed write-enable Master-

Slave Flip-Flop has total 16 quantum cost. Additionally, delay of HNF is 5∆,

delay of Toffoli is 5∆ and delay of NOT is 1∆. These three gates are arranged

in serial, and hence, their delay is in total 11∆. It can also be viewed that the

arrangement of these three gates causes three garbage outputs.

4.6.3 Proposed Reversible Decoder

Architecturally a Decoder is a logic circuit which has n input lines for n bits and

2n output lines. Only one n-bit combination remains activate at a time.

There exists several designs of the reversible decoder in the literature [51, 52, 96,

97, 98]. Though the design in [96] undergoes from less delay, the requirement of

the number of gates is high and also produces a large number of garbage outputs

and overheads massive quantum cost. The other designs [51, 97, 98] also have this

type of paradigm. To solve this problem and design the decoder circuit in the

efficient way, a new 4 × 4 reversible gate HND (Hafiz-Naz-Decoder) is proposed

which requires 7 quantum cost and causes 7 unit in delay measurement. Table 4.3

proves the reversible property of the proposed HND gate. The block diagram of

the proposed reversible HND gate and its quantum circuit are shown in Fig. 4.4(a)

Chapter 4 Reversible Field Programmable Gate Array 67

and Fig. 4.4(c), respectively.

&'%

()*+

"

,

'

-./. !" ,

0./. "! ,

1./. " ,

2./. "! , " '

(a) Block diagram

 !"!

"

#

$

 "!

 !"

 "

%&'

()*+

(b) HND as 2-to-4 decoder

 !

"

#

$

%

 !" ,

 "! ,

 " ,

 "! , " '

(c) Quantum circuit

Fig. 4.4: The proposed reversible HND gate and its application

A 2-to-4 decoder must generate four logical AND functions A′B′, A′B, AB′, AB.

Setting C = 0 and D = 1, the proposed reversible 2-to-4 decoder gate (HND gate)

can generate all four necessary AND functions textcolorblackwithout generating

any garbage outputs which are shown in Fig. 4.4(b). Thus, the proposed reversible

2-to-4 decoder has one gate and 0 (Zero) garbage output.

The proposed HND gate is constructed by using two quantum V gates, one quan-

tum V + gate and five quantum CNOT gates. The arrangement of these gates

results in the proposed reversible 2-to-4 decoder cost 7 and produces delay 7∆

which is least in the literature.

For the higher order decoders such as 3-to-8 and above we use the HND and

Fredkin gates. The architecture of the proposed 3-to-8 reversible decoder is in

Chapter 4 Reversible Field Programmable Gate Array 68

Table 4.3: Truth table of the proposed reversible HND (Hasan-Naz-Decoder)
gate

Input Output
A B C D P = AB ⊕ C R = A′B ⊕ C Q = AB′ ⊕ C S = AB′ ⊕B ⊕ C ⊕D
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 1 1 1 1
0 0 1 1 1 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 1 0 0 1 0 0 1
1 1 0 1 1 0 0 0
1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 1

Fig. 4.5(a). An algorithm (Algorithm 3) is derived to illustrated the design pro-

cedure of the proposed n-to-2n reversible decoder. In line 5 of the algorithm, the

first two control bits (S0, S1) are assigned to the HND gate. Line 8 returns the

outputs for 2-to-4 decoder. Then in line 10, higher order input is assigned to the

Fredkin gates through a recursive call to the previous reversible decoder for n > 2

and lines 17,18 returns the outputs. The complexity of this algorithm is O(n),

where n is the number of data bits and n > 2.

According to Algorithm 3, we design the proposed n-to-2n reversible decoder

(Fig. 4.5(b)). Theorem 4.6.1-Theorem 4.6.4 describe the properties of the pro-

posed reversible decoder.

Chapter 4 Reversible Field Programmable Gate Array 69

Algorithm 3: The proposed algorithm to construct the reversible n-to-2n decoder

RD(n)

Data: Data input set S(S0, S1, ..., Sn−1)

Hafiz-Naz Decoder(HND) gate and Fredkin gate(FRG)

Result: n-to-2n reversible decoder circuit (n > 2) with gate count RD(n)

1 begin initialization;

2 Let, i = input, o = output , Gcount = No. of gate

3 Assign Gcount = 0;

4 for j ← n to 2 do

5 if j = 2 then

6 Sj−2 → i1.HND, Sj−1 → i2. HND, 0→ i3. HND, 1→ i4.HND;

7 Gcount = 1 ;

8 return Gcount, HND.o1, HND.o2, HND.o3 and HND.o4 → desired

output ;

9 else

10 Sj → i1. FRG ;

11 0→ i3. FRG;

12 call RD(j-1)

13 RD.oj−1 → i2.FRGj ;

14 Gcount+ = 2j ;

15 end if

16 end for

17 return FRGj.o3 and FRGj.o2;

18 return Gcount ;

19 end

Chapter 4 Reversible Field Programmable Gate Array 70

 !"

 !"

 !"

 !"

#

#

#

#

$

%&'(&)*

!+,+-./01+*

2+3(4+-

56

5 6

56

5 6

5

6

#

7

!"#

!"#

! "#

! "#

!" #

!" #

! " #

! " #

$%

(a) 3-to-8 decoder

 !"

 !"

 !"

 !"

#

#

#

#

 !

 "#$
!

%

&%

&'

&(

&"#'

&"#$

&"#%

&"

)"#$

$%&'(&)*&+
$%&'(

!,-,./012,3

4,5*6,.

!

 %

)!

)"#'

)%

*

 "#%

&$

(b) n-to-2n decoder

Fig. 4.5: The designs of the proposed reversible decoders

User
Textbox
2n

User
Textbox
2n-1

Chapter 4 Reversible Field Programmable Gate Array 71

Theorem 4.6.1. An n-to-2n reversible decoder requires at least 2n − 3 reversible

gates, where, n denotes the number of bits and n > 2.

Proof. Fig. 4.15 shows that a 2-to-4 decoder uses only one HND gate.

Thus, the number of gate =1 (22 − 3) and the theorem holds for n=2.

Then, Fig. 4.16 shows a 3-to-8 decoder has one HND gate and 4 Fredkin gates,

also holds the theorem ((23 − 3 = 5)).

Basically, the Fredkin gate generates two different terms by appending (either the

normal form or the complement form of) a new variable with its input term.

Hence, for n-to-2n reversible decoder, 2n/2 = 2n−1 Fredkin gates are added to

n− 1-to-2n−1 reversible decoder.

Summing up all the number of gate we get,

1 + 4 + 8 + · · ·+ 2n−1

= 1 + 2 + 4 + 8 + · · ·+ 2n−1-2

=2n − 1− 2

=2n − 3

Therefore, an n-to-2n reversible decoder requires at least 2n − 3 reversible gates.

(Proved)

Theorem 4.6.2. An n-to-2n reversible decoder produces at least n - 2 garbage

outputs, where n denotes the number of bits and n > 2.

Proof. When n is 2, a 2-to-4 reversible decoder is the HND gate (Algorithm 3).

The 2-to-4 decoder circuit (HND gate) has 4 primary outputs (O0, O1, O2, O3) but

2 inputs (S0, S1). Therefore, the 2-to-4 reversible decoder should have at least 2

constant inputs to preserve the reversibility.

Now, in the proposed 2-to-4 reversible decoder, there are 2 constant inputs and 2

primary inputs, i.e., the total inputs are 4 and all 4 outputs are primary outputs.

Thus, there is no garbage output, which holds Theorem 4.6.2 for n = 2.

Chapter 4 Reversible Field Programmable Gate Array 72

For the higher order decoder, with the increasing number of bits by one, only

one garbage output is added each time.

Thus, the claim in Theorem 4.6.2 satisfies for all n.

Therefore, an n-to-2n reversible decoder produces at least n - 2 garbage outputs.

(Proved)

Theorem 4.6.3. An n-to-2n reversible decoder has at least 5(2n− 4)+7 quantum

cost, where, n denotes the number of bits and n > 2.

Proof. The proposed reversible HND gate acts as a 2-to-4 decoder which requires

7 quantum cost i.e, 5(22 − 4) + 7 = 7.

Thus, the theorem holds for 2-to-4 decoder, where n = 2.

We know, an n-to-2n reversible decoder requires at least 2n−3 reversible gates.(4.6.1)

Among the gates one is HND gate and other (2n−4) are Fredkin gate. Each Fred-

kin gate has 5 quantum cost.

Hence, The total quantum cost of an n-to-2n reversible decoder = 5(2n − 4) + 7.

Therefore, an n− to−2n reversible decoder requires at least 5(2n−4)+7 quantum

cost. (Proved)

Theorem 4.6.4. An n-to-2n reversible decoder has (7(2n−4)+7)∆ delay, where,

n denotes the number of bits and n > 2, ∆ denotes the unit-delay.

Proof. The proposed reversible HND gate acts as a 2-to-4 decoder which has 7∆

delay (Fig.4.9 (c)) which is equivalent to 5(22 − 4) + 7.

Thus, the theorem holds for 2-to-4 decoder, where n = 2.

We know, an n-to-2n reversible decoder requires at least 2n−3 reversible gates(Theorem 4.6.1).

Among the gates one is HND gate and other (2n−4) are Fredkin gate. Each Fred-

kin gate has 5∆ delay.

The HND gate and all the Fredkin gate of the proposed n − to − 2n reversible

decoder are in serial (4.5), i.e, the critical path must pass through each of these

gates; as a result, the total delay of an n-to-2n reversible decoder = 5(2n− 4) + 7.

Chapter 4 Reversible Field Programmable Gate Array 73

Therefore, an n− to−2n reversible decoder requires at least 5(2n−4)+7 quantum

cost. (Proved)

4.6.4 Proposed Reversible Random Access Memory

This section presents the construction procedure and the complexities of the pro-

posed reversible Random Access Memory.

The Random Access Memory (RAM), architecturally, is a two-dimensional array

of individual memory units. More specifically, there are 2n rows and m columns,

where each row contains m write-enable Master-Slave Flip-Flops. A decoder is

needed to address these rows. Section 4.6.3 describes the proposed decoder,

whereas, Section 4.6.2 describes the proposed the individual memory unit (the

write-enable Master-Slave Flip-Flops). The proposed 2n × m RRAM also needs

Toffoli gates and Feynman gates. The proposed architecture of reversible RAM

follows the reversible RAM in [99] as a base. The working principle of the pro-

posed reversible RAM is as follows:

In the 2n × m RRAM, n is the number of control bits of the proposed decoder

(configured HND gate) and 2n decoded-outputs are the row selection bits. For a

particular combination of n input variables of the configured HND gate, only one

out of 2n outputs is active at a time. This active output is propagated through

the Toffoli gate and selects only one row of the array of memory units. The write

bit W specifies whether there is a read or a write operation. When W= 1 or High,

then the m data-inputs D0 to Dm−1 are written in the m Flip-Flops of the selected

row.

When W= 0 or Low, then the m outputs Q0 to Qm−1 are the previously stored

bits in the Flip-Flops, and they are read from the m Flip-Flops of the selected row.

Chapter 4 Reversible Field Programmable Gate Array 74

The usage of Feynman gates eliminates the fan-out problem. These gates also

perform the Ex-OR operations of the outputs of the Flip-Flops in a column.

 !"#"$%&'''

()*")+
(

,%-%!$./0%'

&%1"&%!

23

23

23

43

 !"#"$%&'

5644

7
89

43

 !"#"$%&'

5644

 !"#"$%&'

5644

43

43

 !"#"$%&'

5644

7
87

43

 !"#"$%&'

5644

43

 !"#"$%&'

5644

43

43

 !"#"$%&'

5644

7
8:)9

43

 !"#"$%&'

5644

 !"#"$%&'

5644

43

 ! " #$"

%%%
%%%

%%%
%%%

%%%
%%%

%%%
%%%

%%%
%%%

%%%
%%%

%%%

%%%

%%%

%%%

%%%

67

69

6()9

%%%

7

7

7 7

7

7

7

%%%

;7

;9

;+
('

) 9

<!.*%'%(=/0%''

/.*

43 43

%%%

43

%%%&
'(
)
*
'+
,
-,
.
/0
)
1
'2
0/
+

3'20/'45/5''''''''''''''''''''''''

43

7

43

7

Fig. 4.6: The Proposed architecture of reversible RAM for Plessey FPGA.

The construction procedure of the proposed reversible Random Access Memory

for FPGA presented in Algorithm 4 leads the construction of the circuit given in

Fig. 4.6. Theorem 4.6.5 - Theorem 4.6.8 define the characteristics of the proposed

reversible RAM.

Theorem 4.6.5. A reversible 2n×m bit RAM for Plessey Logic Block requires at

least 2n(6m+2)− 2m− 3 garbage output, where n is the number of control bits of

decoder and m is the number of bits of input data of RRAM.

Proof. Proposed reversible 2n ×m RAM consists of an n× 2n decoder, 2n Toffoli

gates, 2n.m write-enable Master-Slave D-Flip-Flops and a 2m(2n − 1) Feynman

gates (to copy the data-inputs and to propagate the flip-flops outputs).

Summing up the individual number of gates of these components, we can get the

Chapter 4 Reversible Field Programmable Gate Array 75

Algorithm 4: The proposed algorithm to construct the proposed reversible 2n×m
bit RAM
Data: proposed n-to-2n reversible decoder, proposed reversible MSFF, Toffoli

gate (TG) and Feynman gate(FG)
Result: 2n ×m bit RAM

1 begin Take one n× 2n reversible decoder, RD(n) ;
2 Let, I = input, O =output
3 for i← 1 to 2n do
4 if i = 1 then
5 W ← I1.TGi ;
6 else
7 O1.TGi−1 ← I1.TGi;
8 end if
9 Oi.RD ← I2.TGi For each output Oi of the decoder ;

10 0← I3.TGi;
11 for j ← 0 to m− 1 do
12 Take one reversible write enable Master-Slave D-Flip-Flop MSFFj;
13 Dj →MSFFj , primary data input of the RAM;
14 if j = 1 then
15 O2.TGj → ICP .MSFFj , CP= Clock input of Flip-Flop;
16 O3.TGj → IW .MSFFj, W= write enable bit;

17 else
18 OCP .MSFFj−1 → ICP .MSFFj;
19 OW .MSFFj−1 → IW .MSFFj;

20 end if

21 end for

22 end for
23 end

total number of gate for the 2n ×m RRAM.

A n×2n decoder produce 2n−3 gates (Theorem 4.6.1), where n denotes the num-

ber of control bits of the decoder and each reversible write-enable Master-Slave

D-Flip-Flops requires 4 gates (Lemma 2). Summing up the number of gates, we

get the total number of gates

= 2n − 3 +2n+ 4.2n.m + 2m.(2n − 1)

= 2n.(6m+ 2)− 2m− 3

Chapter 4 Reversible Field Programmable Gate Array 76

Therefore, A reversible 2n ×m bit RAM for Plessey Logic Block requires at least

2n.(6m+ 2)− 2m− 3 reversible gate. (Proved)

Theorem 4.6.6. A reversible 2n×m bit RAM for Plessey Logic Block produce at

least 4.2n.m+ n−m− 1 garbage output, where n is the number of control bits of

decoder and m is the number of bits of input data of RRAM.

Proof. Proposed reversible 2n ×m RAM consists of an n× 2n decoder, 2n Toffoli

gates, 2n×m write-enable Master-Slave D-Flip-Flops and a 2m(2n− 1) Feynman

gates (to copy the data-inputs and to propagate the flip-flops outputs).

Summing up the individual production of garbage output of these components we

can get the total number of garbage outputs for the 2n ×m RRAM.

A n×2n decoder produce n−2 garbage outputs (Theorem 4.6.2), where n denotes

the number of control bits of the decoder.

Each reversible write-enable Master-Slave D-Flip-Flops requires 3 garbage outputs

(Lemma 2).

And 2m.(2n−1) Feynman gates produce one (2n−1).m garbage outputs (Fig. 4.6).

Hence, the total number of garbage outputs

= n− 2 + 1+ 4.2n.m + (2n − 1).m

= 4.2n.m+ n−m− 1

Therefore, A reversible 2n×m bit RAM for Plessey Logic Block produces at least

4.2n.m+ n−m− 1 garbage outputs.(Proved)

Theorem 4.6.7. A reversible 2n×m bit RAM for Plessey Logic Block has at least

2n.(10+18m)−(2m+13) quantum cost, where n denotes the number of control bits

of decoder, m denotes the number of bits of input data of RRAM and ∆ denotes

the unit delay.

Proof. Proposed reversible 2n ×m RAM consists of an n× 2n decoder, 2n Toffoli

gates, 2n.m write-enable Master-Slave D-Flip-Flops and a 2m(2n − 1) Feynman

gates (to copy the data-inputs and to propagate the flip-flops outputs).

Chapter 4 Reversible Field Programmable Gate Array 77

By summing up the individual quantum cost of these components, we can get the

total quantum cost for the 2n ×m RRAM.

A n× 2n decoder has 5(2n − 4) + 7 quantum cost (Theorem 4.6.3), whereas, each

Toffoli gate has five (5) quantum cost and each Feynman gate has one (1) quantum

cost.

Each reversible write-enable Master-Slave D-Flip-Flops has 16 quantum cost (Lemma 2).

Thus, the total quantum cost

= 5(2n − 4) + 7 + 5.2n + 16.2n.m + 2m(2n − 1)

= 2n(10 + 18m)− (2m+ 13)

Therefore, A reversible 2n × m bit RAM for Plessey Logic Block has at least

2n(10 + 18m)− (2m+ 13) quantum cost.(Proved)

Theorem 4.6.8. A reversible 2n×m bit RAM for Plessey Logic Block has at least

(2n(6+m) + 15m− 12) ∆ delay, where n is the number of control bits of decoder,

m is the number of bits of input data of RRAM and ∆ denotes unit delay.

Proof. For delay calculation, we need to setup the critical path of the RRAM.

The last write-enable Master-Slave D-Flip-Flops (in 2nth Row and mth Column) is

responsible for read of write the last bit of input data. For write a bit to (or read

a bit from) this memory unit, we must go through an n × 2n decoder, 2n Toffoli

gates, m write-enable Master-Slave D-Flip-Flops, and 2m(2n− 1) Feynman gates.

An n×2n decoder has 5(2n−4)+7∆ delay (Theorem 4.6.4), whereas, each Toffoli

gate has delay of 1∆ and each Feynman gate has delay of 1∆.

In addition, each reversible write-enable Master-Slave D-Flip-Flop has delay of

16∆ (Lemma 2).

Thus, the total delay

= (5(2n − 4) + 7 + 5.2n + 16.m + 2m(2n − 1)) ∆

= (2n(6 +m) + 15m− 12) ∆

Therefore, A reversible 2n×m bit RAM for Plessey Logic Block has at least delay

of (2n(6 +m) + 15m− 12) ∆.(Proved)

Chapter 4 Reversible Field Programmable Gate Array 78

4.6.5 Proposed Reversible Multiplexer

This section presents the proposed design of the reversible multiplexer.

Multiplexer causes transmission of a large number of information units over a

smaller number of channels. Architecturally, a digital multiplexer is a logic circuit

that puts one out of several inputs to a single output. A set of select inputs con-

trols the inputs. Generally, a multiplexer has m inputs and n select input, where,

m = 2n.

A 2:1 multiplexer is the smallest unit of the proposed architecture of reversible

multiplexer. The characteristics function of a multiplexer is s′0I0⊕s0I1, which can

be determined by several gates [49, 50, 52, 100]. In this thesis, Modified Fredkin

gate is used as a 2:1 reversible multiplexer as it has the least quantum cost in the

literature.

Let, I0 and I1 are the inputs and S0 is the select input of a 2:1 multiplexer. When

S0=0, then I0 input transmit to the output Y and when S0=1, then I1 input trans-

mit to the output Y. Fig. 4.7 shows the architecture of reversible 2:1 multiplexer

by using Modified Fredkin gate.

The quantum cost and delay of this reversible 2:1 multiplexer is 4 and 4∆, respec-

tively. Moreover, the number of garbage output is 2.

I1

I0

 !"#$#%"

&'%"(#)

*+,%

-./.01 I0 !I1

 !

Fig. 4.7: Modified Fredkin gate as reversible 2:1 multiplexer.

Chapter 4 Reversible Field Programmable Gate Array 79

Table 4.4: Function of S0 and S1 select lines

S0 S1 Output (O)
0 0 I0
0 1 I1
1 0 I2
1 1 I3

 $

I0

I1

 !"#

I2

I3 !"#

!"

 !"#

#$

#$

(a) 4:1 reversible multiplexer.

 !"#

I n/2-1

I0

!"#

$%#%

&'(')*+,-'%

./0

!"

 .1&2

#

In/2

In-1

!"#

$%#%

&'(')*+,-'%

./0

 !"#

%&$

(b) 2n : 1 multiplexer.

Fig. 4.8: the proposed designs of reversible multiplexers.

The reversible 4:1 multiplexer (22 : 1 multiplexer) has four input, two select in-

puts, and one output. Fig. 4.8(a) shows the proposed design of reversible 4 : 1

multiplexer, where I0, I1, I2, and I3 are the inputs, S0 and S1 are the select inputs.

The bit combination of select inputs controls the function of 4 : 1 multiplexer (Ta-

ble 4.4). Three Modified Fredkin gates are used in this design (4.8(a)). So, the

quantum cost of the proposed reversible 4 : 1 multiplexer is 12 (3 × 4) and delay

of the proposed reversible 4 : 1 multiplexer is 12 (3× 4) ∆, respectively, whereas,

the garbage output is 3.

User
Textbox
I2n-1-1

User
Textbox
I2n-1

User
Textbox
I2n-1

Chapter 4 Reversible Field Programmable Gate Array 80

As the consequence of the design of reversible multiplexers, a 2n : 1 multiplexer

can be constructed using two 2n−1 : 1 reversible multiplexers and one 2:1 reversible

multiplexer shown in the Fig. 4.8(b). The properties of 2n−1 : 1 reversible multi-

plexer are given in Lemma 4.

Lemma 4. A reversible 2n : 1 multiplexer for Plessey Logic Block can be designed

with 2n−1 gate which produces 2n+n−1 garbage outputs. It also requires 4(2n−1)

quantum cost and delay of 4(2n − 1)∆. Where, n denotes the number of selection

input, and ∆ denotes the unit-delay.

4.6.6 Proposed Reversible NAND unit

The rest of the components of Plessey Logic Block is a NAND unit. The reversible

Peres gate is ideal to construct a NAND unit. The Peres gate in Fig. 4.9 acted as

NAND unit.

!

"#$#

%#$# !

&

"'(')

*#$#+ !,-

Fig. 4.9: The proposed reversible NAND unit of Plessey Logic Block.

4.7 Implementation of the Reversible Plessey Logic

Block

In Chapter 2, the block diagram of the Plessey Logic Block is given (Fig. 2.19). Ar-

chitecturally, the Field Programmable Gate Array is a set of logic blocks connected

with programmable wires. Each end of a wire segment typically has a switch at-

tached. The routing resources such as track and routing channels are responsible

Chapter 4 Reversible Field Programmable Gate Array 81

to route among the blocks. In each of the logic block, there are multiplexer, con-

figurable RAM, NAND unit, and D-Latch. The multiplexers are controlled by the

RAM cells and the outputs of two 4:1 multiplexers are assigned as the inputs to

the NAND unit. The output of NAND unit and the configurable bit from the

RAM go to D-Latch. The inputs to each multiplexer are connected to either the

output of the previous NAND Gate in the row or the output of the NAND gate

above or below this logic block, whichever is closer, the other blocks are connected

similarly [101].

In the prior sections, proposed reversible architectures for the logic elements (re-

versible Multiplexer, reversible RAM, reversible D-Latch and reversible NAND

unit) of Plessey Logic Block of FPGA are described. In this section, an algorithm

(Algorithm 5) is defined to combine all the components of the logic block which

is shown in Fig. 4.10.

The general properties of this proposed circuit are illustrated in Theorem 4.7.1-

Theorem 4.7.3.

Theorem 4.7.1. A reversible Plessey Logic Block of FPGA requires at least (rgt+

9) reversible gates, where, rgt denotes the number of gates required to design the

RRAM.

Proof. Plessey Logic Block consists of an 8:2 multiplexer, a D-Latch, a NAND

unit and a 2n ×m bit RAM. Summing up the individual requirement of gates of

these components we can get the total requirement of gate for the logic block. A

2n: 1 multiplexer needs 2n − 1 gates (Lemma 4), where n denotes the number of

selection bits of the multiplexer. Putting n = 2, we get that a 4:1 multiplexer

requires 3 gates. Thus an 8:2 multiplexer (two 4:1 multiplexer) needs 3 + 3= 6

gates.

The reversible D-Latch requires 2 reversible gates (Lemma 1) and the RRAM

requires 2n(6m+ 2)− 2m− 3 reversible gates (Theorem 4.6.5).

Let, 2n(6m+ 2)− 2m− 3 = rgt.

A NAND unit requires a single Peres gate.

Chapter 4 Reversible Field Programmable Gate Array 82

 !"#"$%&'

(%)%!$*+,%'

-.-/'01*2

 !"#"$%&'

(%)%!$*+,%'

/345267

 !"#"$%&'(%)%!$*+,%

(.8

9
':
1
2%
!'
6
"
1
1
%
6
2*
"
1
'4
*1
%
$

!"
#
"
$
%
&
'(
%
)
%
!$
*+
,%
'

9
32
"
3;
''
8
0
,2
*#
,%
<
%
!

Fig. 4.10: Proposed Reversible Plessey Logic Block of FPGA

Hence, a Plessey Logic Block can be constructed with at least (rgt + 6 + 2 + 1) =

(rgt + 9) reversible gates.

Algorithm 5: The proposed algorithm to construct the proposed reversible

Plessey Logic Block of FPGA

Data: 8-bit interconnection

Result: Q, which will be sent to the next logic block

1 begin:

2 Take selection bits from RRAM to 8:2 multiplexer.

3 Multiplex the select bits of line 2 by 8:2 multiplexer.

4 Set i1.P eres← o1.multiplexer, i2.P eres← o2.multiplexer, i3.Peres← 1

5 Set i1.D − Latch← o1.Peres, i1.D − Latch← o1.P eres Set i1.D − Latch← one

control bit from.RRAM which will make the D-Latch transparent if the latch is

not needed

6 return Q;

7 end

Theorem 4.7.2. A reversible Plessey Logic Block of FPGA produces at least (rgb+

13) garbage outputs, where rgb denotes the number of garbage outputs generated

from RRAM.

Chapter 4 Reversible Field Programmable Gate Array 83

Proof. Likewise Theorem 4.7.1 we can also prove the Theorem 4.7.2 by cumulating

the garbage outputs of the components of the logic block.

A 2n: 1 multiplexer needs 2n+n−1 garbage (Lemma 4), where n is the number of

selection bits of the multiplexer. Putting n= 2, we get a 4:1 multiplexer produces

5(= 22 + 2− 1) garbage outputs. Thus an 8: 2 multiplexer (two 4:1 multiplexer)

needs 10 garbage outputs. The reversible D-Latch can be designed by 2 garbage

outputs (Lemma 1), NAND unit(3×3 Peres gate) produces 1 garbage and at least

4.2n.m+ n−m− 1 garbage outputs are generated by the RRAM (Lemma 4.6.6).

Let 4.2n.m+ n−m− 1 = rgb.

Hence, the proposed Plessey Logic Block produces at least (rgb + 10 + 2 + 1) =

(rgb + 13) garbage outputs. (Proved)

Theorem 4.7.3. A reversible Plessey Logic Block requires at least (rqc+34) quan-

tum cost, where rqc be the quantum cost of RRAM.

Proof. A 4:1 multiplexer requires three Modified Fredkin gate, each of which has

4 quantum cost.

Thus an 8: 2 multiplexer (two 4:1 multiplexer) needs 24(= 2 × 3 × 4) quantum

cost.

The reversible D-Latch (with Q and Q’) has 6 quantum cost (Lemma 1) and the

RRAM has 2n(10 + 18m)− (2m+ 13) quantum cost (Lemma 4.6.7).

Let, 2n(10 + 18m)− (2m+ 13) = rqc.

Hence, along with a NAND unit which is a single Peres gate of 4 quantum cost,

the proposed logic block has at least (rqc +24+ 6+ 4) = (rqc +34) quantum cost.

(Proved)

4.8 Simulation and Performance Evaluation

In this section, the proposed reversible HND gate, HNF gate and the proposed

reversible components of Plessey Logic Block are simulated and the performance

Chapter 4 Reversible Field Programmable Gate Array 84

is analyzed to discover the efficiency of the proposed components.

4.8.1 Simulation Environment

 !"#$%&'!(!)"#*+!&,#),-#.&

/#.0&12""&.)2%"#".3)&#%& 456

7"&.0!&,381#+2.#3%&

"-,,!""9-+:

4!+!,.&.0!&93-%;)<

=,83">?@)-+A

9)38&B#,)3/#%;

5381#+!&.0!&(!)#+3$&9#+!

4#8-+2.!&.0!&9#+!

=-"#%$&8#,)3/#%;A

CD

E!.&13/!)
4!+!,.&1)31!).#!"

E!.&F)!2

CD

G!"

G!"

D3

'
!
H;
!
"
#$
%
&'
!
(
!
)"
#*
+!
&,
#)
,
-
#.
&

/
#.
0
&1
2
"
"
&.
)2
%
"
#"
.3
)&
#%
&
4
5
6

ICE7D

42(!&.0!&(!)#+3$&9#+!

4#8-+2.!&.0!&9#+!

=-"#%$& 456A

CD

E!%!)2.!&

J2(!93)8"

Fig. 4.11: Simulation flow to get the waveforms, the area and the power of the
proposed reversible components.

The simulations of the proposed circuits are done using DSCH 3.5 [93] and Mi-

crowind 3.5 [94] softwares on a computer, which has the Intel(R) Core(TM) i7 CPU

with 2.10 GHz Clock Speed and 2.00 GB RAM. We designed the reversible circuits

with the pass transistors, simulated them to get the waveforms in DSCH. Tran-

sistor implementation of the proposed circuits followed the procedure proposed

in [74]. Then, Microwind was used to get the power and area. The simulation flow

used in this work is shown in Fig. 4.11.

4.8.2 Simulation Results

The simulations of the proposed components (reversible D-Latch, reversible write

enable Master-Slave Flip-Flop, reversible Multiplexer, reversible 2-to-4 Decoder

Chapter 4 Reversible Field Programmable Gate Array 85

and reversible 3-to-8 Decoder) are presented in Fig. 4.12 - 4.16, respectively.

The simulation result of the proposed reversible D-Latch is shown in Fig. 4.12,

where CLK indicates clock input, D is for data input, Q is the non-complementary

output of D-Latch, and the Q+ notation denotes the negation of Q. Fig. 4.12 shows

that when CLK= 1, the value of D becomes the output Q. When CLK= 0, the

latch maintains its previous state.

Fig. 4.12: Simulation of the proposed reversible D-Latch.

Fig. 4.13: Simulation of the proposed reversible write enable Master-Slave
Flip-Flop.

Then, Fig. 4.13 shows the simulation result of the write-enable Master-Slave Flip-

Flop, where CLK, D, Q, and Q+ denotes the same as the corresponding notations

of D-Latch. Additionally, W denotes the write bit. When W= 1, depending on

the value of CLK, the value of Q varies like the Q of D-Latch discussed in the

previous paragraph.

In addition, the simulation result of reversible 4:1 multiplexer is drawn in Fig. 4.14,

where based on the combination of two selection bits (S1 and S0), the output

denoted by Omux is assigned any of the four inputs (I0, I1, I2, and I3) which proves

the correctness of the design.

Chapter 4 Reversible Field Programmable Gate Array 86

Finally, the simulation result of the 2-to-4 Decoder and 3-to-8 Decoder are shown

in Fig. 4.15 and 4.16. Based on the binary combination of two control bits (s1 and

s0) of 2-to-4 Decoder, the 4 outputs (denoted by O0, O2, . . ., O3) are generated

which proves the exactness of the design. For example, when S0 = 0, and S1 = 1

, the output O1 is activated. Similarly, based on the binary combination of three

control bits (S2, S1 and S0) of 3-to-8 Decoder, the eight outputs denoted by (O0, O1,

. . ., O7) are generated which proves the correctness of the design. For example,

when S0 = 1, S1 = 0, and S2 = 0, the output O4 is activated.

Fig. 4.14: Simulation of the proposed reversible 4 : 1 Multiplexer.

Fig. 4.15: Simulation of the proposed reversible 2-to-4 Decoder.

Fig. 4.16: Simulation of the proposed reversible 3-to-8 Decoder.

Chapter 4 Reversible Field Programmable Gate Array 87

4.8.3 Performance Metrics

We consider six criteria as the metrics of the performance analysis of reversible

FPGA. Brief description of these metrics are given below.

• Gates: Reversible gates are used to design a specific circuit. Accumulating

all the gates and counting the total number of gates will be found. This is

a performance metric of reversible circuits. Less number of required gate

certifies the high performance of the circuit.

• Garbage outputs: Garbage output is measured by counting the unused out-

put of a circuit. By accumulating all the garbage outputs, we can find the

total number of garbage outputs. The minimum value of garbage outputs

proves the efficiency of the design.

• Quantum Cost: It is one of the primary performance metrics of the reversible

circuit. The quantum cost of a reversible gate is the cumulative number

of NOT , Controlled-V , Controlled-V +, and CNOT gates required in its

implementation.

• Delay: For delay calculations in the reversible circuits, the reversible gates

in the critical path are replaced with their corresponding quantum gates and

the total delay of the critical path determines the delay of the circuit. The

delay of each 1×1 or 2×2 reversible gate is taken as unit-delay and denoted

as ∆.

• Area: The area of a logic circuit means the total area accumulated by the

individual circuit element. Microwind [94] can be used to calculate the area

of each individual element. As an example, if a circuit consists of n gates

with area A1, A2,..., An, then the area (A) of that circuit is as follows-

A =
n∑

i=1

Ai (4.1)

Chapter 4 Reversible Field Programmable Gate Array 88

Using Microwind [94], we can find the area of a 4:1 multiplexer (which has

three Modified Fredkin gate). The area of a Modified Fredkin gate 0.00152

mm2 and hence, the total area of 4:1 multiplexer is 0.00456 mm2.

• Power: The power consumption of a logic circuit means the total power

consumption by the individual circuit elements. Power of the reversible

circuit can be calculated using DSCH 3.5 [93] and Microwind 3.5 [94]. The

transistors or pass transistors are used to design the corresponding circuit

in DSCH. Then power can be estimated by using Microwind.

4.8.4 Performance Analysis

Performance analysis of the different components of the Plessey Logic Block is

given in this section.

4.8.4.1 Performance of Proposed Reversible D-Latch

Table 4.5: Comparison of the proposed and the existing reversible D-Latches
with simultaneous Q and Q′ output

Gates Garbage Delay (∆) Quantum Cost
Proposed 2 2 6 6

Existing [52] 2 2 7 7
Existing [50] 2 2 12 11

Existing [36, 102, 103] 3 1 8 7
Existing [104] 2 1 14 10
Existing [96] 3 2 15 11

There are a variety of ways the researchers design the D-Latch [36, 50, 52, 96,

102, 103, 104] . The designs use reversible gates which are in different number and

different type. The proposed D-Latch is constructed using one HNF gate (which

has 5 quantum cost and 5d delay) and one Feynman gate (which has 1 quantum

cost and 1d delay). The gate choice and the construction procedure guarantees

the enrichment of the proposed D-Latch in terms of delay and the quantum cost

for all compared design, while, it shows improvement in terms of the gate for

Chapter 4 Reversible Field Programmable Gate Array 89

some designs [96]. For example, the proposed D-Latch has 6 quantum cost and 6

delay, whereas, the best existing design has 7 quantum cost and 7 delay and the

design [96] (among the compared D-Latch) has 11 quantum cost and 15 delay.

A comparison of the proposed design of reversible D-Latch (producing simultane-

ous Q and Q′) with the existing designs of reversible D-Latch is also presented in

Table 4.5. It Illustrates that the proposed design reduces the number of gates by

33.33% [((3− 2)/3)× 100%] compared to [36, 102, 103] and [96], respectively . In

addition, it achieves 14.28%, 25%, 50%, 57.14%, and 60 % improvement in the re-

duction of delay compared to [52], [36, 102, 103], [50], [104], and [96], respectively.

In case of the reduction of quantum cost, the proposed design achieves 14.28%

improvement compared to [52] and [36, 102, 103], 40% improvement compared to

[104], and 45.45% [50] and [96], respectively, while producing two garbage outputs.

4.8.4.2 Performance of Proposed Reversible Master-Slave Flip-Flop

In addition, from Table 4.6, we find that the proposed design of Master-Slave

Flip-Flop outperforms the existing designs in terms of the number of gates (the

improvements are 66.66%, 40%, 25%, and 40%), delay (the improvements are

65.71%, 15.38%, 8.33%, and 15.38%) and quantum cost (the improvements are

71.05%, 15.38%, 8.33%, and 15.38%) with respect to [36, 54, 103, 104], respec-

tively, while the design is also enhanced in terms of garbage outputs (the improve-

ments are 16.66%, 33.33 %, and 50% with respect to [54, 103, 104] , respectively).

Similarly, it can be found that the proposed Master-Slave Flip-Flop is better than

the existing Master-Slave Flip-Flops designed for the Plessey Logic Block of FP-

GAs in term of the number of gates (the improvements are 57.14%, 40%, and

57.14% with respect to [50], [51], and [52], respectively), garbage outputs (the

improvements are 77.77% and 71.4% with respect to [50] and [52], respectively),

delay (the improvements are 26.66% and 47.62% with respect to [51] and [52],

Chapter 4 Reversible Field Programmable Gate Array 90

respectively) and quantum cost (the improvements are 56%, 26.66 % and 52.17%

with respect to [50], [51] and [52], respectively).

Table 4.6: Comparison of the proposed and the existing reversible Master-
Slave Flip-Flops. (’-’ indicates not calculated)

Gates Garbage Delay (∆) Quantum Cost
Proposed 3 2 11 11

Existing [52] 7 7 21 23
Existing [51] 5 2 15 15
Existing [50] 7 9 - 25
Existing [103] 4 3 12 12
Existing [36] 5 3 13 13
Existing [104] 5 4 13 13
Existing [54] 9 12 35 38

4.8.4.3 Performance of Proposed Reversible Decoder

The proposed HND gate is able to generate all the four terms of the 2-to-4 decoder.

This HND gate or 2-to-4 decoder has 7 quantum cost and 7d delay, which is the

least in the literature. Based on this concept, the performance comparison of the

proposed decoders and the existing 2-to-4 decoders [51, 52, 96, 97, 98] and 3-to-8

decoders [51, 52, 98] have been shown in Table 4.7 and Table 4.8, respectively.

Table 4.7 shows that the proposed 2-to-4 decoder outperforms the existing de-

signs in terms of the number of gates (the improvements are 66.67%, 66.67%,90%

, 66.67% and 75%), delay (the improvements are 41.67%, 41.67%, 22.22%, 66.67%

and 14.28%) and quantum cost (the improvements are 41.67%, 41.67%, 75% ,

53.33% and 41.67%) with respect to [51, 52, 96, 97, 98] , respectively. It is also

found that the improvements of the proposed 2-to-4 decoder in terms of garbage

output is outstanding, i.e., 100% improvement compared to [51, 52, 96, 97, 98] as

proposed design is garbage free, i.e., number of garbage is 0(zero) (Fig. 4.4(b))[This

is already discussed in the Section 4.6.3].

Chapter 4 Reversible Field Programmable Gate Array 91

On the other hand, Table 4.8 demonstrates the efficiency of the proposed 3-to-8

decoder. It can be viewed that the proposed 3-to-8 decoder is also more feasible

than the existing ones in terms of the number of gates (improvements are 28.57%,

28.57% and 54.54%) and garbage outputs (improvements are 66.67% and 83.33%)

compared to [51, 52] and [98] , respectively, while this proposed design of 3-to-8

decoder defeats the designs proposed in [51, 52] (improvement is 15.62%) in terms

of both delay and quantum cost.

Table 4.7: Comparison of the proposed and the existing reversible 2-to-4
decoders

2-to-4 decoder Gates Garbage Delay (∆) Quantum Cost
Proposed 1 0 7 7

Existing [51, 52] 3 2 12 12
Existing [98] 4 2 8 12
Existing [97] 3 2 21 15
Existing [96] 10 8 9 28

Table 4.8: Comparison of the proposed and the existing reversible 3-to-8
decoders

3-to-8 decoder Gates Garbage Delay (∆) Quantum Cost

Proposed 5 1 27 27
Existing [51, 52] 7 3 32 32
Existing [98] 11 6 32 32

4.8.4.4 Performance of Proposed Reversible Multiplexer

Subsequently, performances of different reversible multiplexers are depicted in Ta-

ble 4.9, which articulates the supremacy of the proposed design of multiplexer

having 33.33%, 57.14% and 50% improvements in terms of the number of gates,

having 54.54 %, 54.54 % and 50% improvement in terms of garbage output com-

pared to [50], [100] and [49], respectively. Besides, this design is significant one as

it reduces delay of 20% compared to [52], while delay in [49, 50, 100] is undefined.

It also overcomes the challenges of reducing quantum cost having 20% reduced

Chapter 4 Reversible Field Programmable Gate Array 92

quantum cost compared to[52] and 78.94% reduced quantum cost compared to

[50, 100], respectively.

Table 4.9: Comparison of the proposed and the existing reversible 4 : 1 mul-
tiplexer (’-’ indicates not calculated).

Multiplexers Gate Garbage Delay (∆) Quantum cost
Proposed 3 5 12 12

Existing [52] 3 5 15 15
Existing [50] 9 11 - 57
Existing [49] 7 11 - 57
Existing [100] 6 10 - -

4.8.4.5 Performance of Proposed Reversible RAM

The efficient design of the individual components also makes the design of the

RRAM efficient. By combining the respective cost parameters of the individual

components of the proposed RRAM, we got the total cost of a 4 × 2 RRAM,

which is compared with the existing reversible RAMs in Table 4.10 as an example

of the efficacy of the proposed RRAM. This table shows that the proposed design

of RRAM surpasses the limitations of the existing designs in terms of the number

of gates (improvements are 45.33% , 46.75%, 45.33%, 21.15% and 25.45%) and

garbage (improvements are 62.03%, 64.71%, 62.03%, 6.25% and 28.57%) with re-

spect to [51, 52, 99, 105, 106], respectively , while the proposed design defeats

other designs in terms of delay (improvements are 7.14%, 21.21% and 27.78%

with respect to [52, 105, 106] , respectively) and in terms of quantum cost (im-

provements are 22.91%, 23.58% and 26.78 % with respect [51], [99], and [52, 106]

respectively).

4.8.4.6 Other Performance analysis of Plessey Logic Block

Beyond the previous performance analysis, comparison of different elements of

Reversible Plessey Logic Block with existing designs in terms of the number of

transistors, area, and power in Table 4.11 - 4.13, respectively, show the supremacy

Chapter 4 Reversible Field Programmable Gate Array 93

Table 4.10: Comparison of the proposed and the existing reversible 4 × 2
RAMs.

Gates Garbage Delay (∆) Quantum Cost
Proposed 49 31 52 167

Existing [52] 77 85 56 239
Existing [51] 75 79 46 227
Existing [105] 52 32 66 177
Existing [106] 55 42 72 239
Existing [99] 75 79 46 229

of the proposed designs. Finally, in Table 4.14, proposed Reversible Plessey Logic

Blocks (4 × 2) is compared with existing corresponding designs, which ensures

the efficiency of the proposed design showing improvement in each parameter

(improvements are 51.62%, 80.83%, and 54% with respect to [52], whereas, im-

provements are 58.23%, 73.57%, and 34.12% with respect to [50], in terms of the

number of the transistors, area, and power, respectively).

Table 4.11: Comparison of the proposed and the existing reversible elements
of reversible Plessey Logic Block in terms of the number of transistors

Proposed Existing [52] Existing [50]

2-to-4 Decoder 8 20 20
3-to-8 Decoder 24 36 36

D-Latch 14 16 26
Write enable Master-Slave Flip-Flop 30 60 68

2 : 1 Multiplexer 7 4 50
4 : 1 Multiplexer 21 12 118

NAND unit 8 12 14
4x2 RAM 304 700 664

The efficiency of the proposed reversible Plessey Logic Block of FPGA is easily

conceivable as the individual components have already been compared with the

existing ones. The optimum result in each design case ensures the efficiency in

the cumulative result also. The enhancement of the proposed design of the com-

ponents of Plessey Logic Block are also presented graphically in Fig. 4.17 - 4.21.

Chapter 4 Reversible Field Programmable Gate Array 94

Table 4.12: Comparison of the proposed and the existing reversible elements
of reversible Plessey Logic Block in terms of area

Proposed are Existing [52] Existing [50]

2-to-4 Decoder 0.0389 0.24869 0.24869
3-to-8 Decoder 0.4909 0.70125 0.70125

D-Latch 0.030148 0.13555 0.076917
Write enable Master-Slave Flip-Flop 0.0632 0.42906 0.278574

2 : 1 Multiplexer 0.00152 0.11314 0.285665
4 : 1 Multiplexer 0.00456 0.33942 0.542305

NAND unit 0.016154 0.13555 0.021954
4x2 RAM 0.618356 4.49229 2.622238

Unit of area is (mm2)

Table 4.13: Comparison of the proposed and the existing reversible elements
of reversible Plessey Logic Block in terms of power

Proposed Existing [52] Existing [50]

2-to-4 Decoder 2.149 3.72 0.24869
3-to-8 Decoder 5.213 6.784 0.70125

D-Latch 1.38 2.934 3.906
Write enable Master-Slave Flip-Flop 5.808 10.97 8.64

2 : 1 Multiplexer 1.229 0.766 4.80625
4 : 1 Multiplexer 2.236 2.298 9.45625

NAND unit 1.139 2.934 1.17
4x2 RAM 54.268 129.232 82.515

Unit of power is (mW)

Table 4.14: Comparison of the proposed and the existing reversible Plessey
Logic Block (4 × 2) in terms of the number of transistors, area & power

No. of Transistor Area (mm2) Power (mW)
Proposed 416 1.263738 73.422

Existing [52] 860 6.59495 159.638
Existing [50] 996 4.777593 111.4434

Improvement w.r.t.[52](%) 51.62% 80.83% 54%
Improvement w.r.t.[50](%) 58.23% 73.57% 34.12%

In Fig. 4.17, comparison of different reversible D-Latches with simultaneous Q

and Q’ output is given. This bar graph shows that the proposed decoders are the

best in terms of all parameters (the number of gates, garbage outputs, delay, and

quantum cost). Fig. 4.18 represents the performance analysis of the proposed and

existing Master-Slave Flip-Flops. The bar graphs ensure the significant efficiency

Chapter 4 Reversible Field Programmable Gate Array 95

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

',-.
*

 !"#
$"%&

'/01
,-2

1,-/
*

 !"#
$"%&

'++*

345
65#

78

-

,

2

/

.

9

9

9

:
;$
7

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

',-.
*

 !"#
$"%&

'/01
,-2

1,-/
*

 !"#
$"%&

'++*

345
65#

78

-

,

2

/

9

9

9

:
;4
<;
&7

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

',-.
*

 !"#
$"%&

'/01
,-2

1,-/
*

 !"#
$"%&

'++*

345
65#

78

)

=

,-

,2

,.

,)

9

9

9

>
7?
;@

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

',-.
*

 !"#
$"%&

'/01
,-2

1,-/
*

 !"#
$"%&

'++*

345
65#

78

)

0

=

(

,-

,,

)

0

=

(

,-

,,

9

9

9
A
B;
%$
BC

9D
5#
$

Fig. 4.17: Performance analysis of different reversible Flip-Flops with simul-
taneous Q and Q’ output

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

'+-*

 !"#
$"%&

'./)
*

 !"#
$"%&

',0*

 !"#
$"%&

'./,
*

123
43#

56

-

)

(

7

./

8

8

8

9
:$
5

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

'+-*

 !"#
$"%&

'./)
*

 !"#
$"%&

',0*

 !"#
$"%&

'./,
*

123
43#

56

-

)

(

7

./

.-

8

8

8

9
:2
;:
&5

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

'+-*

 !"#
$"%&

'./)
*

 !"#
$"%&

',0*

 !"#
$"%&

'./,
*

123
43#

56

./

.-

.)

.(

.7

-/

--

-)

-(

-7

,/

,-

,)

,(

8

8

8

<
5=
:>

 !"#
$"%&

'()*

 !"#
$"%&

'+,*

 !"#
$"%&

'+-*

 !"#
$"%&

'./)
*

 !"#
$"%&

',0*

 !"#
$"%&

'./,
*

123
43#

56

./

.+

-/

-+

,/

,+

)/

8

8

8

?
@:
%$
@A

8B
3#
$

Fig. 4.18: Performance analysis of different reversible Master-Slave Flip-Flops

of the proposed design in terms of the all performance metrics..

In addition, bar graph (Fig. 4.19) illustrates the comparisons of different reversible

Lenovo
Textbox
 E[96] E[36, E[104] E[52] E[50] P

 102,103]

Lenovo
Textbox
 E denotes Existing design , P denotes Proposed design

Lenovo
Textbox
 E[96] E[52] E[36, E[104] E[50] P

 102,103]

Lenovo
Textbox
 E[96] E[50] E[104] E[36, E[52] P

 102,103]

Lenovo
Textbox
 E[96] E[50] E[104] E[36, E[52] P

 102,103]

Lenovo
Textbox
 E[54] E[50,52] E[104] E[36] E[51] E[103] P

Lenovo
Typewriter
E[51]

Lenovo
Typewriter
E[51]

Lenovo
Textbox
 E[54] E[50,52] E[51] E[104] E[36] E[103] P

Lenovo
Textbox
 E[54] E[52] E[51] E[36] E[104] E[103] P

Lenovo
Textbox
 E[54] E[50] E[52] E[36] E[104] E[103] P

Chapter 4 Reversible Field Programmable Gate Array 96

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

 !
"#$"
%&
'(.
/0.
1+

234
54
#67

8

/

9

*

-

:8

'

'

'

;
<$
6

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

 !
"#$"
%&
'(.
/0.
1+

234
54
#67

8

/

9

*

-

'

'

'

;
<3
=<
&6

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

 !
"#$"
%&
'(.
/0.
1+

234
54
#67

*

-

:8

:/

:9

:*

:-

/8

//

'

'

'

>
6?
<@

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

 !
"#$"
%&
'(.
/0.
1+

234
54
#67

.

:8

:.

/8

/.

18

'

'

A
B<
%$
BC

'D
4#
$

Fig. 4.19: Performance analysis of different reversible 2-to-4 decoders.

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

./0
10
#2
3

4

5

6

7

,*

'

'

'

8
9$
2

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

./0
10
#2
3

5

6

7

,*

,4

'

'

8
9/
:9
&2

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'()
,+

 !
"#$"
%&
'()
-+

./0
10
#2
3

,*

4*

-*

5*

)*

6*

'

'

;
2<
9=

Fig. 4.20: Performance analysis of different reversible 4 : 1 multiplexers.

2-to-4 decoders which ensure the nobility of the proposed 2-to-4 decoder. After-

ward, the effectiveness of the proposed 4:1 multiplexer is unraveled by the com-

parison with existing reversible 4:1 multiplexers shown in Fig. 4.20. Finally, bar

graphs shown in Fig. 4.21 represent the cost evaluation of the proposed reversible

4 × 2 RAM. Efficient design of each component makes the RAM efficient, i.e.,

Lenovo
Typewriter
E[92]

Lenovo
Textbox
 E denotes Existing design , P denotes Proposed design

Lenovo
Textbox
 E[96] E[97] E[98] E[51,52] P

Lenovo
Textbox
 E[96] E[97] E[98] E[51,52] P

Lenovo
Textbox
 E[96] E[97] E[98] E[51,52] P

Lenovo
Textbox
 E[96] E[97] E[98] E[51,52] P

Lenovo
Textbox
 E[49] E[50] E[52] P

Lenovo
Textbox
 E[49] E[50] E[52] P

Lenovo
Textbox
 E[49] E[50] E[52] P

Chapter 4 Reversible Field Programmable Gate Array 97

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'(,
-.
+

 !
"#$"
%&
'(/
/+

 !
"#$"
%&
'()
0+

 !
"#$"
%&
'(,
-)
+

123
43
#5
6

7-

7)

)-

))

.-

.)

8-

8)

9-

'

'

:
;$
5

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'(,
-.
+

 !
"#$"
%&
'(/
/+

 !
"#$"
%&
'()
0+

 !
"#$"
%&
'(,
-)
+

123
43
#5
6

*-

7-

)-

.-

8-

9-

/-

'

'

:
;2
<;
&5

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'(,
-.
+

 !
"#$"
%&
'(/
/+

 !
"#$"
%&
'()
0+

 !
"#$"
%&
'(,
-)
+

123
43
#5
6

77

7.

79

)-

)0

)7

).

)9

.-

.0

.7

..

.9

8-

80

87

'

'

=
5>
;?

 !
"#$"
%&
'()
*+

 !
"#$"
%&
'(,
-.
+

 !
"#$"
%&
'(/
/+

 !
"#$"
%&
'()
0+

 !
"#$"
%&
'(,
-)
+

123
43
#5
6

,8-

,9-

,/-

0--

0,-

00-

0*-

07-

'

'

@
A;
%$
AB

'C
3#
$

Fig. 4.21: Performance analysis of different reversible 4× 2 RAMs in terms of
gate and garbage.

it requires less number of gates, produces less number of garbage outputs and

quantum cost. In few cases, the existing RAMs have less delay than the proposed

RAM, but the gap is very low.

From the extensive analysis of the proposed designs and existing designs, it is the

fair claim that our proposed design of the Plessey Logic Block of FPGA is the

conqueror.

Lenovo
Textbox
 E[52] E[106] E[51] E[99] E[105] P

Lenovo
Textbox
 E[52] E[106] E[51] E[99] E[105] P

Lenovo
Textbox
 E[52] E[106] E[51] E[99] E[105] P

Lenovo
Textbox
 E[52] E[106] E[99] E[51] E[105] P

Lenovo
Textbox
 E denotes Existing design , P denotes Proposed design

Lenovo
Textbox

Lenovo
Textbox

Chapter 5 Conclusions 98

4.9 Summary

In this chapter, reversible Field Programmable Gate Array is proposed. First of

all, the architecture of Plessey logic block and motivation toward this device is

presented. Analysis of existing designs of reversible Plessey logic block is briefly

described. Then, to diminish the excessive cost metrics of the previous designs,

new design approaches are elaborately presented in this chapter. Several lower

bounds are given in terms of the number of gates, quantum cost, and delay. Scala-

bility, correctness, and supremacy are ensured by adopting theorems, simulations,

and performance analysis.

Ideal Computer PC-1
Textbox
Chapter 4 Reversible Field Programmable Gate Array

Chapter 5

Conclusions

5.1 Summary of Research

The reversible logic provides a basis for quantum computation with its applica-

tions and solves the power dissipation problem of conventional irreversible circuits.

This dissertation focused on the reversible realization of two of the mostly used

Programmable Logic Devices (PLDs) namely Programmable Logic Array (PLA)

and Field Programmable Gate Array (FPGA). The proposed circuits, in this the-

sis, are expected to be efficient that ensure the cost-effectiveness, scalability, and

generality.

In the first part of this thesis, we proposed a compact Reversible Programmable

Logic Array (RPLA). In this part, we propose a new reversible gate namely TB

gate to generate two sharable sub-products at a time. Then, two developed al-

gorithms realize multi-output ESOP (Exclusive-OR Sum of Product) function by

using the TB gate along with existing Feynman and Feynman Double gates. The

combination approach of these gates eliminated the dedicated lines for comple-

mented forms of input variables. It also enabled the simultaneous realization of

sharable product terms. Reorder of the output function further included in the

algorithm. These three features ensure the reduction of gates, garbage outputs,

99

Chapter 5 Conclusions 100

and quantum cost.

Tables of comparative analysis for a sample circuit and the benchmark circuits

show the cost-effectiveness and guarantee the generality. We also calculate the

area and power of the benchmark circuits. The proposed design algorithm reduces

the number of gates by 13.5%, 5.6% and 10.4% with respect to [46], [47] and [48],

respectively. Then, it reduces garbage outputs by 7%, 38% and 19.8% with re-

spect to [46], respectively, whereas, it declines the quantum cost 19% than [46], and

10.5% than [47]. Finally, we show the graphical interpretations from the perfor-

mance analysis to give a clear view of the improvement of the proposed algorithm.

In the second part of the thesis, we presented the design of Reversible Plessey

Logic Block of FPGA which had the lower number of performance metrics (the

number of gates, garbage outputs along with the quantum cost, delay, area, and

power). Plessey logic block has a NAND unit, RAM, Multiplexer, and Latches.

The RAM requires an n-to-2n Decoder and a Master-Slave Flip-Flop. In this part,

we propose three algorithms to design a compact reversible n-to-2n Decoder, a

2n ×m reversible RAM and the reversible Plessey Logic Block of FPGA, respec-

tively. Here, we also proposed the reversible D-Latch, reversible multiplexer, and

write-enable master-slave Flip-Flop. The proposed circuits are more scalable and

general as we proposed all the component in terms of n and m. Here we present

several theorems and lemmas which illustrate the lower bounds on the number of

gates, garbage outputs, and quantum cost of the individual component as well as

the complete reversible Plessey Logic Block. These theorems and lemmas prove the

efficiency and supremacy of the proposed designs. The examples, followed these

theorems, clarify the representative analysis in details. Afterward, we apply pass-

transistor logic using Microwind simulator for calculating power and area. The

simulation waveforms also show the correctness of the proposed circuits. Compar-

ative tables have the evidence that the proposed circuits require less number of

Bibliography 101

gates, garbage outputs, and quantum cost. Besides, the tables show the efficiency

in terms of delay as well as the number of transistors, area, and power of the

designed circuits. Finally, the graphical results clearly state the supremacy of the

proposed circuits.

5.2 Future Work

Although our proposed methodologies for reversible Programmable Logic Array

and reversible Field Programmable Gate Array achieve a better result as they

show better performance in terms of every cost parameter, further theoretical and

experimental extensions are possible.

Based on the opportunity of sharing the initial sub-products and eliminating the

complimentary line ensure the compactness of the reversible Programmable Gate

Array. The algorithm of RPLA also ensure the reordering the output functions to

enhance the performance; however, how the heterogeneous format of the bench-

mark function impacts on the performance of the PLA is not exposed clearly, i.e.,

how the number of input-outputs or the product terms influence the performance

is absent. Moreover, in this thesis, the performances of some particular benchmark

functions are chosen and there is no indication of how the number of gate, garbage

outputs or quantum cost varies where the sharing property is unable. Therefore,

in future, we want to explore more elaborately the correlation between the func-

tions’ properties and the algorithmic properties with the simulation process. We

can also focus on further reduction mechanism such as decomposition or genetic

algorithm.

In this thesis, we only emphasis on the design of a logic block of an FPGA. In fu-

ture, we may also focus on the other parts of the FPGA. Architectural perspective

of reversible RAM as well as the whole logic block is also under the contemplation

Ideal Computer PC-1
Textbox
Chapter 5 Conclusion

Bibliography 102

in further work for the Plessey logic block. Other type of logic blocks are also

under consideration of forthcoming exploration.

Ideal Computer PC-1
Textbox
Chapter 5 Conclusion

Bibliography

[1] R. Landauer, “Irreversibility and heat generation in the computing process,”

IBM journal of research and development, vol. 5, no. 3, pp. 183–191, 1961.

[2] D. Maslov, G. W. Dueck, and D. M. Miller, “Templates for toffoli network

synthesis,” in International Workshop on Logic Synthesis, California, USA,

May 2003, pp. 320–326.

[3] G. E. Moore, “Cramming more components onto integrated circuits, elec-

tronics, 38: 8 (1965),” URL: ftp://download. intel. com/research/silicon/-

moorespaper. pdf, vol. 16, 2005.

[4] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I. Bourianoff, “Limits

to binary logic switch scaling-a gedanken model,” Proceedings of the IEEE,

vol. 91, no. 11, pp. 1934–1939, 2003.

[5] C. H. Bennett, “Logical reversibility of computation,” IBM journal of Re-

search and Development, vol. 17, no. 6, pp. 525–532, 1973.

[6] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum in-

formation,” 2000.

[7] N. Gershenfeld and I. L. Chuang, “Quantum computing with molecules,”

Scientific American, vol. 278, no. 6, pp. 66–71, 1998.

[8] J. Preskill, “Lecture notes for physics 229: Quantum information and com-

putation,” California Institute of Technology, vol. 16, 1998.

103

Bibliography 104

[9] J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are suffi-

cient to implement the quantum fredkin gate,” Physical Review A, vol. 53,

no. 4, pp. 28–55, 1996.

[10] M. Perkowski, M. Lukac, P. Kerntopf, M. Pivtoraiko, M. Folgheraiter, Y. W.

Choi, J.-w. Kim, D. Lee, W. Hwangbo, and H. Kim, “A hierarchical ap-

proach to computer-aided design of quantum circuits,” in 6th International

Symposium on Representations and Methodology of Future Computing Tech-

nologies, Trier, Germany, 2003, pp. 201–209.

[11] M. D. Price, S. S. Somaroo, A. E. Dunlop, T. F. Havel, and D. G. Cory,

“Generalized methods for the development of quantum logic gates for an

nmr quantum information processor,” Physical Review A, vol. 60, no. 4, pp.

27–77, 1999.

[12] M. Price, S. Somaroo, C. Tseng, J. Gore, A. Fahmy, T. Havel, and D. G.

Cory, “Construction and implementation of nmr quantum logic gates for two

spin systems,” Journal of Magnetic Resonance, vol. 140, no. 2, pp. 371–378,

1999.

[13] J. Kim, J.-S. Lee, S. Lee, and C. Cheong, “Implementation of the refined

deutsch-jozsa algorithm on a three-bit nmr quantum computer,” Physical

Review A, vol. 62, no. 2, p. 022312, 2000.

[14] J. Kim, J.-S. Lee, and S. Lee, “Implementing unitary operators in quantum

computation,” Physical Review A, vol. 61, no. 3, p. 032312, 2000.

[15] J.-S. Lee, Y. Chung, J. Kim, and S. Lee, “A practical method of constructing

quantum combinational logic circuits,” arXiv preprint quant-ph/9911053,

1999.

[16] P. Picton, “A universal architecture for multiple-valued reversible logic,”

MVL Journal, vol. 5, pp. 27–37, 2000.

Bibliography 105

[17] ——, “Optoelectronic multi-valued conservative logic,” International Jour-

nal of Optical Computing, vol. 2, pp. 19–29, 1991.

[18] W. C. Athas and L. Svensson, “Reversible logic issues in adiabatic cmos,” in

Proceedings of IEEE Workshop on Physics and Computation, PhysComp’94.

IEEE, 1994, pp. 111–118.

[19] R. C. Merkle, “Reversible electronic logic using switches,” Nanotechnology,

vol. 4, no. 1, p. 21, 1993.

[20] ——, “Two types of mechanical reversible logic,” Nanotechnology, vol. 4,

no. 2, p. 114, 1993.

[21] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of re-

versible logic circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 11, pp. 2317–2330, 2006.

[22] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis of

reversible logic circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 22, no. 6, pp. 710–722, 2003.

[23] G. Yang, X. Song, W. N. Hung, and M. A. Perkowski, “Bi-directional syn-

thesis of 4-bit reversible circuits,” The Computer Journal, vol. 51, no. 2, pp.

207–215, 2008.

[24] A. K. Prasad, V. V. Shende, I. L. Markov, J. P. Hayes, and K. N. Patel,

“Data structures and algorithms for simplifying reversible circuits,” ACM

Journal on Emerging Technologies in Computing Systems (JETC), vol. 2,

no. 4, pp. 277–293, 2006.

[25] J. Donald and N. K. Jha, “Reversible logic synthesis with fredkin and

peres gates,” ACM Journal on Emerging Technologies in Computing Sys-

tems (JETC), vol. 4, no. 1, p. 2, 2008.

Bibliography 106

[26] D. Maslov and M. Saeedi, “Reversible circuit optimization via leaving the

boolean domain,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 30, no. 6, pp. 806–816, 2011.

[27] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible circuit

synthesis using a cycle-based approach,” ACM Journal on Emerging Tech-

nologies in Computing Systems (JETC), vol. 6, no. 4, p. 13, 2010.

[28] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based al-

gorithm for reversible logic synthesis,” in Proceedings of IEEE Design Au-

tomation Conference, 2003., 2003, pp. 318–323.

[29] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung,

H. Jeech, B.-G. Kim, and Y.-D. Kim, “Evolutionary approach to quantum

and reversible circuits synthesis,” Artificial Intelligence Review, vol. 20, no.

3-4, pp. 361–417, 2003.

[30] M. Mohammadi and M. Eshghi, “Heuristic methods to use don’t cares in

automated design of reversible and quantum logic circuits,” Quantum Infor-

mation Processing, vol. 7, no. 4, pp. 175–192, 2008.

[31] M. Mohamadi, M. Eshghi, and K. Navi, “Optimizing the reversible full adder

circuit,” IEEE EWDTS, Yerevan, pp. 312–315, 2007.

[32] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple-

control toffoli network synthesis with sat techniques,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 5,

pp. 703–715, 2009.

[33] ——, “Exact synthesis of elementary quantum gate circuits for reversible

functions with don’t cares,” in 38th International Symposium on Multiple

Valued Logic (ISMVL), 2008, pp. 214–219.

Bibliography 107

[34] J. Bruce, M. A. Thornton, L. Shivakumaraiah, P. Kokate, and X. Li, “Ef-

ficient adder circuits based on a conservative reversible logic gate,” in Pro-

ceedings of IEEE Computer Society Annual Symposium on VLSI, 2002, pp.

83–88.

[35] M. H. Khan and M. A. Perkowski, “Quantum ternary parallel adder/sub-

tractor with partially-look-ahead carry,” Journal of Systems Architecture,

vol. 53, no. 7, pp. 453–464, 2007.

[36] H. Thapliyal and N. Ranganathan, “Design of reversible sequential circuits

optimizing quantum cost, delay, and garbage outputs,” ACM Journal on

Emerging Technologies in Computing Systems (JETC), vol. 6, no. 4, pp.

1–4, 2010.

[37] T. Sasao and H. Terada, “Multiple-valued logic and the design of pro-

grammable logic arrays with decoders,” in Proceedings of the 9th Interna-

tional Symposium on Multiple-Valued Logic, Bath, England, May 1979, pp.

27–37.

[38] T. Sasao, “On the optimal design of multiple-valued plas,” IEEE Transac-

tions on Computers, vol. 38, no. 4, pp. 582–592, 1989.

[39] T. Sasao and P. Besslich, “On the complexity of mod-2l sum pla’s,” IEEE

Transactions on Computers, vol. 39, no. 2, pp. 262–266, 1990.

[40] T. Sasao, “Input variable assignment and output phase optimization of

pla’s,” IEEE Transactions Computers, vol. 33, no. 10, pp. 879–894, 1984.

[41] A. Weinberger, “High-speed programmable logic array adders,” IBM Journal

of Research and Development, vol. 23, no. 2, pp. 163–178, 1979.

[42] T. Sasao, “Exmin2: a simplification algorithm for exclusive-or-sum-of-

products expressions for multiple-valued-input two-valued-output func-

tions,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 12, no. 5, pp. 621–632, 1993.

Bibliography 108

[43] A. Mishchenko and M. Perkowski, “Logic synthesis of reversible wave cas-

cades,” in International Workshop on Logic Synthesis, Louisiana, USA, June

2002, pp. 197–202.

[44] D. Maslov and G. W. Dueck, “Reversible cascades with minimal garbage,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 23, no. 11, pp. 1497–1509, 2004.

[45] ——, “Garbage in reversible design of multiple output functions,” in 6th In-

ternational Symposium on Representations and Methodology of Future Com-

puting Technologies, Trier, Germany, 2003, pp. 162–170.

[46] A. R. Chowdhury, R. Nazmul et al., “A new approach to synthesize multiple-

output functions using reversible programmable logic array,” in 5th IIEEE

nternational Conference on Embedded Systems and Design and 19th Inter-

national Conference on VLSI Design, Hyderabad, India, January 2006, pp.

6–11.

[47] R. Rahman, L. Jamal, and H. M. H. Babu, “Design of reversible fault toler-

ant programmable logic arrays with vector orientation,” International Jour-

nal of Information and Communication Technology Research, vol. 1, no. 8,

2011.

[48] S. K. Mitra, L. Jamal, M. Kaneko, and H. M. Hasan Babu, “An efficient ap-

proach for designing and minimizing reversible programmable logic arrays,”

in Proceedings of the ACM Great Lakes symposium on VLSI. Salt Lake

City, Utah, USA: ACM, 2012, pp. 215–220.

[49] S. S. M.M.A. Polash, “Design of a lut-based reversible field programmable

gate array.” Journal of Computing, vol. 2, pp. 103–108, 2010.

[50] A. S. M. Sayem, M. M. A. Polash, and H. M. H. Babu, “Design of a reversible

logic block of field programmable gate array,” in Silver Jubilee Conference on

Bibliography 109

Communication Technologies and VLSI Design (CommV’09), TamilNadu,

India, October 2009.

[51] A. S. M. Sayem and S. K. Mitra, “Efficient approach to design low power

reversible logic blocks for field programmable gate arrays,” in IEEE In-

ternational Conference on Computer Science and Automation Engineering

(CSAE), vol. 4, Shanghai, China, June 2011, pp. 251–255.

[52] M. Shamsujjoha, H. M. H. Babu, and L. Jamal, “Design of a compact re-

versible fault tolerant field programmable gate array: A novel approach in

reversible logic synthesis,” Microelectronics journal, vol. 44, no. 6, pp. 519–

537, 2013.

[53] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal of

Theoretical Physics, vol. 21, no. 3, pp. 219–253, 1982.

[54] M.-L. Chuang and C.-Y. Wang, “Synthesis of reversible sequential elements,”

ACM Journal on Emerging Technologies in Computing Systems (JETC),

vol. 3, no. 4, p. 4, 2008.

[55] R. P. Feynman, “Quantum mechanical computers,” Foundations of physics,

vol. 16, no. 6, pp. 507–531, 1986.

[56] A. Peres, “Reversible logic and quantum computers,” Physical review A,

vol. 32, no. 6, pp. 32–66, 1985.

[57] H. Thapliyal and A. P. Vinod, “Design of reversible sequential elements with

feasibility of transistor implementation,” in IEEE International Symposium

on Circuits and Systems (ISCAS), Louisiana, USA, May 2007, pp. 625–628.

[58] M. Haghparast and K. Navi, “A novel reversible bcd adder for nanotechnol-

ogy based systems,” American Journal of Applied Sciences, vol. 5, no. 3, pp.

282–288, 2008.

Bibliography 110

[59] A. K. Biswas, M. M. Hasan, A. R. Chowdhury, and H. M. H. Babu, “Ef-

ficient approaches for designing reversible binary coded decimal adders,”

Microelectronics journal, vol. 39, no. 12, pp. 1693–1703, 2008.

[60] S. Lee, S.-J. Lee, T. Kim, J.-S. Lee, J. Biamonte, and M. Perkowski, “The

cost of quantum gate primitives.” Journal of Multiple-Valued Logic & Soft

Computing, vol. 12, 2006.

[61] W. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal

synthesis of multiple output boolean functions using a set of quantum gates

by symbolic reachability analysis,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1652–1663,

2006.

[62] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck, “Quantum circuit

simplification using templates,” in Proceedings of the IEEE Computer So-

ciety conference on Design, Automation and Test in Europe (DATE ’05),

vol. 2, Munich, Germany, March 2005, pp. 1208–1213.

[63] M. Mohammadi and M. Eshghi, “On figures of merit in reversible and quan-

tum logic designs,” Quantum Information Processing, vol. 8, no. 4, pp. 297–

318, 2009.

[64] S. G. Younis and T. F. Knight Jr, “Practical implementation of charge recov-

ering asymptotically zero power cmos,” in Proceedings of the 1993 symposium

on Research on integrated systems. MIT Press, 1993, pp. 234–250.

[65] S. G. Younis, “Asymptotically zero energy computing using split-level charge

recovery logic.” Massachusetts Inst of Tech Cambridge Artificial Intelligence

Lab, Tech. Rep., 1994.

[66] J. Lim, K. Kwon, and S.-I. Chae, “Reversible energy recovery logic circuit

without non-adiabatic energy loss,” Electronics Letters, vol. 34, no. 4, pp.

344–345, 1998.

User
Typewriter
Dhaka University Institutional Repository

Bibliography 111

[67] J. Lim, D.-G. KIM, and S.-I. Chae, “Reversible energy recovery logic circuits

and its 8-phase clocked power generator for ultra-low-power applications,”

IEICE transactions on electronics, vol. 82, no. 4, pp. 646–653, 1999.

[68] J. Lim, D.-G. Kim, and S.-I. Chae, “nmos reversible energy recovery logic for

ultra-low-energy applications,” IEEE Journal of Solid-State Circuits, vol. 35,

no. 6, pp. 865–875, 2000.

[69] S. Bandyopadhyay, A. Balandin, V. Roychowdhury, and F. Vatan, “Nano-

electronic implementations of reversible and quantum logic,” Superlattices

and Microstructures, vol. 23, no. 3-4, pp. 445–464, 1998.

[70] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Online testable reversible

logic circuit design using nand blocks,” in 19th IEEE International Sym-

posium on Defect and Fault Tolerance in VLSI Systems, Cannes, France,

November 2004, pp. 324–331.

[71] H. M. H. Babu, M. I. Zaber, M. M. Rahman, and M. R. Islam, “Imple-

mentation of multiple-valued flip-flips using pass transistor logic [flip-flips

read flip-flops],” in IEEE Euromicro Symposium on Digital System Design

(DSD). Rennes, France: IEEE, 2004, pp. 603–606.

[72] H. Thapliyal and A. P. Vinod, “Transistor realization of reversible tsg gate

and reversible adder architectures,” in IEEE Asia Pacific Conference on

Circuits and Systems (APCCAS), Jeju, Korea (South), 2006, pp. 418–421.

[73] D. P. Vasudevan, P. K. Lala, and J. P. Parkerson, “Cmos realization of

online testable reversible logic gates,” in IEEE Computer Society Annual

Symposium on VLSI(ISVLSI’05), Tampa, Florida, USA, May 2005, pp. 309–

310.

[74] S. Nowrin, P. Nazneen, and L. Jamal, “Design of a compact reversible read-

only-memory with mos transistors,” International Journal of VLSI design

& Communication Systems (VLSICS), vol. 6, no. 5, pp. 69–84, 2015.

User
Typewriter
Dhaka University Institutional Repository

Bibliography 112

[75] I. Grout, Digital Systems Design with FPGAs and CPLDs —— Introduction

to Programmable Logic. Elsevier, 2008.

[76] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp.

1013–1029, 1993.

[77] S. C. Wong, H. So, J. H. Ou, and J. Costello, “A 5000-gate cmos epld

with multiple logic and interconnect arrays,” in Proceedings of the IEEE

Conference on Custom Integrated Circuits, San Diego, California, USA, May

1989, pp. 5–8.

[78] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Power and delay aware syn-

thesis of multi-operand adders targeting lut-based fpgas,” in Proceedings of

the 17th IEEE/ACM international symposium on Low-power electronics and

design (ISLPED’11), Kyushu, Japan, August 2011, pp. 217–222.

[79] J. Cong and Y. Ding, “Combinational logic synthesis for lut based field

programmable gate arrays,” ACM Transactions on Design Automation of

Electronic Systems, vol. 1, no. 2, pp. 145–204, 1996.

[80] N. B. Bhat and D. D. Hill, “Routable technology mapping for lut fpgas,” in

IEEE International Conference on Computer Design: VLSI in Computers

and Processors (ICCD ’92), Cambridge, Massachusetts, USA, October 1992,

pp. 95–98.

[81] M. Ahrens, A. El Gamal, D. Galbraith, J. Greene, S. Kaptanoglu, K. Dhar-

marajan, L. Hutchings, S. Ku, P. McGibney, J. McGowan et al., “An fpga

family optimized for high densities and reduced routing delay,” in Pro-

ceedings of the IEEE Conference Custom Integrated Circuits, Boston, Mas-

sachusetts, USA, May 1990, pp. 31–5.

User
Typewriter
Dhaka University Institutional Repository

Bibliography 113

[82] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-Ayat, and

A. Mohsen, “An architecture for electrically configurable gate arrays,” IEEE

Journal of Solid-State Circuits, vol. 24, no. 2, pp. 394–398, 1989.

[83] J. a. Birkner, A. Chan, H. Chua, A. Chao, K. Gordon, B. Kleinman,

P. Kolze, and R. Wong, “A very-high-speed field-programmable gate ar-

ray using metal-to-metal antifuse programmable elements,” Microelectronics

Journal, vol. 23, no. 7, pp. 561–568, 1992.

[84] Plessey, “Plessey semiconductor era60100,” Preliminary data sheet, 1989.

[85] V. Betz and J. Rose, “How much logic should go in an fpga logic block,”

IEEE Design & Test of Computers, vol. 15, no. 1, pp. 10–15, 1998.

[86] R. J. Francis, “A tutorial on logic synthesis for lookup-table based fpgas,” in

Proceedings of the 1992 IEEE/ACM international conference on Computer-

aided design (ICCAD ’92), Santa Clara, California, USA, 1992, pp. 40–47.

[87] H. Gru, R. Hartenstein et al., “Chameleon: A workstation of a different

color,” Field-Programmable Gate Arrays: Architectures and Tools for Rapid

Prototyping, pp. 152–161, 1993.

[88] V. Betz and J. Rose, “Cluster-based logic blocks for fpgas: Area-efficiency vs.

input sharing and size,” in Proceedings of the IEEE Conference on Custom

Integrated Circuits (CICC ’97), Santa Clara, California, USA, may 1997, pp.

551–554.

[89] M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske,

A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and

B. Massey, “Regularity and symmetry as a base for efficient realization

of reversible logic circuits,” in International workshop on logic synthesis,

Tahoe City, USA, 2001, pp. 245–252.

User
Typewriter
Dhaka University Institutional Repository

Bibliography 114

[90] M. H. Khan and M. Perkowski, “Multi-output esop synthesis with cascades

of new reversible gate family,” in Proceedings of the 6th International Sym-

posium on Representations and Methodology of Future Computing Technolo-

gies, Trier, Germany, 2003.

[91] ——, “Logic synthesis with cascades of new reversible gate families,” in

6th International Symposium on Representations and Methodology of Future

Computing Technology,, Trier, Germany, March 2003, pp. 43–55.

[92] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of exclusive-

sums-of-products,” in International Reed-Muller Workshop, Mississippi,

USA, August 2001, pp. 242–250.

[93] “Microwind dsch - schematic editor and digital simulator,”

http://www.microwind.net/dsch.ph, (Accessed: 2017-02-30).

[94] “Microwind2.exe,” http://www.microwind.net/microwind2.exe, (Accessed:

2017-02-30).

[95] H. Thapliyal and M. Zwolinski, “Reversible logic to cryptographic hardware:

a new paradigm,” in 49th IEEE International Midwest Symposium on Cir-

cuits and Systems, Puerto Rico, USA, August 2006, pp. 342–346.

[96] K. Buch, “Low power fault tolerant state machine design using reversible

logic gates,” in Conference on Military and Aerospace Programmable Logic

Devices, Maryland, USA, September 2008.

[97] S. N. Mahammad and K. Veezhinathan, “Constructing online testable cir-

cuits using reversible logic,” IEEE transactions on instrumentation and mea-

surement, vol. 59, no. 1, pp. 101–109, 2010.

[98] M. Tayari and M. Eshghi, “Design of 3-input reversible programmable logic

array,” Journal of Circuits, Systems, and Computers, vol. 20, no. 02, pp.

283–297, 2011.

User
Typewriter
Dhaka University Institutional Repository

Bibliography 115

[99] F. Sharmin, M. M. A. Polash, M. Shamsujjoha, L. Jamal, and H. H. Babu,

“Design of a compact reversible random access memory,” in 4th IEEE In-

ternational Conference on Computer Science and Information Technology,

vol. 10, Sichuan, China, June, 2011, pp. 103–107.

[100] S. Gugnani and A. Kumar, “Synthesis of reversible multiplexers,” Inter-

national Journal of Scientific & Engineering Research, vol. 4, no. 7, pp.

1859–1863, 2013.

[101] J. Rose and S. Brown, “Flexibility of interconnection structures for field-

programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol. 26,

no. 3, pp. 277–282, 1991.

[102] J. E. Rice, “An introduction to reversible latches,” The Computer Journal,

vol. 51, no. 6, pp. 700–709, 2008.

[103] M. S. Al Mamun, I. Mandal, and M. Hasanuzzaman, “Design of universal

shift register using reversible logic,” International Journal of Engineering

and Technology, vol. 2, no. 9, pp. 1620–1625, 2012.

[104] J. E. Rice, “A new look at reversible memory elements.” in IEEE Inter-

national Symposium on Circuits and Systems (ISCAS’06), Island of Kos,

Greece, May, 2006.

[105] S. D. Kumar and S. N. Mahammad, “A novel sram cell design using reversible

logic,” in 3rd IEEE International Conference on Eco-friendly Computing

and Communication Systems (ICECCS 2014). Mangalore,India: IEEE,

December 2014, pp. 1–4.

[106] M. Morrison, M. Lewandowski, R. Meana, and N. Ranganathan, “Design

of static and dynamic ram arrays using a novel reversible logic gate and

decoder,” in 11th IEEE Conference on Nanotechnology, Oregon, USA, 2011,

pp. 417–420.

User
Typewriter
Dhaka University Institutional Repository

Appendix A

Various Existing Reversible gates

!

"#$#

%#$#!

&

!'"

(#$# ! &

) '#$# !&)

Figure A.1: Block diagram of BSP gate

!

"#$#

%#$# ! &

&

'(

)#$# ! &

(a) Block diagram.

!

" ## #$

%&'&

(&'& ! "

)&'& ! "

(b) Quantum circuit.

Figure A.2: NH gate

114

Ideal Computer PC-1
Textbox
116

User
Typewriter
Dhaka University Institutional Repository

VARIOUS REVERSIBLE GATES 103

!

"#$#

%#$# ! &

&

'()

*+,-

.#$# & !

(a) Block diagram.

!

" ## #$

%&'&

(&'& " !

)&'& ! "

(b) Quantum circuit.

Figure A.3: MUX gate

Ideal-1
Textbox
115

Ideal Computer PC-1
Textbox
117

User
Typewriter
Dhaka University Institutional Repository

Appendix B

Transistor Realization of

Proposed Reversible gates

 !

 !

 "

 #

 $

"

 % &

 ' (

#

)

 !*

 !!

 !"

$

%

 !#

 !$

 !&

 !'

 !%

 !(

 !&
 !)

 "*

Figure B.1: Transistor realization of the proposed TB gate

116

Ideal Computer PC-1
Textbox
118

User
Typewriter
Dhaka University Institutional Repository

TRANSISTOR REALIZATION OF PROPOSED GATES 105

!

"#$#% # !##

&$%' # !#

(#$#%# '# !##
)#$#% '# !# *

%

*

 !"

Figure B.2: Transistor realization of the proposed HND gate

!

"#$%!& $ &'&#&$& & !&&

$

(

)&#&$%!& $ & (&

*&#&$&

 !"

Figure B.3: Transistor realization of the proposed HNF gate

Ideal-1
Textbox
117

Ideal Computer PC-1
Textbox
119

User
Typewriter
Dhaka University Institutional Repository

Appendix C

List of Acronyms

AND Boolean operation (&, concatenation)

with properties 0&0 = 0&1 = 1&0 = 0,1&1 = 1;

CNOT Controlled NOT gate, also known as the Feynman gate;

Ex-OR Boolean operation (⊕) with properties 0 ⊕ 0 = 1⊕1 = 0, 0 ⊕ 1 = 1⊕0 = 1;

ESOP Exclusive OR Sum-of-Products;

FG Feynman gate

F2G Feynman double gate

FPGA Field Programmable Gate Array;

FRG Fredkin gate

HND Hafiz-Naz-Decoder

HNF Hafiz-Naz-Flip-Flop

LUT Look-Up table;

MFRG Modified Fredkin gate

MPGA Mask Programmable Gate Array;

MTSG Modified TSG gate

TB Tara-Babu

NOT Boolean operation (′) with properties (0)′ = 1, (1)′ = 0;

PG Peres gate

PLA Programmable Logic Array;

118

Ideal Computer PC-1
Textbox
120

User
Typewriter
Dhaka University Institutional Repository

LIST OF ACRONYMS Appendix C List of Acronyms 119

RPGA Reversible Programmable Gate Array;

RPLA Reversible Programmable Logic Array;

RAM Random Access Memory;

TG Toffoli gate

Ideal-1
Textbox

Ideal Computer PC-1
Textbox
121

User
Typewriter
Dhaka University Institutional Repository

Appendix D

List of Publications

International Journal Papers (SCI-indexed)

1. Nazma Tara, Hafiz Md. Hasan Babu and Lafifa Jamal, ”Power Efficient Op-

timum Design of the Reversible Plessey Logic Block of a Field-Programmable

Gate array”, Elsevier Journal of Sustainable Computing: Informatics and

Systems, volume 16, pp 76-92, December 2017.

2. Nazma Tara and Hafiz Md. Hasan Babu, ”Synthesis of Reversible PLA

Using Products Sharing”, Springer Journal of Computational Electronics,

Volume 15, Issue 2, pp. 420-428, June 2016.

3. Zarrin Tasnim Sworna, Mubin Ul Haque, Nazma Tara, Hafiz Md Hasan

Babu and Ashis Kumar Biswas. ”Low-power and area efficient binary coded

decimal adder design using a look up table-based field programmable gate

array”, IET Circuits, Devices & Systems, Volume 10, Issue 3, pp. 163-172,

2016.

122

User
Typewriter
Dhaka University Institutional Repository

Bibliography 123

International Conference Papers

1. Nazma Tara, Hafiz Md Hasan Babu, and Nawshi Matin, ”Logic Synthesis in

Reversible PLA.” 29th International Conference on VLSI Design and 15th

International Conference on Embedded Systems (VLSID), Kolkata, India,

pp.110-115, January 2016.

2. Nazma Tara, Lafifa Jamal and Hafiz Md. Hasan Babu, ”An Efficient Ap-

proach to Design Compact Reversible Programmable Logic Array”, IEEE

Woman in Engineering Conference on Electrical and WIECON-ECE 2015,

Dhaka, Bangladesh, pp. 135-138, December 2015.

3. Ankur Sarker, Tanvir Ahmed, S. M. Mahbubur Rashid, Shahed Anwar,

Lafifa Jamal, Nazma Tara, Md. Masbaul Alam, and Hafiz Md. Hasan Babu,

”Realization of Reversible logic in DNA computing”, 11th IEEE conference

on Bioinformatics and Bioengineering, Taichung, Taiwan, pp. 261-265, 2011.

Ideal Computer PC-1
Textbox
LIST OF PUBLICATION

User
Typewriter
Dhaka University Institutional Repository

