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Abstract. We consider a bistable integral equation which governs the sta-
tionary solutions of a convolution model of solid–solid phase transitions on a
circle. We study the bifurcations of the set of the stationary solutions as the
diffusion coefficient is increased to examine the transition from an uncountably
infinite number of steady states to three for the continuum limit of the semi–
discretised system. We show how the symmetry of the problem is responsible
for the generation and stabilisation of equilibria and comment on the puzzling
connection between continuity and stability that exists in this problem.
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1. Introduction. Integro-differential equations are used to model phenomena in
materials science [1, 2, 3, 5, 9, 18] and biology [7, 8, 21, 25] which involve non-local
diffusion/dispersal mechanisms. We consider the integro-differential equation (IDE)

ut = ε

(
∫

R

J∞(x− y)u(y, t)dy − u(x, t)

∫

R

J∞(x− y)dy

)

+ f(u), (1)

where the L1(R) kernel J∞ satisfies J∞(x) ≥ 0, J∞(x) = J∞(−x) and f(u) is a
bistable nonlinearity. Below we routinely consider f(u) = u(1− u2) and the kernel

J∞(x) =

√

100

π
exp(−100x2), (2)

so that
∫

R
J∞(x) dx = 1. To obtain a well-defined problem, (1) has to be supple-

mented by an initial condition, u(x, 0) = u0(x) from a suitable function space, see
[16, 20, 17].

The convolution equation (1) is the L2-gradient flow of the free energy functional

E(u) =
1

4
ε

∫

R

∫

R

J∞(x− y) (u(y)− u(x))
2
dxdy +

∫

R

F̂ (u)dx, (3)

where F̂ (u, t) is the smooth double well potential, F̂ ′(u) = −f(u).

For an overview of the use of (1) in materials science, see [10]. There are many
papers dealing with the mathematical analysis of this equation, which examine ex-
istence and stability of travelling waves [3], the structure of the stationary solutions
set [2], propagation of discontinuities [11], coarsening [9] and long time behaviour
[16, 20, 24, 12].

Note, in particular, that in [16] it is shown that if the diffusion coefficient ε
is sufficiently large, a “Conway–Hopf–Smoller” type result holds: the only stable
steady state solutions in L∞(R) are the constant stable steady states of the kinetic
equation ut = f(u). Thus, if we choose f(u) = u(1 − u2), the stable states are
u = 1 and u = −1. On the other hand, if ε = 0, (1) admits an uncountable set of
equilibria. To see that, let X , Y and Z be any disjoint sets such that X∪Y ∪Z = R.
Then a function u(x) that is equal to 1 on X , −1 on Y and 0 on Z is a steady state
solution. If Z = ∅, all the resulting equilibria are stable in L∞(R). Furthermore,
it is shown in [9] that there exists an ε0 > 0 which depends on the kernel J∞,
such that for all 0 < ε < ε0 the set of steady state solutions of (1) is in one-to-one
correspondence with the set of equilibria of ut = f(u). Hence, in view of the above,
it is of interest to perform a bifurcation analysis of the set of steady states of (1),

0 = ε

∫

R

J∞(x − y)(u(y)− u(x)) dy + f(u), (4)

as we decrease ε from some initially large value to zero, and investigate the transition
from a finite to infinite set of solutions.

To the best of our knowledge, such a study has not been performed before. The
object of this paper is precisely such a study of the spatially discretised version of
(1). For simplicity, here we restrict ourselves to 1-periodic patterns.

If we choose spatially one-periodic initial data u(x, 0), from (1) it is clear that
for all x ∈ R and t ∈ R+

u(x, t) = u(x+ 1, t).
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Then from (1) we have

ut = ε

∫

R

J∞(x− y) (u(y, t)− u(x, t)) dy + f(u)

= ε

∞
∑

r=−∞

∫ r+1

r

J∞(x − y) (u(y, t)− u(x, t)) dy + f(u)

= ε

∞
∑

r=−∞

∫ 1

0

J∞(x− z − r) (u(z + r, t)− u(x, t)) dz + f(u)

= ε

∫ 1

0

J(x− z) (u(z, t)− u(x, t)) dz + f(u), (5)

where

J(x) =
∞
∑

r=−∞

J∞(x− r) (6)

and x ∈ [0, 1]. Thus, for 1-periodic initial data we only need to solve the problem
(1) on the interval Ω = [0, 1] with the kernel J(x). For the kernel given by (2),
J∞(x) and J(x) are plotted in Figure 1.

Lemma 1.1. For J defined by (6) the following two properties hold.

1. If J∞(x) = J∞(−x) we have that J(x) = J(−x) and

J(x) = J(1− x).

2.
∫ 1

0 J(x) dx =
∫∞

−∞
J∞(x) dx.

Property 1. above has an important influence on the spectrum of the matrix
governing the semi-discretised version of (1) as we explain in the next section.
From now on we work on [0, 1] and use the kernel J given in (6).

2. The semi-discretised system. We discretise in space using piecewise-constant
functions [9] and collocating at the uniformly spaced element mid-points, x = xj− 1

2

,

j = 1, 2, · · · , N . Setting uj = u(xj− 1

2

, t), we have the semi-discrete approximation

of (1) given by

ut = εANu+ F (u), (7)

where now u(t) ∈ R
N , supplemented with some initial condition u(0) ∈ R

N . The
nonlinearity F : RN 7→ R

N is given by Fj(u) = f(uj). It remains to specify the
N ×N matrix AN . If we put h = 1

N , and define xj = h(j − 1
2 ), uj = u(xj , t) ∈ R,

the elements of AN are given by

aj,i =

{

hJ (h|j − i|) j 6= i

−h
[

∑N
r=1,r 6=j J (h|j − r|)

]

j = i,
(8)

for all i, j = 1, 2, · · · , N. From Lemma 1.1 it follows that AN is a symmetric circulant
matrix generated by the elements a1,1, . . . , a1,N . Hence the theory of circulant
matrices can be used to characterise its spectrum precisely. Let Wk be the N
distinct roots of zN − 1 = 0, so Wk = exp

(

i2πk
N

)

, for k = 0, 1, 2, ..., N − 1. Then the
following theorem holds:
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Figure 1. The kernels J∞(x) in (a) and J(x) in (b) for the case
of equation (2).

Theorem 2.1 ([23]). Let AN be the circulant matrix defined by a1,1, a1,2, ..., a1,N .

Then −AN is diagonalisable with eigenvalues

λk = −[a1,1 + a1,2Wk + a1,3W
2
k + ...+ a1,NWN−1

k ], (9)

with corresponding eigenvectors vk =
(

1,Wk,W
2
k , ...,W

N−1
k

)T
.

Let us see what this implies in our case for the spectrum of the discretisation.

Lemma 2.2. The following three properties hold for the spectrum of AN

1. λ0 = 0;
2. λk ∈ R and λk = λN−k, k = 1, 2, · · · , N − 1;
3. As N → ∞,

λk →

∫ 1

0

J(x) dx −

∫ 1

0

J(x) exp(2πikx) dx,

k = 1, 2, . . ..

Before we prove this lemma, let us explain what it means. First of all, we must
have a zero eigenvalue with a constant eigenvector, because, like in the case of the
Neumann Laplacian, the equation

ut =

∫ ∞

−∞

J∞(x− y)(u(y, t)− u(x, t)) dx,

conserves mass.

Secondly, the pairing of the eigenvalues is simply the consequence of the sym-
metry J(x) = J(1 − x) inherited from the evenness of the kernel J∞. Finally, the
third part of the lemma implies that as N → ∞, the spectrum accumulates at the
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point
∫ 1

0 J(x) dx. Note that in the case of J∞(x) =
√

100/π exp(−100x2), we
explicitly have

I∞ = [1− exp(−π2/100), 1] = [0.094, 1].

Proof. 1. From (8), putting W0 = 1, we immediately obtain from (9) that λ0 = 0.
2. From part 1. of Lemma 1.1 it follows using (9) that for all j = 2, . . . , N ,

a1,j = a1,N+2−j,

so that the matrix AN is symmetric. Hence its eigenvalues λk are real. But then
taking complex conjugates of ANvk = λkvk, we get that ANvk = λkvk, or in other
words ANvN−k = λkvN−k and hence λk = λN−k.

3. Taking the limit as N → ∞ in (9) we immediately obtain the result. The

integral

∫ 1

0

J(x) exp(2πikx) dx is real since J is symmetric.

Note that this result implies that in the limit N → ∞ the (discrete) spectrum of
the convolution is contained in the interval

I∞ =

[
∫ 1

0

J(x)dx −

∫ 1

0

J(x) exp(2πix) dx,

∫ 1

0

J(x)dx

]

,

with

∫ 1

0

J(x) dx being an accumulation point.

Our aim is to examine bifurcations in this system. Below we perform a numerical
path–following of solution branches. Some of these will, by symmetry, arise in
pitchfork bifurcations from the trivial solution u = 0. Here we examine analytically
the values of ε where such bifurcations may occur in the semi-discrete system and
later we can compare to the numerically found values. Linearising around the zero
solution, we have the eigenvalue problem

εANv + f ′(0)v = µv, (10)

and hence bifurcations from the zero solution will only occur if µ = 0, or in other
words, if

−ANv =
f ′(0)

ε
v.

Thus, for the semi-discrete system (7) we can fully characterize the values of ε where
bifurcations of the zero solution occur, namely

εk :=
f ′(0)

λk
, k = 0, . . . , N − 1. (11)

For example, for N = 32, J∞(x) =
√

100
π exp(−100x2) and f(u) = u(1 − u2),

we have using (9), the results of Lemma 2.2 and the formula (11) that bifurcations
from the zero solution are expected at the values of ε as in Table 1. Note that for
this case of N = 32, the value of ε1 agrees to 12 decimal points with the limiting
value of ε1, 1/(1− exp(−π2/100)) as N → ∞, (see part 3 of Lemma 2.2).

Let us examine the eigenvectors of −AN in some more detail. Since both vk and
vN−k are eigenvectors, we immediately have that Re (vk) and Im (vk) are eigenvec-
tors. Define the cyclic shift σ on u = (u1, . . . , uN ) ∈ R

N by

σ(u) = (uN , u1, . . . , uN−1),

then we have
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ε1 = ε31 10.6403416996149 ε9 = ε23 1.00033746722800
ε2 = ε30 3.06584313146254 ε10 = ε22 1.00005172586163
ε3 = ε29 1.69885748860222 ε11 = ε21 1.00000650971543
ε4 = ε28 1.25968856776757 ε12 = ε20 1.00000067252291
ε5 = ε27 1.09266327932320 ε13 = ε19 1.00000005703325
ε6 = ε26 1.02948119722480 ε14 = ε18 1.00000000397031
ε7 = ε25 1.00800141737791 ε15 = ε17 1.00000000022729
ε8 = ε24 1.00180943793728 ε16 1.00000000002128

Table 1. For N = 32 Bifurcation values in terms of ε of the zero solution.

Lemma 2.3. If v is a real eigenvector of −AN corresponding to a double eigenvalue

λ, then so is σ(v).

This follows since if v is an eigenvector, then so is e2iπ/Nv.
Remark. In the above argument, we can pass to the limit as N → ∞ and conclude

that cos(2πkx) and all their translates are eigenfunctions of −A = −(
∫ 1

0
J(x −

y)(u(y) − u(x)) dy) no matter what the kernel J(x) is as long as it has the right
symmetry property. Of course, cosines are also the eigenfunctions of the Neumann
Laplacian.

Finally we note that fixed points of the semi-discrete problem satisfy

0 = εANu+ F (u). (12)

Thus at ε = 0 stable solutions are given by

u =

{

1 x ∈ X,
−1 x ∈ Y

(13)

where X ∪ Y = [0, 1]. Unstable solutions at ε = 0 are given by

u =







1 x ∈ X,
−1 x ∈ Y ,
0 x ∈ Z

(14)

where X ∪ Y ∪ Z = [0, 1] with some nonempty Z.

We can now define solutions with different numbers of interfaces. When X =
[0, α) and Y = [α, 1], 0 < α < 1, we call u a one-interface solution of (12) if for ε = 0
for some n ∈ [0, N − 1], σn(u) = a1 on X = [0, α) and σn(u) = a2 on Y = [α, 1],
where a1, a2 ∈ {−1, 0, 1} and a1 6= a2. That is, we have at ε = 0 one jump in
the solution up to a cyclic shift. Two-interface, three-interface solutions, etc., are
defined similarly. We call a function with m discontinuities in [0, 1) a m−1 interface
solution. Thus, for example, the branch of solutions corresponding to orbit A in
Table 2 are of one-interface and those corresponding to E are of three-interface.

3. Results. We take for our computations the kernel function

J∞(x) =

√

100

π
e−100x2

,

with f(u) = u(1−u2) and vary the parameter ε. For small values of N it is possible
to enumerate all possible solutions of the semi-discrete system (12) with ε = 0
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and to analyse their continuation to ε > 0 using the theory of bifurcation with
symmetry. This we do below for N = 4 and these analytic results are used to check
the validity of our numerics.

We implement in Matlab a standard pseudo arc–length continuation algorithm
with step size control as described in [15, 22, 14] for the discrete problem (12).
Since AN is a circulant matrix, we take advantage of reducing storage costs as the
full information of AN can be obtained storing one row or column only, see [4]
and references therein. Furthermore the use of the FFT for each matrix vector
multiplication reduces the computational cost. We detect bifurcation points by
observing where eigenvalues of the Jacobian J = DuF of the nonlinear system
F (u, β) = 0 cross the imaginary axis and perform branch switching at those points
by perturbing in the direction of the associated eigenvector.

The arc-length ` of u(x) ∈ C1(Ω) is defined in the standard way

` =

∫

Ω

√

1 +

(

du

dx

)2

dx.

We approximate the arc–length of u(x) with the mid-point rule and using the stan-
dard forward difference approximation for the derivative. With a uniform discreti-
sation we get

` ≈ `h =

N
∑

j=1

√

h2 + (uj+1 − uj)
2

(15)

where h = xj+1 − xj and uj = u(xj). Note that although ` only makes sense for
u ∈ C1, we can evaluate `h even when u is discontinuous at grid points.

For N = 32 we compute the bifurcation diagram numerically and gain insight
into the structure of the bifurcation diagram of the original continuous problem.

Finally, we examine the large N limit and formulate the results of the numer-
ics as two conjectures concerning the interplay of continuity and stability and the
behaviour of saddle-node bifurcations as α → 1/2.

3.1. The N = 4 case. For the continuous system, the symmetry group is O(2)×Z2,
and so for a finite number of nodes N , we use ΓN = DN ×Z2 equivariance structure
[13, 19].

If N = 4, there are 81 possible steady states at ε = 0, 16 of them stable. The
group Γ4 is generated by the shift p, the flip f and the reversal m. In terms of
v = (v1, v2, v3, v4), we have that

p(v) = (v2, v3, v4, v1);

f(v) = (v4, v3, v2, v1);

m(v) = (−v1, −v2, −v3, −v4);

Inverses of the nonzero eigenvalues of the 4×4 matrix A4 are {91.82, 183.63, 183.63},
so we expect primary branches to bifurcate from the zero solution at those values
of ε. Note that all primary branches have zero mean, but the converse is not true.

Since here we know all the solutions at ε = 0 and their stability, and since
symmetry properties are conserved on primary branches, we can cut down the work
considerably by looking only at orbits of solutions under Γ4. In Table 2, we collect
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Name Orbit length Σx Name Orbit length Σx

(0,0,0,0) 1 D4 × Z2 E (-1,1,-1,1) 2 〈pm, fp〉
(1,1,1,1) 2 D4 F (0,1,0,0) 8 〈fp〉

A (-1,1,1,-1) 4 〈f, p2m〉 G (1,0,0,-1) 8 〈mf〉
B (1,0,-1,0) 4 〈mp2, fp〉 H (0,1,0,1) 4 〈p2, fp〉
C (0,0,1,1) 8 〈f〉 I (0,1,-1,1) 8 〈fp〉
D (0,-1,1,1) 16 〈I〉

J (0,1,1,1) 8 〈fp〉
K (-1,1,1,1) 8 〈fp〉

Table 2. Steady states for N = 4, the length of the orbits and
isotropy subgroups Σx. We have separated the solutions into the
homogeneous states, those connected with the first and second bi-
furcation of u = 0 and the two solutions connected by a saddle-node
J and K. See also Figure 2.

all the orbits, their lengths and the corresponding isotropy subgroups Σx. There,
〈f〉 stands for the group generated by f ∈ D4 × Z2, etc.

Now we can immediately draw the bifurcation diagram using the following three
rules [13, 19]:

1. A bifurcating branch must have the isotropy subgroup which is a subgroup of
the isotropy group of the primary branch.

2. Dimensions of unstable manifolds have to match at a bifurcation point (to
satisfy the principle of exchange of stability) and at ε = 0.

3. The number of nodal domains must increase from one bifurcation point to the
next.

With these rules there is only one way to construct the bifurcation diagram; see
Figure 2 (a) and (b), where the y-axis is not to any scale, and is only intended to
make clear the end-points of various branches at ε = 0. These figures show the
bifurcation structure arising from bifurcations of the zero solution.

We would like to make the following observations. The stable non-zero-mean
branches corresponding to the orbit K have to arise through a saddle-node bifur-
cation. Numerically, this happens at a value of ε ≈ 49.294 that is smaller than the
value ε4 = 122.432 at which the branches of the orbit A become stable; see Fig-
ure 3 which shows the equivalent numerically computed diagram. We will see the
equivalents of these statements in higher dimensional discretisations. Note that in
the numerics in Figure 3 the branches F and G have bifurcations at nearby values
of ε (ε ≈ 73.452 and ε ≈ 73.526) and the two separate bifurcations can not easily
be distinguished.

We did not perform a Liapunov–Schmidt calculation to determine the order of
bifurcations at the double eigenvalue point ε = 183.63, but any assignment of
stabilities different from that of Figure 2 cannot be reconciled with the above rules
of bifurcation.

3.2. The case of N = 32. Though an analysis similar to that in the case of N = 4
can be attempted here, the numbers of orbits are astronomical, and we rely on our
numerical continuation method, the results of which match exactly the predictions
of the analysis in the case N = 4. In Figure 4 we plot in (a)–(d) sample solution
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and second (b) bifurcation points. Solid lines represent stable and
broken lines unstable solutions respectively. We indicate above
each branch the dimension of the unstable manifold. We do not
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connected by a saddle-node bifurcation).
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branches of the bifurcation diagram with N = 32. If we start with a large value of
ε we see in (a) and (b) the first bifurcation arises at ε ≈ 10.64 as predicted by the
theory in Table 1. In (a) we show the continuation of the zero mean one-interface
which undergoes a pitchfork bifurcation at ε ≈ 2.012. In (b) we have plotted the
one-, three-, five- and seven- interface solutions and their stabilization. In (c) we
show details of the bifurcation structure close to the pitchfork at ε ≈ 2.012 (note for
clarity one branch of the pitchfork seen in (a) is not plotted). As α → 0.5, the saddle-
node bifurcation points converge to the value of where the zero mean one-interface
which undergoes a pitchfork bifurcation at ε ≈ 2.012. This structure is repeated
for the other n-interface solutions and is illustrated in (d) for the three-interfaces
solutions. Here we see that the zero-mean one-interface solution branches stabilize
at ε ≈ 2.012. Below we will formulate a conjecture concerning the limiting value
which we will call εs1 at which the one-interface branch with zero-mean stabilizes as
N → ∞.

4. The limiting problem and conclusions. It is not hard to prove (see for
example [3]) that if ε > 1, steady state solutions of (4) are continuous, since the
function −εu + f(u) is monotone. Hence it is interesting to understand when the
solutions lose continuity (certainly, for ε = 0 there are no non-constant continuous
solutions).

The non-trivial stable one-interface zero-mean solution branches (α = 0.5) that
originate at ε = 0 were investigated in detail as we change N . Define

M := max
j

∣

∣

∣

∣

uj+1 − uj

h

∣

∣

∣

∣

.

For a C1 function this converges to maxx∈[0,1] |ux| and so we can identify where the
solution is continuous.

Figure 5 plots in (a) M against ε along a branch of one-interface zero-mean
solutions for N = 2p, p = 4, 5, 6, 7, 8, 9, 10. Let εdm be the value of ε at which
solutions on the zero-mean 2m − 1-interface branch become discontinuous. Then
this figure suggests that N → ∞, εd1 → 1. This conclusion is supported in (b) which
shows for different ε convergence of the derivative M with N on a log log scale.

Furthermore the loss of continuity appears to coincide with the gain of stability
(equivalently the gain of continuity appears to coincide with the loss of stability). If
εsm is the value at which the zero-mean 2m− 1-interface solution becomes stable, in
Figure 6 we show numerically that the bifurcation values converge to εs1 = εs2 = 1
as N → ∞.

Now we can collect our observations and form two conjectures. First we consider
the zero-mean interface branches.
Conjecture 1: εsm = εdm.

We can prove a very weak form of this conjecture for m = 1. From the results of
[3] it follows that discontinuous stationary solutions will exist for any ε such that
the function

g(u) := −εu

∫ 1

0

J(s) ds+ f(u)
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Figure 4. (a) Continuation of the zero-mean one-interface (α =
0.5) solution branch. When ε ≈ 2.012 shown by ’o’ there is a
stabilizing pitchfork bifurcation. (b) Stabilization of one-, three-,
five-, and seven-interface solutions. (c) This is a blow up of the
bifurcation diagram around the stabilizing bifurcation at ε ≈ 2.012
shown by ’o’ for the α = 0.5 curve. Here stable solutions are
continued from ε = 0 with different ratios (α) of −1 and 1 values
of α. (d) A similar structure is observed starting from ε = 0 with
two–interface solutions with different ratios (α) of −1 and 1. In (c)
and (d) we examine α = 0.1, α = 0.2, α = 0.3125, α = 0.4 and
α = 0.5.

is non-monotone. On the other hand, from Theorem 2.1 of [6] it follows if g(u) is
monotone, there are no nonconstant minimizers of the energy functional (3). Hence
we have εs1 ≤ εd1.

We now consider the saddle-node bifurcation of the non–zero mean interface
solutions. Now, let ur be a branch of 2m− 1-interface stable solutions of (4) with
mean r, and let εbif,rm be the value of ε at which the saddle-node bifurcation giving
rise to the branch occurs. Then we have
Conjecture 2: lim

r→0
εbif,rm = εsm.
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Figure 5. (a) The maximum of |ux| in [0, 1] of the solution u(x)
for one-interface initial data with ±1 and α = 0.5. (b) maxx(|ux|)
for different system sizes for particular values of ε with system size
as the x-axis; note a clear change in behaviour at ε = 1.

These two conjectures, if true, would lead to the bifurcation picture sketched in
Figure 7. In (a) we plot the zero-mean one-interface branch and have indicated the
continuum of saddle–node bifurcations εs1 that approach the bifurcation at εs1 =
εd1 = 1. In (b) we indicate the first four branches of the infinite number that
bifurcate from zero, the branches of associated saddle-node bifurcations and here
we have that limr→0 ε

bif,r
m = εsm = εdm. In addition our numerical investigation

seems to indicate that εs1 = εd1 = 1 = εs2 = εd2.
Finally, let us consider stable solutions, that is the solutions we expect to see from

any simulation of dynamics. For ε > 1 we have two stable solutions, then a region
of parameter space with an infinite number of stable solutions of one- and three-
interface type, then a region of parameter space with one, three and five interfaces
and so on. In conclusion the diffusion coefficient ε determines the number and type
of stable solutions - from two to an infinite number for a finite value of ε unlike the
classical Allen-Cahn equation.
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