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A

Abstract

The problem of finding eigenvalues and eigenfunctions and studying their 

behaviour plays a crucial role in modem mathematics and engineering. The 

importance o f the eigenvalue problem in applied mathematics (as well as in 

engineering and other areas) is that it arises on the way o f solution o f systems of 

linear ordinary differential equations with constant coefficients.

The investigations are o f utmost importance for theoretical and applied mechanics, 

physics, physical chemistry, biophysics, mathematical economics, theory o f  

systems and their optimization, theory o f random process and many other 

branches o f natural science. There are many applications of matrices in both 

engineering and science utilizing eigenvalues and sometimes, eigenvectors. 

Control theory, vibration analysis, electric circuits, advanced dynamics and 

quantum mechanics are just a few of the application areas.

Many researchers studied a large number of second and fourth order Sturm 

Liouville eigenvalue problems utilizing diversified numerical techniques. 

However, only few numerical methods are accessible in literature for higher order 

Sturm Liouville eigenvalue problems using some special techniques. In our thesis 

we formulate and compute the eigenvalues of general linear second order Sturm- 

Liouville problems. We also compute eigenvalues o f higher even order linear 

problems (from fourth up to twelfth order) in one dimension. We utilize the 

technique of Galerkin weighted residual exploiting polynomial basis fiinctions. 

In addition, we also calculate second, fourth and sixth order eigenvalue problems 

applying Weighted Residual Collocation and Spectral Collocation methods.

(i) The major steps in this thesis, dependent on the method of Galerkin 

weighted residual are:

Ascertaining a new method namely weighted residual method with various types 

of boundary conditions and minimizing the condition number as well as the cost 

of computations. Legendre and Bernstein piecewise polynomials over [0, 1] as



trial functions are used to compute the eigenvalues.

Rigorous matrix formulations for computing the eigenvalues o f Sturm-Liouville 

eigenvalues problems are derived. Special care is taken when determining how the 

polynomials satisfy the corresponding homogeneous form of Dirichlet boundary 

conditions. For computation, the differential eigenvalue problems are reduced to 

algebraic system eigenvalues which gives fairly accurate eigenvalues o f the 

problems.

(ii) The major steps o f Weighted Residual Collocation method are the followings:

To approximate the solution of eigenvalue problems as a weighted sum of 

polynomials. To select at least the same number o f collocation points as the 

unknown parameters and determine the co-efficient matrices /column vector at 

^  these collocation points. The residual is required to vanish point wisely at a set of

pre-assigned points.

(ii) The major steps o f Pseudo Spectral collocation method are;

To provide support functions for Spectral Collocation differentiation matrices 

corresponding to Chebyshev, Legendre interpolants.

The thesis entitled ‘‘Studies on Eigenvalue Analysis for a Class of Differential 

Equations by the Methods of Weighted Residuals” contains five chapters. 

^  Among them the first chapter is confined as “Introduction”. In this chapter, we

discuss some mathematical preliminaries which are essential to study the problems 

examined in this thesis, such as a few definitions, theorems, prepositions, 

corollaries which are used in the subsequent chapters. We have also illustrated 

Bernstein and Legendre polynomials showing their properties and convergence 

criteria.

To accomplish the objectives specified in the previous section, the plan of the 

thesis comprises the following five chapters:

^  □  Chapter 1 includes some important definitions which are related to our thesis

and will be used in the subsequent chapters. This chapter also emphasizes in

xi



A

detail the properties o f Bernstein and Legendre polynomials, some theorems 

on convergence of Bernstein polynomials. Objectives and scope of the thesis 

are also given in this chapter.

□  Chapter 2 is dealt with the numerical computation of the second order SLEs 

where Bernstein and Legendre polynomials are utilized with three types of 

methods namely Galerkin WRM, Collocation and Spectral Collocation. 

Bernstein and Legendre polynomials are employed as basis functions for 

Galerkin WRM. For collocation and Spectral collocation method, Bernstein 

and Legendre-Lagrange polynomials are used respectively with grid points. 

We derive matrix Formulation I, Formulation II and Formulation III by 

applying the Galerkin method with three different types o f boundary 

conditions for solving these problems. The basic polynomial approximation 

theorems and completeness o f Sturm-Liouville are stated in this chapter. A 

wide range of examples is discussed in chapter 2  and our idea is extended for 

solving nonlinear differential equations with the case o f Spectral Collocation 

scheme. The method is based on a direct discretization of the BVP as a 

nonlinear equation in the eigenvalue together with an iterative procedure.

□  Chapter 3 is devoted to find the numerical computations of eigenvalues for 

fourth order BVPs. In this chapter the matrix formulations for solving linear 

SLEs are illustrated for two key boundary conditions out o f various kinds of 

boundary conditions which are used in physical problems.

□  The numerical calculations of sixth order BVPs by means of Formulation I and 

Formulation II for two different types o f boundary conditions by the Galerkin 

method have been provided in Chapter 4. Stability and convergence criteria are 

demonstrated for Galerkin WRM in this Chapter. The Bernstein Collocation 

and Spectral Collocation method are formulated as a rigorous matrix form 

together with Clamped and Hinged type boundary conditions. This chapter is 

devoted to report a few numerical experiments separately which demonstrates 

the accuracy of the proposed numerical schemes for each class o f method.

xii



□  In Chapter 5 we illustrate numerical computations o f eigenvalue/ Rayleigh 

number eighth, tenth and twelfth order BVPs by the Galerkin. Precise matrix 

Formulation I and Formulation II for two different types o f boundary 

conditions are developed. Numerical results of some Hydrodynamic BVPs are 

tabulated to compare the error with those developed so far. The obtained 

results prove that the offered Galerkin WRM is o f high precision, competent 

and expedient. Conclusions are given for each chapter separately and 

references are given towards the last o f the thesis.
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CHAPTER 1
Introduction

The concept of eigenvalue problems is rather important both in pure and applied 

mathematics in physical systems such as pendulums, vibrating and rotating shafts 

which are connected with eigenpairs o f the system. For example, they describe the 

vibration modes of various systems, such as the vibrations o f a string, the critical 

loads which a column supports before deformation or the energy eigenfunctions 

of a quantum mechanical oscillator, in which case the eigenvalues correspond to 

the resonant frequencies o f vibration or energy levels. There have been great 

achievements in the studies o f finite dimensional vibration systems and theory of 

wave processes in the past (Lyapunov, Poincare, Mandelstam, Timoshenko, 

Maxwell, Lord Kelvin, Sommerfield, Rayleigh, Helmholtz, Lord, Morse, etc.) 

The discrete energy levels observed in atomic systems could be obtained as the 

eigenvalues of a differential operator which led Schrodinger to propose wave 

equation. In electrical engineering, eigenvalues /eigenvector analysis has a large 

role in the simulation of power systems where they determine frequency response 

of an amplifier or a reliability of a national power system. In aeronautical 

engineering, eigenvalue can be used to determine whether a flow over a wing is 

laminar or turbulent. In nuclear physics, random eigenvalues are used to model 

nuclear energy levels. In fluid mechanics, the linear stability of a plane Poiseuille 

flow and plane coquette flow depends upon the eigenvalues known as Reynolds 

numbers and Rayleigh numbers which confirm the presence o f stability or 

instability. In quantum mechanics, quantities like energy, momentum, position 

etc. are represented by Hermitian operators on Hilbert space which is 

diagonalizable and eigenvalues are always real. Quantum mechanics are 

concerned with eigenvalues and eigenfunctions to differential operators/ 

equations.

For those class of eigenvalue problems, a well-developed theory and various codes 

for the computation of the numerical solution exist. However, our aim is not only 

to focus on Sturm-Liouville problems but to consider numerical methods, which 

are capable o f solving a wide range of differential eigenvalue problems including
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higher order examples.

The resulting theory of the existence and asymptotic behavior o f the eigenvalues, 

the corresponding qualitative theory of the eigenfunctions and

their completeness in a suitable function space became known as Sturm- 

Liouville theory. This theory is important in applied mathematics, where Sturm- 

Liouville problems occur very commonly, particularly when dealing with 

linear partial differential equations that are separable.

If the interval is unbounded, or if  the coefficients have singularities at the 

boundary points, this case, the spectrum no longer consists o f eigenvalues alone 

and can contain a continuous component. There is still an associated eigen 

function expansion (similar to Fourier series versus Fourier transform). This is 

important in quantum mechanics, since the one-dimensional time-independent 

Schrodinger equation is a special case of a Sturm-Liouville equation with linear 

partial differential equations that are separable. Firstly, these equations can be 

solved as a Sturm-Liouville problem. Since there is no general analytical (exact) 

solution to Sturm-Liouville problems, we can assume we already have the 

solution to this problem, that is, we have the eigenfunctions and eigenvalues. 

Secondly, these equations can be analytically solved once the eigenvalues are 

known. In the recent years’ numerical solution for Sturm-Liouville problems have 

been studied by many researchers exploiting various techniques and different 

algorithms have been applied to minimize the convergence rates.

Two standard approaches to the numerical approximation of eigenvalues o f a 

boundary value problem can be distinguished as discretization and shooting. 

Discretization methods (such as finite differences and finite elements) involve 

substantial arithmetic and the storage o f large matrices. Moreover, the accuracy 

quickly deteriorates for the higher eigenvalues. Shooting methods require less 

storage and arithmetic, but usually they do not determine the index of the 

eigenvalue. For Sturm-Liouville problems, these difficulties are avoided by the 

Prufer method, which is a shooting method based on oscillation. This Prufer-based 

shooting method has been implemented by Bailey et al (1978) in the SLEIGN 

code and its successor SLEIGN2 [Bailey et al (2001)] and by the NAG library



code D02KDF. Popular algorithms known as piecewise constant midpoint 

methods, or Pruess methods which approximate the coefficient functions p{x ) , 

q{x)  and r{x)  by piecewise-constant approximations, solving the problem 

analytically on the piecewise-constant intervals. This algorithmic theme was 

introduced in Canosa and Gomes (1970) and eventually developed into well 

analyzed packages [Marietta and Pryce (1992), Ledoux et al  (2009), Ledoux and 

Daele (2010)]. This results in a set o f problems which may each be solved 

analytically, again producing the most thorough analysis o f general piecewise 

polynomial interpolants is due to Pruess, whose papers [Pruess (1973, 1975)] 

provide a wealth o f convergence results approximations to a number of 

the lower eigenvalues.

Piecewise constant approximations are rather crude. The difficulties are reduced 

for piecewise linear approximation illustrated in Baily et al (2001) and Ledoux 

(2006-2007) because the bases can be expressed efficiently in terms o f Airy 

functions.

Numerical methods for Sturm-Liouville eigen-problems that have been 

implemented in software include finite difference, finite element and spectral 

element discretization each of which leads to generalized algebraic eigen- 

problems. Here approximations to a number o f the lower eigenvalues are available 

simultaneously.

If  the eigenvalue problem is singular, the code BVPSUITE [Kitzhofer etal  (2009)] 

for singular boundary value problems has been successfully applied. Singular 

problems are defined on an infinite domain and with singular endpoints which 

require a special numerical treatment. In these cases, an interval truncation 

procedure must be implemented. Different algorithms are implemented in the 

available Sturm-Liouville eigenvalue problems library codes to determine a 

truncated endpoint and appropriate boundary conditions to give a prescribed 

accuracy are illustrated in Pruess and Fulton (1993), Marietta and Piyce (1991). 

They also commonly arise from linear PDEs in several space dimensions when 

the equations are separable in some coordinate system, such as cylindrical or 

spherical coordinates. Some examples of these equations and their applications



are the Bessel, Legendre, and Laguerre equations. Bessel equations arise when 

solving the Laplace and Helmholtz equations by separation of variables in 

cylindrical polar coordinates. Legendre equation arises in solving Laplace 

equations in spherical polar coordinates, and they give expressions for the 

spherical harmonic functions. While the Laguerre equation arises in solutions of 

three-dimensional Schrodinger equation with an inverse-square potential and in 

Gaussian integration. Moreover, the Galerkin WRM [Reedy (1993)] can be easily 

extended into two-dimensional problems, which are relatively difficult for various 

discretization methods.

1.1 Objectives and Scopes of the thesis.

The Sturm-Liouville systems arise from vibration problems in continuum 

mechanics such as the vibrations of a string. For example, if  a string stretched 

tightly between two supports, located at x  = 0  and x = / ,  and subjected to a 

distributed vertical force o f intensity q{x)  per unit length. If we assume that the 

string has linear density p  (mass/unit length) and is rotating with uniform angular 

speed 0) ,  such action generates a distributed inertia force (force / length) of 

magnitude pw^umdi  direction transverse to the string which displaces the string 

away from its initial rest configuration. Hence the problem of finding these 

deflection modes is mathematically equivalent to determining the static 

equilibrium position of a tightly stretched string subject to the distributed load 

q{x) = pco^u.  Making the replacement in one dimensional Poisson equation,

d^u  ( x )  ^
— ^  ^  and introducing the parameter X = ■■ (T  is tension).We can
dx T T

d^u
write the said equation in the form of an eigen-equation — + Am = 0 , which is

dx"

referred to as the one-dimensional Helmholtz equation.

The Schrodinger equation is a separable Partial Differential Equation (PDE), and 

in separating the PDE, Ordinary Differential equations (ODEs) can be generated 

which are o f the form of Sturm-Liouville differential equations or presented by a 

second order BVP.



The process of solving certain linear evolution equations such as the heat or wave 

equations we are led in a very natural way to an eigenvalue problem for a second 

order linear differential operator with two boundary conditions but where no 

unique solution exists. Since many eigenvalue problems are o f second order, for 

example Sturm Liouville problems, we also implemented a code for second order 

problems and paid special attention to the approximation of the boundary 

conditions in the singular case.

Fourth-order differential equations can model the bending of an elastic beam and, 

in this sense, we refer them as beam equations. They have received increased 

interest from several fields of science and engineering, either on bounded 

domains. The deformations o f an elastic beam in equilibrium state, whose two 

ends are simply supported, can be described by the fourth-order boundary value 

problem. Also, a traditionally important example of a fourth order BVP is the Orr 

Somerfield equation from the field o f hydrodynamic stability.

The Euler Bernoulli theory is based on the assumption that plane cross-sections 

remain plane and perpendicular to the longitudinal axis after deformation. It is 

thus a special case of Timoshenko beam theory. In this theory the transverse 

deflection w o f the beam is governed by the fourth order differential equation 

given by

2
dx

■ 2  ̂
d  w 

* — T 
dx

= f { x )  , 0 < x < /

Where, b = E l  is the product o f modulus o f elasticity E  and the moment of inertia 

I, f  is the transversely distributed load.

Timoshenko Beam theory M  = El  - y / { x ) = -
*  *

2

Euler-Bemoulli Theory, M  = E l  — ^  = ~ ~
dx *

The vital piece of information required is the smallest eigenvalue which gives 

potentially the most visual structure o f dynamical system is called critical buckling 

load. Fourth-order eigenvalue problems appear routinely in the linear stability



analysis o f 2-D incompressible flows. In many cases it is not possible to find 

analytically solutions to the eigenvalue problem in fluid mechanics, and therefore 

a suitable numerical method is required. For two dimensional flows the problem 

can often be reduced to a single fourth order equation for the amplitude ^ ( w ) o f  

the stream function i i /{x,y, t )= (//(w).exp[iar(jc-<yt)].

The energy eigenfunctions o f a quantum mechanical oscillator, in which case the 

eigenvalues correspond to the resonant frequencies o f vibration or energy levels. 

The Schrodinger equation is a separable Partial Differential Equation (PDE), and 

in separating the PDE, Ordinary Differential equations (ODEs) can be generated 

which are o f the form of Sturm-Liouville differential equations or presented by a 

second order BVP.

Mathematical model of astrophysics and free vibration analysis of ring structures 

give rise to many sixth-order boundary value problems. The thin convecting layers 

that are bounded by stable layers which are believed to surround^-type stars 

and dynamo action in some stars may be modeled by such equation. Moreover, 

when considering the instability setting in an infinite horizontal layer of fluid, 

which is heated from below and is subject to the action of rotation, we model the 

instability as ordinary convection and over stability by a sixth-order ordinary 

differential equation (ODE). In fluid mechanics the linear stability o f a plane 

Poiseuille flow and plane Coquette flow depends upon the eigenvalues known as 

Reynolds numbers and Rayleigh numbers. Vibration characteristic o f circular ring 

structure with constraints which has rectangular cross-sections o f constant width 

and parabolic variable thickness is expressed by a sixth-order ordinary differential 

equation.

Electro hydrodynamics (EHD), magneto hydrodynamics (MHD) and Ferro 

hydrodynamics (FHD) are interested in an eigenvalue problem in EHD which 

implies the presence of electric forces. Electro hydrodynamic systems have 

important industrial application in the construction of devices using the electro 

viscous effect or charge entrainment, for instance EHD clutch development and 

EHD high voltage generators. The linear stability of their steady states typically 

leads to high order differential eigenvalue problems. Eighth order BVPs govern



the physics of some hydrodynamic stability problems. These problems also arise 

in the study of astrophysics, hydrodynamics and hydro magnetic stability, fluid 

dynamics, astronomy, beam and long wave theory, applied mathematics, 

engineering and applied physics. When an infinite horizontal layer of fluid is 

heated from below and is subjected to the action of rotation, instability sets in. 

When this instability sets in as over stability, it is modeled by an eighth order 

ordinary differential equation. Eighth order differential equations are also 

modeled while considering the motion of a cylindrical shell. Equations for the 

equilibrium in terms of displacement components for an orthotropic thin circular 

cylindrical shell subjected to a load that is not symmetric about the axis o f the 

shell, which resulted in eighth order differential equations. Eighth order BVPs 

arise in the torsional vibration of uniform beam. Tenth and twelfth order equations 

arise when instability setting in as ordinary convection and due to acts o f a uniform 

magnetic fields across the fluid in the same direction as gravity.

1.2 Sturm-Liouville Problems

A classical Sturm-Liouville equation, named after Jacques Charles Francois Sturm 

(1803-1855) and Joseph Liouville (1809-1882), is a real second-order linear 

differential equation of the form:

du
dx

p{x)
dx

+ q{x)u = 'krix)u ( 1 .1a)

where, p { x ) ,  q { x ) ,  r (x )  are all piecewise continuous functions and p { x ) ,  

r (x )> 0  on the finite closed interval y, ■ In the regular Sturm-Liouville theory 

these boundary conditions have the form

« M(Y) + y5̂  w '(r) = 0  ( 1.1b)

a^u{f i )  + ^ ^ u { f i )  = 0 ( 1 .1c)

or,, yffj , ^ 2 »ŷ 2  constants; a ,̂ are not both zero and are not

both zero. Here, u = u(x )  that will also be required to satisfy appropriate 

boundary conditions. Finding the values o f X for which there exists a nontrivial 

(nonzero) solution w of ( 1 .1a) satisfying the boundary conditions is part of the



problem called the Sturm-Liouville problem. Such values o f A, when they exist, 

are called the eigenvalues of the boundary value problem defined by ( 1 .1a) and 

the prescribed set of boundary conditions.

The nature o f the boundary conditions depends on the classification of the 

endpoints as regular or singular.

The general solution of equation (1.1a) depends upon both jc and the parameter A 

.Thus, if  M| , « 2  constitute linearly independent solutions o f (1.1a), we can write 

the general solution as

u = A ^ u ^ { x , X ) + ( 1-2 )

Orthogonal polynomials: An orthogonal polynomial sequence is a family 

of polynomials such that any two different polynomials in the sequence 

are orthogonal to each other under some inner product. A sequence of 

polynomials

W=00
{ p  (x )} with degree deg [ p  (x) ]= n such thatn n=0 n

p  { x ) p  {x)dx = ^for  m ^ n  (1.3)• m n ^ '
r

The most widely used orthogonal polynomials are the classical orthogonal 

polynomials, consisting of the Hermite polynomials, the Laguerre polynomials, 

the Jacobi polynomials together with their special cases the Gegenbauer 

polynomials, the Chebyshev polynomials, and the Legendre polynomials.

Weight function: A function 6{x)  used to normalize orthogonal functions is 

called weight function. The weight function 6>(x) should be continuous and 

positive on {y,/j)  .

. Pm (^)p« (^) C „ (1.4)
r

where,

0 ( x )  weighting function and is the Kronecker delta 

^  =J P (x) 0(x)dx (1.4a)n j n
r



(1.4b)
0 , m ^ n
1, m = n

Self-adjoint differential operators; self-adjoint (differential) operators which 

play an important role in the spectral theory of linear operators and the existence 

of the eigenfunctions.

2
The domain of a differential operator L is the set of all m g •

Residual Function:

To obtain the residual function [Lewis and Ward (1991)], we first collect all the 

terms in the differential equation on the left-hand side. The exact solution will 

produce an answer which is identically zero for all values o f x  in the problem 

domain when substituted into the left-hand side. But an approximate solution will 

not produce an identically zero function but a function says, R{x) which is called 

residual function.

1.3 The Galerkin weighted residual method

Let the approximate solution of equation (1.1a) be

u { x ) ^ u { x )  = (^^{x) + Y,c.(f>.{x)
i=\

where.

(1.5)

} are trial or (basis) functions andc^. 's are parameters.

i) The function (x ) is chosen to satisfy the given boundary conditions of

the problem.

ii) The functions <!>. (x ), / = 1,2,3,....... ,n  must each satisfy the

corresponding homogenous form of the boundary conditions. In this 

method, we determine the n unknown parameters by selecting n weighting 

functions which are multiplied by unknown parameters.

Galerkin’s method then involves determining these parameters by solving the n 

weighted residual equations given by

; =
\  « j ) e Q

R (x)<l) {x)6{x)dx = 0, « j
( 1.6)



1.3.1 Modified Galerkin Method:

If we continue to use the Galerkin technique in conjunction with piecewise linear 

coordinate functions, then second derivative terms in the differential equation 

would make no contribution to the approximation leading to poor results. Hence 

it is desirable to use an alternative weighted residual technique which involves 

only first derivative terms. The new technique is obtainable using integration by 

parts from the standard Galerkin approach and is known as the modified Galerkin 

method [Lewis and Ward (1991)]. Also, in the modified Galerkin technique we 

shall demand of the trial solution still taken in the form

n - l

{x)  = (f)̂  {x)+Y,Ci<l>i ( x )  (1.7)
i=\

where ^ q ( x ) satisfies any essential boundary condition present and 

(x ), i = 1,2,3, .......,n

should satisfy the corresponding homogeneous form of any such essential 

boundary condition.

It is to note that boundary conditions are o f two basic types, referred to as essential 

and suppressible. For second-order differential equations a boundary condition 

containing a derivative term is called suppressible; otherwise it is referred to as 

essential.

For example, we consider a second-order Sturm-Liouville eigenvalue problem:

d
= x G { y , n )  ( 1 .8 a)

dxdx

a ^ u { y ) + p ^ u \ y )  = 0 ( 1.8b)

a ^ u { ^ )  + P ^ u \ ^ )  = 0 ( 1 .8 c)

are all real constants; Here p  both non-zero then both

boundary conditions are suppressible. If  P^=Q and P ^ ^ ^  then the first

condition is essential, the second is suppressible and so on.

Now using equation (1.5) into equation (1.6) we obtain weighted residual 

equations o f the form

10



dx
p{x)

d u ^
dx

+ q{x)u -  X r(x) u (j) { x ) d x - Q  
j

p { x )
d(j) d<!) , n

/=1dx dx

d ^ . d(j>

dx dx ‘ '

(1.9)

dx

Now we consider the boundary conditions

Case 1: Robin (mixed) boundary conditions ( or, ^0 ,a^ ^0, ^0, ^̂ O)

dx
p ( x )

du

dx
+ \ X r { x ) - q { x ) \ u  = Q̂  y < x < f i ( 1.11a)

u {y )  = --------------and u ( / i )  = ----------------
P

( 1 .1 1b)

We assume the trial solution in terms of polynomials, (j). (x) as

u {x )  = <f>^{x)+Y,c n > \
/=i ' '

(1.12)

where c , ' s  are unknown parameters. Let <|)̂ (x) = 0 is specified by the 

homogeneous boundary conditions.

Now the weighted residual equations corresponding to the equation (1.8a) given 

by

1

0

d { , . d h \
dx

P{x)
dx\  y

+ q{x) u -  X r(x) u (|) (x>*c = 0, j - \ ,  2, 3,.
J

(1.13)

Again, from equation (1.7), we have

n n
«(Y) = Z ^  ‘t>.(y) and m (w) = ^ c  (|).(//) 

/•=o ' ' /=o ' '

du " d^.

(1.14a)

(1.14b)

Integrating each term of equation (1.13) by parts and using equations (1.14), we

11



obtain the Galerkin weighted residual equations:

n

I
i=0

d(p_ d(p

dx dx ‘ J > J

A

or, equivalently in matrix form

1=1

where,

dx

c, =0

. , n

(1.15)

(1.16)

M
F. . = f i , j  i P( x)

d(f>. d<t>j 

dx dx
+ q{x)<l)^{x)(f) (x) d x -

( / ^ ¥ ,  (/^)

+

P i

ccxPir)^i ( . r) ( f>j ir)
(1.16a)

{x)dx ,  / , y  =  l , 2 , 3 ....... ,n (1.16b)

Case 2: Dirichlet boundary conditions (/.e., ^  0 , = 0 , o , = 0)

Here the boundary terms vanish because the boundary conditions imply (f)j (;') = 0 

and (jij (//) = 0 

Hence

n di^ #  . n-\ Mr  1
p i x ) - ^ ^  + q { x ) ^ { x ) ^  ix ) c r{x)<l>ix)<l> i x ) d x

Y dx  dx ‘ J i
i = i r

> J

nI
i=0

where,

y

c. (1.17)

p(x)d(!>̂  d<!>. 

dx dx
dx

E. j=\r{x)<l).{x)<l>.{x)dx , / ,y  = l ,2 ,3 ....... ,n

(1.17a)

(1.17b)

12



Case 3: Numann boundary conditions (i.e., = 0 ,  = 0 ,  5̂ 0)

so that u ' ( / )  = 0 and w ' ( / / )  = 0 

dik dd)n

I
;=0 dx dx ' J

dx + p{y)u i y)^ ,  {y) -p{f i )u c dx

n - \

= ^ I
/=1

r(x)(t>,(x)(t) ,{x)dx 
‘ J

where,

F. . = [ 'J J
r

d(t>. d<!>
p { x ) — —̂  + q{x)(f>. {x)(l). (x) d x

E j j  =\r{x)(t>. {x)(!>. {x)dx

(1.18)

(1.18a)

(1.18b)

Case 4: Cauchy boundary conditions:

(i) when 0 , ^ 2 =^

We obtain from equations (1.8b) and (1.8c) 

a ^ u { y )
u ( r )  = ------------  and a^u{jLi) = d

It follows that ^  ( / f ) = 0

n

I
(=0

p { x ) - ^ —^^q{x)(j),{x)(l),{x)  
ax dx ‘ J

(1.19a)

(1.19b)

f-c dx

where,
M

F.. = { t.j J
d<f>. ■

c. (1.20)

dx  +
P.

(J-
E =\r(,x)(j> {x)(!) {x)dx  

* >y * J
r

( 1.2 0 a)

(1.20b)
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(ii) when /?̂  = 0,

We obtain from equation (1.8b) and (1.8c) that 

a Mu' )
m(/^) = — ——  and a u { y ) ^ ^

It follows that (y) = 0

Equation (1.10) takes the form as: 

fi

( 1.2 1 a)

( 1.2 1 b)

n
1
i=0

d^ , d(t>,
+ . ( x )

dx dx J
d x - p i ^ ) d  X n )  + p{y) ( f , ,  { n ) ( t ) , { m c .

n -\ hi 

i - i ,

or, equivalently in matrix form

................ "

' J

(1.22)

d^. d(f>
p { x ) — --- -—  + q{x)(l> {x)<!> (x)

dx ax ' J
d x -

J.

Eij=\r{x)<l>i{x)(f>j{x)dx
r

Case 5: Periodic boundary Conditions: u{y) = u{^)  ; u \ y )  = u \ ^ )  

Equation (1.10) reduces to

(1.23) 

(1.23 a) 

(1.23b)

n

I
/=0

d(l). .

dx dx ‘ J

n M

= ' i S
i=0

r(x)(l) .(x)(|) ,(x) 
' J

c dx 
i

(1.24)

or, equivalently in matrix form

” /  \
y  F - X E  c = 0 , j=l ,  2, 3, Kj) .  ̂ J > ’ <

where,

n (1.25)
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F = 
i.j p (x) —T  —r   ̂^dx ax ‘ J

d x - ^ . { f i ) ^  y ) [ p { l ^ ) - p { y ) \  (1.25a)

£  . = r(x)(t).(x)(t).(A:)^ir 
' j  •' I J

(1.25b)

Case 6: Boundary conditions for semi-infinite domain

We use polynomials as trial functions which are derived over the interval

0  < X < / / .  We first convert SLE in (1.8a) over the domain [l, oo to an equivalent

dx 1problem on [0,1 ]. This exertion is performed by placing x = log t so that

du _ du dt _ du  ̂
dx dt dx  ̂ dt ’

dt

d u d

dx2 dx
du d (  du

dt
dt
dx = t

2 ^  
d u du

t — T- + -
dt 2 dt dt dt

(1.26)

Sturm-Liouviile problems in infinite range as / ^ ^ o o .  We can further increase the 

range of the interval and equation (1.9) gives

d  du
<j>.{t)dt = Q, l<?<oo (1.26a)

d_
dx P ( 0 dx

+ q{t)u -Ar(t)u

We consider the interval the endpoint boundary conditions M(//) = O a s / / - > o o i n  

0 < x <  ju. Let us assume w(lOOO) = 0 by taking // = 1 0 0 0 .

d^, d^ .nI
/=0

P{t)- i __^
dt dt + qr(/)(t),(0 (l) .(/)

' J

n

d t - T
/=0

Lim  p(fi)u Cu)(|) Xm)-p(\)u (1)(|) (1)
H-^oo J J

n ^

= ^ I |
/•=0 l

(|). (0) = 0 and we assume Lim (//) = 0.

r(Oc|).(0 «|) ( 0' J
c dt i (1.27)

c. =0 (1.28a)

where,

15



f*
F = ft.S J

d<!) d(f>̂

at at J
dt  (1.28b)

E^^=\r{t)<l>^{t)(l>^{t)dt / , 7  = 1,2,3............... ,n (1.28c)
1

1.4 Basic properties and theorems on Sturm-Liouville problems

During time an extensive theory was developed for the regular boundary value 

problem (1.1a) - (1.1b), the so-called Sturm-Liouville theory. In this section we 

bring together those facts which seem especially relevant for the subject o f this 

thesis. For a more elaborated study of the Sturm-Liouville theory we can refer to 

[Marietta and Pryce (1992), Baily et al (2001), Aukulenko and Nesterov (2006), 

Ledoux and Daele (2010), Ledoux et al (2009)].

Adjoint operator: Let Abe  a c o m p l e x s q u a r e  matrix viewed as a linear 

operator on C ” . Then for every ^ , y / e C ' '  , we have

““ T T T' 'T T
{A(/>,i/ / )  = {A(/>Y (f/= ^  A 1// = ^  a I//=<j> A * y / =  (^^,A*ij/)  (1.29)

Thus, the conjugate transpose matrix A* = A is the adjoint o f A .

Self-adjoint operator: A linear operator L on inner product space V  is called a 

self-adjoint operator if  L* = L.

{L(l>,ii/) = {(^,Li//) (1,30)

Homogeneous, second-order, linear ordinary differential equation (with real

valued coefficients) can be written in self-adjoint form using a procedure 

illustrated below.

Here / e ( / , / / )  is a bounded or unbounded open interval o f the real line R 'i.q., 

- 0 0 < < / / < C30, the coefficients p { x ) ,  q ( x ) ,  r { x ) ' \ y , f x )  m\o R , A & C ,  the 

complex field.

1.4.1 Existence, uniqueness and linearity

From the basic existence and uniqueness theorem for (linear) ordinary differential 

equations it follows that if, p ( x ) ,  q ( x ) ,  r (x )  are all piecewise continuous

16



functions and p{x) ,  r ( x ) > 0 , then the Sturm-Liouville equation (1.1a) has a 

unique solution satisfying any given initial conditions 

u { 4 ) = c ^ ,  [pu ' \ ^ )  = c^ at a point ^ o f the interval.

Preposition: Suppose that (1.1a) is a Sturm-Liouville equation with/?(x), q{x)  

and r(x ) continuous, and p ( x ) >  0 for all xE y,/j. . Then the set o f all functions 

u{x) satisfying (1.1a) is a vector space of dimension two. In other words, there 

exist two linearly independent solutions given in equation (1.2) [Ledoux (2006- 

2007)].

Proof: The differential equation (1.1a) is equivalent to the non-autonomous linear 

system

u { x )  =
1

-v(x)
(1.31)p ( x )

V  {x) = [q{x)-;{r{x)\ i{x)

Hence, by the basic existence and uniqueness theorem, there exists a unique 

solution o f (1.1a) with initial values u {y ) =\ ,  p { y ) u \ y )  = 0.  Similarly, there 

exists a unique solution of ( 1 .1a) with initial values u{y)^0,  p i r ^ u ' =  \ . 

Let us denote these solutions by (jc) and ( x ) . Moreover, if  u{x) is any

solution of ( 1.1 a), then

u{x) = u{y)u^{x)  + p  {y)u{y)  (x)

To verify this we consider the function 

u { x ) = u { x ) - u { y ) u ^  { x ) - p { y ) u \ y ) u ^  (x )

The function w(x) is a solution of (1.1a) with initial values

u (y) = u{y) -  u{y)u^ (y) -  p{y)u  (y)w^ (y) = 0  

p{y)u  (y) = p { y) \ i { y ) - u{y)u^ ( y ) - p (y )u ' ( y )u^ (y) = 0

(1.32)

(1.33)

(1.34a)

(1.34b)

Hence the uniqueness implies that m(x) = 0 for all xG [y,/^].

We can then say that the Sturm-Liouville equation (1.1a) is a linear differential 

equation. That is, if we define the differential operator

17



1 d d ' '
r(x) dx

V  /

+ q ( x ) on y<x<fj . (1.35)

Sturm-Liouville theory

Any homogeneous, second-order, linear ordinary differential equation will be said 

to be in self-adjoin form if it is written as

dx
p{x)

du(x)
dx

+ q ( x ) u ( x )  = - ^ , r ( x ) u ( x ) (1.36a)

L \ u \ : = - X r { x ) u , x & [ y , f i )  (1.36b)

p ( x ) ,  q{x) ,  r {x )  are piecewise continuous functions in and Z, is a self- 

adjoint operator differential (Hermitian or Sturm-Liouvillian) r = r{x)  is some 

known function, ^ is a constant (the eigenvalue) and u are the unknowns to be 

determined.

Example 1: Let us consider the general form of linear eigenvalue problem

. , . d ^ u  . ,  . du  
A ( x ) — -  + A ( x ) —  +

dx
A (x) + /l 
■ 0 M = 0 (1.37)

A ^ ( x ) , A ^  ( x ) , A q ( x ) are continuous functions in the interval [ / , / / ]  . 

where A^(x ) >0  on this interval. This differential eigenvalue problem is not in 

self-adjoint form unless A^(x)^  A^(x) .  However, we can transform equation 

(1.37) into self-adjoint form by multiplying throughout by the function

’ producing
A^ix)

p(x)  ̂  + (!>{x) A (x)  ̂  + (/>(x) 
dx^ ’ ^

A^ix) + A « = 0

Equation above is now self-adjoint form provided we choose 

p \ x )  = 4>{x)A^{x)

By solving this first order differential equation for p { x ) ,  wq find

p (x )  = exp

(1.38)

(1.39)

(1.40a)
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Also by further comparison of equation (1.38) with the self-adjoint form of 

equation (1.36a), we identify the functions as

p { x ) A ^ { x )
q{x)  = <!>{x)AAx) = (1.41)

r (x )  = ^ ( x )  =
P( x )

A^(x)

dHere, L = D  p { x ) D  + q{x)  is called a self-adjoin operator; where D  = — . The
dx

self-adjoint form enjoys certain operational advantages over other forms. A self- 

adjoint operator L is said to be symmetric on the interval y,iJ. if  and only if

n
= 0 (1.42)

r

for any functions <f> and y/ having continuous second order derivatives on the 

interval satisfying the boundary prescribed conditions associated with L .

We examine whether the self-adjoint operator L = D^  is symmetric on 0,1 with 

respect to the following boundary conditions

(/)</)(0)=0 ; <?>(l)=0 (1.43a)

{//)(^(0 ) - ^ ( l ) = 0 ; (f)'{\)=Q

2 .
(1.43b)

dx
in the above equation (1.36) and using integration

by parts

</,(x)i/  ̂ ( x ) - i f , ( x ) f ( x ) d x  =

<|)(1) / ( 1)-< |)'(1)V.(1)

(|)(x)l// (x )-( |)  (x)y^(x) 

<t)(0 ),^.'(0 )-( t) ' (0 )^^(0 )

For the boundary conditions in (/),  it follows that (|) and satisfy 

^ (0)=  ^ ( 0 ) = 0  and = Hence the right hand side o f the above

integral vanishes and we conclude that L = D^  is symmetric in this case. In the
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case (ii) boundary conditions lead to ^ ( 0 ) - ^ ( l ) = 0 , v^(0 ) - ( ^ ( l ) = 0  and 

(Z>'(l)= y/ ' { \ )=0.  Based on these relations the above integral reduces to

1

■ f {x ) i ! / \ x )  - ii/{x)<l>\x) ix = iy{0)<t>\0) - (1.44)
I

the right-hand side 0

Thus L = D^  is not symmetric in this case. 

Theorem 1.1: A self-adjoint operator L =

symmetric on the interval 

[r,n]  if =

dx ax
+q{x)  is said to be

(1.45)

For any function (/>, y/ that satisfy the prescribed boundary conditions associated 

with L and have continuous second order derivatives on [ / , / /  .

Proof: If ^ and if/ satisfy the boundary conditions at x = /  then

wir) w\r) ’« i' 'o'
J ir ) A . 0(i)

which follows that (f>'{y)y/{y) -<f>{y)y/\y) = Q 

If (f) and If/ satisfy the boundary conditions at jc = //

(ii) <f>'{^)if/{^)-<f>{/j)if/'{^) = 0

p{x)W{<l>,ifj){x)Y^= p{lu ){iS )if/\fS )- p{y)<l)Xy)y/\y) = 0

(1.46)

(1.47)

(1.48)

The most important properties on associated with eigenvalues and eigenfunctions 

o f such a self-adjoint symmetric operator is the orthogonality o f the 

eigenfunctions.

Theorem 1.2: Let £ b e  a symmetric operator on the interval y,//] associated 

with the eigen-equation (1.36a)

If A, and A are any two distinct eigenvalues of L with corresponding eigenm n
functions (/> and <!> respectively, then <j) and <f> are orthogonal, i.e..

m m
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m n m ^ n (1.49)

X-

Proof: The eigenfunctions and satisfy the relations

(|) ( x )
m

(1.50a)

<|) (̂x) = -A r{x)^ (X) 
n n

(1.50b)

Multiply (1.50a) by and (1.50b) by subtract the resulting

expressions and integrate over y < x < / ^

U ) -<f> L <!> ( x )  W =  A - A  ]\r{x)(l> {x)<!> ( x ) dx  (1.51)

Since L is symmetric so that ^ l [ ^ ]  =

(1.52)

By hypothesis ; thus we deduce that the integral vanishes and the

theorem is thus proved.

Theorem 1.3: The eigenvalues o f a symmetric operator are all real.

Proof: Suppose there exists some complex eigenvalue X with correspondingJc

eigenfunction, ^ f^(x)  i.e., Z-[(Z>^(jc)J+>l^r(x)^^(x) = 0. Since the o p era to r! is

composed of real functions, its complex conjugate Z, equals Z,.Therefore, by 

forming the complex conjugate o f the above equation, we find

(1.53)(x)J+ A^r(x)^^  (x) = (x)J+ r{x)<l>  ̂(x ) = 0

It follows that ^^(x) and (x) belong to distinct eigenvalues, and >1̂

respectively, and hence are necessarily orthogonal due to the symmetry of L . This 

implies that

r{x)<f>i^ (x)<?>  ̂ (x>3&c= | r ( x )  <f>̂ ( x )
Y

(1.54)

21



but since the integrand is positive, this integral ^  0 , which leads to a contradiction. 

Our assumption that a complex eigenvalue exists must be false, and the theorem 

is proved. Every pair of eigenvectors corresponding to different eigenvalues are 

orthogonal.

If and are any two distinct eigenvalues o f L and with corresponding 

eigenfunctions (j>̂ and i f / respectively, then (f> and ^ a re  orthogonal;

= n ^ m  (1.55)
m

Sturm-Liouville Differential Expressions [Baily ef a/ (1991]

Let /  denote any interval o f the real line R with endpoints y  and / / ,  where 

-oo<;k<//<oo. a  compact, i.e., a bounded and closed interval, is denoted by 

[ / , / / ]  y<x<M

where,

1
£(1) and i  ( / )  denote the space of complex valued measurable functions on I

for which u{x)  dx<j u (1.56)

Likewise i  (/) denotes the space (of equivalence classes) o f functions u such that

u ( x )  dx<co (1.57)

If r ( x )  is a positive measurable function on /  then i  represents the

weighted space of functions u satisfying ^\u( x ) \ ^ r ( x  )dx < oo (1.58)
/

notation ^oc(/) is used to denote the space of functions u satisfying jc g ^ 

for all compact subintervals / , / / ] o f  I.

Throughout our thesis work we assume that the coefficients p  ,q , r  satisfy: 

p , q ,  r : I - ^ R  (1.59a)

-1
p  , q , r G i o c { I )  

p{x) > 0  and q{x) > 0 , almost everywhere on I .

(1.59b)

(1.59c)
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Solution o f (1.36a) requires a function u such that u and p u '  aiQ both absolutely 

continuous on all compact subintervals o f / ( s o  that the left-hand side o f (1.36a) is 

defined i.e., on /  and (1.36a) holds, the classical derivative m' may not be.

1.5 Classification of Sturm-Liouviile systems

Regular Sturm-Liouville systems: Most o f the eigenvalue problems studied thus 

fur have featured unmixed or separated boundary conditions. Problems o f this type 

are characterized by l[mJ+/Ia-(x)m = 0 , x€[ / , /u )  (1.60a)

M
2 2 

a ,  +/9, 7^01= a ^ u ( r )  + j3^u i r )  = 0 

A/Jm]- or u{^) + p  m'(//) = 0 [ a \  + p l ^ Q

(1.60b)

(1.60c)
2 \ /

where, L = D [ p { x ) D \ + q { x )  (1.60d)

Any eigenvalue problem belonging to this general class is called a Regular Sturm- 

Liouville system. Unmixed homogeneous boundary conditions which at either 

endpoint of the interval may assume one of the following forms:

First kind: m = 0 (1.61a)

Second kind: m' = 0 (1.61b)

Third kind: hu + u =0{h  constant) (1.61c)

Regular end-point: An endpoint is called singular if it is not regular. Thus, an 

endpoint is singular if  it is infinite, or the endpoint is finite but at least one of p , 

^ , r  is not integrable in any neighborhood of the endpoint.

Periodic Sturm-Liouville systems: We consider

Z-[w]+/lr(jc)M = 0 , (1.62a)

= u \ r )  = u{/S)  (1.62b)

where, L = D[p(x)Z)]+^(jc) and p { y )  = pi/J^)

Here, p { x ) ,  / ' ( ^ )  are given sufficiently smooth functions o f argument x,

y<x</Li ,  which may be extended for all x < co as periodic functions. 

Moreover, p { x ) ,  ^ ( x ) > 0  and the systems which contains such problems are 

called periodic Sturm-Liouville systems. We observe that the Sturm-Liouville
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boundary value problem (1.62a) and (1.62b) is self-conjugate and the 

eigenfunctions corresponding to distinct X are orthogonal w.r.to. weight r ( x )n

on \y ,i i  . In contrast to the BVP considered above, with each eigenvalue 

corresponding to a single eigenfunction (to within a constant co-efficient), in the 

case of periodic boundary conditions (1.62a), the same may correspond to two 

linearly independent eigenfunctions.

Singular Sturm-Liouville system:

A Sturm-Liouville is said to be singular if one or more of the following events 

occur on the interval

(i) p{y)  -  0  and/or p{fj)  = 0

(ii) /?(x), q{x)  or r (x )  becomes infinite dX x  = y  or /u or both.

(Hi) Either y  or //(o r  both) are infinite.

(iv) The singular endpoint x = /i is a limit-circle {LC for short) if  and only

r+E
if for every solution u{x) = | r ( jc) |w(x) |^<ix: is  finite. An endpoint

7

which is not L C  is called limit-point or L P  for short.

To ensure that a singular Sturm-Liouville system has a symmetric operator, we 

require using theorem 1.1

[<l>L[y/]-y/L[(j>\)dx^{p{x)W{<l>,ii/){x)Y^=0 (1.63)

where (/> and y/ are any continuous, twice differentiable functions satisfying the 

prescribed boundary conditions of the Sturm-Liouville system.

If there is a singularity at x =  / ,  we impose boundary conditions such that

Urn p(x) IV(^ , t / / ) (x)  = 0 (1-64)
+

x->y

p(pWi<^,V^)(M)=0  (1.65)

When the singularity arises specifically from jc»(;')=0, then equation (1.64) is 

satisfied. For illustration, by prescribing the condition w(jc), w'(^) finite as

+
x - > y  and equation (1.65) is satisfied by prescribing the condition of the form
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+ = ( 1,66)
1.5.1 The basic approximation theorem [Baily e t «/ (1991)]

Under the condition (1.59a), (1.59b) and (1.59c) and the assumption that each 

endpoint is either a regular or LC, there exists an infinite number of eigenvalues. 

These are real countable, isolated and each eigenfunction is unique up to constant 

multiples. If each endpoint is in the NO case then, in addition, the eigenvalues are 

bounded below. Thus, they can be indexed such that

-oo<y^. < 1  < .................. a nd / I  ^ 00. (1.67a)
0 2 n  ̂ ^

Furthermore, if (j> denotes an eigenfunction corresponding to Atl n

= |0 ,1,2 , .........j , then has exactly n zeros in the open interval

[Atkinson (1964)]. If one or both end points is oscillatory, then the eigenvalues are 

not bounded below. With , « e Z = | -  2 1 , 0 , 1 , 2 , ..... |  denoting the eigenvalues

and be the corresponding eigenfunctions. We have, in this case,

......</l_j </Iq ........... , (1.67b)

A ^ —>—<x) as f7—>-ccand each eigenfunctions /7eZ = [0,l,2, ........ .} has

infinitely many zero ).

1.5.2 Some useful definitions

Full matrix: In numerical analysis and computer science, a sparse matrix or 

sparse array is a matrix in which most o f the elements are zero. By contrast, if 

most o f the elements are nonzero, then the matrix is considered Full or dense. 

Non-normality ratio: The measures o f non-normality o f a complex square 

matrix signifies as non-normality ratio / / ( a )  and can be measured by the formula 

given as:

/ / \ 
♦ ♦ ’\

H(A):= P A A - A A
\  J )

(1.68)

where A is the conjugate transpose o f A and p (a ) implies for the Frobenius
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norm of ^ . An important evaluation for H{ A)

0 < H { A ) < 2  , w i t h / / ( / i )  = 0 iff .4 is normal, i.e., ^  A - A A *  = 0 

[Dragomirescu and Gheorghiu (2010)].

Condition number

The extent o f this sensitivity is measured by the condition number. The condition 

number a measure o f how close a matrix is to being singular: a matrix with large 

condition number is nearly singular, whereas a matrix with condition number 

close to 1 is far from being singular.

If the condition number 10^ , then we may lose up to p  digits o f accuracy

on top o f what would be lost to the numerical method due to loss o f precision from 

arithmetic methods. However, the condition number does not give the exact value 

of the maximum inaccuracy that may occur in the algorithm. It generally just 

bounds it with an estimate.

k [a )=
\A l A -1

i f  A is invertible

00, otherwise

A =A >A > .................=
max 11 2 3 n

Then we have A , = A Since A-'2 max

-1 -1
we find A

2

= A . .
mm

1 1
has eigenvalues — , ---- ,.

^2

(1.69)

(1.70) 

1
•’/I

a) The condition number of Am  the two norm is ic{a ) = max

A
(1.71a)

b) If A is normal matrix then, k {̂a )-
Jimax

h
A .mm

Spectral radius= maximum of the eigenvalues, denoted by p (a ) =

(1.71b)
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c) If ^  is non-symmetric matrix^
a

max \  max

a
min Y min

(1.71c)

Non-normality condition: The non-normality ratio for a square complex matrix A 

is defined as m /4

Multiplicity of eigenvalues

The algebraic multiplicity m . (a )  of an eigenvalues A. is its multiplicity as a rootA I

(   ̂^of the characteristic polynomial, that is, the largest integer k  such that k -  X.
V ‘ /

divides evenly the characteristic polynomial..

Geometric multiplicity o f an eigenvalue is the number o f linearly independent 

eigenvectors associated with it. That is, it is the dimension of the null space of 

A - X I ,  where A is elements o f matrix and /  is identity matrix. 

- r a n  k { A - M )A

The geometric multiplicity of an eigenvalue of a matrix carmot exceed its 

algebraic multiplicity.

Dual vector spaces

Linear functional: A linear functional on F  is a function T : V  - ^ F  such that 

T[ a  v + a  V ) = a  T ( v  ) + a  r ( v  ) (1.72)

V a ^ , a ^ e F  and V ,v^ e V

Thus, a linear functional, is a linear transformation F -> F , where F  is construed 

as a one-dimensional vector space over itself [Kreyszig (1978)].

Example: I f  F - > F  (column vectors) and y  is a l x «  row vector then the map 

v-> yv  is a linear functional on F.

Dual space: Given any vector space F over a field F, the dual space is defined as 

the set o f all linear maps T : V  - ^ F  (linear functional). It is itself a vector space 

with the following operations.
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(<l> + i f / ){x)  = (l>{x) + y / { x )  (1.73a)

^  (l>{bx) = b{(l>{x)) ^ , i f / eV *  , x e V , b e F  (1.73b)

Thus, the collection F * o f all such linear functional is the dual space o f V .

1.6 Piecewise polynomials or basis functions: A piecewise polynomials function 

is defined on [y, //] by

p { x )  = p  ( x ) ,  / = 0 , 1 , 2 , 3 , ..............1 , where for each

function p  _ ( x ) is a polynomial defined on x . , ;c .The degree o f p { x )  is the 

maximum degree of polynomial p , { x )  f o r / = 0 , 1 , 2 , 3 , .............., n - \ .

1.7 Bernstein polynomials

Bernstein polynomial basis, introduced 100 years ago [1912] as a means to 

^  constructively prove the ability of polynomials to approximate any continuous

function, to any desired accuracy, over a fixed interval. Their slow convergence 

rate, and the lack of digital computers to efficiently construct them, caused the 

Bernstein polynomials to lie dormant in the theory rather than practice of 

approximation for the better part of a century. It became evident that the Bernstein 

coefficients of a polynomial provide valuable insight into its behavior over a given 

finite interval, yielding many useful properties and elegant algorithms that are now 

being increasingly adopted in other application domains. For a more flexible 

description of curves, we can use Bezier curves, which are easy to compute and 

store on CAD systems and have nice properties like being easily transformable. 

These results make up the foundation of research that is being used in computer 

graphics, computer animation and scientific visualization today. Many authors 

[Kreyszig E., (1979), Lorentz (1986), Farouqi and Rajan (1987), Bhatti and 

Bracken (2007), Weikang et al (2011)] have been studied and implemented 

Bernstein polynomial for solving differential equations. For each positive integer

n, there is a sequence of Bernstein polynomials over the finite interval | / ,  p  

defined by Islam and Hossain (2015)

IS

B  ix)  =i,n  ̂ '

r \  
n
i

V  /

# ##—t
( x - r )  ( m - x )  , y < x < p  i = 0,l,2 ,...........,« ( 1 7 4 )
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where the binomial coefficients are given by 

n \/  \ n
/ ! ( « - / ) !

Recursion’s relation properties

(1.75)

Bernstein polynomials and their dual basis [Juttler (1998)]

Associated with Bernstein basis, there are the corresponding dual basis functions

2 r I n
with respect to the usual inner product o f the Hilbert space L [O, ij. Let P  be the

(«  + 1 ) dimensional real linear space o f all polynomials of maximal degree n in 

the variable x  then

"I

l^<l>{x)y/{x)) = \(f>{x)y/{x)dx for

The linear space P" becomes the n + l dimensional Hilbert space. Like any basis

n
of space F , the Bernstein polynomials-j 5  , B  ,B  , , ....... 3  }» have a unique

basis consists o f « + 1  dual basis \ ,D^ , D ^   ................/ ) ”
\ n n n n

7=0
IJ J ,n

(1.77a)

where,

a = /  \  n 1=0
n - i

n - l M + / + 1
y n - j

n - l
n - j )

(1.77b)

/ , 7  = 0 , 1 , 2 ,3 , ........... ,n

Juttler (1998) represented the dual basis function with respect to the Bernstein 

basis. The dual basis function must satisfy the relation of duality
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0 i f  i ^ j
(1.78)

a g R  are the real unknown coefficients. iJ

Lemma [Doha et al (2011)]: The inner product o f two Bernstein polynomials

estimate

u + ^ + l )
q+s

(1.79)

Theorem 1.4 [Doha et al (2011)]: Any generalized Bernstein basis polynomials 

of degree n can be written as a linear combination of the generalized Bernstein 

basis polynomials of degree « + 1 :

n - i  + \ /■ + 1
B. (x) = -------— B. + ----- - 5 . ,  ,I,n n + \ i,n+\ « + l i+\,n+\ (1.80)

Some useful properties of Bernstein polynomials [Doha et al (2011), Islam and 

Hussain (2015)]

The above polynomials having degree n+\ satisfy the following properties 

{) B. (x) = 0, i f / < O o r  i>n,  (1.81a)i,n

ii) It can be readily shown that each of the Bernstein polynomials is positive and 

also the sum of all the Bernstein polynomials is unity for all real x  belonging to 

the interval [0, 1] that is, B. ^{y) = 0 = B. ^(//) , 1 < i< n —\

(1.81b)

iii) It can be easily shown that any given polynomial o f degree n can be expanded 

in terms of a linear combination of the basis functions, that is,

n
Y a B  ( x ) > l  (1.81c)
t o  '

iv) All Bernstein polynomials vanish at the points y  and n , that is,

B.  (7 )  =  o a n d f i .  ( / / )  =  0, / -1 ,2,3......... , n - \
I,n I ,n

v) The product of two polynomials is defined as
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IV y
"j+i

i+k

k
i+ k , j+ l U) (1.81d)

>

vi) By induction the r-th derivative can be written as

min (/, r + l )
r+l

D  B ^ ( x ) =
n\ (l .Sle)

vii) The Bernstein polynomial of any degree B  (x) in terms of any higher
i,n

degree basis B. (x) using the following lemma.

k+r

J=k

/ \n r

k j - ‘kV V /
/ \

n+r

J

B . (x)
j ,n +r  '' '

(1.81f)

viii) Bernstein polynomials of order n form a basis for the space of polynomials

of degree less than or equal to n i.e., they span the space of polynomials 

and are linearly independent. If there exists constant 

a^ ,a^ , a^  , .........................,a so that the identity

n  n  .............................U  U,A7 \ \ ,n Z Z,n n n,n

holds for all x . Then all the 's must be zero.

ix) We can define the «-th Bernstein polynomials for a function /  on the 

interval [0 ,1]

X) «  ( / ; , ) =  5 ; /

/•=0 n\  /

n-i
(l .Slh)

For simplicity we denote B.  ^ (x) as throughout the study.

Derivatives of Bernstein basis polynomial [Doha et al (2011)]

The first derivative and second derivatives may be defined successively as 

follows:

5  ( x )  =  «
i,n

(1.82a)
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>

B" {x)  = n { n - \ )  B.  ̂ A x ) - 2 B  , .  ( x ) + 5 .   ̂ (1.82b)
i ,n   ̂ ^ i - 2 , n - 2  '' ’ i - \ , n - 2  '   ̂ i , n - 2  '

For simplicity we take B , as B  throughout this research work.

1.8 Weierstrass Approximation Theorem (1885) [Finlayson (1972)]

Let /  be a continuous function defined on the closed interval [y, //]. For any 

£• > 0 , there exists a polynomial function p  (x) such that for all x  in [y, //], wen

have

f ( x ) - p ^ ( x ) \ < s .  (1.83)

To show this, we need to prove that this is true on the interval [y, //] = [0,1]. We 

define g : C ( [x ,//])->  C ([0, l]) by

( g f } U )  = g ( r  + ( f i - r ) x }  (1.84)

Then g  is linear and invertible with the inverse

n - y
(1.85)

Moreover, g  is an isometry since, g f  = f ,  and for any polynomial p , both 

g p  and g p  2CCQ polynomials. If p i s  dense in c ( [ o , l  ), then for any

/ e ( [ / , / ^ ] ) , w e h a v e  g / e  C ([0 , l]).

Hence g p  converge to /  in C ( / , / / ] ) .  To show p  (x )  isdensein  C ( [ 0 , l ] ) ,

we will use Bernstein’s proof which will not only suffice but will also give us an 

explicit sequence of polynomials that converge uniformly to /  e C (  0 , 1  ).

1.9 The Bernstein Approximation Theorem [Levasseur, 1978]: Every 

continuous function /  defined on [0 ,1] can be uniformly approximated as closely 

as desired by a polynomial function. For any f  >0 , there exists a positive integer 

N  such that for all x €[0,1 ], an integer n > N  we  have,

f { x ) - B ( f - x )  <s  (1.86)
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where B  (/■:<:) is a polynomial on x  similar to equation (1.81 h). Hence given any
n

power-form polynomial o f degree N, it can be uniquely converted into a Bernstein 

polynomial o f degree n for «>A .̂

Bernstein polynomials approach to f { x )  i.e., 5  as « - > c» , f o rn

each point x o f continuity o f the function / (x) defined on the interval [0,1 ].

To evaluate these Bernstein polynomials, B  ( l ; x ) ,  B, (x;jc) and
i,n

B I l ; x
\  y

, we have taken the first and second derivative (with respect to x) of

the binomial expansion of the polynomials [Estep and Donald (2002)].

(=0

n
iV y

X z  ~ { x  + z )

S
/=0

>=0

n
V /

/' \  
i 
n

\

n
i

V

x z  = x(x + z)
n-1

^ \ f  \n i n-i 
X  Z  =

n - \
i n

V \

2 n -2  X
x  ( x  + z )  +  —(x  +  z) 

n

(1.87a)

(1.87b)

(1.87c)

nZ
/=0

i ' /  \  n
n I '  J

/ n - i  ( « - l ) ( « - 2 )  3 « - 3  3 ( « - l )  2 n - 2
x  Z = -----------------------X ( x  + z) + --------X ( x  + z )

n n

1 , .n-l
+ —  x ( x  + z ) (1.87d)

n

Evaluating these at z = l - x ,  so as to satisfy the definition of Bernstein 

polynomial, we get

B
/  \2
l ; x

V /

= 1

B  ( x ; x ) = x

B ( n - \  ^ 2 r n
X ,X = X +

iytlV / \  n  j U J

(1.88a)

(1.88b)

(1.88c)
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Multiply each term by
n
i

V /

/ n—i
X (1 -  x) and sum from 0  to «

Using (1.87a), (1.87b), (1.87c), (1.87d) we have

1=0

/ \
i

-----X
n\ y

V  A n
i\ /

I  n - t

( \ - x )  =B î ,n x , x
V  /

- 2 x B  ( x ; x ) + x  B  ( l ;x)
’ i , n  '

= - x ( l - x )  
n

(1.89)

for any fixed x e [ o , l ] .  We have estimated the sum of the polynomials B , (x )I, n

over all the values o f i for w^hich i/n is not close to x. We choose a number (5 > 0

and let denote the set o f all values of i satisfying

Sum of the polynomials B (x)  over all / e G ,
i,n  S

------ X
n

Evidently — 
5

Using (1.90b)

/ \
/

----- X
n\  y

n—i

>1

X  "  x ( l - x )  < X
î Gg V /  ieGs

/  • 'N
-------X

S
x ( l - x )

/ e G'sS

/  \

i
------X
n

V  /

2/̂  \  
n
i\  / n S

1
Since 0 < x ( l - x ) < - o n  [0,1] 

4

n -i \

i^Gg V / AnS

We can write X  ~ S  + S  

where.

ieGg ieOg HGg

> 5 . (1.90a)

(1.90b)

(1.91)

(1.92)

(1.93)

(1.94)
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I
-----X
n

< S  depends upon the choice of d .

f { x ) - B  ( / ;x )  = X  
” (=0

which gives 

/ ( x ) - B  (/;x)=  2

■ f r ■
f i x ) - /

n
1 0

x ( l - x )

i eG,
f i x ) - f

n
i\  /

/■
X ( l - x )

( 1 . 9 5 )

/ , \ I ' /  \
f ( x ) - f n

[ n j J  y
X ( 1 - x ) (1.96)

;eG.
f ( x ) - A - \ \ r ] x ( l - x )

v«y

M - A n

i n - i
x ( l - x ) (1.97)

f ( x ) - B^ { f ; x )  < X
ieG.

m - f x ( l - x )

y
x ( l - x ) (1.98)

Since/  e  0,1 , it is bounded on 0,1 and we have / ( x )

< 2M for all i ,

< M , for some M > 0 .

(1.99)

and all 0  < jc < 1 and so

I
ieG,

f i x ) - /
/  . \  I /  \  n

v'y
X ( \ - x )  <2M Yj  i  X ( 1 - Jc ) (2.100)

On using (1.94)

I
ieG

f ( x ) - f
/ \ «
v ' /

; n- i  M
x ( \ - x )  < -------- ;

2nS
(2.101)
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Since /  continuous, it is also uniformly continuous on 10 ,1 1. Thus, corresponding

to any choice of f  > 0 , there exists a number S > 0 such that x - x <5

I
HG, v"/ v' /

n-i

n

and hence

I
/■«Gc v"y

/  \  
n 

K̂ y
x \ l - x ) ' ' - ‘< ^  X

i i < G , \ /

Using (1.81b)

HG,

/ \  «
v'y

i n - i  £
x ( l - x )  < -

On combining the above two 

f { x ) - B ^  ( / ;x ) |<
M  £
-------------1------

2 2
2nd

If we choose 

M
N > f \  

2
s 8

, then < £

(2.102)

(2.103)

(2.104)

(2.105)

V y

for all n > 'N  and this completes the proof.

1.10 Legendre polynomials [Atkinson and Kendall (1989)]

The Legendre polynomials were first introduced in 1782 by Adrien-Marie 

Legendre as the coefficients in the expansion of the Newtonian potential
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,k

y

x - x = I
k=Q

(2.106)
12 Vl ,

yjr + r -2 rr  cos/ 

where r  and r are the lengths o f the vectors X  and x '  respectively and /  is the

angle between those vectors. The series converges when r> r ' . The expression 

gives the gravitational potential associated to a point charge. The expansion using 

Legendre polynomials might be useful, for instance, where integrating this 

expression over a continuous mass or charge distribution.

Now we introduce Legendre polynomials through the generating function 

j ____

 ̂ n=0
(2.107)

\ - 2 x t  + t

Legendre polynomials play a very important role in physics as they satisfy the 

Sturm-Liouville eigenvalue problem called Legendre's equation. Legendre 

polynomials!^ (x) , («  = 0 ,1 , 2 .......... , n - \ )  o f degree n which is an eigen

function of the Singular Sturm-Liouville eigenvalue problem given by,

1-x^ LAx) +n{n + \ )L (x) = 0

where N  = ■

n
—, when n is even 

n - \
------ , when n is odd

(2.108)

(2.108a)

on (-1, 1).

provided L is bounded on [-1,1] i.e., L ( x ) < 1.

The solution of the Legendre’s equation (2.108) is called the Legendre polynomial 

o f degree n and is denoted byL^(jc). The general form of the Legendre

polynomials over the interval [-1, 1] is defined by

N ( 2 n - 2 r ) l n-2r

r=0 2 rl{n -  r ) l (n  — 2r) l
(2.109)
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Properties of Legendre polynomials

(i)  i ^ ( ± l )  = ( ± l ) " ,

(ii) z ; ( ± i ) = l ( ± i ) " - ' «(«+!)

' s
(i i i) j  {x)L^ {x)dx = - ^  V « > 0

« + -
2

(iv) Legendre polynomials are orthogonal with respect to the i ^ ( - i , i )  inner 

product. Also, these polynomials are complete in the sense that for any ve

i ' ( - i . i ) .
00

(2.110a)
/M=0

V ={m + — ) ^ v { x ) L  ̂ { x ) d x  (2 .1 1 0 b)

where the sum converges to l} { - \ , \ )  norm.

The Rodrigues’ Formula of degree n is defined as:

\ d" 2 r,
L  (x ) = -----------------(x -1 )  , where n > \  (2.111)

n n n2 n\dx

Legendre polynomial which are orthogonal in the interval [-1,1] satisfy the 

following recurrence relation.

= (^ ) -----, (^) > n > \ (2.112)n+\ n „  +  l rt-1

1.11 Shifted Legendre polynomials:

2 x - y - n

M-r
(2.113)

2 x - y - n
Here shifting the fiinction x -> ------------ (affine transformation) is chosen such

H - Y

that it objectively maps the interval [/,^ to the interval [ - 1,1 ], where L  ( x ) are
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the classical Legendre polynomials. They may be generated by using the 
recurrence relation

' I x - j i - y '

i x - y
* *

L ( x ) - n L  ( x ) ,  n n—\ (2.114)

♦ * 2 x - ^ - y  P ,
with ( jc) = 1 , (x) = . These polynomials are orthogonal o f [ / , / / J.

2 x - ^ - r
 ̂ (ri =-QV-/  -  ,

Evidently, using Rodrigues’ Formula in equation (2.111) shifted Legendre 

polynomials over the interval [o, 1 ] takes the following form:

L  ( x )  =  - — ( x ^ - 1 ) " ,

" '"■dx”

An explicit expression for shifted Legendre polynomials is given by

n n + p

yP y
(-X)

These polynomials are orthogonal on 0,1

(2.115)

(2.116)

nr

0

(2.117)

We modified the above shifted Legendre polynomials given in equation (2.115) 

as

(x) =
«! , n 

a x
( . - 1 ) (2.118)

so as to satisfy the homogeneous form of the Dirichlet boundary conditions 

L ( 1) to derive the matrix formulations of the fourth order Sturm-

Liouville problems over the interval [0,1].
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2CHAPTER

Second Order Sturm-Liouvilie Problems Employing the 

Methods of Weighted Residual 

2.1 Introduction

Sturm-Liouville problem is a second-order ordinary differential equation problem 

where two boundary conditions are specified, but no unique solution exists. These 

problems may be regular or singular at each endpoint o f the underlying interval 

[Baily e? a/ (1991)]. They are used to describe the vibration modes of various 

systems, such as the vibrations o f a string. In 1836-1837, Sturm and Liouville 

published a series o f papers on second order linear ordinary differential equations 

including boundary value problems. The influence of their work was such that this 

subject became known as Sturm-Liouville theory. Numerous papers, by 

mathematicians, physicists, engineers, and others, relating to this area have been 

written since then. Yet, remarkably, this subject is an intensely active field of 

research today.

Since many eigenvalue problems are o f second order, for example Sturm- 

Liouville problems (SLEs), we also implemented a code for second order 

problems and paid special attention to the approximation of the boundary 

conditions in the singular case and periodic case separately. Also, for the weighted 

residual Galerkin, collocation and Spectral collocation method, numerical 

examples are given and empirical convergence orders have been presented. 

Finally, we have analyzed the pros and cons of the presented numerical methods 

using two polynomial basis functions for the solution o f differential eigenvalue 

problems. We conclude that the combination of both techniques results in a very 

successful and efficient approach.

Special equations (minus boundary conditions) that fall into this classification of 

second order Sturm-Liouville problems are the followings:
2

0  — -  + /iu = 0 , y < x < ^  (Helmholtz equation)
dx
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y

ii) \ - X
2

2

2
+ = 0 , - l < x < l  (Legendre equation)

dx

....  ̂ d  u duIII) X ----- + x —  +
dx *

2 2 
Xx - V w = 0, 0 < x< / /  (Bessel equation)

2
d w / \ du

iv) x — ^  + ( l - x l — + X.M = 0, 0 < x < o o  (Laguerre equation)
ck^ *

v) — —- 2 x — + = 0 ,-oo< x< oo  (Hermite equation)
*  *

Helmholtz equation appears in vibrating-string problems and in finding the 

temperature distribution in a rod. Legendre equation arises in certain problems 

displaying spherical geometry, Bessel's equation is closely associated with 

problems involving circular and cylindrical-shaped regions, and the equations of 

Laguerre and Hermite are conventional in certain quantum mechanics problems. 

Chawla and Shivakumar (1993) presented fourth-order fmite-difference method 

for computing eigenvalues of second order two-point boundary value problems. 

The differential Transform method was applied to compute eigenvalues and 

eigenfunctions o f second order regular SLEs by Chen and Ho (1996). The 

Weighted residual method using Chebyshev collocation points are investigated 

for approximate eigenvalues o f second order SLEs by Ibrahim Celik (2005). 

Calculation of eigenvalues o f Helmholtz equation using boundary method are 

presented by Reutskiy (2006). The polynomial-based Differential Quadrature 

(PDQ) and the Fourier expansion-based differential quadrature (FDQ) methods 

are found in the work of Ugur Yucel (2006) to compute eigenvalues o f the second 

order Sturm-Liouville problems. Chanane (2005), Chanane and Boucherif (2014) 

used Regularized Sampling Method to compute the eigenvalues o f regular Sturm- 

Liouville and the former author extended it to singular problems [Chanane 

(2007)]. Reutskiy (2010) proposed a new technique based on mathematically 

modelling the physical response of a system to excitation over a range of 

frequencies. The response amplitudes are then used to determine the eigenvalues. 

In recent years Taiser et al (2010) have presented a comparative study of Sine 

Galerkin and Differential Transform method to solve second order SLEs.
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Recently, Abbasbandy and Shirzadi (2011) applied the homotopy analysis method 

(HAM) to numerically approximate the eigenvalues of the second and fourth order 

SLEs. Recently Amodio and Settanni (2015) demonstrated variable step finite 

difference technique to solve some second order SLEs.

The second and fourth order Sturm-Liouville problems are more recurrently 

available in the literature utilizing various types of discretization method. The 

singular two-point boundary-value problems of second-order occur frequently in 

many practical models such as electro hydrodynamics and some thermal 

explosions.

Our aim is to develop Bernstein polynomial based collocation method using 

Chebyshev clustered grid points to generate a system of algebraic equations with 

unknown co-efficient in matrix form.

For regular second order Sturm-Liouville problems several studies have been 

carried out by many researchers to attain superior accuracy. Among them most of 

the literature have been devoted to the implementation of Chebychev and 

Legendre polynomials, using Chebychev clustered grids for different schemes. 

Chebychev-Fourier Spectral method utilizing trigonometric polynomials is found 

in the literature [Bojan and Andrej (2014)]. Recently, collocation and Spectral 

methods have shown great promise for solving second order singular Sturm- 

Liouville differential eigenvalue problems. Very recently Zhang et al (2017) 

implemented a new collocation method utilizing non-polynomial basis functions 

for solving second order boundary value problems. Celik (2005), Celik and 

Gokmen (2005) studied Chebychev collocation method to calculate the 

eigenvalues of regular and periodic Sturm-Liouville boundary value problems. 

Isik and Sezer (2013) utilized Bernstein polynomials to solve for a class o f second 

order Lane-Emden type boundary value problems by applying collocation 

method. Collocation method along with Bernstein polynomials basis is 

implemented by Isik et al (2013) to give the approximate solution of a parabolic 

partial differential equations. Bernstein polynomials basis was employed to solve 

Abel’s Integral equations [Alipour and Rostamy (2011)]. Double Exponential 

Sine collocation method has been applied for solving second order singular SLEs
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[Gaudreau et al, 2016] and energy eigenvalues o f harmonic oscillator [Gaudreau 

et al, 2013].

A class of singular SLEs are studied by Baily e/ a / (1991) applying the improved 

version of the algorithm of various proposed SLEIGN 2. Eigenvalues o f singular 

Sturm-Liouville problems using collocation method [Auzinger (2006)] and 

modified Adomian Decomposition method [Singh and Kumar (2013)] are also 

studied.

We proposed Chebyshev-Legendre Spectral collocation method for solving 

second order linear and nonlinear eigenvalue problems exploiting Legendre 

derivative matrix. The Sturm-Liouville (SLE) problems have been formulated 

utilizing Chebyshev-Gauss-Lobatto (CGL) nodes instead of Legendre Gauss- 

Lobatto (LGL) nodes and Legendre polynomials are taken as basis function. We 

have discussed, in detail, the formulations o f the present method for the Sturm- 

Liouville problems (SLE) with Dirichlet and mixed type boundary conditions. The 

accuracy of this method is demonstrated by computing eigenvalues of three 

regular and two singular SLEs. Nonlinear Bratu type problem is also tested in this 

study. The numerical results are in good agreement with the other available 

relevant studies.

Spectral methods namely Spectral Galerkin, Spectral collocation. Spectral Tao 

methods etc. are extensively used in the field o f applied sciences and engineering 

due to the better performance and exponentially rapid convergent rate in 

preference to algebraic convergence rates for finite difference and finite element 

methods. Many researchers contributed to their works to the study of Spectral 

Chebyshev collocation method for computing eigenvalues of second order Sturm- 

Liouville problems. Not much works is found for the solution of Sturm Liouville 

eigenvalue problems applying Spectral collocation method using Legendre 

derivative matrix in the recent years. In this study, we have presented Spectral 

collocation method that offers accurate solutions which are put up with in terms 

of truncated series o f smooth polynomial functions. The proposed scheme 

becomes simple, much efficient and preserves spectral accuracy which has many 

applicability's in physical and engineering models.
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For the solutions o f Sturm-Liouville eigenvalue problems several authors applied 

Spectral techniques to achieve the desired accuracy. Min and Gottlieb (2005) 

applied domain decomposition techniques for Spectral methods. To obtain the 

accuracy, the authors classified each sub domain by the finite degrees of 

Chebyshev and Legendre polynomials exploiting Legendre-Galerkin, Legendre- 

collocation, Legendre-collocation penalty, Chebyshev-collocation, and 

Chebyshev-collocation penalty methods and compared the results among these 

methods. The classical Liouville-Bratu-Gelfand [Bratu (1914), Gelfand (1963)] 

problem is concerned with positive solutions which was used to model a 

combustion problem in a numerical slab, the fuel ignition of the thermal 

combustion theory, and appeared in the Chandrasekhar model of the expansion of 

the universe. Bratu’s equation is widely used to test nonlinear eigenvalue solvers. 

The non-linear Bratu problems are solved using various methods by different 

authors namely weighted residual [Aregbesola (2003)], Domain Decomposition 

[Min and Gottileb (2005)], B-Spline [Caglar e ta l (2010)], Laplace transformation 

Decomposition [Khuri (2004)], Decomposition [Liao and Tan (2007)], non

polynomial Spline [Jalilian (2010)], Parametric Spline [Zarebnial and Sarvari 

(2012)] and modified Adomian Decomposition [Singh and Kumar (2013)] 

methods etc.

Application of spectral methods are also available in detail for the solution of 

Boundary Value and eigenvalue problems [Shen and Tang (1996), Chen and 

Shizgal (2001), Lui (2011), Taher et al (2013), Shen (1996), Trefethen (2000), 

Weidman(1987)].

In this exertion, we prefer Chebyshev Gauss-Lobatto points to compensate for 

Legendre Gauss-Lobatto points. Since Legendre Gauss-Lobatto points are not 

explicitly defined and their estimation suffer round off errors for large n. 

Furthermore, discretization with Chebyshev grid points with fairly fewer nodes 

reduce CPU time with a minimum effort. Since Chebyshev polynomials are

1
( 2^“

mutually orthogonal with respect to a singular weight function vv(jc) =
2

1 - x

which leads to complexities in the study of the Chebyshev Spectral method. On
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the other hand, Legendre polynomials are mutually orthogonal in the standard 

inner product, with respect weight function 6{x) - 1 , this criterion makes the 

Legendre spectral methods more attractive and much convenient for their analysis 

than that of the Chebyshev Spectral method.

We organize this work as follows. Chapter 2 is devoted to find the numerical 

approximations of eigenvalues for the second order linear Sturm-Liouville 

boundary value problems exploiting Galerkin WRM (Bernstein and Legendre 

polynomials as basis functions), Bernstein collocation method and Cheby- 

Legendre Spectral collocation method. We have derived rigorous matrix 

formulations in detail by Galerkin WRM for three different types o f boundary 

conditions in section 2.2.1. We have also illustrated some completeness and 

convergence criteria along with some theorem for polynomial basis in short in 

section 2.2.2. Section 2.2.3 dealt with Non-Self-adjoint ordinary differential 

equations and their convergence conditions in brief. Numerical examples are 

considered in section 2.2.4 to verify reliability of the proposed formulation and 

the computed results are compared as well. Bernstein polynomials-based 

collocation technique along with their properties, some useful theorems and 

convergence criteria are presented in section 2.3.1 to 2.3.3. Numerical schemes 

for the solution of some problems are also described in section 2.3.4 in tabular 

form. In section 2.4, we have offered Chebyshev-Legendre Spectral collocation 

technique. Chebyshev polynomials and Legendre polynomials together with their 

properties are introduced in section 2.4.1. In section 2.4.2-2.4.3, we have 

discussed in brief about the Spectral collocation method the formulation of 

Spectral Legendre Operational Derivative matrix precisely. Formulation of 

Spectral collocation method and the techniques of imposing boundary conditions 

associated with SLEs have been demonstrated in section 2.4.4. Convergence and 

stability conditions are conferred in sections 2.4.5 and 2.4.6. Section 2.4.7 

includes some numerical results which confirm the accuracy of the current 

method. This section comprises for the solution of nonlinear problem as well. 

Finally, conclusions for the proposed three different techniques are depicted in 

section 2.5.
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2.2 The Galerkin Weighted Residual Method (WRM)

2.2.1 Formulation of the Galerkin WRM

We consider the linear second order regular Sturm-Liouville problem with

different types boundary conditions

(i) SLE with Dirichlet boundary conditions

The general Sturm-Liouville problem is

a  W ^  + o ,W  ^  + W  = 'Iu'W kW , (2.1)

where

„ ( , )  = £ «  , « U )  = ^ ,  = ^  (2.1a)
i' p(x) o' p ( x ) ’ p(x)

subject to the following two types of boundary conditions 

Homogeneous boundary conditions

Type I: u { / )  = 0 ,  u ( / j )  = 0 (2.1b)

Type II: u ( y )  = u(ji) = 0 (2.1c)

Type III: a u(y)  + J3 u { y )  = 0, [ a ]  ^ ^ o l  (2.Id)
1 1 V * ' /

TypelV : wf>') = M ( / / ) , u' ( y )  = u ' ( f i )  (2.1e)

Type V: w(;k) = 0 , M, u is finite as x -> oo. (2.If)

where ^^(^) is specified by the Dirichlet boundary conditions 5 . ( / )  = Oand

B {fx) = Q for each i = 1,2,3,........, n - \ .
i

where a.  = 0 ,1 ,2  and w are all continuous and differentiable functions of x

defined on the interval [0,1]. Since our aim is to use the Bernstein and Legendre 

polynomials as trial functions which are derived over the interval [0 , 1], so the 

BVP (2.1) is to be converted to an equivalent problem on [0, 1] by replacing x  by 

{ / d - y ^ x  + Y and thus we have:
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d  u du
m ( x ) — —+ /W (x) — + w M (x) = /l<y(x)M(x), 0 < x < l ̂ 2 1 dX 0

dx

subject to the following two types of boundary conditions 

w(x) = 0 ,  m (;/) = 0 ; —^ m'(0) = 0 , — i/'(l ) = 0

2

(2 .2 a)

^ i - y
(2 .2 b)

where,

m. = — ^ a ^ [ { f i - y ) x - \ r y ] ,  y ) x  + y ] ,  co = \ ^ { n - y ) x  + y
f i - y

«m(0) + - ^ m '( 0 )  = 0 ,
1 n - y  ^ I 1

(2 .2 c)

Approximate solution of SLE (2.2a), in terms of Bernstein or Legendre 

polynomials basis be given as

m(x) = 0 ^(x) + 2 ]c .5 .(x ), « > 1
/=l

(2.3)

where 6 q{x )  is specified by the essential boundary conditions which must satisfy 

the corresponding homogeneous boundary conditions such that B.  (0 ) = B.  (1) = 0

for each i = 1,2,3,....... ,n. Using (2.3) into equation (2.2a), the Gaierkin weighted

residual equations are:

d u du _  ̂ _— — + m, —— + m u  -Acou 
, 2  \ dx 0

dx
B . d x  = Q,  7 = 1,2,3,.......,n. (2.4)

Formulation 1

In this section we develop the matrix form with boundary conditions of type I

1 2_ 
r d  U
\ — B ( x ) d x  = 
0 dx

ds
B ( x ) -  

J dx

1 1 

-J dx
Bj(x) du

dx
dx

0

f_^
dx

Bj{x) du
dx

dx (2.5)
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du
m { x )  —  B { x ) d x  = ' dx J

{ x ) B  , { x ) u { x ) { x ) B ,  ( x ) u { x ) d x  ( 2 . 6 )

Inserting, B (y) = B  (//) = 0 in the above integrals, using equations (2.5), (2.6)
y j

in equation (2.4), we finally obtain the equation given by,

'dx

/=! 

where.

F - A E
i j  i j

du
dx dx

c  = 0

"J, (x)B^Xx) u + m^{x)B ,u -  A, o){x)B ,u

= f'’7 {
d -

, d
- ,11

1 dx
B . ( x ) B ' -  —  

‘ dx
m^ { x ) B. { x ) «,j dx

dx (2.7) 

(2 .8 )

(2 .8 a)

E = 
iJ

(a{x)B.B.dx (2 .8 b)

Finally, the eigenvalues are obtained in solving the system as below

F - X E  = 0 (2.9)

Formulation II

In this section we develop the matrix form with boundary conditions of type II

du
1 2 

d u
BXx)dx  =

0 dx
2 j

du ' d r -]
B .{ x ) —  

J dx 0
B.(x) dx

dx

= - { i
du
dx

dx (2.10)

du
m^{x) —  B.{x)dx = m^{x)B .{x)u{x)

d
dx

m^{x)B (x) u(x)dx

= (1) B.  (1)u(l) -  (0)B. (0)u (0) -
dx

B. (x )
du

dx
dx (2.11)

Inserting u {y) = u = ^ in the above integrals in, we finally obtain the 

equations utilizing equations (2.10), (2.11) in equation (2.4)
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dx B.{x)
du
dx dx

ix)B.(x) M + {x)B ,u - A o ) ( x )  u dx

n-\
Equivalently, ^  

/=i
F. . - A E .  .i j  ‘J c. = 0  / (2.13a)

(2.12)

where,

F = 
‘J dx

Bjix) B -
i dx

m^ix)B.(x) B dx +W| (1)5 .̂ (])«(])

E.  = i j
a)(x)B.Bjdx

(2.13b)

(2.13c)

Finally, the eigenvalues are obtained in solving the system as below 

F - A E  = 0 (2.14)

Formulation III

In this portion, we obtain the matrix formulation by applying the boundary 

conditions of type III.

Here we consider a linear fourth order differential equation given by

dx
p(x)

du
dx

+ [/lr(x)-q '(x)]«  = 0, y < x < j j (2.15)

where p ( x ) , q(x)  and r(x)  are specified continuous functions. We want to solve 

the boundary value problem (BVP) in equation (2.15) by the Galerkin method 

using Bernstein and Legendre polynomials as trial functions.

Since our aim is to use the Bernstein and Legendre polynomials as basis functions 

which are derived over the interval [0, 1], so the BVP (2.15) is to be converted to 

an equivalent problem on [0 , 1 ] by replacing x by (// -  y)x  + y and thus we have:

d
dx

where,

+  g ^ ( x ) M - / l r ( x ) M  = 0 ,  0 < X < 1 (2.16a)
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pi^x)= ■- —■-p[{M-y)x + y 
\M-Y)

q{x) = q^^l -y)x  + y 

r {x )^ r ]^ ^ - y ) x  + ŷ

(2.16b)

We approximate the solution of SLE (2.16a), in terms of Bernstein or Legendre

«-l
polynomials basis as: u (;c) = 6^ (x) + ^ c . B . (x) (2.17)

i=\ ‘ '

where d^ix) is specified by the essential boundary conditions, B.{x)/L.{x)  are

the Bernstein or Legendre polynomials corresponding to the homogeneous 

boundary conditions such that B. (0) = 0 and B. (1) = 0 for each i = 1,2,3,........,n.

Weighted residual equations corresponding to the equation (2.16a) is given by

dx

d
dx

r ~ ,  . d s )

+ q{x)u -Ar ( x )u B^{x)dx = 0, 7 = 1,2,3,. (2.18)

B.{x)dx = -

+

p{x)

p{x)

dx

(£l
dx

B
0

dB(x)

dx
-dx (2.19)

Integrating each term of equation (2.18) by parts and using equations (2.16b), we 

obtain the Galerkin weighted residual equation:

n

z
/=0

dB. dB
P i x ) —f — —  + q { x ) B  { x ) B  . { x ) - X r { x ) B .  { x ) B  . (x )  

dx dx ‘ J ‘ J
dx

Pq iM-y)p{^)B.  {\ )B.  (l) { ^ - y ) p { 0 ) B .  {o)B . (o)

a .
c. =0 (2.20)

or, equivalently in matrix form

n

E
i=\^

F. . -X E .  
hj i , j ) c. = 0 , / ,y  = 1 ,2 ,3 . .,n (2.21)

where.
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dB. dB
~ p { x ) - ^ - ^  + q(x)B.{x)B.{x) dx -

/ '„ t“ - r ) p 0 ) s 0 ) « . ( 0

a .

1

E. . =\ r {x )B.{x )B .{x)dx 
‘'J Q ' J

(2.21a)

(2 .2 1 b)

Finally, the eigenvalues are obtained in solving the system as below

F - X E  = 0 (2.21c)

2.2.2 Completeness of the set of eigenfunctions of Sturm-LiouviUe (SL) 

System

In previous sections, we have defined the Hilbert space / /  as a subspace of 

, / j \ r {x ) , dx ) \  with functions satisfying the boundary conditions of a Sturm- 

Liouville system defined on \y,^i\ .Claim is that the set o f eigenfunctions o f SL 

system forms a complete orthogonal basis o f H :

1n = l,2 ,3 ,.....  ̂ be the set of normalized eigenfunctions o f the Sturm-

Liouville system. If /  be a function in Hilbert space H , then

Lim
n —>oo k=]

= 0 (2 .2 2 a)

where c =J^(j) f ( x ) r ( x ) d x  (2 .2 2 b)
k y k

We consider the linear operator L with a field of definition , that is, Lu  is defined 

for u e F  . The inner product isLt

{u,v)j^={u,Lv)= ^uLvdx .
V

The operator is symmetric if for elements m , v e  F Li

(m , L v ) = ( v ,  Lu )

The operator is positive definite if for any function in F^ ,  not identically zero,

(m, Lm )>  0  and is positive bounded below if for any u&Fj^
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{u,Lu)> p [u ,u ) , i ox ( 3>Q

Uniform convergence: For any f  > 0 , we can find n such that 

<su { x ) - u ^  (x ) (2.23)

u - u < £ where energy is defined asConvergence in energy requires 

« [= (« , Lu).

The corresponding error bounds are point wise error in equation (2.23). A 

sequence u , converges weakly to an element w of a space ifn

Lt Im , ^1= (m, holds for all <j> in the space. The Galerkin method
« —>00

sometimes yields sequences which converges weakly to a generalized solution.

A set o f trial functions form a complete set o f functions and they are complete in 

a space if  any function in the space can be expanded in terms o f the set of 

functions, for sufficiently large n [Finlayson (1972)].

< E (2.24)

The following theorem [Mikhlin (1964)] holds:

Theorem . 2.2.1: If an orthonormal set o f functions |  is complete in the sense

of convergence in the mean, with respect to some class o f functions, then the 

Fourier series of any function u o f the given class

(2.25)
k=\

converges in the mean to this function.

A system of functions is said to be complete in energy if, for n sufficiently large

n
(2.26)

k = l
< £

The method to prove a set o f functions is complete is to show that the only function 

orthogonal to each member of the set is the null fimction (Courant and Hilbert,
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1953). We did not prove completeness here but summarize some known results. 

Mikhlin and Smolitskiy (1967) state the following theorem:

^  Theorem. 2.2.2: Let <f>eF where Z is a positive definite operator and suppose
L i

that the sequence j is complete in the given Hilbert space H. The sequence

K i  is complete in the energy space H Completeness in energy is required of

trial functions, and this Theorem means that trial functions must be capable of 

representing ^ and as well as derivatives L <j) .

If L and are positive definite operators and the spaces H and //^ c o n ta in  the 

same members, any system that is complete in H  h  complete in H  and vice
L i  I \

versa. This is useful for proving completeness. We consider the problem

y  Lu = - ( / 7(jc) u') + X r ( x ) u  = 0 (2.27)

m ( 0 )  =  m(i) =  0  , p ( x ) >  ^ > 0 ,  r ( x ) >  0

We define

N ( u )  = - u " , m(0) = m(1) = 0 (2.28)

then the spaces H^  and H ^  consist of the same elements for which boundary

conditions o f the above types hold

j[M '(x )f £& <00  (2.29)
^  0

Functions which are complete for equation (2.28) are then complete for equation

(2.27). Examples are illustrated in the studies [Mikhlin and Smolitskiy (1967), 

Collatz (1966a)].

= x ” ( l - x )  and </>̂ = s innm

Weierstrass’s theorem 2.2.3 [Courant and Hilbert, 1953] says that any 

continuous function on y  < x <  //can be approximated uniformly by polynomials. 

The derivatives can be approximated as well. Collatz (1966a) showed that once 

we have an orthonormal system of functions it is possible to generate new systems 

by means of a weight function p ( x )  which is positive and continuous on {y,  n )  

and lies between positive bounds m and M
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We consider the problem

' d

'■=0 dx

d ' u

dx
= Xu

<7-1
m(0 ) =m( 0 ) = m (0 ) = .................. =w (0 ) = 0

u { \ ) = u \ \ )  = u \ \ )  = ...................= m‘̂ "*(1) = 0

(2.30b)

(2.30c)

(2.30a)

The following system is complete in H  (assuming p  > 0  and p  are such that
L 2q I

Z,M is positive definite)

(2.31)

2.2.3 Non-Self-adjoint ordinary differential equations [Finlayson, 1972] 

Non-self-adjoint ordinary differential equations must be solved with the Galerkin 

method (or another WRM)  and convergence proofs are known [Mikhlin (1964)]. 

We consider the problem.

2 q

'■=0 dx
P . ( x ) -

d  u

dx
- K u  = A,u (2.32)

subject to the homogeneous boundary conditions of two types

M(0 )= m'(0 ) = m''(0 ) = .................. = (0 ) = 0

M(l)=«'(l) = / ( ! )  = ...................=m‘̂ ~ \i)  = 0

(2.32a)

(2.32b)

Here, K u  is a. linear differential operator of order 2 q - \ .  We take the coordinate

/  \  <7 2 ^
function L^u = [ - 1) u , which are complete in a space with inner product

The proof o f convergence depends essentially on showing that the

operator is positive bounded-below and using the consequences of that fact 

Mikhlin (1967) proved the following theorem.

Theorem 2.2.4: The Galerkin method applied to equation (2.32) gives a 

convergent sequence in provided:

(i) The problem has a unique solution:
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(ii) The coordinate functions are in the field of definition of satisfy the 

boundary conditions (2.32).

For sufficiently large n the following inequalities hold

k k 
u { x ) - u  ( x ) < £ ,  k  < q

u ( x ) - u  ( x )n dx<€

(2.33a)

(2.33b)

Therefore, point wise convergence holds for the function and its first q  - 1 

derivatives, whereas the ^ -th  derivative converges in the mean. Trial functions 

can be taken as polynomials, such as

uj ,x)  = x \ l - x )  Y.C.X (2.34)
< 7 ^  i - I

Ul

2.2.4 Numerical Examples:

In this section we will present seven numerical examples o f second order SLE 

problems, using the method outlined in the previous section. All the numerical 

calculations are carried out using MATLAB 13 by an intel(R) Core(TM) i5-4570 

CPU with power 3.20 GHz CPU, equipped with 8 GB of Ram.

The convergence of our existing method is measured by the two errors

Absolute error, =
exact (G a/.)

A - A

Relative error, =

{Gal)

exact (Ga/.)

- X
exact

(2.35)

(2.36)

where X denotes the approximate eigenvalues using n-th polynomials and 

-1 0
^ < 1 0  depends upon the problems.

Example 2.1: Let us consider one dimensional Helmholtz equation Reutskiy 

(2006).

d^u  2 
— ^  = k u
dx

m(0) = m(1) = 0

(2.37a)
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Table 2.1, displays the first ten eigenvalues for «=15, exploiting both Bernstein 

and Legendre polynomials, the smallest eigenvalue attains the accuracy up to 

-16
10 and error increases rapidly for higher eigenvalues than the lower values 

which is better than boundary method. As we increase the grid points or nodes 

from n=\5 to «=30, the error decays fast for all the eigenvalues and consistent

-13
accuracy is obtained up to 10 . We observed that increasing of nodes reveal the

stable behaviour of all the eigenvalues for /7=30.

Table 2.1; Relative errors between the Galerkin and Boundary methods for example 

2 .1 .

Exact Rel. error Bemst. Rel. error Legn. Rel. error
Reutskiy
(2006)

k eigenvalue «=15 «=30 «=15 «=30

1 ji 9.895x10''^ 4.302x10“*̂ 9.891x10"'^ 4.301x10"'^ 1.7xl0~’̂

2 2 k 2.286x10'*^ 1.309x10“'^ 2.261x10“'^ 1.292x10”'^ 1.6x 10“'^

3 Zn 6.325x10"'^ 2.337x10“’" 2.261x10''^ 2.307x10"'^ 1.5x10”'^

4 An 8.309x10“" 6.658x10“’'* 1.018x10“’'* 6.571 xl0“'̂ 9.7xl0“‘^

5 Sn 7.547x10“* 3.169x10“'^ 3.135x10“'® 3.169x10"'^ 9.0x10“'^

6 671 7.271x10“'' 3.255x10“'̂ 5.368x10“^ 3.260x10“’^ 5.8xl0~'^

7 In 2.082x10’^ 2.764x10“’^ 4.546x10“̂ 2.728x10“'^ 9.2x10“'^

8 %n 6.253x10“̂ 9.871x10"'^ 2.074x10“^ 1.390x10“'^ 1.8x-10”'̂

9 1.639xl0~^ 1.390x10“'^ 1.526x10'^ 9.742x10”’^ 5.3x10"'^

10 lOjt 2.623x10”^ 4.876x10“'^ 3.280x10"^ 4.875x10“’̂ 1.2 x 10“’^

From table 2.1, it is observed that our present approach accomplishes accurate 

results and is compatible to the existence new boundary approach for one 

dimensional Helmholtz equation.

Example 2.2: We compute the eigenvalues of the Sturm-Liouville problem 

worked out by Taiser et al (2010) given below.

,2
d  U 2

--------  + COS XU = AU
d x

[«(0) = /̂(;r) = 0

(2.38)
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It has been noticed in table 2.2 that the absolute errors achieved for «=10 for both 

the polynomials, our present method showing better accuracy than that o f the 

Differential Transform method by Chen and Ho (1996), for «=10. Also, when we

-6
use «=32 grid points, the maximum absolute error obtained 10 which is more 

accurate than those of Sine Galerkin method for n=32.

Table 2.2: Comparison of absolute errors o f WRM with the Sine Galerkin and 

differential Transform method for example 2.2.

Exact Absolute Absolute Absolute Absolute Absolute Absolute

eige value error error error error error error
Sine Gal. Legn.Gal. Bemst. Gal. Diff.Transf. Legn.Gal. Bemst. Gal.

s
n=32 «=20 n=20 «=10 n=10 «=20

1.24242 1.42x10"' 8.826x10"^ 8.826x10"^ 3.19x10"* 8.826x10^ 7.112x10"*

4.49479 4.85x10”̂ 3.079x10^ 8.826x10"^ 1.70x10"^ 3.122x10"* 1.477x10"*

9.50366 9.91x10"^ 4.867x10^ 4.867x10"^ 1.83x10"^ 2.365x10"' 1.477x10"*

16.50208 1.31x10"' 1.901x10^ 1.901x10^ 3.81x10"' 1.336x10^ 4.634x10"^

Example 2.3: We consider the following SLE with mixed boundary conditions 

studied by Chen and Ho (1996):

= Xu
dx^

(2.39) 

w(0 )-w '(0 ) = 0 

m(1) + m(1) = 0

Here is ^-th estimated eigenvalue corresponding to n and the differences between

k k-\
/I -A 

/ i < s  , where, e is verythe A:-th and (k-l)-\h eigenvalues are given by 

small and >0 .

It is noticed from table 2.3, that the errors decreased with the increasing degree of 

n and differences between successive eigenvalues converge to zero as the node 

numbers increased and be given as follows:

57



Table 2.3: Absolute errors between the successive eigenvalues for example 2.3.

Exact
eigenvalues 
Chen and 
Ho(1996)

Absolute error 
Bemst.

6 5A -A

Absolute Absolute Absolute 
error present error Bemst. Error Legn. 

Legn.
6 5A -A

12 11 12 11
A -/I A. -A.

1 I

1 1.71 2 .7 1 8 x 1 0 -’ 3 .6 6 x 1 0 -" 0.0000 4 .8 0 x 1 0 - '^

2 13.49 0 .0 0 0 0 2 .3 2 x 1 0 - ' 0.0000 3.22x10-*

3 4 3 .3 6 4 .3 4 6 x 1 0 - ' 8 .7 0 1 0 - ' ] .0 0 x 1 0 -’ 1 .70x10-"

/IK40X  ̂ L <►------ L I
- 4 - - 4

40

35

30

</)
? 25(G>
I  20 
0)

15(

10

5

i

0
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—©— Second eigenval.. 
— Third eigenval.

<>------o----- -o----- -o----- -o----- - 0 ----- -o----- -©----- -©-------e>

6
_

8 10
_____

12 14

n
16

- -- 
18 20 22

Figure 2.1: Convergence of eigenvalues Â >^2 >^3 utilizing Bernstein 

polynomials.

Using Legendre polynomials, we obtain the errors for successive eigenvalues as 

follows:

A ' ; . , ' : < 0 .0 0 0 0 0 0 0 0 0 a , -A" < 0 .0 0 0 0 0 0 0 0 0  land . r  - 4 ' < 0 .0 0 0 0 0 1 .

Using Bernstein polynomials, we obtain the errors for successive eigenvalues 

illustrated as follows:
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. r - A : ' < O.OOOOOOOOOflDO , 4 ^ - 4 ' <0.000000000000, i f  - 4 ' <0.000000001 .

Convergence of the first three eigenvalues are shown in figure 2.1. 

Example 2.4: We consider the singular SLE studied by Reutskiy (2010)

/ u
dx^ (2.40)

m(0 ) = w(1) = 0 

with the exact solution

u = const X 
n Vi + XS1H «7T

\n(l + x)
ln2

2 1
A = k  = - +« « 4

n n
l l n 2

[Reutskiy (2010)].

The first five eigenvalues for different values o f n utilizing Bernstein and 

Legendre polynomials are listed in table 2.4. Our computed results converge to 

the exact results up to ten significant digits. We conclude that our present method 

is much efficient and accurate and can compatible with the result of Reutskiy 

(2010).

Table 2.4: Comparison of eigenvalues for example 2.4

k
Exact

eigenvalues
Absolute Error 

Legn. 
n=22

Absolute error 
Bemst. 

m=25

Reutskiy (2010)
-8

£ = 10 
Af-500

Reutskiy (2010)
-8e = \0 

N-=2000
1 20.79228846 20.79228846 20.79228846 20.79228846 20.79228845

2 82.41915382 82.41915382 82.41915382 82.41915381 82.41915382

3 185.13059609 185.13059609 185.13059609 185.13059598 185.13059609

4 328.92661528 328.92661528 328.92661528 328.92661454 328.92661528

5 513.80721138 5 13.80721138 513.80721138 513.80720849 513.80721137

Example 2.5: We consider the following Sturm-Liouville problem studied by 

Chawla and Shivakumar (1993).

d^u
- +

dx‘ (2.41)

M(0)-M (0 ) = 0 ; m(1) + m (1) = 0
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Relative error norms are listed in table 2.5. We computed approximate eigenvalues 

utilizing present method and compare the accuracy of our results with results 

attained by symmetric finite difference method for the smallest eigenvalue. The

maximum absolute error achieved by the present method is about 4.54><io ~  ̂ ,

whereas error attained by Chawla and Shivakumar (1993) of order io~’. Besides 

using only eight Bernstein and Legendre polynomials, superior accuracy has been 

achieved whereas finite difference method attained less accuracy by using 64 

grids. It is also observed that, relative errors remain constant and are not 

decreasing with the increased degree of polynomials.

Table 2.5: Comparison of relative errors o f the smallest eigenvalue with known 

results of example 2.5 for different values o f n.

Exact 
eigenval. 

Chawla and 
Shivakumar 

(1993)

n No o f  grid 
points 

Chawla (1983) 
n

Rel.
error

Chawla
(1983)

Degree
o f
polyn.

Legendre
n

Degree o f  
polyn. 

Bernstein 
n

Rel. error 
Legendre

1 8 1.65x10"' 8 1.1700x10'* 4.548xl0‘®

5.833767621 2 16 1.97x10-’ 12 4.097x10'® 4.097x10'®

3 32 2.32x10“^ 16 4.099x10“® 4.098xxl0~®

4 64 2.81xl0'^ 20 4.099x10"® 4.098xxl0‘®

Example 2.6: Let us consider the following periodic Sturm-Liouville problem 

[Aukulenko and Nesterov (2006)].

d \ + Xu — 0
dx

(2.42)
u {k )  =  u { - 7 [ )

u{K) = u \ - n )

The equivalent eigenvalue of boundary value problem over [0,1] is.
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1 d^u

An^ dx^
+ l u  = 0

(2.42a)
1/(1) = M(0 )

l «( l )  = w(0 )

Employing the method for periodic boundary conditions illustrated in section 1.5, 

we approximate the solution in the form

n-\
u ( x )  = 0 ^ ( x ) + Y , c . B . i x )  (2.43)

i=\

The weighted residual equation becomes
1

I
/=i

dB. dB
■c.dx-B.  (l)<z) ( l) [p ( l) - /7(0 )

i=0 0
B.(x)B.(x) dx

or, equivalently in matrix form

f\

i={^ 

where,

= !
0 4 ; r

dB dB .
___i____J_
dx dx

c d x ----------
i 2 

An

(2.44)

(2.45)

5 . ' a ) < * J / l ) [ / ^ ( l ) - p ( 0 ) ] } (2.45a)

E. . = 
‘j

B.{x)B.{x) dx (2.45b)

Table 2.6 displays the first ten eigenvalues for «=30, exploiting both Bernstein

and Legendre polynomials. The smallest eigenvalue attains the accuracy up to
-11

10 and absolute error increases rapidly for higher eigenvalues than those of 

lower ones. As we increase the grid points or nodes from n=30 to «=35, the error 

reduces for the first three eigenvalues in case of Legendre polynomial. Although 

the error increases in case of Bernstein polynomials for the same.
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Accuracy is obtained up to 10 .We observe that increasing of nodes using 

Legendre polynomials improve the results which is not obvious for the use of 

Bernstein polynomials.

Table 2.6: Maximum absolute errors for example 2.6.

k
Exact

eigenvalues

Absolute
error
Legn.

n=30

Absolute error 
Bemst.

«=30

Absolute error 
Legn.

n=35

Absolute error 
Bemst.

n=35

1 1.000 0.000000 1.150x10"'^ 0.000000 1.017xl0"‘'

2 4.000 3.089x10“'̂ 1.950xl0~"^ 0.000000
-10

8.790x10

3 9.000 4.026x10“" 1.301xl0~’^ 1.776xl0~'^ 6.327x10“^

4 16.000 5.067x10“'̂ 5.958x10“'̂ 6.446x 10 1.095xl0~’

5 25.000 2.068x10^ -13
1.417x10 3.091x10“’ 1.074x10“^

6 36.000 7.138x10'^ -7
1.755x10 1.035x10“^ 1.799xl0~^

7 49.000 1.202x10“^ 3.211x10"^ 6.073x10“^ 8.979x10'^

8 64.000 2.699x1 o”'
-2

4.080x10 7.244xl0"^ 9.221x10“'

9 81.000
9.076x10"' 8.678x10'^ 0.1975x10"'

10 100.000 0.970x10 2.788x10

Example 2.7: Let us consider [Amidio and Settani, 2015].

d ^ u
■ + xu = Xu

dx

m(0) = 0

The eigenvalues are the zeros o f the Airy function given by

A . W  =
1

, where J is the Bessel function.a

(2.46)

The above problem is given in the semi-infinite interval 0 < jc < oo, and u is finite 

as x ^ o o  .We use the interval from 0 to ^  2000 ,3000 ,...........  and some

62



lower spectrum is complex eigenvalues. This leads « ( 0 )  = 0 and w ( / / ) - > 0  

w h e n y < x < c o .

We have used polynomials as trial functions which have been derived over the 

interval y < x <  /i. We first converted the SLE in equation (2.46) over the domain

[0 ,oo to an equivalent problem on [1,0]. This exertion is performed by placing

11 *x = l — -  SO that —  -  , , ^ -------  ̂ ^
‘ dt \ - t  dx dt dxe

du Ju dt /, \(£i

d  u

dt dx
cfH 

. dxV
dt

S .
~dU dx dt dt

Equation (2.46) transformed to

dt dt (2.47)

m (0) = 0

The problem is regular in ^ = 0  although // = 1 is LP. As the coefficients of the 

equation (2.47) are undefined in the endpoint of the interval y,fj. , we have taken 

the interval a, b with y  < a < x < b < / u  .

Furthermore, the problem is singular in 1, the interval is truncated to b = \ - e

with 8 = 10 . We have considered the interval the endpoint boundary conditions

M ( / i ) - >0  a s / / - > l  in 0 < x < .  Using the method for infinite domain 

illustrated in section 2.5, we approximate « ( r )  as

u ( t )  = 0 ( t )  + Y , c B _ ( t ) (2.48)
/=i

Here the boundary terms vanish because the boundary conditions imply 5 .  (0 ) = 0

and consequently we set B^ (b)  = 0.

n-l
I
i=\

F. +ZE. .l .J c. = 0 (2.49)

where.
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b

f  = f ^ B ( / ) b 'a o I dt +dx J 1 J ‘

l=b

t=0

E . . = l

(2.49a)

(2.49b)

The required eigenvalues are obtained solving the system 

F  + X E  = 0,  (2.50)

Sturm-Liouville problems in infinite range ju-^oo.  We can further increase the 

range of the interval and equation ( 1 .8 a) gives

r '

■ dx
/L

p i t ) , dx\
+ q{t )u -  Ar{t)u ^ ^ { t ) d t  = Oi \<t<ao (2.51)

We list first four eigenvalues o f Airy’s equation. Amidio Settani (2015) reported 

two eigenvalues which are depicted in table 2.7.

We display the present numerical results with the Galerkin WRM, the relative 

error between the Galerkin WRM and the Chebychev path following method in 

table 2.7. The results with Galerkin WRM converge to at least eight significant 

figures. Galerkin WRM with Bernstein polynomial converges relatively slowly 

than Galerkin WRM but computational cost is less in comparison with the later.

Table 2.7: Absolute errors between the successive eigenvalues for example 2.7.

Bernstein/
Legendre

«=12
k

Amidio and 
Settani

Bernstein
n=25

Legendre
n=20

\

Cheby Gal. 
A. “ A

k (2015) Gal.
A,

1 2.3381 1 2.33810740 2.338107398 2.338107412
-10

8.59x10

2 4.0879 4 7.94413358 7.94413364 7.94413368 7.552x10 ’

3 5.5206

4 6.7867
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2.3 The Bernstein Collocation Method

Collocation method

The collocation method forces the residual to vanish point wise at a set of

preassigned points. More precisely, let a set o f Gauss-Lobatto points

and let real algebraic polynomials o f degree < n such that at the interior

collocation points the residual

{ X .  )  =  Lu^ ( X .  ) -A  r ( x .  ) = 0 , (2.52)

satisfies exactly the boundary conditions, i.e.,

n-1
u ( x ) = y  u ( x . ) p . ( x . ) = 0n ' ^  n I '  ̂  I  ̂ I '

/■=0

The collocation points x, in [7 , / i j  is defined as

(2.53)

(2.54)

2

7+/y / ■i n
- +  CO S

j i - y

2.3.1 Recurrence relations

, /-1 ,2,3,., (2.55)

Theorem 2.3.1; Any generalized Bernstein basis polynomials o f degree n can be 

written as a linear combination of the generalized Bernstein basis polynomials of 

degree n +\ .

(2.56)

For details o f the above we refer [Akyuz, Dascioglu and Isler (2013)].

Theorem 2.3.2: The first derivatives o f «-th degree generalized Bernstein basis 

polynomials can be written as a linear combination of the generalized Bernstein 

basis polynomials o f degree n:

1

l i - Y
B. (x) = { n - i  + 1) B , (Jf) + (2 / - n)B (x) -(/  + \ )B (x)i-\,n i,n i+\,n (2.57)
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Proof: By utilizing Theorem 2.1 the following functions can be written as

« ix)  = (« -  / ) ^ (x) + (/ + l)B.^^ ^ (x) , (2.58a)

which follows that

(2.58b)

Substituting these relations into the right-hand side o f the property (1.86) in 

chapter 1, the desired relation is obtained.

Theorem 2.3.3: There is a relation between generalized Bernstein basis 

polynomials matrix and their derivatives in the form

(*)B ^ \ x )  = B{x)Q ; A: = 1,2,3,............. ,n. (2.59)

Here the elements o f ( « + i ) x ( «  + i)matrix, / j  = o,i,2,3,........, n can be worked

out as

n - i , i f  j  = i + \

I 2 i - n ,  i f  j  = i

i f  y = ; - i

0 , otherwise

From theorem 2,3.2 and the property o f Bernstein polynomials revealed in section 

1.8
Proof [Akyuz et al (2013)]:

1
We have 5^ (x) =

j u - y

1
B {x) =

l,« f i - Y

1
{x) =

2,«

1
B , {x) = 

n-\,n M ~ y

n B ( x )  + { 2 - n ) B  - 2 B  (X)u,n l,n 2,n

( « - l ) «  (x)  + ( 4 - « ) 5  - 3 5  (X)
l,w 2,« 3,/i

+ (X)
n—Zyti w—1,/7 n^n

1

n,n JU-y  

Hence the matrix relation is attained as 

b ' (x )  =  B ( x ) Q  ,

(2.60a)

(2.60b)

(2.60c)

(2.60d)

(2.60e)

(2.61)
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where 

B{x) = B (X)....
Z,n

B1

— n n 0 0 0
- 1 2 -n n - \ 0 0
0 - 2 4 -« 0 0
0 0 -3 0 0

0 0 0 n - 4 2
0 0 0 \ - n n-'.
0 0 0 0 - n

n̂ n (2.61a)

(2.61b)

Similarly, the second derivatives 

b \ x) = b \ x)Q = B{x)Q^

Hence, we get derivatives of the unknown function in the form
k (*-i) (i)B {x) = B {x )Q=B{x)Q

(2.62)

(2.63)

Thus, we completed the proof of the above theorem in detailed.

2.3.2 Bernstein polynomial approximations [Pirabaharan and Chandrakumar 

(2016)]

= .......(2.64)

and V  c  / /  be the set o f all Bernstein polynomial o f degree n. Let g  be ann

arbitrary element in H.  Since V (x) is a finite dimensional and closed subspace,n

therefore, V is a complete subset o f H.  Therefore, g  has the best uniquen

approximation out o f , thus, there exists unique coefficient c . ,

/ = 0,1, 2, 3,............ ,n such that

g { x ) =Y ^c B.  {x) = C B (;c)[Kreyszig,(1978)] 
/=o ' "

(2.65)

where, C = is thus computed out of

1

0
(2 .66)

We define
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Q = [B ^  ,B^ I IS a(n+l)x(A 7+l) dual matrix o f B

=  J5. { x ) B .  { x ) d x  =  ^i+\,j+\ i,n^ ' j,n

y \n

(2 n  + l)
2n

J  + i

/ \ n i n - i /  \ n / n - i

J  j
X  ■ z

k = 0 J ) k
\ /

/  \  n

\  /
K - i )
/=0 I\

n  — i  
k\

(2.67)

/ ■\n n - I

J  . J

n-i

*=0

/,y  = 0 ,l,2 ,3 ,..............,n.

Using (2.18) we have 

V B ( x ) - ^ M p  (x)n n n

where,

i+k

M
0  ,

( - 1)
J - t

I >7

^ri ' n - i

J ~ r
i

(2.68)

(2.69)

(2.70a)

Matrix M i s a  (« + l ) x ( «  + l )  upper triangular matrix and M  ^ 0 .  Therefore M  is 

invertible.

For the function approximation the following lemma illustrated in the articles 

[Alipour and Rostamy (2011), Pirabaharan and Chandrakumar (2016)].

Lemma: Suppose that the function g: [0, l ] ->/?  is n + \ times continuously

A7+1
differentiable i.e., g e C  ([0 , 1])), also

. 4n r  0,n ......■
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If B be the best approximation g  out of V , then

/
g - C ^  B 2 r

L [O.ll^[o. i ]^(« + i )V 2 « + 3 ’
(2.71)

rt+1
g  (X) ,c = ko’ l̂.’S.’ .....’ "Jwhere, I = max

X6[0,l]

Proof [Yousefi et a l  (2011)1: Since, the set \x ......... , x  | is a basis' ■ 1 2 3  n >

polynomials space of degree n.

Therefore, we define the function

2 n
u (x) = u(0) + xu'(0) + —  w'(0 ) + ..................... .+ —  m” (0 ) . (2.72)

From the Taylor expansion, we have

M + l1

W(x)-Wj(x) =
0

(2.73)

where, a  e ( 0 , 1). Since C 5  be the finest estimation of w out o f F , w g F  .
'• ^ '  1 / 7

u - C
i^(O.l )

u - u .
1

dx

1
n+l

f

 ̂ /»+i
JC

J
0

U
( n  + l ) '.

n+\ 1

\  /

2n+2  
X dx= -

dx

m

(« + l)! 0 (n+1)! (2n + 3)

Taking the square root on both sides, 

2

U - C < m

( 0 , \ )  ( «  +  l ) ! ^  ( 2 / 7  +  3 )

(2.74)
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2.3.3 Second order Sturm-Liouville problems

Matrix Formulation of Collocation method

Consider the following general second order nonsingular Sturm-Liouville

problem
dx

P {x )
du

+ q { x ) u  = Au,  0  < x< 1 (2.75a)

Eqivalently,

d ^ u du
p { x )  -  + p  { x ) —  + q { x ) u  = Xu

, 2  dx
dx

(2.75b)

Here 0, l] is finite interval; p{x ) , ^(jc) are all piecewise continuous functions

m
and p ( x ) > 0 , subject to the homogeneous boundary conditions o f w (0 ) = 0 ,

u (1) = 0 , for m = 0 , 1 (2 .7 5 c)

the method can be developed for the problem defined in the domain [0 , 1] to obtain 

the solution in terms of shifted Bernstein polynomials

T T
R { x ) ^ p ( x ) c ’̂  b \ x ) Q^  + p \ x ) c ' ^  b \ x ) q '

+ C q { x ) B  ( x ) - A C B (x)

where

B  ( x )=

C ( x )  =
^.0  ’^ 1. ’^2. ’■

■JBn,n

(2.76)

(2.76a)

(2.76b)

Moreover, the matrix forms of the conditions become

C 5  (0) = 0 and C 5  ( l )=0 (2.77)

From the boundary condition properties o f Bernstein polynomials, we get

= 0 .

Collocation points are defined by, 1 -co s 0 < x < l  (2.78)
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n-l
Now we can write approximate eigensolution as u(x) = ^  B. {x)c^ (2.79)

7=2

Substituting (2.79) into (2.76) and evaluating at x = x.; V / = 0 ,1 ,2 , ...............,n

Then we obtain the fundamental matrix equation for equation (2.77)

TJ 2 JJ r] , TJ rj TJ
PB Q C +TB Q C  +SB C =0 (2.80)

P =

P(Xq) 0

0 /7(Xj )

6 6

0

0
(2.80a)

T =

P(Xq) 0 

0  p \ x ^)

0 0

0

0 (2.80b)

+ A 0 

0  q(x^) + A.

6  6

0

0

q ( x )  + A

The above expression (2.77) can be written is matrix form as

(2.80c)

A +ADC =0 (2.81)

This equation corresponds to a system of « + 1  linear algebraic equations with 

unknown Bernstein coefficients c^,c^,c^, .........,c^ .

where,

A =

K M  K M  b;„(x,) .......... fi;-2,„(^.) C,.„(^,)
Bl ix , )  Bl„(x,) B l i x , )  .................  B:_,Jx,) B:_,„(x,)

(2.81a)
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£) =

B, i x )
\ , n  1

S, (X ) 
2,rt 2

0

0

B  ( X ) B ( X )
n—2,n 2 n-\,n 2

0 B

(2.81b)

2.3.4 Numerical examples

In this section we present three numerical examples of second order SLE problems, 

using the Bernstein collocation method depicted in this section. The computed 

eigenvalues exploiting Bernstein collocation method are compared with the WRM 

Galerkin method for the first two examples for brevity.

Example 2.8: Let us consider one dimensional Helmholtz equation [Reutskiy, 

2006]

2
- X  u

(2.82)dx

m(0 ) = m(1) = 0

Table 2.8, lists first ten eigenvalues of the problem for «=30. It also illustrates the 

results using Galerkin method and Boundary method [Reutskiy (2009)]. We noticed

- 1 2
that the smallest eigenvalue attains the accuracy up to 10  and error increases 

rapidly for higher eigenvalues than the lower values. We accomplished that 

Bernstein Galerkin, Legendre Galerkin attain superior accuracy than those of 

Bernstein collocation and Boundary method [Reutskiy (2009)] for one dimensional 

Helmholtz equation.

Example 2.9; We consider the Sturm-Liouville problem studied by Celik (2005) 

given by 

2

^—y  + Xu = (x + 0 .l)~^M
dx (2-83)

m(0) = m (̂ 7t) = 0

Table 2.9 lists the first 20 eigenvalues for different values o f n. We observed that 

Galerkin method exploiting Bernstein polynomials achieves reasonable accuracy
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for first nine eigenvalues whereas Bernstein collocation method show better 

performance than that o f Galerkin method. However, the last four eigenvalues using 

Chebychev corrected collocation method achieves better results than that of 

Bernstein collocation method.

Table 2.8: Comparison of eigenvalues o f example 2.8 for different methods.

n Exact
eigenval.

Bernstein
coll

«=30

Rel. error 
Bernstein 
Galerkin 

«=30

Rel. error 
Legn 

Galerkin 
«=30

Rel. error 
Reutskiy 
(2009)

1 n 8.439x10"'^ 4.30x10"'^ 4.301x10"'^ 1.7xl0"‘^

2 I n 8.439x10"'^ 1.309x10"'^ 1.292x10"'^ 1.6x10

3 Zn
-10

1.549x10 2.337 x10"'" 2.307x10"'^ 1.5-xlO"'^

4 An 2.278x10'® 6.658x10""' 6.571 xlO"'^ 9.7x10"'^

5 5n 1.477x10'^ 3.169x10"'^ 3.169x10"'^ 9.0x10"'^

6 6n 5.144x10“* 3.255x10"'^ 3.260x10"*^ 5.8x10"'^

7 I n 9.940x10“^ 2.764x10"'^ 2.728x10"'^ 9.2x10"'^

8 %n 1.371x10"’ 9.871x10"'^ 1.390x10"'^ 1.8x10"'^

9 9n 4.879x10'^ 1.390x10"'^ 9.742x10"'^ 5.3x10"'^

10 I On 7.371x10"^ 4.876x10"'^ 4.875x10"’^ 1.2 xlO"'^

Example 2.10: The Boyd equation conside 

(2006), Singh and Kumar (2013).

2
d  u . . .  1 / X---- - = Ku (x) + — w (a:)

X

d by Baily et al (1993), Auzinger

(2.84)dx

[m(0 ) = w(1) = 0

The endpoint I is regular, the endpoint 0 is singular and is the LC case. In table 

2.10, the first five eigenvalues are displayed. We listed the present numerical 

results with the polynomial collocation [Auzinger et al (2006)], the relative error 

between the Bernstein collocation and the polynomial collocation as well. Auzinger

r&f
a / (2006) computed approximate eigenvalues denoted by A * and X using
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different tolerances. Here is the number o f grid points with default tolerance

-6 -3 ref
abs. Tol=10 , rel. Tol=10 and N  is the respective number of grid points

with stricter tolerance abs. Tol= rel. Tol = 10  . The numerical results employing 

current method are converged to at least 9 significant figures and relative errors 

obtained by Bernstein collocation method are much smaller. From table 2.10, we 

observe that eigenvalues work out by our present approach agrees well with the 

other methods.

Table 2.9: Comparison of eigenvalues of example 2.9 for different methods.

k

Exact
eigenvalues

Eigenval. 
Bern coll. 

«=35

Absolute
error

Bernstein

coll.

Absolute
error

Bernstein
Galerkin
(present)

Eigenval. 
Corrected coll. 

Celik (2005)

Absolute
error

Cheby
Celik

(2005)
1 1.51986582 1.5198659 0.000000 0.0000000 1.5198659 0.0000000

2 4.9433098 4.9433098 0.000000 0.0000000 4.9433098 0.000000

3 10.284663 10.284662 0.00000 0.000000 10.284662 0.000000

4 17.559958 17.559957 0.000000 0.000000 17.559957 0.000000

5 26.782863 26.782863 0.000000 0.000000 26.782863 0.000000

6 37.964426 37.964584 0.000000 0.000000 37.964584 0.000000

7 51.113358 51.113358 0.000000 0.000000 51.113358 0.000000

8 66.236448 66.236448 0.000000 0.000000 66.236448 0.000000

9 83.338962 83.338962 0.000000 0.000000 83.338962 0.000000

10 102.42499 102.42499 0.000000 0.0000 102.42499 0.00000

11 123.49771 123.49771 0.0000000 0.0012 123.49771 0.00000

12 146.55961 146.55961 0.000000 0.11801 146.55961 0.00000

13 171.61264 171.61265 0.000000 171.61265 0.00000

14 198.65837 198.65837 0.00000 198.65838 0.00000

15 227.69803 227.69803 0.00000 227.69803 0.00000

16 258.73262 258.73258 0.0000 258.73262 0.00000

17 291.76293 291.76206 0.000759 291.76282 0.00000

18 326.78963 326.79782 0.007192 326.78962 0.00000

19 363.81325 363.74147 0.07177 363.81338 0.00013

20 402.83424 403.30631 0.4727 402.83237 0.00187
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Table 2.10: Comparison of eigenvalues obtained by present method for example 

2 .1 0  with other methods

Present
method

Eigenval. 

Auzinger et al (2006)
Rel. error

ref.

Rel error

ref.

..ref

1 7.37398502

2 36.3360196

3 85.2925821

4 154.0986237

5 242.7055592

7.37398502

36.3360196

85.2925821

154.098624

242.705559

7.37398502

36.3360196

85.2925811

154.098619

242.7055545

4.827x10
-10

-1 0

-11
1.265x10

6.906X lo'

1.6872x10"^
-10

9.580x10

4.827x10

1.451x10’

-10

- 9

1.111x10

2.786x10

5.851x10
-8

32 153 20

32 267 20

32 425 20

32 583 20

32 741 20

2.4 Chebyshev-Legendre Spectral Collocation Method

2.4.1 Legendre and Chebyshev polynomials

In this part before moving onto our main study, we discuss some basic properties 

to support our scheme. In this study we are concerned with approximating 

solutions o f second order Sturm-Liouville problems using Legendre polynomials 

as trial functions and Chebychev Gauss-Lobatto nodes for collocation.

The Legendre polynomials o f degree n defined on [-1, 1] is given as [Atkinson 

and Kendall (1989)]

N

2 V !(« -r)!(n -2 r)!

{ 2n-2r ) \  2r

where,

n
—, when n is even
2

- — , when n is odd

The Rodrigues' formula of degree n is defined as:

1
= —;-------w here«>i

(2.85a)

(2.85b)

(2.86)
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The n -th order Legendre differential equation is given by,

( 1 - x  ) L ^ { x )

Provided L„ is bounded on [-1,1 ] i.e., 

Properties of Legendre polynomials

(i) I ^ ( ± l )  = (±l )  ,

( i i ) l '  ( ± 1 )  =  ^ ( ± 1 ) ”' '  « ( «  +  ! )

< 1 .

1
n r

( i i i ) jL  { x ) L ^ { x ) d x  =

2

(2.87)

The Legendre polynomials are orthogonal with respect to the (-1,1) inner 

product. Also, these polynomials are complete in the sense that for any

u { x ) =
n=0

where,

u = n n + -  
2

[m(x)Z {x)dx  
J n

(2 .8 8 )

(2.89a)

(2.89b)
-1

where, the sum converges to L ^ (- l, l)  norm. Legendre polynomials which are 

orthogonal in the interval [-1, 1 ] satisfy the following recurrence relation.

2 « + 1 n

”+* n + \ " « + ] « - •
(2.90)

Chebyshev polynomials [Lui (2011)] of degree n over an interval [7, //] are defined 

by

r  (x)= COS
-1

ncos
H - y

X  —
y + H

, « - 0 , l , 2 ...... , r < x < M  (2.91)

The collocation points x/̂  ̂ in {y, fi] are defined as

k 2
r+M
H - y

+ cos
V « yy

(2.92)
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T„{x) is bounded on [-1,1 ]. Chebyshev Gauss-Lobatto nodes are the zeroes o f the

orthogonal polynomial ( 1 - x ^ )  r ^ (x ) . These nodes are placed symmetrically 

around jc = 0  and denser near the end points x = ±1  .The spacing between the

collocation points near the boundaries is o f order o {n '^ ), in contrast with )

for finite differences or finite elements.

Root finding using Newton Raphson's iterative method

To compute the zeros o f orthogonal polynomials, from three-term recurrence 

relation sometimes difficult as becomes very large which leads the method 

suffer from round-off errors. An alternative approach is to compute the zeros of

\ x )  numerically, where r < «  is the order of derivative. If is an initialn k

approximation to the k  -th zero of /?„,

r r 
X. = x. + D

r
X k /

where D = - p ^ { x ) j p ^ { x ) .

Newton's method under some standard assumptions can achieve rapid 

convergence quantified as ^-quadratic, namely, the number o f significant figures 

in the approximates doubles with each iteration.

2.4.2 Legendre-Chebyshev Spectral Collocation method

In Spectral collocation methods, there are basically two steps to obtaining a 

numerical approximation to a solution o f differential equation. Firstly, an 

appropriate finite or discrete representation of the solution must be chosen. 

However, it is well known that the Lagrange interpolation polynomial based on 

equally spaced points does not give a satisfactory approximation to general 

smooth functions, superior results are obtained by relating the collocation points 

to the structure of classical orthogonal polynomials. Secondly, we necessitate to 

obtain a system of algebraic equations from discretization o f the original equation. 

In our present study we implement the spectral collocation method is in physical 

space and approximates derivative values by direct differentiation of the Lagrange 

interpolating polynomial at a set of Gauss-Lobatto points.
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This proposed scheme works well for differential equations with any type of 

boundary conditions. In practice the Gauss-Lobatto points are taken in order to be 

able to prescribe function values at the boundary. The Gauss points are all located 

in the internal o f the domain. As the weight function for Legendre polynomials is 

unity, for combination with weak formulations o f differential equations, Legendre 

polynomials are more suitable then Chebyshev polynomials. Polynomial 

interpolations based on Chebychev nodes are often used to approximate smooth 

function. We define second order Sturm-Liouville eigenvalue problem as 

previously by:

T ^Lu„ := —
dx

p ^ x ) d u ^  +^(x)w(x)  = AK^)m(x) ,  (2.93a)
dx

p { x ) , q{x ) , a (xj>Oare  piecewise continuous functions and Lu„ is a self- 

adjoint operator for the left-hand side o f equation (2.93a). Hence eigenvalues o f a 

self-adjoint equation are all real.

Here we consider again the following homogeneous Sturm-Liouville boundary 

value problem (2.93a) specified as

d
dx

a d u
JL

dx

u(r)  = o
(2.94c)

u( ^)  = 0

For every «  > 0  ̂  the problem (2.94b) is called singular.

Let X, be the set of Gauss-Lobatto nodes with two end points and x , wherek ^  0 n

k = 0,1,2, ........ ,n and let be the set o f all real algebraic polynomials of

degree < n . The spectral collocation method for equation (2.94a) is to find the

u e p  such that the residual R {x)  = Lu (x ) ->^r (x)  equal to zero at the 
n n n n

interior collocation points. The Spectral methods are particularly attractive due to

the following approximation properties. The “distance” between the solution u{x)

1
of the above problem and its spectral approximation u is o f o rd e r---- , i.e.,

n
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u - u < —  , where s is the regularity index. Moreover, if u{x) is infinitely

derivable, the above distance vanishes faster than any power o f —, which is
n

termed as spectral accuracy. In other words, while spectral methods use trial 

(shape) and test functions, defined globally and very smooth, in finite elements 

methods these functions are defined only locally and are less smooth.

2.4.3 Legendre Pseudo Spectral Differentiation matrices:

Spectral collocation methods, also known as Pseudo Spectral methods, are 

obtained when the test functions in the variational formulation are Dirac functions 

based on a pre-determined set o f collocation points. The present method is known 

as nodal method based on interpolation formulas that utilize Lagrange 

polynomials. Here unknowns are the actual sampled values o f the function and 

so no transformation is needed.

S ( x )  = - 2 x L  (jc) + ( l - x  )L (x)
L n n

Using equation (2.87), we have 

s '  (x) = - « ( «  + 1 ) 1  (x)
L n

(2.95)

(2.96)

(2.97)

Lagrange polynomial for the nodes , x^  , .......,x  be defined as

( 1-x  )L ( X )
(2.98)

Since \x  I axe the roots of 1 - X

1-JC I ^ ( x )
Lim

x - x

0
— form 
0

(1 - x  ) Z * ( x ) - 2 xZ^(x)
L i m ------------ -------------------  [using L ’ Hospital rule]

1
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- 7-̂ —̂  Urn s' (x) = ---s' {x ) = 1
 ̂ S^{x. )  ^ '

We can define
0 , k

5  =ik 1, i = k

Again, differentiating equation (2.98)

= -

( x - x , )

/ , ( * ) = —
s'^ (x)  (;c)

( x - x .  y

(2.99)

(2 .100)

(2.101)

For any continuous function u , we define Legendre interpolate o f m by m , can 

be expressed as the unique polynomial in p  such that,

/  u n\  J
( x ) =  ^ M . / .  ( x ) ,  Q < k < n  and 

;=o ' '

 ̂ L  ̂
I  un\  J

W = Z » / , ' W  (2 . 1 0 2 )
;_A » »/=0

From equation (2.102)

^'l i=‘ k .I ' i x  ) '
' S ; < , , ) t v ^  - n ( n - H ) L ^ U , )

Since S ^  [x^ j=  0

‘ l  x . %
n  ̂ I k I '

, ( \  1 s  (x)(j:-3:. 1-5 (x) S i x .Also, O. .=/ L  =^T—, lira - t — ---- •'

(2.103)

(xn k \
2L

(2.104)
k
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Equation (2.104) is obtained using equation (2.97) and L ’ Hospital Rule.

D =0 for 1<A: <«- 1
h, yk.

D = - D
0,0 n, n

n{n + \)
(2.105)

Equation (2.105) is obtained using properties o f Legendre polynomials illustrated 

in section 1 .1 1 .

It can be shovm that the (« +1) x (« +1) Legendre Pseudo spectral derivative 

matrix D , which computes the derivative exactly at the Legendre Gauss-Lobatto 

nodes, gives the derivative of the interpolate o f « . Using equations (2.103), (2.104) 

and (2.105), the Legendre Pseudo spectral derivative can be written together as,

(-J
X , - X . L (x ,

k I n  ̂ I '

0, 1< /  = A : <« - 1

«(n + l)
(2.106)

4

n{n + \)

i = k = 0

, i = k = n;

2.4.4 Formulation of second order SLEs:

In this section, we use Legendre orthogonal polynomials to approximate the 

solution as a weighted sum of polynomials of second order Sturm-Liouville 

problems. We collocate at Chebychev clustered grid points to generate a system 

of equations to approximate the weights for the polynomials. For it the equation 

(2.93a) are to be put in the form as follows:

Boundary conditions of mixed type

General boundary conditions (mixed type) are written as:

" 1
a, M ) , w, = 01 /7  1 n k  k (2.108a)

(2.108b)
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Equation (2.108a) leads to

n-\
U = - / ? ,  Y { D  ) , M

n ' n k  I
(2.109a)

A=i

Similarly, from (2.108b), we have

*00

n-\

/l'=l
(2.109b)

y < x <  ju

%  "
- / ’2 S < o ' ) o i “ .  - ^ 2i = l

i
(2 .110)

>00

Substituting equation (2.110) into equation (2.109a),

rt-l

' . o ' - 1 1

n-1
1

*=1
(2.111)

Now let,

Using equation (2.112), equation (2.111) becomes

<,,x 1 n A=1
n-\

U “/Â=l

«-l rt-1

n—\ n-\ I

u = _____-------------------- ----------- -------------------
” a .d .  —b,c,  a.d,  - b . c .1 1  11 1 1  I I

(2.113a)
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n-l
where, u = y '  0 un w Ir in •“  nk  k k=\

(2.113b)

V

Also, from equation (2.110)

n - l

(2.113c)

1u = ------ u —
0 c »

k=\
Qk k

n - l w-1

k=\
nk k \ ^ 2

k=2
Ok k

n - l
1

^  >0*A:=l

1

On simplification

%  = -

n - l  n - l

*=1 k=\

n-1

A=1

where e
Qk

b B (Z)' ) - B  d (D^ )
1 ^ 2 ' -  ^0* ^1  '  nk

Let the constants and nonzero.

Using equations (2.113b) and (2.114b), the equation (2.107) reduces to

(2.114a)

(2.114b)

(2.114c)

«-i

I
k=\

{D ) + p {x , ) { D  )I I u

+ {D^) +p{x ) {D)  +q{x )-Xr{x  )i,n I i,n I I

n-\
n o  ,u

k=\ n k  k
= 0 , 1 <Z< « - 1

83



n-1

= I  
k=\ h , k  \ , k  )k-,A

(D^) .^+p(x.XD) .^+q(x . ) ^Ok^k

( D ^ ) : + p ( x M D ) _ . + q ( x ^ 9 u +/l/-(jc. I(6» +0  )m =0 (2.115)
n k  k  ̂ I dk  nk  '  k '  ^

The Spectral collocation solution for the eigenvalues for the Sturm-Liouville 

problem in equation (2.107) with the general boundary conditions (2.108a) and 

(2.108b) takes the matrix equation form as given by

Au = XBu  (2.116)

where,

,, = ( ^ ^  ).. +p{x . ) {D  ).^^ + [ q { x . ) - X r { x . ) u { x . )i , k i , k i , k

e Ok

( D ^ ) ^ + p ( x W ) _ . + q ( x ^i n I n 9n k (2.117a)

(2.117b)

Here, u = ........’ V l , A = (a ), B=^{b ) are ( « - l ) x ( « - l )  matrices,
i-K .i,h

and is the Kronecker delta. Solving equation (2.116) the required eigenvalues 

are obtained.

Sturm-Liouville problems(SL£s) with Dirichlet boundary conditions:

Boundary conditions are: m( / )  = 0; u (/i) = 0 (2.118)

The spectral differentiation matrix for the SLE (2.107) incorporating the boundary 

conditions (2.118)

n-\
Z p ' ) a  + p ( ^ / X ^ ‘) a  + K  = 0
k = \

(2.119)

Dirichlet boundary conditions (2.118) satisfies the following linear system 

Au = XBu  (2.120)

84



u = “r “2,..........V i

(2 . 1 2 1 b)

(2.121a)

Solving equation (2.120) required eigenvalues are obtained.

For nonlinear Bratu problem, we have first computed the initial values on 

neglecting the non-linear terms and using the above method Then using the 

Newton’s iterative method we found the numerical approximations for desired 

nonlinear BVP.

2.4.5 Convergence analysis

The Legendre polynomials, ( x ) , A: = 0,1,2............... form eigenfunctions of

singular Sturm-Liouville problems given as

( 1 - ^ S z ' ( X )  +k{k + \)L^ {x) = 0 (2.122)

If ( a : )I be a set of orthogonal polynomials with respect to weight function 

w(x), then

-1
L ( x ) L  ( x ) w { x ) d x  = Q, for k ^ lfC I (2.123)

We consider ^(x) be the functions in the Hilbert space L ( -1 , 1 )  such thatW

x ) w{x)dx<<x). (2.124)

For any continuous functions ^(x)  and i//(x) in (-1,1), we have

^ ( x )  w ( x ) d x  <co. (2.125)
-1

Suppose, m(x) be the eigenfunction of the Sturm-Liouville problem in the Hilbert 

space then the series expansion in the case of Legendre polynomials is

k=Q
(2.126)
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Approximate solution in terms of truncated Legendre series is

u{x) = Y . u  L (x)
/t=o * *

where tiie coefficients, = —--------------

since w(x) = 1 , for Legendre polynomials 

we have,

(2.127)

(2.128)

dx (2.129)

If be the orthogonal projection operator onto the Legendre polynomial space 

n „ ,  then

V v e n ^  V v e n „  (2.130)

The completeness of (x )| implies that,

->^Oas «->oo.  V w e Z ,^ ( - l , l )  .u - P  u n (2.131)

Hence, following the above convergence result, if V w e C°°, the produced error

approaches to zero as n ^ o o  and with exponential rate j, y> 0 , for the

w-the eigenvalue [Lui (2011), Taher et a/(2013)].

2.4.6 Condition number of Legendre Collocation

Let n be a positive integer and u e  p  be a non-trivial solution of
n

- u  = Xu (2.132)

Then c ^ < X < c ^ n  , where c . are constants independent o f n. From the 

eigenvalue relation, we obtain

= /Im(jc ) o n ( - l ,  l ) ,  A: = 1,2,3,...................., n - \  (2.133)- u k

where, { }  are the Legendre Gauss-Lobatto points. Then

.2

w. (2.134)
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w, are the weights corresponding to Gauss-Lobatto points. Since all polynomials

of degree by p  can be integrated exactly using Gaussian Quadrature2 n —\

-  \[uj
-1  - I

u ,u

From the equivalence o f norm , we obtain

(2.135)

- c , 4 — = c
3 1 ‘'4  1

2 , 2 
U \ u

-1  -1

(2.136)

2.4.7 Numerical Experiments ;

In this section we have presented six numerical examples o f second order linear 

Sturm-Liouville problems in brief, using the method outlined in the previous 

section. One nonlinear Bratu type BVP is also illustrated concisely. The 

convergence of our existing method is measured by the absolute and relative error

Absolute error, S, =

Relative error, =

exact (c o ll.)  
A — A

exact { c o l l )
A — A

exact
A

(2.137a)

(2.137b)

Nonlinear BVP is calculated by the absolute error o f two consecutive iterations 

such that of two consecutive iterations such that

N  + \ N
U — U <S

-1 0
where S  is less than 10 and S  is the Newton’s iteration number.

Example 2.11: Let us consider one dimensional Helmholtz equation [Reutskiy 

(2006)].
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(2.138a)

d  u 2
----- = A u

2
dx

w(0 ) = 0

M(1) = 0

We transfer the equation (2.138a) by changing the variables

Sturm Liouville problem transforms to

2
d  u

4 -------A m  , f e ( - l , l )
dt

u ( - \ )  = 0
(2.138b)

m (1) = 0
The Differential eigenvalue problems in matrix form can be written together with 

boundary conditions as

n-lS
A:=t

(2.139)

Table 2.11, lists first ten eigenvalues for «=20. Smallest eigenvalue attains the 

accuracy up to 10 "''* and error increases rapidly for higher eigenvalues than the 

lower values which is better than boundary method. As we increase the grid points 

or nodes from n=20 to «=30, the error decays very fast for all the eigenvalues and 

accuracy is obtained up to 10“*̂ .We observed that increasing of nodes reveal the 

stable behaviour of all the eigenvalues for w=30.

From table 2.11, it is observed that our present approach attains more accurate 

results than the new boundary approach for one dimensional Helmholtz equation. 

Example 2.12: Here, we consider the SLE with Neumann boundary conditions 

[Tao Tang (2006)]
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2
d  u

= Xu
dx

(2.140)
m' ( 0 ) = 0

The exact smallest eigenvalues is 2.4137.

We define spectral radius as 

p {a ) = m ax|A | : A -  AJ = 0

/c(^) = m ax |/l| • \A -A I\ -  0 } /m in |/l| - \A -  Al\ = o ]

(2.141a)

(2.141b)

Table 2.11: Comparison of absolute errors between the new boundary method ( e 

-procedure) [Reutskiy (2006)] and present method for example 2.11

Exact rel. error rel. error rel. error
k eigenvalues present method present method Reutskiy (2006)

n=2Q n=30 s  = \0~^
1 71 -14 14 -12

3.251x10 3.251x10 1.7x10
2 In 3.209xl0~'^ 3.223xlO~‘^ 1.6xl0~‘^
3 H)7t 2.344x10*'^ 2.344x10”'̂

-12
1.5x10

4 An 3 .906xl0 '‘" 8.371 xio"'^ 9.7xl0"'^
5 5n 2.790xl0~'^ 7.924x10""' 9.0xl0"'^
6 6n -10

2.353x10 4.278x10""' 5.8xl0"‘^
7 In 5.236xl0~* 1.594xl0"’" 9.2xl0"'^
8 8;r 3.706x10“̂ 8.371 xio"'^ 1.8xl0"‘^
9 9n 1.450x10"^ 1.240xI0"'" 5.3 xio"'^

10 \0n 2.168xl0~^ 1.671x10”'̂ 1.2x10"'^

The authors (Tao Tang, 2006) showed that there exists two constants Cj and in

4
problem (2.140) independent o f n such that 0 < c, < -A  < c^N  .

We have proved it using our proposed algorithm.

4
0.019847V 

0.00515 iv '

89



We noticed that condition numbers attained with the current method are smaller 

than those o f the Chebychev Spectral collocation method stated in and the Spectral 

radius as well which are displayed in Figure 2.1.

Example 2.13; We consider the SLE studied by Celik (2005) as below

d u  X
— -  + ( k - e  )u = 0
dx

m(0) = 0 

u{n)  = 0

(2.142a)

changing the variables  ̂ Sturm-Lioville problem (2.412a)

transforms to the following form:

2
A d u

7t dx

- u e
- { M ) )

= Xu,  ^ e ( - l , l )
(2.142b)

M(-1) = M(1) = 0

The Differential eigenvalue problems in matrix form can be written together with 

boundary conditions as

E
k={

7t

2 2 (2.143)

Absolute errors obtained by using PDQ, FDQ, Chebychev collocation and our 

present method are illustrated table 2.12, for n=40. Yucel (2006), showed that 

FDQ approach gives better convergence than that o f PDQ. We achieve almost the 

same accuracy in our existing method is. Accordingly, our present approach is in 

good agreement with the other three other methods and much accurate.
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Figure 2.1: The spectral radius and condition number associated with the 

Legendre Spectral methods.

Example 2.14: This SLE is taken from the article worked out by Chen and Ho 

(1996)

d ^ u
= Xu

dx
(2.144a)

m (0) - m  (0) = 0 

m(1) + m'(1) = 0

Change the boundary points from 0 to 1 into -1 to 1, leads the SLE as follows

d ^ u  
4 -------= Xu

dx^
(2.144b)

u { - \ ) - u  ( - 0  = 0 

m ( 1) + m ' ( 1) = 0
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Here A is A:-th estimated eigenvalue corresponding to n and the differencesK

between the A:-th and (^-/)-th eigenvalues are given by
k k-i

A. - A./ / < s , where s  is

very small and £: —> 0 .

It is evident from table 2.13, that the differences between successive eigenvalues 

converge to zero as the node number inceased and is given as follows:

12 11 12 11 12 11
-A, <0.000001, < 0 .000001 and A3 -A , < 0 .000001

Chen and Ho (1996) computed absolute differences between the successive 

eigenvalues and found that these differences tend to zero as he increased the order 

o f derivatives. We also calculate the absolute differences and relative errors o f the 

first three eigenvalues for n=5,6 and n=l 1, 12. It is clear that absolute differences 

diminish by zero as the node numbers are increased. Convergence of the first three 

eigenvalues are depicted in Figure 2.2.

Example 2.15: Consider the singular Sturm-Liouville boundary value problem 

illustrated in the article o f Singh and Kumar (2013).

d^u  , 2 1 . .
------7  = ^ ,

dx ^
m(0) = 0

«(1) = 0

0 < x < l

(2.145)

The exact eigenvalues are computed by solving the equation of the Bessel function 

(2 / l ) = 0 ,fo r X and eigenfunction is u { x )  = y f x J  ̂ { l A  J~x).

We compared nine approximate eigenvalues for n=20 nodes with those tabulated 

using Adomian Decomposition method [Singh and Kumar (2013)]. From table

2.14, it has been noticed that the first eight numerically attained eigenvalues by 

our present method are correct up to figures eight significant which is yields 

reasonable accuracy.
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Table 2.12: Comparison of absolute errors between the Chebychev’s collocation

and  p resen t m e th o d  fo r  e x a m p le  2.13.

k Exact
eigenvalues

Chebychev Spectral 
coll. coll. 

Celik (2005) Present 
AT=40 rt=40

Absolute
Error
Cheby.
Coll.
N=AO

Absolute 
error 

Yucel (2006) 
PDQ 
Â =40

Absolute
error
Yucel
(2006)
FDQ
Â =40

Absolute 
Error Spect. 

Coll.(present)

1 4.8966694 4.8966694 4.896694 0.00000 0.0000 0.0000 0.000000

2 10.045190 10.045190 10.045190 0.00000 0.0000 0.0000 0.000000

3 16.019267 16.019267 16.019267 0.00000 0.0000 0.0000 0.000000

4 23.266271 23.266271 23.266271 0.00000 0.0000 0.0000 0.000000

5 32.263707 32.263707 32.263707 0.00000 0.0000 0.0000 0.000000

6 43.220020 43.220020 88.132119 0.00000 0.0000 0.0000 0.000000

7 56.181594 56.181594 56.181594 0.00000 0.0000 0.0000 0.000000

8 71.152998 71.152998 71.152998 0.00000 0.0000 0.0000 0.000000

9 88.132119 88.132119 88.132119 0.00000 0.0000 0.0000 0.000000

10 107.11668 107.11668 107.11668 0.00000 0.0000 0.0000 0.000000

11 128.10502 128.10502 128.10502 0.00000 0.0000 0.0000 0.000000

12 151.09604 151.09604 151.09604 0.00000 0.0000 0.0000 0.000000

13 176.08900 176.08900 176.08900 0.00000 0.0000 0.0000 0.000000

14 203.08337 203.08337 203.08337 0.00000 0.0000 0.0000 0.000000

15 232.07881 232.07881 232.07881 0.00000 0.000 0.0000 0.000000

16 263.07507 263.07507 263.07507 0.00000 0.010 0.0000 0.00000

17 296.07196 296.07198 296.07196 0.00002 0.020 0.0000 0.00000

18 331.06934 331.06940 331.06935 0.00005 0.0500 0.0000 0.00001

19 368.06713 368.06769 368.06702 0.00052 0.5600 0.0000 0.000011

20 407.06524 407.04923 407.06672 0.01502 16.01 0.030 0.00148

. 5?1 U «
Table 2.13: Absolute errors between the successive eigenvalues for example 

2.14.

Eigenvalue
index

/

Exact eigevalues 
Chen and Ho 

(1996)

Absolute 
error present

/  i i

Absolute 
error present

12 11 
/I -A  / ;

1 1.71 2.96 X10
-12

1.50x10

2 13.49 5.19xl0~^ 5.97x1

3 43.36 5.29xl0“’ 7.16x10"^
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Figure 2.2: Convergence of the eigenvalues.

Table 2.14: Comparison o f eigenvalues obtained by present method with ADM 

[Singh and Kumar (2013)] for example 2.15.

k
Exact eigenvalues 

Auzinger (2006)

Xk

Present (Spectral coll.) ADM [Singh and 

Kumar (2013)]

1 1.9158529 1.9158529851 1.9158529
2 3.5077933 3.5077933349 3.5077933
3 5.0867340 5.0867340674 5.0867340
4 6.6618459 6.6618459681 6.6618459
5 8.2353150 8.2353150254 8.2353150
6 9.8079292552 9.8079292
7 11.3800421902 11.380042
8 12.9518360438 12.9518360
9 14.5235414260 14.5235964

Example 2.16: The Boyd equation considered by Baily et al  (1991), Singh and 

Kumar (2013).
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d u T . , 1 / X------ -  = Xu{x) + - u { x )
dx^

m (0 ) = 0 

u(l) = 0

We have calculated the first five eigenvalues and compare our approximate results 

with Adomian Decomposition method studied by the said authors. From table

2.15, we observed that eigenvalues work out by our present approach agrees well 

with the Adomian Decomposition method, SLEIGN 2.

Example 2.17: We consider the Bratu’s boundary value problem in one 

dimensional planar coordinates studied by some authors [Chen and Ho (1996), 

Aregbesola (2003), Khuri (2004), Liao and Tan (2007), Caglar et al, Jalilian 

(2010), Zarebnial and Sarvari (2012), Trefethen (2000)] in the form:

d u . m(x)
----— = AQ

(2.146a)

dx

m(0) = 0 

u{\) = 0

(2.147a)

Table 2.15: Comparison of solutions obtained by the present Spectral method with 

other various methods for example 2.16.

Current
method
« = 2 0

Adomian
Decomposition

Baily e tal  (1991)

k SLEIGN 2 Transcendental

equation

1 7.37398502 7.3739850 7.37399 7.3740

2 36.3360196 36.3360196 36.33602 36.3360

3 85.2925821 85.2925820 85.29258 85.2925

4 154.0986237 154.0986237 154.09862 154.099

5 242.7055594 242.7055594 242.70555 242.705

For 1  > O, the exact solutions o f equation (2.147a) is found as
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m(jt)= —2  In
cosh

V

X ----

cosh
l4 .

(2.148)

Solving the above equation G = -yjlX cob (0/4), the values e are computed.

The maximum absolute errors in solutions o f Bratu nonlinear problem are 

compared with methods investigated by some authors [Khuri (2004), Liao and 

Tan (2007), Caglar et al (2010), Jalilian (2010), Zarebnial and Sarvari (2012)]. 

The computed solutions are tabulated in tables 2.16 and 2.17 for n = 10. Table 

2.16 reveals that the absolute errors o f the solutions for 1, are quite accurate and 

are in good agreement with the other numerical methods.

Figure 2.3: Comparison of our result obtained using spectral collocation 

method with the non-poly-spline, parametric spline and Laplace 

transformation decomposition methods for n=10 and.^=l.
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Figure 2.4: Comparison of our result obtained using spectral collocation 

method with the non-poly spline, parametric spline and B-spline methods for 

/i=10 and A,=2.

Table 2.16: Comparison of solutions obtained by present method for Bratu 

equation with other methods for X=l, of example 2.17.

X
Exact
eigenvalues

Present
method

n=10

Parametric
spline
A^=10

Non polyn. 
Spline 

A^=10

Laplace Decomp. B-spline

0.1 0.0498467900 1.24xl0~’
-10

5.87x10 5.77x10"'°
-6

1.98x10 2.68x10"^ 2.98 X10

0.2 0.0891899350 3.64x10“'°
-10

2.58x10 2.47x10"'°
-6

3.94x10 2.02x10"^ 5 .46x10”*’

0.3 0.1176090956 3.99x10"" 5.59x10"" 4.56x10"" 5.85x10"^ 1.52x10"^ 7.33x10"^

0.4 0.1347902526 1.29x10"’ 8.77x10"" 9.64x10"" 7.70x10”*̂ 2.20x10"^
-6

8.50x10

0.5 0.1405392142 2.04x10"'° 1.38x10 1.66x10 9.47x10"^ 3.01x10"^ 8.89 X10

0.6 0.1347902526 1.29x10"’
-10

8.77x10 9.64x10"" 1.11x10"^ 2.20x10“^
-6

8.50x10

0.7 0.1176090956 i.eoxio"'” -10
5.59x10 4.56x10"" 1.26x10"^ 1.52x10"^ 7.33x10"^

0.8 0.0891899350
-10

3.64x10 2 .58x l0" ‘“
-10

2.47x10 1.35x10"^ 2.02x10"^ 5.46x10"^

0.9 0.0498467900 1.24x10"’
-10

5.87x10
-10

5.77x10 1.20x10"^ 2.68x10"^ 2.98x10"^
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Table 2.17: Comparison of solutions obtained by present method for Bratu equation 

with other methods for X,=2, of example 2.17.

<
X

Exact
eigenvalues

Current
method
«=10

Parametric
Spline

B-spline Non
polyn.

Spline
«=10

Laplace Decomposition

0.1 0.1144107440 1.44x10“^ 1.25x10“* 1.72x10"^ 9.71x10"’ 1.98x10"^ 1.52x10"^

0.2 0.2064191156 1.98x10“^ 1 .9 5 x l0 “* 3.26x10"^ 1.41x10"® 3.98x10"^ 1.47x10"^

0.3 0.2738793116 1.18x10"^ 2.73x10'® 4.49x10"^ 1.98x10"® 5.85x10“^ 5.89x10"^

0.4 0.3150893646 9.84 xlO~" 3.31x10"* 5.28xl0"^ 8.50x10"^ 7.70x10"^ 3.25x10"^

0.5 0.3289524214 6.03x10““^ 3.53x10"® 5.56x10"^ 8.89x10"^ 9.47x10"^ 6.98x10"^

0.6 0.3150893646 9 .8 4 x l0 “" 3.31x10"® 5.28x10"^ 8.50x10“^ l.llxlO"^ 3.25x10"^

0.7 0.2738793116 1.18x10“^ 2.73x10"® 4.49x10'^ 7.33x10"^ 1.26xl0~^ 5.89x10"^

0.8 0.2064191156 1.98x10"^ 1.95x10"® 3.26x10"^ 5.46x10"^ 1.35x10"^ 1.47x10"^

< 0.9 0.1144107440 1.44x10“^ 1.25x10"® 1.72x10"^ 9.71x10"’ 1.20x10"^ 1.52x10'^

It is also noticed that for the case of A =2 in table 2.17, the absolute errors in the 

present method are reduced and are more convergent than all other methods. 

Therefore, as the value of A increases the solutions are more accurate and reliable 

and our method is more efficient. The absolute errors achieved by our current 

scheme method are depicted in figures 2.3 and 2.4 and compared to the other 

methods.

2.5 Conclusions

In this study, a novel formulation of the Weighted Residual method using both 

Bernstein and Legendre polynomials is proposed. The main reason why the 

Galerkin method is chosen is its flexibility and simple implementation. Excellent 

agreement and better performance is achieved even with small number o f basis 

polynomials which sometimes minimize the cost of computational time for some 

second order BVPS. The disadvantage of the current method is that, in case o f huge 

number of eigenvalues computation, higher eigen modes are less convergent than 

the lower modes and with increasing of the degree of polynomials, the 

computational time highly increases. In spite o f this disadvantage, we can conclude
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that for a relatively small n, i.e., n = 1 0 , fairly accurate numerical results are 

obtained using the proposed method.

In table 2.1, relative errors applying the technique of Galerkin exploiting Bernstein 

and Legendre polynomials proves the reliability and efficiency than that of other 

existing numerical method. Furthermore, the smallest eigenvalue which 

characterizes potentially the most visual structures of the dynamical systems arises 

in vibration of a deformable bodies can be computed very accurately applying 

Galerkin WRM. In table 2.2, absolute errors computed for the smallest eigenvalue 

are much smaller than those of Sine Galerkin and Differential Transform method. 

For Sturm-Liouville problem with mixed boundary conditions, Galerkin method 

using Bernstein polynomials eigenvalues depicted in table 2.3, achieves better 

accuracy than those of Legendre polynomials. Also from table 2.5, SLE with same 

type of boundary conditions all the eigenvalues converge the error reaches up to 

1 whi ch are much superior than those of finite difference method. For singular 

SLE, the eigenvalues calculated by the Galerkin method accomplishes high 

accuracy i.e., converge to ten significant digits illustrated in tables 2.4 and 2.7. In 

case o f periodic SLE demonstrated in table 2.6, lower eigenvalues converge rapidly 

to the exact results and for higher eigenvalues absolute error is less than 5%. The 

results shown in table 2.1 to table 2.7 indicate that Galerkin method using Bernstein 

and Legendre polynomials produces very accurate results compared to the other 

available numerical methods.

We observed that relative errors and absolute errors comprise o f are much smaller 

and much competent with as well as WRM Galerkin and available numerical 

studies. Dirichlet boundary conditions illustrated in tables 2.S-2.9 Bernstein 

collocation techniques computes higher eigenvalues more efficiently than those 

obtained by Galerkin method.

Our proposed method is much superior in the sense of accuracy and applicability 

especially for second order problems. From these comparisons we see that 

eigenvalues obtained by the present method competes very well with other 

methods. In this study, the Spectral collocation method is applied for solving linear, 

nonlinear second order eigenvalue problems respectively. Eigenvalues obtained 

using Spectral collocation method attains much more accuracy than those of
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Bernstein Galerkin and Bernstein collocation method for most o f the problems. 

Besides, the present Spectral method is computationally efficient and much 

competent with the other earlier published works. Furthermore, this method with 

the aid of Matlab 13 code is well suited for both regular as well as singular Sturm- 

Liouville problems. Finally, the computational stable convergence for some 

eigenvalue problems is achieved.
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CHAPTER

Eigenvalues of Fourth Order Sturm-Liouville Problems 

Exploiting the Methods of Weighted Residual

3.1 Introduction

The mathematical models or differential equations that govern a number of 

problems ranging from structural stability to vibration and control are classified 

as eigenvalue problems which play a crucial role in many fields of engineering 

as well as in pure and applied mathematics. The fourth order eigenvalue 

problems occur in the study of buckling of beam-columns and plates deflection 

theory and the theory of shear flows of viscous Newtonian incompressible fluids. 

A profoundly understanding of the class o f fourth order eigenvalue problems is a 

precondition for vibration and buckling analyses o f structures. Design 

optimization o f structures to prevent failure due to instability (buckling) and 

vibration introduces the problem of determining optimal physical parameters 

such that load carrying capacity or the fundamental natural frequency is 

maximized. The instability o f such viscoelastic and inelastic flow has been and 

continues to be one of the most constantly pursued topics in fluid mechanics. 

Differential equations that govern the boundary value problems associated with 

vibration and buckling may be represented as Sturm-Liouville differential 

equations.

Numerical approximations for higher order eigenvalue problems are challenging 

because of the higher order derivatives and boundary conditions involving higher 

order derivatives o f the unknown function. Our aim is to develop Bernstein 

polynomial based collocation and Legendre-Lagrange polynomial based spectral 

collocation method to calculate the eigenvalues of fourth order Sturm-Liouville 

problems. We use Chebyshev clustered grid points to generate a system of 

algebraic equation with unknown co-efficient in matrix form. For implementing 

Spectral collocation technique, we have computed some Legendre differentiation 

matrices to attain all higher order derivatives.
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In this study all the unknown coefficients are also expressed in terms of known 

co-efficient o f the boundary conditions and thus handling boundary conditions is 

much easier.

Existence and uniqueness conditions o f higher order boundary value problems 

and characterization o f the associated eigenvalue problems are revealed in 

[Agarwal (1986), Wong and Agarwal (1996)]. Chawla (1983) presented fourth- 

order finite-difference method, computing eigenvalues o f fourth order Sturm- 

Liouville problems. Twizell and Matar (1992) developed finite difference 

method for approximating the eigenvalues of fourth-order boundary value 

problems.

Although no numerical method is worked out, some authors Abbasbandy and 

Shirazdi (2011), Shi and Cao (2012), Ycel and Boubaker (2012), Gamel and 

Sameeh (2012), Taher et al (2013), Huang et al (2013) paid their attention to 

develop various techniques for finding eigenvalues o f fourth order Sturm 

Liouville BVPs. They applied different algorithms to minimize the convergence 

rates.

Chanane (1998, 2002, 2010) introduced a novel series representation for the 

boundary/characteristic function associated with fourth-order Sturm-Liouville 

problems using the concepts of Fliess series, iterated integrals and also Extended 

Sampling method. Jia et al (2005) approximated the eigenvalues o f fourth order 

B VP for a class of crosswise vibration equation of beam using Galerkin method 

and obtained the estimation of errors using the trigonometric polynomials that 

satisfies all the boundary conditions directly. The Adomian decomposition 

method (ADM) to solve eigenvalues o f fourth-order Sturm-Liouville problems 

was used by Attili and Lesnic (2006). Syam and Siyyam (2009) developed a 

Variational Iteration method (VIM) for finding the eigenvalues o f fourth-order 

non-singular Sturm-Liouville problems.

Recently Taher et al (2013) applied an efficient technique using Chebychev 

spectral collocation method where Chebychev differentiation matrix is defined 

and computed the eigenvalues of fourth order Sturm-Liouville problems. Since
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This chapter has been devoted to find the numerical solutions o f the fourth order 

exploiting piecewise continuous and differentiable polynomials such as 

Bernstein and Legendre polynomials with various types of boundary conditions. 

The matrix formulation of the general linear fourth order Sturm-Liouville 

problems by utilizing the technique of Galerkin WRM incorporated with the 

boundary conditions have been discussed in section 3.2. In section 3.3, we have 

considered numerical examples to verify the efficiency o f the proposed method. 

Section 3.4 has been offered for introduction of the WRM of Collocation using 

Bernstein polynomials as basis function. Brief description and Matrix 

formulation of the current scheme has been derived precisely in section 3.4.1 and 

3.4.2. Efficiency of the current method is established by considering a few 

numerical examples in section 3.4.3. Cheby-Legendre Spectral collocation 

method and description of the scheme is presented in section 3.5 and 3.5.1. 

Accuracy of this proposed technique is illustrated through various examples in 

section 3.5.2.

The approximate solutions converge to the exact solutions monotonically even 

with desired large significant digits. Finally, we have given the conclusions of 

this chapter.

3.2 Matrix Formulation

Consider the following general fourth order nonsingular Sturm-Liouville 

problem (SLE)

.2
rl ij r] Hii

r{x)u = Xw {x ) u , y < x < f x  (3.1)
d

2
,  ̂ d  u d , , du

P{X) 2 dxdx
2

dx

where, p( x ) ,  q{x), r(x)  and w ( x )  are all piecewise continuous functions and 

p ( x ) ,  M'(x) > 0  subject to some specified conditions and at these conditions 

mean that equation (3.1) is regular, i.e., nonsingular.

We consider the equation governing the equilibrium of a beam subjected to an 

axial force P , according to Euler-Bemoulli beam theory, is
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dx
El-

2d u
Ydx

2d u . .
+ p— ^ = 0 , r ^ x <  ju

dx^
(3.2)

Here E  is the Young's Modulus characterizing the material from which the beam

is formed, and / ( x )  is the second moment o f area of cross the section, which is

an eigenvalue equation with as the eigenvalue, which represents buckling

load. Several different types o f boundary conditions are commonly prescribed in

the study of beam deformations:

a) Clamped-clamped boundary conditions:

du du
m(0 ) = 0 , — ( 0 ) = 0 ,m( / )  = 0 , — (/)  = 0 , 0 < x < /

ax dx

b) Clamped-free boundary conditions:

K(0 ) = 0 , ^ ( 0 ) = 0 , = ^
dx , ^ dxdx

c) Simple support or hinged end:

El
2

d  u
J

dx
( 0  = 0 , 0 <jc</

2 2

w(0 ) = 0 , m(/) = 0 , - ^ ( 0 ) = 0 , £ / - ^ ( / ) = 0 , 0 <jc</
dx dx

d) Free-free end:

£ / 4 (0 ) = 0 , £ / 4 ( 0  = 0 ,
dx dx dx El

2 ' d u 
F dx )

(0 ) = 0 , dx El
2 ' d u 
Jdx

(0=0
0 < x </

e) Clamped-hinged boundary conditions:

d \

dx^
(0) = 0, 4 ^ ( l ) = 0 ,  0<X<1

dx

Using Leibnitz rule of differentiation, we can rewrite the equation (3.1) in the 

form as a general fourth order eigenvalue problem over the finite interval

The Sturm-Liouville problem (3.1) has an infinite number o f sequence of 

eigenvalues which are bounded from below and the eigenvalues can be

ordered as an increasing sequence, i.e
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^0 ^ ^ 2 ......................

\kn A . -  CO and each eigenvalue has multiplicity at most 2 [Taher et al (2013)].
J->00 '

4 3 2
d u d  u d  u du
— ^  + — -  + a ^ — -  + a —  + a^u  = X(Ju, y < x < ^  (3.3)
d x d x d x

subject to the following two types of boundary conditions

Type I: m(0) = 0, w ( l ) - 0 ;  m' (0)  = 0 , m' ( 1) = 0; (3.3a)

Type l l :  w(0)  = 0, w(l)  = 0 ;  m' ( 0 ) = : w' ' (1) = 0 . (3.3b)

where,

3 p { x)  2 p(x)  p{x)  o" p{x)

p{x)

where, a^, a^, a^, a^, a  are all continuous functions o f x  defined on the interval

. Let us consider the fourth order SLE (3.3) which can be transformed as

the following equation:

4 3 2
d u d  u d  u du
— ^  + ^ 3 — — ^  + "^1 ^  + = 0 < x < l  (3.4)
d x d x d x

where, m ^ , m ^  , m ^ , m ^ , c o  are all continuous functions o f jc defined on the

r 1 X “  ̂
interval [0 , l j  by replacing x b y ------- in the approximate solution u { x ) .

M - Y

Type I:

«(0) = 0, M ( l ) - 0 ;  —^ m'(0) = 0 ,  m'(1) = 0.
f X - y  f i - Y

Type II

M(0 ) = 0 , « ( 1) = 0 ; ----- L _ „ " ( o )  = o , ----- L _ „ ' ( i )  = o.

i ^ - r )  ( / ^ - y )
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where,

1

m -

■a. { n - y ) x  + y '^2 -  r)x + r

■a. +r , m = a  
0 0

{m - y Y  ^

\ jd -y)x  + Y \ ,  o) = a ] ^ - y ) x  + y
1 ^ - y  1

To approximate the solution of SLE (3.3a), we express in terms of Bernstein or

Legendre polynomial basis as 

u{x) = e^{x)+  n > \ (3.5)
i=\

where,

B ( x )  = 0 denotes the Bernstein polynomial and it satisfies all the essential
i ,n

boundary conditions in [0 , l ]  and ^^(jc) = 0 , is specified by the Dirichlet 

boundary conditions,

B {0)  = B  (1) = 0, for each i - 1, 2, 3 , . . . ,  « - 1 .
i ,n i ,n

Using (3.5) into equation (3.4) and imposing boundary conditions o f Type I, the 

Galerkin weighted residual equations are:

1

f
- ( 4 ) - ( 3)u (x) + w (jt:)M +/W {x)u +wi(x)m (x)w-A(o(x)m 

3 2 1 0
B dx = Q (3.6)

J

7  = 1, 2 ,3 , .........,n.

Now integrating each term of (3.6) by parts, we have

1 4^
r d  Uj — B (x )d x  = 
0 dx

3 ^ ' • 1
d u d ■

3 dx B j{x )
dx 0

0

d u-dx
dx

3~  . . d u
1

d 2d u ' 1 2 
f d

B / . )  3 — dx B.{x) 2 2 B j(x )
dx

0
dx 0

2 _ d u dx
dx

d 2 Sd u
1 2d j- du ’ 1 3 d r n

dx B j{x ) 2 +
2

B.{x) dx 3 B . ix )
dx

0
dx 0 dx

0

du
dx dx
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d n 2 ^ '  d u ' 1 3 d
dx Bj{x) 2 3 Bj{x )

dx 0 dx
0

du
dx dx (3.7)

\m ^ { x ) ^ - Y B  Ax)dx = 
0 dx

1 2 _
m^{x)B ( x ) ^  

dx - I dx dx

2 _  d u
dx

d
dx " '3

dx

du
dx

[ d ^
+

Odx
/W3 ( x ) B ^  (x )

du
dx■dx

1 2 d
0 dx

2 _ ‘
■ du d um^{x)B.{x) ——dx + dx m^{x)B (x) 2  

dx
(3.8)

' 2 _ 
\ m ^ ( , x ) ^ - ^ B  (x)dx = 
0 dx

d u
1

0 0 

1

dx m^{x)B.{x) du
dx dx

0
dx ni2{x)Bj{x) d u

dx dx (3.9)

Since,
d um ( x ) B ( x ) — —  

" dx
= 0

by the Dirichlet boundary conditions.

Similarly,

Inserting 5^ (0) = 5^.(1) = 0 in the above integrals, we finally obtain the

equations (3.7), (3.8) and (3.9). Substituting these equations into equation (3.6) 

and after rearranging the terms we have

dx
B. ix)

du d 
+ —dx , 2 dx

du d
dx dx m^{x)B.{x) du

dx
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du 2_" 1

’dx _ d
dx Bjix) d u 

2 = 0 (3-10)
dx

0

Also from equation (3.5), we have

n - \  n - \

? ( 0 ) = X c , S , ( 0 ),
i=l i=\

(3.11a)

«-l d  B n-\1/ d U u Dd  u
- I - . = Z « , ^  and — (3. 11b)

(ix: die <i)r dx dx
Using equations (3.11a) and (3.1 lb) into equation (3.10) we obtain

n-\

z
/=!

d B dB ^
---- :r r^  + —

dx dx
m^{x)B.{x) dB. d

dx dx m^(x)B.ix)
dB.
dx

d
m ^ { x ) B . { x ) B . { x )  + m ^ { x ) B . { x ) B . { x ) dx

n—\

/=1 dx Bj{x)
2d B.

dx
+

x=l

dx B.(x)
2d B.

dx
x=0

c.

n - \  1

= ^ E J
/=1 0

(i)(x)B B  dx 
‘ J

(3.12)

Finally, the eigenvalues are obtained in matrix form as below

n

I
/=i

F. . - A E .  . i,j i,j c. =0  ;
(3.13)

F = 
i j dx

B.(x) d
5 .(x) + —

dx
m^{x)B.{x) B.(x)

d r r -|

^  dx
{ x ) B .  ( x ) B ' . ( x ) - /Wj ( x ) B ^  ( x ) B :  ( X ) +  ' » q B .  ( x ) B .  ( x ) -dx
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dx

d
B { x )

d  B
i

+
d

B ( X )
J 2

dx
X=1

dx J

2
d  B

dx
a:=0

1
E. . = \co{x)BXx)B .{x)dx 

>,j J / j

Equivalently, eigenvalues can be obtained by solving the system 

F - ? i E  = Q,

AI = F E ~ ‘

We define

A = FE~^

(3.13a)

(3.13b)

(3.14) 

(3.14a)

(3.15)

where the matrices F  and E  are defined by (3.13a) and (3.13b) respectively. 

T ypell: w(0) = 0 , «(1) = 0 , m '(0) = 0 , m"(1) = 0

1
d u

B . {x)dx =
0 dx

4  j

d u 
B .  (X )—

dx dx
B j ( x ) ■dx

dx

. , „ 4
dx dx

r 2
d  u p -1

B (X) 2 B  (X)
_ J dx 0

_ J

2
d u

dx
dx

dx
B .  ( X )

dx dx
B j  (x)

du

dx

‘ d^

^dx
B .  ( X )

du

dx
■dx

dx
Bj  ( X )

du
dx - J

0 dx
B j ( x )

du
dx

■dx (3.16)

Jw j (x )----(x )dx^
0 dx

2_ 
d u

"*3 ----T
dx

d
dx

{ x ) B .  { X) -dx
dx
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2_  d u
{x)B . (;c)---- —

dx

1
'  d 1- n d u ' r 1 d u—

dx m^{x)B,{x)
dx J 2 m^{x)B.{x)

dx
0 *- 0 0 dx

-dx

dx
m^(x)B. (x)

d u
dx

1 ’ 2
+

0 0 dx
m^{x)B.{x)

d u
dx

dx (3.17)

1

0

1

1 11
d  ■
dx0 0 ^

m^(x)B. (x)
d u
dx

d x

0 d x
^ 2  {x)B.  (x)

d u
dx

dx (3.18)

by the Dirichlet boundary conditions.

Similarly, inserting B^ (0)  = B ( I )  = 0 in the above integrals, we finally have 

obtained the equations (3.16) to (3.18).

Substituting (3.16), (3.17), (3.18) into equation (3.6) and after rearranging the 

terms the eigenvalues are obtained in matrix form as:

n-l
I
i=l

J
dx'

B , ( x )
j

dB, d

-A

{x)B , (x)

co(x)B_B .

dB. d
dx dx

VC dx  i

{x ) B ,  (jr)
dB
dx

n - \

- si=\
d
d^

dB, ' 1 r 2 d r  n
m ^ { x ) B . { x ) i

dx —
2 B.  (:c)

0 dx

dB
dx

c = 0  i
(3.19)

«-i

I
/=!

F  - A E  
‘J  i J

c  = 0  / (3.20)

where

F. . =

1 3d r dB. 2d
■

3
Bjix) I

dx + ------
2

0 dx dx
(x)Bj(x)

dB/ d
dx dx m^(x)BAx)

dB
dx

+ m^ {x)B , {x)u d x  ^

2
d d B

1
'  d |- dB  ' 

i
B  ( x )

i - — { x ) B ,  ( j r )
1 J . dx dx dx

dx
0 -1

(3.20a)
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I

£  = I w(x) B (x) 5  (x) tic (3,20b)
U  i j

Equivalently, eigenvalues can be obtained by solving the system

F - A E  = 0 (3.21)

Here the matrices F  and E  are defined by (3.20a) and (3.20b).

3.3 Test Examples:

In this section we have presented several numerical examples o f fourth order 

Sturm-Liouville problems, using the method outlined in the previous section 

with different boundary conditions. The convergence and effectiveness o f the 

method are confirmed by comparing numerical results with the exact and other 

existing numerical results. The convergence of our existing method is measured 

by the relative error given below.

^  Exact _  ^  ( G al)

An
exact

-1 2
<10

where, denotes the approximate eigenvalues using the «-th polynomials

and s  ̂  depends upon the problems.

Example 3.1(a): We first consider the Sturm-Liouville BVP examined by Yucel 

and Boubaker (2012) Gamel and Sameeh (2012) and Chebychev spectral 

collocation method Taher et al (2013).

4
d  u
— - - A u ( x )  = 0 , 0 < x < l  (3.22a)
dx

(3.22b)
w(0) = M (0) = 0 

u(l) = u"(l) = 0

which corresponds to the case (x) = (x) = (x) = (x) = 0 , y = 0 and ^  = 1

in equation (3.3).

The exact solution of (3.22a) is obtained by solving 

tanh -v /r j- ta n  (VI)=o.

Using the method illustrated in section 3.2, we approximate m (x )  as
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n-\
u { x )  = d  (x) + X c  B ( X) .r\ (3.23)

(=1

Here ^^(x) = 0 as specified by the Dirichlet boundary conditions of equation 

(3.22b). Also B (0) = 0 and fi (1) = 0
I ,n

i = 1,2,3,............,n .  The weighted residual equation (3.6) becomes

c. = 0 , 7 = 1,2,3,.....
n-\I
/=1

F. . - X E .
t , j  ‘ ,J

where,

F = 
‘j 0 dx

3 dx̂ d x  +

, « - l

d^B.(0) dB.iO) d^B.{\ )  dB.{\)

(3.24)

dx

E =
>J

B B dx
i J

We define eigenvalue matrix as 

XI = FE~^

(3.24a)

(3.24b)

(3.25)

Comparison of eigenvalues obtained by the existing method with the other 

numerical methods have been displayed in table 3.1. Exact eigenvalues and 

relative errors are for the first ten eigenvalues are tabulated in table 3.2 using 

different degrees o f polynomials with the relative error for the differential 

quadrature method [Ycel and Boubaker (2012)], Chebychev method [Gamel and 

Sameeh (2012)] and Chebychev Spectral collocation method [Taher et al 

(2013)]. We have increased Bernstein polynomials from «=20 to «=30 and have 

exploited 30 Legendre polynomials, the maximum error achieved for both the

polynomials is about 10 , which shows the better performance of the current

technique. Using the same degree of polynomials in the case of Bernstein and 

Legendre polynomials, the smallest eigenvalue attains the accuracy 10 *' and
-9

10 respectively. If we further increase the degree of both the polynomials the 

accuracy of this method does not improve as expected. The observed CPU time
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for Bernstein polynomials is 3.78 seconds Legendre polynomials is 4.707 

seconds for degree of polynomials, «=20. Again, using «==30, CPU time for 

Bernstein polynomials requires 7.532 seconds.

Furthermore, in table 3.1, the first seven eigenvalues using Legendre 

polynomials are very close to the exact result and the computed values for the 

lower eigenvalues have a better accuracy than those for the higher eigenvalues. 

At the same time, it has also been observed in table 3.2 that all 10 eigenvalues 

obtained using Bernstein polynomials converge more rapidly than those of 

Legendre polynomials. In fact, relative error decays as the o f degree of 

polynomials increased in the case o f Bernstein basis. But on the other hand, 

estimated eigenvalues using Legendre polynomials show less convergent 

especially for the higher eigenvalues It is clearly observed that eigenvalues 

obtained by Galerkin-Bemstein method are most accurate and Galerkin- 

Legendre results are much more accurate than the other results.

Example 3.1(b): We consider the Sturm-Liouville BVP worked out by Syam & 

Siyyam (2009), Gamel and Sameeh (2012):

4

^ - ^ - X u { x )  = Q (3.26a)
dx

u\Q)  = u\ \ )  = Q
(3.26b)

u (0) = M (1) = 0

n-\
u{x) = e^{x ) ^Y . c . B . {x ) .  (3.27)

/=i

Here u{x)  in equation (3.27) for the case o f Bernstein polynomials is not 

satisfied by the Dirichlet boundary conditions i.e., B.  (0) 0 and B,  (1) 0 .

Legendre polynomial basis function is

L ( x ) ^
n

n
d  2 n {x  - x )n\ , n dx

(3.28)

Here m(jc) in equation (3.28) does not satisfy the Dirichlet boundary conditions 

for Legendre basis i.e., L.  (0) ^  0 and L,  (1) 0.
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The weighted residual equation (3.6) becomes
/l-l

1=1
F - I E

!,J iJ
c = 0 ,7  = 1 ,2 ,3 ,. . ,n - l

 ̂ d B dB
F  = - f ------- ------- ‘-dx

i J  I J  ̂ dx 0 dx
+

d ^ B { \ ) d B  {\)  d^ B {{)) dB {0)
i j  j

dx dx dx dx

(3.29)

(3.29a)

E = \ b  B dx
i J  i  > J

(3.29b)

Table 3.3 shows the comparison of our result obtained using «=20, for Bernstein 

and Legendre polynomials, with the first five eigenvalues o f the problem with 

Gamel and Sameeh (2012), Syam and Siyyam (2009).

Example 3.1(c): We consider the Sturm-Liouville BVP which is taken from 

Attili and Lesnic (2006)

4
d u

-  Au{x) = 0,
dx

u \ 0 ) = u ' " ( 0 ) = 0

u i l )= u ' ( \ ) =0

Here,

n-\
u{x) = 0^(x)+j;^c .B.^(x)

i= \

For Legendre polynomial we modified the above basis as

It
1 ^  2 " / \n

( X  - X )  - ( - l ) "
n\ , n 

ax
{ x - l )

(3.30a)

(3.30b)

(3.31)

(3.32)
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Table 3.1; Comparison o f eigenvalues with various numerical methods for 

example 3.1(a).

Results o f Gamel 
and Sameeh 

(2012)
^^eby)

Results o f  
Attili and 

Lesnic (2006)

Results of  
Abbasbandy and 
Shirazdi (2011)

Results of 
Syam and 

Siyyam(2011)

Eigenvalue
(Bernstein)

(present)

237.72106753

2496.48743786
10867.58221704

31780.09645409

237.72106753

2496.48743785

10867.59367146
31475.48355038

237.72106753

2496.48743785
10867.58221697

31780.0%45277

74000.84934655
148634.47747229

237.72106754

2496.48743843
10867.58221699
31780.09650785

74000.85036550
148634.47728684

237.72106753

2496.48743786

10867.58221698 
31780.09645408 

74000. 84934930 

148634. 47773948

Table 3.2: Observed relative errors of eigenvalues for example 3.1(a).

k

Exact
eigenvalues

Relative
error
WRM

Legendre
«=30

Relative
error

WRM
Bernstein

«=20

Relative
error

Bernstein
«=30

Relative
errors
(Spect.
Cheby.
coll.)
«=30

Relative
error

(Cheby
Coll.)

Relative
errors
(DifF.

Quad.)
«=20

Relative
errors
(Diff.
Quad.)
«=30

1 237.72106753 -12
4.69x10

-12
4.69x10

-12
4.68x10 2.03 xlO~^ 4.70xl0“'̂ 7.59 xio”’ 7.59xl0"^

2 2496.48743786 -12
1.27x10 I.27xl0~'^

-12
1.28x10

-10
7.93x10

-12
3.05x10 4.44 x 1

-8
4.45x10

3 10867.58221698 -13
1.02 X10

-13
1.02x10

-13
1.10x10

-10
2.33x10

-12
5.10x10 1.94x10“’ 1.71 x l0 “*

4 31780.09645408 -14
3.39x10

-14
3.88x10

-14
3.41x10 8.60 xl0~^ 8.60 xl0~^ 4.50x10"* 2.36xl0“*

5 74000.84934915 -14
7.43x10

-12
1.99x10

-14
7.21x10

-11
7.51x10 3.97x10“̂ 2.99 x l0“*

6 148634.47728577 -15
1.96x10 3.05x10*^

-14
1.04x10

-10
2.24x10 1.43x10”“* 4.77 xl0~*

7 269123.43482664
-15

6.49x10
-13

2.26x10
-14

7.33x10 4.08 xlO~^
-10

9.61x10

8 451247.99471928 -14
5.19x10 1.64xl0~^

-14
7.59x10 1.11 xlO~^ 1.74x10*

9 713126.24789600 -11
1.32x10 1.36x10^

-12
4.41x10

-2
9.02x10 3.16x10“^

10 1075214.1034736 1.61x10”^ 4.10xl0~^ 1.61xl0“" 2.06 xl0~^ 9.31x10*^
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Here L ^{0) ^0  which implies u(0);>t0 and w(l) = 0 and 0  (1) = 0 as specified

by the essential boundary condition.

The weighted residual, equation (3.6) becomes
/l-l

/=!
F - X E  

i j  i j
c = 0 ,7  = 1,2,3,............, n - \

’ d^B dB.
 ̂ ' d x -

0 dx3 dx
dB.{\) d^B. iO)  dB.{Q)

dx ^ 2 
dx

2
dx dx

(3.33a)

(3.33a)

E. . = uj B. B .dx 
‘ J

(3.33b)

Table 3.4 demonstrates the comparison of our result obtained by using « = 20 for 

Bernstein polynomials, Legendre polynomials for n = 25 with the first nine 

eigenvalues o f the problem with the results o f Attili and Lesnic (2006). We 

observed that our current method is in good agreement with the reference 

studies.

Table 3.3: Comparison of eigenvalues for example 3.1(b).

(Oalerkin)
k

Bernstein
n=20

^Gaterkin)

Legendre
«=20

Gamel and 
Sameeh 

Cheby-coll. 
(2012)

Results of 
Syam and 

Siyyam (2009)

1 500.563901740 500.563901740 500.563901740 500.563901756

2 3803.53708050 3803.53708050 3803.53708058 3803.53708049

3 14617.6301311 14617.6301311 14617.6301777 14617.6301311

4 39943. 7990057 39943.7990057 39943.7990057

5 89135.4076574 89135.4076574 89135.4076571

Example 3.2(a): We consider the Sturm-Liouville BVP taken from the articles 

of Attili and Lesnic (2006) and Taher et al (2013), respectively.

4 2

= 0 . 0 2 x ^ + 0.04 j c - ^ - ( 0.000I jc"̂ -0 .0 2 )m(x )+A m( jc) (3.34a)
dx dx
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m(0 )= u"(0 )= 0

«(5 )= «"(5 )= 0  

Table 3.4: Comparison of eigenvalues for example 3.1(c).

(3.34b)

Computed eigenvalue 
Bernstein polynomial

^{Gal.)

n=20

Computed eigenvalue 
Legendre polynomial

^(Gal.)

n=25

Results of 
Attili and Lesnic (2006)

1 12.3623633683259 12.3623633683262 12.3623633683262

2 485.518818513372 485.518818513371 485.518818513372

3 3806.54626639151 3806.54626639145 3806.54626639145

4 14617.2733051187 14617.2733051188 14617.2733051100

5 39943.8317785095 39943.8317785095 39943.8317790386

6 89135.4050714239 89135.4050714232 89135.4050444342

7 173881.315656105 173881.315656106 173881.315656105

8 308208.452093651 308208.452093656 308208.438655408

9 508481.543266068 508481.543299331 508481.270992137

The equivalent Sturm-Liouville BVP over [o, l] is,

4 4
5 dx

2
I d  u

~  T 
5 dx

+ 0.04 x5x
1 du
5 dx\  J

/

4 4
(3.35a)

(3.35b)

-(0 .0001x5 X -0 .0 2 ) m(jc) + ;Im(x)

t . ( 0 ) = ^ / » = 0  

. ( l ) = u ”(l)= 0

Here ^^(x) = 0 as specified by the Dirichlet boundary conditions o f equation 

(3.35b). Also 5  (0) = 0 and 5  (1) = 0/,«  ̂ /,n ̂

The weighted residual equation becomes
n-\
Ij=i

where,

F - A E
i j  iJ

c =0 , 7  = 1,2,3,..........., n - l  , / = 1,2,3,........... ,n. (3.36)
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F  =
Id dx

B.{x)
dB.
dx

^  + 25
dx

25
dx X B.{x)

dB.
dx

-(0.0625X -Q.QT)B.B. dx-¥ (25
V 2 y

2 dB. 
J dx

+
2d dB.
2 Bj{x) 1

dxdx
1

E = \ b  B  dxiJ / j

(3.36a)

(3.36b)

If  we replace x by x + 1) in u{x) ,  then we get desired approximate solution of

the SLE (3.34a). Comparison of our resuh obtained using « = 20 for both 

Bernstein and Legendre polynomial, in table 3.5. Among the first six eigenvalues 

o f the problem with the of Attili and Lesnic (2006), Syam and Siyyam (2009), 

Yucel and Boubaker (2012), Gamel and Sameeh (2012) and Taher et al (2013). 

The observed CPU time is 5.33 seconds for Bernstein polynomials, and 6.9334 

seconds for Legendre polynomials.

Example 3.2(b): Consider the Sturm-Liouville BVP worked out by Attili and 

Lesnic (2006), Chanane (2010), Yucel and Boubaker (2012), Taher et al (2013).

4 2
d u 2 d  u du
— -  = 0.02;c — -  + 0.04X
dx dx dx

0.0001 X -0 .0 2 u(x) + Xu{x),

u(0) = w (0) = 0 

m(5) = w'(5) = 0 

Here,

(3.37a)

(3.37b)

F. . = 
i j

dx
B.{x)

dB.

dx
i- + 2S x B . { x )

dB.

dx
25

dx
x B^ix)

dB.

dx

-(0.0625X -0.02)B.B.
r 2 5 ] ~ 2 d B '

dx +
2V  /

X B . ( x ) ^  
J dx (3.38a)
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1

E . .  = \ B . B . d x  (3.38b)
0 I j

Table 3.6 depicts the comparison of our result obtained using the degree of 

polynomial «=20, for the first six eigenvalues o f the problem using Bernstein and 

Legendre polynomials with the results o f (Attili and Lesnic, Chanane, Yucel and 

Boubaker, Taher et al [2006, 2010, 2012, 2013] respectively).
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3.4 The Bernstein Collocation Method

3.4.1 Description of the scheme for fourth order SLEs

We consider the following fourth order Sturm-Liouville eigenvalue problem

4 2
d u d  u du

P { x ) — - - q { x ) —  + r { x ) u  = Xu{x) ,  x  < x < x  (3.39a)
^ ^  2 ' dx n

d x d x

Starting with the hinged boundary conditions, our task is to construct a 

polynomial o f degree n satisfies n-\  boundary conditions 

We have four boundary conditions 

m(0) = w(1) = 0 ; m'(0) = w'(1) = 0 (3.39b)

Let us seek the solution of (3.39a) in terms of Bernstein polynomials as

n

u { x ) = Y , B  X x ) c . , 0 < x < l  (3.40)
7=0  ̂ ^

Residual for shifted Bernstein polynomial

7 ^ 7  (4 ) n (2 )
i? (x )« C  b ' {x)Q^ + p { x ) c '  b ' {x ) q '

T T T
+ c '^  r (x )5 '^  (x ) - c '^  q{x)B'^  {x ) Q \ x ) - X c '̂  b "̂ {x ) (3.41)

where |  ̂  |  again the Bernstein basis set corresponding to the full set of 

nodes j .The Bernstein polynomial satisfies w(x^ ) = u{ x  ) = 0.

3.4.2 Matrix Formulation

As before we use the Bernstein polynomial in Chapter 1, equation (1.74), and 

require the differential equation to be satisfied at the interior grid points, yielding

n-\
Y , b \ x )c _ = X c ^ = 3,4,5,...............rt-2  (3.42)
y=2 J J *

The hinged boundary conditions imply

Z B ". (jc )c . = O a n d  T  b " \ x )c =0  (3.42a)
j=2 J j=2 J
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Equations (3.42) - (3.42a) form a linear system of n-2 equations. To put the 

discrete equation (3.42a) in the form of an algebraic eigenvalue problem we

eliminate c and c [Weidman and Reedy (2000)]. We define2 n—\

n~\

x \ . = 0
J

b-L U .  ) . i . - ( .  \n  « / 1 ' n / . ~ n~ 1

Equations (3.42b) and (3.42c) can be written in matrix form as

c.

b " (x  n-2   ̂ n

n-2

+

(3.42b)

(3.42c)

'n-1

Equation (3.43) can be written as M ^ c ' ’ +M^C^  =0
0) y rj

C  —

where,

M ,= .....
B ^\xn-2^ ni

(3.43)

(3.44)

(3.44a)

A/_ =
b "

n
B  ,

”

2 M n-1 M
b \ X x2 n  ̂ n >

c'^ =

' n - 2

(O
, C =

«-l

(3.44b)
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< ( ' 3) ^ : , k )

< K )  « : ,k )
< V  c , k )

< u  c U

n -l

(3.45)

^=3,4 , ..............^ - 2

—4 71 n ^
B  C = A C  , where C

Also, equation (3.45) implies that

— (4 ) T] —(4) r] CO
B C =B C +M ^ C

where,

c ,c  ,. 
3 4

.,c
n-2

M^ =

c k )
iv (

v . k )
/V / \ 

« 2 . h ) n-]  ̂ 5 ^

iv
X ^

2 n-2>
iv (

E  x
n - \  n -2

~(4) 7  _4  nB C =B C -

(3.45a)

(3.46)

(3.46a)

On using equation (3.44), equation (3.46) becomes

]c" (3.47)

The differential eigenvalue problem (3.39a) now becomes the algebraic 

eigenvalue problem and be written as

AJ = 

_ 4

B B (3.48)

Here B is the interior (n-4) x (n-4) submatrix, corresponding to rows and 

columns 3 to n-2 of the standard fourth-derivative Bernstein polynomial is taken 

as «=30 for these two problems.
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In this section, the proposed WRM of collocation is used to solve two examples 

in order to prove its efficiency and accuracy. It is to be noted that the maximum 

degree of polynomials in Bernstein basis is 30.

Example 3.3: We consider the following fourth order eigenvalue problem.

3.4.3 Test examples

d%

dx^

m(0) = w(1) = 0 

m'(0) = w'(I) = 0

Table 3.7: Comparison of eigenvalues applying 

ones for example 3.3.

(3.49a)

(3.49b)

present techniques with exact

k

Exact
eigenval.

Exact.
z

Colt.
X

k

Bernstein
«=10

Coll.
A
k

Bernstein
«=20

Coll.
A

k
Bernstein

«=30

k
Bernstein

n=20

Results
o f

Huang
etal

(2013)

1 500.563902 500.563902 500.563902 500.563902 500.563902 500.563902

2 3803.53708 3731.96160 3803.53709 3803.53708 3803.53708 3803.53708

3 14617.6301 12768.6876 14617.6359 14617.6301 14617.6301 14617.6301

4 39943.7990 39948.3633 39943.7990 39943.7990 39943.7994

5 89135.4077 88946.9687 89135.4077 89135.4077 89135.4223

CPU
time

2.177 sec 3.9771 sec 3.3214 sec

The numerical results o f eigenvalues for clamped-clamped boundary conditions 

are displayed in table 3.7. In order to verify the convergence of the proposed 

method, we have calculated the first five characteristic values o f the Sturm- 

Liouville equation (3.49) by taking different n values in the approximate solution 

of equation (3.40). We compared our numerical results with the exact ones, 

method worked out by Huang et al (2013) and the Galerkin WRM as well. We 

have noticed that the numerical results employing the current collocation 

technique have a rapid convergence, with n increasing from 10 to 30, the errors 

between the numerical and exact results drastically decrease and the results when
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taking w -  30 are identical to the exact ones, which indicates that the present 

approach competes well with other methods. Furthermore, table 3.7 reveals that 

last two eigenvalues attained by the present method are more convergent to the 

exact results than those of the results calculated by Huang et al (2013). 

Computational time and performance to achieve the desired accuracy computed 

by Gal WRM and Collocation method are almost the same. Table 3.7 

demonstrates that the present numerical results are in good agreement with the 

exact results.

Example 3.4: We consider the Sturm-Liouville eigenvalue problem worked out 

by [Attili and Lesnic (2006), Yucel and Boubaker (2012), Taher et al (2012)].

4 2
d  u 2 d  u du 4
— ^  = 0.02x — ^  + 0.04 X - — (O.OOOlx -0 .02 )« (x ) +A m(x) (3.50a)
dx dx

w(0) = w(5) = 0
(3.50b)

u (0) = w(5) = 0

Table 3.8 lists first six eigenvalues for «=20. All the computed eigenvalues are 

very close to the results o f [Taher et al (2013), Yucel and Boubaker (2012), Attili 

and Lesnic (2006)].

The condition number assesses the stability o f the numerical method with respect

to matrix inversion. Although discretization methods achieve high accuracy,

eventually lead to ill-conditioned system as well. Figure 3.1 illustrates that

condition number for the fourth order Chebychev differentiation matrix rises to

4 8 2 8
something of order 10 to 10 ; whereas this number varies between 10 to 10

for Bernstein collocation method. Conversely in case o f Bernstein Galerkin 

WRM, the condition numbers increase slight rapidly than those o f the said 

collocation methods with the increase o f polynomials. From Figure 3.1, it has 

been observed that collocation matrix is o f better conditioning than those of 

Galerkin and Chebychev differentiation matrix.
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Table 3.8: Comparison of eigenvalues o f example 3.4 for various methods.

Computed Eigenvalues

Bernstein Coll. 
present

WRM Galerkin 
present

Taher et al (2013) Yucel and 
Boubaker(2012)

Attili and Lesnic 
(2006)

1 0.866902502393833 0.86690250239970 0.86690250239196 0.86690250224260 0.866902502399711

2 6.357686448139751 6.35768644814590 6.35768644814386 6.35768644843984 6.357686448145815

3 23.99274685029107 23.99274685030238 23.99274685032633 23.9927468509660 23.992746850281375

4 64.97866759500305 64.97866759050172 64.97866759484157 64.97866761311830 64.97866759571622

5 144.2806269274242 144.2806269274497 144.28062688384347 144.2806269273480 144.28062803844648

6 280.6009632838048 280.6009633049182 280.60096699712966 280.6009637443962 280.58602048195377

>

Figure 3.1: Logarithm of the condition number of the Bernstein Galerldn

matrix {A \ Bernstein collocation matrix 

Differentiation matrix (Taher et al (2012)].

B and Chebyshev
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3.5 The Chebychev-Legendre Spectral Collocation Method

In this section, the numerical solution u(x) for the fourth order SLEs at 

Chebyshev Gauss Lobatto points in equation (2.92) of section 2, are presented 

and it is based on Legendre approximations o f equation (2.95). We now collocate 

the equation (3.1) at the grid points as before and be given by

V" k )+ p  V  k  )■ ̂  k  V  k )- k )“ k )"'

(3.51)

Here we consider a fourth order Sturm Liouville eigenvalue problem with 

constant co-efficient for brevity given by the following equation;

4
d  u 

ck
■=ku (3.52a)

(3.52b)

3.5.1 Methodology

Suppose I be the set o f ( « - l )  vector o f values of u sampled at

x^ ,x^ ,x^ , .................. Let us assume that p  be the unique polynomial o f

degree < n  + 2 corresponding to the full set o f Chebyshev nodes |x |  as defined

by (2.92) with /?(±1) = /?  (± 1 ) = 0 and p  

For k = \, 2 ,3 ,............. , n - \  .

/  \  
X

V k y = y .

(3.53)

We obtain v as a byproduct o f our usual Legendre differentiation matrix D  ifn

we set p { x ) = 1-JC h ( . )

Using Leibnitz rule of differentiation, we get
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p{x) = \ - x
2^

h (x )-8x /z  { x ) - \ 2 h \ x ) (3.54)

A polynomial h of degree < n with /z(±l) = 0 corresponds to a polynomial p  of

degree < n  + 2 with /?(±1) = 0 and p '(+ l) = 0 . Thus, we can carry out the 

spectral differentiation as given below

i) Let h be the unique polynomial o f degree < n with h{± l)=  0 and

1-JC

ii) Set V = { [ - x  A h ‘\ x  ) - i x X i x  ) - l 2 h " ( x  )

(3.55)

(3.56)

_ 3  _ 4
At the matrix level let D , D  , D  he the matrices obtained by taking then n n

indicated powers o f and stripping away the first and last rows and columns. 

Thus, our spectral bi-harmonic operator is

L =

/  N

diag -%diag[x te^-12£>^ n ^  k'  n n X diag
1

- V y* -
vv J

k = 1,2,3...

(3.57)

(3.58)

Therefore, we get a system of linear equation for u ,

Lu = X I u

We now handle with the hinged boundary conditions in Chebychev 

differentiation matrix is difficult part in this method. Here we aim to develop a 

scheme where we handling boundary conditions in an easier way. Let us 

consider the following hinged boundary conditions:

« ( - l ) = « ( l ) = 0
(3.59)

m”(-1) = w"(1) = 0

For this reason, we shall solve (3.52a) subject to (3.59) with the method of 

explicit

enforcement o f boundary conditions. The Interpolating polynomial is taken to be
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n-\

V i (3.60)
/■=2

Where { ^ .(x )}  is again the Lagrangian basis set of equation (2.98)

corresponding the Chebychev nodes in equation (2.92). This interpolant 

satisfiesp(±l) = 0. We require the equation (3.52) to be satisfied at the interior 

/7 -4 g rid  points:

W-1
^ = 3,4,5,..............n - 2

i=2
The hinged boundary conditions imply

n-\ /

^ = 3 ,4 ,5 ,................n - 2  are interior nodes

From (3.61a)

<•̂ 1/u. = 0

from (3.61b)

where,

u = n-\

iv(
/ = 2,3.

(3.61)

(3.61a)

(3.61b)

(3.62)

D
. /  \

n~2 ,/■ /

i=2,3 ............ , n - l  , k=3,4,5, .................n - 2

i=2,3 ............ ,n - \
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From (3.61a) and (3.61b)
n

h i ^1.

.^3 1* ) K X 5V^J C k .

+
4 \ )  c ,

M.
un-1
♦*

= 0

Equation (3. 63) can be written as M ^y *  + M =0

where M, = 1̂ »*5

\ )  <*5

I n-3*
'n-3

' -

X
'■ n 't

A '* 1mw ^  1k )
* r -|

= r , u = U , u  .......
2

■"i n> <!>Â «)
3 4 n -2  \

**
u = ■ 2 «-l

/v/ "-2 i v (  \n-2

Z
i=3

^4 * 4 * **
D u  = D u +M u

3

' • r i ' J  C i k )
v/ / \ /v / \

vi I \  iv I \

*2 1*6) t - M  

< U  C k J
k  = 3 ,4 ,............. 2

n-2_

(3.63)

(3.64) 

(3.65a)

(3.65b)

(3.65c)

(3.66)

(3.67)

The differential eigenvalue problem  now  becomes the algebraic eigenvalue 

problem

♦ ♦ 
D u  -  k u

where, u =

:(4)

“3’“ 4” .,un-2

D =D + M ^ = D M.

(3.68) 

(3.68a)

(3.69)
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- ( 4 )
n - 2 ,  of the standard fourth-derivative Legendre D  which is computed by 

Legendre differentiation matrix.

3.5.2 Numerical Applications

To exhibit the effectiveness and power o f the Legendre Spectral method, we 

have tested four Sturm-Liouville equations eigenvalue problems. These 

problems have been preferred because they are commonly discussed in literature 

reported by other workers.

Example 3.5: We consider the Sturm-Liouville BVP studied by Yucel and 

Boubaker (2012), Gamel and Sameeh (2012) and Taher et al  (2013).

—(4)
Here D  is the intenor sub matrix, corresponding to rows and columns 3 to

d \ -Xu{x )  = 0 , 0 < j c < l

w ( 0 )  =  u{k ) =  0  

u (0) = u (tu) = 0

(3.70a)

(3.70b)

Changing the variables Sturm-Liouville problem (3.70a)

transforms into the interval [-1, 1].

4
d  u

- X u ( t )  = 0
dt

-1  < / < l (3.70c)

Since, the interpolating polynomials have to satisfy the differential equation at 

each interior node. We obtain the following collocation equation

n
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16 ~(4)
-----D  - A 1  M=0 , (3.71)

4

The first forty-one eigenvalues and related absolute error are given in table 3.9. 

The exact eigenvalues in reference of Taher et al (2013) o f equation (3.71a)

4
are/l^ = k  , k=\,2,?>...............For brevity we use 40, 60, 80 and 97 nodes.

Numerical Results attained applying o f our present scheme in comparison with 

Cheby-Legendre collocation method revealed almost the same convergence. 

Furthermore, present scheme produced the same result for «=97 whereas this 

number is w^lOO in article [Taher et al (2013)]. Therefore, our current method is 

much competent with the Chbychev scheme.

Example 3.6: The following SLE problem was examined by Yucel and 

Boubaker (2012), Gamel and Sameeh (2012) and Taher et al (2013).

4

— j - X u { x ) ^ Q  , 0 < x < l  (3.72a)
dx

m(0) = m'(0) = 0
(3.72b)

m(1) = «"(1) = 0

Relative errors achieved by our present method illustrated in table 3.10 which are 

smaller than Cheby-Spectral collocation [Taher et al (2012)], PDQ, FDQ [Yucel 

and Boubaker (2012)] and Cheby-Collocation method [Gamel and Sameeh 

(2012)]. Taher et al (2012) reported the first eigenvalues and the last one reaches

-10
the accuracy up to 10 , whereas our present Spectral collocation technique

-14
attains the accuracy up to 10 for the same. Implementation of Legendre- 

Spectral collocation technique demonstrates that it is much superior than other 

numerical discretization techniques namely Cheby-Spectral collocation, PDQ 

and FDQ.
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Table 3.9; Comparison of absolute errors o f Legendre spectral collocation with the 

results o f Chebychev’s Spectral collocation method for example 3.5.

Exact

Eigenval.
êxacl

Cheby
Spect.
coll.

«=40

Legn
Spect.
coll.
«=40.

Cheby
spect.
coll.
«=60

Legn
spect.
coll.
/r=60

Cheby
Spect.
coll.
«=80

Legn.
Spect.
coll.
n=80

Cheby
Spect.
coll.

n=100

Legn.
Spect.
coll

n=91

Absolute
error

Cheby.

Absolute
error
Legn.

1
2
3

4

5

6
7

8
9

10
11
12
13

14

15

16

17

18

19

20 
21 
22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

I

16

81

256

625

1296

2401

4096

6561

10000
14641

20736

28561

38416

50625

65536

83521

104976

130321

160000

194481

234256

279841

331776

390625

456976

531441

614656

707281

810000

923521

1048576

1185921

1336336

1500625

1679616

1874161

2085136

2313441

2560000

2825761

1
16

81

256

625

12%
2401

4096

6561

10000
14641

1
16

81

256

625

12%
2401

40%

6561

10000
14641

I

16

81

256

625

12%
2401

40%

6561

10000
14641

20736

28561

38416

50625

65536

83521

104976

130321

160000

194481

1
16

81

256

625

12%
2401

40%

6561

10000
14641

20736

28561

38416

50625

65536

83521

104976

130321

160000

I

16

81

256

625

12%
2401

40%

6561

10000
14641

20736

28561

38416

50625

65536

83521

104976

130321

160000

194481

234256

279841

331776

390625

456976

531441

614656

707281

810000

923521

I

16

81

256

625

12%
2401

40%

6561

10000

14641

20736

28561

38416

50625

65536

83521

104976

130321

160000

194481

234256

279841

331776

390625

456976

531441

614656

707281

810000

923521

1 1 0.00000 0.00000

16 16 0.00000 0.00000

81 81 0.000000 0.000000

256 256 0.00000 0.00000

625 625 0.000000 0.000000

12% 12% 0.00000 0.00000

2401 2401 0.000000 0.000000

40% 40% 0.000000 0.000000

6561 6561 0.00000 0.00000

10000 10000 0.00000 0.00000

14641 14641 0.000000 0.000000

20736 20736 0.00000 0.00000

28561 28561 0.000000 0.000000

38416 38416 0.00000 0.00000

50625 50625 0.000000 0.000000

65536 65536 0.000000 0.000000

83521 83521 0.00000 0.00000

104976 104976 0.00000 0.00000

130321 130321 0.000000 0.000000

160000 160000 0.00000 0.00000

19448! 194481 0.000000 0.000000

234256 234256 0.00000 0.00000

279841 279841 0.000000 0.000000

331776 331776 0.000000 0.000000

390625 390625 0.00000 0.00000

456976 456976 0.00000 0.00000

531441 531441 0.000000 0.000000

614656 614656 0.00000 0.00000

707281 707281 0.000000 0.000000

810000 -810000 0.00000 0.00000

923521 923521 0.000000 0.000000

1048576 1048576 0.000000 0.000000

1185921 1185921 0.00000 0.00000

1336336 1336336 0.00000 0.00000

1500625 1500625 0.000000 0.000000

167%16 167%16 0.00000 0.00000

1874161 1874161 0.000000 0.000000

2085136 2085136 0.00000 0.00000

2313441 2313441 0.000000 0.000000

2560000 2560000 0.000000 0.000000

2825761 2825761 0.00000 0.00000
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Figure 3.2: Comparison relative errors obtained using present WRM to 

various numerical methods.

The relative errors of our present methods are compared to the relative errors 

achieved by other methods are depicted in figure 3.2 for «=30.

Example 3.7: We consider the following SLE worked out by Gamel and

Sameeh (2012), Syaam and Siyyam (2011).

d \
- Xu (x )  = 0 (3.73a)

(3.73b)

dx

m" (0) =  m ' ' (1) =  0 
m" (0 )  = m'"(1) = 0

Table 3.11 displays the first six eigenvalues using collocation nodes («=20) and 

compared to the results of VIM [Syaam and Siyyam (2011)], Cheby Spectral 

[Taher et al (2012)], Bernstein Galerkin WRM, Legendre Galerkin WRM. All 

six eigenvalues are much closer to the other methods. Our present work is much 

compatible with the available numerical techniques.
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Table 3.10: Comparison of eigenvalues and relative errors o f example 3.6 for 

different methods.

k

Exact
eigenvalues

Rel.
error

Bemst.
«=30

Legn.
Spect.

n=30

Legn.
Spect.

«=35

Rel. error 
Cheby. 

Spect. Coll 
n=30

Rel. errors 
Cheby. Coll.

Rel.
error
PDQ
n=30

1 237.7210653 -12
4.68 X 10 -12

5.28x10
-11

7.89x10 2.03 xl0~^
-12

4. 7x 10 7.59 xl0~^

2 2496.48743786 -12
1.28 xlO -12

1.78x10 1.50xl0~"
-10

7.93x10
-12

3.04X 10
-8

4.45x10

3 10867.58221698 -13
1.10x10

-14
9 .19x10

-12
2.39x10

-10
2.33x10

-12
5.10x10

-8
1.71x10

4 31780.09645408 -14
3.40 X 10 -15

3.09x10 -13
6.73x10

-9
8.61x10

-9
8.61x10 2.36xl0“*

5 74000.84934915 -14
7.26x10 -14

5.89x10 1.47x10”'̂ 7.51 x l 0 ~ " 2.99xl0~*

6 148634.4772857 -14
1.04 xlO -10

1.01x10
-14

4.21x10 2 .24 x1 0 " ''^ 4 .77 x l0 ~ *

7 269123.43482664 -14
7.33 xlO

-9
1.48x10 -13

1.49x10
-10

9.6x10

8 451247.99471928 -14
7. 59 x lO 1.34xl0”̂

-13
2.09x10 1.74x10 *

9 713126.24789600 -12
4.41x10 4.509 xlO~’ -13

2.21x10 3.16x 10

10 1075214.1047396 -11
1.61 xlO

-5
2.702x10

-9
1.141x10 9.31 xio”̂

Example 3.8: We consider the Sturm-Liouville boundary value problem studied 

by Yucel and Boubaker (2012), Taher et al (2013), Attili and Lesnic (2006), 

Chanane (2011).

4 2
d  u d  u du 4
^  = 0.02x ^  + 0.04 X — -(0 .000  I x  -0.02)w (x) +A «(x) 
dx dx

m(0) = m(5) = 0

m'(1) = m'(5) = 0

(3.74a)

(3.74b)

5 5
by changing the variables x = — t + — , the Sturm-Lioville problem (3.74a) 

transforms into the interval [-1,1 ] the transformed equation becomes

r
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4\e d u
625  ̂ 4 dt

(5  5] ^ d  u (5  5^
0.0032X - t  + - ------ + 0.016 - t  + -

^2 2J 2dt 2 2
V /

 ̂ 5 5^
4

0.0001 X - t  + - - 0 .0 2
l  2 2 j

du
~dt

u(x) + Au{t) (3.75)

From table 3.12, we observe that computed first six eigenvalues for clamped 

boundary conditions, utilizing n=20, are in well agreement with the results 

attained by other various numerical methods existing in the literature. 

Computational cost is only about 0.355 seconds for this computations.

Table 3.11: Comparison of eigenvalues for example 3.7 with several methods.

Present 
Legn. Spectral 

Coll.

j(galerkii^
Legn.

^galerkir^
Bemst.

Result of 
(Cheby.) 

Coll.

Result of 
Syaam 

and Siyyam 
(2011)

1 500.563901740 500.563901740 500.563901740 500.563901740 500.563901756

2 3803.53708049 3803.53708049 3803.53708049 3803.53708058 3803.53708049

3 14617.6301311 14617.6301311 14617. 6301311 14617.6301777 14617.6301311

4 39943.7990057 39943.7990057 39943. 7990057 39943.7990057

5 89135.4077270 89135.4077270 89135.4076573 89135.4076570

6 173881.317531 173881.317531 173881.317531 173881.315471

3.6 Conclusions

We have discussed in details the formulations o f Sturm-Liouville problem by the

Galerkin weighted residual method using Bernstein and Legendre polynomials

as basis functions. It is evident that eigenvalues obtained using Bernstein

polynomials give much accurate results than those o f Legendre polynomials. It is

also observed that eigenvalues obtained by Galerkin-Bemstein method are most

accurate and Galerkin-Legendre results are much compatible with the other

results achieved by various methods. We have noticed that Bernstein

polynomials converge slowly and computational cost is more for Bernstein

Galerkin method than that of the Bernstein collocation method. Regardless of

disadvantage, we can conclude that for a relatively small n, i.e., n = 20,
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moderately precise numerical results are obtained using the proposed method. 

Therefore, we may conclude that Galerkin-Bemstein polynomial and Galerkin- 

Legendre polynomial scheme perform well with degree of polynomials not 

greater than 30 than all other previously published works available in the 

literature. Furthermore, Bernstein collocation method is o f well-conditioned than 

those of our other two proposed schemes i.e., Galerkin and Spectral collocation. 

In tables 3.9-3.12, the cost o f computational time is much smaller in the case of 

Legendre spectral method than that of Galerkin WRM and Bernstein collocation 

method. Despite of some shortcomings, our proposed methods are much superior 

in the sense o f accuracy and applicability especially for higher order problems. 

Furthermore, in table 3.2, the first seven eigenvalues using Legendre 

polynomials are very close to the exact result and the computed values for the 

lower eigenvalues have a better accuracy than those for the higher eigenvalues. 

At the same time, it has also been observed in table 3.2 that all 10 eigenvalues 

obtained using Bernstein polynomials converge more rapidly than those of 

Legendre polynomials. In fact, relative error decays as the o f degree of 

polynomials increased in the case o f Bernstein basis. But on the other hand, 

estimated eigenvalues using Legendre polynomials show less convergent 

especially for the higher eigenvalues. It can be seen clearly from the table 3.2 

that when degree of the Legendre polynomial is 20, the Galerkin results reach 

the best precision and as the degree of the Legendre polynomial further 

increased the accuracy of this method is not improved. It can be obviously 

observed that eigenvalues obtained by Galerkin-Bemstein method are most 

accurate and Galerkin-Legendre results are much more accurate than the other 

results.
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CHAPTER 4

Eigenvalues of Sixth Order Boundary Value Problems Using the 

Technique of WRM

4.1 Introduction

The literature on the numerical solution of sixth-order BVP is scarce. A few 

literatures are found on computation o f eigenvalues of higher order BVPs. Existence 

and uniqueness solutions of such higher order BVPs are listed in Agarwal (1986) but 

no numerical approach are illustrated therein.

^  In fluid dynamics, hydrodynamic stability is the field which analyses the stability

and the onset of instability of fluid flows. The study of hydrodynamic stability aims 

to fmd out if a given flow is stable or unstable, and if so, how these instabilities will 

cause the development of turbulence. Stability and instability against small 

perturbations of such patterns of flow can be realized only for certain ranges of 

parameters characterizing them. When an infinitely small variation of the present 

state changes only by an infinitely small quantity of the state at some future time, the 

condition of the system, whether at rest or in motion, is said to be stable. A system is 

stable if no mode of disturbance exists and unstable even for the existence of only 

Y  one mode o f disturbance. When the value of the chosen parameter takes certain value

and all others have their preassigned values, instability sets in at this value. The 

foundations o f hydrodynamic stability, both theoretical and experimental, were laid 

most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth 

century. These foundations have given many useful tools to study hydrodynamic 

stability. These include Reynolds number, the Euler equation and the Navier-Stokes 

equations. When studying flow stability, it is useful to understand more simplistic 

systems, e.g. incompressible and in viscid fluids which can then be developed further 

onto more complex flows [Philip Gerald Drazin (1934-2002)]. Stability 

y  characteristics are found in detail for a model of flow in a slowly-varying channel by
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use of the WKBJ approximation in the ref. [Drazin, 1974]. Since the 1980s, more 

computational methods are being used to model and analyze the more complex flows. 

Lord Rayleigh studied this problem and obtained a straightforward criterion. 

Rayleigh-Benard convection is a type of natural convection, occurring in a plane 

horizontal layer of fluid heated from below, in which the fluid develops a regular 

pattern o f convection cells known as Benard cells. Rayleigh-Benard convection is 

one of the most commonly studied convection phenomena because o f its analytical 

and experimental accessibility.

Hydrodynamic and hydro-magnetic stability, instability and over stability have been 

studied rigorously by Chandrasekhar (1981) and we may observe that sixth order 

eigenvalue problems arise when instability o f layers of fluid heated from below. From 

the literature review, we find that many researchers have attempted to solve the sixth 

order eigenvalue problems by several techniques. For this, Baldwin (1987) has 

studied with asymptotic expansions and global phase integral method while the finite 

difference method has been used by Twizell (1988), Twizell and Boutayeb (1990) to 

find the solutions of sixth order boundary and eigenvalues along with the Benard- 

Layer problems. Besides this, Wang et al (2003), Lesnic and Attili (2006), Siyyam 

and Syam (2011) have paid their attentions to find the solutions of sixth order 

eigenvalue problems by the methods of local adaptive differential quadrature with 

Lagrange polynomials, Adomian decomposition, and Variational iteration method 

respectively. Furthermore, Rayleigh number has been studied rigorously by 

Gheorghiu and Dragomirescu (2009) using shifted Chebyshev, shifted Legendre- 

Galerkin spectral and Chebyshev collocation methods, and they have achieved a good 

agreement with exact solutions. Mdalla and Syam (2014) applied Chebyshev 

collocation-path following method for solving sixth order Sturm-Liouville problems. 

Very recently Amodio and Settanni (2015) discussed the solution of regular and 

singular Sturm-Liouville problems by means of high-order finite difference schemes. 

They described a method to define a discrete problem and its numerical solution by 

means of linear algebra techniques.
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We note that Bernstein polynomials [Doha et al (2011)] vanish at the two end points 

of the interval and this property makes it attractive for implementation in the Galerkin 

WRM. On the other hand, imposing the boundary conditions over the higher order 

eigenvalue problems are quite complicated. This difficulty can easily be overcome 

for any higher order problems without reducing the order o f the equations by applying 

Galerkin weighted residual method and all kind of derivative boundary conditions 

can be imposed directly in the weak form of the integrand. These two criteria partially 

motivate our interest to compute the eigenvalues of the BVPs with Galerkin WRM 

using Bernstein and Legendre polynomials. Legendre-Galerkin method for the 

solution of sixth order BVPs are worked out by Bhrawy (2009).

However, we summarize the Chapter as follows. Section 4.1 and 4.2 are devoted to 

hydrodynamic stability problems and brief description of the parameters that arise 

Galerkin weighted residual method and formulation of the general sixth order Sturm- 

Liouville problem have been conferred in section 4.4, respectively. Stability and error 

analysis of the present work are discussed in section 4.5. In section 4.6, we consider 

some numerical examples to verify the efficiency of the proposed method. Section

4.7 is devoted for the formulation of Bernstein collocation method to calculate 

eigenvalues of sixth order BVPs. We depict the numerical results of four Sturm- 

Liouville eigenvalue problems in section 4.8. A description of the Spectral 

collocation technique for discretization of the sixth-order differential equation is 

presented in Section 4.9. A few numerical examples are also illustrated in section 

4.10. Conclusions o f the Galerkin WRM, Bernstein collocation and Legendre 

Spectral collocation methods are given in section 4.1L

When Benard Layer has non-uniform destabilizing steady state temperature profile, 

convection sets in at a level where the local gradient sufficiently exceeds the adiabatic 

gradient for the inhibiting effects of viscosity and thermal conduction to be overcome. 

If this level is not at a boundary the linearized equations governing the motion leads 

to Boussinesq approximation to the boundary value problem.

2 2 
D - a

\  3 2 2
u+Ra (1 -x  )m = 0,w here m - > 0  x ^ oo.
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Here x is a dimensionless boundary layer co-ordinate, u and a are a dimensionless 

vertical velocity number and horizontal wave number re sp ec tiv e ly ,s ta n d s  for

critical value or Rayleigh number and D = —  as well.
dx

4.2 Brief Summary of Hydrodynamic Stability Problems:

Hydrodynamic problems face complexities as the order of the differential equations 

raises rapidly. These problems are usually solved applying discretization methods. 

Although these methods accomplish high accuracy, eventually lead to ill-conditioned 

system as well. The condition number [section 1.5.2 in chapter 1] 

for the fourth order Chebychev differentiation matrix raises to something of order

and for the eighth order differentiation matrix attains something of order O 10
30

illustrated in [Gheorghiu and Dragomirescu (2009)]. The authors reduced the order 

of differentiation of the sixth order problems and transformed the equation into a 

second order system to implement the spectral method. In spite of this transformation, 

the condition number of the second order differentiation matrix raises almost of

O 10 with superior cost of computation of algebraic eigenvalues.

Our main objective of this study is ascertaining a new method with various types of 

y  boundary conditions and to minimize the condition number as well as the cost of

computations. In the context of solving Benard types of problems, brief descriptions 

o f hydrodynamic parameters can be described as well. Rayleigh number R arises in 

the problem of thermal instability of a horizontal layer o f fluid heated from below. 

When R exceeds a threshold value then it is called critical Rayleigh number i.e.,

when R > R ^ ,  instability occurs. The minimum value of R is obtained for the

corresponding value of the wave number, that gives the length scale o f modes for 

is excited. The smallest eigenvalue, i.e. the critical value or the Rayleigh

^  number varies with variable gravity. Details of the hydrodynamic stability equations

are found in the monograph of Straughan (2003). Gheorghiu and Dragomirescu
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(2009) considered the sixth order differential equation with Dirichlet and Hinged 

boundary conditions given by

D' W = - R A ] + eg(z) A^W
(4.1a)

PF(0)=DPf(0) = d V ( 0) = 0 (4.1b)

W{\)^DW{\)=D^W{\)  = 0 (4.1c)

Throughout this paper we use the notation £)(.): = d{.)ldz. We refer non-dimensional

eigen parameter of the problem RA:=R^ \s termed as Rayleigh number of the problem 

(4.1), e is the scale parameter and £g{z)  represents the gravity variation. Here, A 

refers to wave number.

We consider the general form of sixth order nonsingular eigenvalue problem with 

variable coefficients is of the form

+ ( '-W m'W )  - ( 5 ( x) - A o-(x) )m(x) = 0 (4.2a)

subject to the homogeneous boundary conditions of two types

m  m
Type I: u ( / ) = 0 ,  u (ju) = 0, for /w = 0 , 2 , 4  (4.2b)

m m
Type II: u (y)=0 , u ( //)  = 0, for w = 0 , l , 3  (4.2c)

where, u is continuous function of x defined in the interval [;>',//]•

Equation (4.2a) has infinite sequence of eigenvalues A 
PJ

which are bounded
P > i

from below by a constant A i.e., A,^<A,<Z^< .............A <.... with Lt A =oo
0  0  1 2  p  p

and each eigenvalue has multiplicity at most three [Gheorghiu and Dragomirescu 

(2009)].

The interval [y, ju] can be transformed into the unit interval [0, 1] by any linear 

transformation.

4.3 Outline of Sixth Order Eigenvalue Problems

We have considered the following general sixth order nonsingular Sturm-Liouville 

problem
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X

r

dx
p{x)

3
d u

dx dx
q(x)

2d u
dx

+ -dx r {x ) du
dx -(5(x)-/lfr(x))M (x) = 0  (4.3)

where, p{x) , ^(jc), r {x ) , s(jr) and a{x)  are all piecewise continuous functions and 

p (x ) ,  crix)>0 subject to some specified conditions and at these conditions mean that 

equation (4.3) is regular, i.e., nonsingular.

Using Leibnitz rule of differentiation, we can rewrite the equation (4.3) in the 

following form as a general sixth order SLE over the finite interval [ / ,  /i ].

6
d u

5
d u

4
d u

3
d u

2
d u du

dx
+ a ^ ------

6 5 5
dx dx dx

+ “ 2 — + “ i = •
dx

(4.4)

2>p {x )  2,p'\x)-q{x)  ,  ,  P i x ) - 2 q  (x )
where a rx ) = ------— — , a ( x ) =  ^   ̂\  « (jc) =  —p { x ) p{x^ p { x )  

c t { x )r { x ) - q  ( x )  r (x )  ^(x)
= ------, a ( x ) =  -  , a (x)  = -----—  , w( j : )  = -

2 p { x )  1 p { x )  0 p { x )  p { x )

where, a , a , a ,a ,a ,a ,w are all continuous ftmctions of x  defined on the’ 0’ l’ 2’ 3’ 4 ’ 5 ’

interval [/,//] .

4.4 Formulation of the Galerkin WRM

Let us consider the sixth order Sturm-Liouville (4.4) subject to the two types of 

boundary conditions

ft It /V iv
Typel: m(/) = 0, m(//) = 0, M ( /)  = 0, w (//) = 0 , M (r) = 0 , u  (/i) = 0  (4.5a)

Type II: u(r)  = 0, u ( ^ )  = 0, u'(r) = 0, u\m) = 0, u \ y )  = 0, u"(p) = 0 (4.5b)

To approximate the solution of equation (4.4), we expressed in terms of polynomials
as

M-l
(4.6)u(x) = d^(x) + B.^(x) 

i=l
where, B, (x) denotes the Bernstein or Legendre polynomials and it satisfies all the

i,n

Dirichlet boundary conditions in [y, f i \  and 0 ^(x) = O,is specified by the Dirichlet
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boundary conditions, b  (,y)=B (/i)=0, for each / = 1,2,3,....... ,n -l.T h u s  the

estimated solution takes the following form:

n-\
u {x )=Y ^c .B .Jx ) (4.6a)

/=i

Using (4.6a) into equation (4.4), the Galerkin weighted residual equations are:

6 5 4 3 2

—  + ̂ 5 (^)—  + {x)—f  + (jr)—  + {x)—  + (x)— + (x)u -  X w{x)u
d x d x d x d x d x

j  = 12,3,.......... ,n
4.4.1 Formulation 1

In this section, we formulate the matrix form with boundary conditions of type I. 

Integrating term by parts the terms up to second derivative on the left-hand side of

(4.7), we have

(x )*  =
Odx

d^u 1 1 d r 1

dx Bj{x)
dx 0 °

d u dx
dx

d r n d u
» 1 2 d r "1

dx
Bjix) 4 ■̂ J 2 Bj{x)

dx j 0

d u dx
dx

r

d r
4^ d u

1 2d P 3^" d u
1 3d r- 2^ ' d u

dx B.{x) 4dx
+

0
2dx

B.(x)
3dx 0

3dx
B.{x) 2dx

1 4 d
Odx

d u dx
dx

- 1
r 2 3^ ‘ 1

r 3 2 jd d u d d u d d u
dx B.{x)

4
+

2
Bj{x)

3
—

3
Bj{x)

2dx 0 dx dx 0 dx dx

+
4 ' ‘ 1 5d ' du d -

4 B.(x) dx 5
B.{x)

dx 0

du
dx dx

Similarly,

(4.8)
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\ a ^ { x ) ^ B  (x)dx = 
0 dx

1 4_ ‘ • 1
. u da^ix)B(x)  ^

dx
a^{x)B.{x)

dx 0

d u dx
dx

dx a^{x)B.{x)
d  u

dx

1 2 
d

Odx
a^ix)B.{x) -dx

dx

d
dx a^{x)B.{x)

d u
3

1

+
2

d
2

dx
0

dx

3 -
' 1 4

d d u f d
3

a^{x)B.{x) dx +  1 4
dx 0

a^(x)B.(x)

dx

du
dx

dx (4.9)

1 4_
a^{x)— ! ^ B ( x ) d x  = 

0 dx

3^ 
d u

dx dx
a^{x)B.{x)

3^ 
d u dx
dx

dx
a  {x)B { X)  4 J

2
d u

dx

1 2 
d

0 dx
a (x)B ( X)

4 j

2
d u

T
dx

dx

dx
a {x)B (x) 4 J

2
d u

1 2
d

2 2
dx 0 dx

a (x)B (x) 4 J

du
dx

t

I 3 
d

0 dx
a (x)B (x)
. 5  J

du
dx dx (4.10)

• 3^ > 1
d u d u f d ̂ B Ax)dx = « 3 ( x ) 5  ( . )  2 ■f dx a^{x)B.{x)

0 dx dx 0
0

d u
-dx

dx

’ d r  -1 du
1 1 2 

f d r -]

dx a^{x)B.{x) dx «3(x)5^.(x)
L. J 0  ̂dx L _l

du
dx

> 2 .^  
t d u\a^{x)— B(x)dx  = 
0 dx

1 1

0 0
dx a^(x)B.(x) du

dx dx

dx (4.11)

(4.12)

146



1

0

dua^{x)— B .(,x)dx= a^{x)B.{x)U
o i dx a^{x)B.{x) u(x)dx (4.13)

= - f dx o^(x)B.{x) u(x)dx (4.14)

Equations (4.8) to (4.14) are obtained using the boundary conditions in (4.5a) together 

with boundary conditions B {0) = B (1) = 0
i,n i,n

Also, from equation (4.6), we have

n-l n-l
u(0)=Y,c .B. (0) ,  « ( l ) = X f . 5 . ( l )  

i=l /=i
(4.15a)

A
(4.15b)

dx '=1 dx dx '=• dx 
Substituting equations (4.15a) and (4.15b) into equation (4.7), using approximation 

for m(x) given in equation (4.6) and after rearranging the terms for the resulting 

equations we get a system of equations in the matrix form as
n-l

;=l
F -X E

i j  i J
c ^0  , 7 = 1,2,3,.......... , n - \ (4.16)

F. . -
dx

Bj{x)
, d 

dx
a (:t)5 (jc)

d
5 .(x )-  —  

dx
a^{x)B.{x) B.ix)

dx a ^ ( x ) B . i x ) a ^ i x ) B . { x ) B. ( X )

+ a^B. { x ) B .  { x ) -X w {x )B .B  . \dx +

dx
B.{x)

3d B.
dx

x=0

t dx
B. (x)

dB
dx

;c=0

d
« 5  {x)B . (x)

3d B
dx

+
dx

a^{x)B.{x) dB.
___ f_
dx

;r=0
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d r n dB '

" dx a^{x)B.{x) I
dx (4.16a)

E. j= \w ix )B . {x )B . {x )d x (4.16b)

Equivalently, eigenvalues can be obtained by solving the system 

F - A E  = 0,
where the matrices F  and E are defined by (4.16a) and (4.16b).

(4.17)

X

4.4.2 Formulation II

In this portion we obtain the matrix formulation by applying the boundary conditions 

o f type II.

In the same way of portion (4.2.1), integrating by parts the term consisting sixth, fifth, 

fourth, third and second derivatives on the left-hand side o f (4.7), and applying the 

boundary conditions prescribed in type II equation (4.5b), we get a system of 

equations in matrix form as

rt-1I
/=i

F - A E
l,J !,J

c. = 0 y ==1,2,3,......... , n - \ (4.18)

where

1
F. .=

dx
Bj{x)

dx
a^{x)B.{x)

dx 
d

dx
a^{x)B.(,x) B.{x)

a^{x)B.{x) I dx a^(.x)B.{x) B(x)

+ a^B. (x)B. {x) - A w(x) B.B. jcfcc (4.18«)

B.(x )
4d B

dx
+

;c= l

dx B .{x )
4d B

dx
jc=0

dx'
B .  ( X )

2d B.

dx
x= \
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i-

dx
B.{x)

2d B.
dx

;c=0
dx

a^(x)B.(x)

2d B.
dx

AT=1
dx

a^{x)B.{x)

2d B
dx

x=0

dx

2_ d B. d -

a^{x)B.{x) I
2dx

+

X=1

dx a^{x)B.{x)
2d B.

dx

E ^ [ w { x ) B  (x)B (^x)dx 
' -j i  ' j

jc=0

(4.18b)

Equivalently, eigenvalues can be obtained by solving the system 

F - J i E  = 0 (4.19)

4.5 Stability and Convergence Criteria for Galerkin WRM

Stability and convergence issues for the polynomial approximations have been well 

studied by several authors [Chandrasekhar (1981), Straughan (2003), Gheorghiu and 

Dragomirescu (2009)]. Here we have a short review on the stability and convergence 

conditions. Let u (x)  and u(x)  the approximate and the exact solution andn
respectively. Let

M-l
u ^ i x , c )  = <^^(x) + Y,c.(/>.{x),  (4.20)

/=1

provided that the functions ^ (x) are linearly independent. Now the Galerkin

approximation converges to the solution of the eigenvalue problem as follows:

i) Completeness conditions: It illustrates that the sequence of approximate 

eigenfunctions converge to the exact solution as the number of degrees o f freedom 

increases indefinitely.

Mathematically,

m(x)-m^(x)-^ 0  as n->oo, Y<x<fj. ,  (4.21)

ii) Continuity conditions

The Bernstein Approximation Theorem (Qian et al, 2011): Every continuous function
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/  defined on [0,1] can be uniformly approximated as closely as desired by a 

polynomial function. For any^r > 0, there exists a positive integer M , such that for 

all e  [0,1 ], an integer m > M  we have,

f { x ) - B ^ { f - x ) \ < s  (4.22)

where ( / ;jc) is a polynomial on x  similar to equation (3b). Hence, given any

power-form polynomial of degree n, it can be uniquely converted into a Bernstein 

polynomial of degree /w for m ^ n .

Bernstein polynomials approach to f { x )  i.e., ( / ; j c ) ^ / (x ) as w->oo, for each

point X of continuity o f the function / (ac) defined on the interval [0,1].

^  We noted that uniform convergence requires the maximum value of u ( , x ) - u ( x ) m

the domain vanish as « —>oo. The residual error is to be minimized with the 

eigensolution given as

E ( x )=u- u . (4.23)

Also, the convergence of the eigenvalues by Galerkin WRM is measured by the 

relative error

Exact (Approx^ 
A  —  A

Exact
A

< S  (4.24)

{Approx. )
where Jl denotes the approximate solution using «4h polynomials and

-10
^ < 10 depends upon the problems.

The condition number is essential for estimating the errors such as round-off error 

arises from many sources in the numerical solution. The condition number measures 

the stability or sensitivity of a matrix in the field of numerical analysis. If the 

condition number of a matrix is large, it is called ill conditioned, whereas, for the 

small condition number, the matrix is well conditioned. The condition number of 

positive definite matrix A given by Shen and Tang (2006) is
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cond{A) = K{n) _ is an increasing function of n which assesses the 
min(aoj:(^))

stability of the numerical method with respect to matrix inversion. The advantage of 

utilizing Bernstein polynomials is that with only a few basis functions sometimes 

attain superior accuracy for some eigenvalue problems, guarantees that the present 

method is stable.

4.6 Numerical examples

To test the applicability of the proposed method, we consider two linear SLEs with 

boundary conditions of the type (4.2b) and two SLEs with boundary conditions of the 

type (4.2c). For all the examples, the eigenvalues obtained by the proposed method 

and are compared with the numerically accepted eigenvalues computed previously 

by various numerical methods available in the literature. Rayleigh numbers are 

estimated for the particular case in which the gravity variation is E h {x )= -s  (2x-  1) are 

given.

All the numerical calculations are carried out using MATLAB 13 by Intel(/?) 

Core(TM) i5-4570 CPU with power 3.20 GHz CPU, equipped with 8 GB of Ram. 

Example 4.1: Consider the Sturm-Liouville problem worked out by Siyyam and 

Syam (2011), Allame et al (2015):

d u
—  = ^ u{ x)  (4.25a)
dx

subject to the boundary conditions

«(o)=«"(o)=«'''(o)=o 

w(i) = m"(i ) = m (i )= 0

The exact eigenvalues of (4.25a) are A m = l,2,3,....... (4.26)nt

Here u{x) in equation (4.20) satisfies the Dirichlet boundary conditions i.e., 

B, {y) = 0 and B. {fj) = 0. Also 6^ (jc) = 0 is specified by the Dirichlet boundary

conditions. We have the matrix form of equation (4.25a) as
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• t

n-\
y  F . .

where.

XE. c . = 0 ;  7 = 1,2,3,......... , n - \ (4.27)

F = 
‘J

d fi. (1) d B. (0) d
_

dx dx dx dx
d B.{Q) dB.(0) 1 5 

d

dx dx Odx

dx

Bj(x)
dB
dx— dx

E. . = B .B dx 
' J

We define 

A = FE~^

(4.27a)

(4.27b)

(4.28)

The proposed method stated in section 4.3 is tested on this problem. Here the domain 

[0, 1] is subdivided into 15, 20 and 25 equally subintervals, respectively and the 

numerical results are illustrated in table 4.1. The maximum absolute error achieved

by the present method is about 2.365x 10 ^ , whereas error attained by VIM (2011)

is of order 10  ̂and which shows the better performance of the current technique.

It is also noticed that relative errors for the last four eigenvalues for rr=25 are less 

than those obtained for «=15 and «=20. Besides these, the relative errors are much 

smaller and consistent for all six eigenvalues for «=25. This indicates the fact that the 

increasing of the degree of polynomials leads more accurate and efficient results. 

Besides, the ratio of the errors attained by the proposed method is compared with 

VIM (2011), which is displayed in table 4.1.

Furthermore, the accuracy of the current method is lost (errors starts increasing 

rapidly) for smaller eigenvalues for the degree of polynomials « > 35 and some of the 

eigenvalues are complex. The behaviour of the first eigenvalue and the behaviour of 

the condition numbers of the eigenvalues with increasing degree of polynomials (-n  

or N) of the matrix A have been displayed in Figure 4.1 and Figure 4.2 respectively. 

From Figure 4.1, it is observed that the converges to the same rate with increasing n.
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Example 4.2: In this example, a circular ring structure with constraints [Gutierrez 

and Laura (1995), Wu and Liu (2000), Wang et al (2003)], which has rectangular 

cross-sections of constant width and parabolic variable thickness is studied. 

Considering half of the ring structure, this eigenvalue problem is formulated by the 

following sixth-order differential equation:

p^w +/^2^ ^

2 d i\) d 2 = Q { f —  + f  — -7T f ) w
dx

(4.29)

where, 

ir) d w
w = ■ , Q is the dimension frequency, w is the tangential displacement, and

dx

(1.)

^4 =

(1)

= ; /  = / ( j r ) = - 4 ( r - l ) x ^ + 4 ( r - l ) x + l ;  xe[0 ,l

(0 d w (0 d (b 
(f) = — -  , /  = — r , and r is the variable related to the thickness of the cross-

dx dx

section of the ring.

Equation (4.29a) can be written as

6 5 4 3 2

d x d x d x d x d x
w
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dx
dx

w (4.30a)

Boundary conditions are

(1) (3 ) (1) (3)
w(0) = w (0) = w (0);  >1̂ (1) = ^  (1) = M' (1) = 0

n-lS
/=1

F.  , - X E .  .
i j  ‘J

c . = 0  j  = 1,2,3,.........., n - \

(4.30b)

(4.31)

where,

F. . =
i j

4 d
2 5?T dx

B.(x)

+ ■
d

dx

dx 

d
I dx

dx

b 'Xx) + - ^  
‘ dx

P^{x)B.{x)

B(x)

dx

+■
n

d^B X\) B.(\) d^B Md^B.iQ) d \  {\)dB.{\) d \  M  dB.{(i)
J I J I J I J \

~~T^ 7  ̂ 7^ 7  ̂ ^  ^dx dx dx dx dx dx

d
dx

P (x)B \ x )
2 J

3d B

dx
+

x=\
dx

P^{x)B.{x)

3
d  B.I

dx
;c=0

dx

r 1 dB 3
p i x ) B { x )

_ 3 J ^
i

dx
+

r=l

143
dx

P^{x)B.{x)
dB.

dx
x=0

d
dx

r 1 dB. ' d y -1dB '
P^{x)B.{x) 1

dx
+

x=l
dx

P^{x)B.{x) 1
dx

x=Q

(4.31a)

E. . = 
i j dx

f i x ) B . ( x )
dB.

dx
( (0 f  B
I

dB. 2
B.B.  dx I J dx (4.31b)
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Figure 4.1; The convergence rate of the smallest eigenvalues.
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The conditioning of matrix A versus N

Figure 4.2: Logarithm of the condition number of the eigenvalues with 

increasing N.
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Eigenvalues obtained by various methods and present Galerkin method utilizing 

Bernstein and Legendre polynomials are listed in tables 4.3 and 4.4 respectively for 

different values of r. Since this example does not have exact solution, we verified 

accuracy of our results with the method of GDQR [Wu and Liu (2000)]. Moreover, 

we observed that the present method converges to the same frequency parameter i.e., 

r=1.0, 1.1, 1.2 and 1.3 as compared with GDQR at «=10, 11.

Table 4.3: Comparison of fundamental frequencies for example 4.2 using different 
methods.

DQM Rayleigh 

Ritz
GDQR [Wu and Liu (2000)]

9a 10“ I P

[Gutierrez and Laura (1995)]

N=T 7V=8“ N=9P N=W 7V=1P

1.0 2.2686(12“) 2.274 2.2631 2.2669 2.2667 2.2667 2.2667 2.2624 2.2647 2.2669 2.2668 2.2667

1.1 2.417(12") 2.416 2.4133 2.4137 2.4137 2.4137 2.4137 2.4185 2.4136 2.4137 2.4137 2.4137

1.2 2.561(12“) 2.557 2.5597 2.5565 2.5567 2.5568 2.5568 2.5583 2.5576 2.5570 2.5569 2.5568

1.3 2.701(12“) 2.697 2.7139 2.6944 2.6962 2.6966 2.6966 2.7019 2.6995 2.6976 2.6972 2.6968

1.4 2.839(12“) 2.834 2.8946 2.8242 2.8318 2.8336 2.8335 2.8452 2.8400 2.8364 2.8353 2.8341

1.5 2.976(12“) 2.970 3.1297 2.9407 2.9623 2.9681 2.9678 2.9878 2.9791 2.9738 2.9715 2.9694

Number o f  polynomials used, N  [Wu and Liu (2000), Wang et al (2003)]

From table 4.4, it is noticed that the present method converges to five significant 

figures for the values of /=1.0, 1.1, 1.2 and L3. Accuracy of the present method 

slightly deviates for higher values of r =1.4 and r =1.5, still accuracy is much closer 

to GDQR [Wu and Liu (2000)] other than DQM [Gutierrez and Laura (1995)], Ritz 

and La-DQM [Gutierrez and Laura (1995)].

Example 4.3: We considered one dimensional sixth order Benard layer eigenvalue 

problem which has analytical eigenvalues are calculated by Baldwin (1987).

3

(4.32)
d  2 

— T — a
dx

u{x) + Ra^ ( \ -x^ )u{x )=Q,  0 < x < 1 0
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Table 4.4: Listed fundamental frequencies for example 4.2.

Degree of Polynomial Present 
(Bernstein)

r «=30 «=40 w=9 rt=10 «=11 «=7 «=8 «=9 «=10 «=11

1.0 2.2677 2.2670 2.2669 2.2667 2.2667 2.2669 2.2669 2.2667 2.2667 2.2667
1.1 2.4135 2.4139 2.4137 2.4137 2.4137 2.4137 2.4137 2.4137 2.4137 2.4137
1.2 2.5573 2.5571 2.5568 2.5568 2.5568 2.5568 2.5568 2.5568 2.5568 2.5568
1.3 2.6964 2.6968 2.6966 2.6966 2.6966 2.6966 2.6966 2.6966 2.6966 2.6966
1.4 2.8330 2.8337 2.8327 2.8334 2.8334 2.8327 2.8327 2.8334 2.8334 2.8334
1.5 2.9676 2.9679 2.9644 2.9675 2.9675 2.9644 2.9644 2.9675 2.9675 2.9677

Degree of Polynomial Present 
(Legendre)

Here we have introduced two sets of boundary conditions for even and odd modes 

for the same Benard layer eigenvalue problem in equation (4.32).

Set l :

4
m(0) = m (0) = m (0) = 0 

w(10) = m"(10) = m\ i 0) = 0 

Set 2:

m(0) = m^(0) = ŵ (0) = 0 

m(10) = m̂ (10) = m^(10) = 0

(4.32a)

(4.32b)

We have the matrix form of equation (4.32) exploiting the weighted residual 

technique illustrated in section 4.4 and utilizing the boundary conditions of set 1.
n-\.

/=1 

where

F - A Ei j  i j c ,= 0  7  = 1 ,2 ,3 ,..........., n - \ (4.33)

10
F  =

UJ dx
Bj(x)

2 dB.(x) + 3a —  
dx

Bj(x) B.(x)-3a 4 d
dx Bj(x) B (x )

6 d- a dx B.{x) B (x ) dx +
B (10) / B. (10) d B . (0) d b  (O) J I J i

dx dx dx dx
(4.33a)
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>s

d*B.(\0) dB.(\0) d^B.({)) i/5 (0) 2-3a
d^Bj(\0) dB.(\0) dB.{Q) dB.iO)

4dx dx , 4 dx dx .2  dx dx dx dx

E. .=  [
I

1
1 -X
 ̂ )

B .B dx ' J (4.33b)

Again we have the matrix form of equation (4.32) as for boundary conditions of set 

2.

n - \I
;=1

F. , -X E .  . c .= 0 ,  y = l ,2 ,3 ,.......... , « - l (4.34)

where.

10
F =

dx
2 dB.{x) + 2,a —  

dx
4 dB ( x ) - Z a  —  • dx B.(x) B.(x)

6 d- a dx Bjix) B.{x) 'i-dx-
dB. (10) B. (10) dB. (0) d"^B.(0)

dx dx dx ^ 4  dx

/ b .(10) / b .(0)J
dx dx dx dx

+ 3a
dB.(10) d (10) dB.(0) 2

dx dx dx dx

\ - x ' B B dx ' j

We have hsted the first six even and odd mode critical values of R, for the

corresponding given values of A using n=25 in table 4.5. Observe that the critical

values of R using the present method with Bernstein and Legendre polynomials show

the better performance and eigenvalues attained are smaller and fairly close to the

results of Baldwin (1987) and specially for the first three critical values.

Also the percentage of relative errors for R in our method for the smallest mode is

about 0.000032% which is much smaller than the computed results by Twizell and

Boutayeb (1990). Illustrated results also revealed that Galerkin weighted residual
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method works well and evaluates smaller eigenvalues with good accuracy other than 

the larger ones. Considerable accuracy is obtained if the degree of polynomials is 

much higher i.e., n >24 for the Benard layer eigenvalue problem. Although slow 

convergent rate o f Bernstein polynomials for some particular problems with 

complicated boundary conditions makes it unattractive still this drawback is to be 

compensated for achieving better accuracy.

Table 4.5: First six critical values for example 4.3 for even modes («=2,4,6) and odd 

modes («=1,3,5) listed with relative error and percentage of relative error for example 

4.3.

n Baldwin
(1987)

R

Baldwin
A

Twizell
Boutayeb

(1990)
R

Twizell
Boutayeb
(1990)

A

Percent.
rel.

error

Present
method

R

Present
method

A

Rel. error 

R

Percentage 
rel. error 
present

1 9.78136567 0.72605 9.77836945 0.72603 0.0306 9.78136254 0.72605 3.19x10"^ 0.00003

2 411.720155 1.6791 411.515421 1.6790 0.0497 411.702291 1.6793 4.33 xio”^ 0.004

3 3006.709534 2.7379 3003.053226 2.7374 0.121 3006.25406 2.7379 1.56x10"^ 0.0152

4 11382.695328 3.8130 11356.55701 3.8112 0.2296 11360.3771 3.8109 2.0 x io”^ 0.200

5 30916.2534 4.8916 30800.6998 4.8882 0.373 30765.0081 4.8911 4.89 xlO~^ 0.489

6 68778.1170 5.971 68397.491 5.965 0.5334 68410.1362 5.9651 4.20x10"^ 0.420

Figure 4.3 displays the convergence of eigenvalues achieved from analytical 

[Baldwin (1987)], Finite Difference method [Twizell (1990)] and the current 

Galerkin weighted residual method.

Example 4.4: We considered the two-point boundary value problem studied by 

Gheorghiu and Dragomirescu (2009) governing the linear stability provided with the 

Dirichlet and hinged boundary conditions given as

2
D - a u=-Ra{l  + £h[x^a  u

m(0) = Z)m(0) = D m(0) = 0 

«(1) = Z)m(1) = Z)^m(1) = 0

(4.35)

(4.35a)
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0)<D3(0>c
s>o
o0)

0)>c

Figure 4.3: Convergence of eigenvalues using analytical method [Baldvi în 

(1987), Finite difference method [Twizell and Boutayeb (1990)] and present 

method.

>

Numerical evaluations of the Rayleigh number for the particular case in which the 

gravity variation is £h{x)  = { l x - \ )  are given.

We have the matrix form of equation (4.35) as for boundary conditions of set 1.
n-I

F - A E
i j  i j

(4.36)

where,

- dx
B j  ( X )

dx'
e ; ( x ) - 3 a ' ydx Bj (X) B \ ( X )

6 d
— a dx B.(x) B.{x) ■dx +

d^B (1) d^B.(l) d^B (0) d^B.(O)
2 3dx dx dx dx
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d 5.(1) dB.{\) d B.m dB̂ {0)

dx dx dx dx -3a
d B.{\) dB.{\) dB.iO) dSiO)

dx dx dx dx (4.36a)

E = \ { \ - e x ) B B d x  i j  / j (4.36b)

Table 4.6: Computational time for example 4.4 for current method versus Spectral 

method [Gheorghiu and Dragomirescu (2009)].

n
Ra

Cbeby.
Spectral
(2009)

CPU
time
sec.
Cbeby.
Spectral

Degree 
of poly, 
present

Ra: Present
WRG
(Bernstein)

CPU time 
(sec.) 
WRG 

(Bernstein)

Ra: Present 
WRG (Legn.)

CPU time 
sec. 
WRG 
(Legn.)

4 658.692 16.66 6 658.1283 1.2668 658.1283 1.175

5 657.6668 41.80 7 658.1283 1.3030 657.5084 1.732

1 657.5219 386.12 9 657.5134 2.0691 657.5133 2.292

9 657.5129 2679.83 11 657.5134 2.0823 657.5133 2.277

11 657.5127 17834.19 13 657.5133 2.6905 657.5133 2.941

Figure 4.4(a): Logarithm of the condition number of the Chebyshev

differentiation matrix 2 ^D
V /

and Galerkin WRM matrix F (present).
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The figure 4.4(a) indicates that the present scheme offers relatively smaller condition 

numbers compared to different spectral methods [Gheorghiu and Dragomirescu 
(2009)].

Table 4.7: Numerical estimates for the Rayleigh number for various values of the

parameters e and a ̂ attained by different Spectral methods Gheorghiu and 

Dragomirescu (2009) and weighted residual method for example 4.4.

s 2
a Present

Ra:
WRG

(Bemst.)

Present
Ra:

WRG
(Legn.)

Ra: SCP Ra:
SLP

Ra:
TS

Ra:
WRG
(S B l)

Ra:
WRG
(SB2)

Ra:CC Ra:
WRPl

Ra:
WRP2

0.00 4.92 657.513 657.5133 657.512 675.05 657.51 658.54 714.55 657.5133 658.59 662.80

0.01 4.92 660.817 660.817 660.747 678.45 660.81 661.88 718.62 660.8173 662.03 666.05

0.03 4.92 667.525 667.525 667.653 685.33 667.52 668.53 725.49 667.5254 668.84 673.19

0.33 4.92 787.288 787.288 7S7363 808.30 787.28 792.54 859.84 787.2880 792.70 797.38

0.20 5.0 730.565 730.565 730.459 749.95 730.56 732.95 794.85 730.5647 733.06 737.45

0.20 9.0 829.392 829.392 829.440 846.70 829.39 832.09 886.91 829.3918 831.80 836.02

0.50 7.5 930.924 930.924 930.982 952.07 930.92 946.05 1013.30 930,9239 946.05 950.55

0.50 9.0 994.472 994.4721 994.393 1015.27 994.47 1010.50 1077.01 994.4721 1010.60 1015.20

0.75 10 1251.092 1251.092 1251.178 1276.05 1251.09 1313.80 1392.61 1251.0924 1314 1319.70

Figure 4.4(b), illustrates the two curves log^  ̂(co«c?(^))(versuse, for 0 < e < l  and

for convenience we increase the degree of polynomials from n= 10 to « = 20. It is 

noticed that they are quite parallel and horizontal for 0.0 < s <  0.33. For 

0.33 < £ <  0.5 they moderately decrease than the first and between the range 

0.5 < £• < 7.5, the curves decrease more than the first two. This indicates that the 

increasing of n for different values of s , does not degenerate the condition number 

of the eigenvalues and thus reveal the stability of the present method. It is also 

observed in figure 4.4(b) that condition number in the present method varies between
5 8.5 18

the range 10 to 10 whereas this number increases to more than 10 in the article 

studied by Gheorghiu and Dragomirescu (2009).
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Figure 4.4(b): The conditioning of matrix A with respect to n and epsilon.

Figure 4.5: Comparison of eigenvalues for various numerical techniques (SCP, 

SLP, TS, CC and SBl, SB2, GPl, WGP2, WRGB),
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The numerical appraisals are obtained for different significant values of the scale 

parameter s  and the wave number a are compared to other spectral methods based 

on shifted Chebyshev polynomials (SCP), shifted Legendre polynomials (SLP) and 

trigonometric series (TS), weighted residual Petrov-Galerkin method (WRPGl and 

WRPG2) with the Heinrich's basis are exhibited in table 4.7. The estimated 

eigenvalues are obtained by Galerkin WRM using both the Bernstein and Legendre 

polynomials exhibited in table 4.6 for degree « = 10 and are compared with other 

spectral methods illustrated in the article (Gheorghiu and Dragomirescu, 2009).

It is observed in table 4.7 that Rayleigh numbers {Rd), obtained by applying our 

proposed Galerkin WRM are very close to the results computed by spectral methods 

specially SCP and CC [Gheorghiu and Dragomirescu (2009)]. We observed that our 

present scheme is much accurate for « = 10. On the other hand, our scheme produces 

stable results and performs better when degree of polynomials increased. 

Performance of eigenvalues for various numerical techniques (SCP, SLP, TS, CC and 

SBl, SB2, WGPl, WGP2, WRGB) is depicted in Figure 4.5.

Furthermore, CPU time for the current work is compared with the results of 

Gheorghiu and Dragomirescu (2009) are also displayed in table 4.6. It has been 

observed that CPU time applying WRM using Shen basis increases more than 

exponentially and much more expensive whereas, CPU time for the present method 

is much smaller with increasing n. Since the co-efficient matrix in Galerkin WRM is 

sparse and have symmetric banded matrix, which minimize the computational effort. 

It is worth noting here that the current work attains less computational cost than the 

work in Gheorghiu and Dragomirescu (2009) given in table 4.6.

The shortcoming of the Galerkin WRM is that, for the huge number of eigenvalues 

computation higher eigenvalues are less convergent than the lower ones and for 

increasing the degree of polynomials the computational time highly increases, 

without leading to a significant improvement o f the numerical values.

165



4.7 The Bernstein Collocaltion Method

4.7.1 Problem Formulation

We consider the following sixth order Strum-Liouville boundary value problem

3 ^

- ( s(x)-A<t (x))m(x)= 0 (4.37a)
dx

3 2 2d u d d u d dup M  ^ 2 ^ dx dxdx dx dx

ivu x = M be = un>  ̂ W''

X, < x < x  1 n

Equation (4.37b) can be written as

[ 5  fx ) B k ) 5 ' ( j c ,  .............. B" (a: )
'V  { '
4 \ 5 n '

B-{x )6 '

n-3 > 1 
.. . .  b " [xn-3  ̂ n'_

b [
Bn-\ + r ^ } ‘B ,  ben-2 V n

Equation (4. 38) can be written as
n CO rM  C + M  C + M  C =0I  ̂ j

where,

4 J  .. C 3U
4 j  4 J n—i  n

V
V. K
Bn-l ' n'

X b " (x )
, M  = 3tf M

" ■ 7  ’3 « X ^  .  U3 n> n-2  ̂ n'_
Similarly, for the boundary conditions

/V / \ \

'n-3

' n - 2
= 0

(4.37b)

(4.38)

(4.39)

(4.39a)

(4.39b)
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iv \ iv 1 I \
B X I u .

A 1 1 5 1 '̂ 6 1

< k )  < k )  \ k \ ........ k )
6 n-2

'n-3

iv 1 \ iv 1 \
■ < k ) ,  k )\ \ \ )  v . h ) '  " 2  ' ’ S  ’

+
n-2

s ' M * ) c -

. 2  ̂  ̂ « - l  ^
1n—\

. 3 '
« -2  '  n ■' n - l

= 0

M  c '^  +M c"" +M  =0
5 6 4

where,

^ 6  =

k )
IV

1 B
n-3

u B B.

^ ' ’ k )  V , k )

Sz" k ) « i ,  ( \ )
« 4  =

k ) ........ V s k )

k)  ^ \ k )  

k ) . k )n -2

Equation (4.39) becomes

r  -1
C = -M ^

n 0)
M^C +M^C

(4.40)

(4.40a)

(4.40b)

M - M M  A/ '
5 4 1 3

-IM M M - M  
4 2 3 6

'7 fJC = {L \K )C

T

c  = [l \ k ] c

where

K = M , ~  and Z  =  -  M ,
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n~\

y=2

«-3

y=4

< ( u )  v , k )
< k )  V , k )

< ' k )  c , k )

Vi I

2 '  /?-3 '
B

B

: .  k - 3 )

' n - \

■ 'L k )

< k )  <ak)
< k )  V . k )  

« r ( v 3 )  « : . k - 3 )

/?~2

^ 6  n  6 r] co x
B C =B C + M C  + M C  , i = 4,5,3,.

1 8
„ / 7 - 3

- 1 / 7 - 1  O)
- M  M  C - M  M  C

3 1 3 2

+ M ( L \ K ) - M M ^ ^ M - M  M ^ M ,
7 8 3 I 8 3 ^ c

For fovirth order derivative

X s " ( ; t . ) c ,  = £ b" ( j  )c
< k )  C k )

B

( v s )  V i k - 3 )

rt-I

(4.41)
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+
b \ \ x .n -2  '  6

< ( »  ,)  ,)3 ' n-3 •' rt-2 ' n-3 >

lV 2 .

~ 4 ; / 4 ; 7  x co A n r  <0
B C =B C + M ^ C  + M C  =B C + M C + M C 

34 33 34 33

where
~ 4  n A n T ® 4
B C =B C + M ^ C  + M C  B

34 33

4 7= B C - M 34
M  'm  +Af V  (z \/s:)  c ' ’ + M  (l \ k )c ’

— 4/7
5  C =<̂  5 -M

34

For second derivative

M ' m  +M ' m
3 1 3 2^  ’

I  B \ x \  X b ' (x A  .+
y=2 ,=4

«-3

I
y=4

®n-l r4  <

5. 5 (x
n -\  '  6'

,^2 (^ -3 ) V i i v , )
mB

n -\

4-

E C  + M „ v  + M _ y = 5 C  + M „ x Z \ / : b
’ ’ 55

f

= 5 C +

- M .

- I
C

(4.42)

(4.43)

(4.44)
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For first derivative matrix

i -

J - i  y=4

B  (;c ) b ' , (x .2 '  4 /
1 / \

n-l 4

B  L  ) B ' , Ix ^
2 5 n - \ )  5 1

) ®1-1 (*6  )

B ' [x ) b ' (x )2 '  «-3 '  n -l '  n-3 >

n-\

b ' s ' X
3 / n-2

b ' X s ' u3 n-2 \ 5 /

b ' L s '  , X ,3 \ 6 n-2 6

b ' X s ' X
3 n-3 n-2 n-3 .

n-l

n-3

j . i

-1
M ^ ^ x (l \ K ) + M ^ ^ x \ - M ^  M^y + M ^ x {L \ K)

T] , Jl
c \ b c (4.45)

4.7.2 Test examples:

In this section we presented two numerical examples to show the efficiency of the 

presented method with the other available studies in literature.

Example 4.5: We consider the two-point boundary value problem studied by 

Gheorghiu and Dragomirescu (2009) governing the linear stability provided with the 

Dirichlet and hinged boundary conditions given as

D - a u=-Ra{^ + £h{x^  a u

u{d) = Du{G) = D  «(0) = 0
2

(4.46a)

(4.46b)
u{\) = Du{\) = D  M(1) = 0

Numerical evaluations of the Rayleigh number for the particular case in which the 

gravity variation is £:/j(x) = (2x- 1) are given. We compared our numerically 

calculated eigenvalues employing Bernstein collocation method with the present
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Galerkin method and the other numerous techniques worked out by Gheorghiu and 

Dragomirescu (2009) as well.

Table 4.8.; Numerical estimates for the Rayleigh number for various values of the

parameters e  an 

for example 4.5.

parameters s  and a attained by different spectral methods and collocation method

k e
2

a
Present 

Bern. coll.
Ra:

WRG
(Bemst.)

Present
Ra:

WRG
(Legn.)

Ra:
SCP

Ra:
SLP

Ra-. TS Ra: CC Ra:
WRPl

Ra:
WRP2

1 0.00 4.92 657.8576 657.513 657.5133 657.512 675.05 657.51 657.5133 658.59 662.80

2 0.01 4.92 661.3436 660.817 660.817 660.747 678.45 660.81 660.8173 662.03 666.05

3 0.03 4.92 668.1581 667.525 667.525 667.653 685.33 667.52 667.5254 668.84 673.19

4 0.33 4.92 790.0108 787.288 787.288 787.363 808.30 787.28 787.2880 792.70 797.38

5 0.20 5.0 730.8647 730.565 730.565 730.459 749.95 730.56 730.5647 733.06 737.45

6 0.20 9.0 826.6681 829.392 829.392 829.440 846.70 829.39 829.3918 831.80 836.02

7 0.50 7.5 948.1362 930.924 930.924 930.982 952.07 930.92 930.9239 946.05 950.55

8 0.50 9.0 995.0445 994.472 994.4721 994.393 1015.27 994.47 994.4721 1010.60 1015.20

9 0.75 10 1252.0596 1251.092 1251.092 1251.178 1276.05 1251.09 1251.0924 1314 1319.70

CPU
time

3.98
seconds

2.67
seconds

2.87
seconds

2679.83
seconds

Table 4.8 displays nine critical values for number of grids, n=35. From table 4.9, 

comparing to the other methods it is fairly clear that Bernstein collocation method 

provide closest results and it is clearly seen that Bernstein collocation method takes 

slightly greater CPU time than that of the Galerkin method. Besides these Bernstein 

collocation scheme converges rapidly with the increasing number of grid points.

2 (6 )
Gheorghiu and Dragomirescu (2009) applied D  instead of D  strategy to

minimize the rapid worsening of the condition number.
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Table 4.9; Computational time for the smallest Ra applying current Galerkin and 

collocation method versus spectral method of example 4.5.

No.
of
poly.

n

Cheby.
Spect.

Ra

CPU time 
(sec) 

Cheby. Spect

Degree
of

Poly.

WRG

Ra:

CPU
(sec)

WRG.
Bemst.

No. of 
grids

Ra: Bern CPU (sec)
Bemst.
coll.

4 658.692 16.66 6 658.1283 1.267 30 664.042 3.357

5 657.668 41.80 7 658.1283 1.303 31 663.652 3.359

7 657.5219 386.12 9 657.5134 2.069 32 663.218 3.460

9 657.5129 2679.83 11 657.5134 2.082 33 662.712 3.638

11 657.5127 17834.19 13 657.5133 2.691 34 658.537 3.782

From figure 4.6, we observed that condition numbers in case of Bernstein collocation

(6 )
differentiation matrix B  that we have been exploited are smaller than Chebychev

collocation differentiation matrix D^for n increases up to 60. Again condition

(6 )
numbers begin to increase for Bernstein collocation matrix B  and Chebychev

(6 )
Spectral matrix D  for « > 60.

Example 4.6: We consider one dimensional sixth order Benard layer eigenvalue 

problem which has analytical eigenvalues are calculated by Baldwin (1987), Twizell 

and Boutayeb (1990).

3

(4.47)
d  2 

- - a
dx

2 2 , . 
u{x) + Ra (1 - x  )m(x}=0 , 0 < x < 1 0

M(0 ) = w^(0 ) = w'^(0 ) = 0  

m(10) = w (1 0 ) = m (1 0 )

M(0 ) = M^O) = M^(0 ) = 0 

w(10) = M^(10) = M^(1 0) = 0

(4.47a)

(4.47b)
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' i-

Figure 4.6: Logarithm of the condition number of the differentiation matrices 

for Chebychev and Bernstein polynomials.

We have demonstrated the first six even and odd modes critical values of R, for the 

corresponding given values of ̂  exploiting 100  collocation points which have been 

displayed in table 4.10. We noticed that percentage of relative errors using the 

Galerkin for the smallest critical values are comparatively better than Bernstein 

collocation method and the worked out by Twizell and Boutayeb (1990). In spite of 

this Bernstein collocation method competes well with other methods for the higher 

critical values. Furthermore, relative error o f the first six Rayleigh numbers 

(eigenvalues) attained by FDM [Twizell and Boutayeb (1990)] and present methods 

(WRM Gal and Bern Coll.) with the analytical results [Baldwin (1987)] have been 

displayed in figure 4.7.

Relative errors have been calculated by using the formula given as follows;

Relative error=
coll. Anafy.

and Relative error=
FDM. Analy.

Analy. Analy.

1 ^ X
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Table 4.10; Comparison of first six critical values with percentage of relative error for 

even modes and odd modes of example 4.6 for different methods.

Eigen
index Baldwin (1987) Twizel & Boutayeb (1990) Present methods

k

Analytical

R

Baldwin

A

Rayleigh
Number

R

Wave
number

A

Percent, 
rel. error

%

Rayleigh 
Number 

Bern coll.
R

Present
method

A

Percent, 
rel. error 

Bern 
coll.

Percent, 
rel. error 

WRM 
Gal.

% %

1 9.78136567 0.72605 9.7786945 0.72603 2.73 xio'^ 9.7849560266 0.72605 2.13x10“^ 3.0x10“^

2 411.720155 1.6791 411.515421 1.6790 5.0x10"^ 411.58375824 1.6791 3.33x1 4.0x10^^

3 3006.70954 2.7379 3003.053226 2.7374 1.2xl0”' 3005.17244941 2.7378 5.11x10'^ 1 .5x10“^

4 11382.69538 3.8130 11356.55701 3.8112 2.3xlo’ ‘ 11376.683195 3.8130 5.28x10"^ 2.1x10*'

5 30916.2534 4.8916 30800.6998 4.8882 3 .7x l0‘ ‘ 30852.474289 4.8916 2.06x10"' 4.9x10 '

6 68778.117 5.971 68397.491 5.965 5.3xl0“' 68705.3443353 5.97013 1.06x10^' 4 .2x l0" '

LU 
(D 

&

Figure 4.7: Relative errors for eigenvalues applying FDM, WRM Gal, Bern coll. 

and Analytical method.
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4.8 The Chebychev-Legendre Spectral Collocation Method

4.8.1 Formulation of Sixth order SLEs

3 2 2
d u d d u d du

P(<x) ^
2

q i x ) ^ + — 
dx

r{x)—
dxdx dx dxdx

We have six boundary conditions

-(5(x)-/1< t(x))m (x) = 0

= 0

)='  n ’

= 0u\x^ 1= u

Equation (4.48a) can be put in the form:

n-\

k = A,5, ...............,« -3  are interior nodes

From (4.49a) and (4.49b)

/2-3

<*2 K  + C l  (*l  k - l  k  K  h  k - 2  K  = “

* ’i k  k  k  k  k  )" ,^ 2 + . ^ / , ' k  K- ="

From (4.50a) and (4.50b)

X < X ^ ■ ~ T \

n -3

(4.48)

(4.48a)

(4.48b)

(4.49a)

(4.49b)

(4.50a)

(4.50b)
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+
■’2 k )  <* n-1

+
n ' n-1 n n-2

= 0 (4.51a)

Similarly, using another set of boundary condition for x and nodes, we obtain the 

matrix form of equation (4.48b) as

n-3

4-

\  'V / \
) '  " 2  ^ +

) C k \ . “ "-1 .
n-2

Un-2
= 0 (4.51b)

Equation (4.5lb) can be written as M^u* +M^u  + M^u  = 0

where

M ,= * i f a

*'M\ C ih
n> ^ n - \

C l W
n-2

u =
" 4 ’ “ 5 ’............. ’ V 3

T * 
, U

n -2  '  n

U

n-3

Similarly, from equation (4.52b)

, u =

(4.52)

(4.52a)

(4.52b)

(4.52c)

U u2 «** 3
, u =

U u
. ”-l - . n -2 .

M  u * + M  u + M  u = 0
3 6 4 (4.53)
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where

^ 5  =

^ 6  =

C ( - , ) ................ .......  C ( * , )

c k ) - ......... ......... C a k )

C k ) M  = n-2
’ 4

n-2 n>

Solving equations (4.52) and (4.53), we have
♦* \

,  ̂ A4 11 + \4 1
*** -1 

u = - M M^u

U = 4 -

V

-lA
5 4 1 3

***
w =

M  M  M  ’ - M  
4 2 3 6

- I

u ^ ( L \ K ) u

M3 M^{L\K)

v i(  \  " -3  v i(  \
p  , = Z X ii. = Y. <!>. X )u.+

n - l  1^2 ‘ ^  ' :-A I  ̂ k '  I

n - 3

s
/ =4

L  =  - m ,

c > k )

* 2 ^ 5 ) c , k )
vi vi I

* 2  <^6>

v i ( ' V /

*2  ( V s )

n-l

+
t - i k )

vi / \ v i (

V / /   ̂ /
(»3 \ \ J

n-2

~ 6  ♦ —6 * ♦♦ *♦*
D u =D u +M u +M u1 O

(4.54)

(4.54a)

(4.54b)

(4.55)

(4.56)
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_ 6
D u* + M { L \ K ) - M ^ -1 * -1 / A- M ^  M ^y  - M ^  M^ { L \ K ) (4.57)

The differential eigenvalue problem now becomes the algebraic eigenvalues problem

(4.58)
~ 6  *D u  =A u

where, u = "4’“5’.............’V 3
~ 6  - ( 6 )
D =D +M ( L \ K ) - M  ̂

1 8

where

(4.58a)

(4.58b)

^ 4  ♦ 4 ♦ *** **
D u =D u + M ..U  + M ..U

34 33

4 *
= D u - M 34

^ 2  » 2 * ** ♦**
D u  - D u  + M . . U  + M , . uJJ OO

Du = D u  +

66

M  x {l \ k ) + M  M   ̂ M  + M  ' m  (l \ k )

-1
M , + M 3 V 2

77

-1

' 88 3 1 3 2
V

u

u (4.60) 

(4.61)

4.8.2 Numerical Applications

We illustrated and discussed eigenvalues of three boundary value problems. The 

approach has been validated by convergence studies and comparison studies with 

existing results.

Example 4.7: We studied a sixth order Sturm-Liouville boundary value problem 

investigated by Siyyam and Syam (2011):

6d u-=Au(x) (4.62a)
dx

subject to the boundary conditions
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w(o)=«"(o)=M (0 ) = 0

Analytical eigenvalues for this problem are obtained by rj  ̂ =
n

(4.62b)

A: = 1,2 ,......., 6 ,

the computed approximate eigenvalues are compared with those obtained by 

analytical results of equation (4.62a) illustrated in table 4.11. Variational method by 

[Syam and Siyyam, 2011], Chebychev Collocation-Path following method by 

[Mdallal and Syam (2014)]. The results indicate Chebychev Collocation-path 

following method and WRM Galerkin perform slightly better than the present 

algorithm. Condition numbers of eigenvalues versus grid points are depicted in Figure 

4.7.

Figure 4.7: Logarithm of the condition number of the eigenvalues with 

increasing n.

Example 4.8: In this example, a circular ring structure with constraints [Gutierrez

and Laura (1995), Wu and Liu (2000), Wang et al (2003)], which has rectangular

cross-sections of constant width and parabolic variable thickness has been studied.
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Considering half of the ring structure, this eigenvalue problem is formulated by the 

following sixth-order differential equation:

<

^ 2  , d  ^(i) d 2 

(r) d^ W
w = ------ , Q is the dimension frequency, w is the tangential displacement

dx'

A  = 4 -n

(4.63)

A = (2 < ^ /^ ')+ (3 # /;r^ ) . 

where.

4 '
)

<̂ = [ / W F  ; /  = / ( x ) = - 4 ( r - l ) x ^ + 4 ( r - l ) x  + l; x G [0, l ] , = - ^ , and r
dx

is the variable related to the thickness of the cross-section of the ring. Equation (4.63) 

can be written as

6 5 4 3 2

P, ( x ) ^  + P,  + P,  U ) ^  * P,  + P,  I
dx dx dx dx dx

w

= Q
dx

dx

Boundary conditions are

Mo) = w«(0 ) = ; M<1) = >v«(l) = = 0

w (4.64a)

(4.64b)
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From table 4.12, we verify accuracy of our results with the method of GDQR [Wu 

and Liu (2000)] and La-DQM [Wang et al (2003)] increasing the nodes from 35 to 

65. Furthermore, we observe that the present method converges to the same frequency 

parameter i.e., r =1.0, 1.1, 1.2 1.3 and 1.4 and are compared with GDQR, La-DQM 

at n=\ \ .  From table 4.12, it is noticed that the present method converges to five 

significant figures for the values of 1.0, 1.1,1.2 and 1.3 to GDQR. Accuracy of the 

present method slightly deviates for higher values of r =1.5 still accuracy is much 

closer to GDQR [Wu and Liu (2000)] other than La-DQM [Wang et al (2003)].

Table 4.11; The computed approximate eigenvalues J] (k = 1,2,........ ,6 ) of exampleK
4.7

Cheby coll. Galerkin present Analytical Present Numerical
Mdallai and Syam Islam e r a / (2017) Legn. Spect. (VIM)

k (2014) Syam and
A-

Siyyam (2011)
1 1.000000000000000 1.000000000000000 1.000000000000000 1.0000000007864 1.0000000000000

2 2.000000000000000 2.000000000000000 2.000000000000000 1.9999999999796 1.9999999999999

3 3.000000000000000 3.000000000000000 3.000000000000000 2. 9999999999365 2.9999999999999

4 4.000000000000000 4.000000000000000 4.000000000000000 4.0000000000327 4.0000000000005

5 5.000000000000000 5.000000000000000 5.000000000000000 5.0000000000478 4.9999999999987

6 6.000000000000000 6.000000000000000 6.000000000000000 6.0000000000393 5.9999999999214

Example 4.9: We consider one dimensional sixth order Benard layer eigenvalue 

problem which has analytical eigenvalues are calculated by Baldwin (1987).

\  3f  r »2 2D  - a
\  /

u{x) + Ra (1 -x  )m (x)=0, 0 < x < 1 0 (4.65a)

Here we have introduced two sets of boundary conditions for even and odd modes 

for the same Benard layer eigenvalue problem 

Set 1:

m(0 ) = m^(0 ) = m'^(0 ) = 0 

m(10) = u ^ ( 1 0 ) = m'‘ (1 0 )
(4.65b)
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Set 2:

m(0 ) = m^(0 ) = m^(0 ) = 0  

m(10) = m^(1 0 ) = m^(10) = 0
(4.65c)

Here we have computed the critical Rayleigh numbers applying Cheby-Legendre 

collocation technique for even modes only for conciseness. The approximate relative 

error and percentage of relative error have been compared with the analytical method 

Baldwin (1987), Finite difference method Twizell & Boutayeb (1990), WRM 

Galerkin. The first 3 critical numbers for even modes are depicted in table 4.13.

Table 4.12: Fundamental frequencies of example 4.8 employing numerous 
techniques.

La -D Q M GDQR GAL.
W RM

Legn. Spectral (present)

r N  = l \^ N = l l ^ n = \ \ «=35 n=40 «=45 «=50 n=55 n -6 0 n=65

1.0 2.2681 2.2677 2.2670 2.2670 2.2669 2.2668 2.2668 2.2668 2.2668 2.2667
1.1 2.4150 2.4135 2.4140 2.4139 2.4132 2.4137 2.4137 2.4137 2.4137 2.4137
1.2 2.5582 2.5577 2.5571 2.5571 2.5569 2.5569 2.5568 2.5568 2.5568 2.5568
1.3 2.6966 2.6964 2.6969 2.6968 2.9667 2.6967 2.6966 2.6966 2.6966 2.6966
1.4 2.8328 2.8330 2.8333 2.8337 2.8335 2.8335 2.8335 2.8335 2.8335 2.8335
1.5 2.9643 2.9676 2.9676 2.9679 2.9678 2.9678 2.9677 2.9677 2.9677 2.9677

Table 4.13; First six critical values listed for example 4.9 for even modes («=2,4,6) 

with relative error and percentage of relative error.

Baldwin Baldwin Twizell & Twizell Percent. Present Current Rel. error Percent. Percent.
(1987) Boutayeb & of rel. method Spect. present of rel. rel. error

(1990) Bouta error coll. error WRM
yeb

(1990)
n=60 Spect. Gal.

n R A A R A
coll.

R % %

2 411.720155 1.6791 411.515421 1.6790 0.0497 411.720155 1.6793 I .14x l0~ ^  

-9

1.4x l0~’

-7

-3
4.0x10

-1
4 11382.6954 3.8130 11356.5570 3.8112 0.2296 11382.69535 3.8109 2 .43x10 2.4x10 2.1x10

6 68778.117 5.971 68397.491 5.965 0.5334 68778.089 5.965 4.04 xlO~’ i .o x io ”^ 4 .2 x l0 ~ '

CPU
time 8.963 sec.
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This study demonstrates direct formulations and application of Galerkin WRM, 

Bernstein collocation and Spectral collocation methods to solve eigenvalue problems 

governed by sixth order differential equations with different types of boundary 

conditions. Having compared our results with the exact eigenvalues in the first 

example of SLE, the computed eigenvalues are depicted to be much more accurate 

and compatible. When WRM is applied for the said problem, computed eigenvalues 

agree very well with those of GDQR [Wu and Liu (2000)]. Besides, the present work 

compensates for the complexities that arise in the implementation of GDQR [Wu and 

Liu (2000)] and difficulties of including additional nodes. For the Bernard layer 

eigenvalue problem, the estimated critical Rayleigh numbers in this paper show 

moderated performance, corresponding to the fixed wave numbers. It is worth 

mentioning that the percentage of relative error for all even and odd eigen modes is 

less than 1%. The critical numbers are smaller than the asymptotic expansion 

[Baldwin (1987)] which prove the accuracy and stability of the proposed method. In 

the last example, linear stability of the other numerical methods applied to the various 

numerical methods, we noticed that our proposed method is much superior in the 

sense of accuracy and applicability. The leading advantage of utilizing Galerkin 

WRM method is that, a great number o f trial functions can be used in the 

approximation.

Galerkin methods often exhibit the lowest condition number dependence on matrix 

size and yields fairly accurate results for most of the problems. Besides the lower part 

of the spectrum, which is highly important, is accurately approximated. It is fairly 

clear that the Chebyshev-Legendre collocation method and Galerkin and collocation 

method based on Bernstein polynomials provide the closest results for some class of 

the boundary value problems.

Since in collocation method computed results using equally spaced nodes may yield

less accuracy than the results obtained by Gauss-Lobatto nodes. Meanwhile the

collocation method accomplishes relatively well-conditioned matrix which reveals

that the method is stable. Although CPU time for the Bernstein collocation method is
183
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much smaller with increasing n which minimizes the computational cost but its 

numerical large number discretization brings in ill-conditioned and any answer 

swamped with numerical error in finite precision for some complicated problems.

In this Chapter we have examined three numerical examples applying Spectral 

collocation technique and compared our results with Galerkin method. We observed 

that computed approximate eigenvalues exploiting Spectral collocation technique in 

table 4.11 are very close to the WRM Galerkin and other existing numerical methods. 

It has been noticed that in the case of vibration of ring structure problems estimated 

by the other numerical techniques with the increasing nodes illustrated in table 4.12. 

Finally, for Benard Layer problem percentage of relative error for even modes 

attained by Spectral collocation method is smaller than WRM Galerkin and is much 

smaller than those of finite difference method studied by some authors.
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CHAPTER 5
Eigenvalue Computations of Eighth, Tenth and Twelfth Order 

Boundary Value Problems Using Galerkin WRM

5.1 Introduction

Numerical computation of eigenvalues of eighth, tenth and twelfth order boundary 

value problems take place when the horizontal layer of fluid heated from below 

subject to the action of rotation. The fluid at the bottom will be lighter than that at the 

top and, in this situation, the layer will be potentially unstable. The role played by 

viscosity is to inhibit a tendency on the part of the fluid to redistribute itself. This role 

is affected by any additional effect of rotation and the rotation will introduce new 

factors into the ensuing thermal instability. In liquid, instability sets in mostly as 

overstability when rotation is present, but it sets in as stationary convection under the 

influence of a magnetic field [Chandrashekhar (1981)]. When instability sets in as 

over stability, the differential equations occur is of eighth order. Tenth and twelfth 

order equations arise when instability sets in as ordinary convection and as over 

stability respectively due to acts of a uniform magnetic field across the fluid in the 

same direction as gravity. The necessary and sufficient condition for stability is 

known as Rayleigh criterion. The stability of fluid flow is determined by numerical 

value of the non-dimensional parameters, referred as Taylor numbers which gives a 

measure of extent to which Rayleigh’s criteria is violated.

There are a few literatures on the approximate solution of higher order boundary 

value problems specially the associated eigenvalues problems. Wang et al (2003) 

developed a numerical method namely local adaptive differential quadrature method 

implementing Lagrange polynomials for solving an eighth order boundary value 

problem and sixth order eigenvalue problems with multi boundary conditions. 

Twizell et al (1994) extended finite difference method employing direct numerical 

technique and second order finite difference technique to compute eigenvalues of
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^  eighth, tenth and twelfth order boundary value problems. Siddiqi and Akram (2007)

applied non polynomial spline for the numerical solution of tenth order boundary 

value problems. Also the twelfth degree splines were utilized for the solutions of 

twelfth order BVPs investigated by Siddiqi and Twizell (1997). Application of 

Adomian decomposition method for twelfth order BVPs is exemplified in the work 

done by Ahmed and Saleh (2011). Very recently, Viswanadham and Ballem (2015) 

used Galerkin based Septic B-Splines method to solve tenth order BVPs. 

Dragomirescu and Gheorghiu (2010) studied linear Electro-hydrodynamic stability 

problem of an eighth order differential eqiiation by both analytical and numerical 

methods. The later one is implemented through Spectral Galerkin and collocation 

method taking Chebychev and Legendre polynomials as basis functions. Islam and 

^  Hossain (2015) and Islam et al (2015) worked out eighth, tenth and twelfth order

linear and nonlinear BVPs employing Galerkin WRM. The authors used Legendre 

polynomials in the former article and Bernstein polynomials as basis function in the 

later case. The aim of this study is to investigate the higher order eigenvalue problems 

utilizing Galerkin weighted residual method and the effect of solution due to direct 

implementation of polynomial basis. In the offered method basis functions are 

satisfied by the Dirichlet type boundary conditions while all the essential type 

boundary conditions are directly incorporated in the weak form of the Galerkin 

^  residual equation. Bernstein and Legendre polynomials are used as basis function for

numerical computations of eigenvalues which are referred to as Rayleigh numbers 

for the corresponding values of the wave numbers. Our computational results reveal 

that the current method is much competent with the other numerical/analytical 

methods available in literature.

In the present chapter, first we derive the matrix formulation for solving linear eighth 

order eigenvalue problem by the Galerkin weighted residual method with Bernstein 

and Legendre polynomials basis. For brevity we only demonstrated the formulation 

for eighth order eigenvalue only with one type of boundary condition in section 5.3. 

To verify the reliability and efficiency of the proposed method, some numerical 

^  examples of eighth, tenth and twelfth order BVPs, available in the literature, have
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been presented in section 5.4. In section 5.5, we mentioned the conclusions o f this 

chapter.

5.2 Problem Description

We consider the eighth order Unear eigenvalue problems of the following form:
8 7 6 5 4 3 2d u d u d u d u d u d u d u du fc w

— + “ 7 — + “6 — + “ 5 — + “ 4 — + “ 3 — ■*■‘'2 — + =dx dx dx dx dx dx dx
y  < x <f x

Subject to the homogeneous boundary conditions

Type I : « '" ( / ) =  0 , = for w = 0 , 2 ,4 ,6  (5.1a)

Type II :« ," '( /)=  0 ,« ,'”(//) = 0, for m = l , 3 ,5 ,7  (5.1b)

Here, a ^ x ) , / = 0,1,2....... ,7 and r{x) are all continuous functions defined on

and / = 0 , 1, 2 ,3,4,5 ,6  . The Galerkin WRM forces the residual to vanish by requiring 

residual of equation (5.1)

R^{x)  = L u ^ { x ) - X u ^ { x ) ^ ^  (5.2)

Here u is continuous function of x defined on the interval [ /,//]  . For deriving the 

matrix formulation of eighth order BVP on [0,1], Bernstein and Legendre 

polynomials are to be utilized as a set o f polynomial basis to satisfy the essential 

boundary conditions at the two end points o f the interval.

5.3 Matrix Derivation using Galerkin method

The eigenvalues of the boundary value problem (5.1) is solved with both cases of the 

boundary conditions of Type I and Type II.

Since we intend to use the Bernstein and Legendre polynomials as trial functions 

which are derived over the interval [0,1], so the eigenvalue equation (5.1) is to be 

converted to an equivalent problem on [0 , 1] by replacing x by (// - / ) x  + y  and thus 

we have:

8 7 6 5 4 3 2d u d u d u d u d u d u d u du .— —+m ------+ m ------ + m ------ + m -------+ m ------ + m ------ + m —  + m u = Awu, (5.3)
' d /  »

187



0 < x < l

m(0 ) = 0 , m(1) = 0 , ----- !— _ „ '’(0 ) = 0 , -----!— _ „ '( 1) = 0 » ^
U^-rY {M-rY

1 <V
u (0 ) = 0

1 I V

-u (l) - 0  ,
i f - r ) '  ( p - r )

u(0 ) = 0 , u (l) = 0  ,

1 V/'
-u (0) = 0 ,

1 vi
-u (1) = 0 (5.3a)

m'(0 ) = 0 , — r «" ( 0 ) = 0 ,
M - r

1
-u (1) = 0 ,

1 5
-u (0 ) = 0 ,

(m - y Y

where [{^ -  y)x + ^

(m - y Y

(5.3b)

a. { j u - r ) x ^ Y ----------- 7<̂ A4 /  \4  4
( p - r )  

1

( M- rY

[{M-r)x+r]

aJ{ j u- rY^+r

m = -a. i ^ - r Y c + r { ju-r )x  + y\  , w^r[{/4-y)x + y
1 1

In this section we first develop the matrix formulation for eighth order linear 

eigenvalue problem incorporating the boundary conditions of Type I. To approximate 

the solution of eigenvalue problem (5.3), we express in terms of Bernstein or 

Legendre polynomial basis as

n-l
(5.4)

where 0^(x)  = 0 is specified by the homogeneous boundary conditions i5.(0) = 0

and B. (1) = 0 for each / = 1,2,3,....... ,«  -1 .

Now the approximate solution of equation (5.3) be

u ( x ) » u  (x)= Zc.B. (x)
/=i / / (5.5)
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where j^ ^  ja re  test functions. In Galerkin method test functions are same as trial

functions. Using (5.4) into equation (5.3), the Galerkin weighted residual equations 

are:

8 .^d u d u d u d u d u d u d u-------1- ------- 1- w ,-------1- w ,-------1- m , ------+ w ,------ + ------
8 7 7  6 6  5 5  4 4  3 3  2 2dx dx dx dx dx dx dx

B.dx = 0 (5.6)

Now integrating each term of equation (5.6) by parts, we have

0 dx

7-."  ̂ 1 7^ 6.^'r ' d u - \ b  Xx) —  dx = -
dx 0 0 dx

1 5^
+ ]B  {x)— j d x  

0 dx

6 _ '
1 r

+
dx

0  -
dx

1 5_
- \ B  (x)— - d x

0 dx

6 _ ~  
' d u

6

1
„ (2 )  d u

1
„(3)  d u

+ B  ( x ) - — — B ix) ^
dx 0 dx 0 dx 0 dx

dx
+

dx dx dx

' (5) d u- \ B  ( x )— dx
0 <fc

- 6 ^ ' 1 5^^ 1

Bj{x) d u „(2) d u
dx^

+

0 0 dx
+

0 dx

dx

1 2^ 
f „(6), d u ^ 

+ B ( x ) — dx
0 dx
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« > ) 4dx
+

x=\
^ > Adx

;c=0

2 d u 
dx x=i

2 d u 
dx

x=0

4 _ '  
(3) d u

r 4_ '^
(3)̂  d u „ (4 ) ,  d^u

4
dx

+ Bj (-) 4

dx ^
+ B (AT) 3

dx
— B i x )  3 

dxx=\ x = 0 X=1 x=0

2 _ '
M U „(6) du

 ̂ ,  2
+

'  ,  2
+ B .  {X) —  J dxdx jt=l dx x=0 x=\

(6) (tu
J dx

x=0

’ (7)
- | 5  '(X )— Jx (5.7)

0 J ^

I 7_ ’ 1

o , i x ) B . i x /  "
f J  
J dx a^{x)B.{x)

0 dx dx 0 °

6 _ 
J  u dx
dx

dx

dx

r 1
5 S  d u

1 1 d P d ua^{x)B.{x)
5

+ dx a^{x)B.{x)
dx 0 0 dx

r  n 5 ^ '  d u
I

d n 4^ ' d ua^{x)B.f,x)
5

+ dx a^{x)B.{x) 4
0 d!x

■dx

1 2 d </ u dx
dx

dx
+ dx a^(x)B.(x)

dx

2
J P 3^' d u 1 1 3 

r d r 1

2 'I + I  3 a (x)B (x)
dx dx 0

_ ' J _
3^ d u dx

dx

d
dx a^(x)B.ix) d u 

5

1

+ d
dx a^(x)B.ix)

4 _ ’ d u
, 4

1 r 2 d
2 a^(x)B.ix)

3^' d u
3dx 0 dx 0 dx dx
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dx
a^{x)B.{x)

5 ^ ‘ 1 '
d u

+
d

5 dx
dx 0

a^{x)B.{x)
4_ 

^d u

dx

-]1
r 2
d

2
-0 dx

a^{x)B.{x)
3^

d  u

dx

+
dx

a^{x)B (x)
dx

1 4 
d

Odx
dx

dx

d
dx

a^{x)B.{x)
5^ ' 

d u
5

1

+
d
dx

a^{x)B.{x)
4 _ ’ 

d u
4

1 2
d

2
a^{x)B.ix)

3^ ' 
d u

3
dx 0 dx 0 dx dx

dx
a^{x)B ( X )

2 S 1 1 4
d u

2 J 4
dx 0 Qdx

a^(x)B.ix) d u
dx

dx

d

Tx
dx'

d
a^{x)B.{x)

d u

dx

dx
a^{x)B.{x)

dx
{x)B . ( x )

dx

d u

+
dx

dx Qdx

a^{x)B.{x)

a^{x)B ( X )

d u

dx

du

dx
dx (5.8)

Similarly,

1

0 dx dx
- J dx

a^ix)B.{x)
d u

dx
dx

dx
a^{x)B.{x)

4_ 
d u

dx

1 2 
d

Qdx
a^{x)B.{x) dx

dx

dx
â {x)B.(̂ x)

4 _ ’ 1 2 ' 1 3
d u d d u d

4
+

2
a^{x)B.{x)

3 3
dx 0 dx fl[x 0

a^{x)B.{x)
3^ 

d u
dx

dx
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dx a ^ { x ) B . { x )
4_

d  u

dx
+

dx
a ^ { x ) B . { x )

d u
dx

dx
d u
dx

I 4 d
Odx

a^{x)B.{x) d u dx
dx

- 4 ^ ' 1 2 3 _ ‘d d u d d u
dx a^{x)B.(,x) 4 +

2 a^{x)B.{x) 3dx 0 dx dx

dx
a^{x)B.{x) d^u

dx dx
a^(x)B.(x) du

dx

' d^

Odx
a^(x)B.(x) du

dx dx (5.9)

d u
5 ,  i,x)dx =

0 dx ^
d'^u

a (x )B  X x ) -—  
 ̂ dx

1
1 d
(\dx

0

a ^ { x ) B . { x ) d u-dx
dx

d r 1
3^' d u

1
r 2 d P ^d u

1 3d P ^du
dx a^(x)B.ix)

3dx 0
2dx

a^{x)B.{x)
2dx 0

3dx
a^{x)B.{x) dx

1 4 
f d
0 dx

a^{x)B.{x) dx dx (5.10)

1 4^

0 dx

3^

dx - I dx a^(x)B.(x) dx
dx

dx a^{x)B.{x)
dx

+
1 2 d
Odx

2 ^ d u dx
dx

dx

P d u
1 2d P d ua^{x)B.{x) 2 + 2 a^(x)B.{x) dxdx 0 dx
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- I
0 dx

a ^ ( x ) B . ( x )
d u
dx

dx (5.11)

\ a ^ { x ) ^ - ^ B  (x)dx = 
0 dx

I
d u

1 1
f da^{x)B ( x ) - ^
•f dx

o^{x)B.{x)
dx 0

0

2__ 
d u dx
dx

dx
a^{x)B.{x) du

dx

1 > .2

2
0 a dx

a^{x)B.{x) du
dx dx (5.12)

1 2^ 
\ a ^ { x ) ^ B  (x)dx^  
0 dx

d u r -|

0 0 *
a^{x)B.{x) d  u

dx dx

dx
a ^( ^x )B . {x )

du

dx
-dx (5.13)

Inserting 5^ (0 ) = 5^ (1) = 0 in the above integrals of equation (5.6), we finally

obtain by substituting the equations (5.7>-(5.13) into equation (5.6) and using 

approximation for w(ac) given in equation (5.5) and after applying the boundary 

conditions given in equation (5.3a) and rearranging the terms for the resuhing 

equations, we get a system of equations in matrix form as

n - \

I
;=l

F - A E
. ‘J  iJ

c. = 0I (5.14)

d B.

dx dx
a ^ { x ) B  (X)

dB. d
dx  ̂ 5 

dx

dB.
dx

dx

d

a^ix)B.(x)
dB.
dx , 3 

dx

dB.
dx , 2 

dx
a^{x)B.{x)

dB.
dx

dx
a^{x)B.{x)

dB.
dx

■ + a^(x)B.ix)
dB.

+ Op{ x ) B . ( x ) u - A  w(x)B.  u dx
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A

dx
BXx)

5
d  B.

dx
x=0

dx
B X x )

3
d  B

dx

dx
B X x )

J

dB

dx '
a ^ { x ) B . { x )

dx

d ^  B

;t= 0  

x=\

dx a ^ ( x ) B . { x )
d^ B

x=0

x=\

I

dx

I

dx

d
di

a ^ i x ) B . ( x )

dx'

3
d B.

d '  r ^dB
(x)B.  ( X )

x=0 

x=]

dx

dx

x=0
x=\

dx

dx

dB
a ^ ( x ) B . ( x )

dx

x=0

x=0

x=l

;c=0

Og ( j:)
d^ B

dx'

x=l

+

x=0
dx

dB __ i_
dx

X=1

x=0

d f
-  a A x ) B  , {x)  
dx\  ̂ J J

dB

dx

JT=I

x=0

(5.14a)

where.

E  = 
i j

w(x)B.B.dx

Finally, the eigenvalues are obtained in solving the system (5.14) as below

F - A E = 0

(5.14b)

(5.15)

Hence
-1

A I ^ F E  (5.16)

Similarly, for the boundary conditions of the Type II, the formulation can be obtained 

easily.
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5.4 Numerical examples

To test the competency of the proposed method, four linear eigenvalue problems with 

boundary conditions of the type I and type II have been worked out. For all the 

examples, the eigenvalues accomplished by the proposed technique are compared 

with the numerically accepted eigenvalues computed a few numerical methods. 

Example 5.1; We consider the Sturm-Liouville problem worked out by Taher et al 

(2014).

8
d u

dx
= A,u(x) (5.17a)

(5.17b)

subject to the boundary conditions

.m(0 )= « '’(0 ) = m"(0 ) = / ' ( 0 ) = 0  

u\7t)=u [7r)=u \n)=u  (^) = 0

For exploiting Legendre polynomials we need to Change the boundary points from 0

to n  into 0 to 1, we the equation (5.17a) by changing the variables x = 7tt.The,

transformed equation and the boundary conditions become:

8
1 d u 

“T  B
7t dx

= Xu{x)

u(o)=u"(o)=u (o)=u (0)=0 
.(i)=„-(0=/(i)=/'(D = o J

The exact eigenvalues are given by = A:  ̂= 1,2,3,...... ,n-l

;=1 

where,

F - X E
‘J iJ

c =0  y  =  l , 2 ,3 , ............ , « - l

(5.18a)

(5.18b)

(5.19)

(5.20)

0

d B dB. 
J 1

dx
dx dx +

2d B.(x)
5d B. 1 2d Bj(x)

5d B. 1
2 5 2 5dx dx

x=l
dx dx

JC =0
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dx
B.{x) / b .

dx
x - \

dx
B/x)

3
d  B.

dx

dx

x=0

B.{x)

dx *-

dB.

B.{x) dB.
dx

x= \

dx
x=0

1

E. . = \ B B dx
‘ J J

(5.20a)

(5.20b)

The absolute error with modified ADM [Taher et al (2014)] and the first six 

eigenvalues using WRM exploiting Bernstein and Legendre polynomials have been 

displayed in tables 5.1 and 5.2 respectively. It is fairly clear that the Galerkin method 

based on Bernstein and Legendre polynomials provide the closest result and absolute 

errors are much smaller which proves the superiority over the existing other 

numerous techniques.

Example 5.2: The linear stability of the stationary solution m an electro 

hydrodynamic convection model in a layer situated between the walls x = ±0.5, 

against normal mode perturbations, is governed by the following eigenvalue problem 

from Dragomirescu and Gheorghiu (2010).

We consider

f  2 2^ ^ 4 2 ( 2 2 ^
D - a u — La u-\-Ra D  - a

V y K J
w = 0 x e  (-0.5,0.5) (5.21a)

The boundary conditions containing even order derivatives are given by

2 4 6
u = D u = D  u = D u = Q , at x = ±0.5 (5.21b)

Implementing the direct method the general solution can be obtained in terms of the 

roots of the characteristic equation and thus depends on the muhiplicity of the roots 

A., of the characteristic equation associated with the eigenvalue problem.

Here the eigenfunction denoted by u characterizes the amplitude of the temperature

field perturbation, the wave number represented by a and Z is a parameter which

measvires the potential difference between the planes efficiently and R stands for
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Rayleigh number. Besides, whenever the parameters a and L satisfy the “elhpticity” 

condition given by 

4
a - L > 0 ,

the problem reduces to a minimiTxition one. The authors [Dragomirescu and 

Gheorghiu (2010)] apphed direct analytical/numerical schemes and thus completed 

the investigation of this particular problem. It is evident from their exertion that the 

smallest eigenvalue is real and positive i.e., there exists a first Rayleigh number ^  > 0 

which satisfies the eigenvalue problem (5.21). If a, L, Ri^O, the discussions of 

multiplicity of the roots of the characteristic equations becomes difficult. So the use 

of direct analytical method is quite incomprehensible and alternative numerical 

method is sought.

Following the above facts, Dragomirescu and Gheorghiu (2010) applied two classes 

o f methods to solve the formulation of the problem (5.21) explicitly by analytical 

method and Spectral methods (Galerkin, Tau and collocation) on utilizing Chebychev

and Shifted Legendre polynomials. The authors used strategy worked out in the 

their previous article [Gheorghiu Dragomirescu (2009)].

Since Bernstein and Legendre polynomials have been utilized as trial functions which 

are derived over the interval [0, 1], so the equation (5.21) is to be converted to an 

equivalent problem on [0, 1]. We replaced x  by + where /  = -0.5 and

// = 0.5 for the above problem. With this substitution the equation remains 

unchanged.

The residual equation using Galerkin WRM takes the form:
W-1 ̂  _

c =0 7 = 1,2,3,......... , n - l  (5.22)
;=1 

where,

F. . = ‘j

F - R Ei j  iJ

1 5 3d B dB 2 ^  ^  dB i,d  B dB  ̂dB . dB 
- - 4 a  -----^ ^  + 6a ------ 4 a   ̂ '

7 dx 3 rfx dx dxdx dx dx
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A

dx

dx

(  8 4 ^
+ a -La BE

K J '  J

B.(x)

Bj(x)

5
d B

dx

3
d  B

x=\
dx

dx
;c=0

dx

- 4 a
dx

Bjix)
3

d  B

5
d  B

dx

dB

;t=0
dx

dx

3
d B

dx
x=l dx

B.{x)

dx

dB.

dx
x=l dx

B .{x)
d \ .

dx

-4 a

+ 6a

dx

dx

B.ix)

Bj(x)

dB.
dx

dB.

x= \ dx

dx
JC=1 dx

B.(x)

B.(x)

x=0

dB.
dx

dB.

x=\

dx
x=0

x=0

dx
x=0

(5.22a)

E. . = 
i j

a B B dx 
' J

(5.22b)

The numerical evaluations of first nine critical Rayleigh numbers for various Spectral 

methods (SCP, SLP, CC) as well as a Galerkin WRM and two sets of values of 

parameters a and L are exhibited in table 5.3. Here SCP, SLP, CC imply respectively 

the shifted Chebychev polynomial method, the shifted Legendre polynomial method 

and Chebychev collocation method. In table 5.3, relative errors have been depicted 

and are compared with the other numerical methods. We observed that the relative 

errors calculated by our current method are much smaller in magnitude than those of 

Chebychev and Legendre Spectral (SCP and SLP) methods. All the nine critical 

Rayleigh numbers computed by our proposed scheme converge to the analytical ones 

with fewer degree of polynomials («=10). However, the parameter R achieved by 

collocation method is lowered severely in the CC method, from the analytical result.
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From the comparison we conclude that our present scheme is much efficient and 

competes well with the other available techniques. Relative errors are presented 

graphically which is displayed in figure 5.1. It is also eminent that non-normality is 

responsible for a high spectral sensitivity. In this example non-normality ratio attains 

by our proposed Galerkin WRM executing the formula illustrated in chapter 1, is 

around 0.9 and does not depend upon the degree of polynomials in the range 

10<«<40. Figure 5.2 displays the curve log,o(cond (A)) versus 2<a<9  for the

degree of polynomials n= 20 and n=50 for example 5.2. It is noticed that condition 

numbers of the eigenvalues for different values of wave numbers using twenty

polynomials varies between O 

between O

10
\ ( 8 ^to O/ 10

\ J
(  35 > (  37 ^

10 to O 10
V J  ̂ )

and using fifty polynomials varies 

and are increasing for the increasing a .

X

Figure 5.1: Relative errors using Galerkin WRM, Chebychev Spectral 
Galerkin and Legendre Spectral Galerkin for example 5.2.
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Table 5.1; The first six estimated eigenvalues attained by Galerkin WRM exploiting 

Bernstein polynomials of example 5.1.

GAL WRM 

Bemst./Legn

Taher e /a /(2014) 

ADM

Absolute error

A -A
ADM GAL

1 1.00000000000000 1.000000000000000 0.0000000

2 256.0000000000000000 256.0000000000000000 0.0000000

3 6561.0000000000000000 6561.0000000000000000 0.0000000

4 65536.0000000000000000 65536.0000000000000000 0.0000000

5 390625.000000000000000 390625.000000000000000 0.0000000

6 1679616.0000000000000000 1679616.0000000000000000 1.94x10“^

Example 5.3: We consider the eighth order ordinary differential equation worked out 

in [Twizel et al, 1990].

' 8 6  4 2 ^  (  (> 4 2 \D - j ^ D  + j^D  - j^ D  + j^  + - 7 ^D + j^D  - j ^ D  + w(x)

+ RA
2 2 

D - A w { x ) - i ^ R A  w(x) = 0, 0 < x < l (5.23a)

The corresponding free-free boundary conditions in the book written by 

Chandrasekhar (1981) are to be imposed given by

(5.23b)

where.

2 4 2 /  \  6 2 2 /  \  2
j^=AA , j ^ = 6 A  -M  (2/7j+iJ+7, j ^ =A A - 2 A  // \ lp^+\]+A T,

j ^ = A ^  -A%^{^p^+\] ,  j ^=\p^+2) ,  7  ̂ = 3 /( /7 j+ 2 ) ,

P ,+ 2 jk i% ,+ p ,r  ,

I
7 = 1

F. - R E  
L >Jj

c =0I (5.24)
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where,

F. . = [

7 5 3d 5  dB. I dB. I ^ d B  dB

dx dx5 dx '■'2 ^ U >  2, dxdx

dx + U2

d B dB.J I

d x
Bjix)

5d B.

dx
+

x=0
dx

B.{x)
3d B

dx
x=0

dx

dx

B.{x)

4 dx
x=Q

dB.
dx

;t=0

E = -  
t j

dB.
' - Bdx j

dx
B.(x)

3d B.

dx

+ A
x=0 0

l i d B .  dB .
J i

dx dx

x=Q

■dx +

dx
Bj{x)

dB.
dx

;c=0

(5.24a)

A +i/jA B .B dx 
' J

(5.24b)

The results are depicted in table 5.4 in comparison with other numerical techniques 

show that the present method is compatible and much efficient.

Example 5.4.: Consider the Sturm-Liouville problem worked out by Taher et al 
(2014).

10 d u
dx10

= -Au{x) (5.25)

subject to the boundary conditions

m(o)=m (o)=m (o)=m (o)=m (o) = 0

u{;r) = u {n )= u  {;r)=u  {k ) = u ( ;r )= 0
(5.25a)

The first six eigenvalues utilizing WRM exploiting for equation (5.25) using Bernstein
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and Legendre polynomials along with their absolute error with ADM [Taher et al 

(2014)] are displayed in table 5.5.

Table 5.4: Estimated values of critical Rayleigh numbers utilizing Galerkin WRM for 

example 5.3.

n T ^Ga! ^FDM ^̂Gai t̂ FDM ^FDM

8 1.681xlo'‘ 2.270 2.270 2.270 101.389 101.383 101.4 1388 1387.2 1388

8 1.68x10^ 2.594 2.594 2.594 307.901 307.881 307.9 1693.9 1693.9 1694

8 1.681x10^ 3.710 3.710 3.710 816.745 816.820 816.8 3436 3436.1 3436

8 1.681 x io ’ 5.698 5.698 5.698 1930.002 1930.237 1930.0 11023.1 11023.1 11020

8

CPU
time

8
1.681 xlO 8.626 8.626 8.626 4325.888 4326.506 4330.0 43679.9

2.023

seconds

43673.1

2.82

seconds

43680

40

35

30

§ 25
Cou

20

15

10

"T----------- C"

-■€>-• n=20

0  n=50

r j . . , ..L . . . . . .  -t . - - L..........
3 4 5 6 7 8

The conditioning of matrix A  witli respect to n and epsilon

Figure 5.2: The conditioning of matrix A  with respect to the wave number.
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X Table 5.5: The absolute errors for first six eigenvalues of example 5.4 attained by 

present (WRM) and ADM.

GAL WRM 

Bemst./Legn 

A

Taherer a/(2014) 

ADM 

A

Absolute error

A - Z
ADM GAL

1 1.000000000000000 1.0000000000000000 l.Oe-00

2 1024.000000000000000 1024.0000000000000000 l.Oe-00

3 59049.0000000000000000 59049.0000000000000000 l.Oe-00

4 1048576.000000000000000 1048576.000000000000000 l.Oe-00

5 9765625.000000000000000 9765625.000000000000000 1.460e-00

6 604666176.000000000000 604666175.99999945213 1.0492x10"*

Example 5.5: We consider the tenth order eigenvalues studied by Twizell et al (1994)

210 8 6 4 2 10
D -k D  +k D  -k D +k D  -A

1 2  3 4
w(^x)+RA 4 2 4

D  +k^D +A (5.26)

2 2
k =5A +2Qk =\0A +6A Q + T + Q /t =10^ +6A Q + 2A T + A Q

8 6 4 2
k^=5A +2A Q + A T,  k^=2A +Q

And the associated the free-free boundary conditions in Chandrasekhar (1981):

w ^ '\o )  = w ^ \ l )  = 0 ; /  = 0,l,2 ,3,4 (5.26a)

Equivalently, eigenvalues (Rayleigh numbers) for can be obtained by solving the

system -of equation in matrix form as.
n-1

/=1 

where,

F +RE' j  I j c =0 (5.27)

F = ‘J dx 1 7  ax dx
Bj{x)

dB . d 
__ L - kdx 2 5 

dx dx
dx

B. ix)
dB.

dx

205



X
-k

4 dx
B.{x)

dB  10 

dx I J
dx +

[ 2  7 ’ 
d B. d B.J 1

[ 2  7 1 
d B. d B.J 1

1 7 dx dx
x=\

2 7 dx dx
x=0

+

4  5

d B d B.
______ I________ i _

4 5
dx dx

■ 4  5 1
d  B  d  B .J I

6 3
d  B  d  B. J 1

6 3
d  B d  B.J 1

x = \

4 5 
d x  d x

x=Q

6 3 
d x  d x

x = \

6 3 
d x  d x

x=0

d B dB. 
J I

dx8 dx

8

d  B dB. 
J 1

—  Ir ■

2
d

5
d B. 

1
2

d
B j ix )

5
d  B

1

x=\

8 dx
dx

x=0

2
dx

5
dx

x=\

2
dx

5
dx x=0

dx
Bjix)

3
d B.

dx
x=\

dx
Bj(x)

3
d B.

dx
jc=0

dx
B.(x)

dB.

dx
x-\

dx
Bj(x)

3
d B.

dx
+

d^
6 B.ix)

dB.1
dx

—
6

d
6 B.(x)

dB.1
dx

jc=0
dx x=\ dx ;r=0

dx
B.{x)

3
d B.

dx
x=\

dx
B.{x)

d^B.

dx
+

x=0
dx

B.(x)
dB.
dx

x=\

X
dx

Bj{x)^
dB.1
dx

+
r 2 
d

2
a^(x)Bjix)

dB.1
dx

-

r 2 
d

2
a^ix)B.(x)

x=0 dx x=l dx

dB.

dx

r 2 d P _

dx

2
d dB.

2
B.(x) —

2
B.{x) /

dx
dx x=\ dx x=0.

(5.27a)

E
‘J

1 T  3 
d - dB.

■
, 3

B.{x) I
dx

0 dx
Bj(x)

dB 4 
^  + A

dx
B.B. 

I J
>dx

+
d B. dB.

dx
2 dx

;c=l

(5.27b)
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A The eigenvalue problem in equation (5.26) is solved using the formulation illustrated 

in this section. To compare the computed results demonstrated in Chandrasekhar 

(1981) and Twizell et al (1994), we can write the relationship between Q , and T

, Tj as given below

a  = 4  » d r , =  .
7 t n

Numerical results are obtained using «=10, for the first six critical values of the 

problem 5.5 are depicted in figure 5.3. Computed results of for the corresponding

values of  A obtained for =1000 and r, =10000 are illustrated in tables 5.6(a) and

5.6(b).

Table 5.6(a): Estimated values of critical Rayleigh numbers employing WRM for 

=1000 for example 5.5.

n
0 ,

Present method Twizell (1990) Chandrasekhar (1981)

^WRM A

10 10 2.016x10' 7.90 2.016x10^ 7.90 2.016x10“ 7.90

10 50 1.605 X10' 4.50 1.604x10^ 4.50 1.605x10'* 4.50

10 100 1.952x10^ 5.23 1.951 x io ' 5.22 1.952xlo“ 5.23

10 500 6.378x10^ 7.47 6.377x10^ 7.46 6.380x10'* 1.41
10 1000 1.192x10^ 8.52 1.192x10^ 8.52 1.192x10^ 8.52

10 10000 1.065x10® 12.80 1.065x10® 12.80 1.065x10® 12.80

10 50000 5. 129x10® 16.82 5.128x10® 16.82 5.129x10^ 16.82

10 100000 1.005x10’ 18.94 1.015x10’ 18.94 1.015x10’ 18.94

2.306 seconds 1.94 seconds

>

The observed CPU time is also displayed. We have noticed from the results in table 

5.6(b) that the actual minima depends on Q^.
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Two minima at /i=3.51, minimum value of R =1713.60877 at .4=3.54, minimum 

value of R =1713.6188.

It has been observed that for =80, = 100000  , the minimum values of R and the

corresponding values o f A using n==10 are given below 

/?^,= 397721.411234870506 with ^  = 18.3, = 478101.133947 with ^=3.38.
( r a l  G a l

For =100,  r, = 1 0 0 0 0 0 ,

R^  =397672.43782 w ith.4=18.2, , =393296.2090005; A^331 .G a l G a l

Figure 5.3: Estimated values of Critical Rayleigh numbers for example 5.5.

This situation is explained in Twizell et al (1994). For a given value of , the cells

appearing at marginal stability are elongated as the strength of the magnetic field 

increases. When the magnetic field reaches a certain value (100 for =10000), cells of

two different sizes will appear simultaneously. One set will be highly elongated and 

another set will relatively be highly flattened. If the strength of the magnetic field 

increases still further, the critical Rayleigh number will begin to decrease and pass
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through a minimum; eventually the inhibition due to the magnetic field will 

predominate.

Table 5.6(b): Estimated values of Critical Rayleigh numbers employing WRM for 

Tj =10000 for example 5.5.

Eigen

index

k

Degree
of

polyn.
n

a

Present method

^WRM ^

Twizell et al (1994) 

R, A,

Chandrasekhar( 1981)

R, A,

1 8 10 8.979x10'* 12.59 8.977 xlo'* 12.59 8.979 X10 12.59

2 8 50 8.550x10“* 11.40 8.548x10^' 11.40 8.550xlo'' 11.40
4 4 4

3 8 100 8.118x10 3.68 8.116x10 3.68 8.118x10 3.68

4 8 500 5.544xlo" 3.91 5.542xlo'* 3.91 4
5.544x10 3.91

4 4 4
5 8 1000 7.545 xlO 6.50 7.543x10 6.51 7.545x10 6.50

5 5 5
6 8 10000 1.267x10 7.98 1.267x10 7.98 1.26x10 7.98

7 8 50000 1.067x10^ 12.80 1.066x10^ 12.77 1.067x10^ 12.80

8 8 100000 l.O llx lo ’ 18.94 1.015xlo’ 18.93 l.OlSxlo’ 18.94

Example 5.6: We consider the following twelfth order eigenvalue problem illustrated 

in the article Twizell et al (1994)

12 10 8 6 4 2
D - I D  + I D  - I D  + I D  - I D  +l

1 2 3 4 5 6

V

10 8 6 4 2
-l^D -l^D

w(x)

w(x)

+ iRA w(jc) = 0 (5.28)

The corresponding free-free boundary conditions illustrated in Chandrasekhar 

(1981):
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(2;)/ X (2/)
w {0)=w ( l )=0 ;  z = 0,l, 2 ,3 ,4 ,5  are to be imposed. The coefficients

/ (; = l,2,3,.......,18) are given by

/ =6A +2Q

2 2
l ^=\5A +8QA +Q - 2 ^ 2  + 2 p,(l + p J + ( l  + p J + ( l  + /? J

2
M +T

l^=20A +120QA - 4 2p^+2p^(l + p^)+(\ + p^
2 2 2 2 2 

M A +3TA +2Q A

-2{p ^ + p ^ + p p̂ ^)m \

8 6 
l^=\5A +SQA - 6

2 2 2 2 2 
// /( +37.4 +2Q A ,

I \ 2 2

10

2P j + 2 pj(l + p J+ (l + ; . J

P /  + (l + p .  -  p .  {ip. + p \ ,

l^=6A +2QA - 4 2p^+2p^(l + p^)+(\ + p^)
v 2 l 2 4 

// + 2

12

6̂ = ^  -

2 ' ^1 ^2

+ 2 p,(l + P2 )+(l + P 2 K>“ ^^* + ,/̂ 2  ̂ + 2 a ^ 2 (*^-P2 )

/^ = (2 + p , + 2 p J / / ,

/g = 2(l + /7i + ^ 2 )/“ 0  + 5 (2 + /?i +2p ^ m A^ .

l ^ = \ 4 ^  + p ^ + 2 p ^ p A  +e{  ̂+ p ^ + p ^ p Q A  -  2p^p^+2p^{^ + p ^ + p j ^  + p ^

+ s(pj + 2 p ^ p  + p^pQ^

= 10(2 + ^ ! + 2 p^ +61 + P j + /?2  ) / / 0 / + 2 ( / , , + 2 p j 7 ’; / ^ '

210



-3

-3

- 3

2p^p^+2p^^ + p ^ + p j ^  + p ^1> ^ 2 >

2 p ,p 2 ‘̂ 2 p j l  + p j+ /7 ,( l  + / 7 j '
3 2 

// A

+
2 3

3 6
2p^p2+2p^(\ + p^)+p^(l + p^)

2 4 2 / \  2 6 ( \  2 2
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O T ' \̂
Here Q̂  = —r , T, = —r  and cr = •2 ’ 1 4

;;r ;r n

Numerical results are obtained applying Galerkin WRM for increasing Taylor 

number and same magnetic field intensity are illustrated in tables 5.7(a), 5.7(b) and 

5.7(c), which also the corresponding results reported by Chandrasekhar (1981).

Comparisons with tables 5.7(a), 5.7(b), 5.7(c) reveals that our present methods attain 

very similar results except those in table 5.7(c) where the results are slightly deviated 

from the reported results. We conclude that for higher Taylor number, the computed 

results become slightly less accurate than those of Chandrasekhar (1981).
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Table 5.7(a): Computed values of R, A^and a  for =1000 of example 5.6

Computed
results

(present)

Twizell et al (1994) Chandrasekhar (1981)

'I R R I 1 R

16 10 7053 4.56 53.52i 7053

38 100 35398 6.63 30.13i 35390

18 500 50156 7.20 18.44i 50140

4.55 53.6 li 7053 4.56 53.52i

6.62 30.13i 35402 6.63 30.12i

7.20 18.43i 50156 7.20 18.44i

Table 5.7(b) : Computed values o f  R,  and cr , ==100000 of example 5.6

Computed results 

present

Twizell etal (1994) Chandrasekhar (1981)

« 0 , R A (T R A ac c c

10 10 12839 6.03 140.801 12839 6.02 53.6 li 12840 6.03 140.80i

38 50 26772 7.01 12.43i 35390 7.05 120.43i 26790 7.05 120.40i

38 500 155675 9.84 61.95i 155635 9.88 61.451 155700 9.88 61.951

Table 5.7(c): Computed values o f  R,A^QndcT for =1000000 o f  exam ple 5.6

Computed
results

(Galerkin
WRM)

Twizell etal (1994) Chandrasekhar (1981)

« e , R A a
1̂ R A ac c c

38 10 36495 8.35 342.451 36390 8.35 341.5i 36500 8.35 342. li

40 500 189238 11.50 236.141 189209 11.55 236.141 189300 11.54 236.3 i

12 1000 3,26460 12.64 202.341 326,666 12.64 202.451 327100 12.64 202.51
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5.5 Conclusions

A

We observe that the absolute errors between the current method and the ADM are 

very negligible in tables 5.1 and 5.5. Our computed results in tables 5.2 obtained by 

using Galerkin WRM are illustrated in comparison with the analytical ones showing 

a very good agreement with the other existing methods. From tables 5.3, 5.4 and 

tables 5.6-5.7, it has been noticed that, estimated critical Rayleigh numbers 

corresponding to the fixed wave numbers are much closer to Chandrasekhar (1981) 

and Twizell et al (1994) which shows moderated performance in the sense of 

accuracy and applicability of our proposed method. Moreover, the cost of 

computations is much lesser which shows that our proposed Galerkin scheme is much 

economical. Although tables for twelfth order eigenvalue problems show little 

difference between the computed critical values of A and a  from those of 

Chandrashekhar (1981) but they show that computed values are lower and therefore 

predicts the onset of instability as overstability.

A ppendix

V

K

M

ri

H

d

P

Q

a

kinematic viscosity,

thermometric conductivity,

magnetic permeability,

time constant (relative to dimensionless

time and space coordinates),

IjiAna^)

uniform magnetic field, 

depth of layer of fluid, 

density of fluid, 

angular velocity,

coefficient of volumetric expansion
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p  : adverse temperature gradient,

A '■ wave number,

g : acceleration due to gravity,

^ ~ n H  d  I {4 71 p v T ] )

2 4 / 2
T  -  AQ. d  /  V : the Taylor number,

R = g a p d  / { k v ) : Rayleigh number,

• Critical Rayleigh number,

V
P\ • — : Prandtl number,

K

5
K

dimensionless vertical co-ordinate.

w = w{x) : vertical co-ordinate.
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Conclusions

Many physical systems lead to Sturm-Liouville problems and the numerical methods 

for solving these problems have several applications in physics, applied mathematics, 

engineering and applied sciences. Eigenvalue arises routinely in the linear stability 

analysis of 2-D incompressible flow. The main focus o f this study is on the novel 

numerical methods and approaches which positively have potential value for 

researchers o f Sturm-Liouville boundary value problems. Our aim is to compute 

eigenvalues of higher even order linear boundary value problems (from fourth up to 

twelfth order) in one dimension applying the technique of Galerkin weighted residual 

exploiting polynomials as basis function namely Bernstein and Legendre. 

Additionally, second, fourth and sixth order eigenvalue problems have been 

examined, analyzed and accomplished. Estimated eigenvalues applying weighted 

residual Galerkin, collocation and Spectral collocation methods have been compared 

with other available analytical/numerical methods.

In Chapter 1, we have conferred some definitions, theorems, lemmas, approximation 

theory on eigenvalues, existence and imiqueness o f Sturm-Liouville problems etc. 

Furthermore, some important properties of Bernstein and Legendre polynomials, 

convergence of Bernstein polynomials, some familiar mathematical formulas crucial 

for the thesis have been demonstrated. We have exemplified different kinds of 

boundary conditions for both regular and singular SLEs which are vital for numerical 

applications as well.

Chapter 2 has dealt with eigenvalue calculation of second order Sturm-Liouville 

problems applying WRM Galerkin, WRM of collocation and Cheby-Legendre 

Spectral collocation technique. The technique is also extended for solving non-linear 

Bratu type problems.

The computed results have been presented in both tabular and graphical forms. 

Among the three said methods, Galerkin method estimates the eigenvalues of the 

lower spectrum efficiently whereas Spectral collocation computes all the eigenvalues
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competently with desired accuracy. The approximate eigenvalues converge to the 

exact solutions even with desired large significant digits with the increase of 

discretization points. Conversely, Bernstein collocation method is less convergent 

than the other two aforementioned methods for some particular problems. Since 

Bernstein polynomials vanish at the two end points of the interval which gives greater 

flexibility and is found to be more attractive for implementing weighted residual 

methods.

In Chapter 3 we have developed matrix formulations for the numerical computation 

of linear fourth order Sturm-Liouville problems employing two types o f boundary 

conditions namely clamped and hinged. WRM Galerkin, Bernstein collocation and 

Spectral collocation methods have been utilized for these purposes. Among the three 

methods, WRM Galerkin gives much better accuracy even with fewer number of 

polynomials than the Bernstein collocation method for some problems. Still the 

method becomes less popular for huge number of eigenvalue computations and 

typically lost its accuracy for degree of polynomials greater than 40. It is apparent that 

computational time requires slightly more for Legendre Galerkin than those of 

Bernstein Galerkin technique for calculation of eigenvalues. Eigenvalues obtained by 

Bernstein collocation converges faster than Galerkin WRM. Numerical stability has 

been illustrated graphically by the condition number o f differentiation matrices 

achieved by the two methods (Bernstein collocation and Spectral collocation). From 

graphical illustrations we revealed that WRM of collocation gives moderated size of 

condition number in comparison to Galerkin WRM and Spectral collocation method. 

The shortcoming of the Bernstein collocation method is that, in case of huge number 

of eigenvalues computation, higher eigenvalues are less convergent than the lower 

spectrum and with the increasing of the degree of polynomials the computational time 

highly increases, without leading to a significant improvement of the numerical values 

for some higher order problems. Although the slow convergent rate of Bernstein 

polynomials for some particular problems with complicated boundary conditions 

makes it less popular, still this drawback is to be compensated for achieving better 

accuracy on using fewer number of polynomials. Conversely numerical investigations
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exhibit the fact that Spectral collocation method is well suited for huge number of 

eigenvalues in higher spectrum with superior accuracy. From these comparisons we 

found that the eigenvalues obtained by the existing methods compete very well with 

other numerical methods studied by various authors.

Chapter 4 has been provided for approximating the eigenvalues of linear sixth order 

BVPs together with Benard convection problems employing the WRM Galerkin, 

collocation and Spectral collocation method using the polynomials as mentioned 

before. All the eigenvalues calculated by Galerkin method converge to the exact 

results and the relative errors are almost negligible due to machine precision. In the 

case of eigenvalue problem of circular ring structure, we have noticed that Galerkin 

WRM compensates for the difficulties that arise in the execution of the other 

discretization methods by giving desired results even with a few number of 

polynomials. Similar precision has been achieved applying Spectral collocation 

technique for the same problem with the increase of grid points. It has been noticed 

that the critical values of Benard Layer problem using Galerkin WRM method with 

Bernstein polynomials show better performance and the eigenvalues attained are 

smaller and fairly close to the analytical results. Moreover, the smallest Rayleigh 

number converges to large significant figure and relative errors obtained in tabular 

form demonstrate that the current methods are superior than the other numerical 

available studies. From the graph of differentiation matrices, it is clear that current 

Cheby-Legendre collocation method is more ill-conditioned than that o f Bernstein 

collocation and the other Chebychev Spectral method.

Since the unknown coefficients in collocation method are expressed in terms of known 

coefficients of the boundary conditions and thus handling boundary conditions is 

much easier. Collocation method computes lower eigenvalues more efficiently and 

obtains relatively well-conditioned matrix than those of Spectral collocation method. 

This reveals that method is stable. We also observed that collocation matrix has much 

better conditioning than Galerkin matrix as the degree of polynomials increase. 

Furthermore, this method with the aid of Matlab 13 code is well suited for both regular 

as well as singular Sturm-Liouville problems. In spite of these shortcomings, the
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^  present Spectral method achieves superior accuracy, is computationally efficient and

much competent with the other earlier published works. Finally, the computational 

stable convergence for some eigenvalue problems is achieved.

We have introduced a novel means of incorporating boundary conditions in Legendre 

Spectral collocation method, which removes the ambiguity of transforming higher- 

order problems into lower order derivatives. We have tackled the longstanding issue 

with ill-conditioning of Spectral methods from a new perspective. Increasing the 

number of subintervals or the number of collocation points in subintervals resuhs in 

improved accuracy. It has been found that the relative errors in absolute for some 

specific problems, but are better than other rep)orted ones in the literature. The choice 

between a collocation method and a Galerkin method is problem dependent, and the 

^  advantage of collocation methods is more noticeable for problems with more

complicated forms of governing equations.

The co-efficient matrix in Weighted residual Galerkin and collocation method is sparse 

and has symmetric banded matrix, which minimizes the computational effort and 

attains relatively smaller condition numbers. Although spectral methods attain high 

accuracy, and these eventually lead to ill-conditioned system. On the other hand, 

Spectral matrices are full and non-symmetric. Eigenvalues obtained by applying 

Galerkin method perform much better and more accurate than the collocation method 

for most of the numerical experiments. Furthermore, the current Spectral method 

requires less CPU time in comparison to Galerkin WRM and collocation method. The 

method can be considered an effective and reliable tool for solving eigenvalues sixth- 

order boundary value problems.

In our study, we have contributed a numerical method for computing of the 

approximate eigenvalues/critical numbers of regular eighth, tenth and twelfth order 

eigenvalue problems in Chapter 5. Bernstein and Legendre polynomials have been 

exploited as basis and all the derivative boundary conditions have been incorporated 

directly in the residual equation without reducing the order o f the differentiation. 

Implementing the boundary conditions is much simpler and easier in these problems. 

Stability or instability of hydrodynamic and hydro magnetic system can be
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comprehended by a set of non-dimensional parameters. The present numerically 

computed critical Rayleigh numbers of the suggested method have been compared 

with the other existing methods. It has been observed that all the critical numbers are 

smaller than some given ranges of the critical numbers which predict the onset of 

instability as over stability.

The linear stability of electro-hydro dynamic (EHD) convection between two parallel 

walls was efficiently solved by exploiting Galerkin WRM. Galerkin matrix behave 

better than both Chebychev tau and collocation matrix since the Galerkin WRM 

produces more normal discretization matrix. Besides the obtained matrix in the later 

case is symmetric and their non-normality ratio agrees well with the other reported 

works. The main disadvantage of Chebychev Spectral, tau, Galerkin as well as 

collocation, comprises non-uniform weight associated with the Chebychev 

polynomials which introduce significant difficulties in the analysis o f the Chebyshev 

spectral method. As opposed to the Chebyshev polynomials, the main advantage of

Legendre polynomials is that they are mutually orthogonals in the standard L inner 

product with unit weight, so the analysis of Legendre spectral methods is much easier 

than that o f the Chebyshev Spectral method. The main shortcoming is that there is no 

practical fast discrete Legendre transform available. However, we have taken the 

advantage of both the Chebyshev and Legendre polynomials by constructing the so 

X  called Chebyshev-Legendre Spectral methods.

We intend to extend our future work on Bernstein collocation and Cheby-Legendre 

Spectral collocation methods from eighth up to twelfth order eigenvalue problems by 

changing the higher order BVPs into lower order BVPs. We also expect to develop 

some innovative numerical techniques, related theories, rigorous analysis of the 

differential eigenvalue problems and their convergence behavior, upper and lower 

boimds of the eigenvalues etc. in our future work. Furthermore, several boundary 

value problems which are frequently applied as physical problems in science and 

engineering for computing eigenvalues can be handled using the said techniques in 

4 multi-dimensions.
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