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In this article, we consider a nonlinear integro-differential equation that arises in a
θ̇-neural networks modeling. We analyze boundedness and invertibility of the model
operator, construct approximate solutions using piecewise polynomials in space, and
estimate the theoretical convergence rate of such spatial approximations. We present some
numerical experimental results to demonstrate the scheme.
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1. Introduction

Modeling scientific problems using convolution integrals and spatial approximations of such models are of ongoing in-
terest [3,7,10,6,5,8,19,20]. We consider such a nonlinear integro-differential equation model of transmission line in neural
networks with “θ̇-synapses” during bursting activity [18]:

∂θ(x, t)

∂t
= ε

∫
Ω

J∞(x − y)
∂θ(y, t)

∂t
dy + f

(
θ(x, t)

)
(1)

with initial function θ(x,0) = θ0(x) where x ∈ Ω ⊆ R, t � 0, the angle function θ(x, t) represents the phase of the signal
associated with a neuron at (x, t), f is a smooth function that represents potential effects and external inputs, J∞ is a
kernel function and ε > 0 is the parameter of the model. Eq. (1) is inhibitory when J∞ < 0 and excitatory when J∞ � 0
that influence the neighboring neurons. For this article, we consider a nonnegative normalized kernel function i.e.,

J∞(x) � 0

and ∫
Ω

J∞(x)dx = 1.

For a neuron at position x, the angle function θ represents the phase of the signal at a time t . It is to be noted that the
problem (1) is the continuous analogue of a discrete model of transmission line in neural networks with “θ̇-synapses” during

E-mail address: Bhowmiksk@gmail.com.
1 The author is thankful to Professor Dugald B. Duncan, Professor Rob Stevenson and Professor Sajeda Banu for their valuable suggestions and advice. The

author would also like to thank Professor Gabriel J. Lord for introducing him the model. The research was funded partially by the MACS studentship, Heriot–
Watt University, UK and partially by the Netherlands Organization for Scientific Research through a VIDI grant No. 639.032.509. The author is thankful to
the anonymous referees for their scrutiny.

0168-9274/$30.00 © 2010 IMACS. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.apnum.2010.12.003



Author's personal copy

582 S.K. Bhowmik / Applied Numerical Mathematics 61 (2011) 581–592

sustained bursting activity [17,19]. Various properties of this type of models and their solutions have been well presented
in [17].

Now if we consider a normalized kernel and Ω = R, then (1) can be written as(
L

∂

∂t
θ(·, t)

)
(x) = f

(
θ(x, t)

)
(2)

where

(L ψ)(x) =
∫
Ω

J∞(x − y)
(
ψ(x) − εψ(y)

)
dy.

In most articles

f (t, θ) = a(t) ± cos(θ)

has been considered as a nonlinearity. Here θ → cos−1 a(t) as t → ∞ for all 0 � a(t) � 1 which stabilizes the output, and
θ → ∞ when a(t) > 1 which oscillates the output [17, page xvi]. A saddle node bifurcation occurs when a(t) increases
or decreases through the value a(t) = 1. One may observe such phenomenon of solutions in Section 5. In this article we
consider (see [18,19] for physical explanation of such choices of f (θ))

a(t) =
{

2, if t � 10,

1, otherwise.

It is well understood from the studies [19] that ε < 1 can be an excitatory parameter and the Gaussian kernels are
associated to its bidirectional influence. So we are interested in using a normalized Gaussian kernel function

J∞(x) =
√

γ

π
exp

(−γ x2), (3)

where γ > 0, x ∈ Ω and 0 � ε < 1. Now the problem with a kernel of type

J∞(x) =
{ √

γ
π exp(−γ x2), when x � 0,

0, otherwise,

where γ > 0, corresponds to unidirectional connectivity. In both cases the influence is stronger between neurons that are
close to each other. Thus Eq. (2) describes a one-dimensional chain of single neurons interacting with each other where the
interaction depends on the choices of the kernel function J∞(x).

Spatial approximation of this type of convolution models are interesting as well as challenging. The unknown function
under the integral sign and the nonlinearity involved in the model make the approximation more challenging. The model
contains a convolutional kernel. As a result the discrete analogue of the operator (matrix) becomes dense which is difficult
to handle when one considers a fine grid. For a multidimensional domain it costs huge storage and computational time.
There are many ways of handling such problems. In most cases scientists use some lower order schemes (with midpoint
quadrature rules for integration [4,15]) to serve their purpose. Thus there is much room for improvements and we find an
interest of presenting and analyzing a higher order technique for space integration.

In [15], Duncan et al. consider a phase transition model of convolution type. The authors analyze coarsening of solutions.
They approximate the model using piecewise constant basis functions for space approximations. The authors also investigate
the time long dynamics of solutions. A fully discrete approximation of the same model and efficiency of various linear sys-
tem solvers for the resulting nonlinear system has been studied in [5]. Stability analysis of some numerical approximations
of a perturbed diffusion model can be found in [8]. In [7,10,6] the authors consider a linear convolutional model. They
approximate the model using a one step scheme. Then the authors investigate stability, accuracy and convergence of the
scheme in detail.

Our study is motivated by [9]. In [9], the authors study numerical approximation of a nonlocal, partly nonlinear, phase
transitions model. They analyze and approximate the problem using various schemes, being a finite difference method,
finite element methods with collocation and the Galerkin approach (using piecewise Lagrange polynomials to form finite
element basis functions), the Legendre and Tchebychef spectral methods in space followed by implicit schemes for the time
integration. The authors demonstrate some numerical solutions as well as the computational error. They also estimate the
theoretical errors of finite difference approximations and finite element approximations.

In [18,19], Jackiewicz et al. consider the model (1). They use the forward Euler method for time integration to form the
resulting model as an integral of Fredholm type. Then the authors approximate the resulting problem using various spectral
collocation methods. They present some numerical results to demonstrate their schemes. The motivation was to use global
polynomials to approximate θ(·, t). Solutions converge fast in such approximations if one considers smooth initial condition
as well as smooth boundaries [25]. Whereas for piecewise polynomial approximations such restrictions are not needed for
convergence. Also no theoretical error analysis has been done in the studies [18,19]. Thus we find an interest to approximate
the problem using piecewise basis functions for spatial approximation and to analyze the error in any such approximation.
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Now if we consider a spatially one-periodic initial function θ(x,0), then for all x ∈ R and t ∈ R+

θ(x, t) = θ(x + 1, t).

Then (2) can be written as(
L

∂

∂t
θ(·, t)

)
(x) = f

(
θ(x, t)

)
(4)

where

(L ψ)(x) =
1∫

0

J (x − y)
(
ψ(x) − εψ(y)

)
dy,

with

J (x) =
∞∑

r=−∞
J∞(x − r)

for all x ∈ [0,1]. We are interested to consider the periodic domain Ω = [0,1] for spatial approximations of the model.
However, it is well understood from [14] that an integro-differential equation of type (2) defined in the infinite domain

can be defined in a truncated finite domain [A, B] where A and B depend on the decay of the kernel function J∞(x).
A closed form formula to find suitable A and B is well presented in [14]. Thus the analysis and the approximation we
present here in a periodic spatial interval Ω = [0,1] can also be applied to any bounded interval [A, B].

In this study, we consider the model (4) with a Gaussian kernel defined by (3) and 0 < ε < 1. We organize the article
in the following way. Boundedness and invertibility of L are presented in Section 2. In Section 3, we present the approx-
imation of the problem using piecewise polynomials in space. We analyze the accuracy of the spatial approximation with
the exact Galerkin inner product, as well as with quadrature on each of the Galerkin inner products assuming the solutions
being smooth enough over the whole domain in Section 4. We conclude this study in Section 5 presenting some numerical
results and discussions.

2. Preliminary results on LLL

Here we show that the operator is bounded and invertible by imposing some reasonable restrictions on the kernel
function. We need the following result to bound the operator L .

Lemma 1. (See [4].) Assume that

H1 J (x) � 0,
H2 J (x) = J (1 − x),
H3

∫ 1
0 J (x)dx = 1,

then for any k ∈ Z, the following inequality holds

0 � Ĵ0 − Ĵk � 2.

Proof. The proof follows from the properties of J (x). �
Theorem 1. (Similar to [4].) If J ∈ L2(Ω), and satisfies H1–H3, then L : L2(Ω) → L2(Ω) is bounded and

‖L ‖ � 1 + ε.

Proof. Applying the Fourier series expansions and the convolutional property of the Fourier transform to any ψ , J ∈ L2(Ω),
we get

(L ψ)(x) =
∑

j

ψ̂ je
2π i jx − ε

∑
j

ψ̂ j Ĵ je
2π i jx

=
∑

j

q̂ jψ̂ je
2π i jx,
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where q̂ j = ( Ĵ0 − ε Ĵ j). Here

| Ĵ j| =
∣∣∣∣∣

1∫
0

J (x)e−2π i jx dx

∣∣∣∣∣ �
1∫

0

J (x)dx � 1.

Thus applying Lemma 1 and Parseval’s relation we get

‖L ‖ := sup
ψ �=0

‖L ψ‖
‖ψ‖ � max

j
| Ĵ0 − ε Ĵ j| � max

j

(| Ĵ0| + ε| Ĵ j|
)
� 1 + ε. �

Theorem 2. If the kernel function J (x) ∈ L2(Ω) satisfies the conditions H1–H3, then

0 < δ � ( Ĵ0 − ε Ĵ j) � 1 + ε,

for all j ∈ Z and 0 < ε < 1 where δ = ( Ĵ0 − ε sup j | Ĵ j |) and sup j | Ĵ j | = Ĵ0 .

Proof. The proof is trivial. �
Now we present the main theorem that shows the invertibility of L .

Theorem 3. If the kernel function J (x) ∈ L2(Ω) satisfies H1–H3, then for any ψ(x) ∈ L2(Ω), there exists C2 > C1 > 0 such that

C1
(
ψ(x),ψ(x)

)
�

(
L ψ(x),ψ(x)

)
� C2

(
ψ(x),ψ(x)

)
. (5)

Proof. For any ψ(x) ∈ L2(Ω), using Parseval’s relation(
L ψ(x),ψ(x)

) =
∑

n

(
(̂L ψ)n, ψ̂n

) =
∑

n

(q̂nψ̂n, ψ̂n).

Thus applying upper and lower bounds of q̂n we get

C1
(
ψ(x),ψ(x)

)
�

(
L ψ(x),ψ(x)

)
� C2

(
ψ(x),ψ(x)

)
. �

3. Numerical approximation

For numerical approximation we consider a spatial periodic Ω = [0,1] as the domain. Here we study the Galerkin
piecewise polynomial approximations in space. This study of polynomial approximation is performed following [4,11,21,23].
For any fixed t � 0, we look for ∂θ

∂t (·, t) ∈ L2(Ω) so that it satisfies(
L

(
∂θ

∂t
(·, t)

)
− f

(
θ(·, t)

)
, v

)
= 0, ∀v ∈ L2(Ω). (6)

To approximate the solution of (6), using piecewise polynomials in space, we define N space mesh points with step
size h = 1

N , x j = jh for all j = 0,1, . . . , N . We subdivide Ω into N pieces Ωi = [xi, xi+1] so that Ω = ⋃
i Ωi . We use the

Lagrange polynomials of degree m > 0 in each subinterval as the basis for the spatial approximation. In each subinterval,
two different choices of interpolation and quadrature points have been considered (Gauss quadrature points and Gauss–
Lobatto quadrature points). To define the interpolating polynomials, we subdivide intervals Ωi into m∗ pieces and define
m∗ (or m∗ + 1) points as interpolation points xi < x j

i < xi+1 (or xi � x j
i � xi+1, depending on quadrature and interpolation

points considered). We organize the spatial points x j
i as

x = [x1, . . . , xmN ]T

with

m =
{

m∗, for Gauss quadrature/interpolation points,
m∗ + 1, for Gauss–Lobatto quadrature/interpolation points.

We define the spatial approximate solutions θh(·, t) ∈ L2(Ω) as

θh(x, t) =
N∑

k=1

m∑
q=1

θ
q
k (t)lm,q,k(x) (7)
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with

lm,q,k(x) =
{

lm,q,k(x), x ∈ Ωk,

0, otherwise,

and θ
q
k (t) ∈ R where lm,q,k(x) are qth Lagrange polynomials of degree less than or equal to m. Following the standard

Galerkin approach we let ¯̄θh(·, t) ∈ Sh (we consider Sh as a space of piecewise polynomials of degree less than k for some
k � 2 in Ω), to satisfy(

L
∂ ¯̄θh

∂t
(x, t) − f

( ¯̄θh(x, t)
)
, lm,q,k(x)

)
= 0 (8)

for all m, q, k and we consider the approximate solutions θ̄h(·, t) ∈ Sh to satisfy(
L

∂θ̄h

∂t
(x, t) − fh

(
θ̄h(x, t)

)
, lm,q,k(x)

)
= 0. (9)

Here fh is defined by using the product approximation [13,24]

(
fh(θh)

)
(x) = Ih f

(
N∑

j=1

m∑
q=1

θ
q
j lm,q, j(x)

)
≈

N∑
j=1

m∑
q=1

f
(
θ

q
j

)
lm,q, j(x), (10)

where
N∑

j=1

m∑
q=1

f
(
θ

q
j

)
lm,q, j(x)

is the unique element in the solution space which interpolates

f

(
N∑

j=1

m∑
q=1

θ
q
j lm,q, j(x)

)

at the nodes xi and Ih is the interpolation operator.
Before further discussion of discretization we define the discrete inner product and the discrete norm in the following

way:
Consider the interval [a,b]. For any two functions w and g, we consider the discrete inner product (w, g)h by [9]

(w, g)h =
N∑

j=1

m∑
k=1

μk
j w

(
xk

j

)
g
(
xk

j

)
(11)

where N is the number of subintervals of [a,b], m is the number of quadrature points used in each subinterval, xk
j are

the quadrature points and μk
j > 0 are quadrature weights (we have considered the Gauss or the Gauss–Lobatto quadrature

weights). We also define the discrete analogue of the continuous L2 norm by

‖w‖2
h = (w, w)h. (12)

Considering a numerical integration scheme with nonzero quadrature weights, and using Lagrange polynomials for inter-
polation, we approximate (9) as(

L
∂θh

∂t
(x, t), lm,q,p(x)

)
h
− (

fh, lm,q,p(x)
)

h

=
m∑

q=1

μ
q
p

[
L

∂θh

∂t

(
xq

p, t
)
lm,q,p

(
xq

p
) − (

fh(θh)
)(

xq
p, t

)
lm,q,p

(
xq

p
)] = 0, (13)

for all p = 1, . . . , N . Now using the inner product (L ∂θh
∂t (x, t), lm,q,p(x))h with some quadrature rule with nonzero weights

it is easy to verify that the operator acting on (13) is positive definite (see [4] for similar discussion) if 0 < ε < 1. Thus the
time dependent system of ordinary differential equations(

L
∂θh

∂t
(x, t), lm,q,p(x)

)
h
− (

fh, lm,q,p(x)
)

h = 0, (14)

for all p = 1,2, . . . , N , has a unique solution for all 0 < ε < 1.
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4. Error estimate

In this section we discuss convergence analysis of the Galerkin finite element approximation based on piecewise polyno-
mials in space used to solve Eq. (4). Before we go into the main discussion we introduce the following definition:

We define the Sobolev spaces Hk through the derivatives as

Hk(Ω) =
{
ψ:

drψ

dxr
∈ L2(Ω), for all 0 � r � k

}
,

and the standard norm of such space can be defined as

‖ψ‖Hk =
√√√√ ∑

0�r�k

∥∥∥∥drψ

dxr

∥∥∥∥
2

L2

.

Sometimes the norm ‖ · ‖Hk is also denoted by ‖ · ‖k . When k = 0, the Hk norm becomes the L2 norm and we denote the
L2 norm by ‖ · ‖.

We let θ ∈ L2(Ω) to satisfy(
L

∂θ

∂t
(·, t), v

)
− (

f
(
θ(·, t)

)
, v

) = 0, for all v ∈ L2(Ω). (15)

Here we assume that θ0 and θ are sufficiently smooth (considering θ(·, t) ∈ Hk(Ω), t � 0, k > 1) for this analysis. Here c, ci ,
C , and Ci denote positive constants, not necessarily the same in different occasions. We assume S = Hk(Ω) for some k > 1.
It is also assumed that the solutions θ(·, t) ∈ S which is required for the error analysis.

4.1. Exact Galerkin inner product approximation

Let Sh ⊂ S be a finite-dimensional subspace that contains approximate solutions θh(x, t) using piecewise polynomials of
degree at most k − 1. Let P be a projection operator from the space S onto its subspace Sh. That is, v ∈ S implies that
P v ∈ Sh and it satisfies

(θ − Pθ, vh) = 0 for all vh ∈ Sh, (16)

so that Pθ is the L2 best fit to θ . It is observed [23] that

‖θ − θI‖ � Chr+1‖θ‖r+1, where 1 � r < k,

for any θ ∈ Hr+1 where I stands for interpolation by piecewise polynomials of degree k − 1. Since Pθ is the L2 best fit to θ

from Sh, from [22] it follows that

‖θ − Pθ‖ � ‖θ − θI‖ � Chr+1‖θ‖r+1, 1 � r < k, (17)

for all such interpolants θI ∈ Sh. It is to be noted that r are referred to as the order of accuracy in our spatial piecewise
polynomial approximation in this article.

The approximate solution θh(·, t) ∈ Sh satisfies(
L

∂θh

∂t
(·, t) − fh

(
θh(·, t)

)
, vh

)
= 0 for all vh ∈ Sh. (18)

From (18) and (15)(
L

(
∂θ

∂t
(x, t) − ∂θh

∂t
(x, t)

)
, vh

)
− (

f (θ) − fh(θh), vh
) = 0. (19)

Let e = ∂θ
∂t − ∂θh

∂t be the error in the spatial finite element approximation and we write

e = ∂θ

∂t
− ∂θh

∂t
= ∂θ

∂t
− ∂ Pθ

∂t
+ ∂ Pθ

∂t
− ∂θh

∂t
. (20)

Let

φ = ∂(Pθ − θh)

∂t
∈ Sh (21)

which will be needed in the later part of this section (it is to be noted that ∂θ
∂t is also denoted by θt ). Now we need the

following result to support the analysis in this section.
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Proposition 4.1. If f (θ(·, t)) is a smooth function in Ω for all θ ∈ S, fh(θh(·, t)) is defined by (10), and f (θh) ∈ Hr+1(Ω j) for all
j = 1,2, . . . , N, then∥∥ f (θ) − fh(θh)

∥∥ � C2hr+1 + C3hr+1‖θ‖r+1, (22)

for some constants C2 > 0 and C3 > 0 and 1 � r < k, if θ , and hence f ′(θ) is bounded for all t ∈ [0, T ] for some finite T � 0.

Proof. The proof follows from [4]. �
The main result of this section is represented by the following error estimate.

Theorem 4. If θh(·, t) ∈ Sh satisfies (18), and θ(·, t) ∈ S satisfies (15), ∂
∂t θ(·, t) ∈ Hk then the following inequality holds∥∥∥∥∂θ(·, t)

∂t
− ∂θh(·, t)

∂t

∥∥∥∥ � Chr+1, for 1 � r < k and C > 0.

Proof. Here

‖e‖ �
∥∥∥∥∂θ

∂t
− ∂(Pθ)

∂t

∥∥∥∥ +
∥∥∥∥∂(Pθ)

∂t
− ∂θh

∂t

∥∥∥∥.

(19) can be written as(
L

(
∂θ

∂t
− ∂(Pθ)

∂t

)
, vh

)
+

(
L

(
∂(Pθ)

∂t
− ∂θh

∂t

)
, vh

)
− (

f (θ) − fh(θh), vh
) = 0, (23)

for all vh ∈ Sh. Thus it remains to prove

‖φ‖ � Chr+1, for 1 � r < k,

since from (17) it follows that∥∥∥∥∂θ(·, t)

∂t
− ∂(Pθ)(·, t)

∂t

∥∥∥∥ � Chr+1, for 1 � r < k,

assuming ∂θ(·,t)
∂t ∈ Hr+1. Replacing vh by φ in (23) we get

∣∣(L φ,φ)
∣∣ �

∣∣∣∣
(

L
∂(Pθ − θ)

∂t
, φ

)∣∣∣∣ + ∣∣( f (θ) − fh(θh),φ
)∣∣. (24)

Now to find an upper bound of ‖e‖ we need to find norm of three terms of (24). For the first part of the RHS of (24) we
have ∣∣∣∣

(
L

∂(θ − Pθ)

∂t
, φ

)∣∣∣∣ � ‖L ‖
∥∥∥∥∂(θ − Pθ)

∂t

∥∥∥∥‖φ‖

� C

∥∥∥∥∂(θ − Pθ)

∂t

∥∥∥∥‖φ‖ (25)

where C > 0, second part of the RHS gives∣∣( f (θ) − fh(θh),φ
)∣∣ �

∥∥ f (θ) − fh(θh)
∥∥‖φ‖. (26)

Now from (5) one gets

C1(φ,φ) � (L φ,φ), for some C1 > 0. (27)

So

‖φ‖ �
∥∥∥∥∂

∂
(θ − Pθ)

∥∥∥∥ + ∥∥ f (θ) − fh(θh)
∥∥. (28)

Thus applying (17) and (25) in (28), and then canceling common terms we get

C1‖φ‖ � C4hr+1
∥∥∥∥∂θ

∂t

∥∥∥∥
r+1

+ ∥∥ f (θ) − fh(θh)
∥∥, for 1 � r < k, (29)

for some C1 > 0, and C4 > 0. Combining (22) and (29) we get the required bound∥∥φ(t)
∥∥ � C∗

2hr+1, for 1 � r < k,

for some C∗
2 > 0, which proves our claim. �
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4.2. Quadrature Galerkin approximation

It is a practice as well as obvious that the integrals are approximated by quadrature rules unless they happen to be easy
to calculate exactly. There are several standard rules to serve the purpose. We use the Gauss/Gauss–Lobatto quadrature (the
so-called mass lumped technique) to serve our purpose and show that there is no loss of accuracy if one uses such an
alternative.

Here we analyze the convergence of the Galerkin method with quadrature on inner product integrals (Gauss/Gauss–
Lobatto quadrature (the so-called mass lumped technique) [23]). From [1,2,12,16] and many references therein it is well
understood that

‖ · ‖h ≡ ‖ · ‖
for all functions in the approximation space Sh, i.e., there exist C1 > 0, C2 > 0 such that

C1‖vh‖ � ‖vh‖h � C2‖vh‖, for all vh ∈ Sh. (30)

Here we consider θh(·, t) ∈ Sh as the solution of the quadrature approximation of (18)(
L

(
∂θh(·, t)

∂t

)
(x), vh

)
h

= (
fh

(
θh(x, t)

)
, vh

)
h, for all vh ∈ Sh (31)

where

(
L ψ(x), v

)
h =

n∑
i, j=1

m∑
r1,r2=1

μ
r1
i μ

r2
j J

(
xr1

i − xr2
j

)(
ψ

(
xr2

j

) − εψ
(
xr1

i

))
v
(
xr1

i

)
. (32)

This analysis is performed following [4,9]. We define the projection operator Ph such that v ∈ S implies Ph v ∈ Sh, and
satisfies [4,9]

(θ − Phθ, v)h = 0,

for all v ∈ Sh (so that Phθ is the L2 best fit of θ in this discrete norm). Combining (17) and (30)

‖θ − Phθ‖h � ‖θ − θI‖h � C‖θ − θI‖ � C Q hr+1‖θ‖r+1, for 1 � r < k, (33)

where the interpolant θI ∈ Sh. Now we find the error bound in the Galerkin method with a quadrature approximation for
space integrals by the following result.

Theorem 5. If θh ∈ Sh satisfies (31), and θ ∈ S satisfies (15), ∂
∂t θ(·, t) ∈ Hk, then the following inequality holds

‖e‖h =
∥∥∥∥∂θ

∂t
− ∂θh

∂t

∥∥∥∥
h
� C Q hr+1,

for 1 � r < k and C Q > 0 depends on the quadrature rule used.

Proof. Following a similar process to that of the Galerkin method with exact integration (20) can be written as∥∥∥∥∂(θ − θh)

∂t

∥∥∥∥
h

�
∥∥∥∥∂(θ − Phθ)

∂t

∥∥∥∥
h
+

∥∥∥∥∂(Phθ − θh)

∂t

∥∥∥∥
h
. (34)

Similar to (23) the quadrature error can be presented as [9](
L

∂(θ − Phθ)

∂t
, vh

)
h
+

(
L

∂(Phθ − θh)

∂t
, vh

)
h
− (

f (θ) − fh(θh), vh
)

h = 0, (35)

for all vh ∈ Sh . Now (35) can be rearranged as(
L

∂(Phθ − θh)

∂t
, vh

)
h

=
(

L
∂(−θ + Phθ)

∂t
, vh

)
h
+ (

f (θ) − fh(θh), vh
)

h (36)

for all vh ∈ Sh . Considering

φh = ∂(Phθ − θh)

∂t
∈ Sh

and replacing vh by φh , (36) can be written as
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∣∣(L φh, φh)h
∣∣ �

∣∣∣∣
(

L
∂(−θ + Phθ)

∂t
, φh

)
h

∣∣∣∣ + ∣∣( f (θ) − fh(θh),φh
)

h

∣∣. (37)

Now ∣∣( f (θ) − fh(θh),φh
)

h

∣∣ � ‖ f − fh‖h‖φh‖h.

Following [4,9] (similar to the exact inner product estimate)∥∥ f (θ) − fh(θh)
∥∥

h � C1
Q hr+1‖θ‖r+1 + C2

Q hr+1 (38)

for all 1 � r < k if θ , and hence f ′(θ), is bounded for all t ∈ [0, T ] (T � 0 is a finite number) C i
Q , i = 1,2 are constants

depend on the quadrature rule used. Now applying (33) we get∣∣∣∣
(

L
∂(θ − Phθ)

∂t
, φh

)
h

∣∣∣∣ � C∗
Q

∥∥∥∥∂(θ − Phθ)

∂t

∥∥∥∥
h
‖φh‖h

� C Q hr+1
∥∥∥∥∂θ

∂t

∥∥∥∥
r+1

‖φh‖h, (39)

Fig. 1. Here f (θ) = a + cos(θ) where a = 2 if t � 10 and a = 1 if θ > 10 and ε = 0.1. We present contours at grid values cos(θh(·, t)) (lower two plots)
and θh(·, t) (upper two plots) at grid points with various choices of polynomial approximations where θ0(x,0) = 16πx when 0 � x � 0.5 and θ0(x,0) =
16π(1 − x) when 0.5 < x � 1 (P1 (left figures) and P2 (right figures) polynomial approximations with 28 space elements).



Author's personal copy

590 S.K. Bhowmik / Applied Numerical Mathematics 61 (2011) 581–592

where 1 � r < k and C Q > 0 is a constant depends on quadrature used and ∂
∂t θ(·, t) ∈ Hr+1. Similar to the exact Galerkin

inner product approximation, a discrete version of (5) can be written as

C1
Q

∣∣(φh, φh)h
∣∣ �

∣∣(L φh, φh)h
∣∣. (40)

Thus combining inequalities (38), (39), and (40), Eq. (37) can be written as∥∥φh(t)
∥∥

h � C∗
Q hr+1, for 1 � r < k,

for some C∗
Q completes the proof since∥∥∥∥∂(θ − Phθ)

∂t

∥∥∥∥
h
� C Q hr+1, for 1 � r < k,

for some C Q > 0 which depends on the quadrature rule used. �
5. Numerical experiments and discussions

Here we present and discuss numerical solutions obtained from the scheme (14) defined in Section 3. The semidiscrete
time dependent system of differential equations (14) is solved using Matlab with various choices of initial functions, non-
linearity, and parameter. The kernel defined in (3) with γ = 10, and f (t, θ) defined in the introduction are considered for
our numerical experiments. We use various Lagrange polynomials, the Gauss (–Lobatto) quadrature points for interpolation,
and quadrature to solve the problem considering N = 28 space elements. In Figs 1, 2, and 3, we present the approximate
solutions θh(·, t) and contours of cos(θh(·, t)) in Ω = [0,1] to observe the propagation of the initial wave (here solutions
are plotted at grid points for all cases). It is observed that the Pi polynomial approximations give the same pattern of ap-
proximate solutions θh(x, t) (with i = 1,2 only). Here we notice that the solutions from both the polynomial approximations
evolve to the same steady states which are the staircases since f (θ) = 0 gives cos(θ) = ±1 as t → ∞. The number of jumps
on the steady state patterns of solutions depend on the solution pattern of θ(·,10) (of θ(·,5) in Fig. 3). From these numer-
ical results we notice that the solution patterns depend on the nonlinearity, and that the jumps on steady state solutions
depend on the choices of initial function.

In Fig. 4, we show the computational error in such a spatial approximation with a fixed initial function, and considering
ε = 0.1 and the error computed at t = 1. It is noticed that the approximations presented in Fig. 4 give the computational
accuracy of order O(h2) and order O(h3), respectively, and these computations agree with our theoretical error estimates
(presented in the previous two sections).

The above discussion implies that a numerical method based on any kth degree piecewise polynomials for spatial ap-
proximation for the θ̇ model is accurate of order O(hr+1), where k > r � 1.

Some restrictions on the model operator are imposed in this study for the theoretical error estimates as well as for
computations. We consider a nonnegative kernel with some additional requirements needed for the analysis. The theoretical

Fig. 2. We consider f (θ) = 2 − cos(θ) when t � 10 and f (θ) = 1 − cos(θ) when θ > 10, as well as ε = 0.001. Contours (at grid values cos(θh(·, t)), right
plot), and θh(·, t) (left plot) are presented where θ0(x,0) = 8πx when 0 � x � 0.5, θ0(x,0) = 8π(1 − x) when 0.5 < x � 1. Solutions are computed using
P1 polynomial approximations with 28 space elements.
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Fig. 3. We consider f (θ) = a−cos(θ) where a = 2 if t � 5 and a = 1 if θ > 5 and ε = 0.1. θh(x, t) is plotted at grid points with various choices of polynomial
approximations where θ0(x,0) = 24πx(1 − x) and N = 28 considering Gauss quadrature points for interpolation and integrations.

Fig. 4. Here we consider f (θ) = a + cos(θ) where a = 2 if t � 10 and a = 1 if θ > 10, ε = 0.1, and θ0 = 16πx if 0 � x � 0.5, θ0 = 16π(1 − x) if 0.5 < x � 1.
Here we compute numerical error at t = 1.

error analysis is performed assuming both the exact solutions and the approximate solutions are sufficiently smooth in Ω

for the study. We consider a bi-directional kernel that is related to the excitatory neurons.
Few questions can be addressed as future research interest. It would be interesting to consider kernels related to in-

hibitory and unidirectional neurons for both computation and analysis. Moreover, one may consider multidimensional spatial
domain for both approximation and analysis, which is of course more challenging to implement.
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