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Abstract

In this thesis, we discuss the constructions of the generalized Cantor sets which are the
prototypical fractals and also discuss the Markov operators defined on separable complete
metric space. We show that these specia types of sets are Borel set as well as Borel
measurable whose Lebesgue measures are zero. We formulate Iterated Function System of
the Generalized Cantor Sets (IFSGCS for short) using affine transformation method and
fixed points method of Devaney [1]. We find the Hausdorff dimension of the invariant set
for iterated function system of generalized Cantor sets. We aso formulate Iterated Function
System with probabilities of the Generalized Cantor Sets (IFSPGCS for short). We show
their invariant measures using Markov operators and Barnsey-Hutchinson multifunction.
We observe that these functions satisfy the sweeping properties of Markov operator. In
addition, we show that these iterated function system with probabilities are non-expansive
and asymptotically stable if the Markov operator has the corresponding property. Further we
study two dimensiona fractals such as the Koch snowflake, the Koch curve, the Sierpifski
triangles, the Sierpinski carpet, the box fractal and also three dimensiona fractals such as
the Menger sponge and the Sierpinski tetrahedron. We show fractal and topological
dimensions and Lebesgue measures of those fractals. We aso formulate iterated function
system of higher dimensional fractals such as the square fractals, the Menger sponge, the
Sierpinski tetrahedron and the octahedron fractal. We find the Hausdorff dimension of the
invariant set for iterated function system of those fractals.

Keywords: Cantor set, Bord measure, Lebesgue measure, Iterated function system, Hausdorff
dimension, Topologica dimenson, Invariant measure and Markov operator.
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ABSTRACT

In this thesis, we discuss the constructions of the generalized Cantor sets which are the
prototypical fractals and also discuss the Markov operators defined on separable complete
metric space. We show that these special types of sets are Borel set as well as Borel
measurable whose Lebesgue measures are zero. We formulate Iterated Function System of
the Generalized Cantor Sets (IFSGCS) using affine transformation and fixed points
method. We discuss the Hausdorff dimension of the invariant set for iterated function
system of generalized Cantor sets. We also formulate Iterated Function System with
probabilities of the Generalized Cantor Sets (IFSPGCS). We show their invariant
measures using Markov operators and Barnsley-Hutchinson multifunction. We observe
that these functions satisfy the sweeping properties of Markov operator. In addition, we
show that these iterated function systems with probabilities are non-expansive and
asymptotically stable if the Markov operator has the corresponding property. Further we
study two dimensiona fractals such as the Koch snowflake, the Koch curve, the Sierpinski
triangles, the Sierpinski carpet, the box fractal and also three dimensiona fractals such as
the Menger sponge and the Sierpinski tetrahedron. We show fractal and topological
dimensions and Lebesgue measures of those fractals. We formulate iterated function
system of higher dimensional fractals such as the square fractals, the Menger sponge, the
Sierpinski tetrahedron and the octahedron fractal. We aso discuss the Hausdorff
dimension of the invariant set for iterated function system of those fractals.

Keywords: Cantor set, Bord measure, Lebesgue measure, Iterated function system, Hausdorff
dimension, Topologica dimension, Invariant measure and Markov operator.
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| NTODUCTION

Dynamics is an iterative process of objects; fractals are the attractors of iterated function
systems that are static images. In recent years, the most chaotic regions for dynamical
systems are fractals. The study of the geometric structure of fractals has significant roles
understanding chaotic behavior of dynamical systems.
A Fractal, as defined by B. Mandelbrot, “is a shape made of parts similar to the whole in
some way” [1]. A Fractal is a geometric object with two important properties: (i) self-
similarity; (ii) non-integer dimension.
A non-empty set 'R is caled a Cantor set if (a) T' is closed and bounded, (b) T’
contains no intervals, (¢) Every point in T is an accumulation point of I". The Cantor set
is the prototypical fractal [2]. The Cantor sets were discovered by the German George
Cantor in the late 19th to early 20th centuries (1845-1918). He introduced fractal which
has come to be known as the Cantor set, or Cantor dust.
We study the Cantor set and find the generalized Cantor sets and show its dynamical
11111

behaviors and fractal dimensions [3]. The Cantor middle=,=,=, =, —,---sets, in
3579 1

! T (2<m< ) is called the generalized Cantor sets and it

general, the Cantor middle 5

is denoted by C,,,,,, Whichis defined by the algorithm and also defined by the shrinking

process. We study the generalized Cantor sets in measure space and find that these special
types of sets are Borel set as well as Borel measurable whose Lebesgue measure is zero
[4]. Then we formulate iterated function system of the generalized Cantor sets using
Barngley-Hutchinson multifunction [5] and show the Hausdorff dimension of the invariant
sets for the IFSGCS. We dso show the sweeping properties of Markov operator for
IFSGCS. We formulate iterated function system with probabilities of generalized Cantor
sets and shown their invariant measures using Markov operator and Barnsley-Hutchison
multifunctionin [6].

Then we study asymptotic stability of Markov operators define on locally compact space,
which show the utility of the lower bound function technique in proving the convergence
of iterates (asymptotic stability) for this class of operators [7]. This criterion is applied to
iterated function system of generalized Cantor sets. In particular it is shown that iterated
function system of the generalized Cantor sets are non-expansiveness and asymptotically
stable if the Markov operator P, has the corresponding property.

Finally, we study two dimensional fractals such as the Sierpinski triangles, the Koch
snowflake, the Koch curve, the Sierpinski carpet, the box fractal, the square fractals and

also three dimensiona fractals such as the Menger sponge, the Sierpinski tetrahedron. We
Xi
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show fractal and topological dimensions and Lebesgue measures of those fractals. The
main aim is to formulate the iterated function system of higher dimensiona fractals and
show the Hausdroff dimension of the invariant set for iterated function system of those
fractals. To the best of my knowledge first time we formulate iterated function system of
three dimensional fractals such as the Menger sponge, the Sierpinski tetrahedron and the
octahedron fractal also we formulate iterated function system of two dimensiona the

square fractals using the Cantor middle% set and the Cantor middleé Set respectively.

In Chapter 1, we introduce a number of fractals that are crested by a pecific st of rules. Such
fractas are referred to as determinigtic fractals because their fate is determined by successive
goplications of therules. All rules divide an image into smaler pieces, smilar to the origina and
congruent to each other and then remove some of those pieces.

In Chapter 2, we discuss the construction and the properties of the classical Cantor set.
We study the Cantor set and find the generdlized Cantor sets. The Cantor
middle}, 1 1 1 iSets in general, the Cantor middle 1
357 911 2m-1
called the generalized Cantor sets and it is denoted by C,,,, ;-

, (2<m< o) sets are

In Chapter 3, we discuss the constructions of the two and three dimensiona fractals. We
show fractal dimensions and topological dimensions of the one, two and three dimensional
fractals.

In Chapter 4, we show that the specia type generalized Cantor sets are Bord set aswell as
Bord measurable and whose Lebesgue measure is zero. Also we show that the Lebesgue
measures of the two and three dimensiond fractas are zero.

In Chapter 5, we formulate iterated function system of the generalized Cantor sets, two
dimensional fractals such as the box fractal and the square fractals and also three
dimensional fractals such as the Menger sponge, the Sierpinski tetrahedron and the
octahedron fractal.

In Chapter 6, we discuss the properties of Markov operator on measure space. We show
its applications to iterated function system of the generalized Cantor sets.

In Chapter 7, we discuss basic measure theory, Hausdorff measure and Hausdorff
dimension. We show the Hausdorff measures and Hausdorff dimensions of the invariant

Xii
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sets for iterated function system of the Generalized Cantor sets and also we show the
Hausdorff measures and Hausdorff dimensions of the invariant sets for iterated function
system of the two and three dimensional fractals.

In Chapter 8, we discuss iterated function system with probabilities and invariant
measures. We formulate iterated function system with probabilities of the generalized
Cantor sets and show their invariant measures using Barnsley-Hutchinson multifunction
and Markov operator.

In Chapter 9, we define the transition operator P, for iterated function system with

probabilities of the generalized Cantor sets and show that this operator is a Markov
operator. We show that the Iterated Function System with Probabilities of the Generalized
Cantor sets is non-expansive and asymptotically stable if the Markov operator P, has the

corresponding property with respect to the metric j (r (X, Y)).

In Chapter 10, we survey some applications of fractals by renowned mathematicians.
This section is ended with a comment to peruse further research.

Xiii
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CHAPTER ONE

FRACTAL GEOMETRY

OVERVIEW

In this chapter, we discuss historical background of fractal geometry. There are two major
variations of fractals such as deterministic fractals and random fractals. Deterministic
fractals are composed of several scaled and rotated copies of itself such as agebraic
fractals and geometric fractals. Random fractals consist of those fractals which exhibit
property of statistical self-similarity. We discuss all types of fractals.

1.1. History of Fractal Geometry

The mathematics behind fractals began to take shape in the 17th century when the
mathematician and philosopher Gottfried Leibniz considered recursive self-similarity. It
was not until 1872 that a function appeared whose graph would today be considered
fractal, when Karl Weierstrass gave an example of a function with the non-intuitive
property of being everywhere continuous but nowhere differentiable.

In 1883, Georg Cantor also gave examples of subsets of the rea line with unusual
properties- these Cantor sets are also now recognized as fractals, which was self-similar. It
was discovered by Henry John Stephen Smith in 1874.

In 1904, Helge von Koch, dissatisfied with Welerstrass's abstract and analytic definition,
gave a more geometric definition of a similar function, which is now called the Koch
curve. Waclaw Sierpinski constructed his triangle in 1915 and, one year later, his carpet.
Also Paul Pierre Lévy described a self-similar curves in his paper “Plane or Space curves
and surfaces consisting of parts similar to the whole” in 1938. The Lévy C curve was a
new fractal curve.

In the 1960s, Benoit Mandelbrot started investigating self-similarity that was on earlier
work by Lewis Fry Richardson, in his paper “How Long is the Coast of Britain? Satistical
Sdf-similarity and Fractional Dimension’ in 1967.

Finally, in 1975 Mandelbrot coined the term ‘fractal’ to denote an object whose
Hausdorff— Besicovitch dimension is greater than its topological dimension. He illustrated
this mathematical definition with striking computer-constructed visualizations. These
images captured the popular imagination; many of them were based on recursion, leading
to the popular meaning of the term “fractal’.

Iterated functions in the complex plane were investigated in the late 19" and early 20th
centuries by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid of
modern computer graphics, however, they lacked the means to visualize the beauty of
many of the objects that they had discovered.

Iterated functions in the complex plane were investigated in the late 19" and early 20th
centuries by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid of
modern computer graphics, however, they lacked the means to visualize the beauty of
many of the objects that they had discovered. The mathematical concept of a fractal was

Chapter One 1
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discovered by French mathematician Gaston Julia. Julia was interested in the set of points
defined by iteration of functions.

In 1975, Benoit Mandelbrot observed that geometric objects like the Cantor set and the
Sierpinski triangle were not mathematical pathologies. Rather, these complicated sets
provided a geometry that is in many ways more natural than classical Euclidean geometry
for describing intricate objects in nature such as coastlines and snowflakes. Thus was born
fractal geometry.

1.2. What’s a Fractal?
The word ‘fractal’ is related to the Latin verb frangere, which means “to break”. In the
Raman mind, frangere may have evoked the action of breaking a stone; since the adjective
derived it combines the two most obvious properties of broken stones, irregular and
fragmentation. This adjective is fractus, which lead to fractal. The etymological kinship
with “fraction” is also significant if ones interprets “fraction” as a number that lies
between integers. Indeed, a fractal set can be considered as lying between the shapes of
Euclid.
In his founding paper, “Fractal: Form, Chance and Dimension” Benoit Mandelbrot
coined the term Fractal, and described it as follows:
A fractal is a rough or fragmented geometric shape that can be subdivided in parts, each
of which is (at least approximately) a reduced-size copy of the whole.
The word *fractal’ is derived from the Latin word fractals meaning broken, and is a
collective name for a diverse class of geometrical objects, or sets, holding most of, or all
of the following properties|[8].
1. The set has afine structure; it has details on arbitrary scales.
2. The set is too irregular to be described with classica Euclidean geometry, both
locally and globally.
3. The set has some form of self-similarity; this could be approximate or statistical
sdlf-smilarity.
4. Usually, the ‘fractal dimension’ of the set is strictly greater than its
Topological dimenson.
5. In most cases of interest the set has a very simple definition, that is, it can be
defined recursively.
Property (4) is Mandelbrot’s original definition of a fractal; however, this property has
been proven not to hold for all sets that should be considered fractal. In fact, each of the
above properties has been proven not to hold for at least one fractal.
Several attempts to give a Pure Mathematical Definition of Fractals have been proposed,
but all proven unsatisfactory.

M athematical Definition of Fractal:
A fractal is a subset of R" which is self-similar and whose fractal dimension exceeds its
topological dimension.

Chapter One 2
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Fractals can be classified in numerous manners, of which one stands out rather distinctly:
exact (regular) fractals versus statistical (random) fractals. An exact fractal is an “object
which appears self-similar under varying degrees of magnification in effect, possessing
symmetry across scale with each small part replicating the structure of the whole.” On the
other hand, the object replicates itself in its statistical properties only; it is defined as a
“statistical fractal.” Statistical fractals have been observed in many physical systems,
ranging from material structures (polymers, aggregation, interfaces, etc.) to biology,
medicine, electric circuits, computer interconnects, galactic clusters, and many other
surprising areas, including stock market price fluctuations [9].

1.3. Typesof Fractals
There are two major variations of Fractals [10]

1. Deterministic Fractal

2. Random Fractal
The first category consists of those fractals that are composed of severa scaled and rotated
copies of itself such as Koch curve, Serpinski triangles and Sierpinski carpet. They are called
Geometric fractals. Julia set also falls in same category. The whole set can be obtained by
applying a non-linear iterated map to all arbitrary small section of it. Thus the structure of
Julia set is aready contained in any small fraction. They are called algebraic fractals. Thus
both algebraic and geometric fractals are termed deterministic fractals. If the generation
requires use of a particular mapping or rule which repeated recursively over and over
again, they exhibit the property of strict self-similarity. The second category consists of
those fractals which have an additional element of randomness allowing for ssmulation of
natural phenomenon. So they exhibit property of statistical self-similarity.

1.3.1. Geometric Fractals
The fractals of this class are visual. These fractals are created from repeating a process or
pattern over and over again.

1.3.1.1. The Cantor Set
The Cantor set is created by removing the middle third segment of a unit line segment.
Begin with the closed interval I, =[0,1] shown in Figure 1.1. Remove the middle open

third. This leaves a new set I,. Each iteration through the algorithm removes the open
middle third from each segment of the previous iteration. Thus the next set would be T.
In general, after n times iterations, we obtain T, for all neN, which consists of 2"

closed intervals all of which the same length 3—1n The Cantor middle third set is the

“limiting set” of this process, that is, C = ﬂl“n and call it the Cantor middle% Set.

n=1
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Figure 1.1 Construction of the Cantor middle% set
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1.3.1.2. Two Dimensional Geometric Fractals

Two classical examples of two dimensional geometric fractals are as follows:
1. TheVon Koch Snowflake
2. The Seirpinski gasket or triangle

1.3.1.2.1.[1] The Von Koch Snowflake

The Koch snowflake is generated by an infinite succession of additions. Begin with the
boundary of an equilateral triangle with sides of length 1. Remove the middle third of each
side of the triangle just as we did in the construction of the Cantor set. This time, however,
we replace each of these pieces with two pieces of equal length, giving star-shaped region

depicted in Figure 1.2. This new figure has twelve sides, each of Iengthé. Each iteration
through the algorithm removes the middle third from each segment of the previous
iteration and replace it with a triangular “bulge” made of two pieces of Iengthé. The

result is aso shown in Figure 1.2.

We continue this process over and over. The ultimate result is a curve that is infinitely
wiggly-there are no straight lines in it whatsoever. This object is caled the Koch
snowflake. Clearly, there are pieces of the Koch snowflake that are self-similar.

/ /\\ i:z f}% &

Oiteration 1% iteration 2nd iteration 3rd iteration 4™ iteration
Figure 1.2 Congtruction of the Koch snowflake
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1.3.1.2.2. The Koch Curve

In two-dimensional case they are made of a broken line (or of a surface in three-
dimensional case) so-called the generator. Each of the segments which form the broken
lineis replaced by broken line generator at corresponding scale for a step of algorithm. As
aresult of infinite repeating the steps geometrical fractal arises.

The process of construction begins from the segment of single length. It is zero generator
of the Koch curve. Then each of section (one segment in zero generation) is replaced by
formative element defined as Figure 1.3 as n=1. Asaresult of the substitution we get the

next generation of the Koch curve. There are four rectilinear sections length % when the

first generation is. Thus to produce the next generation al of the section of previous
generation are replaced by diminished formative element. The curve of n-th generation is
called prefractal when n is finite quantity. When n is infinite quantity the curve is
considered afractal object. [11]

VA O 1 N

1% iteration 2" jteration 3% jteration
4™ iteration 51 iteration

Figure 1.3 Construction of the Koch curve

1.3.1.2.3.[1] The Sierpinski Gasket or Triangle

Like the Cantor middle-third set, this object may also be obtained by an infinite sequence
of ‘removals’. Begin with the equilateral triangle shown in Figure 1.4. Then remove from
the middle a triangle whose dimensions are exactly half that of the original triangle. This
leaves three smaller equilateral triangles, each of which has dimensions one-half the
dimensions of the original triangle. Now continue this process. Remove the middie
portions of each of the remaining triangles, leaving nine equilateral triangles. In general,

: . . . : 1
after n times iterations, we remove 3" open triangles of size > from each to form the

previous images. The resulting image after carrying this procedure to the limit and is called
the Sierpinski triangle.
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Oiteration 1% iteration

A

La

2" jteration 3%jteration
Figure 1.4 Construction of the Sierpinski triangle

There are many fractals that may be constructed via varations on this theme of infinite
removals. For example, we may construct asimilar sets by beginning with aisoceles right
triangle and a scalene triangle, asin Figure 1.5, Figure 1.6.

Oiteration 1% iteration

h N
~g L

2" jteration 3%jteration
Figure 1.5 Construction of the Sierpinski right isosceles triangle
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A

O iteration 1% iteration
A
2" jteration 3%jteration

Figure 1.6 Construction of the Sierpinski scalene triangle

Another fractals, the “Sierpinski carpet” fractal is obtained by sucessively removing
middle square whsoe sides are one-third as long as their predecessor, as shown in Figure

1.7. The “box” fractal is obtained by successively removing squares whose sides are one-
third as long as their predecessors, as shwon in Figure 1.8.

Oiteration 1% iteration

2" jteration
Figure 1.7 Construction of the Sierpinski carpet

.

O iteration 1% iteration
Figure 1.8 Construction of the box fracta

2" jteration
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Similarly, we construct the “square” (using the Cantor middle one-third set) fractal which
is obtained by removing squares whose sides are one-third as long as their predecessor, as

shown in Figure 1.9.
H B .. ..
H E H E
H B .. ..
H B H B

O iteration 1% iteration 2" jteration
Figure 1.9 Construction of the square fractal (using the Cantor middle third set)

1.3.1.3. Three Dimensional Geometric Fractals

Two classical examples of three dimensional geometric fractals are as follows:
1. The Menger sponge
2. The Sierpinski tetrahedron

1.3.1.3.1. The Menger Sponge

The Menger sponge is a fractal curve also known as the Menger universal curve. It is a
three-dimensional generalization of the Cantor set and the Sierpinski carpet. Begin with a
closed (filled) unit cube shown in Figure 1.10. Divide every face of the cube into 9 cubes,
like a Rubik’s cube (Magic cube). Thiswill sub-divide the cube into 27 smaller cubes. We
remove the smaller cube in the middle of each face and remove the smaller cube in the

very center of larger cube; totally we remove 7 open cubes of size % and leaving 20
smaller cubes. Now continue the process. Remove the smaller cube in the middle of each

of the remaining cubes, we remove 7.20 open cubes of size % and leaving (20)? smaller

cubes. In genera, n time’s iterations, we remove 7.(20)"*open cubes of size 3—1n The

Menger spongeitsalf isthe limit of this process after an infinite number of iterations.

O iteration 1% iteration 2" teration
Figure 1.10 Construction of the Menger sponge
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1.3.1.3.2. The Sierpinski Tetrahedron

Like the Menger sponge, this object may also be obtained by an infinite number of
iterations. Begin with a closed (filled) tetrahedron with unit edge shown in Figure 1.11.
Divide every face of the tetrahedron into 3 triangles. This will sub-divide the tetrahedron
into 8 smaller tetrahedrons. We remove the smaller tetrahedron in the middle of each face
and remove the smaller tetrahedron in the very center of larger tetrahedron; totally we

1 : .
remove 4 open tetrahedrons of size > and leaving 4 smaller tetrahedron. Now continue
this process. Remove the smaller cube in the middle of each of the remaining cubes, we

remove 4.4 open tetrahedron of size % and leaving (4)? smaller tetrahedrons. In general,

n time’s iterations, we remove 4.4""open cubes of size o The Sierpinski tetrahedron

itself isthe limit of this process after an infinite number of iterations.

Oiteration 1% iteration 2" iteration
Figure 1.11 Construction of the Sierpinski tetrahedron

Similarly, we construct another three dimensional fractal, the ‘octahedron’ fractal is
obtained by the following algorithm:

1.3.1.3.3. The Octahedron Fractal

Begin with a closed (filled) octahedron with unit edge shown in Figure 1.12. Divide every
face of the octahedron into 3 triangles. This will sub-divide the octahedron into 8 smaller
octahedrons. We remove the octahedron in the middle of each face and remove the smaller
octahedron in the very center of larger octahedron; totally we remove 2 open octahedrons

of edge size % and leaving 6 smaller octahedron. Now continue this process. Remove the
smaller octahedron in the middle of each of the remaining octahedron, we remove 2.6

open octahedron of size % and leaving 6° smaller octahedrons. In general, after n time’s

iteration, we remove 2.6"" open octahedrons of edge size 2—1n The octahedron fractal itself

isthelimit of this process after an infinite number of iterations.
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H, H, (1% Iteration)

Figure 1.12 Construction of the octahedron fractal

1.3.2. Algebraic Fractals
Algebraic fractal is the biggest class of fractals. These fractals are created by an equation
over and over in n-dimensional spaces. Two classical examples of algebraic fractals are
asfollows:

1. The Julia set

2. The Mandelbrot set

1.3.2.1. [8] The Julia Set
The Julia set is the place where al of the chaotic behavior of a complex function occurs.

We consider the functions f :C — C of the form f =z*+c, where both z and ¢ are
complex numbers. For the simplest case, ¢c=0, we have f(2)=2z" and
| f (@2 |+zF.

(i) If |zk1then f"(2) —> 0.

(i) If |z[>1 then f"(2) - .

@iii) If |zF21then | f"(2)|=1 for Al n.
Thusthecircle | z|=1 isthe boundary between these two types of behavior, and is the Julia
set for f(2) =7
Now consider f = Z°+c, where ¢ isasmall complex number. We get a closed curve J,
such that if z isinside of J, then f"(z) —» z, for some z, closeto O, and if z isoutside

of J, then | f"(2) | o. For ¢+ 0 and small thiscurve J isafractal curve.

Definition 1.3.2.1.1. [8] For f = z*+c, we define

F ={z:| f"(2) | doesnot tendtoinfinity} ={z: f "(z) isabounded sequence}
to be thefilled Julia set of J. We define the Juliaset J of f to be boundary of the filled
Juliaset, that is, J = F \int(F).
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For example, if ¢=0.27 + 0.53i, then the filled Julia sets shown in Figure 1.13.

1% Iteration 10" Iteration

50™ Iteration 100" Iteration
Figure 1.13 Construction of the filled Julia sets

1.3.2.1.2. [8] Some Propertiesof Julia Sets

Both forms of F are the same.
J isclosed and bounded.

J isnon-empty.

J has empty interior.

J contains no isolated points.
J isuncountable.

o 0~ wbhNPE

1.3.2.2. The Mandelbrot Set

The Mandelbrot set is the famous example of Fractal. The Mandelbrot set is a particular
mathematical set of points, whose boundary generates a distinctive and easily recognizable
two-dimensional fractal shape.

The set is closely related to the Julia set (which generates similarly complex shapes), and
is named after the mathematician Benoit Mandelbrot, who studied and popularized it.
More technically, the Mandelbrot set is the set of values of ¢ in the complex plane for
which the orbit of 0 under iteration of the complex quadratic polynomial f(z)=2z"+c

remains bounded.
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We define the Mandelbrot set

M :={ce C:theduliasetof f(z)=2z*+c isconnected} [8].
For example, if c=1 and z=0, then the function gives the sequence 1, 2, 5, 26,..., which
tendsto infinity. Asthis sequence is unbounded, 1 is not an element of the Mandelbrot set.
On the other hand, if c=i and z=0 (where i is defined as i =—1), then the function
gives the sequence i,(-1+i),—1i,(-=1+1),—i,..., which is bounded and so i belongs to the
Mandelbrot set.

Figure 1.14 Construction of the Mandel brot set

Generating the Mandelbrot Set:

We consider the following functions to generate the Mandel brot set:

f(x,y)=x"—y*+a and f,(x,y)=2xy+b
Initial seed: x =0,y =0 with the parameter values a=0, b=0.
Then the generating Mandelbrot set is shown in Figure 1.15.

51 jteration 10" iteration
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20" iteration 100" iteration
Figure 1.15 Construction of the Mandelbrot Set

1.3.2.2.1. [8] Some Propertiesof the Mandelbrot Set

M is bounded.

M has a proper interior.

M isclosed, and so by (1) is compact.
M is connected.

A owbdhpRE

1.3.3. [12] Stochastic Fractals
A stochastic fractal is a self-similar random process x(t). The stochastic fractals are found

in the case iterate process has accidental parameters. These fractals like natural can be
created. Two-dimensional stochastic fractals are used for designing surface of sea or relief
modeling.

1.3.3.1. Example of Stochastic Fractal

A fracta is a complex geometric figure that is made of identically repeated shapes. These
shapes are symmetrical, show self-similarity, and repeat on all scales. This means that a
single section of a fractal has the same shape as the whole. The natural fern in figure
demonstrates this fractal quality as does the mathematically created fern. Each frond of the
ferns resembles the entire fern and at each smaller scale the same fern shape is recreated.
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Figure 1.16 The Natural Fern (captured from nature)

We consider the following functions to generate fractal fern:
f,(x,y)=ax+by and f,(X,y)=cx+dy+e

Initial seed: x—0 and y=0.16y with the parameter values a=0.2,b=-0.26,c = 0.23,

d =0.22,e=1.6. Then the generating fern is shown in Figure 1.16.
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Figure 1.17 Construction of the complete Fern (after 50000™ iterations)
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CHAPTER TwoO

THE CANTOR SET PROTOTYPICAL FRACTAL

OVERVIEW

In this chapter, we discuss the construction and properties of the classical Cantor set. We
generalize the Cantor middle third set and also discuss the construction and properties of
the generalized Cantor sets.

2.1. The Cantor Set
A non empty set I' © R iscalled a Cantor set if

(@) T isclosed and bounded.

(b) T' contains no intervals.

(c) Every pointin T isan accumulation point of T
The Cantor sets were discovered by the German Mathematician, George Cantor in the late
19th to early 20th centuries (1845-1918). He introduced fractal which has come to be
known as the Cantor set, or Cantor dust. The Cantor set isthe prototypica fractal [1].

The Mathematician George Cantor found the Cantor middl e% set. We study the Cantor set

and find the generalized Cantor sets and show its dynamical behaviors and fractal

dimensions [3]. The Cantor middlei, E,l, 1, i,---sets, in general, the Cantor
35791
middlezm1 T (2<m<w)set is called the generaliized Cantor sets and it is denoted by

Cy/2may Which is defined by agorithm and also defined by the shrinking process.

2.1.1. Construction of the Cantor middle% set

We start with the closed interval I'; =[0,1].

G F ;
0 1

Remove the middle open third. Thisleavesanew set T, =[O0, %] v [g ]
G F ; F ;
0 13 23 1
Each iteration through the al gorithm removes the open middle third from each segment of
the previous iteration. Thus the next set would be

—10. 502, o2 o
Fz—[0,9]U[9,3]U[3,9]u[9,1].
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Figure 2.1 Construction of the Cantor middle% set
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In general, after n timesiterations, we obtain I',, which asfollows

r =100 310 o233 1, where n>1.
31y S 3

Therefore we construct a decreasing sequence (I',,) of closed sets, that is I',,, c I',, for all

n+l =

neN, sothat every T, consists of 2" closed intervals al of which the same length 3—1,1

The Cantor ternary set, which we denote C,,,, is the “limiting set” of this process, that is,

Cys =T, and call it the Cantor middle% Set.

n=1
Alternative process of constructing C,,; is in physical terms as taking a length of

string and repeatedly cutting it into shorter pieces. If we think first piece as the interval
[0,]] and cut it at the points 1/2, then it becomes two pieces of string each with two

endpoints such as the intervals [0,1/2], and [1/2,]]. In order to make al these pieces

digoint subsets of R one can image the string as being stretched so tightly that each time
it is cut, it pulls apart at the cut and shrinks to 2/3 of its length, so after the first cut,
[0,1/2] shrinks to [0,1/3], [1/2,]] shrinks to [2/3,1]. Then at the next stage we cut

[0,1/3] at the point 1/6, and then two pieces are [0,1/6], [1/6,1/3], shrink to [0,1/9] and
[2/9,1/3]. smilarly for the piece [2/ 3,1], and so on.

2.1.2.[1] Propertiesof the Cantor middle% set

2.1.2.1. Theset C,,, isdisconnected

The set C,, istotally disconnected since it was constructed so as to contain no intervals
other than points. Namely, if C,, contained an interval of positive length e then this
interval would be contained in each I, but I, contains no interval of length greater than

3—1n so if nischosen to be large enough so that 3—1n islessthan e, then thereisno interva

of length e in T,.
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2.1.2.2. Theset C,,, containsno intervals
We will show that the length of the complement of the set C,,; isequa to 1, hence C,,

contains no intervals. At the n™ stage, we are removing 2"* intervals from the previous
. 1
set of intervals, and each one has length of F

The length of the removing intervals within [0,1] after an infinite number of removalsis

0

1, 1&,2 1&,2 1/3
z:zn—l_ =_§:_n—1=_2:_n= =1
(3”) 3n:1(3) 3 (3) 1-2/3

n=1 n=0

Thuswe are removing alength of 1 from the unit interval [0,1] which hasalength of 1.

Alter native method:
Note that in the firs iteration we removed 1/3, in the second iteration we removed 2/9, in the
third iteration we removed 4/27, and in the fourth iteration we removed 8/81, and so forth.

Thisis ageometric series with first term a:% and common ratio r :g.

This converges, and thesumis S, = 13 =1
1-2/3

Thus the length of the complement of the set C,,, isequal to 1.

Therefore, the total length of C,,, is0, which meansit has no intervals.

2.1.3.[3] Construction of the Cantor middle%set

We start with the closed interval I; =[0,1].

Go F i
0
Remove the middle open interval (1/5,2/5) and(3/5,4/5). Thisleaves anew set
1 2 3, 4
I, =[0,=]u[=,=]V[=,]].
=1 5] [ c 5] [ z ]
G ———— — —
0 15 25 35 45 1
Each iteration through the algorithm removes the open 2nd and 4™ interval from each

segment of the previous iteration. Thus the next set would be
2 3, .41 211 12 13

1
I,=[0,—]u , U —u[=,—=lu[—,—]u
2=l 25] [25 25] [25 5] [5 25 [25 25]
14 3 4 21 22 23 24
[ L e ] e ) e 1
255 525 25 25 27
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Figure 2.2 Construction of the Cantor middl eg set
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In general, after n timesiterations, we obtain I, which asfollows

5 _3,5 _2]u[5 _1,1], where n>1.
5n 5n 5n

Therefore, we construct a decreasing sequence (I',) of closed sets, that is, T’

n+l

1 2 3
L =[0,—]ul[=, 2JuU---
L =1 5n]u[5n 5n]u Ul
c I, for al

ne N, sothat every T, consistsof 3" closed intervalsall of which the same length 5—1n

We define C,,; = (T, and call it the Cantor middle% Set.

n=1
Alternative process of constructing C,,; isin physical terms as taking a length of

string and repeatedly cutting it into shorter pieces. If we think first piece as the interval
[0,7] and cut it at the points 1/3 and 2/3, then it becomes three pieces of string each with

two endpoints such as the intervals [0,1/3], [1/3,2/3], and [2/3,]]. In order to make all
these pieces digoint subsets of R one can image the string as being stretched so tightly
that each time it is cut, it pulls apart at the cut and shrinksto 3/5 of itslength, so after the
first cut, [0,1/3] shrinksto [0,1/5], [1/3,2/3] shrinksto [2/5,3/5], and [2/3,1] shrinks
to [4/5,]]. Then at the next stage we cut [0,1/5] at the points 1/15 and 2/15 and the three
pieces [0,1/15], [1/15,2/15], and [2/151/5] shrink to [0,1/25], [2/25,3/25], and
[4/25,1/5], smilarly for the pieces [2/5,3/5], and [4/5,]], and so on.

2.1.4. [3] Propertiesof the Cantor middle% set

2.1.4.1. Theset C,; isdisconnected

The set C; is totally disconnected since it was constructed so as to contain no intervals
other than points. Namely, if C,, contained an interval of positive length e then this
interval would be contained in each I, but I, contains no interval of length greater than

5—1n soif n ischosen to be large enough so that 5—1n islessthan e, then thereisnointerval

of length e in T,.
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2.1.42Theset C,, containsno intervals
We will show that the length of the complement of the set C,,. isequal to 1, hence C,

contains no intervals. At the ™ stage, we are removing 2.3"* intervals from the previous
. 1
set of intervals, and each one has length of o

The length of the removing intervals within [0,1] after an infinite number of removalsis
= 1, 2&.,3 24,3 2/5
2.3n_1 —\_= ~ n-1 - ~y\n =—=1
; (5”) SZ;(S) 52(5) 1-3/5
Thuswe are removing alength of 1 from the unit interval [0,1] which hasalength of 1.

Alter native method:
Note that in the first iteration we removed 2/5, in the second iteration we removed 6/25, in
the third iteration we removed 18/125, and so forth.

Thisis ageometric series with first term azé and common ratio r :E'

This converges, and thesumis S, = 2/5 =1
1-3/5

Thusthe length of the complement of theset C, . isequd to 1.

Therefore, the total length of C,,; is0, which meansit has no intervals.

2.1.5. [3] Construction of the Cantor middle%set

We start with the closed interval I, =[0,1].

G ¥ ;
0 1

Remove the middle openinterval (1/7,2/7), (3/7,4/7), and(5/7,6/7).

This leaves anew set 1“1=[0,£]u[g,§]U[EE]U[g,l]-
7 77 77 7

G ; ; ; F ; —
0 17 27 37 47 57 67 1
Each iteration through the algorithm removes the open 2™, 4", and 6™ interval from each
segment of the previous iteration. Thus the next set would be
46 47

2 i]U[i,i]U[E,l]u---u[—,—]u[%,l].

1
Fz = [O!_] U[ ’
49 49 49 49 49 49 49 49 49

G

1

O ¥ & ¥ & ¥ G
TE &7 £7% &3

1
Figure 2.3 Construction of the Cantor middle7 set
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In general, after n timesiterations, we obtain I', which asfollows

l“n:[O,L]u[i,i]umu[7 _3,7 _2]u[7 _1,1], where n>1.
7n 7n 7n 7n 7n 7n
Therefore, we construct a decreasing sequence (I',,) of closed sdts, thet is, I, < I, for all

n+l

neN, sothat every T, consists of 4" closed intervals al of which the same length 7—1n

We define C,,, =T, and call it the Cantor middle% Set.

n=1

2.1.6. [3] Propertiesof the Cantor middle%set

2.1.6.1. Theset C,, isdisconnected

The set C,,, istotally disconnected since it was constructed so as to contain no intervals
other than points. Namely, if C,, contained an interval of positive length e then this
interval would be contained in each T, but I, contains no interval of length greater than

7—1n so if nischosen to be large enough so that 7—ln islessthan e, then thereisno interval

of length e in T,.

2.1.6.2. Theset C,, containsno intervals

We will show that the length of the complement of the set C,,, isequal to 1, hence C,,

contains no intervals. At the ™ stage, we are removing 3.4"* intervals from the previous
. 1
set of intervals, and each one has length of ETx

The length of the removing intervals within [0,1] after an infinite number of removalsis

Sl i 3 4 317__,
23'4 ) nz() z()_l 417

nO

Thuswe are removing alength of 1 from the unit interval [0,1] which hasalength of 1.

Alternative method:
Note that in the first iteration we removed 3/7, in the second iteration we removed 12/49,
in the third iteration we removed 48/343, and so forth.

Thisis ageometric serieswith first term azg and common ratio r:;.

This converges, andthesumis S, = 317 =1
1-4/7

Thusthe length of the complement of theset C,,, isequd to 1.
Therefore, the total length of C,,, is0, which meansit has no intervals.

Chapter Two 21



Dhaka University Institutional Repository

Similarly, we can construct and show the properties of the Cantor

middle L ,
2m-1

Cantor set.

(2<m<o) st which is denoted by C,,,, and is caled generalized

21.7. [3] Construction of the Generalized Cantor Sets (The Cantor
middle

(2<mM< o0) sets
2m_1( ) Sets)

We start with the closed interval I'; =[0,1].

G ¥ ;
0

Remove the middle open interval
1 2 3 4 2m-3 2m-2
( j ( j( j where 2 < m< .

2m-1"2m-1)" \ 2m-1"2m-1 2m-1"2m-1
Thisleaves anew set I, which will depend on the value of m
In general, after n timesiterations, we obtain I',, which asfollows:
1 2 3

1—‘n :[O’ n]U[ n? n]U
(2m-1) 2m-1)" (2m-1)
U[(Zm—l)“:31(2m—l)”;Z]U[(Zm—l)”n—l’l]’
(2m-1) (2m-1) (2m-12)

Therefore, we construct a decreasing sequence (I',) of closed sets, thatis I',,, < I',, for all
neN, so that every T, consists of m" closed intervals al of which the same length
1

——— Wedefine C,,,,, = ﬂl“n and call it the Cantor middle ,(2<m< o) set
(2m-1" o1 2m-1
or the generalized Cantor set.
G
0 1
G _—_—
0
G — — - — —_———— S —
0

set

Figure 2.4 Construction of the Cantor middle
2m-1
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2.1.8.[3] Propertiesof the Generalized Cantor Sets

2.1.81. Theset C,),,, 1, (2<m< ) isdisconnected
The set C,,, 4 is totaly disconnected since it was constructed so as to contain no
intervals other than points. Namely, if C,,,, , contained an interval of positive length e

then this interval would be contained in each I',, but I, contains no interval of length

n

greater than 1 so if nis chosen to be large enough so that _ is less than

2m-1°" (2m-1)"

e, then thereisnointerval of length e in T,.

2.182.Theset C,,.,, (2<m< ) containsnointervals
We will show that the length of the complement of the set C,,,, , isequa to 1, hence

n-1

Cyomy CONtAINS no intervals. At the n" stage, we are removing (m—1).m"*" intervals

from the previous set of intervals, and each one has length of W

The length of the removi ng intervals within [0,1] after an infinite number of removalsis

Z(m Hm (2m 1) (2m 1)2(2m 1 (2m 1)2(2m 1

Thuswe are removing alength of 1 from the unit interva [0,1] which hasalength of 1.

Alternative method:
Note that in the first iteration we removed (m-21)/(2m-1), in the second iteration we

removed m(m-1)/(2m-1)?, in the third iteration we removed m?(m-1)/(2m-1)°, and
so forth.

- : : e m-1 : m
Thisisageometric serieswith first term a = > and common ratio r = ——.

m-1 2m-1
This converges, and thesumis S, _(m D/(2m- 1)
1-m/(2m-1)

Therefore, thetotal length of C,;,,, ,, is0, which meansit has no intervals.

2183.Theset C,,.,, (2<m< ) isnowheredense

A set Sissaid to be nowhere dense if the interior of the closure of Sisempty. The closure
of the set is the union of the set with the set of limit points. Since every point in the set
Cl/2my 1S@limit point of the set, the closure of the set is simply the set itself.

The interior of the set C,,,,;, must be empty, since no two points in the set are adjacent

to each other. Thusthe set C,,,,;, IS nowhere dense.
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22. Lemma [3]. If T

n

is defined in Cantor middle set, where 2<m< oo, then

2m-1
1y
thereare m" closed intervalsin T, and the length of each closed interval is om_2 ngl :
m_
where 2<m< oo, Also the combined length of the intervalsin T, is (2 1) , Where
m_

2<m< oo, Which is approaches to zero as n approachesto infinity.

Proof: We start with the interval [0, 1] whose length is 1. We proceed by mathematical

induction. In the first step, we remove a gape of length %1 and obtain m closed

intervals whose combined length is m .
2m-1
1 1
So each interval has alength of % , where 2< m< .

In general, suppose that there are m*“ intervals remain in T, each with a length of
1- 1

2m-1
2m-2

k

k
, Where 2<m< o, for acombined length of [lej , Where 2<m< .

We will show that there are m**' intervals remain in T,,, each with a length
1- 1

2m-1
2m-2

k+1

k+1
, Where 2<m< oo, for acombined length [ZLJ , where 2<m< oo.
m_

Note that each time we remove the middle

, Where 2<m< o, portion of a closed
2m-1

intervals, we split the interval into m closed intervals. So in passing from I', to I, ,, we
multiple the number of intervals by m, and there are m(m*) = m***, where 2<m< o,
intervalsin T ;.

1_
2m-1

By assumption, each interval in I, hasalength of , where 2<m< .
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Since we remove the middle , Where 2<m< oo, portion of each interval in I', to

2m-1
create I',;, theamount of each interval from I, leftin I, is

L ‘ 1 K . 1 k+1
1- 1 1- C2m-1
2m-1| _ 2m-1| _ —, where 2<m< oo,
2m-2 2m-1| 2m-2 (2m-2)

Asthislengthisleft in 2m—2 intervals, the length of each remaining interval is

k+1 k+1
1 (1_ 2 . 1) -
x m- - 2m=1| \yhere 2<m< w.

2m-2  (2m-2)* 2m-2

k+1

Finaly, thereare m*™ intervalsin I',;, so the combined length of theintervalsin I, ,; is

k+1

1
— k+1
met] —2m=1| _|_M }  here 2<m<w.
2m-2 2m-1
Snce 0< <], _m_ convergesto 0 as n grows without bound and it follows that
2m-1 2m-1
the combined length of theintervalsin I, approaches O as n goesto infinity. O

2.3. Proposition [3]. The Cantor middle set isaCantor set, where 2<m< oo,

2m-1

Proof: Let ' be a Cantor middle

set, where 2<m<o. Since O isinevery I',, T’
2m-1

is not empty. To complete the proof, we must show that (i) T" is closed and bounded, (ii)
I' contains no intervals, and (iii) every point of I" isan accumulation point of T

(i) Since T' istheintersection of closed intervals, it is closed. As I' is contained in [0, 1],
it isalso bounded.

(i) If T" contains an open interval (X, y) with length | y— x|, then a each stage in the

construction of I', (X, y) must be contained in one of the remaining closed intervals.
However, Lemma 2.2 implies that after n steps the length of one of theseintervalsis

1

2m-1
2m-2

n

, where 2<m< o,
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o
1- 1
2m-1
m-2

and we can find an n, such that <|y-x], where 2<m< .
That is, the length of each of the closed intervalsin T isless than the length of (X, y).
Hence, the entireinterval (x, y) cannot be contained in I, and I' contains no intervals.
(iii) Supposethat x isapointin I' and let N, (x) =(x—e, x+e) be aneghborhood of x.
We must show that there existsapoint in " that is contained in N, (x) and is not equa to
X. Noticethat if x, isan endpoint of one of the intervals that is removed, then x, isin I
Now at each stage in the construction of the Cantor set, x must be in one of the remaining
closed intervals. That is, for each n thereisan intervasin I, that contains x.
1- 1
2m-1
2m-2

n

Choose n large enough so that <e, where 2<m< w,

Then x isin one of the closed intervals that comprise T',. Call thisinterval |,.

n

1
1-
By Lemma 2.2, thelength of | _ is % , where 2<m< w.
1- 1
Since ﬁ <e, where 2<m< o it must be the endpoints of |, arein N,(X).

As there are two endpoints and x can be equal to at one of them, other endpoint is an
accumulation point of T. O
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CHAPTER THREE

FRACTAL AND TOPOLOGICAL DIMENSIONSOF FRACTALS

OVERVIEW

In this chapter, we discuss fractal dimensions and topological dimensions of fractals and
also discuss the construction of the two and three dimensiona fractals. We find fractal
dimensions and topological dimensions of the one, two and three dimensional fractals.

3.1. Basic Definitions and For mulas

Definition 3.1.1. [1] A set S is called affine self-similar if S can be subdivided into N

congruent subsets, each of which may be magnified by a constant factor r to yield the
whole set S.

For example, the line, the plane, the cube are affine self-similar. We may now use this fact
to provide a different notion of dimension, for one way to realize that these objects have
different dimensionsisto do the following.

A line is a very sdlf-similar object: It may be decomposed into n=n" little “bite-size”
pieces, each of which is exactly % the size of the original line and each of which, when
magnified by a factor of n. On the other hand, if we decompose a square into pieces that

are % the size of the original square, then we find we need n® such pieces to reassemble

the square. Similarly, a cube may be decomposed into n*® pieces, each % the size of the

original. So the exponent in each of those cases distinguishes the dimension of the object
in equation. This exponent isthe fractal dimension.

Definition 3.1.2. [1] Suppose the affine self-similar set may be subdivided into N
congruent pieces, each of which may be magnified by a factor of r to yield the whole set
S. Then thefractal dimension D of S is

_log(number of pieces)  log(N)

~ log(magnification factor)  log(r)

One of the crudest measurements of dimension is the notion of topological dimension.
This dimension agrees with our naive expectation that a set should have an integer
dimension. We define the topological dimension inductively.

Definition 3.1.3. [1] A set S has topological dimension O if every point has arbitrarily
small neighborhoods whose boundaries do not intersect the set.

For example, a scatter of isolated points has topological dimension O, since each point
may be surrounded by arbitrarily small neighborhoods whose boundaries are digoint from
the set.
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Definition 3.1.4. [1] A set S has topologica dimension k if every point has arbitrarily
small neighborhoods whose boundaries meet in a set of dimension k-1, and k isthe least

nonnegative integer for which this holds.

For example, a curve or line segment in the plane has topologicad dimension 1 since small
disksin the plane have boundaries that meet the line in one or two points.

Similarly, a planar region has topologica dimension 2 because points in the set have
arbitrarily small neighborhoods whose boundaries are one-dimensiona.

3.2. Fractal and Topological Dimensions of the Generalized Cantor Sets

3.2.1. Fractal and Topological Dimension of the Cantor middle%set

From Figure 2.1 of the chapter 2, we seethat the set I" is contained in T, for each n. Just

as I consists of 2 intervals of length % and T, consists of 2°intervals of length 3—12 and
I, consists of 2° intervals of length 3—13 In general, T, consists of 2" intervals, each of
length 3—1n After n— o, we are left with a sdf-amilar set which is cdled the Cantor

middle% set. Arbitrary small neighborhoods intersect the Cantor middle% set a afinite set of
points, so it has topological dimension 1.
The Cantor middleE set consstsof 2" intervals with magnification factor 3".

Hence the fractal dimension of the Cantor middle% set [13] is D = :::—g =0.63.

3.2.2.[3] Fractal and Topological Dimension of the Cantor middle%set

From Figure 3.2 of the chapter 2, we seethat the set I" is contained in T, for each n. Just

as I, consists of 3 intervals of length % and T, consistsof 3*intervals of length 5—12 and
I, consists of 3* intervals of length 5—13 In general, T, consists of 3" intervals, each of

length 5—1n After n— o, we are left with a sdf-amilar set which is cdled the Cantor

middle% set. Arbitrary small neighborhoods intersect the Cantor middle% set at afinite set of
points, so it has topological dimension 1.

The Cantor middle%set consistsof 3" intervals with magnification factor 5".
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Therefore, the fractal dimension of the Cantor middle% setis D = :2—: =0.68.

3.2.3.[3] Fractal and Topological Dimension of the Cantor middle%set
From Figure 3.3 of the chapter 2, we seethat the set I" is contained in T, for each n. Just

as I, consists of 4 intervals of length % and T, consists of 4° intervals of length 7—12
and T, consists of 4° intervals of length 7—13 In general, T, consists of 4" intervals, each
of length 7—1n After n— o, we are left with a self-smilar set which is caled the Cantor

middle% set. Arbitrary smal neighborhoods intersect the Cantor middle% set at afinite set of
points, so it has topologica dimension 1.
The Cantor middle% set consists of 4" intervals with magnification factor 7.

Hence the fractal dimension of the Cantor middle% setis D= :2—‘71 =0.71.

Similarly, we can find the fractal and topological dimension of the Cantor middle%,

iLsnet where 2< m< oo,
11 2m-1
3.2.4. [3] Fractal and Topological Dimension of the Cantor middle2m 1szet

From Figure 3.4 of the chapter 2, we seethat the set I" iscontained in T, for each n. Just

as I, consists of m intervals of length ZLI , and T, consists of m* intervals of length

;2, and T, consistsof m’ intervals of length ;3 In general, T, consists of
(2m-1) (2m-1)

m" intervals, each of length

_1
(2m-1)"°

After n— oo, we areleft with asdf-amilar set which is caled the Cantor middle Set.

2m-1

Arbitrary smal neighborhoods intersect the Cantor middle set a afinite set of points,

2m-1
S0 it hastopological dimension 1.

The Cantor middle sets consist of m” intervals with magnification factor (2m-2)".

2m-1
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Hence the fractal dimension of the Cantor middle2m 1 setis
:In—m’ where 2<m< oo.
In(2m-1)
Remark: The fractd dimension of the Generdized Cantor sats is In(lznTml) where

2<m<oo. If we increase the value of m, then the value of fracta dimension of the
Generalized Cantor setswill be increase.

3.3. Fractal and Topological Dimensions of Two Dimensional Fractals

3.3.1.[12] Construction of the Koch Curve
We gart with a closed unit interval. At the first stage we remove the middle third of the

interval and replace it with two line segments of length % to make atent. The resulting set
consgists of 4 line segments of length % At the second stage, we repest this procedure on al of
the existing line segments and remove 4 line segments of length % The resulting set consists
of 16 line segments of length % Similarly, at the third stage, we remove 16 line segments of

length i At the nth stage, we remove 4" open triangles of size i

A T

1% Iteration 2" |teration 3 teration
4™ Iteration 51 |teration

Figure 3.1 Thefirst five stages of the standard Koch curve.

After n — o, we areleft with asdf-smilar set whichis called the Koch curve.

Arbitrary small neighborhoods intersect the Koch curve at a finite set of points, so it has
topologica dimension 1.

The Koch curve consists of 4" subsets with magnification factor 3".

Hence the fractal dimension of the Koch curve[13] is D = I|:_431 =1.262.
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3.3.2.[1] Construction of the Sierpinski Gasket or Equilateral Triangle

The Sierpinski triangleis afractal described by Waclaw Sierpinski in 1915. It is a sdf-smilar
structure that occurs of different level of iterations or magnifications.

We start with a closed (filled) equilateral triangle. At the first stage we subdivide this into 4

smaller congruent equilatera triangles and remove the centra one open triangle of size % to
form anew image A . At the second stage, we subdivide each of the three remaining triangle

. , , , 1
into 4 congruent equilateral triangles and remove three open triangles of size 2 from each to
form the image A,. Similarly, at the third stage we remove nine open triangles of size 3

from each to form the image A,. At the nth stage, we remove 3" open triangles of size 2—1n

from each to form theimage A,.

AL S5

A, (1% Iteration) A, (2™ Iteration) A, (3“ Iteration)
Figure 3.2 Thefirst four stages of the Sierpinski gasket or equilateral triangle

After n— o0, we are left with a sef-amilar set which is cadled the Serpinski equilateral
triangle. Arbitrary small neighborhoods intersect the Sierpinski equilaterd triangle at afinite
st of points, so it hastopologicd dimension 1.

The Sierpinski equilateral triangle consists of 3" subsets with magnification factor 2"

Hence the fractal dimension of the Sierpinski equilatera Triangle[14] is D = :2—2 =1.585.

Similarly, we can construct the Sierpinski isosceles, isosceles right and scaene triangle and
also we can find the fracta and topologica dimension of those fractals, which is same to the
Sierpinski equilaterd triangle.

3.3.3.[1] Construction of the Sierpinski Car pet

The Sierpinski carpet is a plane fractal described by Waclaw Sierpinski in 1916. The carpet is
one generdization of the Cantor set to two dimensions; another isthe Cantor dust.

We start with a solid (filled) unit square. At the first stage we divide this into 9 smaller

N 1 .
congruent squares. Remove the interior of the center open square of size 3 (that is, do not

remove the boundary) to form a new image A. At the second stage, we subdivide each of
the eight remaining solid squares into 9 congruent sgquares and remove 8 open squares of
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sze 3—12 from each to form theimage A,. Similarly, a the third stage we remove 8” open
sguares of size 3—13 from each to form theimage A,. At the nth stage, we remove 8™ open

sguares of size 3—1n from each to form theimage A,.

C, C, (1% Iteration)
Figure 3.3 Thefirst three stages of the Sierpinski carpet

Ol
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The Sierpinski carpet itself is the limit of this process after an infinite number of iterations.
Arbitrary smal neighborhoods intersect the Sierpinski equilateral triangle at a finite set of
points, so it has topological dimension 1.

The Sierpinski carpet consists of 8" subsets with magnification factor 3".

Thusthe fractal dimension of the Sierpinski carpet [14] is D = ::2 =1.893.

3.3.4.[15] Construction of the Box Fractal

The Vicsek fractd is known as Vicsek snowflake or box fractal. It is afractd arising from a
construction similar to that of the Sierpinski carpet, proposed by Thomas Vicsek.

We start with a closed (filled) unit square. At 1% stage the square is decomposed into 9 smaller
sguares in the 3-by-3 grid. The four squares at the corners and the middle square are I€ft, the

: 1
other squares being remove. Thus we remove 4 open square of size 3 At 2™ stage, we
1 d ’ 1
remove 4.5 open squares of size s At 3" sage, we remove 4.5° open sgquares of size >7

At nth stage, we remove 4.5 open triangles of Size i

[

B, (1% Iteration) B, (2" Iteration) B, ( 3 Iteration)
Figure 3.4 Thefirst four stages of the box fractal
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The box fractal itself is the limit of this process after an infinite number of iterations.
Arbitrary smal neighborhoods intersect the box fractal a a finite set of points, so it has
topological dimensionis 1.

The box fractal consists of 5" subsets with magnification factor 3".

Hence the fractal dimension of the box fractd [13] is D = :2—: =1.465.

3.3.5. Construction of the Squar e Fractal (usng Cantor middle% Set)

We gtart with a closed (filled) unit square. At the first stage it is decomposed into 9 smaller
squares in the 3-by-3 grid. The four squares at the corners are left, the other squares being

removed. Thus we remove 5 open square of size % At the second stage, we remove 5.4 open
1 . ’ 1
sguares of sze Y At the third stage, we remove 5.4° open squares of size >7 At the nth

stage, we remove 5.4™" open squares of size 3—1n

H B .. ..
H B H BN

H B .. ..
H N H N

S, S, (1% Iteration) S, (2™ Iteration)
Figure 3.5 Thefirst three stages of the square fractal

After n— oo, we areleft with aself-smilar set which is caled the square fractd.

Arbitrary smal neighborhoods intersect the square fractal at a finite set of points, so it has
topological dimensionis 1.

The square fractd consists of 4" subsets with magnification factor 3"

Therefore, the fractal dimension of the squarefractd is D = ll:—g =1.262.

3.3.6. Construction of the Squar e Fractal (usng Cantor middle% Set)

We gtart with a closed (filled) unit square. At the first stage the basic square is decomposed
into 25 smadller squares in the 5-by-5 grid. The nine squares are left, the other squares being

removed. Thus we remove 16 open square of size % At the second stage, we remove 16.9
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open squares of size 2i5 At the third stage, we remove 16.9° open squares of size % At

the nth stage, we remove 16.9"" open squares of size 5—1n

A, A (1% Iteration)
Figure 3.6 Thefirst two stages of the square fractd

After n— o0, weareleft with asdf-amilar set whichis called the square fractd.
Arbitrary smal neighborhoods intersect the square fractal at a finite set of points, so it has
topological dimension is 1.
The square fractd consists of 9" subsets with magnification factor 5".
In9

Hnece the fractal dimension of the squarefracta is D = s~ 1.365.

3.4. Fractal and Topological Dimensions of Three Dimensional Fractals

34.1.[15] Congruction of the Menger Sponge

The Menger sponge is a fractal curve also known as the Menger universal curve. It is a
three-dimensiona generalization of the Cantor set and Sierpinski carpet, though it is slightly
different from a Sierpinski sponge. It was first described by Karl Menger in 1926.

We start with a closed (filled) unit cube. Divide every face of the cube into 9 cubes, like a
Rubik’s cube (Magic cube). This will sub-divide the cube into 27 smaller cubes. We
remove the smaller cube in the middle of each face and remove the smaller cube in the

very center of larger cube; totally we remove 7 open cubes of size % and leaving 20
smaller cubes. Thisis a level-1 Menger sponge (resembling a Void cube). At the second
stage we remove 7.20 open cubes of size % and leaving (20)? smaller cubes. Thisis a

level-2 Menger sponge.
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M, M, (1% Iteration) M, (2™ Iteration)
Figure 3.7 Thefirst three stages of the Menger sponge

6. At the nth stage, we remove 7.(20)" " open cubes of size 3—1n

The Menger sponge itself is the limit of this process after an infinite number of iterations.
Arbitrary smal neighborhoods intersect the Menger sponge at a finite set of points, so it has
topological dimension 1.
The Menger sponge consistsof (20)" subsets with magnification factor 3"

In20

Therefore, the fractal dimension of the Menger spongeis D = 3 2.726.

3.4.2. Construction of the Sierpinski Tetrahedron
We start with a closed (filled) tetrahedron with unit edge. Divide every face of the
tetrahedron into 3 triangles. This will sub-divide the tetrahedron into 8 smaller

tetrahedrons. At the first stage, we remove 4 open tetrahedrons of size % At the second
stage, we remove 4.4 open tetrahedrons of size % At the third stage, we remove 4.4

open tetrahedrons of size % At the nth stage, we remove 4.4™" open cubes of size 2—1n

T, (1% Iteration) T, (2™ Iteration) T, (4" Iteration)
Figure 3.8 Thefirst four stages of the Sierpinski tetrahedron

After n— oo, we are left with a sdf-smilar set which is called the Sierpinski tetrahedron.

Arbitrary small neighborhoods intersect the Serpinski tetrahedron at afinite set of points, so it
has topologica dimension 1.
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The Sierpinski tetrahedron consists of 4" subsets with magnification factor 2".

Hence the fractal dimension of the tetrahedronis D = :rr:—g =2.

3.4.3. Construction of the Octahedron Fractal

We dart with a closed (filled) octahedron with unit edge. Divide every face of the
Octahedron into 3 triangles. This will sub-divide the octahedron into 14 smaller

octahedrons. At the first stage, we remove 2 open octahedrons of edge size % At the
second stage, we remove 2.6 open Octahedrons of edge size % At the third stage, we
remove 2.6° open Octahedrons of edge size % At the nth stage, we remove 2.6™" open

octahedrons of edge size 2—1n .

H, H, (1% Iteration)
Figure 3.9 Thefirst two stages of the octahedron fractal

The octahedron fractal itself is the limit of this process after an infinite number of iterations.
Arbitrary small neighborhoods intersect the octahedron fractal at afinite set of points, so it has
topological dimension 1.
The octahedron fractal consistsof 6" subsets with magnification factor 2".
Therefore, the fractal dimension of the octahedron fractal is

In6

D=—=1+In3=2.5849.
In2
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CHAPTER FOUR

FRACTALSIN MEASURE SPACE

OVERVIEW

In this chapter, we discuss basic measure theory. We show that the specia type
generalized Cantor sets are Borel set as well as Borel measurable whose Lebesgue measures
are zero. Also we show that the Lebesgue measures of the two and three dimensiond fractas
are zero.

4.1. Basic Measure Theory
4.1.1.[16] Outer Measure
Let A beaset of real numbers. Let {I.} be acountable collections of open intervals that

cover A thatis, AcUI,, and for each such collection consider the sum of the length of

the intervalsin the collection. Then we define the outer measure | *(A) = A|rbfI ZI(I -

Example, the outer measure of any interval | on R with endpoints a<b is b—a and is
denotedas | *(I)=b-a.

Definition 4.1.2. [16] A set EcC R is said to be measurable if for each set Ac R we
have | “(A) =1"(ANE)+| *(AnE).

Definition 4.1.3. [18] The inner measure of any st Ac E, denoted | ,(A), is defined as
[.(A)=1"(E)-1"(E\A), where E\ A isthe complement of A with respectto E.

Definition 4.1.4. [16] If A is a measurable set, we define the Lebesgue measure | (A) to
be the outer measure of A. Thus | is the set function obtained by restricting the set
function | * to the family M of measurable sets.

4.1.4.1. [16] Some Propertiesof L ebesgue Measure
1. Let (A) beasequence of measurable sets. Then

LUA)SDI(A).
2. If thesets A arepairwise digoint, then

L (UA)=Y1 (A).
3. Let be an infinite decreasing sequence of measurable sets, that is, a sequence with
A, A, foreach n. Let | (A) befinite. Then

(A =liml (A).
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Example 4.1.4.2. [8] Lebesgue Measureon R
If AcR and A=U[a,h] is a finite or countable union of digoint intervals, then

| (A) = Z(h —a), that is, the sum of the length of the intervals. We define the Lebesgue

measure | *(A) of an arbitrary set A,

(A =int(> (b -a): Ac b ~a.

Example 4.1.4.3. [8] Lebesgue Measureon R"
If A={(X,X,..-,%,)€R":a <x <h} isacoordinate parallelepiped in R", and then
n-dimensional volume of A isgiven by

vol"(A) = (b - &) (b, - 8,) (b, - ).
If n=1, acoordinate parallelepiped is just an interval with vol® as length, as in Example
4.1.42.1f n=2, itisarectangle with vol as area, and if n=3, it isa cuboid with vol® as
the three-dimensional volume. Then we obtain n-dimensional Lebesgue measure | "(A) on
R" by defining

"(A)=inf{>vol"(A): AcJA Y,

where the infimum is taken over all coveringsof A by coordinate parallelepipeds A.

Definition 4.1.5. [17] A collection B of subsets of a set X iscaled a s -agebraif B
satisfies the following axioms:

Al: X €B,

A2:If AeB,then X\ AeB,

A3 If A= JA andif A eB for n=1,23,..., then AeB.

n=1

Definition 4.1.6. [18] Let X =[a,b] be acdosed set and let B be a collection of subsets of X.
A st function mon B (i.e. m: B—[0,00]) iscaled ameasureif the following properties hold:
1. Semi-Positive-Definitee 0<m(A)<b-a foral AeB
2. Trivial Case: m(f )=0
3. Monotonicity: m(A) < m(B) forall ABeB, AcB
4. Countable Additivity: If A, A, A,,... arein B, with A n A, =f fori= j, then

m(A) = DA}in{A).

Thepair (X, B) is caled ameasurable space and the triple (X, B, m) ameasure space.
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A measure m defined ona s -algebraB of subsets of aset X iscaled finiteif m(X) isa
finite real number (rather thanc). The measure miscaled s -finiteif X isthe countable

union of measurable sets with finite measure. A set in ameasure spaceis said to have s -
finite measurebleif it is a countable union of sets with finite measure.

Definition 4.1.7. [19] Let X be anon-empty set and t is a collection of subsets of X.
Thent isatopology on X iff it satisfiesthe following axioms:

1. Theempty set and X itself belongtot.

2. Theunion of any numbersof setsint belongstot.

3. Theintersection of any finite number of setsint belongstot .
The membersof t arethen called t -open sets, or simply open setsand (X,t) iscaled a

topological space.

Definition 4.1.8. [20] A Bordl set is any set in topological space that can be formed from
open sets (or, equivaently, from closed sets) through the operations of countable union,
countable intersection and relative complement. Borel sets are named after Emile Borel.

Definition 4.1.9. [20] The Borel s -algebraof aset X isthesmallest s -algebraof X that
containsal of theopen balsin X. Any element of aBord s -agebraisaBord set.

4.2.[4] Lebegue Measuresof the Generalized Cantor Sets

Lemma4.2.1. Let X =[0,1] beaclosed set andt be atopology on X. Then (X,t) bea
topological space. Let C, =ﬂl“n be closed subsets in X. Then each

neN

Clomy s (2<m< o) isBorel set and measurable set.

Proof: Since every intersection of closed setsis again closed set, ﬂl“n Is closed set.

neN

By the definition of Borel set, C,,,,, ,, isaBorel set.
Thuseach C,,, ), (2<m< ) isaBorel set. Since every Borel st isameasurable set, then
each Cy 5 4, (2< M< 0) isameasurable set. O

Theorem 4.2.2. [4] Let X =[0,1] be a closed set, and let X be a s —algebra on X
containing I, nin N. Then (X,Z) is ameasurable space and exch C,;,,,,, € X, where

2<m< oo,
Proof: Weknow C;,pp =T (2< M< ).

neN

Foreach ne N, I, € X. Thisimpliesthat X \T", € . Axiom (2) for s — algebra.
Then | J(X\T,) € . Axiom (3) for s — algebra

neN
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Thisimpliesthat X \[U(X \rn)Jez. Axiom (2) for s — algebra.

neN

Now using De Morgan’s laws, we have

Jxar) =x\(r,ex andX\[U(X\Fn)JzX\(X\ﬂFngﬂFneZ.

neN neN neN neN neN

Thuseach C,,,,, € Z, where 2<m< oo. O

Theorem 4.2.3.[4] Let X =[0,1] beaclosed set and let (X,t) beatopological space. Let
B(t) bethe associated Borel s —algebra. Let (T, ), ., be closed subset in X. Then each
Cuzmays (2 m<o0) is B(t ) — measurable.

Proof: Weknow C,,py = [T (2<m<w). Since (T,),, isadosedsetin X, Cypny

neN

isaclosedsetin X. Then X\ C,,,,, ,, isopenset.
By the definition of Borel s —algebra, X \C,,,,, € B(t).
Thisimpliesthat X \ (X \C,,,4) = Cyomy € Blt). Axioms (2) for s — algebra,

Thuseach C,,,, ,,,(2< m< ) is B(t ) — measurable. O

Theorem 4.2.4. [4 If | is the Lebesgue measure and | (C,,,,,) =liml () =0, then
each C, ., 4, (2< m< o) has Lebesgue measure zero.

Proof: Weknow C,;,,,, = [ |I,, Where 2<m< o0 and

neN

r. =[o, 1 U] 2 _ 3 n]u___u[(Zm——l)”n—l
(2m-1) 2m-1)" (2m-1) (2m-1)

I (Cl/(Zm—l)) = L'lgl (Fn)

J,(nN>1,2<m< x).

1 2 3

=liml ([0, Jul : Ju---
n—>o (Zm—]_)n (2m—l)n (Zm—l)n
u[(2m—1)”;3’(2m—1)“:2]u[(2m—1)“n—l’l])
(2m-1) (2m-1) (2m-1)
, 1 2 3
Oy oy amy
(2m-1)"-3 (2m-1)"-2 (2m-1)" -1
+1 ([ 2m-1)" ) 2m-1)" ])+|([W,1])]

. 1 3 2
:llm[ + — 4.
e (2m-1)"  (2m-1D)" (2m-1)"
N (2m-)"-2 (2m-1)" —3+1_ (2m-1)" —J_J _0
(2m-1" 2m-1" 2m-1"
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Therefore, | (C,,n4) =0.

Henceeach C,,,,, ;, (2< m< ) has Lebesgue measure zero. O

Alternative method:
Theorem 4.2.5. [4] The generdized Cantor sets C,,,;, (2<m< ) is measurable and

has L ebesgue measure zero.
Proof: Weknow C;,n 5 =[], (2< M< ),

neN

where T =[0,—+Ju[— 2 — 3 Ju..of@n=D -1
(2m-1" 2m-1)" (2m-1" (2m-1"

By Lemma4.1.1, each C,,, , isBorel set and measurable.

.

From the construction of C,,, ;. (2< m< ), we remove (m—1).m™* digoint intervals

from each previous segments and each having length 1/(2m-21)", where n > 1.
Thus we will remove atotal Iength

Z(m—) (2m op 2m 1Z(m/(Zm 1)) ‘1=—Z(m/(2m 1)"

. m 1( 1 j_
2m-1{ 1-m/(2m-1)
Therefore, each C,,, ,, is obtained by removing a total length 1 from the unit interval
[0,1. Hence | (1\Cy5pqy) = 1.
Since | (1) =1 (Cyiamy) +1 (1N Cpypnyy), then
I (Chomap) =1 () =1 (1\Cypyy) =1-1=0.
Thuseach C,,,,,,,(2< m< ) has Lebesgue measure zero.

Hence each C,,,, ;,(2< m< ) ismeasurable and has L ebesgue measure zero. O

Proposition 4.2.6. [4] Let (') be an infinite decreasing sequence of each measurable sets

Cuamay thatis, asequencewith T, < I, for each n, let | (I) befinite. Then

n+1

[ﬂl‘j—llml ([,) foreach Cy,,, ., Where 2<m< oo,

=1
Proof: Since (T}) is an infinite decreasing sequence of each measurable set Cy,, ),
Cliam) :ﬁl“i, where 2<m<ow. Let Q, =} ~[} ;. Then I}, ~Cy, ) = OQi and the
i=1 i=
sets Q. arepair wise digoint.
s~ Cl/(2w1)) =1 [qgi) = 2' Q)= 2' (I ~T,) 4.1)

But we know | (I7) =1 (Cl/(mel))-l-l (I, ~ Cl,(mel)), since Cuomy € Th
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and I (H)Zl (Fi+1)+| (FI ~Fi+1)’ Since 1—‘i+1
Since | (I;) <I (I}) <, we have
| (rl - Cl/(2m—1)) =1 (rl) =1 (C1/(2m—1))
L (G~ ) =1 @) -1 (T)
From (4.1), we have
()= Cuna) = 20 () =1 (0) =m0 ()= (1)
=1 (1) ~liml (r,,)

cI.

Since | (I) <o, wehave | (Cy,, ) =liml (T}).

Hence | (Cy,,4) =liml (")) foreach C,,, ,,, where 2<m< . O
n—o

Alternative method:
Proposition 4.2.7. [4] If X =[0,1] isaclosed and B is a collection of subsets of X, then

(X,B) isameasurable space. If I; eB, m{I;) <« and I,; I, then

ﬂl‘iJz limm(T,) for each C, ., Where 2< m< .

i=1

Proof: Since 0,y =(|Ti» then I, = Cyyppy | J (T ~ Ti,y), and thisis adisioint union.
i=1 i=1

Hence m(Iy) = MCyny)+ DM, ~T,.1) (4.2)

Since I, =T, u(l; ~T;,,) isadigoint union, we have mI; ~ T ,) =mI;) - mT;,,).
Now from (4.2) we have

M) = My ) + . (ML) =T, )

M) = MCym ) + lIMS (M)~ 1(T,,,)
= 'T(Cl/(szl)) +m(I) - LL’E m(T,)
Thatis, | (C1/(2m—1)) = LLT m(I7,).

Hence m(Cy ;) = Lllg m(T",) for each Cy,, 4, Where 2<m<oo. O
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4.3. Lebesgue M easur es of the Two Dimensional Fractals
Lemma4.3.1. Let X =[0,1]x[0,1] beaclosed set andt beatopology on X. Then (X,t)

be a topological space. Let Azﬂﬁh be closed subsets in X. Then A is Borel set and

n=0
measurable set.

Proof: Since every intersection of closed sets is again closed set, ﬂA1 is closed set. By

neN

the definition of Borel set, (| A, isaBorel set. Thus A isaBorel st.

neN

Since every Bord set ismeasurable, then A isameasurable set. O

Theorem 4.3.2. The Serpinski equilateral triangle is measurable and has Lebesgue
measure zero.

Proof: We know that the Sierpinski equilateral triangleis A= ﬂ A,.

n=0

By Lemma4.3.1, A isBorel set and measurable.
From the construction of Sierpinski equilatera triangle, we remove 3™ open triangles from

each previoustriangles and each having size 2—1,1 where n> 1.

Weremove atotal area

- C VB& s V3G o V3
23 (—j e 2T = e =

1

(1—;4) :é
3

Therefore, the Sierpinski equilateral triangle is obtained by removing a total area 7

V3 V3

from the equilateral triangle whose areais A, = Hence | (A, \ A) =4

Since | (A) =1 (A)+1 (A \A), then | (A) =1 (A) - (A)\A)_i—i_o.

Thus the Lebesgue measure of the Sierpinski equilatera triangleis zero. O

Theorem 4.3.3. The Sierpinski isosceles right triangle is measurable and has Lebesgue
measure zero.

Proof: Weknow that the Sierpinski isoscelesright triangleis A= ﬂ A,.

n=0

By Lemma4.3.1, A isBorel set and measurable.
From the construction of Sierpinski isosceles right triangle, we remove 3" open triangles

from each previous triangles and each having size 2—1n where n> 1.
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Then we remove atotal area
1 1 1
3 /D) ==N"(3/4 —
Sl 1) s -2 -3 L)

Therefore, the Sierpinski isosceles right triangle is obtained by removing a total area 1

from the isosceles right triangle whose areaiis A, :%. Thus | (A, \ A) :%.

Since | (A) =1 (A)+1 (A \ A), then | (A) =1 (A) -] (Ab\A)_l—%zo.

Hence the Lebesgue measure of the Sierpinski isosceles right triangle is zero. O

Similarly, we can show that the Lebesgue measures of the Sierpinski isosceles triangle and
scalene triangle are zero.

Theorem 4.3.4. The box fractal is measurable and has L ebesgue measure zero.

Proof: We know that the box fractal is B = ﬂ B,. Since every intersection of closed sets
n=0

isagain closed set, (1B, isclosed set. By the definition of Borel set, [|B, isaBorel set.

neN neN

Thus B isaBorel set. Since every Bord set ismeasurable, then B is measurable.
From the congtruction of the Box fracta, we remove 4.5™" open squares from each previous

squares and each having size 3—1n where n> 1.

Now we remove atotal area

- 1) 4¢ 4 4 1
45 — | == (5/9)" ==Y (5/9)"=— _
Z; (BJ 92;( ) 9;;( ) 9(1—5/9)

Therefore, the box fractal is obtained by removing atotal area 1 from the unit box fractal.
Hence | (B, \ B) =1.

Since | (B,)=1(B)+I (B,\B), then| (B)=1 (B,)-1 (B,\B)=1-1=0,

This shows that the Lebesgue measure of the box fractal is zero. O

Theorem 4.3.5. The Sierpinski carpet is measurable and has L ebesgue measure zero.

Proof: We know that the Sierpinski carpet is C = ﬂCn. Since every intersection of closed

n=0

setsisagain closed set, [|C, isclosed set. By the definition of Borel set, (|C, isaBorel

neN neN

set. Thus C isaBorel sat. Since every Bord set ismeasurable, then C is measurable.
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From the construction of the Sierpinski carpet, we remove 8" open squares from each
previous squares and each having size 3—1n where n> 1.

Weremove atotal area

e 1V 1 1& 1( 1
g™t = | ==5(8/9)"t ==3"(8/9)" == —1.
e 5] s 2o -1 e -5 o)

n=1

Therefore, the Sierpinski carpet is produced by removing a total area 1 from the original
carpet whose areais C, =1. Hence | (C,\C) =1.

Since | (C,)=1(C)+1 (C,\C), then| (C)=1 (C,)-1 (C,\C)=1-1=0.

Hence the Lebesgue measure of the Sierpinski carpet is zero. O

Theorem 4.3.6. The square fractal is measurable and has L ebesgue measure zero.

Proof: We know that the square fractal is S= ﬂ S,. Since every intersection of closed sets
n=0

isagain closed set, (1S, is closed set. By the definition of Borel set, (S, isaBorel set.

neN neN

Thus S isaBorel set. Sinceevery Bord setismeasurable, S is measurable.
From the construction of the square fractal, we remove 9" open squares from each previous

squares and each having size 5—1n where n> 1.

Weremove atotal area

oo (] -23(2) -5 (3] (1)
5" 254\ 25 254\ 25 25(1-9/25)

Therefore, the square fracta is produced by removing a total area 1 from the original
carpet whose areais S, =1. Hence | (S, \ S) =1.

Since | (Sy) =1 (S)+1 (S,\S), then | (S)=1 (S;)-1 (S,\S)=1-1=0.

Therefore, the Lebesgue measure of the square fractal is zero. O

4.4. L ebesgue M easures of the Three Dimensional Fractals
Lemma4.4.1. Let X =[0,1]x[0,1]x[0,1] beaclosed set and t be atopology on X. Then

(X,t) be atopologica space. Let M =ﬂMn be closed subsetsin X. Then M is Borel

n=0

set and measurable set.
Proof: Since every intersection of closed setsis again closed set, ﬂMn isclosed set.

neN

By the definition of Borel set, [(|M,, isaBorel set. Thus M isaBorel set.

neN

Since every Bord set ismeasurable, M isameasurable set. O
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Theorem 4.4.2. The Menger sponge is measurabl e and has L ebesgue measure zero.

Proof: We know that the Menger spongeis M = ﬂ M,.

n=0
By Lemma4.4.1, M isBorel set and measurable.
From the construction of the Menger sponge we remove 7.(20)"" open cubes from each

previous cube and each having edge Iength —, where n>1.

Now we remove atotal volume

S n-1 1 3__ —1__ - 1
;7'(20) (3—) = 2(20/27) = 2(20/27) 27(—1 20/27j

Therefore, the Menger sponge is obtained by removing a total volume 1 from the unit
cube. Hence | (M,\M) =1

Sincel (M) =1 (M)+1 (M,\M), thenl (M)=1 (M) -1 (M,\M)=1-1=0.

This shows that the Lebesgue measure of the Menger sponge is zero. O

Theorem 4.4.3.The Sierpinski tetrahedron is measurable and has L ebesgue measure zero.

Proof: We know that the Sierpinski tetrahedronis T = ﬂTn.

n=0

Since every intersection of closed setsis again closed set, ﬂTn isclosed set.

neN

By the definition of Borel set, T isaBorel set and hence T isameasurable sat.

From the construction of the Sierpinski tetrahedron, we have edge length 1 and volume 1

62

thatis | (T,) = i We remove 4.4"" open tetrahedron from each previous tetrahedron and

6v2
each having edge size 2—1,1 where n> 1.

Now we remove atotal volume

o0

w1 (). 2 13 am 1 S
244 6\/_(2”j 32 8,12:;‘(4/8) _12J§Z(1/2)

n=1 n=0

1 ( 1 j_ 1
122\1-1/2) 642

Therefore, the Sierpinski tetrahedron is obtained by removing a total volume 1 from

6v2
. 1
the original tetrahedron. Hence | (T, \T) = —.
) @\ =50
1
Since | (Ty) =1 (T)+1 (T, \T), then | (T)=1 (T,) -1 (T,\T =
(To) =1 (T)+1 (T, \T), ()()()6\/—6\5
We conclude that the Sierpinski tetrahedron has L ebesgue measure zero. O
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Theorem 4.4.4.The octahedron fractal is measurable and has Lebesgue measure zero.

Proof: We know that the octahedron fractal is O = ﬂOn.

n=0

Since every intersection of closed setsis again closed set, ﬂOn isclosed set.

neN

By the definition of Borel set, O=(")O, isaBorel set.

neN

Sinceevery Bordl set ismeasurable, then O = ﬂOn isameasurable set.

neN

From the construction of the octahedron, we have edge length 1 and volume is g that is

V2

| (H,) =——. We remove 2.6"" open octahedron from each previous octahedron and each
3

having edge size zi where n> 1.

We remove atotal volume
- V2( 1Y 22 1¢
26 = — | = 6/8)"* = 3/ — =
HZ:;‘ 3(2”) 3 82( Z( 4’ 1-3/4 3

Therefore, the octahedron is obtained by removing a total volume 1 from the origina
octahedron. Hence | (H,\H) =1

f(ljﬁ

Since | (Hy) =1 (H)+1 (H,\H), then | (H) =1 (H,) | (HO\H)_£_§ 0

Hence the octahedron fractal has Lebesgue measure zero. O
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CHAPTER FIVE

ITERATED FUNCTION SYSTEMSOF FRACTALS

OVERVIEW

In this chapter, we formulate Iterated Function Systems (IFS) of two dimensional square
fractals and three dimensiona fractals such as the Menger sponge, the Sierpinski
tetrahedron and the octahedron fractal by affine transformation method and fixed points
method of R. L. Devaney [1]. We observe that different fractals are generated by different
iterated function system using Mathematica and MatLab programming. We show that
these functions are asymptotically stable and the fixed points are sink.

5.1. Iterated Function Systems of Fractals

Any fractal has some infinitely repeating pattern. When creating such fractal, we would
suspect that the easiest way is to repeat a certain series of steps which create that pattern.
Instead of the word “repeat” we use a mathematical synonym “iterate” and the process is
called iteration. Iterated Function System is another way of generating fractals. It is based
on taking a point or a figure and substituting it with several other identical ones. Iterated
function system represents an extremely versatile method for conveniently generating a
wide variety of useful fractal structures [5]. The Iterated Function System is base on the
application of a series of Affine Transformations. An Affine Transformation is a recursive
transformation of the type [21]

-2 S )

(Xn+l! yn+1) = (axn + byn + e’ an + dyn + f)

or equivalently

where a,b,c,d,e and f arereal numbers.

Thus an Affine Transformation is represented by six parameters such that a,b,c and
d control rotation and scaling, while e and f control linear tranglation.

Each Affine Transformation will generally yield a new attractor (or fractal) in the final
image. The form of the attractor is given through the choice of the coefficients a through f,
which uniquely determines the Affine Transformation. To get a desire shape, the collage
of severa attractors may be used (i.e., several Affine Transformations). This method is
referred to as an Iterated Function System (IFS).

Now suppose we consider w,, w,,...w,, asaset of affinelinear transformations, and let A
be the initial geometry. Then a new geometry, produced by applying the set of
transformations to the origina geometry A and collecting the result from
w, (A),w, (A),...w, (A) can be represented by
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N
F(A)=Jw(A) (5.1)
i=1
where F isknown as the Barnsley-Hutchinson operator [21, 22]. Fractal geometry can be
obtained by repeated applying F to the previous geometry. For example, if the set A, is
the initial geometry, then we will have

A=F(A)A=F(A).....A,.=F(A).

An iteration function system generates a sequence that convergesto afina image A, .

Alternative method to formulate iterated function system:
Let O<b <1 Let p,p,,..., Py bepointsinthe plane. Let w(p)=b(p-p)+ p, where

X
P:(y} and for each 1=12,3,...,N. The collection of functions {w,w,,...,w.} is

called an iterated function system [1]. Iterated Function Systems are a method of
constructing fractal's; the resulting constructions are aways self-similar.

Definition 5.1.1. [23] (Contraction) A map w: X — X, where (X,d) isametric space, is
called acontraction if there exists L <1 such that

d(w(x),w(y))<L-d(xy) fordl x,ye X.
This condition is called Lipschtz condition, where L >0 is called Lipschtz constant.
Contractions are thus Lipschtzian maps with a Lipschtz constant that is smaller than 1.

An iterated function system (IFS) is afinite collection {w,,w,,...,w,} of contractions of a
metric space X. A subset Ac X iscalled an invariant set with respect to the IFS

{w:iel} if A:LNJWi(A).

If for every nonempty compact subset A of X, the sequence (F"(A)) converges in the
Hausdorff distanceto A,, theset A, iscalled an attractor (or fractal) corresponding to the
IFS{w :iel}[24].

Assume that | is finite and for every iel, the function w is Lipschitzian with the
Lipschitz constant. If L, <1 for i el, thenthelFSis{w :iel} asymptoticaly stable (on
sets) [21, 25].

5.1.2. [26] Fundamental Theorem of IFS: Let {S,S,,...,S,} be an iterated function
systemon R", and 0<c <1 such that

1S()-S(Y) <6 |x-y]| foreach x,yeR".
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Then there exists a unique non-empty set F < R" suchthat F =(_ JS(F).

i=1
That is, F isan attractor of the iterated function systems.
Proof: The proof is omitted.

5.1.3. [26] Some Properties of an Iterated Function System

1. Forany AeS, the sequence S*(F) convergesto the attractor F in d. To seethis,
d(S*(A),F) =d(S“(A), S (F)) <cd(S'(A), S (F)) <---<c*d(A F),
where c=max,._, ¢ <1 andso ¢ — 0.
2. Wehavethe attractor F = S(E) = S*(E) = S*(E), that is,
F=S8(F)= US(F) UUS (S(F))=LmJLmJUSK(S (SEN)=--

j=i=1 k=1 j= i=1

Ingenerdl, F= [ JS (S, (S (F)= [JS 8, (S (F)

I<iy,eeny, i <m I<iy,eon, i <m
3. Computing the attractor of an IFS:
(a) Usethe property (1): Let A beany initial set. Plot S*(A) for asuitable k.

That is, S"(A)— US, §,o-o(S,(A)). Thus S‘(A) gives an

approximation to F.
(b) Chaos game: Take any initidl xeR" and choose mappings from
{S.S,,..., S} a random (with equal probability) . Plot the sequence given by

X =X%X% =9 (%), where § is the kth mapping chosen. Then the sequence
X, fillstheattractor F.

Theorem 5.1.4. Let f bea(smooth) mapon R and assumethat p isafixed point of f
1. If | f'(p) k1 then p isasink.
2. If | f'(p)|>1 then p isasource.

Proof: The proof of the theorem can be found in [27].

Definition 5.1.5. [27] Let f =(f,, f,,...,f,)) beamapon R", andlet pe R".
The Jacobian matrix of f at p, denoted Df (p) isthe matrix

Mgy
aXl(IO) aXn(ID)

Df (p) =

afn ce afn
aXI(D) aXn(ID)

of partial derivatives evaluated at p.
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Theorem 5.1.6. Let f beamapon R", and assume f (p) = p.

1. If the magnitude of each eigenvalue of Df (p) islessthan 1, then p isasink.

2. If the magnitude of each eigenvalue of Df (p) isgreater than 1, then p isasource.
Proof: The proof of the theorem can be found in [27].

Definition 5.1.7. [27] Let f be a map on R". Assume that f(p)= p. Then the fixed
point p iscalled hyperbolic if none of the eigenvalue of Df (p) has magnitude 1.

If pishyperbolic and if at least one eigenvalue of Df (p) has magnitude greater than 1
and at least one eigenval ue has magnitude lessthan 1, then p iscaled asaddle.

5.2 Iterated Function Systems of the Generalized Cantor Sets

We may define the iterated function system of the generalized Cantor sets by choosing

different b valuessuchas b :L, where 2<m< .
2m-1
5.2.1. Iterated Function System of the Cantor middle% set
The Cantor middle% set may be obtained by the following iterated function system

Wl(X) =

| % wI|x

2
+ =

Wz(X) = 3" 3

(5.2)
The contraction factorisa = % and thefixed pointsarelocated & 0 and 1 dong the x-axis.

2
The Barnsley-Hutchinson operator is F(A) = Uwi (A).

i=1
Then the attractor of IFS (5.2) is A, =F(A,), A, €[0,1], n=012,... (5.3
which is the well-know Cantor middle% Set.

From (5.3) we obtain obviously,

A =F(A) =w,(A) Uw,(A) =[0]ULZ 4.
1. 21 27 .8
Az=F(Ai):W1(A&)UW2(A1):[O’E]U[g'g]u[gag]u[al]
1. 2 3 3_33-2 31
%1:[01?]&)[?,?]&)““[ T 3 1u[ T ]

Thus the Cantor middle%set istheset C, =) A,

3 n=0
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S R
D& & G

Figure 5.1 Similar transform about Cantor middle% set w, and w,

From Figure 5.1 we can see that if we iterate every one step, the scale is one third of the
last image, so they from a self-similar structure [10].

5.2.2 Iterated Function System of the Cantor middle% set

The constructed Cantor middle%set may be obtained as the attractor of an iterated

function system by setting

X
w, (%) =g
X 2
W2(X) :g“r‘g
X 4
W, (X) =5ts (5.4)

The contraction factor isa = % and the fixed points are located at O, % and 1 along the

3
x-axis. The Barndey-Hutchinson operator is F(A) = Uwi (A).

i=1

Then the attractor of IFS (5.4) is A, =F(A,), A, €[01], n=012,--- (5.5
which is the well-know Cantor middle% Set.

From (5.5) we obtain obviously

3, .4

1 2
A =F(A) =W (A)uw,(A) ww(A) =[O,g] U[gg] U[g,l]
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Az = F(Ai) = Wl(Ai) UWz(A&) UW?,(Ai)

1 2 3 4 1 2 11 12 13
=[0,=lVul—= =]Vl ZlVl= =lvu[—=,=—=]v
25 25 25 255 525 25 25
14 3 4 21 22 23 24
[_!_]U[_’_]U[_’_ U[_’l]
255 525 25 25 25
1 2 3 5"-35"-2 5"-1
=[0,—~|u[—,—]u---u , U Ml
A1[5n] [5n5n] [5n 5n] [5r1 ]
Thus the Cantor middleé setistheset C, =) A..
5 n=0
Ao
0 1
s 1
TR & & &
2 —= —= — —_— — — —_— — —
0 1
€ & & &

Figure 5.2 Similar transform about Cantor middle%set W, W, and w,

From Figure 5.2 we can see that if we iterate every one step, the scale is one five of the
last image, so they from a self-similar structure.

5.2.3. Iterated Function System of the Cantor middle%set

The constructed Cantor middle% set may be derived as the attractor from the following

iterated function system
W) =2
W, (X) = ;+%
W, (X) = ;+;
w, (X) =;+$ (5.6)

The contraction factor here is a :%,and the fixed points are located at O,%, 2 and 1

4
along the x-axis. The Barngey-Hutchinson operator is F(A) = UWi (A).

i=1
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Thentheattractor of IFS (5.6)is A, = F(A.), A, €[0,1], n=0,1,2,-- (5.7)

which isthewdI-know Cantor middle% Set.

From (5.7) we obtain obviously

A = F(A) =W (A) UW, (A) Ui (A) Uw, (&) =[0, 2] UL2, 10l 2 U
- ot 2 3 A St AL SRt A A S

A =F(A)=w(A)ow,(A)uw,(A)ow,(A)

1, 2 3, 45 61
=[0Il vl Vo2
49" 749°49° T49°49° "49'7

6 43, 44 45 46 47

48
ViZ IVl 7l Yl 2l Vg
7'49° T749°49° "49°49° 49

2 3 7"-37"-2 7" -1

1
A =100l A0

Thus the Cantor middle% setisthesetC, =) A..

7 n=0

Ao

0 1

Ay —

IR IR E R

Ay —~

CE & E &

Figure 5.3 Similar transform about Cantor middle% set w, w,, W, and w,

Figure 5.3 we can see that if we iterate every one step, the scale is one seven of the last
image, so they from a self-similar structure.
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5.2.4. Iterated Function System of the Cantor middlezrj 1,(23 m< oo) set

The constructed Generalized Cantor middle Zr: 1,(2 <m< o) set may be obtained as the

attractor of an iterated function system by setting
X
2m-1

Wl(x) =

2
2m1 2m-1
X 4
+
2m-1 2m-1

Wy (X) =

W3(X) =

X_L2AK=D o e, 1<k<m).

Wk(X)—2 1 omo1 (5.8)

The contraction factor is a = ﬁl m> 2 and the fixed points are |ocated at k— along

the x-axis. The Barndey-Hutchinson operator is F(A) = U w, (A).
k=
Then the attractor of IFS (5.8) is A, =F(A,), A €[01], n=012,- (5.9)

which is well-know the Cantor middle2 ! 1,(2s M < o) Set.

From (5.9) we obtain obviously
A =F(A) =W (A) U W, (A) W w,(A) L ow, (A)
A =F(A)) =W (A) VW, (A) Uw(A) - UW,(A)

1 2 3
A =10 Gmoy ! lem—y emop -
[(2m D"-3 (2m-1)" - ] [(2m H" - ]
2m-)" * (2m-1)" @em-p"

e — — —

Figure 5.4 Similar transform about Cantor middle

1
1set W, Wy, W, Wy,
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From Figure 5.4 we can see that if we iterate every one step, the scale is one by
{(2m-1),2<m< o} of thelast image, so they from a self-similar structure.

We may summarize the above iterated function system in the following statement:

Iterated Function System of the Generalized Cantor Sets: Let X =[0,1]. Let (X,r) be
acomplete separable metric space. If w, : X — X isafunction which is defined by

Wk(x) =

X 2K=D o mcm 1<k <m)
om-1 2m-1

with contracting factor L, :%1 , and the fixed points are located at p = rl;;ll along

the x-axis, then the family {w, :k=1,2,...,m} iscalled an iterated function system of the
generalized Cantor sets (IFSGCSfor short).

Dynamics of the Generalized Cantor Sets:
Since L, =

! 1<1 for 2<m<w, k=1,2,...,m, then iterated function system of the

generalized Cantor sets {w, :k=12,...,m} isasymptotically stable.

Since |W, (p) |:2 1 1<1 for 2<m<ow, k=12,...,m then the fixed points of these

functions are sink.
Thus IFS of the generalized Cantor sets is asymptotically stable and the fixed points are
sink.

5.3. Iterated Function Systems of the Two Dimensional Fractals

5.3.1.[28] Iterated Function System of the Koch Snowflake
The Koch snowflake may be obtained as the attractor of an iterated function system by
Setting

wl(x,y)=(%x—% %H M, W)= (§x+é,gy+§)

W(4Y) = G X Ty +) W00y = (X 2y
Wi(x,Y) = (X é,;y—éx W) = X Ty-),

W (xY) = (x4 ééy—%) (5.10)
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The contraction factor is a :i and the fixed points of these functions are located at

NE

(0,0, (f 1) (0, (—[ 1) (—£ —1) (0,-1), an ol(£ —1)

The Barnsley-Hutchinson operator is F(K) = Uwi (K).

i=1

Then the attractor of IFS (5.10) is K., = F(K,,), n=0,12,... (5.11)

\/_1 \/_1f1 (\/5
2

where K, <{00), (), 01, (2.2, 2 -0, ©0-3, (-2}

From (5.11) we obtain ObVI ously

K, =F(Ky) = w (Ky) uw, (Ky) w---ow, (K,)

1 1 2 1 1 1 1
\/— 3 (0’ ) \/— 3 (_E1_§)

2 = F(Kl)) = Wl(Kl) UWz(Kl)U"'UW7(K1)

=(0,00u(—+= U (

11
B3

We obtain a sequence
KoK/ oK, o

Thus the Koch snowflakeis K =("K,.

n=0
K, K, (1% Iteration)
K, (2™ Iteration) K, (3" Iteration)

Figure 5.5 Thefirst four stagesin the construction of the Koch snowflake as IFS
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Dynamics of the Koch Snowflake:
Since L, ::—13<1 for k=12,...,7, then iterated function system of the Koch snowflake

{w, :k=12,...,7} isasymptotically stable.

The Jacobian matrix of IFS of the Koch snowflake at the fixed pointsis
0

1 b

3

Dw(x,y) =

O Wik

1 1 1
with elgenvalues equal to = and =. Thus the fixed points of these IFS (0,0 ,
g eq 3 3 p 0,0, (= 7 3
1

(0)(\/—3)(\/—3)( )d(\/—

Therefore, IFS of the Koch snowflake is asymptotically stable and the fixed points are sink.

) aresink.

5.3.2.[29] Iterated Function System of the Koch curve
The Koch curve may be obtained by the following iterated function system

1 1 1 1
W (X, Y)=(=X+0.y+0,0Xx+=y+0)= (=X, =
L(X,Y) (3 y 3 ) (3 3y)

1. 43 143_.1 1 3 143 1
W,(X, V)= (EX—~— Y+, = X+=-y+0) = (EX—— Y+ =, — X+ =
2(Y)(6 A 6y)(6 AT 6y)
1,.,¥3,,1 V3 1 43
W, (X, Y)=(EX+—Y+—=, ——X+=Y+—
5(XY) (6 sVt T XtgY 6)
w,(X,y) = (Ex+0y+— Ox+1y+0) (—x+E =vy) (5.12)
3 3 3'3 '
The contraction factor is a =%, and the fixed points are located at
5 /3, 18 /3
—,—),(=—,—), (L 0) dong the x-axis.
(O, )(11 11)(25 5)(L) g the x-axi

4
The Barnsley-Hutchinson operator is F(A) = Uwi (A

i=1
Then the attractor of IFS (5.12) is A, =F(A,), A, €(0,0), n=0,12,--- (5.13)
which is the well-know Koch curve.
From (5.13) we obtain obviously
A = F(A) =w(A) W w,(A) U w(A) ww,(A)

=(o,0>u(§,0) (1£ (—0)
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A, =F(A)) =W (A) oW, (A)uw(A)uw,(A)
143, 2
276 VG 99
11 /3 143, 143, 243, 543

8
BT T L R AT U R R R I

1 7 3, 2
O)U(g,O)U(E,E)U(g,O)U(

=<o,0>u(§,0)u( 4 3,

We obtain a sequence
A) D A- D % D oo
Thusthe Koch curveis A=() A,

n=0

W W,

Figure 5.6 The standard Koch curve as an iterated function system (IFS)

VARG

1% Iteration 2" |teration 3 |teration
4™ |teration 51 |teration

Figure 5.7 Thefirst five stages of the standard Koch curve asan IFS

5.3.3.[29] Iterated Function System of the Sierpinski Gasket or Equilateral Triangle
The Sierpinski gasket or equilateral triangle consists of three self-similar pieces that may
be obtained by the following iterated function system

1 1
Wl(xa y) = (EX, Ey)
1 11
Wz(x,y)=(§><+§,§y)
1 11 43

Ws(x’y):(§X+Z’§y+T) (5.14)
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The contraction factor is a —% and the fixed points are (0,0), (1,0) and (1 £

The Barnsley-Hutchinson operator is F(A) = UWi (A).
i=1
Then the attractor of IFS (5.14) is
1 f
A..=F(A), A €{(0,0),10), (— )} n=012,- (5.15)
which isthe Sierpinski gasket or equilateral trlangle.
From (5.15) we obtain obviously

A = F(A) = W(A) UW,(A) Uws(A) = (O, 0)u<— o>u(§ %u
343, 143, 343 143
(E,O)U(lo) (— —) (—,7) (— —) (E 7)

A = F(A)) =W (A) U, (A) Uw,(A) = (O,O)U(—,O) (1 £)

WL NERNERCWERCIY (§£) G253

In general, A, istheunion of 3" vertices, each of size of equilateral triangleis 3—ln

We obtain a sequence

Ab - A.L ) A2 e
Thusthe Sierpinski gasket or equilateral triangleis A= ﬂ A.

A, A (1% Iteration)
La .
A v
AdAAAAALA
A, (2™ Iteration) A, (3" Iteration)
Figure 5.8 Thefirst four stages of the Sierpinski equilateral triangle as IFS
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Dynamics of the Sierpinski Equilateral Triangle:
Since L, :%<1 for k=1,2,3, then iterated function system of the Sierpinski equilateral

triangle {w, :k =1,2,3} isasymptotically stable.

The Jacobian matrix of IFS of the Sierpinski equilateral triangle at the fixed pointsis
1o
Dw(x,y)=| % |
0O =
2

with eigenvalues equal to % and % Thus the fixed points of these IFS (0,0), (1,0) and

(% £) aresink.

Therefore, IFS of the Sierpinski equilateral triangle is asymptotically stable and the fixed
points are sink.

Similarly, we can show that IFS of the following Sierpinski triangles is asymptoticaly

stable and the fixed points are sink.

5.3.4. Iterated Function System of the Sierpinski I sosceles Triangle
The Sierpinski isosceles triangle consists of three self-similar pieces that may be obtained
by the following iterated function system

wl(x,y)=(§xéy>
W, (x,y) = (%x% %y)
W (X, y) = (%x o1 1y j— (5.16)

The contraction factor is a :%, and the fixed points are located at (0,0), (1,0) and

1 \/1_) The Barnsley-Hutchinson operator is F(A) = UW(A)
Then the attractor of IFS (5.16) is
11
A =F(A) A e{(0,0),(l0),(§,$)} n=012,- (5.17)

which isthe Sierpinski isosceles triangle.
From (5.17) we obtain obviously

A = F(A) = W(A) UW,(A) VW (A) = (0,0 U (0 “(%’2—%)
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A2=F(A))=W(A1)UW(A)UW(A1)
—(OO)U( 0 (42\/—) ( 0 ( 0 (16 2\/—

u(=,—)u(=,—=)u(—=,——
(4 4\/5) (8 8\/5) (16 16J§)
In general, A, istheunionof 3" vertices, each of size of isoscelestriangleis 3—ln

We obtain a sequence

Thusthe Sierpinski isoscelestriangleis A= ﬂ A..

n=0

A (1% Iteration)

A

AdA Al AL

A, (2™ Iteration) A, (3" Iteration)
Figure 5.9 Thefirst four stages of the Sierpinski isosceles triangle as IFS

5.3.5. Iterated Function System of the Sierpinski | sosceles Right Triangle
The Sierpinski isosceles right triangle consists of three self-similar pieces that may be

obtained as the attractor of an iterated function system by setting
1 1
Wl(xa y) = (_ X’ —~ y)
1 1
W, (X, —X+=, =
L% Y) =X+, 2y)
W (% Y) = (5%, Sy +2) (5.18)
o 2727 2 '
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The contraction factor is a :%, and the fixed points are (0,0), (1,0) and (0,1).

3
The Barnsley-Hutchinson operator is F(A) =(_Jw (A).
i=1

Then the attractor of IFS (5.18) is
A..=F(A), A €{(0,0),(10),(0)} n=012,- (5.19)

which isthe Sierpinski isosceles right triangle.
From (5.19) we obtain obviously

A = F(A) = W(A) UW,(A) UW(A) = (0,0 U (0 U(0,)

11

ué@u@%ﬂ%?u@?ugawwm

Ay = F(A)) =w(A) W, (A) Uw(A)

1 1 1 3 11 1 11 3
:(O’O)U(E’O)U(O’E)U(Z’O)U(Z’O)U(Z’E)U(O’Z)U(E’Z)U(O’Z)

In general, A, istheunion of 3™ vertices, each of size of isoscelesright triangle 3—1n
We have a sequence
Ab ) AL ) A2 e

Thusthe Sierpinski gasket or right isoscelestriangleis A= ﬂ A..

n=0

A (1% Iteration)

~ ~

A, (2™ Iteration) A, (3" Iteration)
Figure 5.10 Thefirst four stages of the Sierpinski right isosceles triangle as IFS
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5.3.6. Iterated Function System of the Sierpinski Scalene Triangle
The Sierpinski scalene triangle consists of three self-similar pieces that may be obtained as
the attractor of an iterated function system by setting

W, (% y)=(%x, 1)

1 11
W, (X, —X+=,=
L(XY) = (2 > 2y)

1

W;(X,y) = (§x+ (5.20)

\/§
4

The contraction factor is a —% and the fixed points are (0,0), (1,0) and (% —)

1
11 G
8’2 8

3
The Barnsley-Hutchinson operator is F(A) = UWi (A).

Then the attractor of IFS (5.20) is ]

A =F(A), A €{(0,0),10),(01} n=012,- (5.21)
which isthe Sierpinski scalene triangle.
From (5.21) we obtain obviously
A = F(A) = W(A) UW,(A) UW(A) = (0,0 U 0 U (gg)
A =F(A)) =W (A)Uw,(A) U w(A)

=00 v (— Ou (—£)

In general, A, istheunion of 3" vertices, each of size of scalenetriangleis 3—1n

We obtain a sequence

Thus the Sierpinski scalenetriangleis A=(") A,..

n=0

A (1% Iteration)
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&A 5‘;“5}5

A, (2™ Iteration) A, (3" Iteration)
Figure5.11 Thefirst four stages of the Sierpinski scalenetriangle as IFS

5.3.7.[30] Iterated Function System of the Sierpinski Car pet
The Sierpinski carpet consists of eight self-similar pieces that may be obtained as the
attractor of an iterated function system by setting

W% Y) = 5Y) () = (X2, 2Y),
W) = (X2 W) = (XS,
W) = (5X2 Y+ D), W) Y) = (X S+ D)
W, (X, Yy) = (%x+%,:—13y+§), W (X, Y) = (%x+§,:—13y+§) (5.22)

The contraction factor a ==, and the fixed points are located at (0,0),

Wik

1 1 1 1
(E’O)! (110)’ (O’E)’ (:LE)’ (0’1)’ (E’l)’ and (1:1)

8
The Barnsley-Hutchinson operator is F(C) = U W, (C). Then the attractor of IFS (5.22) is

C,.=F(C,), where C, €{(0,0),(1,0),(01),(1,D}, n=0,12,-- (5.23)
From (5.23) we obtain obviously

Cl = F(Co) = Wl(CO) UWz(Co) U"'UWB(CO): (O:O) U(%,O) e (111),
Cz = F(Cl) = Wl(Cl) VW, (Cl) e WS(Cl)

- (00U (.0 U U (LY

In genera, C, istheunion of 4™ vertices, each of size of Sierpinski carpet is 3—1n

We obtain a sequence
C,oC >oC,-
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We conclude that the Sierpinski carpet is C = ﬂCn.

n=0

L

H N H N

il il HER

ANEEEEEEE

H BEE BN B

ANEEEEEEE
C, C, (1% Iteration) C, (2" Iteration)

Figure5.12 Thefirst three stages of the Sierpinski carpet as IFS

Dynamics of the Sierpinski Car pet:
Since L, :%<1 for k=12,...,8, then iterated function system of the Sierpinski carpet
{w, :k=12,...,8 isasymptotically stable.

The Jacobian matrix of 1FS of the Sierpinski carpet at the fixed pointsis
1

Dw(x,y) = 3 1)
O -
3

0

with eigenvalues equa to % and % Thus the fixed points of these IFS (0,0),

1 1 1 1 .
(E!O)! (110)1 (015)1 (1’5)’ (011); (5,1), and (:Ll) are sink.
Therefore, IFS of the Sierpinski carpet is asymptotically stable and the fixed points are sink.

5.3.8.[13] Iterated Function System of the Box Fractal
The box fractal consists of five self-similar pieces that may be obtained as the attractor of
an iterated function system by setting

W, (x,y) =(§x, %y)

wxy)=Cx+ 2, Ly

3 33
W0 Y) = (EXZY+2)
W% ) = (Gx+2 2y +2)
W (X, ) = (%x+;—§,%y+%) (5.24)
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The contraction factor is a :%, and the fixed points are located a (0,0), (1,0), (0,1,

3
(%,%), and (1,1). The Barnsley-Hutchinson operator is F(B) =vai(B).
i=1

Then the attractor of IFS (5.24)is B,,, = F(B,), n=0,12,--- (5.25)

where B, €{(0,0),(10),(0,1),(1,1)}, which isthe box fractal.
From (5.25) we obtain obviously

B, = F(B) = W (By) U () U+~ UW(B) = (0.0 L 5.0 U (5,9 L (0.)
2 1 21 12 22 2
U(gao)u(lo)u(lé)u(gyg)U(é,g)u(gag)u(gﬁl—)

1 343 8
B, =F(B,) =w,(B,) uw,(B) - uw(B,)= (010)U(§10)U(g’?)u'”u(gi)
In general, B, istheunion of 4™ vertices, each of size of the box fractal is in

We have a sequence

BB >B,>-

Thus the box fractal is B=("]B,.

n=0

B, (1¥ Iteration)

B, (2™ Iteration) B, (3" Iteration)
Figure 5.13 Thefirst four stages in the construction of the box fractal as IFS
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Dynamics of the Box Fractal:

Since L, ::—13<1 for k=12,...,5 then iterated function system of the box fracta
{w, :k=12,...,5 isasymptotically stable.

The Jacobian matrix of IFS of the box fracta at the fixed pointsis

0
Dw(x,y) =

O Wik

(SRR

with eigenvalues equal to % and %

Thus the fixed points of these IFS (0,0), (1,0), (0,2), (%,%), and (11) aresink.
Therefore, IFS of the box fractal is asymptotically stable and the fixed points are sink.

5.3.9 Iterated Function System of the Square Fractal (using the Cantor middle% set)

The constructed square fractal (using the Cantor middle% set) consists of four self-similar

pieces that may be obtained as the attractor of an iterated function system by setting

21

W ( y)=(§x, §y>, W, (x, y)=<§x+ 30
w3<x,y)=(§xéy+§), w4(x,y)=(§x+§,§y+§) (5.26)

The contraction factor is a :%, and the fixed points are located at (0,0), (1,0), (0,1

4
and (L1). The Barnsley-Hutchinson operator is F(S) = Jw (S).

i=1
Then the attractor of IFS (5.26) is
S..=F(S,), n=012,:--, where S, €{(0,0), (1,0), (0,2), (LD}, (5.27)
From (5.27) we have obviously

S = F(S) = Wi(S) W Wy (Sp) W e (S) W w, (S)

=(o,0)u(§,0)u(o,§)u(2 2)u(3,0>u(LO)u(éé)u(Lg)u(o,é)

3’3" '3
UEDUOHUEDUEIUEIUEHUED,

S, =F(S) =W (S)VS,(A)VUS(A)US,(A)
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In general, S, istheunion of 4™ vertices, each of size of the square fractal is in

We get a sequence
S,2S oS,

Hence the sguarefractdl is S=()S,.

n=0

. . . .
H B H N

. . e i
H N H N

S, S, (1% Iteration) S, (2™ Iteration)
Figure 5.14 Thefirst three stages in the construction of the square fractd as IFS

Dynamics of the Square Fractal:
Since L, :%<1 for k=1,234, then iterated function system of the sguare fracta

{w, :k=1,234,} isasymptotically stable.
The Jacobian matrix of I1FS of the box fractal at the fixed pointsis
1

Dw(x,y) =| 3
0

0

l )
3
I 1 1
with eigenvalues equal to 3 and 3

Thus the fixed points of these IFS (0,0), (1,0), (0,2) and (1,1) aresink.
Therefore, IFS of the square fractal is asymptotically stable and the fixed points are sink.

5.3.10. Iterated Function System of the Square Fractal (using the Cantor middle%set)

The constructed square fractd (using the Cantor middle% set) consists of nine self-similar

pieces that may be derived as the attractor from the following iterated function system
2 1

W, (%, y)z(éx, éy), W (x, y)=(§x+ 229
wa(x,y)z(éxéwé), w4(x,y)=(§x+15‘,éy),

1 1 4 1 21 2
Ws(X,Y)—(EX,gerg), WG(X’y)_(§X+§’§y+§)’
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1 21 4 1 4 1 2
W7(X,y)=(gx+gagy+g), Ws(X,y)=(§X+g,gy+g),

1 41 4
W,(X,V)=(=X+—,—Yy+— 5.28
6(X,Y) (5 S 5) (5.28)

The contraction factor is a :%, and the fixed points are located at (0,0), (1/2,0),

14,0), (0,1/2),(1/2,1/2),(1,1/2), (0,1, (1/2,2) and (1,2).
9
The Barnsley-Hutchinson operator is F(S) = UWi (S).
Then the attractor of IFS(5.28)is S, = F(S,), n=012,--- (5.29)
where S, €{(0,0), (1/2,0), (1,0), (0,1/2), (1/2,1/2), (1,1/2), (0,1, (1/2,1, (11},
From (5.29) we obtain obviously

%=H%FWﬁMUmu%@mﬂmmA§QUQ§UWUQ&
S, = F(S) =W (S) U+ Uy (S)

In general, S, istheunion of 4™ vertices, each of size of the square fractal is 5—1n

We have a sequence

§>828

Therefore, the square fractal (using the Cantor midd e% set) is S=()S.

n=0

S, S, (1% Iteration)

Figure5.15 Thefirst two stages of the square fractal (using the Cantor mi ddle% set) asIFS
Dynamics of the Square Fractal (usngthe Cantor middle% Set):

Since L, :%<1 for k=12,...,9, then iterated function system of the square fractal

{w,:k=12,...,9} isasymptoticaly stable.

Chapter Five 70



Dhaka University Institutional Repository

The Jacobian matrix of IFS of the square fractal at the fixed pointsis

1
Dw(x,y) = 5 ,

o 1
5

with eigenvalues equal to % and %

Thus the fixed points of these IFS (0,0), (1/2,0), (1,0), (0,1/2),(1/2,1/2), (1,1/2),
(0,2, (1/2,1) and (1,1) aresink.
Therefore, IFS of the square fractal is asymptotically stable and the fixed points are sink.

5.4. Iterated Function Systems of the Three Dimensional Fractals

5.4.1. Iterated Function System of the Menger Sponge
The Menger sponge consists of twenty self-similar pieces that may be derived as the
attractor from the following iterated function system

1

x) |3

w|y|l=|0
z

0

1

3

W, y|=|0
z

0

1

x) |3

Wy y|=|0
z

0

1

x) |3

w, y|=l0
z

0

0

O wlkr o O wlk o o wlk

o wlkrr o

0

o Wl o O Wl o o Wwlr o

Wl O

X 0

1
0 :
yIi* [3 3y3j
Z 0
1
X 8 1
1
IR EEEY
z 0
X 0
1] (1
= =x = 1).=
y+3 [3 3(y+)2j
z) (0
X) | © 1 1 1
0l=|=(x+12),=y,=(z+1
[+ (3<x+>3y3(z+>j
Z =
3
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E00
3
W5y=0%0
z
00E
3
100
3
weyzoéo
z
00E
3
1/3 0
w, y|l=| 0 1/3
z 0O O
lOO
3
W8y20%0
z
OOl
3
lOO
3
Wgy:O%O
z
OOE
3
E00
3
1
WlOy:0§0
z
OOE
3
l00
X 3
1
W11y20§0
z
OOl
3

Y|+

Yy |+

Y|+

O owlN

owlNno

wiINoOWI R

OWlIFRPWIN WwiIvWlIFO
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1 11
:(§(x+ 2), §y,§zj

1 1

1.1 1
(3 3y’3(z+2)J

1 1 1
= (§(X+1)' §(y+ 2),§zj

((x+1) =y,= (z+2)j

1 1
(SX 3(y+1) (z+2)j

1 1 1
:(§(x+ 2), §(y+1),§ zj
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E 0O 2
3 X -
1 3
W, y|=|0 5 Of|ly|+ (i ( (x+2), y (z+1)j
z VA =
0O E 3
3
l 0O
3 X g 1 1
1
W, y|=|0 5 Olly|+ 5 (3 3(y+2) (z+1)j
z Z
0o 1 1
3 3
100 2
3 X 3
1 2 1 1 1
W =0 = O +| = |=| =(x+2),=(y+2),=2
4 )Z/ 3 32’ 3 (3( ) 3(y )3 J
0 O E 0
3
E 00 2
3 R
1 3
Wely|=|0 3 0 + g ( (x+2), y (z+2)j
VA 11\z =
0O 0 = 3
3
l 0O
; :
1 1 1
W16 Yi= 0 5 0 + E (5 §(y+2) (Z+2)J
Z yA
00 E E
3 3
100 2
3 X 3
1 2 1 1 1
W =0 = O +| == =(Xx+2), =(y+2),=(z+1
7 Z 3 32/ 3 (3( ) 3(y )3( )j
0o L 1
3 3
E 00 E
X 3 3
1 1 1 1 1
W =0 = O +| = =] =(x+2),=(y+1),=(z+2
v =10 5 0¥ 3 (3< ) 20+ 0.2 )j
00 l E
3 3
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100 1
X 3 X 3
1 2 1 1 1
W, =0 = O +|=|=| =(x+D, =(y+2),=(z+2
1932/ 3 32/ 3 (3( )3(y )3( )j
0o L 2
3 3
1 0 0 2
X 3 X 3
1 2 1 1 1
W, =0 = O + == =(X+2),=(y+2),—(z+2 5.30
o1 Y|=|0 5 0|l Y 13 [3( ) (42 )j (5:30)
00 1 2
3 3

The contraction factor is a =%, and the fixed points are located at

0.0,0)(5,0,0,(0.2,0), (0,02, (L0,0), (010, (0.0, (10,%). <L§,0), (01 %x

1 1 1 1, 1 1
(5:110)’ (5!0!1)’ (075!1)’ (:L:LO)’ (1,0,1), (01]-’1)’ (11115)1 (E!ll)l (115’ 1): (111,1)

20
The Barnsley-Hutchinson operator is F(M) = U w, (M).

i=1

Then the attractor of IFS(5.30)isM,,,=F(M_,), n=0,12,-- (5.31)

where M, €{(0,0,0), (1,0,0), (0,1,0), (0,0,2), (11,0), (1,0,2), (0,1,1), (11, 1)}.
From (5.31) we obtain obviously

M, = F(Mo) :sz\Ni(MO)
1 1 1, 2 2 2
= (0,0,0)u(§,0,0)u(O,g,O)u(O,O,g)u(g,O,O)U(O,g,O)U(O,O,g)
--~u(%,ll)u(L%,l)u(ll%)U(lll)-

20
MZZF(Ml):U\Ni(Ml)!'”
i=1
Ingenerd, M, istheunion of 8.(20)"* vertices, each of size of the Menger spongeis 3—1n
We obtain a sequence
My,oM; oM,

Hence the Menger spongeis M = ﬂM .

n=0
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M, M, (1% Iteration) M, (2™ Iteration)
Figure 6.16 The first three stages in the construction of the Menger sponge as IFS
Dynamics of the Menger Sponge:

Since L, :%<1 for k=12,...,20, then iterated function system of the square fractal

{w, :k=12,...,20} isasymptotically stable.
The Jacobian matrix of IFS of the Menger sponge at the fixed pointsis

0 0

o wlk

Dw(x,y) =

o wlk
Wl o

. 11 1
with eigenvalues equal to =, = and =.
g ™ 33 3

Thus the fixed points of these IFS (0,0,0), (%,o, 0), (0,%,0), (o, o,%), (1.0,0), (0,1,0).

1 1 1 /1 1 1 1
0,0,2), (,0,-), 4,=,0), (0,1, ©), (=,140), (=,0,1), (0,=,1), 0), (1,0,2), (0,11, =),
(0,09, @ 2)(L2 ) ( lz)(zl)(2 ), ( 5 ), (110), 1,0,2), ( l)(llz)
(%,11), (1%,1), and (L11) aresink.
Therefore, IFS of the Menger sponge is asymptotically stable and the fixed points are sink.

6.4.2. Iterated Function System of the Sierpinski Tetrahedron
The Sierpinski tetrahedron consists of four self-similar pieces that may be obtained as the
attractor of an iterated function system by setting

1

2 00 0
X X
s 2 |3l 2727 2
00 * >
2
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%oo 0
X
1 2 xy 2z 1
W, :0_0 ~ |7l A~ A AYA T =)
i 2 |IY" Vs (2 V32 2\/§J
z 1\ z 1
00 = -1
2 2./3
1
2 0% |
1 -1 x 1 vy 1z 1
wlyl={0 = ofy|+| = |5 2=, L= 2 =~
i 2 J6 [zfzz@z z@j
Z 1Z -1
00 = -1
2 23
1 1
2 X \/g 1 1 1
- X y z
w|yl=l0 = ofyl+| == |=|2+—=, L -~ 5.32
Y10 O T (2&2%223) (532
Z 1\Z -1
00 = -1
2 2.3

The contraction factor is a:%, and the fixed points are located at (0,0,/3),

(0,24213,-1/+/3), (—2,-213,-1/3) and (+2,—/2/3,~+/1/3).

4
The Barnsley-Hutchinson operator is F(T) = UWi (T).

i=1

Then the attractor of IFS (5.32)is T, = F(T,), where n=0,1,2,---, (5.33)

T, €{(0,0,+/3), (0,24/2/3,-1//3), (—v2,-/2/3,-+/1/3), ('2,-+/2/3,-/1/3)},

which isthe Sierpinski tetrahedron.
From (5.33) we obtain obviously

T, = F(Ty) = Wi (To) W W, (Ty) © wy(Ty) W w, (T,)

1 1 1 1 1
_(oo\/_)u(o\/T\/_ -5 \/_\/_)u u(ﬁ,—%,ﬁ).

T2 = F(Tl) = UW| (Tl)l

Ingenerd, T, istheunion of 4.4"* vertices, each of size of the Tetrahedronis 2—1n

We obtain a sequence
T, o, oT, >

Thus the Sierpinski tetrahedronis T =(T,.

n=0
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T, (1% Iteration)

T, (2" Iteration) T, (4" Iteration)
Figure5.17 Thefirst four stagesin the construction of the Sierpinski tetrahedron as IFS

Dynamics of the Sierpinski Tetrahedron:
Since L, =%<1 for k=1,234, then iterated function system of the square fracta

{w, :k=1,234} isasymptotically stable.
The Jacobian matrix of IFS of the Sierpinski tetrahedron at the fixed pointsis

100
2
1
Dw(x,y)=| 0 2 0|
001
2

with eigenvalues equal to %% and % Thus the fixed points of these IFS (0,0,/3),

(0,2/213,-1/+/3), (—/2,-/2/3,-1/3) and (+/2,—~/2/3,-/1/3) aresink.

Hence IFS of the Sierpinski tetrahedron is asymptotically stable and the fixed points are sink.
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5.4.3. Iterated Function System of the Octahedron Fractal
The constructed octahedron fractal consists of six self-similar pieces that may be derived
as the attractor form the following iterated function system

1 0 O
X 2 L X 0 L
Xy z
w, 0O = 0 0 |=|=,=,=+—|,
i 2 |1 1 [2 2 2+ﬁj
00 2 2
2
ool (L
1 V2 x 1 yz
w,| Yy 0 — Of|yl|+| O |=|=+—=,=.,—|,
2 2 J2'2'2
z 11\ z 0
0 0 =
2
1 0 O
2 0
w o L oollvlsl Lio(xy, 12
5 Y 2 YN ZIT 22 2 2)
VA 1 VA 0
0 0 =
2
1 0 O
? 1 0 1
Xy z
w 0O = 0 + 0 |=|=, = =——F%=|
‘7 2 12 = (2 22 ﬁj
00 % 2
2
% 0 0 -1
1 V2 x 1 yz
Wy O - Of|yl+]| O |=|=——=. == |
2 2 J2'2'2
z 11\z 0
0 0 =
2
1 0 O
X 2 0
1 -1 xy 1 z
w, 0O = 0 +H === === 534
6| Y 5 Y"1 72 [2 5 &2) (5.34)
VA 1 VA 0
0 0 =
2
The contraction factor is a :%, and the fixed points are located at (0, 0,\/5),
(\/E,0,0), (01\/510)1 (0101_\/§)a (_\/E,0,0) and (01_\/510)
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6
The Barnsley-Hutchinson operator is F(O) =|_Jw; (O).

i=1

Then the attractor of IFS (5.34) is O,,, = F(O,), where n=0,12,---, (5.35)
and Oo € { (O) 01 \/E); (\/Ei 01 0)5 (0; \/E! 0)1 (01 01 - '\/E)i (_\/El 01 0)! (01 - '\/Ey 0)} ’
which is the octahedron fractal. From (5.35) we obtain obviously

Ol = F(Oo) = LGJWi (Oo)

i=1

1 1 1 1 1 1 1
_(0’0’*/§)U(O’m’ﬁ)u(_ﬁ’_ﬁ’ﬁ)U"'U(ﬁ"_fs’—g))-

0,-F(©)-Uw©). .-

Ingenerd, O, isthe union of 6.6 vertices, each of size of the octahedron fracta is 2—1n

We obtain asequence O, o0, o0, o---

Therefore, the octahedron fractal is O=(")O,.

n=0

0, O, (1% Iteration)
Figure 5.18 Thefirst two stages in the construction of the octahedron fractal as IFS

Dynamics of the Octahedron fractal:

Since L, = % <1 for k=12,...,6, then iterated function system of the octahedron fractal

{w, :k=12,...,6,} isasymptoticaly stable.
The Jacobian matrix of IFS of the octahedron fractal at the fixed pointsis

1 0O 0
2
1
Dw(x,y)=| 0 3 0,

0O 0 1

2
. 11 1
with eigenvalues equal to =, = and —.
g ™ 2 2 2
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Thus the fixed points of these IFS (0,0,4/2), (+v/2,0,0), (0,4/2,0), (0,0,-+/2), (—+/2,0,0)

and (0,—+/2,0) aresink.
Therefore, IFS of the octahedron fractd is asymptotically stable and the fixed points are sink.
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CHAPTER Six

MARKOV OPERATORS

OVERVIEW
In this chapter, we discuss the properties of Markov operators on L'(X) space and Borel

measure. We observe that Markov operator is non-expansive and asymptotically stable.
Also we show the sweeping properties of Markov operator associated to iterated function
system of the generalized Cantor sets.

6.1. Markov Operators
Markov operators which occur in diverse branches of pure and applied Mathematics [31].
Processes described by these operators arise in mathematical theory of learning [32, 33,
34], population dynamics [35], theory of stochastic differential equations [36, 37] and
many others. Recently such processes have been extensively studied because of the close
connection to fractals and their generalization, semifractals [38, 39, 40, 41]. These
operators are also used in computer graphics. If (Z,),., is a homogeneous Markov chain
taking values in some metric space X and p isitstransition kerndl, i.e.,

prOb{Zn+l € Alzn = Xn""’ZO = XO} :p(xn’A)
for ne N and all Bordl sets A, the corresponding Markov operator is given by

P(A) = [p (x, Am(d).

6.1.1. [42] Markov Operatorson L'(X)

Let thetriple (X,Z,m) beas -finite measure space, that is, £ isa s -algebra of subsets
of aset X and misas -finite positive measure defined on . Let L'=L(X,Z,m be
the Banach space of al m-integrable real functions defined on X with the L'-norm

| f ||:I| fldn and let L =L"(X,Z,m be the Banach space of all bounded almost

everywhere real X -measurable functionson X with the L*-norm || g ||, =esssup|g|. It

is well known that L” is the dual space of L. A linear operator P:L' — L is caled a
Markov operator if Pf is nonnegative with the same integral for any nonnegative
function f e'. Denote D={f eL': f >0,|| f |=T}. Then the Markov operator P can be
characterized as alinear operator P such that P(D) < D.

Each f € D isreferred to as a density function (with respect to the chosen measure m),
and is also the density (the Radon-Nikodyn derivative) of the probability measure

mr(f):j f dm foreach AeX
A
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with respect to m The measure m is said to be absolutely continuous with respect m

Thus aMarkov operator is alinear operator that maps densities to densities.
Some basic properties of Markov operators P are as follows [37A]:

() IPFINflL, v fel.

(i) P|fIgf], Vel thais P|f(x)[ f(x)] for m-amost al x.

@inIf Pf=f, then Pf"=f" and Pf =f". Hee f"(X)=max{f(x),0} and
f7(X) = max{-f (x),0}.

Definition 6.1.1.1 [43] A family { P(t)},., of Markov operators which satisfies conditions
@ PO=1d
(b) P(s+t)=P(s)P(t) for s,t >0
(c) foreach f e L' thefunction t+— P(t) f iscontinuous

is caled a Markov semi-group.

Markov operators. Types of Markov operators such as Frobenius-Perron operator,
Iterated Function System and Integral operator.

1. Frobenius-Perron operator: This operator describes statistical properties of simple
point to point transformations [44]. Let S: X — X be a non-singular transformation, that

is, S is ameasurable and m(S™*(A)) =0 for al AeX such that m(A)=0. For a given
f e L' define
m (f)= jfdm, Acs.

st(A)

Since S is a non-singular, M(A) =0 implies that then m (A)=0. Thus the Radon-

Nikodym Theorem implies that there exists a unique f L%, denoted as Pf, such that
m(f)= [fdm Aex.

sia)
Define f = Pf. Thenthe operator P=P,: L' — L* defined by
[Pfdm= [fdmforal Aex
A

sHA)

is called the Frobeniou-Perron operator is aso a Markov operator [42].

2. Markov Operator for Iterated function systems: [43] Let S,S,,..., S, be non-singular
transformations of the space X =[0,1]. Let B,P,...,P, be the Frobenious-Perron
operators corresponding to the transformations S,S,,...,S,. Let p, p,,..., py be non-

N
negative measurable functions defined on X such that z p.(x)=1foral xe X.
i=1
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We consider the following process. Take a point x. We choose a transformation S with

probability p,(x) and S (x) describesthe position of x after the action of the system. The
evolution of densities of the distribution is described by the Markov operator

P =3 R(A 1)
That is, 7
PHO =Y R(p 19 =3 p I

3. Integral operator: [43] If k: X x X —[0,00) isameasurable function such that
jk(x,y)m(dx)=1 for each ye X,
X

(X) f(S7(X), where f e L}(x), xe X.  (6.1)

then

Pf (%) = [k(x,y) f (y)m(dy)

isaMarkov operator.

6.1.1.2. [45] Sweeping Property of Markov Operators
Let afamily M € X be given. A Markov operator P is caled e-sweeping (e >0) with
respectto M if

IimsupJ'P”f dm<l-e for AeM and f €D.
A

A 1-sweeping operator is shortly called sweeping, and inequality (6.1) may be replaced by
lim [P"f dm=0 for AeM and f eD.

n—oo A

A Markov operator P iscalled Cesaro-sweeping with respectto M if
n-1
IimEZIP”fdm:Ofor AeM and f eD.

n—oo n k=0 A

6.1.2. [46] Markov Operatorson Measures
Let (X,r) beaseparable complete metric space. We assumethat every closed bal in X

B(r,x)={ye X:r (x,y)<r}
is a compact set. We denote by B(X) the s -algebra of Borel subsets of X. By B, (X)

we denote the families of al bounded Borel subsets of X. By M we denote the family of
Borel measures (nonnegative, s -additive) on X such that m(B) <« for every bal B. By

Msin and M; we denote the subsets of M such that m(X) <c for me Ms, and m(X) =1
for me M;. The elements of M; will be distributions. Further by C(X) we denote the
space of bounded continuous functions F : X — R with the supremum norm. As usua we
denote by C,(X) the subspace C(X) of which contains functions with compact supports.
The indicator function of aset Ac X will be adenoted by 1,.
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A linear functiona j :C, > R iscaled positiveif j (f)>0 for f >0. According to the
Riesz theorem for every linear positive functional j :C, — R there is a unique measure
me M such that

j (f)=]fdm=<f,m> for feC,
X

An operator P :Misin T M5, will be caled a Markov operator if it satisfies the following two
conditions.

(i) Positivelinearity: P(I ,m+1,m)=1,Pm+I.,Pm, forl,1,>0m,m M;spn

(i1) Preservation of the norm: Pm(X)=m(X) for me M.

A Markov operator P is called a Feller operator if there is a linear operator
U :C,(X) —> C(X) (dual toP) such that

<Uf ,m>=<f,Pm> for f eC,, me M. (6.2
Observe that the range of the operator U is contained in C(X) but not necessarily in
C,(X). Wemay extend U to al bounded measurable (or nonnegative measurable) function
by setting

Uf (x) =<Uf ,d, >=< f,Pd, > (6.3

where d, eM; is a point (Dirac) measure supported at x. For f >0 the function Uf is
nonnegative but may be unbounded or even admit infinite values for unbounded f.
Every Markov operator P can be easily extended to the space of signed measures

Msg ={m —-m, :m,m, € Msn}.
We say that me Mgin is concentrated on Ae B(X) if m(X\A)=0. By meM; we
denote the set of all distributions concentrated on A< B(X).
Namely for every n € Mgq we define

Pn =Pm - Pm, wheren =m —-m, :m, m, € M.

It is easy to verify that this definition of P does not depend on the choice of m, m,.

In the space Mgy we define the Fortet -Mourier norm
In || =sup{l< f.n>|:f eF}, (6.4)
F

where < f,m>=If(x)n(dx) and F ={f e C(X)} istheset of al f suchthat || f [[.<1

X

and | f(X)-f(Y)Kr(xYy) for x,ye X. It is easy to verify that the vaue (6.4) will not

change if F isreplaced by F,=F nC,. For me My, we have || m|= m(X). The space

M, with the distance || m —m, || is acomplete metric space and the convergence
Lijg||n1—m||:0 for m,,me My

is equivalent to the condition
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lim< f,m, >=<f,m> (6.5)

n—o

foral f e C(X), or equivaently for al f e C,(X).
A family {P}., of Markov operators is caled a semi-group if P"*=P'P*for all
t,seR, and P? istheidentity operator on M.

6.1.2.1. [31] Properties of Markov Operators
A Markov operator P iscalled non-expansive if

| Pm —Pm, [Hl[m —m, || for m,m, e M. (6.6)

Let P be a Markov operator. A measure me Mg, is caled stationary or invariant if
Pm=m and A Markov operator P is caled asymptotically stable if there exists a
stationary distribution m, such that

m [|P"m-—m ||=0 for me M. (6.7)
Clearly the distribution m satisfying (6.7) isunique.
Let {P'}., be a Marko semigroup. The Markov semigroup {P'}., is caled non-
expansive if every Markov operator P',t>0 is non-expansive. A measure me Mgy, is
called stationary or invariant for the Markov semigroup {P'},., if P'm=mfor al t>0.
The Markov semigroup {P'},., is called asymptoticaly stable if there exists a stationary
distribution m such that

LLT” P'm-m ||=0 for me M. (6.8)

An Operator P is caled globally concentrating if for every e >0 and every Ae B, (X)
thereexist Be B, (X) and n, e N such that

P"m(B)>1-e for n>n,, meM;. (6.9)
An Operator P is called locally concentrating if for every e >0 thereis a >0 such that
for every Ae B, (X) thereexist C € B,(X) withdiamC <e and n, e N satisfying

P*m(C)>a for meM/. (6.10)

An Operator P is called concentrating if for every e >0 there exist CeB,(X) with
dianC<e and a >0 such that

liminf P"m(C) >a for me M. (6.11)

n—w

6.2. Existence of Stationary Distributions

The proof of existence of a stationary density usually goes as follows. Let X be a
compact space. We construct an invariant operator U on C(X) and then using the Riesz
representation theorem we define an invariant measure. In our case the proof is more
difficult, since a positive functional may not correspond to a measure. Thus we start with
the following.
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Lemma 6.2.1. [46] Let P be a Feller operator. Assume that there exists a linear positive
functional j :C(X) > Rsuchthatj (1,)=1, and

j Uh)=j (h)y for heC,(X) (6.11)
where U is dual to P. Further let m eM be the unique (Riesz theorem) measure
satisfying j (h)=<h,m > for he C,(X). Then m eM and Pm =m.
Proof: From the inequality

] .(hy=<h,m > for 0<h<1
immediately follows that j (X)<1. Thus m €M and we may define a new functional j ,
on C(X) setting
<h,m >=j (h)<j (1,) =1 for he C(X).

We claim the j ,(h)=j (h) for h>0. In fact let he C(X), h>0 be fixed. Using the

Tietze extionsion theorem we may construct an increasing sequence of nonnegative
functions h e C, suchthat h,(x)— h(x) for xe X. Since] ispositive we have

i.(h)=j (h)<j (h) or <h,,m><j (h).
By the Lebesgue monotone convergence theorem this yields <h,m ><j (h) and
completes the proof of the claim. Now according to (6.11) we have
i.Uh)<j U(h)=j (h)=j.(h) for heC,, h=0
which in turn implies
<h,Pm >=<Uh,m >=j ,(U(h)) <j ,(h)=<h,m >

Consequently, Pm <m.
Since P preserves the measure the last inequality is equivalent to Pm =m.
This completes the proof. O

6.3. A Criterion of Asymptotic Stability

Lemma 6.3.1. [46] A non-expansive Markov operator is a Feller operator.
Proof: We know

Uf (x) =<Uf ,d, >=< f,Pd, > for f €C,,
where d, e M; isapoint (Dirac) measure supported at X.
Now
Uf (x)|=|< f,Pd, >| <sup|f|.
Clearly, Uf isbounded.
Further if f € C, isLipschitzean with Lipschitz constant kf then

Uf (x)-Uf ()| =|< f,Pd, -Pd, >|<e|Pd, - Pd, | <e,

d, —dyH <er(Xy).

where e; = max(k, ,sup|f|). Thus for Lipschitzean the function is continuous. For an
arbitrary f eC, we choose a sequence of Lipschitzean functions f, €C, which
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converges uniformly to f. (Using the Stone Weierstrass theorem it is easy to verify that
the Lipschitzean functions are densein C;). From the inequality

|Uf (x)—Ufn(x)|:|< f—f,,Pd, >|33up|fn - f|
it follows that Uf is continuous as the uniform limit of the sequence of continuous
function Uf,. Thus we have verified that Uf € C(X). According to the definition of U
we have

<Uf ,m>=< f,Pm>

for feC, and m=d,. Since linear combinations of point measures are dense in My,
(with the Fortet Mourier norm ). The above equation holds for every me M.
This completes the proof. O

Theorem 6.3.2. [46] Let P be a non-expansive Markov operator. Assume that for every
e >0 thereisaBorel set A withdiamA<e, area number a >0 and an integer n such

that

liminf P"m(A) >a for meM;. (6.12)
Then P isasymptotically stable.
Proof: Since anon-expansive Markov operator is a Feller operator, P isaFeller operator.
Then P has an invariant distribution m. To complete the proof of asymptotic stability it

remainsto verify condition
lim< f,m >=<f,m> foral feC(X).

N—o0
When an invariant distribution exists the above condition is equivalent to a more
symmetric relation

LLT” P"(m-m)||=0 for m,m eM;. (6.13)
Let m,m e M; and e >0.Choose Ac X and a,0<a <1 according to (6.12) and fix a
number s € (0,a). We will define by an induction argument a sequences of integers (n,)
and four sequences of distributions (nY),(n/),k=012,...,i=12. If k=0 we define
=0 and n’=nf=m.If k>1 is fixed and n_,,m*n" are given we choose
according (6.12) anumber n, such that

P*mf (A >s fori=12

and we define
) P*m (BN A)
kK(B) =
O e
nf(B)=${P”knf‘1(8)—anr‘1(s)}. (6.14)

Since P™*mf*(A) >s, we have
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P™nf(B) = P (B A) = P*m(A)n{(B) 2 an; (B).
Observe that n(X \ A) = 0 and consequently
Inf —n} ll=sup| [ f onf — [ fany|=sup|[ fchy—[fany|<diamAs<e. (6.15)
feF X X feF A A

Using equation (6.14) it is easy to verify by an induction argument that
P™ % m =sP™ "' +s 1-s)P* ™%+ .. +s (1-s ) +(@-s) m k=1
Since P isnon-expansive thisimplies
[P (m-m)I<s |In;-n; [l+s A-s)|In/ -nZ ||

+o 48 (@=s) T Ing —ng [[+@-s)* | mf —nT ||
From this, condition (6.15) and the obvious inequality || m — m ||< 2 it follows

[P (m-m)[<e+2(1-s)"
Again, using the non-expansiveness of P" we obtain
IP"(m-m)|l<e+2(1-s)" for n>n +...+n,.

Since e >0 and k > 0 arearbitrary, thisimplies (6.13).
This compl etes the proof. O

6.4. Sweeping Properties Associated to Iterated Function System of the Generalized
Cantor Sets (IFSGCYS)

6.4.1. By equation (6.1) we may define the operator P associated to IFS of the Cantor

middle% set as follows:

3
Ef(SX)’ for 0<x<1/3
Pf (X) = 0, for 1/3<x<2/3
gf(gx_z)’ for 2/3<x<1

It is easy to verify that
€, »2n

n-1 de:in’
2 2

P"f(x)=0fore, gxgl—enandIP”f(x)dx:
0

0

']g 32n 32n _ 3n

2n—1 X— 2n—1

jP”f(x)dx:

dx = in ,Wheree, =3™".
l-e, 0 2

~lim | P f(X)dx= Iim(in+in) =0.
n—mx n—w 2 2

Thus P issweeping as an operator on L,(0,1) and 2—1n-sweepi ngon LJ[0,1).

However, P is neither sweeping nor Cesaro-sweeping on L,[0,1).
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6.4.2. By equation (6.1), we may define the operator P associated to IFS of the Cantor

middle% set as follows:

f(5x), for0<x<1/5

© wlu

for1/5<x<2/5

Pf (x) =1 f (5x—2), for 2/5<x<3/5

o 00|U'I

for 3/5<x<4/5

wlo

f(5x 4), for 4/5<x<1

It iseasy to verify that, P"f(x) =0 for e, < x<1-3¢,,1-2¢, < x<1l-e,
and
) 2.57" 1 7 T (25 (5™ —5") 1
IPf(x)dx I xdx—3 IPf(x)dx—J' 3 X — 7 dx:§
(2.52n 2% (52" -
X_

1-3e, 1-3e,

jP“f(x)dx:j

. - %) dx:in,whereen =57
l-e, l-e, 3 3 3

.'.IimJ'P”f(x)dx_Ilm S Y
N—>o0 3n 3[1 3n

Thus P issweeping as an operator on L,(0,1) and 3—1n -sweeping on L,[0,1).

However, P is neither sweeping nor Cesaro-sweeping on L,[0,1).

6.4.3. By equation (6.1), we may define the operator P associated to IFS of the Cantor
middle——
2

,(2<m< o0) set asfollows:
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ZmT—l f((2m-1)x), for0<x<1/(2m-1)

0} for 1/(2m-1) < x<2/(2m-1)

ZmT—l f((2m-1x-2), for 2/(2m-1) < x< 3/(2m-1)
PF (x) = (;,m ) for 3/(2m-1) < x<4/(2m-1)

o f((2m-1)x—4), for 4/(2m-1) < x<5/(2m-1)

0, for 5/(2m-1) < x<6/(2m-1)

2m-1

o f((2m-1)x—(2m-2)), for (2m-2)/(2m-1) < x<1

It is easy to verify that
P"f(x)=0fore, <x<1-((2m-1)-2)e,,
1-((2m-1) -3¢, < x<1-((2m-1)—-4)e,,...,.1-2e, < x<1-e,

e, 1-((2m-1)-3)e, 1 1
and [P f(x)dx= [P"f(x) == [P"f(x) =, wheree, =m"
0 1-((2m-1)-2)e, l-e, m

~lim [P () dx = lim 1,1t it
n_mx N0 mn mn mn

Thus P issweeping as an operator on L,(0,1) and %-sweepi ngon LJ[0,1).

However, P is neither sweeping nor Cesaro-sweeping on L,[0,1).
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CHAPTER SEVEN

HAUSDORFF MEASURESOF FRACTALS

OVERVIEW

In this chapter, we discuss basic measure theory, Hausdorff measure and Hausdorff
dimension. We show the Hausdorff measures and dimensions of the invariant set for
iterated function system of the Generalized Cantor sets and also we show the Hausdorff
measures and dimensions of the invariant set for iterated function system of the two and
three dimensional fractals.

7.1. [47] Basic Measure Theory on Euclidean Space
We say m is a measure on elements in the s -algebra of subsets of X if satisfies the

following three properties:
(1) mf)=0;
(2) mA) <mB) if Ac B and A Bes -algebra;
(3) If A, A,,... isacountable sequence of sets, then

JA <X ma)

and

JA|-Xma)
if A aredigoint Borel sets.

Furthermore, we say m is a probability measureif m(X) =1. For the purpose of this
chapter, we will always consider X c R".

7.2.[47] Hausdor ff Measure and Hausdor ff Dimension

7.2.1. Hausdor ff Measure
If U isany non-empty subset of n-dimensional Euclidean space R", the diameter of U is
defined as |U |=sup{|x-Yy| x,yeU}. Here we will use the Euclidean metric:
|X=y = (4 = Y1) + (% = ¥,)* 4+ (%, = ¥n)?)
we may use any L, metric. If ECR", and a collection {U}

Y2 However, as will be shown shortly,

., satisfies the following

conditions:
(1) |V, £d foreachiel;

(2) Ec Uiel Ui,
then we say the collection is a d -cover of E. We may assume the collection is always
countable.
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Definition 7.2.1.1. [26] Let E € R" beabore set with {U .},_, a d -cover for it. Given any

s>0, we define the d -approximating s-dimensional Hausdorff measure H3:R" — R by
the following

Hj(E)zinf{i‘JUi [F:{U.},_, formsad -cover for E}
i=1

If d — 0, then we have amore succinct formula
H*(E) = lim (H; (E))
giving the s-dimensional Hausdor ff measure of E.
Thistakes, for any se R, aunique value between zero and infinity inclusive. It also forms

a measure on R". This measure is a rough analogue of Lebesgue measure for non-
negative, rea values of dimension:
H°(E) =cardinality of E.
H'(E) =length of E if E isacurve.

HZ(E):i- areaof E if E isasurface.
P

H2(E)=pE- volumeof E if E isa3-space.

It should be noted that Hausdorff measure can measure sets of non-integer dimension, and
that the n-dimensional measure on a set of m-dimensions (assuming m=n) will not give
the meaningful result.

7.2.1.2. Some Properties of Hausdor ff Measure
Theorem 7.2.1.2.1. [48] (Outer Measure) The following are true for any metric space

() (Null Empty set) H(f ) =0.

(ii) (Monotonicity) If Ec F, thenH®(E) <H?®(F).

(iii) (Countable Subadditivity) H S(U E)< Z H*(E).

i=1 i=1

Proof: (i) and (ii) follow directly from the definition.
(iii) Assume that H®(E)) isfinitefor al i el; otherwise, it istrivid. Then it follows that

H;(E) is aso finite for al iel and any d>0. It suffices to show that
Hj([] Ei)siHj(Ei) for al d >0. Let e >0. Then, for any i, there exists a countable
i=1 i=1
d—cover {U, ;}7_; of E suchthat
JZZ'Q,] |S<H§(Ei)+§'

Since {U; ;} ., /2, iscountable d — cover of U E, wehave
i=1
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HIUJE)S Y X1, < X (H3(E)+5) = 3 (H3(E)+e

i=1 j=1

By taking d — 0, the result follows. O

Theorem 7.2.1.2.2. [48] (Countable Additivity) Let {E} ", be a countable collection of

digoint H°-measurable subsets of X. Then we have
HS(QE)= iHS(E)-
Proof: If E and E, aredisjointHS-rr;eaerabI;eset, then it follows by definition that
H*(E,UE,) =H*((§ UE,) NE) +H*((E,UE,) N E}) =H*(E) +H*(E,).
By induction based on this idea, we see that HS(LKJ E)= ZK:HS(E) foral kel. Sine, for

i=1 i=1

k o
any ke, wehave | JE <| JE, we obtain theinequality
1 i=1

H(JE)2H*(JE) = Y HY(E).

Letting k — o0, we have

H(JE)> ) H(E).
i=1 i=1
Moreover, the converge of this inequality follows directly from the countable
subadditivity property.
Hence the equality holds, as required. O

Theorem 7.2.1.2.3. [48] (Hausdorff and Lebesgue Measure) Let be a Borel subset of R".
Then

s 1
"}/

where w, is the volume of an n-dimensiona ball of diameter 1, and where |E| denotes
the Lebesgue measure of E.

Proof: It is easy to show that any Lebesgue null set of R" has n-dimensional Hausdorff
measure zero, since it may be covered by balls of arbitrary small total content. Then n-
dimensional Hausdorff measure is absolutely continuous with respect to Lebesgue

measure, SO %(H“) =c for some locally integrable function c. As Hausdorff measure

and Lebesgue measure are transal ation-invariant, ¢ must aso be transalation-invariant and
thus constant. Therefore, H"(E) =c|E| for some ¢>0. To caculate the constant ¢, we
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compute the Hausdorff measure and Lebesgue measure of an n-dimensiona ball of

diameter 1, and thisgives c =i, asrequired. O
w

n

Theorem 7.2.1.2.4. [26] (Scaling Property). Let S:R" — R" be a similarity mapping, and
any | >0 such that |S(x)-S(y) Kl |x—y]| for any x,yeR", where | is the scaling
factor. If E€ R", then H°(S(E) =1 *H®(E) isascaling length, area etc.

Proof: Let {U,} 2, bea d-cover of E. Then {SU,)} -, isa | d-cover of S(E). Thus we
seethat, given s> 0:

H', (S(E)) = inf{zw: |S(U,) I {U}, formsal d-cover}

Here DISUD Y NNU =1 U F
i=1 i=1 i=1
We obtain
H{y (S(E)) < *H}(E).
So, letting d — O givesthat
H®(S(E)) <I *H*(E).

Replacing | byll and E by S(E) givesthe opposite inequality, as required. O

7.2.2. [26] Hausdor ff Dimension
Let E be agiven set. Note that H;(E)) decreases as s increases. This means that H °(E)

also decreases with sincreasing. If t>s and {U;} is a d-cover of E, then each

|U, [°<d"® since |U, £d, so

DIV =300, 110, ) < 2 @10, ) <d XU T
After taking theilnfimaovelr al d -covers, welcan easily see that |
H' (E)<d"*H:(E) (7.1)
Let d — 0. Then Hy(E) — 0 if H®(E) isfinite. Alsoif H isbounded and finite then
H](E) > .

Two applications of equation (7.1) should be noted:
1. If H*(E) <o and t > s, then H'(E) =0.

Proof: Equation (7.1) shows that H,(E)<d'*H;(E) for any positive d. The result
follows after taking limits, since H*(E) < . 0
2.1f H*(E) >0 and t<s, then H'(E) = .
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1 H}(E)<H;(E) for any positive d. After taking

dt—s

Proof: Equation (7.1) shows that

limits, we seethat H'(E) = o0, since Iimd—>0dt_1_szoo and lim,  HJ(E)=H®(E)>0. O

One immediate consequence of these observation isthat H®(E) =0 or « everywhere
except at aunique value s, where this value may befinite. Asafunction of s, H*(E) is
decreasing function. Therefore, the graph of H°(E) will have aunique value where it
jumps from infinity to zero. Thus, if we define the Hausdorff dimension of aset E as
dim,, (E) =sup{s:H*(E) =} =inf{s: H*(E) =0}, the graph of H*(E) lookslike

0 if s<dim, (E)

H®(E)=<0 if s>dim, (E)
finite, nonzero number if s=dim, (E)

H*(E)

v

0 dim,(E)

We can see by the graph above, that for any set E and some non-negativerea s, if
s<dim, (E) then H*(E) =, and if s>dim, (E)then H*(E)=0.
As an example, we can see that the length of asquare isinfinite, it hasafinite areaand it

has no volume, that is, H*(E) =0 (volume), H'(E) =« (length), HS(E):ﬂ- area of disc
Y

(positive and finite)
7.2.2.1. Some Properties of Hausdor ff Dimension

Theorem 7.2.2.1.1. [48] The Hausdorff dimension for setsin R" satisfies the following
properties:

(i) If EcF, thendim, E<dim, F.

(i) dim, E<n.

(iii) If |E[>0,then dim, E=n.

(iv) If E iscountable, then dim, E=0.

(v) If dim, E<n, then |E|=0,
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(vi) If E isopenin R", then dim, E=n.
(vii) dim, (0 E)=sup{dim, E:iel}

Notethat | E| isthe Lebesgue measure of E.
Proof: (i) If EcF, thenH®*(E)<H®(F) for s>0, whichimplies dim, E<dim, F.
(i), (iii), (iv) and (v) can be deduced from the relationship between Hausdorff measure

and Lebesgue measure in Theorem 7.2.1.1.3.
(vi) If E isopen, then it containsaball of positive n-dimensional volume.

(vii) By the monotonicity property, dim,, (U E)>dim, E for each i. On the other hand,

i=1

if s>dim, E forall i, then H’(E)=0, and thereforeHS(U E) =0, giving the opposite
i=1

inequality. .
Theorem 7.2212. [26] Le¢ EcR" and f:E—R" be Lipschtz, that is,
| £(x)— f(y)lsc|x-y| then H*(f(E)) <c’H*(E).
Proof: Let {U,} bead -cover of E, so{E(U,} isad -cover of E. Then

| f(ENU,)Kc|ENU; Kc|U,; kcd

Thus { f (ENU,)} isad -cover of f(E) with 3| f(ENU)F<c YU .
i=1 i=1

Taking infimawe have
H, (f (E)) < HS(E).
So, letting d — 0 then
H®(f(E))<c*H*(E). O

Theorem 7.2.2.1.3. Let (Hausdorff Dimnsion Theorem). For any real r >0 and integer
n>r, thereisacontinuum fractals with Hausdorff dimension r in R".
Proof: The proof can be found in [49].

7.2.2.2. Hausdor ff Dimension of the Cantor middle%set

The construction of the Cantor middle third set is as follows:

We start with the closed interval I; =[0,1].

& F ]
0 1

Remove the middle open third. Thisleavesanew set T, =[O0, %] U [g ]

G F ¥ F J
0 13 23 1

Chapter Seven 96



Dhaka University Institutional Repository

Each iteration through the a gorithm removes the open middle third from each segment of
the previous iteration. Thus the next set would be
7. .8

1 21 2
I, 2[0,§]U[§,§] U[§1§]U[§11]-

0 1

G —
o= I

kEER ek E
o & & & £ & &

Figure7.1 Construction of the Cantor middle% set

N R

In general, after n timesiterations, we obtain I, which asfollows

333 -2 321 1 whee n>1.
3" 3" 3"
Therefore, we construct a decreasing sequence (I',) of closed sets, that is I',,, < I',, for all

n+l =

1 2 3
I,=[0=]Vl=,=]u--u
n [ 3n] [3n 3n] [

neN, sothat every T, consists of 2" closed intervals al of which the same length 3—1,1

The Cantor ternary set, which we denote C,, 5, is the “limiting set” of this process, that is,

Cys =T, and call it the Cantor middle% Set.

n=1

Following David C seal [47]. Since T’

n+1

cTI, for each neN, and since each T, is
compact, we know that C,,, ,, is non-empty. For example, alittle observation will reveal

that the set {0:—133%} c C,,;. In fact, without proof we can say: |C, ;|5 R|. Take

2

{E}to beaclosed cover, where | JE =TI, and |E |=3" isthe i" interval of T,.
i=1

It follows that

on

Zl E| |s — Z (3—n)s — 2n3—ns.

When s=1log, 2 the above equation becomes

2N = 23 %2 = g2 T Z 21N = ],
We can conclude that dim, (C,,,) <109,(2), since for every d >0, this cover can become
arbitrarily small. That is, H;(C,,,) <1 for each d >0. To show that 10g,(2) isindeed the
Hausdorff Dimension of C,,;, we will need the following Lemma
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Lemma 7.2.2.2.1. (Frostman’s Lemma). Suppose F is a measurable subset of and
suppose and a probability measure m on F such that

Iimraowpwpxeréa'
Then, HS(F)z%. (In particular, dim, (F)>s.)
a

Proof: The proof can be found in [47]
To show that dim, (C,,;) =l0g,(2) it suffices to prove that dim, (C,;) >10g,(2). If we
take the base-3 expansions for all real numbers x[0,1], we can write x=) 3"x where

i=1
each xe€{0,1,2}. If we consider

C'us 12{23_i X % €{0,2}},

then we obtain a subset of C,,;, and the set difference C,,,\C'ys ={xeC,;: xgC'ys} is
a countable set. Consider a sequence of independent identically distributed random

variables { X;},, where P{X, =2} = P{ X, =0} :%_
For afixed n, and by independence, we have
P{Xl = )(1,)(2 = Xoyenny Xn = Xn} = P{Xl = Xl} P{X2 = Xz}...P{Xn — Xn} = if

xe{0,2}. If weset X = ZS’i X., we can define a probability measure m on C'ys by
i=1

m(A) = P{X e A} for measurable subsets Ac[0,1]. For afixed xeC’ys, if ye B_.(X)
then y, =x,...,y, =X, this implies that mB_,(x))<2"=3", where s=log,2. To
finish the estimate, let 1>e > 0. Thereexistsan ne N, 3™V <e<3™
In particular, 3 "3 <e thisimpliesthat 3" < 3e.
dso m(B,(x)) < mB_,(x)), since B,(x) = B_., (X).
Now

m(B, (X)) <mB_, (x)) <3 ™ <3%* =2e".
Then this probability measure immediately satisfies

sup,. M(B, (X)) < 2e”

Appealing to Frostman’s Lemma, we have dim,(C,;)>10g,(2). Another interesting

variation of the Cantor middle set allows for a different size to be removed in each step of
the construction of C,,,. O
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Alternative Method:
7.2.2.2.2. Heuristic Method for Finding Hausdorff Dimensions of the Generalized
Cantor Sets

Let C,; be the Cantor middle% set. Let C,;=(C,,), U(C,3)g With the union digoint

1 2
(Cua)=Cys ﬂ[O,g] and (C3)r =Cy3 0[511]- Then

H*(C,5) =H*((Cy)5).) + H*((Cy3)r) (assuming 0<H?*(C,5) <oo when s=dim,F )

1\ . 1 s
=(§] H*(C,,) +[§j H>(C,5)

Now cancelling H*(C,,,) form both sides, we have

SoR0

Thisimpliesthat, 1=2x3°. Taking log on both sides, we have

O0=log2-slog3, thatis, s:loizzo.G?,l
log3
: . . 1 . log 2 .
Thus the Hausdorff dimension of the Cantor mlddleg set is s=m, that is,
0g

dim,, C, . ='IZ%§: 0.631.

: : 1 ..
Since the Cantor mlddleg setisin R, dim,C,,,=0.631<1.

Hence the Hausdorff measure of the Cantor middl e% set iszero, that is, H*(C,,;) = 0.

Similarly,
we can show that the Hausdorff dimension of the Cantor middle% setis s= :o_g; that is,
0g

dim,, C1,5::0—92:0.682. Since dim,C,,;=0.682<1, the Hausdorff measure of the
0g

: 1 . .
Cantor mlddleg set is zero, that is, H*(C,,5) =0.

In genera, we can show that the Hausdorff dimension of the Cantor middle o1

logm
log(2m-1)

logm

(2<m<w), setis S= _—
log(2m-1)

, thatis, dim,Cyom ) = (2<m< ).
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logm

————— <1 for 2<m< oo, the Hausdorff measure of the Cantor
log(2m-1)

Since dim,C,,, 5 =

middle

o1 (2<m< ), satiszero, that is, H*(Cy, ) = 0.

Hence the Hausdorff measure of the generalized Cantor setsis zero, that is, H*(C,,,,, ;) =0

for 2< m< 0.

7.3. Hausdor ff Dimensions of the I nvariant Setsfor Contractionsor | FS of Fractals

Let S,S,,...,S, be contractions. A subset F of X is caled invariant for the
transformation S if

F=UsF)

In the case where S : X — X are sSmilarities with Lipschitz congtants L, for i=12,...,N

respectively, a theorem proved by M. Hata (Theorem 10.3 of [50] and Proposition 9.7 of [40])
dlows us to caculate the Hausdorff dimension of theinvariant set for S, S,,...,S. Namdly, if

weassumethat F isaninvariant set for the smilarities S, S,,..., S, and S(F)nS;(F) =f
fori# j, then dim,F = s, where s isgiven by

ZN: LS =1. (7.2)

7.3.1. Hausdor ff dimenson of theinvariant st for | FS of the Cantor middle% st
Let F beaninvariant set for IFS of the Cantor middle% st whichis
X X 2
W (X) = —, W, (X)=—+—.
1 (X) 3 ,(X) 2'3

with contracting factor L, :% foreach i=12.

If Fc X, then w,(F)~w,(F)=f and I_lzé,L2 ::—1%.
Now from (7.2), we have
[Ej +(5j _1=3 = 2= slog3=log2..s=%92 _ 0631,
3 3 log3

Thus the Hausdorff dimension of theinvariant set for IFS of the Cantor mi ddle% sis

log2 .
s=-29%_063] that is, dim,, F = 0.63L.
log3
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7.3.2. Hausdor ff dimenson of theinvariant set for | FS of the Cantor middleé s

Let F beaninvariant set for IFS of the Cantor middleé st whichis

X X 2 X 4
Wl(x)=g, Wz(x):g‘i‘g, w(x)=§4rg

with contracting factor L, = % foreach i=123.

If Fc X, then w(F)nw,(F)nw,(F)=f and L, =

ol I [
||
U'I_I =
r
w
[l

Now from (7.2), we have

(a +(%j +E) ~1=5°=3= slog5=log3. .s=:°i3=o.682.

Thus the Hausdorff dimension of theinvariant set for IFS of the Cantor mi ddleé stis

IogS

=0.682, that is, dim,F = 0.682.
Iog

7.3.3. Hausdor ff dimenson of theinvariant set for | FS of the Cantor middle% s

Let F beaninvariant set for |FS of the Cantor middle% st whichis

X

X 2 X 4 X 6
Wl(X)=7, WZ(X)=7+7, W3(X):7+7, W4(X)=7+7

with contracting factor L, =% foreach i =1,2,34.

If F< X, thenw (F)nw,(F)=f fori=j, and L =% fori=1...,4

Now from (7.2), we have

log4

4[% =1=7°=4=slog7=log4..s=——=0.712.
7 log7

Thus the Hausdorff dimension of theinvariant set for IFS of Cantor mi ddle% sis

s=199%_ (712 thatis, dim,, F = 0.712.

log7
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7.3.4. Haugdorff dimenson of the invariant set for IFSGCS (the Cantor
middle

,(2<m<o0) sts
2m_1( ) sets)

Iterated Function System of the Generalized Cantor Sets: Let X =[0,1]. Let (X,r) bea
complete separable metric space. If w, : X — X isafunction which is defined by

X . 2k-1) ,m>2
2m-1 2m-1

W, (X) =

with contracting factor L:ﬁl,(ZS m<oo) for k=1,2,...,m respectively, then the

family {w, :k=12,...,m} iscalled an iterated function system of the generalized Cantor
sets (IFSGCS). Now we have

1 1 1
r (W (), W (y) =1 [wi (O)’W(W—ln = [o, o 1)2J = oD’
1 )y 1 1 1
(2m-1)) (2m-1) (2m-1) (2m-1)
Since r(w(X),w(y)<L-r(xy) for al xyeX, and O<L<1l the mapping

L-r(vvi(x),vvi(y)):L-r(O, 5> for 2<m<co.

w X — X of iterated function system of the generalized Cantor sets is called a
contraction or similarity with contracting factor or Lipschitz constant L.

Let F beaninvariant set for |FS of the Cantor middle2 1 st whichis
m_
W (X) = X | 2|_2,m22
2m-1 2m-1
with contracting factor L, :%1,(23 m< o) foreach i1=12,...,m
m_

fori=12,....m

If Fc X, then w(F)nw,(F)=f fori=j, ad L, =3 1

Now from (7.2), we have

m(ij =1= (2m-1)° = m= slog(2m-1) =logm

2m-1
__109M 5 mco).
log(2m-1)
Thus the Hausdorff dimension of theinvariant set for IFS of the Cantor middle o1 stis
m_
logm o logm
=——,(2<m<w), thatis, dim F =————,(2< m< x).
log(2m—1) ( ) " log(2m-1) ( )
Hence the Hausdorff dimension of theinvariant set for IFS of the generdized Cantor setsis
dim,F=—1%9M 5 mco)
log(2m-1)

Chapter Seven 102



Dhaka University Institutional Repository

7.4. Hausdor ff Dimensions of theInvariant Setsfor | FS of Two Dimensional Fractals

7.4.1. Hausdor ff dimension of theinvariant set for | FS of the Koch curve
Let F beaninvariant set for IFS of the Koch curve whichis

W (x,y) = (% X, %yx

3 143 1
W, (X, Y) =(=X+—Y+—=, —X+=VY),
L (X, y) = ( 6y s 6y)
J3 1 43 1 43
W (X, Y) =(=X+—VY+—=, — X+=Y+—),
(X, Y) AT 5 6)
2 1
W, (X Y) =(=X+—=, =
(X Y) = ( 3 3y)

Now we have

F (%, Y), W5 (X, Y) = J3—16(x— X)? +3—36(y— y)? +3—'°;(x— X)? +3—16(y— y)?

l ! !
= V) + (y-y)’
1 Iy
:Er ((X,y),(X,y))
It followsthat w; isa contraction on R*with contraction factor L :%.

Similarly, we can show that w;,, w, and w, are contraction on R* with L :%.

4

If F < X, then ((w (F)=f and L, =% foreach i =1,2,3,4.
i=1

Now from (7.2), we have

(EJ +(lj +(E] +(Ej =13 =4= slog3=log4.'.s:||2ig=l.26.
g

3 3 3 3
Thus the Hausdorff dimension of theinvariant set for IFS of the Koch curveis
s=199% 1 26, that is, dim,, F =1.26.
log3

Since the Koch curveisin R?, and dim,,F =1.26 < 2, the Hausdorff measure of the
invariant set for IFS of the Koch curveis zero, that is, H*(F) = 0.

7.4.2. Hausdor ff dimension of theinvariant set for | FS of the Sier pinski isosceles triangle
Let F beaninvariant set for IFS of the Sierpinski isosceles triangle which is
1

1 1 1 11 1 11
Wl(X,y):(EX,Ey): WZ(Xiy):(§X+E’§y)! W3(X1y):(§X+Z!Ey+ﬁ)

Now we have
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N 1 ' 1 4 1 ! !
r(w (%, y),W1(><,y))=\/Z(X—><)2+Z(y—y)2 =§\/(><—><)2+(y—y)2
1 ! !
=Er ((X,y),(X,y))
It followsthat w; isacontraction on R? with contraction factor L :%.
Similarly, we can show that w, and w; are contraction on R*with L :%

If F < X, then w,(F) nw,(F) nwy(F) =f and Li—% :%,Lf%,

Now from (7.2), we have

(1] +(Ej +(%j 1= 2°=3=slog2=log3. s=-293 158,

2 2 log2
Thus Hausdorff dimension of theinvariant set for IFS of the Sierpinski isosceles triangleis
= log3 =158, that is, dim F =1.58.
log2

Since the Sierpinski isosceles triangleisin R?, and dim, F =1.58< 2, the Hausdorff
measure of theinvariant set for IFS of the Sierpinski isosceles triangle is zero, that is,
H®(F)=0.

Similarly, we can find the Hausdroff dimension and Hausdorff measure of the invariant set
for IFS of the Sierpinski equilateral triangle, isosceles right triangle and scalene triangle.

7.4.3. Haudor ff dimension of theinvariant set for 1FS of the Sier pinski car pet
Let F beaninvariant set for IFS of the Sierpinski carpet which is

w1<x,y)=(1x,1y), W, (x,y) = (5 +§ =
1 21 1 1

W, (X, y) = (3X+§ 5)’) W4(X,Y)=(§X,§Y+—),

Wy(X,y) = (§x+§§y+§) Wo(x,y) = (%X%w—)

1 11 2 1 21
W, (X, Y) = (3X+§ §y+3) Wy (X, Y) = (3X+§§Y+—)

Now we have

F (W (% ), W (X, y) = Jé(x—x')z +é(y— y)? :gJ(x— X) +(y— y)?

. %r (% ¥).(, YY)

: : : : 1
It followsthat w; isacontraction on R? with contraction factor L = 3
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. : : 1
Similarly, we can show that w,, w,, w,, W, w,,w, and w, are contractionon R* with L:§.

8
If Fc< X, then ﬂwi(F):f and L, :% foreachi=12,....8

i=1
Now from (7.2), we have

8(1} =1=3*=8=slog3=10g8.. s—|098
3 log3

The Hausdorff dimension of theinvariant set for IFS of the Sierpinski carpet is

s:lo—98:1.89. Thatis dim,, F =1.89.
log3
Since the Sierpinski carpet isin R?, and dim,,F =1.89< 2, the Hausdorff measure of the

invariant set for IFS of the Sierpinski carpet is zero, that is, H*(F) = 0.

=1.89.

7.4.4. Hausdorff dimenson of theinvariant set for | FS of thebox fractal
Let B beaninvariant set for IFS of the box fractal whichis

wl(x,y)=(1x,1y), W, (x,y) = (—x+§ %y)
1 1 1 21
W;(X,y) = (3x 3y+—) W, (X, y) = (3X+5 §y+—)

1 11
W (X, Y)=(=X+=,=Y+—=
5 (X, ) (3 33y 3)

Now we have

F (W (% ), W (X, y) = \/é(x—x')z +$(y— y)? %J(x— X)? +(y— y)?

1 ! !
=§r ((X’ y),(X,y))
It follows that w; isacontraction on R? with contraction factor L = %

I . . 1
Similarly, we can show that w,,w,, w,and w, are contraction on R? with L =3

5
If B X, then (w(B)=f and L, = foreach i 12345,

i=1
Now from (7.2), we have

(EJ +(£j +(E) +(£j +(E] =1=3=5=slog3=10g5.. s—|095—1.46.
3 3 3 3 3 log3

Thus the Hausdorff dimension of theinvariant set for |FS of the box fracta is

S= logd =1.46. Thatis dim,B=1.46.
log3
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Since the box fractal isin R?, and dim,,B=1.46< 2, the Hausdorff measure of the
invariant set for IFS of the box fractal is zero, that is, H®(B) = 0.

7.4.5. Haudorff dimension of the invariant set for IFS of the square fractal (using the

Cantor middle% set)

Let S beaninvariant set for IFS of the square fractal whichiis

(% 3) = (5% 2Y), W,(X,Y) = <§x+§ )

11 1 21 2
W, (X, X, — W, (X Y)=(=X+=,=y+—
(X, Y) = (3 3Y*3 ) (X Y) (3 +33y+3)
Now we have

oY = B0t Ly = 10T vy

=§r (% Y). (<, YY)

It follows that w; isacontraction on R? with contraction factor L =

5 wll—‘

1
Similarly, we can show that w,,w, and w, are contraction on R? with L = 3

4

If Sc X, then [(Yw(S)=f and L, :% foreach i =12,3,4.
i=1

Now from (7.2), we have

(lj +(Ej +(1j +(Ej 13 4= slog3=logd - s= 9% _1 6
3 3 3 3 log3

Thus the Hausdorff dimension of theinvariant set for IFS of the square fractal is
s=1994 _1 26, Thatis dim,, S=1.26.
log3
Since the square fractal isin R?, and dim,,S=1.26< 2, the Hausdorff measure of the

invariant set for IFS of the square fractal is zero, that is, H*(S) = 0.
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7.4.6. Hausdorff dimension of the invariant set for 1FS of the square fractal (using the
Cantor middle% Set)

Let F beaninvariant set for IFS of the square fractal whichis

W% 9) = (£ £Y) (%) = G X2, 2Y),
W)= (EXZY+D) W)= (X e ),
W)= (EX Y+ Wk )= (X2 2y D),
W0 Y) = (EX+ 2 Y+ D), (k) = (Ex+ 22y D),
W) = (X452 +2)

Now we have

F (W (% Y) WX, Y)) = \/zis(x— X)? +2i5(y— y): =%J(x— XY +(y—y)?
=§r (% ). (X, Y))

It follows that w, isacontraction on R? with contraction factor L =

O alk

. . . 1
Similarly, we can show that w,,w;,...,w, and w, are contraction on R with ng'

9
If F < X, then (\w(F)=f and L, =% foreach i =12,3,...,9.

i=1
Now from (7.2), we have

1

9-&] =1=5"=9= slog5=10g99.. s:loig

log5
Thus the Hausdorff dimension of theinvariant set for IFS of the square fractal is
_ log9

s=——=136. Thatis dim F =1.36.
log5

=1.36.

Since the square fractal isin R?, and dim,F =1.36 < 2, the Hausdorff measure of the
invariant set for IFS of the square fractal is zero, that is, H®*(F) =0.
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7.5. Hausdor ff Dimensions of the lnvariant Setsfor |FSof Three Dimensional Fractals

7.5.1. Hausdor ff dimension of theinvariant set for | FS of the Menger sponge
Let M beaninvariant set for IFS of the Menger sponge which is

wxy.2=(3% 3%.57)

w(y2) = 3% 24057

W, (X, Y,2) = %(X+2) ; ; j
w0ey2) =[x gw3e2)

Wy (%,y,2) = %(x+1),§y,§(z+2)}

Wy (Y, 2) = §<x+2>,§<y+1).§zj,
Wo(x,y,2)=[ 3% 2 (y+2) g(z+1)j

Wis (,Y,7) = §<x+2>,§y§(z+2>],

W (%,,2) = %(x+2)é(y+2)§(z+1)}
Wio (%,Y,2) = %(x+1),§(y+2),§(z+2)}
Now we have

W, (X, Y, 2) = (

W, (X, Y,2) =

Wy, (X,Y,2) =

W, (X,Y,2) =

Wi, (X, Y, 2) =

Wi (X,Y,2) =

Wls(X7 Y, Z) =

Wy (X, Y, 2) =

50093
o

(x+1), gy §Zj

1<x+1>,1y,§(z+1)}

x 1
3

(y+1), ;(z+ 2))
1 1
2y 3<z+1)j

(x+2), §(y+ 2), '3

1

3"

1

3

1 1 1
: )
1 1

§X §(y+2) (z+2)j

%(x+ 2),

1 1 1
§(x+ 2), §(y+ 2),§(z+ 2))

1 1
§(y+1),§(z+2)j,

F(W(%, Y, 2), W(X, Y, 2)) = \/%(x— X)? +§(y— y)? +é(z— 7)?

=:1;\/(X— X)*+(y-y) +(z-2)°

%r (% ¥,2).(X, Y. 2))

: . . . 1
It follows that w; isa contraction on R*with contraction factor L = 3

- . . 1
Similarly, we can show that w,,...,w,, and W, are contraction on R® with L =3

20
If M < X, then [(Yw(M)=f and L, =% foreachi=12,...,20

i=1
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Now from (7.2), we have

20-(% —12 3 = 20= slog3=log20 .~ s= 12920 _ 5 756,
3 log3
20-(% 1= 3 = 20= slog3=log20 - s=°9%0 _ 5726,
3 log3
Thus the Hausdorff dimension of theinvariant set for IFS of the Menger spongeis
_10020_ 5 256, that is, dim, M = 2.726.
log3

Since the Menger spongeisin R®, and dim M =2.726< 2, the Hausdorff measure of the
invariant set for IFS of the Menger spongeis zero, that is, H5(M) =0.

7.5.2. Hausdor ff dimension of theinvariant set for IFSof the Sierpinski tetrahedron
Let T beaninvariant set for IFS of the Sierpinski tetrahedron which is

wixy.2)= L [’)
y 22__
W(Xy,Z) (__ \/;E 2\/—
x 1y 1z 1
W3(X y!Z) (2 \/E 2 \/6’2 2\/5)!
x 1y 1z 1
w,(X,y,2)= (2 722 762 23)

Now we have

(W (Y, 2),W(X,Y,2)) = \/ﬁ(x— X+ (YY) 45 (-2

1 ! ! !
= A=X) +(y=¥) + (2= 2)°
1 ! ! !
:Er ((X,y,Z),(X,y,Z))
It follows that w; isa contraction on R®with contraction factor L =%.

Similarly, we can show that w,,w, and w, are contraction on R® with L :%.

If Tc X, thenﬂW(T) =f andL— foreechl_L234

i=1

Now from (7.2), we have
4(% =1=2°=4=slog2=1log4.. s:loﬁ:
2 log2

Hence the Hausdorff dimension of theinvariant set for IFS of the Sierpinski tetrahedron is
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_log4

~log2
Since the Sierpinski tetrahedronisin R®, and dim,T = 2< 3, the Hausdorff measure of
theinvariant set for IFS of the Sierpinski tetrahedron is zero, that is, H*(T) = 0.

=2. Thatis, dim,T =2.

7.5.3. Hausdorff dimension of theinvariant set for | FS of the octahedron fractal
Let F beaninvariant set for IFS of the octahedron fractal whichis

w(xy.2)=C, %%%x Wy (x,y,2) =G + % 13

(% y.2)= (. §+%,§), w(xy.2)= . g,g—%),

Wo(x,y,2) = (g—%,%), w(x%,2) =, g—%,g)
Now we have

r(w(xy,2),w(x,y,2)) = \/711(’(_ X)? +%(y— y')? +%(z— z)?

1 ! ! !
= A=X)+(y=¥) + (2= 2)°
1 ! ! !
:Er ((X,y,Z),(X,y,Z))
It follows that w; isa contraction on R®with contraction factor L =%.

Similarly, we can show that w,,...,w, and w, are contraction on R* with L:%.

IchXthenﬂw(F) =f andL— foreachl_L ,6.

i=1
Now from (7.2), we have

1

6(5) =12°=6=> sIogZ:Iog6.'.s:Ioifj

log 2

Thus the Hausdorff dimension of theinvariant set for IFS of the octahedron fractal is
_ log6
Iog

Since the octahedron fractal isin R®, and dim,,F = 2.585< 3, the Hausdorff measure of
theinvariant set for IFS of the octahedron fractal is zero, that is, H®(F) = 0.

= 2.585.

=2.585. Thatis, dim,F =2.585.
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CHAPTER EIGHT

INVARIANT MEASURESFOR IFSOF FRACTALS

OVERVIEW

In this chapter, we discuss Iterated Function System with Probabilities and invariant
measures. We formulate Iterated Function System with Probabilities of the Generalized
Cantor Sets and show their invariant measures using the Barnsey-Hutchinson
multifunction and Markov operator.

8.1. [24] Iterated Function System with Probabilities
Let (X,r) be a complete separable metric space. An iterated function system (IFS) is

given by afamily of contracting transformations
W : X — X, iel wheretheindex set | isfinite.

If, in addition, thereis given afamily of continuous functions
p:X—>[01,iel

N
satisfying z p,(x) =1 for every xe X, then the family {(w,p):iel} is caled an
i=1

iterated function system with probabilities.
If {w,w,,..., w.} isafinite family of strict contractions, we may define the Barndey-
Hutchinson multifunction given by the formula

N
F(A) ={Jw(A). (8.1)
i=1
The attractor of iterated function system {w,, W,, ..., W} is
A.=F(A), A X, n=012,... (8.2)

which isthe well known fractal.
Fractals are strongly related to Markov operator acting on the space of al Borel measures
[24]. If the functions wy, ws, ..., wy are given and {p,, p,, ..., Py} IS a probability vector

(i.e., p=0> p= 1), then we may define the Markov operator

Pr(A)=> p (mew A=Y [, PIG) for mem. (83)

w(A)
where M denotes the family of all Borel measureon X.

Let wy, Wy, ..., wy be non-singular transformations of the space X =[0,1]. Let
R, P, ..., Py be the Frobenious-Perron operators corresponding to the transformations
W, W, ..., Wy. Let pyg, po, ..., py be non-negative measurable functions defined on X

N
suchthat > pi(x) =1foral x e X.
i=1
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The evolution of densities of the distribution is described by the Markov operator [43]
N
Pf =2 R(pT).
i=1

Thatis, P () = 3 R(R 19 = 3 T (9 f (w(3) 84)

where f € L'(x), xe X.

8.2. [51] Invariant Measure
If wy, wo, ..., wy are strictly contractive, then the support of the unique probability

measure m invariant with respect to P is equa to the fixed point of the Barnsey-

Hutchison multifunction F defined by (8.1). Also invariant measure can be defined by the
following two methods.
A probability measure m is caled invariant under Barnsley-Hutchinson multifunction F

if and only if
m(A) = m(F‘l(LNJWi(A)) =m(F(A)) (8.5)

A measure me M is caled invariant with respect to Markov operator P defined by (8.3)
if Pm=m

8.3. Iterated Function System with Probabilities of the Generalized Cantor Sets
8.3.1. [6] Iterated function system with probabilities of the Cantor middle% set

The iterated function system with probabilities of the Cantor middle% set isasfollows:

w,(X)==+=, p==, (8.6)

where p, and p, are probabilities which control the evolution distribution of w;(x) and
W, (X). According to the theory of density evolution [25], the density for f(x) mapping
satisfying the density evolution equation

f..(X)=Pf (X),n=012,...

with Pf (x) = ZPi(pi f) which is called Markov operator [43].

i=1

By equation (8.4), we get
dmeo

PF0 = B T (0 (0 (0) + , T (9 £ (),

Thus Pf(X) = g f (W (X)) +g f (W, (X)).
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Now follow [52] we assume the probability density over theinitia interval [0, 1] is
1, xel01],
0= g

0, otherwise,
then what will happen for fy(x) under the Markov operator?
According to Barnsley-Hutchinson operator (8.1), the attractor of the equation (8.6) is the
unit interval. That is, A, =10, 1].
1
3

Now for a subset AC[O, } we have WA <c[0,1, wX(A)c [-2 -1, then

f(wzX(A)) = 0. In the same way, for a subset Ac [% 1}, there is w{1(A) < [2, 3],

w;(A) = [0, 1] and f(wiL(A)) = 0. Thus after thefirst step fo(x) becomes

§, XG{O,E}
2 3
3 2
f(x)=1—=, xe|=,1
W=13 x<|34]
0, otherwise

under the Markov operator.
Similarly, Markov operator acting on f,(x), and so on. Thisis shown in Figure 8.1.

Figure 8.1 Transform from p; and p, over unit interval.
Thus iterated function system with probabilities of the Cantor middle% setis
{(We. p): k=12
8.3.2. [6] Iterated function system with probabilities of the Cantor middleé set
The following constructed iterated function system with probabilities of the Cantor

middleé set is asfollows:

1
W) =%, P=3.
X 2 1
W2(X)=§+§v P2 =3,
4 1
w0=X4 8, b=l 7
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where p;, p, and p3 are probabilities which control the evolution distribution of wy(x),
Wy (x) and wa(x).
Now we assume the probability density over theinitial interval [0, 1] is
1, xel0,1],

folx)= {O otherwise
then what will happen for fy(x) under the Markov operator?
According to Barnsley-Hutchinson operator (8.1), the attractor of equation (8.7) is the unit
interval. Thatis, A, =[0, 1].

Now for a subset Ac [O, %} we hae wl(A)c[01, wi(Ac [-2 1]
w;'(A)c [-4,-3], then f(w;X(A)) =0 and f(wz(A)) = 0.In the same way, for a subset

Ac[— —J, we have wlA)c[23, WA c[01, wsi(A) <c[-2 -1, then

fwii(A) =0 and f(wsl(A) =0. For a subset Ac[%,l}, we have

WA <[4 5, wi (A <[23 ad wl(A) <01, then fwi(A)=0 and

f (wz1(A)) = 0. Thus after the first step, f,(x) becomes

g, xE[o,%]
23

’ XE[—,—]

fl(X) = i >

’ XG[E,]-]

5
3
5
3
0, otherwise

under the Markov operator.
Similarly, Markov operator acting on f,(x), and so on. Thisis shown in Figure 8.2.

Figure 8.2 Transform from p;, p, and ps over unit interval.

Thus iterated function system with probabilities of the Cantor middle% setis

{(kapk):k=1-2’3}-
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set

8.3.3. Iterated function system with probabilities of the Cantor middle2 1

We have congructed iterated function system with probabilities of the Cantor

middle 1
2

1,(23 m< o) set asfollows:

X 1
Wl(X)Zm, pl_a
W(=—2 2 p=1
2 2m-1 2m-1" "? m
w()=-x st p-t
3 2m-1 2m-1" "° m
x  2(k-1) 1
w, (X) = + , =—,(2<m<o,1<k<m). 8.8
(=524 S po=— (2 mee N GE

where p,, p,,...,p,, ae probabilities which control the evolution distribution of
1
W, (X), Wy (X),..., W (X). ——,(2<m
409, W (9),--oy Wy (9. 5= (25 M<x)

Now we assume the probability density over theinitial interval [0, 1] is
1, xe[0,1],
f =
o(x) {O, otherwise,
then what will happen for fy(x) under the Markov operator?

According to Barnsley-Hutchinson operator (8.1), the attractor of the equation (8.8) is the
unitinterval. That is, A, =0, 1].

Now, for a subset AC[O, ﬁ_l} we have wi(A)c[0,1, wi(A) <[-2 1],

w;'(A)c [-4, 3] ..., w; (A) c [-(2m-2), -(2m-3)], then f(wa1(A)) =0,

2 3
2m-1'2m-1

have wi1(A) < [2, 3], wa2(A) < [0, 1, w;*(A) = [-2, 1], ..., W, (A) = [-(2m—4), - (2m-5)],

m

f(w;*(A) =0, ..., f(w;*(A))=0. Inthe same way, for a subset Ac[ } we

2m—1
have  w*(A)c[(2m-2), (2m-1)] w;*(A) < [(2m- 4), (2m-3)], ... w5, (A) = [2, 3], and
Wi (A)[0,1], then f(w*(A)=0, f(W;*(A)=0,..., f(w;:,(A)=0.

m m-1

then f(wii(A) =0, f(w;*(A)=0,.., f(w(A))=0. For a subset AC[Zm—Z’l} we
(

Thus after the first step, f,(x) becomes
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2m—1, x<[o, 1 ]
m 2m-1
2m-1 [ 2 3 ]
’ 2m-1'2m-1
fl(x):
2m—1’ XE[2(m 1),1
m 2m-1
0, otherwise

under the Markov operator.
Similarly, Markov operator acting on f,(x), and so on. Thisis shown in Figure 8.3.

Figure 8.3 Similar transform from p,, p,, ..., p,, Over unit interval.

Thus iterated function system with probabilities of the Cantor middle 5 1 (2<m< )

m-1’
setsis {(w,p):k=12,...,m.

We may summarize iterated function system with probabilities of the Cantor
middlel,l,l, 1, i,---sets, in general, the Cantor middle

35791 2m-1
the following statement:

, (2<m< o) setsin

Iterated Function System with Probabilities of the Generalized Cantor Sets:
Let X =[0,1]. Let (X,r) be acomplete separable metric space. If w, : X — X isdefined

by
X_ . 2(k-1) 1

W, (X) = ,
((x) 2m-1 2m-1""° m

N
where p,(X) are probabilities such that Z P (X) =1 for every xe X, which control the

k=1

evolution distribution of w, (x) with contracting factor or Lipschitz constant L, :2—1
m_

for (2<m< ) and 1<k <m, then the family {(w,, p,): k=12,...,m} iscaled iterated
function system with probabilities of the generalized Cantor sets.
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8.4.[6] Invariant Measuresfor Iterated Function System with Probabilities of the
Generalized Cantor Sets

8.4.1. Invariant measurefor | FS with Probabilities of the Cantor middle%set:
1 2 .
Let A =[0,§]u[§,l]. By equation (8.3) we have

[ P CYm(cx)

2
K=Lwl(A)

PM(A) =

1 1

= [P0 TO0dcr [P0 fO9ak= [ ok [Z k=1

. i 2 2
W (A) wWo(A) 0 0

and

1 2 1/33 1 3 3 1 1
m(A) = n{O,§]+n{§,1] = {Eder zLEdmZE(_JF_j:l

Thatis, Pm=m

Thus m isaninvariant measure for IFS of the Cantor middle% set with respect P.

Alternative method 1:

By equation (8.4) we have
1/3 1 1/3 1
| Pf (%) |== jl.s.f(sx)dm+ jl.s.f(sx-z)olm:§ jdm+ jdm 32,
0 2 2/32 2 0 2/3 2 3

Thatis, || Pf [l f .

Thusfisaninvariant for IFS of the Cantor middl e% set with respect to P.

Alternative method 2;

Let A= [o,%] u[%,g]. By equation (8.5) we have

1 2 7 1/99 7/99 9(1 1 1
M) = mOS)+ m(5 <= [ cme Izdm=—(—+_j=§

o 4 53 419 9

and
(F () = g (0) v () = (0,1 = [ Same L
3/ 12 2

That is, m(A) = m(F (A)).

Thusmisan invariant measure for IFS of the Cantor middl e% set with respect toF.
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8.4.2. Invariant measurefor | FS with Probabilities of the Cantor middle%set:

Let A :[O%] u[é,g] u[g,l]. By equation (8.3) we have

Pm(A) =3 [ p.()m(dx)

Wi (A)
= [P0 FOYax+ [ p,(0) FOIax+ [ ps(x) F(x)dx
Wt (A) W, (A) w;'(A)

I |
:J;gdx+£§dx+'|;§dx:l

1 23 4
and M(A) =m0 2D +miz. o) +miz. 1)

1/5 3/5 1
= j§dm+ J‘ §dm+ '[gdmzl
0 3 2/5 4/53

That is, Pm=m
Thus m isan invariant measure for IFS of the Cantor middle% set with respect P.

Alter native method 1:

By equation (8.4) we have
1/51 3/51 1 1
| Pf (X) ||z j = 5.f (5x) dm+ j = 5.f(5x—2) dm+ j = 5.f (5x— 4) dm
03 2/53 4/53
1/5 3/5 1
=§“dm+j dm+ jdm}?fﬂ,
3 0 2/5 4/5 3 5

Thatis, || Pf ||l f ]
Thus f isaninvariant for IFS of the Cantor middle%setwith respect to P.

Alter native method 2:

Let A= [o,%] u[%,%} u[g,%]. By equation (8.5) we have
1 2 11 4 2
mA) = "([O,E]) + M[E’ED + M[g,—g])

1/25 11/25 21/25
= I §dm+ I édm.k I §dm=1,
9 9

0 2/5 4/5 9 3

and m(F(4)) = () w509 L w5 () = ([0, 2 = [ dm-

0

1
3
That is, m(A) = m(F *(A)).
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Hence misan invariant measure for IFS of the Cantor middl eE set with respect to F

8.4.3. Invariant measurefor | FS with Probabilities of the Cantor Middle

sets
2m-1
By equation (8.4) we have
1/(2m-1) 1 3/(2m-1)
| Pf (%) |I= j (2m-1).f(@m-1)x)dm+ [ = (2m-1).f (2m-1)x—2)dm
0 2/(2m-1)
c1
4ot —.(2m-1).f (2m-Dx—2(N -1))dm
(2m-2)/(2m-1) N

1/(2m-1
2m—1| ey

== [ f(@em-nx)dm+--+ jf((Zm—l)x—Z(N ~1))dm
0 (2m-2)/(2m-1)
_ 2m—1[ 1 1

N 1 ]_2m—1_ N
2m-1 N 2m-1

+ +
N 2m-1 2Z2m-1
Thatis, ||Pf = f |l

Thus f isaninvariant for IFS of the Cantor middle

1,(23 m < oo) setswith respect to P.
Alternative method 1:

Similarly, by equation (8.3) we can prove that Pm=m Thus mis an invariant measure for

IFS of the Cantor middle2 1 1,(23 m< o0) set with respect to P.

Alter native method 2:

Let A=[0, 1 ~Jul 2 = 3 5]V [%71]
(2m-1) (2m-1)%" (2m-1)? (2m-1)
By equation (8.5) we have
3 (2m-1)2 .
m(A) = m([0, “m )]) m([(2 _1)2,(2 )]) m([—(2 R )
1,01 1 N_1

+eert—=—=—
N? N2 N> N? N

and  M(F(A)) = mw (X)) U W, (%) U= U WH(X))

(o 1 D= Ve om— 1_1.
=m(0,_——1)=

7N e, mA) = m(F ().

Thus m is an invariant measure for IFS of the Cantor middle 2ml 1 (2 < m< o) set with
respect to F.
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X, 2(k-1)
2m-1 2m-1
transformations of the space X =[0,1], where p, (x) are probabilities such that

8.5. Proposition: [6] Let w, (X) = » Pe =0 be non-singular

N
z p.(x) =1 for every xe X and let R, be the Frobenious-Perron operators

k=1

corresponding to the transformations w, for (2<m< o) and 1<k <m Then the Markov

N
operator Pf =:ZF>k(pk f) satisfy the following conditions:

k=1

(@ Pf >0 foral fin L'(X)with f >0.
() I P [L.<ll f |l foral fin LX(X) and || Pf |l=]| [l if f 0.

Proof: () Let f beafunctionin L'(X). Then
N

PE )=, dm Wk () f (W)

k=1

d

= p, MV o £ ugt09) + p, TV

200 f (W' (%)) +
m

d

...+

L () F (W ()

2m-1 2m 1 2m—

Thatis, Pf(x)=2m-1 for2<m<oo.
Thus Pf >0 foral f in L'(X)with f >0.
(b) Let f beafunctionin L'(X). Then it follows that

Lt em-1x—2(N-1))

1P = 1135 2 5% 0 £ ms . |, 5% £
L dmo w,*
z Pe— g (W () F ()| (mew)
s dmo w* d(m Wk)
—Z Pe— g (W () F ()= = (y)dm
RN dmo w ! d(m wk)
3 j P gy~ (W= = (y)f(y)‘dm
=> [P f(y)ldm=>" [| f(y)|dm=]| f |}
Thus || Pf l.<|| f I, foral f in L*(X).
Hence || Pf ||,=|| f ||, if f >O0. O
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CHAPTER NINE

DYNAMICSOF THE PROTOTYPICAL FRACTAL

OVERVIEW
In this chapter, we define the Transition Operator P, for the Iterated Function System
with Probabilities of the Generalized Cantor sets (IFSPGCS) and show that this operator is

a Markov operator. We aso show that the Iterated Function System with Probabilities of
the Generalized Cantor sets is non-expansive and asymptotically stable if the Markov

operator P, has the corresponding property with respect to the metric j (r (X, Y)).

9.1. [24] Barnsley’s and Hutchinson Approach to Fractal Theory

Let (X,r) beacomplete separable metric space. We assume that every closed ball in X
B(r,x)={ye X:r (x,y)<r}

is a compact set. We denote by B the s -algebra of Borel subsets of X. By M we denote
the family of Borel measure (nonnegative, s -additive) on X such that m(B) <o for
every ball B. By M; we denote the subsets of M such that m(X)=1 for me M;. The
elements of M will be distributions. An iterated function system is given by a family of
contracting transformations

W X — X, iel wheretheindex set | isfinite.
If, in addition, thereis given afamily of continuous functions

p:X—>[01,iel

N
satisfying > p,(x) =1 for every xe X, then the family {(w, p,):iel} is caled an

i=1
iterated function system (IFS) with probabilities.
Having an IFS {w:iel}, we define the corresponding Barnsey-Hutchinson
multiplication [21, 22] by the formula
N
F(A=Jw(A) for AeB.
i=1
and having an IFS with probabilities we define the Markov operator acting on measures by
N
Pm(A) =) [p()mdx) for meM, AeB. (9.1)
K=Lwt(A)
It iseasy to verify that P isaMarkov-Feller operator and itsdual U isgiven by
Uf () =2 p 09 F (W ().

iel
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A set A, suchthat F(A)) = A, iscaled invariant with respect to the IFS {w; :i e 1}. If, in
addition, for every nonempty compact subset A of X, the sequence (F"(A)) converges
in the Hausdorff distance to A,, the set A, iscalled an attractor (or fractal) corresponding
tothe IFS{w :iel}.

Assume that | is finite and for every iel, the function w is Lipschitzian with the

Lipschitz constant and the function p, is constant. The following facts are well known
[21, 25].
Fact 9.1.1. If L <1 for iel, thenthe IFSis {w :iel} asymptoticaly stable (on sets),
the operator P given by (9.1) is asymptotically stable (on measures), and

A, =suppm.
where A, is the attractor (or fractal) corresponding to the iterated function system
{w :iel} and m istheinvariant measure with respect to P.
Fact 9.1.2. If

2. pL <1,

iel

then an IFS with probabilities {(w;, p.) :i e 1}, isasymptotically stable.

9.2. Iterated Function System with Probabilities of the Generalized Cantor Sets
(IFSPGCYS)
Let X =[0,1]. Let (X,r) beacomplete separable metric space. If w, : X — X isdefined

by

x  2k=D _1

W, (X) = ,
((x) 2m-1 2m-1""° m

where p,(X) are probabilities such that z p.(X) =1 for every xe X, which control the
k=1

evolution distribution of w, (xX) with contracting factor or Lipschitz constant L, = mo1
m_

for 2<m<oo and 1<k<m Then the family {(w,,p,):k=12,...,m} is caled iterated

function system with probabilities of the generalized Cantor sets.
Now since

z pkLk = p1L1+ p2L2+"'+ mem
k=1
1 1 1 1 1 1

:m 2m-1 m 2m-1 m 2m-1

= 1 <1 for 2<m< oo,
2m-1

then the iterated function system with probabilities of the generalized Cantor sets
{(w,p):k=L2,...,m areasymptoticaly stable.
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For iterated function system with probabilities of the generalized Cantor sets
W, P), ={(W,,p,):k=12,...,m, we define the transition operator P, :M T M by the
formula

PWrr(A)=Zm: [ pdm for AeB(X) and me M. (9.2)

k=L wi(A)
Theorem 9.2.1. If P, satisfiesthe following two conditions
(i) Positivelinearity: B, (I ,m+! ,m)=I1,Pm+I,Pm forl ,1,>0, m,meM
(i) Preservation of the norm: P,m(A)=m(A) for meM, then P, is a Markov operator
for IFSPGCS (w, p).,-.

Proof: Let X =[0,1]. Let (X,r) be a complete separable metric space. The iterated
X 2(k-1) 1

function systems w, : X X is defined by w (X)= + b, =—, for

Sy k - y W (X) om—1 . 2m-1 Pk m

2<m<oo and1<k<m Let A=[0—r Ju[—2——> Ju--u2MY o x
2m-1 2m-1 2m-1 2m-1

(i) By (9.2) we have
PAM+1m)A =Y [p,(l,dm+1 dm)

k=L wl(A)

m m

1 m 1
[pddm+> [pddm =1, +1,
0 0

k=1

1
_[ pk(l 1d”l+| zdl’Q) =
0

k=1 k=1

and | ,P,m+I Rm=1.> [pdm+I,> [pdm
k=L wi(A) kLw(a)
m 1 m 1
:|12kadm+lzszkdmz +1,
k=1 o k=1 o

Thatis B, (I ,m+I1,m)=1,PRm+I|,B,m forl I1,>0,m,m eM.
(i) By (9.2) we have

P =3 [p,dm=3"] p,dm=1

k=1 Wl (A) k=1 o

1 2 3 2(m-1)
and A) = O, + , 4ot
M(A) = 2m—1] r‘[{2m—l 2m—1] U — 2m-1" A
1 3
2m1 _ 2m1 1
= j 2m—1dm+ I 2m—dm+ -+ j dm 1
0 m > m 2(m-1) m
2m-1 2m-1

[Using function of section 8.3.3 of Chapter 8]
Thatis, P,m(A)=m(A) for me M.

Thus P, isaMarkov operator for IFSPGCS (w, p),,. O
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By the second condition of theorem 9.2.2 we can easily show that P,m=m for me M.
That is, P, has astationary or invariant measure m
Thus we say that me M isainvariant measure for (w, p),,.

Following Lasota and Y orke [46] we have a sequence of transformations
w, X —> X, k=12,....m

and a probabilities vector {p,(x), p,(X),..., P,(X)}, P, (X) =0, Z p.(X) =1 for xe X,

k=1

k=12...,m If an initial point X, is chosen, then we randomly select from the set
{1,2,3....,m} an integer such a way that probability of choosing k is p.(X,),
k=1,2,...,m When anumber k, is dravn we define x, =w, (%,). Having x, we select
k, according to the distribution p, (%), k=1,2,...,m and we define x, =w, () and so
on. Denoting by m,,n=0,1,... the distribution of x,. i.e.,, m,(A) =prob(x, € A) for every
non-negative integer n. We define P, as transition operator such that m,,, = B,m,, where
m, is the sequence of measures.

The above procedure can be easily formalized. Let m, =d, be the Dirac measure
supported at apoint x e X. According to the definition of the dual vector U we have

Uf (x) =<Uf,d, >=<f,Pd, >=<f,m>

This means that Uf (x) is mathematical expectation of f(x)) if X, =X isfixed.

On the other hand, according to our description, the expectation of f(x,) isequal to

> P T (W ()
Since X was arbitrary this gives
Ut = 3 P9 f (w,(3). (93)

We admits this formula as the precise formal definition of our process and we define P,

as the Markov operator corresponding to U given by (9.3).
Therefore, P, isthe unique operator satisfying

< f,R,m>=<Uf,m>=" [ p,(f ow)dm (9.4)

k=1 x
and it must be of theform

PRMA)=Y" [pdm (9.5)
K=Lwi(A)
For such P,,equation (9.4) holds for every bounded Borel measurable f and me M.
Equation (9.5) isthe desired formal definition of Markov operator P,.
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Since the transformations w, : X — X, and the functions p, : X >R for k=12,...,m
are continuous, P, given by (9.5) isaFeller operator.

Now we will study asymptotic behavior of P, under some additional assumptions
concerning p, and w,. We will say that the iterated function system with probabilities of
the generalized Cantor sets (w, p),,, ={(W,, p,): k=12,...,m} is non-expansive, has an
invariant density or is asymptotically stable if the Markov operator (9.5) has the
corresponding property.

We say that iterated function system with probabilities of the generalized Cantor sets
(w, p),, is asymptoticaly stable if P, is asymptotically stable. Now we will formulate
assumptions that ensure the non-expansiveness and asymptotic stability of iterated
function system  with  probabilities of the generalized Cantor  sets

W, p)r ={ (W, B,) : k=12,....,m}.
9.3. Non-expansiveness of IFSwith probabilities of the Generalized Cantor Sets
Lemma 9.3.1. The iterated function system with probabilities of the generalized Cantor

X +2(k—1)
2m-1 2m-1

sets (w,p),, is uniform continuous. That is, W, (X)= is uniform

continuousfor x,ye X, (2<m<ow) and 1<k<m
Proof. Choose e > 0. Let d =(2m—1)e. Choose X,,xe X. Assumethat | x— X, |<d. Then

%X
X k=
09~ (1) o= 2 ey e d —e

e W (X) - w (%) < e.

Thus IFS with probabilities of the generalized Cantor sets (w, p),, is uniform continuous.

Lemma 9.3.2. The IFSPGCS (w, p),, satisfies the Dini function if there is a function
w :[0,00] —[0,00] isamodulus of continuity for w,. That is, |w, (X) —w,(y) Kw(|x-Yy])
for x,y e X.

Proof. Assume that w:[0,00] —[0,0] is defined by w(t) = kt, where k is a Lipschitz
constant.

X AD x 2Ak-D

Now | w, (X) —w,
| Wi (X) k(y)||2m1 om-1 2m-1 2m-1

X-Y|=L | x- w(| X— h L,
— -yl L - yiw(lx- y), where L =

(2<m<wo) and 1<k<m

is a Lipschitz constant for
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Thatis, |w, (X)—w,(y)Ew(|x-y]) for X,y e X.
Thus w isaDini function of the IFSPGCS (w, p),,. O
Lemma 9.3.3. If the IFSPGCS (w, p),, satisfies the inequality

Z P ()1 (W, (X), W, (V) <r(r(x,y)) for x,yeX, where r<1 is a non-negative
k=1

constant, then (w, p),, is contraction transformation with contracting factor or Lipschitz

constant L, = for (2<m<w) and 1<k<m
Proof. The IFSPGCS (w, p),, is W, (X) = X +2(k_1),pk zl,for X, ye X, where
2m-1  2m-1 m

P, (X) are probabilities such that z P (X) =1 for every xe X.

k=1
Now

i B ()T (W (), W, (¥) = i B (%) 11 W, (%) — W, () |

m X 2(k 1) y 2(k 1)
kZ:;,IOk()ll(2 2 omo 1) (2m 17 5m _1)||

ip()IIZm 1 omo 1II—kzlllok() 7 IX=yli=Lerixy)
That is, é P ()1 (W, (X), W, (V) <r(r (x,y)) for x,ye X, say r =L, :%_1.
Thus (w, p),, is contraction transformation with contracting factor or Lipschitz constant
Lkzzml_lfor (2<m<o) and 1<k<m O

Since there exists a Dini function of the IFSPGCS (w, p),,, there exists a continuous non-
decreasing and concave function j :[0,o0] —[0,0] suchthat j (0) =0,j () =

and the Markov operator P, corresponding to (w, p),, iS non-expansive with respect to
the metric j (r (x,¥))=r; (x,y) for X,ye X, that is, we will calculate the value of
|| P,(m —m,) || for operator (9.5).

IR, (m —m) = R,m = R,m, = supl< T, R,m —R,m >}=sup|<Uf,m —m >

=5Up|<zpk(f owk),rq—mz>|=sup|<2pkf(wk),n1—mz >|

R k=1 R k=1

=s|F,|p|<],rT1—mz>:SlFJp|< fom—m >=[lm-m||

Thatis, ||R,(m-m)|=Im-m||
Thus P, is non-expansive with respect to the metricj or.

Chapter Nine 127




Dhaka University Institutional Repository

Since the IFSPGCS (w, p),, satisfies the Lemma 9.3.3 and the Markov operator B,
corresponding to (w, p),, IS non-expansive with respect to the metric | or, the iterated
function system of the generalized Cantor sets (w, p),, iS non-expansive with respect to
themetric| or.

Theorem 9.3.4. Let P, be a non-expansive Markov operator. Assume that for every
e >0 thereisaBorel set A withdiamA<e, area number a >0 and an integer n such
that

liminf P'm(A)>a for me M;. (9.6)

Nn—o

Then P, isasymptotically stable.
Proof: Since a non-expansive Markov operator is a Feller operator, P, is a Feller

w

operator. Then P, has an invariant distribution m. To complete the proof of asymptotic
stability it remainsto verify condition
lim< f,m, >=<f,m> foral feC(X).

n—o0o

When an invariant distribution exists the above condition is equivalent to a more
symmetric relation

lim||[R/(m-m)[|=0 for m,m eM,. (9.7)
Let m,m e M;and e >0.Choose Ac X and a,0<a <1. Following Lasota and Y orke
[39] we will define by an induction argument a sequences of integers (n,) and four
sequences of distributions (), /),k=0.12,...,i=12. If k=0 we define n,=0 and
n®=m’=m.If k>1 isfixed and n_,,m*n*" are given we choose according (9.6) a
number n, such that

P mf(A)=s fori=12

and we define
R, M BN A
R, M (A)

f(B) = (R i (B)-an (B} 98)
Since P, nmf*(A)>s , we have

P, mM(B) =R, 'm*(Bn A) = R, nf (An/(B) =an/(B).
Observe that n (X \ A) = 0 and consequently
Inf —n ll=sup| [ f ohf — [ fany|=sup|[ fchy—[fany|<diamAs<e. (9.9)
feF X X feF A A

nik(B):

Using equation (9.8) it is easy to verify by an induction argument that
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PM M m =sPM" Ml +s (1-s )P ™+, +s (1-s )+ (L-s ) m k>1.
Since P, isnon-expansive thisimplies
[P (m-m)lI<s |In;-n; [l+s A-s)[In/ -nZ ||
+...+8 (1-8) T Inf —nz [[+@-s)" [Inf —nt ||.

From this, condition (9.9) and the obvious inequality || mf — n¥ ||< 2 it follows

IR (m-m)l<e+2(-s)"
Again, using the non-expansiveness of P we obtain

IP;(m-m)|l<e+2(1-s)" for n>n +...+n,.
Since e > 0 isarbitrary and k does not depend on m, m, we have

IP;m—-P;/m |[<e for n>n, and every two measures m, m € M;.

So, we are given

| Pym-Pm|[<e for n,m>n, and every me M.
Redly, if n>m we have

Rym=PR/ (R "m)
and because m2 n,

IRS(m-R"m I<e.
Since M; is a complete metric space, the sequence (P, m:neN) convergences to some
m € M;. Obviously P,m =m and

LLT | Rym—m ||= LLT || P;(m—m)||=0 for every meM;.

This compl etes the proof. O

9.4. Asymptotic Stability of IFSwith probabilities of the Generalized Cantor Sets

Theorem 9.4.1. Let (w, p),, ={(W,,p,):k=212,...,m be iterated function system with
probabilities of the generalized Cantor set. If (w, p),, satisfies the following conditions

(i) thereisaDini function of (w, p),,

(i) |Xn§‘( P (X) >0 forevery ke{l12,...,m}

(iii) the transformations w, : X — X are Lipschitzian for every ke{l1,2,...,m} and there

existsanon-negative integer |, suchthat >’ p, ()L, <I, <1for xe X,

k=1
then the iterated function system with probabilities of the generalized Cantor sets (w, p),,
isasymptotically stable.
Proof: (i) By Lemma9.3.1, we say that the IFSPGCS (w, p),, hasaDini function.
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(i) Since pk(x):% for 2<m<ow and 1<k<m, clealy in)f( p.(X) >0 for every

ke{l2,...,m.

(iii) Since w, (X) = X + z(k_l),pk :1, is a Lipschitzian with Lipschitz’s constant
2m-1 2m-1 m

L, = 1 for x,ye X, 2<m<ow and 1<k <m,then

2m-1

S P (L = BOL + Py ()L, +--+ Po(¥)Ly

k=1

1 1 1 1 1 1 1
= +—. e, =
m 2m-1 m 2m-1 m 2m-1 2m-1

Thatis, > p (X)L, = 1
] 2

for 2<m<oo.
1

and

|, =sup> . p, (XL, =% for m=2.

xeX k=1

Thus > p (X)L, <l <1 for xe X,

k=1

Since the IFSPGCS (w, p),,, satisfies the above three conditions, the IFS with probabilities
of the generalized Cantor sets (w, p),, isasymptotically stable. O
We say that a Markov operator P, : M T M satisfies the Prokhorov condition if there exists
acompact set and anumber b such that

liminf P,"m(Y)>b for me M. (9.10)

This condition is clearly satisfied if X isacompact space or if P, is an asymptotically
stable operator.

Proposition 9.4.2. Let (w, p),, ={(w,,p,):k=212,...,m be an iterated function system
with probabilities of the generalized Cantor sets such that w, is bounded and inf p, > 0.
Then (w,p),, ={(W,p,):k=12,...,m} has a stationary distribution and satisfies the

Prokhorov condition liminf P,"m(Y)>b for meM;, where Y is a compact set and a

N—o0

number b.
Proof. We know B,m(A) = z p.dm corresponding to (w, p),,.
k=L wit(A)

LetY= [O,%] u[%,l] > W, (X) beacompact set. For every me M; we have

P,m(Y) = Zm: [ pdm=1

k=L (v)
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That is, P'm(Y) :Zmlzm“ [, (W, o...om () ... p, (Ydm=1

k=l kn=lwlo o (Y)

and
m(w,*(Y))inf{ p,} = m[0,1)inf{ p,} =%= b (say).

Thus liminf P,"m(Y) > b for me M. O

Theorem 9.4.3. Suppose iterated function system with probabilities of the generalized
Cantor sets (W, p),, ={(w,, p,): k=212,...,m} are essentially non-expansive and satisfies
the Prokhorov condition. Also suppose that w; satisfies the inequality

Zm: P ()1 (W, (X), W, (Y)) <rr (x,y) for x,ye X, (9.11)

k=1
where r <1 isanon-negative constant, and has an attracting fixed point x,, then

limr (W'(x),x,)=0  for x,e X
If inaddition inf{ p,} > O, then (w, p),, ={(W,, p,): k=212,...,m} isasymptoticaly stable.

Proof. Following Lasota and Y orke [46] consider the dynamical system (Wl,%) given by
only one transformation w; and the probability % Condition (9.11) implies that (wl,%) is

non-expansive. The Markov operator P, corresponding to (wl,%) isgiven by formula

PIA=Y. [ pdm=mwi(A) for A=[0JULE Jc X,

k=L w'(A)
and has the property that a point measure m=d., is transformed into the point measure

P,m=d For every x, € X the sequence X, =w/(x,) converges to attracting fixed

w(x) "
point x, and consequently for every Xx,eX the sequence of measures
P.d, =d, convergesweaklytod, =PRd, .

Since the family of Dirac measures is linearly dense in M; (in the Fortet Mourier metric)
and the operators { P} are uniformly continuous, we have

lim||Rym-d, [0 for me M.
n—oo

Thus the system (w,, %) isasymptoticaly stable. O
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CHAPTER Ten

SCIENTIFIC APPROACH OF FRACTALS

OVERVIEW
In this chapter, we have presented some applications of fractals (without proof) by
renowned mathematicians. These will help to go through further research.

10.1. [53] Fractalsin Nature and Applications
Fractals are not just complex shapes and pretty pictures generated by computers. Anything
that appears random and irregular can be a fractal. Fractals permeate our lives, appearing
in places as tiny as the membrane of a cell and as majestic as the solar system. Fractals are
the unique, irregular patterns left behind by the unpredictable movements of the chaotic
world at work. In theory, one can argue that everything existent on thisworld is afractal.

the leavesin trees,

the veinsin ahand,

water swirling and twisting out of atap,

a puffy cumulus cloud,

tiny oxygen molecule, or the DNA molecule,

the stock market

Fractals have more and more applicationsin science as follows:

10.1.1. Fractalsin Nature

Take atree, for example. Pick a particular branch and study it closely. Choose a bundle of
leaves on that branch. All three of the objects described - the tree, the branch, and the
leaves — are identical. To many, the word chaos suggests randomness, unpredictability and
perhaps even messiness. Wesather is a favorite example for many people. Forecasts are
never totally accurate, and long-term forecasts, even for one week, can be totally wrong.
This is due to minor disturbances in airflow, solar heating, etc. Each disturbance may be
minor, but the change it creates will increase geometrically with time. Soon, the weather
will be far different than what was expected. With fractal geometry we can visually model
much of what we witness in nature, the most recognized being coastlines and mountains.
Fractals are used to model soil erosion and to analyze seismic patterns as well.

10.1.2. [53] Fractalsin Astronomy

Fractals will maybe revolutionize the way that the universe is seen. Cosmologists usually
assume that matter is spread uniformly across space. But observation shows that thisis not
true. Astronomers agree with that assumption on "small" scales, but most of them think
that the universe is smooth at very large scales. However, a dissident group of scientist’s
claims that the structure of the universeisfracta at all scales.
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10.1.3. Fractalsin Computer Science

The biggest use of fractals in everyday live is in computer science. Many image
compression schemes use fractal algorithms to compress computer graphics to less than a
quarter of their original size [57]. Actualy, the most useful use of fractals in computer
science is the fractal image compression. This kind of compression uses the fact that the
real world is well described by fractal geometry. By this way, images are compressed
much more than by usual ways (e.g.: JPEG or GIF file formats). Another advantage of
fractal compression is that when the picture is enlarged, there is no pixelisation. The
picture seems very often better when its sizeisincreased [53].

10.1.4. [53] Fractalsin Fluid Mechanics

The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic
and very difficult to model correctly. A fractal representation of them helps engineers and
physicists to better understand complex flows. Flames can also be simulated. Porous
media have a very complex geometry and are well represented by fractal. Thisis actually
used in petroleum science.

10.1.5. [53] Fractalsin Surface Physics
Fractals used to describe the roughness of surfaces. A rough surface characterized by a
combination of two different fractals.

10.1.6. [54] Fractalsin Physiology and Medicine

The nonlinear fractals provide insights into the organization of complex structures such as
the tracheobronchia tree and heart as well as into the dynamics of healthy physiological
variability. Alterations in fractals scaling may underlie a number of pathophysiological
disturbances, including sudden cardiac death syndromes. Also biosensor interactions can
be studied by using fractals.

10.1.6.1. [55] Fractalsin Physiology

Some of the most visually striking examples of fractal forms are found in physiology such
as the respiratory, the circulatory, and the nervous systems are remarkable instances of
fractal structure, branches subdividing and subdividing and subdividing again. Careful
analysis of the lung reveal fractal scaling, and it has been noted that this fractal structure
makes the lungs more fault-tolerant during growth.

10.1.6.2. [56] Fractalsin Biological Time Series

The fractal concept can be applied not just to irregular geometric forms that lack a
characteristic (single) scale of length, but also to certain complex processes generate
irregular fluctuations across multiple time scales, analogous to scale-invariant objects that
have a branching of wrinkly structure across multiple length scales. The irregularity seen
on different scalesis not readily distinguishable, suggesting statistically self-similarity.
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10.1.7. [53] Fractalsin Telecommunications

A new application is fractal-shaped antenna that reduces greatly the size and the weight of
the antennas. The benefits depend on the fractal applied, frequency of interest, and so on.
In general, the fractal parts produce ‘fractal loading’ and make the antenna smaller for a
given frequency of use. Practical shrinkage of 2-4 times are realizable for acceptable
performance. Surprisingly high performanceis attained.

10.2. Some Applications of Fractals by Renowned Mathematicians

10.2.1. Fractalsand Cancer [James W. Baish, and Rakesh K. Jain, 2000]

Abstract: Recent studies have shown that fractal geometry, a vocabulary of irregular
shapes, can be useful for describing the pathologica architecture of tumors and, perhaps
more surprisingly, for yielding insights into the mechanisms of tumor growth and
angiogenesis that complement those obtained by modern molecular methods. This article
outlines the basic methods of fractal geometry and discusses the value and limitations of
applying this new tool to cancer research.

10.2.2. Microbial Growth Patterns described by Fractal Geometry [M Obert, P
Pfeifer and M Sernetz, 1990]

Abstract: Fractal geometry has made important contributions to understanding the growth
of inorganic systems in such processes as aggregation, cluster formation, and dendritic
growth. In biology, fractal geometry was previously applied to describe, for instance, the
branching system in the lung airways and the backbone structure of proteins as well as
their surface irregularity. This investigation applies the fractal concept to the growth
patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first
example showing fractal aggregates in biological systems, with a cell as the smallest
aggregating unit and the colony as an aggregate. We find that the global structure of
sufficiently branched mycelia can be described by a fractal dimension, D, which increases
during growth up to 1.5. D is therefore a new growth parameter. Two different box-
counting methods ( one applied to the whole mass of the mycelium and the other applied
to the surface of the system) enable us to evaluate fractal dimensions for the aggregatesin
this analysis in the region of D = 1.3 to 2. Comparison of both box-counting methods
shows that the mycelial structure changes during growth from a mass fractal to a surface
fractal.

10.2.3. Fractalsin the Nucleus [James G McNally and Davide M azza, 2009]

Abstract: Fractals are “self-similar” meaning that they exhibit similar fine-scale features at
many magnifications. Over 20 years ago it was argued that folded polymers, including
chromatin, should be fractals. The rationale was that as a polymer condenses it is
repeatedly subject to the same constraints. Specifically, polymer strands as well as
partialy folded clumps of the polymer are al impenetrable. Thus, through the self-similar
process of crumpling, the resultant condensed polymer becomes a fractal. This ‘fractal
globule’ structure, as it is called, has advantages because it provides an efficient means to
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package a long polymer in a small volume without entanglements. This facilitates
unraveling the polymer when necessary, for example to gain access to specific DNA
segments for transcription, replication or repair.

10.2.4. Fractal Geometry of Airway Remodeling in Human Asthma [Stacey R. Boser,
Hannah Park, Steven F. Perry, Margaret G. Ménache and FrancisH. Y. Green, 2005]
Rationale: Airway wall remodeling is an important aspect of asthma. It has proven
difficult to assess quantitatively asit involves changesin several components of the airway
wall.

Objective: To develop a simple method for quantifying the overall severity of airway wall
remodeling in asthmatic airways using fractal geometry.

Methods. Negative-pressure silicone rubber casts of lungs were made using autopsy
material from three groups. fata asthma, nonfatal asthma, and nonasthma control. All
subjects were lifdlong nonsmokers. A fracta dimenson was calculated on two-
dimensional digital images of each cast.

Results: Nonasthma control casts had smooth walls and dichotomous branching patterns
with nontapering segments. Asthmatic casts showed many abnormalities, including airway
truncation from mucous plugs, longitudinal ridges, and horizontal corrugations
corresponding to elastic bundles and smooth muscle hypertrophy, respectively, and
surface projections associated with ectatic mucous gland ducts. Fractal dimensions were
calculated from digitized images using an information method. The average fractal
dimensions of the airways of both the fatal asthma and nonfatal asthma groups were
significantly lower than that of the nonasthma control group. The lower fractal dimension
of asthmatic airways correlated with a decreased overall structural complexity and
pathologic severity of disease.

10.2.5. Image Compression: A study of the iterated transform method [E.W. Jacobs,
Y. Fisher and R. D. Boss, 1992]

Abstract: This paper presents result from an image compression scheme based on iterated
transforms. Result are examined as a function of several encoding parameters including
maximum allowed scale factor, number of domains, resolution of scale and offset values,
minimum range size, and target fidelity. The performance of the agorithm, evaluated by
means of fidelity versus the amount of compression, is computed with an adaptive discrete
cosine transform image compression method over awide range of compression.

10.2.6. Image Coding Based on a Fractal Theory of Iterated Contractive Image
Transformations [Amaud E. Jacquin, 1992]

Abstract: The conception of digital image coding techniques is of great interest in various
areas concerned with the storage of transformation of images. For the past few years, there
has been a tendency to combine different classica coding techniques in order to obtain
greater coding efficiency.

This paper presents an independent and novel approach to image coding, based on a fractal
theory of iterated transformations. The main characteristic of this approach are that (i) it
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relies on the assumption that image redundancy can be efficiently exploited through self-
transformability on a block-wise basis, and (ii) it approximates an origina image by a
fractal image. We therefore, refer to our approach as fractal block coding.

The coding-decoding system is based on the construction, for an original image to encode,
or a specific image transformation-a fractal code-which, when iterated on any initia
image, produce a sequence of images which converges to a fractal approximation of the
original. We show how to design such a system for the coding of monochrome digital
image at rates in the range of 0.5-1.0 b/pixel. Our fractal coder has performance
comparable to state-of-the-art vector quantizers, with which it shares some aspect.
Extremely promising coding results are obtained.

10.2.7. Fractals Block Coding Method Based on Iterated Function Systems

Following H. W. Tin, S. W. Leu, H. Sasaki, S. H. Chang [58]. Mandelbrot based the idea
of self-similarity and demonstration how “fractal” sets could be regarded as limits of
iteration involving generators in [59]. In other words, a fractal object is an object which
can be assembled by its subdivided parts similar to the whole exactly or statistically. This
concept leads to the creation of a class of fractal image coding methods. The first fractals
block coding pioneered by Jacquin [60] and Barnsley [61, 62]. The fractal block coding
seeks to approximate the image based on the sub blocks of that image. The basic theory of
Jacquin’s block coding method is described as follows:

Let | be a grayscale image. In fractal block coding, image | is partitioned into non-
overlapping range blocks R,i=12,...,N, so tha | =UR and doman blocks

DI 1,j=12...,M, where the size of each domain block is larger than that of each

range block. To encode an image, each range block will find a domain block most similar
to itself from the domain pool, in which the finding is based on minimum mean-squared
error criteria. The search is performed with an affine transformation w, such that

w:D;® R where D, is the best matched domain block. A common form of the
transformation is shown as:

wE =6 ) Wk @

g 86 U gyg élig

where a,h,c and d control rotation and scaling, while ¢ and f, control linear
trand ation.
Put a constrain to the transformation w, for contraction so that for any two points p, and
p,, thedistance d between two points should fulfill the following inequality:

d(w (p),W(p,) <a d((p, p,) 2

where a isacoefficient and a <1. To encode an image would start from performing the
transformation on domain block for arange block based on equation (1) and (2) it derives
the following

w(D,)=a D, +g, (3
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where c, is a coefficient. Theoreticaly, the union of the affine transformations for all
range blocks will form the affine transformation for the whole image as expressed in the

following equation [62, 63].
N

t=Uw @
i=1

The encoding method would seek for a transformation of domain block to the best
approximation of a selected range block. To determine the and for exactly transformation
on each domain block, it should find the minimum distance between range block and
domain block.

mnd . (R)un- ¢ (D))nn (5)
where n and m are size of blocks, usually are set to 2 or 4. The encoding method uses the

following distance equation to compare the range block with doman block for
determining the best matching:

dtt (D,),R)=a ¢ (D)-R)’ (6)
Image encoding is achieved by recording the t , the minimal distance, and the respect D,.

Fractal codes recorded in the codebook can later be used in approximating the range.
To decode the image, the coding method would perform the transformation iteratively on
some initial image W,;, stored in the code book until the encoded image is restored.

The decoding process for kth iteration is described as follows:

W, =t (Wy W)
where t is the transformation and y is the ensemble function to assemble the
transformation.

10.2.8. Iterated Function Systems Controlled by a Semi-Markov Chain (Orjan
Stenplo, 1996)

Abstract: In this paper we consider a finite set of maps {w,,w,,...w},w : X ® X, where
X is acomplete metric space, together with a sequences {1} of random variables taking
values in the finite set {12,...,m}. This sequence controls the dynamic system
Z,=w_o---ow The case where {I } is a sequence of independent, identically
distributed random variables (or a homogeneous Markov chain) is usually referred to as an
iterated function system IFS (or a recurrent IFS). In the present paper, we consider the
more genera case when the controlling sequence is a semi-Markov chain. Under “average

contractivity” conditions, we obtain some ergodic theorems. In applications, these class
may broaden the class of images which can be created using iterated function systems.
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10.2.9. [64] Five Verticesand a Compression Factor of 2.5 (Pentaflake)

Suppose we play the chaos game with the five vertices of a regular pentagon. Using a
compression of 2.5, which is midway between 3 and 2.

Based on the location and the number of vertices, we should expect to see a figure that has 5
self-smilar copies with compresson factor of 2.5; 25 self-smilar copies with compression
factor of 6.25; etc. If the compresson factor were 2, each of the smaler self-smilar copies
would overlap its neighbors. With a compression factor of 2.5, however, a gap will be left
between corresponding sides of the copies. Since 1/2.5 = 0.4, if we let the length of the side of the
origina pentagon be 1 unit, each of the 5 "largest” self-smilar copies will extend for 0.4 units
aong one of the origina sides; the gap between the copies will have length 0.2, as shown in the
diagram. We note that the small pentagons have asmadl overlgp. We may change the compression
factor to 2.7 to diminate these overlaps.

N

The result of playing this chaos game is pictured at right. Here we note that, because of the
overlaps described before, there are dso some small overlapsin thisimage.

Again, we may find it helpful to use Fractalina to see the resulting attractor. Though it is
fairly easy to etimate coordinates for the vertices of a regular pentagon, finding those points
exactly might prove to be an interesting challenge.

& ki

Oiteration 1% iteration 2" iteration 3%jteration
Figure 10.1 Compression of Pentagon
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APPENDI X

ALGORITHMSOF FRACTALS

OVERVIEW
In this appendix, we have presented several programs of Mathematica and MatLab that
will enable to display the images of the fractals found in this thesis paper.

11.1. Programs of Two-Dimensional Fractals

11.1.1. The following Mathematica program produces the image of the Sierpinski
triangles.

Mathematica Program:
f[1]={{{0,0} {1,0} ,{0.5,0.8661} } 6} ;
i=1;
o={};
While[i'=0,k=f[i][[1]];
n=f[i]{[2]];
i--;
If[n!=0,g9=Join[g,K];
{f[i+1] f[i+2],f[i+3]} =({{#1,Mean[{ #1,#2} ] Mean[{#1,#3} ]} .n-
1} & @@#)&/@NestList[Rotatel eft,k,2];
i=i+3]]
Show@Graphicg[{ EdgeForm[Thin],Black,Polygon@g} |

11.1.2. The following M athematica program produces the image of the Von Koch curve.

Mathematica Program:

(*carry out the forward and backward noves and the various
rotations by updating the gl obal | ocation' Lpos' and
di rection

angl e' Ltheta'.*)Lnmove[z_String, Ldelta ]:=Switch[z,"+", Ltheta
+=Ldel ta;,"-", Lt het a-

=Ldelta;,"F", Lpos+={Cos[ Lt heta], Sin[Ltheta]},"B", Lpos-
={Cos[Ltheta], Sin[Ltheta]}, ,Lpos+=0.];LSystem :usage="LSyst
enfaxiom {rules}, n, Ldelta:90 Degree] creates the L-string
for the nth iteration of the list '"rules', starting with the
string "axiom .";(*make the string:starting wth' axi om, use
StringRepl ace t he speci fied nunber of
times*)LSystenfaxiom,rules List,n_Integer,Ldelta : N 90
Degree]]:=Nest[StringRepl ace[#, rul es] & axiomn]; O f[ General :
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cspelll];(*initialize the position Lpos' and the direction
angl e' Ltheta';create the Line graphics primtive represented
by the L-system by mappi ng' Lnove' over the characters in the
L-string,deleting all the Nulls;then show the G aphics
obj ect*)LShow | string_String, Ldelta_: N 90

Degree]]: =(Lpos={0.,0.}; Ltheta=0.; Show G aphi cs[ Li ne[ Prepend
[ Del et eCases[ Map[ Lnove[ #, Ldel ta] & Characters[lstring]], Nul|]
,{0,0}]]], Aspect Rati o>Automatic]);(*sane as above,plus a
list of colors for each segnent contained in'tenplist'--
unfortunately, tenplist’ isn't really tenp',but stays in
menory as a gl obal vari abl e; so sue
me*) LShowCol or[I string_String, Ldelta_: N[ 90
Degree]]:=(Lpos={0.,0.}; Ltheta=0.;tenplist=Map[Line,Partitio
n[ Prepend[ Del et eCases[ Map[ Lnove[ #, Ldel ta] & Characters[lstrin
g]],Null],{0,0}],2,1]]; ncol =N[ Lengt h[tenplist]]; huelist=Tabl
e[ Hue[ k/ ncol ], {k, 1., ncol }]; Show G aphi cs[ N Fl att en[ Transpose
[{huelist,tenplist}]]]], Aspect Rati o>Automatic]); On[ General : :
spel | 1] ; LShowCol or [ (*Koch curve*)LSysten] "F", {"F">"F+F- -
F+F"}, 4], NN 60 Degree]];

11.1.3. The following MatL ab program produces the image of the Sierpinski carpet.

MatLab Program:

bO=logical ([1 1 1;1 0 1;1 1 1]);

for n=1:5%lon't exceed 6 because of expanding array inside |oop
x=l ogi cal (zeros(3”n));
bO=[ b0 b0 bO; bO x bO; bO b0 bO];

end

i mgesc(b0), col ormap(gray(2));

imwite(bn,'sierpinskil.png ,'png ,'bitdepth', 6 1);

11.1.4. The following Mathematica program produces the image of the square fractal.

Method: First we find the points of attractor of IFS, then we use the Mathematica tools for
the image of the square fractal.

vertices1={{0,0},{1,0},{1,1},{0,1},{0,0}};
p=G aphi cs[ { Bl ack, Pol ygon[ vertices1]}];
Show p, Aspect Rat i o—~Aut onat i c]
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verll=

verl12=

ver13=

verl4 =

ver2l=

Ver22 =

ver23=

ver 24 =

ver4l=

ver42=

ver43 =

ver44 =

9
Y

[
(e

verbl=

ver52 =

ak'.
00 ©] ~

ver53=

©| 0 ©] 0 O] ®» ©|] ®»

©|

ver5b4 =

p1=Graphicg[{ Black,Polygon[verll]}];
p2=Graphicg[{ Black,Polygon[ver12]}];
p3=Graphicg[{ Black,Polygon[ver13]}];
p4=Graphicg[{ Black,Polygon[verl4]}];
g1=Graphicg[{ Black,Polygon[ver21]}];
g2=Graphicg[{ Black,Polygon[ver22]}];
g3=Graphicg[{ Black,Polygon[ver23]}];
g4=Graphicg[{ Black,Polygon[ver24]}];
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s1=Graphicg[{ Black,Polygon[ver41]}];
s2=Graphicg[{ Black,Polygon[ver42]}];
s3=Graphicg[{ Black,Polygon[ver43]}];
A=Graphic { Black,Polygon[ver44]}];
t1=Graphicg[{ Black,Polygon[ver51]}];
t2=Graphicg[{ Black,Polygon[ver52]}];
t3=Graphicg[{ Black,Polygon[ver53]}];
t4=Graphicg[{ Black,Polygon[ver54]}];
Show[pl,p2,p3,p4,91,02,03,04,51,52, s3,54,t1,t2,t3,t4,AspectRatio—~»Automatic];

11.2. Programs of Three-Dimensional Fractals
11.2.1. The following Mathematica program produces the image of the Menger sponge.

Mathematica Program:
iters= 3. (* changeitersto 2 if you're short on time or RAM;
if anyone runsit with iters=4, I'd like to see
the result. *);
side= 3. Miters; cubmat (* cuboid-matrix, that is*) =
Table
If[i==side+ 1. || j==side + 1. || k==side + 1.,
(* Pad the tabl€'s edges with zeroes; if you want
to see the complement of the sponge, transpose
the 0. and 1. directly below. *)
0,1],
{i,1.,side+ 1.} {j,1.,sidet1.} {k,1.,sidet1}];
Do[ Iff

(Mod[Round[i/3.*n + 0.5],3]==2 & &
(Mod[Round[j/3.”n + 0.5],3]==2 ||
Mod[Round[k/3.”n + 0.5],3]==2)) ||
(Mod[Round[j/3.*n + 0.5],3]==2 & &
(Mod[Round[i/3.”n + 0.5],3]==2 ||
Mod[Round[k/3.*n + 0.5],3]==2)) ||
(Mod[Round[k/3.*n + 0.5],3]==2 &&
(Mod[Round[i/3.”n + 0.5],3]==2 ||
Mod[Round[j/3.*n + 0.5],3]==2)),
(* then--taking advantage of eightfold symmetry--... *)
(cubmat][i,j,k]]=0.;
cubmat[[side+1-i,j,k]]=0.;
cubmat([[i, side+1-j,k]]=0.;
cubmat([[i,j,sidet+1-k]]=0.;
cubmat[[sidet+1-i, side+1-j,k]]=0.;
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cubmat[[side+1-i,j,sidet+1-k]]=0.;
cubmat[[i, sidet+1-j, sidet+1-k]]=0.;
cubmet[[sidet1-i,sidet1-j,side+1-k]]=0.;)
(* ...no cuboid goes there *)],
{i,(sidet+1)/2} {j,(sidet+1)/2} {k,(sidet1)/2},
{n,0.iters-1.}]
faces={};

(* Instead of using the Cuboid graphics primitive,
we show only the polygons visible from
viewpoints in the default octant. *)

Do[
If[ cubmat][[i,j,k]]==1. && cubmat[[i,j,k+1.]]==0.

(* That is, if aface belongs at {i,j,k}
and there's nothing hiding it, add the
appropriate polygon to thelist. *),
AppendTo[ faces,
(* cuboid tops... *)
{{i,j.k+1} {ij+1 k+1},
{i+1.j+1. k+1} {i+1.j,k+1}}] 1,
{i,1.,side} {j,1.,9de} {k,1.,side} ]; (* Since the figure looks the same regardless of
which axis
is vertical, the polygon-corner list "faces" is computed
only for the tops of the cuboids, then rotated twice to get
lists of sides and fronts. *)
faces = Join[ faces (*tops*),
(*sides*)Map| Rotateleft[#,2]& ,faces{2}],
(*fronts*)Map[
Rotatel eft[#,1]*{1,-1,1} +{ 0,side+2,0} &,
faces{2}]];
Show[Graphics3D[ { EdgeForm[], Map[ Polygon, faces]}], Boxed->Falsg]
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11.3. Programs of Fractalsin the Complex Plane

11.3.1. The following MatLab program produces the image of the Filled Julia set in the
complex plane.

MatLab Program:

%86 Comput e and draw the Julia set
cl ear;

clc;

%86 Par anet er s

c = 0.27+0.53i; % conpl ex nunber

ni t er =100; % nunber of iterations

t h=10; % threshold to determ ne divergence

v=1000; % resolution (<-> nunber of points to compute)

%W® Initialisation

r = max(abs(c), 2); % radius of the circle beyond which every point diverges
d = linspace(-r,r,v); %divide the x-axis

Z = ones(v, 1) *d+i *(ones(v, 1)*d)"; % create the matri x A containing conpl ex
nunbers

C = zeros(v,Vv); %Julia set point matrix

%86 Conpute the julia set
for k L:niter
Z = Z. *Z+ones(v, V). *c;
C = C+(abs(2)<=r);
end
%86 Fi gur efigure(l)
clf;
i mgesc(Q);
col ormap(jet);
hol d of f;
axi s equal ;
axis off;

11.3.2. The following Mathematica program produces the image of the Mandelbrot setin a
sguare region in the complex plane.

Mathematica Program:

Mandel brot[c_]: =Modul e[ {z=0, i =0}, Wi | e[ i <100&&Abs|[ z] <2, z=z"2
+C; i ++] ;1]

Densi t yPl ot [ Mandel br ot [ xc+l yc], {xc, -2, 1}, {yc, -

1.5, 1. 5}, Pl ot Poi nt s—»275, Mesh—Fal se, Fr ame—Fal se, Col or Functi
on—( I f[##1, Hue[ #] , Hue[ 0,0,0]] & ]
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11.3.3. The following MatL ab program produces the image of the Mandel brot set.

MatLab Program:
%0 The Mandel brot set
x = linspace(-1.5,1.5,2000);
y = linspace(-1.5,1.5,2000);
len_x = length(x);
len_.y = length(y);
iter = 100; % wunber of iterations
xnew = O;
ynew = 0;
a= 0
b = 0;
xn = 0;
yn = 0;
rough = 0;
c = zeros(len_y,len_x);
zval = zeros(len_y,len_x);
h_msg = nsghox(' Please Wait ',' ');

for n=1:len_y
c(n, 1) =y(n)+i*x(:);

end
tic
for mel:len_x*len_y
a = img(c(m);
b =real(c(m);
xn = 0;
yn = 0;
k = 0;
while (k<=iter)&&((xn"2+yn"2)<4)
Xxnew = xn*2 - yn"2 + a;
ynew = 2*xn*yn + b;
XN = xnew,
yn = ynew,
k = k+1;
end
zval (M) = k;
end
toc

cl ose(h_msQ);

%ou can also try any one of these col ormaps
%map = flipud(col ormap(cool (iter)));

%€ map flipud(col ormap(copper(iter)));
%map = flipud(col ormap(hot(iter)));

cmap = flipud(col ormap(bone(iter)));

%emap flipud(col ormap(sunmer(iter)));
%emap flipud(colormap(wi nter(iter)));
%map = flipud(col ormap(spring(iter)));
%map = flipud(col ormap(bone(iter)));

col or map( cmap) ;

i mge(zval)

axis tight off

%lear x y c

% mmvite(zval, crnap , ' mandel 123. png', ' png')
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11.3.4. The following MatLab program produces the image of the complete Fern.

MatLab Program:

%86 Comput e and draw the conplete Fern
NumOf Pt s = 10000;

iterations = 50000;

pts = zeros(NunOf Pts, 2);

for j = 1: Nun Pts
X = rand(1);
y = rand(1l);
for i = 1:iterations
p = rand(1);
if p<.01
xn = 0;
yn = .16*y;
X = Xn;
y =yn
elseif p < .08
Xn = . 2*x-.26*y,;
yn = . 23*x+. 22*y+1. 6;
X = Xn;
y =yn;
elseif p < .15
xn = -.15*x+. 28*y;
yn = . 26*x+. 24*y+. 44,
X = Xn;
y =yn
el se
xn = . 85*x+. 04*y;
yn = -.04*x+. 85*y+1. 6;
X = Xn;
y =yn;
end
end%
pts(j,1) = x;
pts(j.2) =vy;
end%
xs = pts(:,1);
ys = pts(:, 2);
plot(xs,ys,'.","Color',"'g")

axi s([mn(xs)*1.5, max(xs)*1. 5, m n(ys)*1. 05, max(ys)*1.05]);
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11.4. The following MatL ab program produces the image of the compression pentagon.

Mat Lab Program
function recursion
gl obal COLORMVAP
gol den = 1.618033988749894848204586; %gol den ratio
n=4; %lepth of recursion
COLORMAP=copper (4) ;
h=1;
pent af | ake(n, 0, 0, 36/ 180*pi , h);
axis([-3 3 -3 3])
axi s equal off
function pentafl ake(n, x,y,theta,len)
gl obal COLORMAP
if n>0
gol den = 1.618033988749894848204586
d=I en/ gol den;
h=l en;
t =l i nspace( 0+t het a, 2*pi +t het a, 5+1) ;
[ of fx, of fy] =pol 2cart (t +18/ 180*pi , d*(1+gol den)) ; Ygenerate points
around mi ddl e pentagon
for k=1:5
pat ch(h*si n(t) +of f x(k) +x, h*cos(t) +of fy(k) +y, O*cos(t) +4-
n,'r',...
“facecolor”,’none”, ”edgecolor” ,COLORMAP(n, ), linewidth’,n);
pent af | ake(n- 1, x+of f x(k), y+of fy(k), theta, | en/ (gol den+l));
end
pat ch( h*si n(t) +of f x(k) +x, h*cos(t) +of fy(k) +y, O*cos(t)+4-n,"'r', ...
'facecol or', ' none', "' edgecol or', COLORMAP(n, :),"linew dth',6 n);
pent af | ake(n-1, x,y, pi +t heta, | en/ (gol den+1));
end
return
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