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We consider a linear partial integro-differential equation that arises in modeling various
physical and biological processes. We study the problem in a spatial periodic domain. We
analyze numerical stability and numerical convergence of a one step approximation of the
problem with smooth and non-smooth initial functions.

© 2012 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Many scientific problems have been modeled by reaction diffusion equations as well as by advection reaction diffusion
equations. Many models consider nonlocal type diffusion operators [2–4,6–8,12,13] as well. In this article, we consider such
a linear model (linear partial integro-differential equation (IDE))

ut(x, t) = ε

∫
Ω

J∞(x − y)
(
u(y, t) − u(x, t)

)
dy = Lu, (1)

and analyze stability, accuracy and rate of convergence of a simple approximation in space and time. (1) is the linear part
of the IDE [2,3,5,9,10,12]

ut(x, t) = ε

(∫
Ω

J∞(x − y)u(y, t)dy − u(x, t)

∫
Ω

J∞(x − y)dy

)
+ f (u). (2)

Here the initial condition u(x,0) = u0(x), x ∈ Ω where Ω ⊆ R, f (u) is a bistable nonlinearity for the associated ordinary
differential equation ut = f (u) and J∞(x) is a kernel function that measures interaction between particles at positions x
and y. Here it is assumed that the effect of close neighbors x and y is greater than that from more distant ones; the spatial
variation is incorporated in J∞(x). We assume that J∞(x) satisfies the following properties:
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1. J∞(x) � 0;
2. J∞(x) is normalized such that

∫ ∞
−∞ J∞(x)dx = 1;

3. J∞(x) is symmetric, i.e. J∞(x) = J∞(−x), for all x ∈ R.

In [6], the author studies stability and accuracy of an one step approximation of the IDE (1) considering infinite spatial
domain. He first writes a discrete equivalent of the integral equation, then uses the forward Euler method for time dis-
cretization. Then he analyzes the accuracy and convergence of the scheme. He presents some numerical results to illustrate
the rate of convergence considering both smooth and non-smooth initial functions. Whereas in [7] the author considers a
linear partial IDE that contains a local and nonlocal diffusion operator. He analyzes accuracy of an explicit Euler approxima-
tion and a mixed Euler approximation. He presents some numerical results to demonstrate the accuracy of the schemes.

A brief discussion about numerical approximation of this type of models can also be found in [11]. The author consid-
ers several local and nonlocal operators that contain the operator acting on (1). He approximates the models using finite
difference schemes and discusses some stability issues.

In [12], Duncan et al. consider (2) in a spatial periodic domain. They approximate the problem using piecewise constant
basis functions with collocation and mid-point quadrature rule for space discretization, then they use some standard ODE
solver for time integration. They present some numerical results to demonstrate their scheme.

We present the stability and convergence of the rescaled integro-differential equation model in a spatial periodic domain.
Here we consider spatial [0,1] periodic domain. If we choose spatially one-periodic initial data u(x,0), then for all x ∈ R
and t ∈ R+

u(x, t) = u(x + 1, t).

So, with any kernel function J∞(x), (1) can be written as

ut(x, t) = ε

∫
R

J∞(x − y)
(
u(y, t) − u(x, t)

)
dy

= ε

1∫
0

J (x − z)
(
u(z, t) − u(x, t)

)
dz, (3)

where

J (x) =
∞∑

r=−∞
J∞(x − r), (4)

and x ∈ [0,1]. Two sample kernels are shown in Fig. 1. Here it is assumed that the periodic kernel function satisfies the
following conditions

A1. J (x) � 0,
A2. J (x) = J (1 − x),
A3.

∫
Ω

J (x)dx = 1.

For simplicity of notations, from here J and u mean functions in the periodic domain, and J∞ and u∞ mean functions
defined in the infinite domain. We consider ε = 1 only since it does not affect our analysis.

Here we study stability and accuracy of a simple scheme using the Fourier series and the discrete Fourier transform
definitions. We organize our article in the following way. We present a space time discretization in Section 2 followed by
stability analysis of the scheme in Section 3. We analyze accuracy of the full discrete scheme in Section 4 considering both
smooth and non-smooth initial functions. We study accuracy of the semi-discrete time dependent scheme in Section 5. We
finish our study in Section 6 with some numerical experiments and discussion.

2. Numerical approximation

We approximate (1) as

dU j(t)

dt
= h

N−1∑
k=0

J (x j − xk)(Uk − U j) (5)

for each j = 0,1,2, . . . , N − 1 where U j(t) ≈ u(x j, t) and x j = jh. Applying Euler’s method we can again approximate the
semi-discrete problem (5) as
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Fig. 1. Examples of kernel functions in [0,1] periodic domain defined by (4) where (a) J∞(x) =
√

100
π e−100x2

, (b) J∞(x) = c
2 e−c|x| , c = 10.

Un+1
j − Un

j = h�t
N−1∑
k=0

J (x j − xk)
(
Un

k − Un
j

)
,

which gives

Un+1
j = Un

j

(
1 − h�t

N−1∑
k=0

J (x j − xk)

)
+ h�t

N−1∑
k=0

J (x j − xk)Un
k . (6)

We use Fourier series and discrete Fourier transforms throughout. Before the main discussion let us introduce some
necessary definitions and theorems. The Discrete Fourier Transform for a periodic function (DFT) can be defined as

Ṽk = h
N−1∑
j=0

v(x j)e−i2πkx j

where v(x, t) is a periodic function with period 1 and its inverse Fourier transform is defined as

v j =
N−1∑
k=0

Ṽkei2πkx j or v j =
N
2∑

k=− N
2 +1

Ṽkei2πkx j .

For any periodic function f (x) with period 1, its Fourier series can be defined as

f (x) =
∞∑

n=−∞
f̂nei2πnx where f̂n =

1∫
0

f (x)e−i2πnx dx.

For any 1-periodic complex-valued function v(x) the relation

∞∑
n=−∞

|v̂n|2 =
1∫

0

∣∣v(x)
∣∣2

dx

where v̂n are the Fourier coefficients of v(x) and for a real-valued function v(x)
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v̂2
0

4
+ 1

2

∞∑
n=1

(
v̂2−n + v̂2

n

) =
1∫

0

v2(x)dx

is called Parseval’s relation for the Fourier series where an , bn are Fourier coefficients. For the Discrete Fourier Transform of
v(x), the relation

N−1∑
j=0

|v j|2 = h
N−1∑
k=0

|Ṽk|2 or h

N
2∑

k=− N
2 +1

|Ṽk|2

is called Parseval’s relation where Ṽk is the DFT of v j , both have the same length N .
Now we will discuss the relation between the DFT and the Fourier coefficients. From the DFT definition Ṽk =

h
∑N−1

j=0 v( jh)e−i2πkx j , the Fourier coefficients are

v̂k =
1∫

0

v(x)e−i2πkx dx

and the corresponding Fourier series is

v(x) =
∞∑

k=−∞
v̂kei2πkx.

Thus

Ṽk = h
N−1∑
j=0

∞∑
r=−∞

v̂rei2πrx j e−i2πkx j

= h
∞∑

r=−∞
v̂r NδN(r − k) =

∞∑
m=−∞

v̂k+mN (7)

where r − k = mN and

δN( j) =
{

1 j = mN for some m ∈ Z
0 otherwise.

(8)

The relation (7) is known as the discrete Poisson sum formula [15]. The Fourier coefficients of the kernel function in [0,1]
are given by

Ĵ j =
1∫

0

J (x)e−i2π jx dx =
∞∫

−∞
J∞(y)e−i2π jy dy = Ĵ∞(2π j), (9)

the relation between the Fourier coefficient of J (x) defined in (4) and the continuous Fourier transform of J∞(x).

Definition 1. (See [1, page 223].) For integer k � 0, Hk(2π) is defined to be the closure of Ck
p(2π) under the inner product

norm

‖ϕ‖Hk =
[

k∑
j=0

∥∥ϕ( j)
∥∥2

L2

] 1
2

.

For arbitrary real s � 0, Hs(2π) can also be obtained following [1, pages 219–223].

Theorem 1. (See [1, page 223].) For s ∈ R, Hs(2π) is the set of all series

ϕ(x) =
∞∑

m=−∞
amψm(x)

for which
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‖ϕ‖2∗,s = |a0|2 +
∑

|m|>0

|m|2s|am|2 < ∞

where

ψm(x) = 1√
2π

eimx, m = 0,±1,±2, . . . .

Moreover, the norm ‖ϕ‖∗,s is equivalent to the standard Sobolev norm ‖ϕ‖Hs for ϕ ∈ Hs(2π).

For exact details of Theorem 1 please see [1, page 223]. Here, to use norm definitions in a periodic domain [0,1], we
use ‖ϕ‖Hs = ‖ϕ‖Hs(1) .

Now we return to the main discussion. Here we present approximate solutions in the Fourier domain. Multiplying both
sides of (6) by he−i2πkx j and summing over j

h
N−1∑
j=0

Un+1
j e−i2πkx j = h

N−1∑
j=0

Un
j e−i2πkx j

(
1 − h�t

N−1∑
r=0

J (x j − xr)

)

+ h
N−1∑
r=0

e−i2πkx j Un
r

(
h�t

N−1∑
j=0

J (x j − xr)e−i2πkx j

)
.

That is,

Ũn+1
k = Ũn

k

(
1 − h�t

N−1∑
r=0

J (x j − xr) + h�t
N−1∑
j=0

J (x j − xr)e−i2πkx j

)

= g(h,�t,k)Ũn
k ,

and clearly

Ũn
k = gn(h,�t,k)Ũ 0

k , (10)

where

g(h,�t,k) = 1 + h�t
N−1∑
j=0

J (x j − xr)
(
e−i2πkx j − 1

) = 1 + �t( J̃k − J̃0)

since J is 1-periodic. Taking the inverse of the discrete Fourier transform in (10) we get the approximate solution of (1) as

Un
j =

N
2∑

k=− N
2 +1

gn(h,�t,k)Ũ 0
k eik2πx j . (11)

Now the Fourier series of u(x, t) be

u(x, t) =
∞∑

j=−∞
û j(t)eij2πx, (12)

where

û j(t) =
1∫

0

u(x, t)e−i j2πx dx,

and the Fourier series expansion of J (x) be

J (x) =
∞∑

j=−∞
Ĵ je

i j2πx, (13)

where

Ĵ j =
1∫

0

J (x)e−i j2πx dx.
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Substituting (12)–(13) in (1)

∞∑
j=−∞

d

dt
û j(t)eij2πx =

( ∞∑
j=−∞

û j(t) Ĵ je
i j2πx −

∞∑
j=−∞

û j(t)eij2πx

)

gives

d

dt
û j(t) = ( Ĵ j − Ĵ0)û j(t) = q̂ j û j(t),

with q̂ j = ( Ĵ j − Ĵ0) where Ĵ j is the j-th Fourier coefficient of the kernel function J (x). Solving the above equation we have

û j(t) = eq̂ jt û j(0),

where

û j(0) =
1∫

0

u(x,0)e−i j2πx dx.

Thus the exact solution of the IDE (1) can be written as

u(x, t) =
∞∑

j=−∞
û j(0)eq̂ jtei j2πx. (14)

3. Stability analysis

In this section we establish stability properties of the scheme (6). To prove the stability of the scheme we need some
reasonable restrictions on J (x). We will examine properties of the DFT of J (x) under some reasonable hypothesis on the
function J (x).

Theorem 2 (Stability). If J (x) is a periodic function in [0,1], satisfies A1–A3, and, in addition,

A4. d
dx J (x) < 0 for x ∈ (0, 1

2 ),

A5. Ĵk � 0 for − N
2 + 1 � k � N

2 ,

then there exists �t∗ > 0 where �t∗ = 2
C , C > 0 such that ‖Un‖h � ‖U 0‖h for all 0 < �t � �t∗ and n � 0.

To prove the stability Theorem 2 we need to find a bound on g(h,�t,k). To this end we need the following lemma.

Lemma 1. Assume that A1–A5 hold. Then 0 � J̃0 − J̃k � 2, Ĵ0 − Ĵk � 2 where − N
2 + 1 � k � N

2 . Furthermore, J̃k � 0.

Proof. We have

J̃k = h
N−1∑
r=0

J (xr)e−ik2πxr and J̃0 = h
N−1∑
r=0

J (xr).

So

J̃0 − J̃k = h
N−1∑
r=0

J (xr)
(
1 − e−ik2πxr

)
.

For simplicity from here we take N to be even. Using the symmetry of J (x) in [0,1]

J̃0 − J̃k = 2h

N
2∑

r=0

J (xr)
(
1 − cos(k2πxr)

)
� 0

as h > 0 and J � 0. Also 1 − cos(k2πxr) � 2. Thus

J̃0 − J̃k = 4h

N
2∑

r=0

J (xr) � 4

1
2∫

0

J (x)dx = 2

1∫
0

J (x)dx = 2.
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So we conclude 0 � J̃0 − J̃k � 2. The result Ĵ0 − Ĵk � 2 follows from the definition of J and by using similar steps to those
of [4]. �
Lemma 2. If J (x) satisfies A1–A3 then 1 � g(h,�t,k) � 1 − C�t for some C > 0 and if J (x) satisfies A4–A5 from Lemma 1 as well
then C = 2 and

∣∣g(h,�t,k)
∣∣ � 1 for all 0 < �t � �t∗ = 2

C
.

Proof. Proof of this lemma follows directly from Lemma 1. �
Proof of Theorem 2. We have

∥∥Un
∥∥2

h = h
N−1∑
j=0

∣∣Un
j

∣∣2 = h2
N−1∑
j=0

∣∣Ũn
j

∣∣2 = h2
N−1∑
j=0

∣∣gn(h,�t, j)Ũ 0
j

∣∣2

� h2
N−1∑
j=0

∣∣Ũ 0
j

∣∣2 � h
N−1∑
j=0

∣∣U 0
j

∣∣2 = ∥∥U 0
j

∥∥2
h,

which gives the result. �
4. Convergence analysis of the fully discrete approximation

Here we analyze accuracy and rate of convergence of the fully discrete approximation presented above considering
both smooth and non-smooth initial functions. Before giving the main convergence results let us introduce a lemma and a
theorem with some reasonable restrictions on J (x), which will be needed throughout this section.

Lemma 3. If J (x) satisfies A1–A3 in [0,1] then q̂ j � 0 and | Ĵ0 − Ĵ j | � 2 where q̂ j = ( Ĵ j − Ĵ0) with Ĵ j = ∫ 1
0 J (x)e−i j2πx dx.

Proof. The proof of Lemma 3 follows directly from the definition of Ĵ j , and assumptions on J (x). �
Theorem 3 (Accuracy). If J (x) ∈ Hr(1), r > 1

2 satisfies A1–A5 then there exist C1(h) and C2 such that

∣∣eq̂ j�t − g(h,�t,k)
∣∣ � �t

(
C1(h) + C2�t

)
.

Proof. Here

∣∣eq̂ j�t
∣∣ � 1 and

∣∣g(h,�t,k)
∣∣ � 1.

So

∣∣eq̂ktm − gm(h,�t,k)
∣∣ = ∣∣(eq̂k�t)m − gm(h,�t,k)

∣∣ � m
∣∣eq̂k�t − g(h,�t,k)

∣∣.
Also,

eq̂k�t − g(h,�t,k) = e�t( Ĵk− Ĵ0) − (
1 + �t( J̃k − J̃0)

)
= �t

(
( Ĵk − Ĵ0) − ( J̃k − J̃0)

) +
∞∑
j=2

�t j

j! ( Ĵk − Ĵ0)
j, (15)

and thus there exist C1(h) and C2 (using (7) and (9)) such that

∣∣eq̂ j�t − g(h,�t,k)
∣∣ � �t

(
C1(h) + C2�t

)
.

Here C1(h) → 0 as h → 0, and C2 is bounded, if J (x) and Ĵ j satisfy all the properties mentioned earlier in this article, see
[4] for exact details. �
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4.1. Convergence analysis for smooth initial data

Here we establish the main convergence result by the following theorem.

Theorem 4. If the approximation (6) of the initial value problem (1) is stable, J , Ĵk , − N
2 + 1 � k � N

2 satisfy A1–A5 and u0 ∈ Hσ (1)

with σ > 1
2 , then there exist constants C1(h), C2 , C3(σ ) such that∥∥u(x, tm) − Um

j (x)
∥∥ � �t

(
C1(h) + C2�t

)‖u0‖ + C3(σ )hσ ‖u0‖Hσ (1).

Proof. From (14) and (11)

u(x j, tm) − Um
j =

∞∑
k=−∞

ûk(0)eq̂ktm ei2πkx j −
N
2∑

k=− N
2 +1

gm(h,�t,k)Ũ 0
k eik2πx j

=
N
2∑

k=− N
2 +1

(
ûk(0)eq̂ktm − gm(h,�t,k)Ũ 0

k

)
ei2πkx j

+
∑

|k|> N
2

ûk(0)eq̂ktm eik2πx j . (16)

Now taking the inner product on (16) and applying Parseval’s relation

∥∥u(x j, tm) − Um
j

∥∥2
h �

N
2∑

k=− N
2 +1

∣∣ûk(0)eq̂ktm − gm(h,�t,k)Ũ 0
k

∣∣2

+
∑

|k|> N
2

∣∣ûk(0)eq̂ktm
∣∣2

. (17)

The Poisson summation formula gives

Ũm
k =

∞∑
r=−∞

ûm
k+rN =

∞∑
r=−∞

û∞,m
k+rN

where ûm
k+rN is the coefficient of the Fourier series at tm for the periodic function u whereas û∞,m

k+rN represents the CFT for
the nonperiodic (infinite-dimensional) case. A calculation similar to that leading to (9) gives

ûk(0) =
1∫

0

u(x,0)e−ik2πxdx = û0
k = û∞

0 (2πk) = û∞,0
k . (18)

So the first part of the right-hand side of (17) can be written as

N
2∑

k=− N
2 +1

∣∣ûk(0)eq̂ktm − gmŨ 0
k

∣∣2 �
N
2∑

k=− N
2 +1

∣∣(eq̂ktm − gm)
û∞,0

k

∣∣2

+
N
2∑

k=− N
2 +1

∣∣∣∣gm(h,�t,k)
∑
r 
=0

û∞
0

(
2π(k + rN)

)∣∣∣∣
2

. (19)

Applying Theorem 3 on the first part of the right-hand side of (19) we get

N
2∑

k=− N
2 +1

∣∣(eq̂ jtm − gm)
û∞

0

∣∣2 � (m�t)2(C1(h) + C2�t
)2‖u0‖2. (20)

Now
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∣∣∣∣∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣ �
∑
s 
=0

∣∣û∞
0

(
2π(k + sN)

)∣∣
�

√∑
s 
=0

∣∣û∞
0

(
2π(k + sN)

)(
2π(k + sN)

)σ ∣∣2
√∑

s 
=0

∣∣(2π(k + sN)
)∣∣−2σ

using the Cauchy–Schwartz inequality. Thus,

N
2∑

k=− N
2 +1

∣∣∣∣gm(h,�t,k)
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

�
N
2∑

k=− N
2 +1

∣∣∣∣∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

�
N
2∑

k=− N
2 +1

(∑
s 
=0

∣∣û0
(
2π(k + sN)

)(
2π(k + sN)

)σ ∣∣2
)(∑

s 
=0

∣∣(2π(k + sN)
)∣∣−2σ

)

gives

N
2∑

k=− N
2 +1

∣∣∣∣gm(h,�t,k)
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

� h2σ C(σ )
∑

|k|> N
2

|2πk|2σ
∣∣û0(2πk)

∣∣2

� C(σ )h2σ ‖u0‖2∗,σ ≡ C(σ )h2σ ‖u0‖2
Hσ (1) (21)

for some σ > 1
2 . Thus applying above bounds, Lemma 3 and Theorem 1 in (17) one gets∥∥u(x j, tm) − Um

j

∥∥2
h � �t2(C1(h) + C2�t

)2‖u0‖2 + C(σ )h2σ ‖u0‖2
Hσ (1) +

∑
|k|> N

2

∣∣ûk(0)
∣∣2

� �t2(C1(h) + C2�t
)2‖u0‖2 + C(σ )h2σ ‖u0‖2

Hσ (1)

+
(

2

N

)2σ ∑
|k|> N

2

|k|2σ
∣∣û0(2kπ)

∣∣2

� �t2(C1(h) + C2�t
)2‖u0‖2 + C3(σ )h2σ ‖u0‖2

Hσ (1), (22)

for some σ > 1
2 . �

4.2. Convergence analysis for non-smooth initial data

Here we consider an initial function which is not smooth enough so that ‖u0‖Hν (1) is bounded when ν > 1
2 , but there

exists ν1 < ν such that ‖u0‖Hν1 (1) < ∞ and there exists α such that

N
2∑

k=− N
2 +1

∣∣û∞
0

(
2π(k + sN)

)∣∣2 � �x2αC(u0). (23)

For examples of such functions please see [4,15] and references therein.

Theorem 5. If the initial value problem (1) with some non-smooth initial function u0(x,0) = g(x) is considered so that the condition
(23) holds and is approximated by the stable one step finite difference formula (6), J , Ĵk , − N

2 + 1 � k � N
2 satisfy A1–A5, then∥∥u(x j, tm) − Um

j

∥∥ � tm
(
C1(h) + C2�t

)‖u0‖ + C2(ν1)�xν1‖u0‖Hν1 (1) + �xαC3(u0),

where C1(h), C2 and C3 are constants.

Proof. We start rewriting (17) as∥∥u(x j, tm) − Um
j

∥∥2
h �

∑
|k|�M

∣∣ûk(0)eq̂ktm − gmŨ 0
k

∣∣2

+
∑

M�|k|� N
2

∣∣ûk(0)eq̂ktm − gmŨ 0
k

∣∣2 +
∑

|k|> N
2

∣∣ûk(0)eq̂ktm
∣∣2
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for some 0 < M < N
2 . Now with the same algebraic operations as we performed for Theorem 4

∥∥u(x j, tm) − Um
j

∥∥2
h �

∑
|k|�M

∣∣ûk(0)eq̂ktm − gmû∞,0
k

∣∣2 +
∑

M�|k|� N
2

∣∣ûk(0)eq̂ktm − gmû∞
k (0)

∣∣2

+
∑

|k|> N
2

∣∣ûk(0)eq̂ktm
∣∣2 +

∑
|k|�M

∣∣∣∣gm
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

+
∑

M�|k|� N
2

∣∣∣∣gm
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

,

∑
|k|�M

∣∣ûk(0)eq̂ktm − gmû∞
k (0)

∣∣2 � t2
m

(
C1(h) + C2�t

)2‖u0‖2,

and ∑
M�|k|� N

2

∣∣ûk(0)eq̂ktm − gmû∞
k (0)

∣∣2 +
∑

|k|> N
2

∣∣ûk(0)eqtm
∣∣2

= C
∑

|k|>M

∣∣û∞
0

∣∣2 � C

(
1

M

)2ν1 ∑
|k|>M

|k|2ν1
∣∣û∞,0

∣∣2 � C3(ν1)�x2ν1‖u0‖Hν1 (1)

hold. Also following [4,15], there exists α ∈ R such that

∑
|k|�M

∣∣∣∣gm
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

+
∑

M�|k|� N
2

∣∣∣∣gm
∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

�
∑

|k|� N
2 −1

∣∣∣∣∑
s 
=0

û∞
0

(
2π(k + sN)

)∣∣∣∣
2

� �x2αC(u0),

which gives∥∥u(x j, tm) − Um
j

∥∥2 � t2
m

(
C1(h) + C2�t

)2‖u0‖2 + C3(ν1)�x2ν1‖u0‖Hν1 (1) + �x2αC(u0). �
5. Convergence of the semi-discrete approximation

In this section we analyze accuracy of the spatial approximation (5).

Theorem 6. If the semi-discrete approximation (5) of the initial value problem (1) is stable, J , Ĵk , − N
2 + 1 � k � N

2 satisfy A1–A5 and

u0 ∈ Hσ (1) with σ > 1
2 , then there exist constants C1(h), C2(σ ) such that∥∥u(x j, t) − U (x j, t)

∥∥ � tC1(h)‖u0‖ + C2(σ )hσ ‖u0‖Hσ (1).

Proof. Applying the discrete Fourier transform to (5)

d

dt
Ũk = q̃kŨk (24)

where q̃k = ( J̃k − J̃0) and its solution can be found as

Ũk(t) = eq̃kt Ũk(0). (25)

Applying the inverse of the DFT in (25)

U (x j, t) =
N
2∑

k=− N
2 +1

eq̃kt Ũk(0)eik2πx j . (26)

Thus comparing (14) and (26)
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u(x j, t) − U (x j, t) =
∞∑

k=−∞
ûk(0)eq̂kteik2πx j −

N
2∑

k=− N
2 +1

eq̃kteik2πx j Ũk(0)

=
N
2∑

k=− N
2 +1

eik2πx j
(
ûk(0)eq̂kt − eq̃kt Ũk(0)

) +
∑

|k|> N
2

ûk(0)eq̂kteik2πx j . (27)

Applying Parseval’s relation to (27)

∣∣u(x j, t) − U (x j, t)
∣∣2 �

N
2∑

k=− N
2 +1

∣∣ûk(0)eq̂kt − eq̃kt Ũk(0)
∣∣2 +

∑
|k|> N

2

∣∣ûk(0)eq̂kteik2πx j
∣∣2

�
N
2∑

k=− N
2 +1

∣∣ûk(0)eq̂kt − eq̃kt Ũk(0)
∣∣2 +

∑
|k|> N

2

∣∣ûk(0)eq̂kt
∣∣2

. (28)

Now applying Poisson’s formula to the first part of the right-hand side of (28),

N
2∑

k=− N
2 +1

∣∣ûk(0)eq̂kt − eq̃kt Ũk(0)
∣∣2 =

N
2∑

k=− N
2 +1

∣∣eq̂kt − eq̃kt
∣∣2∣∣û∞

0 (2πk)
∣∣2

+
N
2∑

k=− N
2 +1

∑
s 
=0

e2q̃kt
∣∣û∞

0

(
2π(k + sN)

)∣∣2
.

Now ∣∣eq̂kt − eq̃kt
∣∣2 = ∣∣eq̂kt(1 − et(q̃k−q̂k)

)∣∣2 � t2|q̂k − q̃k|2.
Now

q̃k − q̂k =
( ∞∑

m=−∞
q̂k+mN

)
− q̂k, using (7)

=
∑
m 
=0

q̂k+mN =
∑
m 
=0

( Ĵk+mN − ĴmN), since q̂k = Ĵk − Ĵ0,

=
∑
m 
=0

(
Ĵ∞(

2π(k + mN)
) − Ĵ∞(2πmN)

)
, using (9).

So from [4] it follows that

|q̃k − q̂k| � 2 Ĵ∞
(

π

h

)
= C1(h),

and C1(h) → 0 as h → 0 when J∞ is smooth enough (if J∞ ∈ L2(R), then | Ĵ∞(ξ)| → 0 as |ξ | → ∞ [14], [16, page 30]).
Thus ∣∣eq̂kt − eq̃kt

∣∣2 � t2C2
1(h).

So applying the relation (18), Parseval’s relation and Theorem 1∑
|k|� N

2

∣∣(eq̂kt − eq̃kt)û∞
0

∣∣2 � t2C2
1(h)

∑
|k|� N

2

∣∣ûk(0)
∣∣2

� t2C2
1(h)

(∣∣û0(0)
∣∣2 +

∑
|k|>0

|k|0∣∣ûk(0)
∣∣2

)

� t2C2
1(h)‖u0‖2∗,0 ≡ t2C2

1(h)‖u0‖2
H0(1)

= t2C2
1(h)‖u0‖2.

Thus, similar to Section 4 there exists a constant C2(σ ) such that∥∥u(x j, t) − U (x j, t)
∥∥2 � t2C2

1(h)‖u0‖2 + C2
2(σ )h2σ ‖u0‖2

Hσ (1). �
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Fig. 2. Here we plot the error term ‖u(·, tn) − U n(·)‖h at t = 1 by varying �t and h with J∞(x) =
√

10
π e−10x2

and (a) u0(x) =
√

1
π e−(x− 1

2 )2
(left figure),

(b) u0(x) = 1
2 e−|x− 1

2 | (right figure).

6. Numerical experiments and discussion

Here we start by experimenting with numerical error in the approximation (6) of (1). We compute numerical error at
t = 1. Fig. 2 shows the behavior of ‖u(·, tn) − Un(·)‖h for various choices of h and �t with smooth and non-smooth u0

for all x ∈ [0,1] where J∞(x) =
√

10
π exp(−10x2), u(·, tn) is defined by (14) and Un(·) is defined by (11). From Fig. 2, we

observe that for smooth u0 the rate of convergence of the solutions is faster than for the non-smooth u0. Here we also
notice that choices of h and �t have an impact on the rate of convergence. This experiment agrees with our theoretical
estimates (and also motivates us to investigate further the theoretical stability and convergence analysis of such a one step
approximation). From this study we notice that the full discrete scheme is conditionally stable. The accuracy of the scheme
depends on the smoothness of the initial function. We have some limitations in this study. We impose some reasonable
restrictions on the kernel function to prove the stability and convergence results. The analysis of higher order schemes in
one and multi-dimensions, which is of course more challenging, is left for future studies.
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