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Abstract

In this thesis, we discuss the constructions of the generalized Cantor sets which are the

prototypical fractals and also discuss the Markov operators defined on separable complete

metric space. We show that these special types of sets are Borel set as well as Borel

measurable whose Lebesgue measures are zero. We formulate Iterated Function System of

the Generalized Cantor Sets (IFSGCS for short) using affine transformation method and

fixed points method of Devaney [1]. We find the Hausdorff dimension of the invariant set

for iterated function system of generalized Cantor sets. We also formulate Iterated Function

System with probabilities of the Generalized Cantor Sets (IFSPGCS for short). We show

their invariant measures using Markov operators and Barnsley-Hutchinson multifunction.

We observe that these functions satisfy the sweeping properties of Markov operator. In

addition, we show that these iterated function system with probabilities are non-expansive

and asymptotically stable if the Markov operator has the corresponding property. Further we

study two dimensional fractals such as the Koch snowflake, the Koch curve, the Sierpiński
triangles, the Sierpiński carpet, the box fractal and also three dimensional fractals such as

the Menger sponge and the Sierpinski tetrahedron. We show fractal and topological

dimensions and Lebesgue measures of those fractals. We also formulate iterated function

system of higher dimensional fractals such as the square fractals, the Menger sponge, the

Sierpinski tetrahedron and the octahedron fractal. We find the Hausdorff dimension of the

invariant set for iterated function system of those fractals.

Keywords: Cantor set, Borel measure, Lebesgue measure, Iterated function system, Hausdorff

dimension, Topological dimension, Invariant measure and Markov operator.
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ABSTRACT

In this thesis, we discuss the constructions of the generalized Cantor sets which are the

prototypical fractals and also discuss the Markov operators defined on separable complete

metric space. We show that these special types of sets are Borel set as well as Borel

measurable whose Lebesgue measures are zero. We formulate Iterated Function System of

the Generalized Cantor Sets (IFSGCS) using affine transformation and fixed points

method. We discuss the Hausdorff dimension of the invariant set for iterated function

system of generalized Cantor sets. We also formulate Iterated Function System with

probabilities of the Generalized Cantor Sets (IFSPGCS). We show their invariant

measures using Markov operators and Barnsley-Hutchinson multifunction. We observe

that these functions satisfy the sweeping properties of Markov operator. In addition, we

show that these iterated function systems with probabilities are non-expansive and

asymptotically stable if the Markov operator has the corresponding property. Further we

study two dimensional fractals such as the Koch snowflake, the Koch curve, the Sierpiński
triangles, the Sierpiński carpet, the box fractal and also three dimensional fractals such as

the Menger sponge and the Sierpinski tetrahedron. We show fractal and topological

dimensions and Lebesgue measures of those fractals. We formulate iterated function

system of higher dimensional fractals such as the square fractals, the Menger sponge, the

Sierpinski tetrahedron and the octahedron fractal. We also discuss the Hausdorff

dimension of the invariant set for iterated function system of those fractals.

Keywords: Cantor set, Borel measure, Lebesgue measure, Iterated function system, Hausdorff

dimension, Topological dimension, Invariant measure and Markov operator.
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INTODUCTION

Dynamics is an iterative process of objects; fractals are the attractors of iterated function
systems that are static images. In recent years, the most chaotic regions for dynamical
systems are fractals. The study of the geometric structure of fractals has significant roles
understanding chaotic behavior of dynamical systems.
A Fractal, as defined by B. Mandelbrot, “is a shape made of parts similar to the whole in
some way” [1]. A Fractal is a geometric object with two important properties: (i) self-
similarity; (ii) non-integer dimension.
A non-empty set R is called a Cantor set if (a)  is closed and bounded, (b) 
contains no intervals, (c) Every point in  is an accumulation point of . The Cantor set
is the prototypical fractal [2]. The Cantor sets were discovered by the German George
Cantor in the late 19th to early 20th centuries (1845-1918). He introduced fractal which
has come to be known as the Cantor set, or Cantor dust.
We study the Cantor set and find the generalized Cantor sets and show its dynamical

behaviors and fractal dimensions [3]. The Cantor middle ,
3

1
,

5

1
,

7

1
,

9

1
,

11

1
sets, in

general, the Cantor middle ,
12

1

m
)2( m is called the generalized Cantor sets and it

is denoted by )12/(1 mC which is defined by the algorithm and also defined by the shrinking

process. We study the generalized Cantor sets in measure space and find that these special

types of sets are Borel set as well as Borel measurable whose Lebesgue measure is zero

[4]. Then we formulate iterated function system of the generalized Cantor sets using

Barnsley-Hutchinson multifunction [5] and show the Hausdorff dimension of the invariant

sets for the IFSGCS. We also show the sweeping properties of Markov operator for

IFSGCS. We formulate iterated function system with probabilities of generalized Cantor

sets and shown their invariant measures using Markov operator and Barnsley-Hutchison

multifunction in [6].

Then we study asymptotic stability of Markov operators define on locally compact space,

which show the utility of the lower bound function technique in proving the convergence

of iterates (asymptotic stability) for this class of operators [7]. This criterion is applied to

iterated function system of generalized Cantor sets. In particular it is shown that iterated

function system of the generalized Cantor sets are non-expansiveness and asymptotically

stable if the Markov operator wP has the corresponding property.

Finally, we study two dimensional fractals such as the Sierpiński triangles, the Koch

snowflake, the Koch curve, the Sierpiński carpet, the box fractal, the square fractals and

also three dimensional fractals such as the Menger sponge, the Sierpinski tetrahedron. We
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show fractal and topological dimensions and Lebesgue measures of those fractals. The

main aim is to formulate the iterated function system of higher dimensional fractals and

show the Hausdroff dimension of the invariant set for iterated function system of those

fractals. To the best of my knowledge first time we formulate iterated function system of

three dimensional fractals such as the Menger sponge, the Sierpinski tetrahedron and the

octahedron fractal also we formulate iterated function system of two dimensional the

square fractals using the Cantor middle
3

1
set and the Cantor middle

5

1
set respectively.

In Chapter 1, we introduce a number of fractals that are created by a specific set of rules. Such

fractals are referred to as deterministic fractals because their fate is determined by successive

applications of the rules. All rules divide an image into smaller pieces, similar to the original and

congruent to each other and then remove some of those pieces.

In Chapter 2, we discuss the construction and the properties of the classical Cantor set.

We study the Cantor set and find the generalized Cantor sets. The Cantor

middle ,
3

1
,

5

1
,

7

1
,

9

1
,

11

1
sets, in general, the Cantor middle ,

12

1

m
)2( m sets are

called the generalized Cantor sets and it is denoted by .)12/(1 mC

In Chapter 3, we discuss the constructions of the two and three dimensional fractals. We

show fractal dimensions and topological dimensions of the one, two and three dimensional

fractals.

In Chapter 4, we show that the special type generalized Cantor sets are Borel set as well as

Borel measurable and whose Lebesgue measure is zero. Also we show that the Lebesgue

measures of the two and three dimensional fractals are zero.

In Chapter 5, we formulate iterated function system of the generalized Cantor sets, two

dimensional fractals such as the box fractal and the square fractals and also three

dimensional fractals such as the Menger sponge, the Sierpinski tetrahedron and the

octahedron fractal.

In Chapter 6, we discuss the properties of Markov operator on measure space. We show

its applications to iterated function system of the generalized Cantor sets.

In Chapter 7, we discuss basic measure theory, Hausdorff measure and Hausdorff
dimension. We show the Hausdorff measures and Hausdorff dimensions of the invariant
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sets for iterated function system of the Generalized Cantor sets and also we show the
Hausdorff measures and Hausdorff dimensions of the invariant sets for iterated function
system of the two and three dimensional fractals.

In Chapter 8, we discuss iterated function system with probabilities and invariant

measures. We formulate iterated function system with probabilities of the generalized

Cantor sets and show their invariant measures using Barnsley-Hutchinson multifunction

and Markov operator.

In Chapter 9, we define the transition operator wP for iterated function system with

probabilities of the generalized Cantor sets and show that this operator is a Markov
operator. We show that the Iterated Function System with Probabilities of the Generalized

Cantor sets is non-expansive and asymptotically stable if the Markov operator wP has the

corresponding property with respect to the metric )).,(( yx

In Chapter 10, we survey some applications of fractals by renowned mathematicians.

This section is ended with a comment to peruse further research.
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CHAPTER ONE

FRACTAL GEOMETRY

OVERVIEW
In this chapter, we discuss historical background of fractal geometry. There are two major
variations of fractals such as deterministic fractals and random fractals. Deterministic
fractals are composed of several scaled and rotated copies of itself such as algebraic
fractals and geometric fractals. Random fractals consist of those fractals which exhibit
property of statistical self-similarity. We discuss all types of fractals.

1.1. History of Fractal Geometry
The mathematics behind fractals began to take shape in the 17th century when the
mathematician and philosopher Gottfried Leibniz considered recursive self-similarity. It
was not until 1872 that a function appeared whose graph would today be considered
fractal, when Karl Weierstrass gave an example of a function with the non-intuitive
property of being everywhere continuous but nowhere differentiable.
In 1883, Georg Cantor also gave examples of subsets of the real line with unusual
properties- these Cantor sets are also now recognized as fractals, which was self-similar. It
was discovered by Henry John Stephen Smith in 1874.
In 1904, Helge von Koch, dissatisfied with Weierstrass's abstract and analytic definition,
gave a more geometric definition of a similar function, which is now called the Koch
curve. Waclaw Sierpinski constructed his triangle in 1915 and, one year later, his carpet.
Also Paul Pierre Lévy described a self-similar curves in his paper “Plane or Space curves
and surfaces consisting of parts similar to the whole” in 1938. The Lévy C curve was a
new fractal curve.
In the 1960s, Benoit Mandelbrot started investigating self-similarity that was on earlier
work by Lewis Fry Richardson, in his paper “How Long is the Coast of Britain? Statistical
Self-similarity and Fractional Dimension” in 1967.
Finally, in 1975 Mandelbrot coined the term ‘fractal’ to denote an object whose
Hausdorff– Besicovitch dimension is greater than its topological dimension. He illustrated
this mathematical definition with striking computer-constructed visualizations. These
images captured the popular imagination; many of them were based on recursion, leading
to the popular meaning of the term ‘fractal’.
Iterated functions in the complex plane were investigated in the late 19th and early 20th
centuries by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid of
modern computer graphics, however, they lacked the means to visualize the beauty of
many of the objects that they had discovered.
Iterated functions in the complex plane were investigated in the late 19th and early 20th
centuries by Henri Poincaré, Felix Klein, Pierre Fatou and Gaston Julia. Without the aid of
modern computer graphics, however, they lacked the means to visualize the beauty of
many of the objects that they had discovered. The mathematical concept of a fractal was
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discovered by French mathematician Gaston Julia. Julia was interested in the set of points
defined by iteration of functions.
In 1975, Benoit Mandelbrot observed that geometric objects like the Cantor set and the
Sierpinski triangle were not mathematical pathologies. Rather, these complicated sets
provided a geometry that is in many ways more natural than classical Euclidean geometry
for describing intricate objects in nature such as coastlines and snowflakes. Thus was born
fractal geometry.

1.2. What’s a Fractal?
The word ‘fractal’ is related to the Latin verb frangere, which means “to break”. In the
Raman mind, frangere may have evoked the action of breaking a stone; since the adjective
derived it combines the two most obvious properties of broken stones, irregular and
fragmentation. This adjective is fractus, which lead to fractal. The etymological kinship
with “fraction” is also significant if ones interprets “fraction” as a number that lies
between integers. Indeed, a fractal set can be considered as lying between the shapes of
Euclid.
In his founding paper, “Fractal: Form, Chance and Dimension” Benoit Mandelbrot
coined the term Fractal, and described it as follows:
A fractal is a rough or fragmented geometric shape that can be subdivided in parts, each
of which is (at least approximately) a reduced-size copy of the whole.
The word ‘fractal’ is derived from the Latin word fractals meaning broken, and is a
collective name for a diverse class of geometrical objects, or sets, holding most of, or all
of the following properties [8].

1. The set has a fine structure; it has details on arbitrary scales.
2. The set is too irregular to be described with classical Euclidean geometry, both
locally and globally.
3. The set has some form of self-similarity; this could be approximate or statistical
self-similarity.
4. Usually, the ‘fractal dimension’ of the set is strictly greater than its
Topological dimension.
5. In most cases of interest the set has a very simple definition, that is, it can be
defined recursively.

Property (4) is Mandelbrot’s original definition of a fractal; however, this property has
been proven not to hold for all sets that should be considered fractal. In fact, each of the
above properties has been proven not to hold for at least one fractal.
Several attempts to give a Pure Mathematical Definition of Fractals have been proposed,
but all proven unsatisfactory.

Mathematical Definition of Fractal:
A fractal is a subset of Rn which is self-similar and whose fractal dimension exceeds its
topological dimension.
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Fractals can be classified in numerous manners, of which one stands out rather distinctly:
exact (regular) fractals versus statistical (random) fractals. An exact fractal is an “object
which appears self-similar under varying degrees of magnification in effect, possessing
symmetry across scale with each small part replicating the structure of the whole.” On the
other hand, the object replicates itself in its statistical properties only; it is defined as a
“statistical fractal.” Statistical fractals have been observed in many physical systems,
ranging from material structures (polymers, aggregation, interfaces, etc.) to biology,
medicine, electric circuits, computer interconnects, galactic clusters, and many other
surprising areas, including stock market price fluctuations [9].

1.3. Types of Fractals
There are two major variations of Fractals [10]

1. Deterministic Fractal
2. Random Fractal

The first category consists of those fractals that are composed of several scaled and rotated
copies of itself such as Koch curve, Sierpinski triangles and Sierpinski carpet. They are called
Geometric fractals. Julia set also falls in same category. The whole set can be obtained by
applying a non-linear iterated map to all arbitrary small section of it. Thus the structure of
Julia set is already contained in any small fraction. They are called algebraic fractals. Thus
both algebraic and geometric fractals are termed deterministic fractals. If the generation
requires use of a particular mapping or rule which repeated recursively over and over
again, they exhibit the property of strict self-similarity. The second category consists of
those fractals which have an additional element of randomness allowing for simulation of
natural phenomenon. So they exhibit property of statistical self-similarity.

1.3.1. Geometric Fractals
The fractals of this class are visual. These fractals are created from repeating a process or
pattern over and over again.

1.3.1.1. The Cantor Set
The Cantor set is created by removing the middle third segment of a unit line segment.

Begin with the closed interval ]1,0[0  shown in Figure 1.1. Remove the middle open

third. This leaves a new set .1 Each iteration through the algorithm removes the open

middle third from each segment of the previous iteration. Thus the next set would be .2

In general, after n times iterations, we obtain n for all ,Nn which consists of n2

closed intervals all of which the same length .
3

1
n The Cantor middle third set is the

“limiting set” of this process, that is, 





1n

nC and call it the Cantor middle
3

1
set.
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Figure 1.1 Construction of the Cantor middle
3

1
set

1.3.1.2. Two Dimensional Geometric Fractals
Two classical examples of two dimensional geometric fractals are as follows:

1. The Von Koch Snowflake
2. The Seirpinski gasket or triangle

1.3.1.2.1. [1] The Von Koch Snowflake
The Koch snowflake is generated by an infinite succession of additions. Begin with the
boundary of an equilateral triangle with sides of length 1. Remove the middle third of each
side of the triangle just as we did in the construction of the Cantor set. This time, however,
we replace each of these pieces with two pieces of equal length, giving star-shaped region

depicted in Figure 1.2. This new figure has twelve sides, each of length .
3

1
Each iteration

through the algorithm removes the middle third from each segment of the previous

iteration and replace it with a triangular “bulge” made of two pieces of length .
9

1
The

result is also shown in Figure 1.2.
We continue this process over and over. The ultimate result is a curve that is infinitely
wiggly-there are no straight lines in it whatsoever. This object is called the Koch
snowflake. Clearly, there are pieces of the Koch snowflake that are self-similar.

0 iteration 1st iteration 2nd iteration 3rd iteration 4th iteration
Figure 1.2 Construction of the Koch snowflake
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1.3.1.2.2. The Koch Curve
In two-dimensional case they are made of a broken line (or of a surface in three-
dimensional case) so-called the generator. Each of the segments which form the broken
line is replaced by broken line generator at corresponding scale for a step of algorithm. As
a result of infinite repeating the steps geometrical fractal arises.
The process of construction begins from the segment of single length. It is zero generator
of the Koch curve. Then each of section (one segment in zero generation) is replaced by
formative element defined as Figure 1.3 as .1n As a result of the substitution we get the

next generation of the Koch curve. There are four rectilinear sections length
3

1
when the

first generation is. Thus to produce the next generation all of the section of previous
generation are replaced by diminished formative element. The curve of n -th generation is
called prefractal when n is finite quantity. When n is infinite quantity the curve is
considered a fractal object. [11]

1st iteration 2nd iteration 3rd iteration

4th iteration 5th iteration
Figure 1.3 Construction of the Koch curve

1.3.1.2.3. [1] The Sierpinski Gasket or Triangle
Like the Cantor middle-third set, this object may also be obtained by an infinite sequence
of ‘removals’. Begin with the equilateral triangle shown in Figure 1.4. Then remove from
the middle a triangle whose dimensions are exactly half that of the original triangle. This
leaves three smaller equilateral triangles, each of which has dimensions one-half the
dimensions of the original triangle. Now continue this process. Remove the middle
portions of each of the remaining triangles, leaving nine equilateral triangles. In general,

after n times iterations, we remove n3 open triangles of size n2

1
from each to form the

previous images. The resulting image after carrying this procedure to the limit and is called
the Sierpinski triangle.
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0 iteration 1st iteration

2nd iteration 3rd iteration
Figure 1.4 Construction of the Sierpinski triangle

There are many fractals that may be constructed via varations on this theme of infinite
removals. For example, we may construct a similar sets by beginning with a isoceles right
triangle and a scalene triangle, as in Figure 1.5, Figure 1.6.

0 iteration 1st iteration

2nd iteration 3rd iteration
Figure 1.5 Construction of the Sierpinski right isosceles triangle
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0 iteration 1st iteration

2nd iteration 3rd iteration
Figure 1.6 Construction of the Sierpinski scalene triangle

Another fractals, the “Sierpinski carpet” fractal is obtained by sucessively removing
middle square whsoe sides are one-third as long as their predecessor, as shown in Figure
1.7. The “box” fractal is obtained by successively removing squares whose sides are one-
third as long as their predecessors, as shwon in Figure 1.8.

0 iteration 1st iteration 2nd iteration
Figure 1.7 Construction of the Sierpinski carpet

0 iteration 1st iteration 2nd iteration
Figure 1.8 Construction of the box fractal
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Similarly, we construct the “square” (using the Cantor middle one-third set) fractal which
is obtained by removing squares whose sides are one-third as long as their predecessor, as
shown in Figure 1.9.

0 iteration 1st iteration 2nd iteration
Figure 1.9 Construction of the square fractal (using the Cantor middle third set)

1.3.1.3. Three Dimensional Geometric Fractals
Two classical examples of three dimensional geometric fractals are as follows:

1. The Menger sponge
2. The Sierpinski tetrahedron

1.3.1.3.1. The Menger Sponge
The Menger sponge is a fractal curve also known as the Menger universal curve. It is a
three-dimensional generalization of the Cantor set and the Sierpinski carpet. Begin with a
closed (filled) unit cube shown in Figure 1.10. Divide every face of the cube into 9 cubes,
like a Rubik’s cube (Magic cube). This will sub-divide the cube into 27 smaller cubes. We
remove the smaller cube in the middle of each face and remove the smaller cube in the

very center of larger cube; totally we remove 7 open cubes of size
3

1
and leaving 20

smaller cubes. Now continue the process. Remove the smaller cube in the middle of each

of the remaining cubes, we remove 20.7 open cubes of size
9

1
and leaving 2)20( smaller

cubes. In general, n time’s iterations, we remove 1)20.(7 n open cubes of size .
3

1
n The

Menger sponge itself is the limit of this process after an infinite number of iterations.

0 iteration 1st iteration 2nd teration
Figure 1.10 Construction of the Menger sponge
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1.3.1.3.2. The Sierpinski Tetrahedron
Like the Menger sponge, this object may also be obtained by an infinite number of
iterations. Begin with a closed (filled) tetrahedron with unit edge shown in Figure 1.11.
Divide every face of the tetrahedron into 3 triangles. This will sub-divide the tetrahedron
into 8 smaller tetrahedrons. We remove the smaller tetrahedron in the middle of each face
and remove the smaller tetrahedron in the very center of larger tetrahedron; totally we

remove 4 open tetrahedrons of size
2

1
and leaving 4 smaller tetrahedron. Now continue

this process. Remove the smaller cube in the middle of each of the remaining cubes, we

remove 4.4 open tetrahedron of size
4

1
and leaving 2)4( smaller tetrahedrons. In general,

n time’s iterations, we remove 14.4 n open cubes of size .
2

1
n

The Sierpinski tetrahedron

itself is the limit of this process after an infinite number of iterations.

0 iteration 1st iteration 2nd iteration

Figure 1.11 Construction of the Sierpinski tetrahedron

Similarly, we construct another three dimensional fractal, the ‘octahedron’ fractal is
obtained by the following algorithm:

1.3.1.3.3. The Octahedron Fractal
Begin with a closed (filled) octahedron with unit edge shown in Figure 1.12. Divide every
face of the octahedron into 3 triangles. This will sub-divide the octahedron into 8 smaller
octahedrons. We remove the octahedron in the middle of each face and remove the smaller
octahedron in the very center of larger octahedron; totally we remove 2 open octahedrons

of edge size .
2

1
and leaving 6 smaller octahedron. Now continue this process. Remove the

smaller octahedron in the middle of each of the remaining octahedron, we remove 6.2

open octahedron of size
4

1
and leaving 26 smaller octahedrons. In general, after n time’s

iteration, we remove 16.2 n open octahedrons of edge size .
2

1
n The octahedron fractal itself

is the limit of this process after an infinite number of iterations.
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0H 1H (1st Iteration)

Figure 1.12 Construction of the octahedron fractal

1.3.2. Algebraic Fractals
Algebraic fractal is the biggest class of fractals. These fractals are created by an equation
over and over in n -dimensional spaces. Two classical examples of algebraic fractals are
as follows:

1. The Julia set
2. The Mandelbrot set

1.3.2.1. [8] The Julia Set
The Julia set is the place where all of the chaotic behavior of a complex function occurs.

We consider the functions CC:f of the form ,2 czf  where both z and c are

complex numbers. For the simplest case, ,0c we have 2)( zzf  and

.|||||)(| 22 zzzf 

(i) If 1|| z then .0)( zf n

(ii) If 1|| z then .)( zf n

(iii) If 1|| z then 1|)(| zf n for all .n

Thus the circle 1|| z is the boundary between these two types of behavior, and is the Julia

set for .)( 2zzf 

Now consider ,2 czf  where c is a small complex number. We get a closed curve ,J

such that if z is inside of ,J then 0)( zzf n  for some 0z close to 0, and if z is outside

of ,J then .|)(| zf n For 0c and small this curve J is a fractal curve.

Definition 1.3.2.1.1. [8] For ,2 czf  we define

}sequenceboundedais)(:{}infinitytotendnotdoes|)(|:{ zfzzfzF nn 
to be the filled Julia set of .J We define the Julia set J of f to be boundary of the filled

Julia set, that is, ).int(\ FFJ 
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For example, if ,53.027.0 ic  then the filled Julia sets shown in Figure 1.13.

1st Iteration 10th Iteration

50th Iteration 100th Iteration
Figure 1.13 Construction of the filled Julia sets

1.3.2.1.2. [8] Some Properties of Julia Sets

1. Both forms of F are the same.
2. J is closed and bounded.
3. J is non-empty.
4. J has empty interior.
5. J contains no isolated points.
6. J is uncountable.

1.3.2.2. The Mandelbrot Set
The Mandelbrot set is the famous example of Fractal. The Mandelbrot set is a particular
mathematical set of points, whose boundary generates a distinctive and easily recognizable
two-dimensional fractal shape.
The set is closely related to the Julia set (which generates similarly complex shapes), and
is named after the mathematician Benoit Mandelbrot, who studied and popularized it.
More technically, the Mandelbrot set is the set of values of c in the complex plane for

which the orbit of 0 under iteration of the complex quadratic polynomial czzf  2)(

remains bounded.
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We define the Mandelbrot set

}connectedis)(ofsetJuliathe:{: 2 czzfcM  C [8].

For example, if 1c and ,0z then the function gives the sequence 1, 2, 5, 26,…, which
tends to infinity. As this sequence is unbounded, 1 is not an element of the Mandelbrot set.

On the other hand, if ic  and 0z (where i is defined as 12 i ), then the function
gives the sequence ,,),1(,),1(, iiiii  which is bounded and so i belongs to the

Mandelbrot set.

Figure 1.14 Construction of the Mandelbrot set

Generating the Mandelbrot Set:

We consider the following functions to generate the Mandelbrot set:

ayxyxf  22
1 ),( and bxyyxf  2),(2

Initial seed: 0,0  yx with the parameter values .0,0  ba

Then the generating Mandelbrot set is shown in Figure 1.15.

5th iteration 10th iteration
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20th iteration 100th iteration
Figure 1.15 Construction of the Mandelbrot Set

1.3.2.2.1. [8] Some Properties of the Mandelbrot Set

1. M is bounded.
2. M has a proper interior.
3. M is closed, and so by (1) is compact.
4. M is connected.

1.3.3. [12] Stochastic Fractals
A stochastic fractal is a self-similar random process ).(tx The stochastic fractals are found

in the case iterate process has accidental parameters. These fractals like natural can be
created. Two-dimensional stochastic fractals are used for designing surface of sea or relief
modeling.

1.3.3.1. Example of Stochastic Fractal
A fractal is a complex geometric figure that is made of identically repeated shapes.  These
shapes are symmetrical, show self-similarity, and repeat on all scales. This means that a
single section of a fractal has the same shape as the whole. The natural fern in figure
demonstrates this fractal quality as does the mathematically created fern. Each frond of the
ferns resembles the entire fern and at each smaller scale the same fern shape is recreated.
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Figure 1.16 The Natural Fern (captured from nature)

We consider the following functions to generate fractal fern:

byaxyxf ),(1 and edycxyxf ),(2

Initial seed: 0x and yy 16.0 with the parameter values ,23.0,26.0,2.0  cba

.6.1,22.0  ed Then the generating fern is shown in Figure 1.16.
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Figure 1.17 Construction of the complete Fern (after 50000th iterations)
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CHAPTER TWO

THE CANTOR SET PROTOTYPICAL FRACTAL

OVERVIEW
In this chapter, we discuss the construction and properties of the classical Cantor set. We
generalize the Cantor middle third set and also discuss the construction and properties of
the generalized Cantor sets.

2.1. The Cantor Set
A non empty set R is called a Cantor set if

(a)  is closed and bounded.
(b)  contains no intervals.
(c) Every point in  is an accumulation point of .

The Cantor sets were discovered by the German Mathematician, George Cantor in the late
19th to early 20th centuries (1845-1918). He introduced fractal which has come to be
known as the Cantor set, or Cantor dust. The Cantor set is the prototypical fractal [1].

The Mathematician George Cantor found the Cantor middle
3

1
set. We study the Cantor set

and find the generalized Cantor sets and show its dynamical behaviors and fractal

dimensions [3]. The Cantor middle ,
3

1
,

5

1
,

7

1
,

9

1
,

11

1
sets, in general, the Cantor

middle ,
12

1

m
)2( m set is called the generalized Cantor sets and it is denoted by

)12/(1 mC which is defined by algorithm and also defined by the shrinking process.

2.1.1. Construction of the Cantor middle
3

1
set

We start with the closed interval ].1,0[0 
G0

0 1

Remove the middle open third. This leaves a new set ].1,
3

2
[]

3

1
,0[1 

G1
0 1 3 2 3 1

Each iteration through the algorithm removes the open middle third from each segment of
the previous iteration. Thus the next set would be

].1,
9

8
[]

9

7
,

3

2
[]

3

1
,

9

2
[]

9

1
,0[2 
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Figure 2.1 Construction of the Cantor middle
3

1
set

In general, after n times iterations, we obtain n which as follows

],1,
3

13
[]

3

23
,

3

33
[]

3

3
,

3

2
[]

3

1
,0[

n

n

n

n

n

n

nnnn





  where .1n

Therefore we construct a decreasing sequence )( n of closed sets, that is nn  1 for all

,Nn so that every n consists of n2 closed intervals all of which the same length .
3

1
n

The Cantor ternary set, which we denote ,3/1C is the “limiting set” of this process, that is,







1

3/1
n

nC and call it the Cantor middle
3

1
set.

Alternative process of constructing 3/1C is in physical terms as taking a length of

string and repeatedly cutting it into shorter pieces. If we think first piece as the interval
]1,0[ and cut it at the points 1/2, then it becomes two pieces of string each with two

endpoints such as the intervals ],2/1,0[ and ].1,2/1[ In order to make all these pieces

disjoint subsets of R one can image the string as being stretched so tightly that each time
it is cut, it pulls apart at the cut and shrinks to 3/2 of its length, so after the first cut,

]2/1,0[ shrinks to ],3/1,0[ ]1,2/1[ shrinks to ].1,3/2[ Then at the next stage we cut

]3/1,0[ at the point 1/6, and then two pieces are ],6/1,0[ ],3/1,6/1[ shrink to ]9/1,0[ and

].3/1,9/2[ similarly for the piece ],1,3/2[ and so on.

2.1.2. [1] Properties of the Cantor middle
3

1
set

2.1.2.1. The set 3/1C is disconnected

The set 3/1C is totally disconnected since it was constructed so as to contain no intervals

other than points. Namely, if 3/1C contained an interval of positive length  then this

interval would be contained in each ,n but n contains no interval of length greater than

n3

1
so if n is chosen to be large enough so that n3

1
is less than , then there is no interval

of length  in .n
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2.1.2.2. The set 3/1C contains no intervals

We will show that the length of the complement of the set 3/1C is equal to ,1 hence 3/1C

contains no intervals. At the thn stage, we are removing 12 n intervals from the previous

set of intervals, and each one has length of .
3

1
n

The length of the removing intervals within ]1,0[ after an infinite number of removals is















 



01

1

1

1 1
3/21

3/1
)

3

2
(

3

1
)

3

2
(

3

1
)

3

1
(2

n

n

n

n

n
n

n

Thus we are removing a length of 1 from the unit interval ]1,0[ which has a length of .1

Alternative method:
Note that in the first iteration we removed 1/3, in the second iteration we removed 2/9, in the
third iteration we removed 4/27, and in the fourth iteration we removed 8/81, and so forth.

This is a geometric series with first term
3

1
a and common ratio .

3

2
r

This converges, and the sum is .1
3/21

3/1



S

Thus the length of the complement of the set 3/1C is equal to .1

Therefore, the total length of 3/1C is 0, which means it has no intervals.

2.1.3. [3] Construction of the Cantor middle
5

1
set

We start with the closed interval ].1,0[0 

G0
0 1

Remove the middle open interval )5/2,5/1( and )5/4,5/3( . This leaves a new set

].1,
5

4
[]

5

3
,

5

2
[]

5

1
,0[1 

G1
0 1 5 2 5 3 5 4 5 1

Each iteration through the algorithm removes the open 2nd and 4th interval from each
segment of the previous iteration. Thus the next set would be

].1,
27

24
[]

25

23
,

25

22
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25

21
,

5

4
[]

5

3
,

25

14
[

]
25

13
,
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12
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25

11
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5

2
[]
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1
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4
[]

25

3
,

25

2
[]
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1
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


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Figure 2.2 Construction of the Cantor middle
5

1
set

In general, after n times iterations, we obtain n which as follows

],1,
5

15
[]

5

25
,

5

35
[]

5

3
,

5

2
[]

5

1
,0[

n

n

n

n

n

n

nnnn





  where .1n

Therefore, we construct a decreasing sequence )( n of closed sets, that is, nn  1 for all

,Nn so that every n consists of n3 closed intervals all of which the same length .
5

1
n

We define 





1

5/1
n

nC and call it the Cantor middle
5

1
set.

Alternative process of constructing 5/1C is in physical terms as taking a length of

string and repeatedly cutting it into shorter pieces. If we think first piece as the interval
]1,0[ and cut it at the points 1/3 and 2/3, then it becomes three pieces of string each with

two endpoints such as the intervals ],3/1,0[ ],3/2,3/1[ and ].1,3/2[ In order to make all

these pieces disjoint subsets of R one can image the string as being stretched so tightly
that each time it is cut, it pulls apart at the cut and shrinks to 5/3 of its length, so after the
first cut, ]3/1,0[ shrinks to ],5/1,0[ ]3/2,3/1[ shrinks to ],5/3,5/2[ and ]1,3/2[ shrinks

to ].1,5/4[ Then at the next stage we cut ]5/1,0[ at the points 1/15 and 2/15 and the three

pieces ],15/1,0[ ],15/2,15/1[ and ]5/1,15/2[ shrink to ],25/1,0[ ],25/3,25/2[ and

],5/1,25/4[ similarly for the pieces ],5/3,5/2[ and ],1,5/4[ and so on.

2.1.4. [3] Properties of the Cantor middle
5

1
set

2.1.4.1. The set 5/1C is disconnected

The set 5/1C is totally disconnected since it was constructed so as to contain no intervals

other than points. Namely, if 5/1C contained an interval of positive length  then this

interval would be contained in each ,n but n contains no interval of length greater than

n5

1
so if n is chosen to be large enough so that n5

1
is less than , then there is no interval

of length  in .n
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2.1.4.2 The set 5/1C contains no intervals

We will show that the length of the complement of the set 5/1C is equal to ,1 hence 5/1C

contains no intervals. At the thn stage, we are removing 13.2 n intervals from the previous

set of intervals, and each one has length of .
5

1
n

The length of the removing intervals within ]1,0[ after an infinite number of removals is















 



01

1

1

1 1
5/31

5/2
)

5

3
(

5

2
)

5

3
(

5

2
)

5

1
(3.2

n

n

n

n

n
n

n

Thus we are removing a length of 1 from the unit interval ]1,0[ which has a length of .1

Alternative method:
Note that in the first iteration we removed 2/5, in the second iteration we removed 6/25, in
the third iteration we removed 18/125, and so forth.

This is a geometric series with first term
5

2
a and common ratio .

5

3
r

This converges, and the sum is .1
5/31

5/2



S

Thus the length of the complement of the set 5/1C is equal to .1

Therefore, the total length of 5/1C is 0, which means it has no intervals.

2.1.5. [3] Construction of the Cantor middle
7

1
set

We start with the closed interval ].1,0[0 
G0

0 1

Remove the middle open interval ),7/2,7/1( ),7/4,7/3( and ).7/6,7/5(

This leaves a new set ].1,
7

6
[]

7

5
,

7

4
[]

7

3
,

7

2
[]

7

1
,0[1 

G1
0 1 7 2 7 3 7 4 7 5 7 6 7 1

Each iteration through the algorithm removes the open 2nd, 4th, and 6th interval from each
segment of the previous iteration. Thus the next set would be

].1,
49

48
[]

49

47
,

49

46
[]

49

7
,

49

6
[]

49

5
,

49

4
[]

49

3
,

49

2
[]

49

1
,0[2  

0 1

0
1€€€€
7

2€€€€
7

3€€€€
7

4€€€€
7

5€€€€
7

6€€€€
7

1

0 1€€€€
7
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7
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7
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7
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7

1
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Figure 2.3 Construction of the Cantor middle
7

1
set



Dhaka University Institutional Repository

Chapter Two 21

In general, after n times iterations, we obtain n which as follows

],1,
7

17
[]

7

27
,

7

37
[]

7

3
,

7

2
[]

7

1
,0[

n

n

n

n

n

n

nnnn





  where .1n

Therefore, we construct a decreasing sequence )( n of closed sets, that is, nn  1 for all

,Nn so that every n consists of n4 closed intervals all of which the same length .
7

1
n

We define 





1

7/1
n

nC and call it the Cantor middle
7

1
set.

2.1.6. [3] Properties of the Cantor middle
7

1
set

2.1.6.1. The set 7/1C is disconnected

The set 7/1C is totally disconnected since it was constructed so as to contain no intervals

other than points. Namely, if 7/1C contained an interval of positive length  then this

interval would be contained in each ,n but n contains no interval of length greater than

n7

1
so if n is chosen to be large enough so that n7

1
is less than , then there is no interval

of length  in .n

2.1.6.2. The set 7/1C contains no intervals

We will show that the length of the complement of the set 7/1C is equal to ,1 hence 7/1C

contains no intervals. At the thn stage, we are removing 14.3 n intervals from the previous

set of intervals, and each one has length of .
7

1
n

The length of the removing intervals within ]1,0[ after an infinite number of removals is















 



01

1

1

1 1
7/41

7/3
)

7

4
(

7

3
)

7

4
(

7

3
)

7

1
(4.3

n

n

n

n

n
n

n

Thus we are removing a length of 1 from the unit interval ]1,0[ which has a length of .1

Alternative method:
Note that in the first iteration we removed 3/7, in the second iteration we removed 12/49,
in the third iteration we removed 48/343, and so forth.

This is a geometric series with first term
7

3
a and common ratio .

7

4
r

This converges, and the sum is .1
7/41

7/3



S

Thus the length of the complement of the set 7/1C is equal to .1

Therefore, the total length of 7/1C is 0, which means it has no intervals.
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Similarly, we can construct and show the properties of the Cantor

middle )2(,
12

1



m

m
set which is denoted by )12/(1 mC and is called generalized

Cantor set.

2.1.7. [3] Construction of the Generalized Cantor Sets (The Cantor

middle )2(,
12

1



m

m
sets)

We start with the closed interval ].1,0[0 

G0
0 1

Remove the middle open interval

,
12

2
,

12

1








 mm
,

12

22
,

12

32
,,

12

4
,

12

3






















 m

m

m

m

mm
 where .2  m

This leaves a new set 1 which will depend on the value of .m

In general, after n times iterations, we obtain n which as follows:

],1,
)12(

1)12(
[]

)12(

2)12(
,

)12(

3)12(
[

]
)12(

3
,

)12(

2
[]

)12(

1
,0[

n

n

n

n

n

n

nnnn

m

m

m

m

m

m

mmm



















 

Therefore, we construct a decreasing sequence )( n of closed sets, that is nn  1 for all

,Nn so that every n consists of nm closed intervals all of which the same length

.
)12(

1
nm 

We define 



 

1
)12/(1

n
nmC and call it the Cantor middle )2(,

12

1



m

m
set

or the generalized Cantor set.

0 1
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Figure 2.4 Construction of the Cantor middle
12

1

m
set
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2.1.8. [3] Properties of the Generalized Cantor Sets

2.1.8.1. The set ,12/1 mC )2(  m is disconnected

The set )12/(1 mC is totally disconnected since it was constructed so as to contain no

intervals other than points. Namely, if )12/(1 mC contained an interval of positive length 

then this interval would be contained in each ,n but n contains no interval of length

greater than
nm )12(

1


so if n is chosen to be large enough so that

nm )12(

1


is less than

, then there is no interval of length  in .n

2.1.8.2. The set ,12/1 mC )2(  m contains no intervals

We will show that the length of the complement of the set )12/(1 mC is equal to ,1 hence

)12/(1 mC contains no intervals. At the thn stage, we are removing 1).1(  nmm intervals

from the previous set of intervals, and each one has length of .
)12(

1
nm

The length of the removing intervals within ]1,0[ after an infinite number of removals is















 












01

1

1

1 1)
12

(
)12(

1
)

12
(

)12(

1
)

)12(

1
().1(

n

n

n

n

n
n

n

m

m

m

m

m

m

m

m

m
mm

Thus we are removing a length of 1 from the unit interval ]1,0[ which has a length of .1

Alternative method:
Note that in the first iteration we removed )12/()1(  mm , in the second iteration we

removed ,)12/()1( 2 mmm in the third iteration we removed ,)12/()1( 32  mmm and

so forth.

This is a geometric series with first term
12

1





m

m
a and common ratio .

12 


m

m
r

This converges, and the sum is .1
)12/(1

)12/()1(





 mm

mm
S

Therefore, the total length of )12/(1 mC is 0, which means it has no intervals.

2.1.8.3. The set ,12/1 mC )2(  m is nowhere dense

A set S is said to be nowhere dense if the interior of the closure of S is empty. The closure
of the set is the union of the set with the set of limit points. Since every point in the set

)12/(1 mC is a limit point of the set, the closure of the set is simply the set itself.

The interior of the set )12/(1 mC must be empty, since no two points in the set are adjacent

to each other. Thus the set )12/(1 mC is nowhere dense.
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2.2. Lemma [3]. If n is defined in Cantor
12

1
middle

m
set, where ,2  m then

there are nm closed intervals in n and the length of each closed interval is ,
22

12

1
1

n

m
m






















where ,2  m Also the combined length of the intervals in n is ,
12

n

m

m









where

,2  m which is approaches to zero as n approaches to infinity.

Proof: We start with the interval ]1,0[ whose length is 1. We proceed by mathematical

induction. In the first step, we remove a gape of length
12

1

m
and obtain m closed

intervals whose combined length is .
12 m

m

So each interval has a length of ,
22

12

1
1






















m
m where .2  m

In general, suppose that there are km intervals remain in ,k each with a length of

,
22

12

1
1

k

m
m





















where ,2  m for a combined length of ,

12

k

m

m









where .2  m

We will show that there are 1km intervals remain in ,1k each with a length

,
22

12

1
1

1





















k

m
m where ,2  m for a combined length ,

12

1











k

m

m
where .2  m

Note that each time we remove the middle ,
12

1

m
where ,2  m portion of a closed

intervals, we split the interval into m closed intervals. So in passing from k to ,1k we

multiple the number of intervals by ,m and there are ,)( 1 kk mmm where ,2  m

intervals in .1k

By assumption, each interval in k has a length of ,
22

12

1
1

k

m
m





















where .2  m
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Since we remove the middle ,
12

1

m
where ,2  m portion of each interval in k to

create ,1k the amount of each interval from k left in 1k is

,
)22(
12

1
1

22
12

1
1

12

1

22
12

1
1

1

k

kkk

m
m

m
m

mm
m






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
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
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
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


where .2  m

As this length is left in 22 m intervals, the length of each remaining interval is

,
22

12

1
1

)22(
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1
1

22

1

11 
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
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
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
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m
m

m
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m
where .2  m

Finally, there are 1km intervals in ,1k so the combined length of the intervals in 1k is

,
1222

12

1
1

.
1

1

1




 









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





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









 k

k

k

m

m

m
mm where .2  m

Since ,1
12

1
0 




m

n

m

m








12
converges to 0 as n grows without bound and it follows that

the combined length of the intervals in n approaches 0 as n goes to infinity.

2.3. Proposition [3]. The Cantor middle
12

1

m
set is a Cantor set, where .2  m

Proof: Let  be a Cantor middle
12

1

m
set, where .2  m Since 0 is in every ,n 

is not empty. To complete the proof, we must show that (i)  is closed and bounded, (ii)
 contains no intervals, and (iii) every point of  is an accumulation point of .
(i) Since  is the intersection of closed intervals, it is closed. As  is contained in [0, 1],
it is also bounded.
(ii) If  contains an open interval ),( yx with length |,| xy  then at each stage in the

construction of ),(, yx must be contained in one of the remaining closed intervals.

However, Lemma 2.2 implies that after n steps the length of one of these intervals is

,
22
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1
1
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m
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
where ,2  m
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and we can find an 0n such that |,|
22

12

1
1

0

xy
m

m

n


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


















where .2  m

That is, the length of each of the closed intervals in
0n is less than the length of ).,( yx

Hence, the entire interval ),( yx cannot be contained in
0n and  contains no intervals.

(iii) Suppose that x is a point in  and let ),()(   xxxN be a neighborhood of .x

We must show that there exists a point in  that is contained in )(xN and is not equal to

.x Notice that if 1x is an endpoint of one of the intervals that is removed, then 1x is in .
Now at each stage in the construction of the Cantor set, x must be in one of the remaining

closed intervals. That is, for each n there is an intervals in n that contains .x

Choose n large enough so that ,
22
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1
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



n

m
m where .2  m

Then x is in one of the closed intervals that comprise .n Call this interval .nI

By Lemma 2.2, the length of nI is ,
22
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1
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m
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Since ,
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
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



n

m
m where  m2 it must be the endpoints of nI are in ).(xN

As there are two endpoints and x can be equal to at one of them, other endpoint is an
accumulation point of .
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CHAPTER THREE

FRACTAL AND TOPOLOGICAL DIMENSIONS OF FRACTALS

OVERVIEW
In this chapter, we discuss fractal dimensions and topological dimensions of fractals and
also discuss the construction of the two and three dimensional fractals. We find fractal
dimensions and topological dimensions of the one, two and three dimensional fractals.

3.1. Basic Definitions and Formulas
Definition 3.1.1. [1] A set S is called affine self-similar if S can be subdivided into N
congruent subsets, each of which may be magnified by a constant factor r to yield the
whole set .S
For example, the line, the plane, the cube are affine self-similar. We may now use this fact
to provide a different notion of dimension, for one way to realize that these objects have
different dimensions is to do the following.

A line is a very self-similar object: It may be decomposed into 1nn  little “bite-size”

pieces, each of which is exactly
n

1
the size of the original line and each of which, when

magnified by a factor of .n On the other hand, if we decompose a square into pieces that

are
n

1
the size of the original square, then we find we need 2n such pieces to reassemble

the square. Similarly, a cube may be decomposed into 3n pieces, each
n

1
the size of the

original. So the exponent in each of those cases distinguishes the dimension of the object
in equation. This exponent is the fractal dimension.

Definition 3.1.2. [1] Suppose the affine self-similar set may be subdivided into N
congruent pieces, each of which may be magnified by a factor of r to yield the whole set

.S Then the fractal dimension D of S is

.
)log(

)log(

factor)tion(magnificalog

)piecesofnumber(log

r

N
D 

One of the crudest measurements of dimension is the notion of topological dimension.
This dimension agrees with our naïve expectation that a set should have an integer
dimension. We define the topological dimension inductively.

Definition 3.1.3. [1] A set S has topological dimension 0 if every point has arbitrarily
small neighborhoods whose boundaries do not intersect the set.
For example, a scatter of isolated points has topological dimension ,0 since each point

may be surrounded by arbitrarily small neighborhoods whose boundaries are disjoint from
the set.
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Definition 3.1.4. [1] A set S has topological dimension k if every point has arbitrarily
small neighborhoods whose boundaries meet in a set of dimension ,1k and k is the least

nonnegative integer for which this holds.
For example, a curve or line segment in the plane has topological dimension 1 since small
disks in the plane have boundaries that meet the line in one or two points.
Similarly, a planar region has topological dimension 2 because points in the set have
arbitrarily small neighborhoods whose boundaries are one-dimensional.

3.2. Fractal and Topological Dimensions of the Generalized Cantor Sets

3.2.1. Fractal and Topological Dimension of the Cantor middle
3

1
set

From Figure 2.1 of the chapter 2, we see that the set  is contained in n for each .n Just

as 1 consists of 2 intervals of length ,
3

1
and 2 consists of 22 intervals of length ,

3

1
2 and

3 consists of 32 intervals of length .
3

1
3

In general, n consists of n2 intervals, each of

length .
3

1
n

After ,n we are left with a self-similar set which is called the Cantor

middle
3

1
set. Arbitrary small neighborhoods intersect the Cantor middle

3

1
set at a finite set of

points, so it has topological dimension 1.

The Cantor middle
3

1
set consists of n2 intervals with magnification factor .3n

Hence the fractal dimension of the Cantor middle
3

1
set [13] is .63.0

3ln

2ln
D

3.2.2. [3] Fractal and Topological Dimension of the Cantor middle
5

1
set

From Figure 3.2 of the chapter 2, we see that the set  is contained in n for each .n Just

as 1 consists of 3 intervals of length ,
5

1
and 2 consists of 23 intervals of length ,

5

1
2

and

3 consists of 33 intervals of length .
5

1
3

In general, n consists of n3 intervals, each of

length .
5

1
n

After ,n we are left with a self-similar set which is called the Cantor

middle
5

1
set. Arbitrary small neighborhoods intersect the Cantor middle

5

1
set at a finite set of

points, so it has topological dimension 1.

The Cantor middle
5

1
set consists of n3 intervals with magnification factor .5n
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Therefore, the fractal dimension of the Cantor middle
5

1
set is .68.0

5ln

3ln
D

3.2.3. [3] Fractal and Topological Dimension of the Cantor middle
7

1
set

From Figure 3.3 of the chapter 2, we see that the set  is contained in n for each .n Just

as 1 consists of 4 intervals of length ,
7

1
and 2 consists of 24 intervals of length ,

7

1
2

and 3 consists of 34 intervals of length .
7

1
3

In general, n consists of n4 intervals, each

of length .
7

1
n

After ,n we are left with a self-similar set which is called the Cantor

middle
7

1
set. Arbitrary small neighborhoods intersect the Cantor middle

7

1
set at a finite set of

points, so it has topological dimension 1.

The Cantor middle
7

1
set consists of n4 intervals with magnification factor .7n

Hence the fractal dimension of the Cantor middle
7

1
set is .71.0

7ln

4ln
D

Similarly, we can find the fractal and topological dimension of the Cantor middle ,
9

1

12

1
,,

11

1

m
 set, where .2  m

3.2.4. [3] Fractal and Topological Dimension of the Cantor middle
12

1

m
set

From Figure 3.4 of the chapter 2, we see that the set  is contained in n for each .n Just

as 1 consists of m intervals of length ,
12

1

m
and 2 consists of 2m intervals of length

,
)12(

1
2m

and 3 consists of 3m intervals of length .
)12(

1
3m

In general, n consists of

nm intervals, each of length .
)12(

1
nm 

After ,n we are left with a self-similar set which is called the Cantor middle
12

1

m
set.

Arbitrary small neighborhoods intersect the Cantor middle
12

1

m
set at a finite set of points,

so it has topological dimension 1.

The Cantor middle
12

1

m
sets consist of nm intervals with magnification factor .)12( nm 
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Hence the fractal dimension of the Cantor middle
12

1

m
set is

,
)12ln(

ln




m

m
D where .2  m

Remark: The fractal dimension of the Generalized Cantor sets is ,
)12ln(

ln

m

m
where

.2  m If we increase the value of ,m then the value of fractal dimension of the

Generalized Cantor sets will be increase.

3.3. Fractal and Topological Dimensions of Two Dimensional Fractals

3.3.1. [12] Construction of the Koch Curve
We start with a closed unit interval.  At the first stage we remove the middle third of the

interval and replace it with two line segments of length
3

1
to make a tent. The resulting set

consists of 4 line segments of length .
3

1
At the second stage, we repeat this procedure on all of

the existing line segments and remove 4 line segments of length .
9

1
The resulting set consists

of 16 line segments of length .
9

1
Similarly, at the third stage, we remove 16 line segments of

length .
27

1
At the nth stage, we remove n4 open triangles of size .

3

1
n

1st Iteration                         2nd Iteration 3rd Iteration

4th Iteration 5th Iteration

Figure 3.1 The first five stages of the standard Koch curve.

After ,n we are left with a self-similar set which is called the Koch curve.

Arbitrary small neighborhoods intersect the Koch curve at a finite set of points, so it has
topological dimension 1.

The Koch curve consists of n4 subsets with magnification factor .3n

Hence the fractal dimension of the Koch curve [13] is .262.1
3ln

4ln
D
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3.3.2. [1] Construction of the Sierpinski Gasket or Equilateral Triangle
The Sierpinski triangle is a fractal described by Waclaw Sierpinski in 1915. It is a self-similar
structure that occurs of different level of iterations or magnifications.
We start with a closed (filled) equilateral triangle. At the first stage we subdivide this into 4

smaller congruent equilateral triangles and remove the central one open triangle of size
2

1
to

form a new image .1A At the second stage, we subdivide each of the three remaining triangle

into 4 congruent equilateral triangles and remove three open triangles of size
4

1
from each to

form the image .2A Similarly, at the third stage we remove nine open triangles of size
8

1

from each to form the image .3A At the nth stage, we remove n3 open triangles of size n2

1

from each to form the image .nA

0A 1A (1st Iteration) 2A (2nd Iteration) 3A (3rd Iteration)

Figure 3.2 The first four stages of the Sierpinski gasket or equilateral triangle

After ,n we are left with a self-similar set which is called the Sierpinski equilateral

triangle. Arbitrary small neighborhoods intersect the Sierpinski equilateral triangle at a finite
set of points, so it has topological dimension 1.

The Sierpinski equilateral triangle consists of n3 subsets with magnification factor .2n

Hence the fractal dimension of the Sierpinski equilateral Triangle [14] is .585.1
2ln

3ln
D

Similarly, we can construct the Sierpinski isosceles, isosceles right and scalene triangle and
also we can find the fractal and topological dimension of those fractals, which is same to the
Sierpinski equilateral triangle.

3.3.3. [1] Construction of the Sierpinski Carpet
The Sierpinski carpet is a plane fractal described by Waclaw Sierpinski in 1916. The carpet is
one generalization of the Cantor set to two dimensions; another is the Cantor dust.
We start with a solid (filled) unit square. At the first stage we divide this into 9 smaller

congruent squares. Remove the interior of the center open square of size
3

1
(that is, do not

remove the boundary) to form a new image .1A At the second stage, we subdivide each of

the eight remaining solid squares into 9 congruent squares and remove 8 open squares of
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size 23

1
from each to form the image .2A Similarly, at the third stage we remove 28 open

squares of size 33

1
from each to form the image .3A At the nth stage, we remove 18 n open

squares of size n3

1
from each to form the image .nA

0C 1C (1st Iteration) 2C (2nd Iteration)

Figure 3.3 The first three stages of the Sierpinski carpet

The Sierpinski carpet itself is the limit of this process after an infinite number of iterations.
Arbitrary small neighborhoods intersect the Sierpinski equilateral triangle at a finite set of
points, so it has topological dimension 1.

The Sierpinski carpet consists of n8 subsets with magnification factor .3n

Thus the fractal dimension of the Sierpinski carpet [14] is .893.1
3ln

8ln
D

3.3.4. [15] Construction of the Box Fractal
The Vicsek fractal is known as Vicsek snowflake or box fractal. It is a fractal arising from a
construction similar to that of the Sierpinski carpet, proposed by Thomas Vicsek.
We start with a closed (filled) unit square. At 1st stage the square is decomposed into 9 smaller
squares in the 3-by-3 grid. The four squares at the corners and the middle square are left, the

other squares being remove. Thus we remove 4 open square  of size .
3

1
At 2nd stage, we

remove 4.5 open squares of size .
9

1
At 3rd stage, we remove 25.4 open squares of size .

27

1

At nth stage, we remove 15.4 n open triangles of size .
3

1
n

0B 1B (1st Iteration) 2B (2nd Iteration) 3B (3rd Iteration)

Figure 3.4 The first four stages of the box fractal
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The box fractal itself is the limit of this process after an infinite number of iterations.
Arbitrary small neighborhoods intersect the box fractal at a finite set of points, so it has
topological dimension is 1.

The box fractal consists of n5 subsets with magnification factor .3n

Hence the fractal dimension of the box fractal [13] is .465.1
3ln

5ln
D

3.3.5. Construction of the Square Fractal (using Cantor middle
3

1
set)

We start with a closed (filled) unit square. At the first stage it is decomposed into 9 smaller
squares in the 3-by-3 grid. The four squares at the corners are left, the other squares being

removed. Thus we remove 5 open square  of size .
3

1
At the second stage, we remove 5.4 open

squares of size .
9

1
At the third stage, we remove 24.5 open squares of size .

27

1
At the nth

stage, we remove 14.5 n open squares of size .
3

1
n

0S 1S (1st Iteration) 2S (2nd Iteration)

Figure 3.5 The first three stages of the square fractal

After ,n we are left with a self-similar set which is called the square fractal.

Arbitrary small neighborhoods intersect the square fractal at a finite set of points, so it has
topological dimension is 1.

The square fractal consists of n4 subsets with magnification factor .3n

Therefore, the fractal dimension of the square fractal is .262.1
3ln

4ln
D

3.3.6. Construction of the Square Fractal (using Cantor middle
5

1
set)

We start with a closed (filled) unit square. At the first stage the basic square is decomposed
into 25 smaller squares in the 5-by-5 grid. The nine squares are left, the other squares being

removed. Thus we remove 16 open square  of size .
5

1
At the second stage, we remove 9.16
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open squares of size .
25

1
At the third stage, we remove 29.16 open squares of size .

125

1
At

the nth stage, we remove 19.16 n open squares of size .
5

1
n

0A 1A (1st Iteration)

Figure 3.6 The first two stages of the square fractal

After ,n we are left with a self-similar set which is called the square fractal.

Arbitrary small neighborhoods intersect the square fractal at a finite set of points, so it has
topological dimension is 1.

The square fractal consists of n9 subsets with magnification factor .5n

Hnece the fractal dimension of the square fractal is .365.1
5ln

9ln
D

3.4. Fractal and Topological Dimensions of Three Dimensional Fractals
3.4.1. [15] Construction of the Menger Sponge
The Menger sponge is a fractal curve also known as the Menger universal curve. It is a
three-dimensional generalization of the Cantor set and Sierpinski carpet, though it is slightly
different from a Sierpinski sponge. It was first described by Karl Menger in 1926.
We start with a closed (filled) unit cube. Divide every face of the cube into 9 cubes, like a
Rubik’s cube (Magic cube). This will sub-divide the cube into 27 smaller cubes. We
remove the smaller cube in the middle of each face and remove the smaller cube in the

very center of larger cube; totally we remove 7 open cubes of size
3

1
and leaving 20

smaller cubes. This is a level-1 Menger sponge (resembling a Void cube). At the second

stage we remove 7.20 open cubes of size
9

1
and leaving 2)20( smaller cubes. This is a

level-2 Menger sponge.
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0M 1M (1st Iteration) 2M (2nd Iteration)

Figure 3.7 The first three stages of the Menger sponge

6. At the nth stage, we remove 1)20.(7 n open cubes of size .
3

1
n

The Menger sponge itself is the limit of this process after an infinite number of iterations.
Arbitrary small neighborhoods intersect the Menger sponge at a finite set of points, so it has
topological dimension 1.

The Menger sponge consists of n)20( subsets with magnification factor .3n

Therefore, the fractal dimension of the Menger sponge is .726.2
3ln

20ln
D

3.4.2. Construction of the Sierpinski Tetrahedron
We start with a closed (filled) tetrahedron with unit edge. Divide every face of the
tetrahedron into 3 triangles. This will sub-divide the tetrahedron into 8 smaller

tetrahedrons. At the first stage, we remove 4 open tetrahedrons of size .
2

1
At the second

stage, we remove 4.4 open tetrahedrons of size .
4

1
At the third stage, we remove 24.4

open tetrahedrons of size .
8

1
At the nth stage, we remove 14.4 n open cubes of size .

2

1
n

0T 1T (1st Iteration) 2T (2nd Iteration) 3T (4th Iteration)

Figure 3.8 The first four stages of the Sierpinski tetrahedron

After ,n we are left with a self-similar set which is called the Sierpinski tetrahedron.

Arbitrary small neighborhoods intersect the Sierpinski tetrahedron at a finite set of points, so it
has topological dimension 1.



Dhaka University Institutional Repository

Chapter Three 36

The Sierpinski tetrahedron consists of n4 subsets with magnification factor .2n

Hence the fractal dimension of the tetrahedron is .2
2ln

4ln
D

3.4.3. Construction of the Octahedron Fractal
We start with a closed (filled) octahedron with unit edge. Divide every face of the
Octahedron into 3 triangles. This will sub-divide the octahedron into 14 smaller

octahedrons. At the first stage, we remove 2 open octahedrons of edge size .
2

1
At the

second stage, we remove 6.2 open Octahedrons of edge size .
4

1
At the third stage, we

remove 26.2 open Octahedrons of edge size .
8

1
At the nth stage, we remove 16.2 n open

octahedrons of edge size .
2

1
n

0H 1H (1st Iteration)

Figure 3.9 The first two stages of the octahedron fractal

The octahedron fractal itself is the limit of this process after an infinite number of iterations.
Arbitrary small neighborhoods intersect the octahedron fractal at a finite set of points, so it has
topological dimension 1.

The octahedron fractal consists of n6 subsets with magnification factor .2n

Therefore, the fractal dimension of the octahedron fractal is

.5849.23ln1
2ln

6ln
D
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CHAPTER FOUR

FRACTALS IN MEASURE SPACE

OVERVIEW
In this chapter, we discuss basic measure theory. We show that the special type
generalized Cantor sets are Borel set as well as Borel measurable whose Lebesgue measures
are zero. Also we show that the Lebesgue measures of the two and three dimensional fractals
are zero.

4.1. Basic Measure Theory
4.1.1. [16] Outer Measure
Let A be a set of real numbers. Let }{ nI be a countable collections of open intervals that

cover ,A that is, ,nIA  and for each such collection consider the sum of the length of

the intervals in the collection. Then we define the outer measure .)(inf)( 

  n
IA

IlA
n



Example, the outer measure of any interval I on R with endpoints ba  is ab  and is

denoted as .)( abI 

Definition 4.1.2. [16] A set RE is said to be measurable if for each set RA we

have ).()()( EAEAA   

Definition 4.1.3. [18] The inner measure of any set ,EA denoted ),(A is defined as

),\()()( AEEA 
   where AE \ is the complement of A with respect to .E

Definition 4.1.4. [16] If A is a measurable set, we define the Lebesgue measure )(A to

be the outer measure of .A Thus  is the set function obtained by restricting the set

function  to the family of measurable sets.

4.1.4.1. [16] Some Properties of Lebesgue Measure
1. Let )( iA be a sequence of measurable sets. Then

.)()(  ii AA  

2. If the sets iA are pairwise disjoint, then

.)()(  ii AA  

3. Let be an infinite decreasing sequence of measurable sets, that is, a sequence with

nn AA 1 for each .n Let )( 1A be finite. Then

).(lim)(
1

n
n

i
i AA 








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Example 4.1.4.2. [8] Lebesgue Measure on R

If RA and ],[ ii baA  is a finite or countable union of disjoint intervals, then

,)()(   ii abA that is, the sum of the length of the intervals. We define the Lebesgue

measure )(1 A of an arbitrary set ,A

}.][);(inf{)(
1 1

1 









i i

iiii abAabA 

Example 4.1.4.3. [8] Lebesgue Measure on nR

If }:),,,{( 11 iii
n

n bxaxxxA  R is a coordinate parallelepiped in ,nR and then

n-dimensional volume of A is given by

).())(()(vol 2211
n

nn abababA  

If ,1n a coordinate parallelepiped is just an interval with vol1 as length, as in Example

4.1.4.2. If ,2n it is a rectangle with vol2 as area, and if ,3n it is a cuboid with vol3 as

the three-dimensional volume. Then we obtain n-dimensional Lebesgue measure )(An on
nR by defining

},:)(inf{)(
1 1










i i

ii
nn AAAvolA 

where the infimum is taken over all coverings of A by coordinate parallelepipeds .iA

Definition 4.1.5. [17] A collection  of subsets of a set X is called a  -algebra if 
satisfies the following axioms:

A1: X ,

A2: If A , then AX \ ,

A3: If 





1n

nAA and if nA  for ,,3,2,1 n then A .

Definition 4.1.6. [18] Let ],[ baX  be a closed set and let  be a collection of subsets of .X

A set function  on  (i.e. :  ],0[  ) is called a measure if the following properties hold:

1. Semi-Positive-Definite: abA  )(0  for all A 

2. Trivial Case: 0)( 

3. Monotonicity: )()( BA   for all BA, , BA
4. Countable Additivity: If ,,, 321 AAA are in , with  ji AA for ,ji  then

.)()(
11



















i
i

i
i AAA  

The pair ,(X ) is called a measurable space and the triple ,(X ,  ) a measure space.
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A measure  defined on a  -algebra  of subsets of a set X is called finite if )(X is a

finite real number (rather than ). The measure  is called  -finite if X is the countable

union of measurable sets with finite measure. A set in a measure space is said to have  -
finite measureble if it is a countable union of sets with finite measure.

Definition 4.1.7. [19] Let X be a non-empty set and  is a collection of subsets of .X
Then  is a topology on X iff it satisfies the following axioms:

1. The empty set and X itself belong to .
2. The union of any numbers of sets in  belongs to .
3. The intersection of any finite number of sets in  belongs to .

The members of  are then called  -open sets, or simply open sets and ),( X is called a

topological space.

Definition 4.1.8. [20] A Borel set is any set in topological space that can be formed from
open sets (or, equivalently, from closed sets) through the operations of countable union,
countable intersection and relative complement. Borel sets are named after Emile Borel.

Definition 4.1.9. [20] The Borel  -algebra of a set X is the smallest  -algebra of X that
contains all of the open balls in .X Any element of a Borel  -algebra is a Borel set.

4.2. [4] Lebesgue Measures of the Generalized Cantor Sets

Lemma 4.2.1. Let ]1,0[X be a closed set and  be a topology on .X Then ),( X be a

topological space. Let 
N

 
n

nmC )12/(1 be closed subsets in .X Then each

)2(,)12/(1  mC m is Borel set and measurable set.

Proof: Since every intersection of closed sets is again closed set, 
N


n

n is closed set.

By the definition of Borel set, )12/(1 mC is a Borel set.

Thus each )2(,)12/(1  mC m is a Borel set. Since every Borel set is a measurable set, then

each )2(,)12/(1  mC m is a measurable set.

Theorem 4.2.2. [4] Let ]1,0[X be a closed set, and let  be a algebra on X

containing ,n n in .N Then ),( X is a measurable space and each ,)12/(1 mC where

.2  m

Proof: We know ,)12/(1 
N

 
n

nmC ).2(  m

For each ,Nn .n This implies that .\ nX Axiom (2) for algebra.

Then .)\( 



Nn
nX Axiom (3) for algebra.
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This implies that .)\(\ 












Nn
nXX Axiom (2) for algebra.

Now using De Morgan’s laws, we have





NN n
n

n
n XX \)\( and .\\)\(\ 






















NNN n
n

n
n

n
n XXXX

Thus each ,)12/(1 mC where .2  m

Theorem 4.2.3. [4] Let ]1,0[X be a closed set and let ),( X be a topological space. Let

)(B be the associated Borel algebra. Let   N nn be closed subset in .X Then each

)2(,)12/(1  mC m is .measurable)( B

Proof: We know ,)12/(1 
N

 
n

nmC ).2(  m Since   N nn is a closed set in ,X )12/(1 mC

is a closed set in .X Then )12/(1\ mCX is open set.

By the definition of Borel algebra, ).(\ )12/(1 BCX m 

This implies that ).()\(\ )12/(1)12/(1 BCCXX mm   Axioms (2) for algebra.

Thus each )2(,)12/(1  mC m is .measurable)( B

Theorem 4.2.4. [4] If  is the Lebesgue measure and ,0)(lim)( )12/(1 
 n

n
mC  then

each ,)12/(1 mC )2(  m has Lebesgue measure zero.

Proof: We know ,)12/(1 
N

 
n

nmC where  m2 and
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Therefore, .0)( 12/1 mc

Hence each ,12/1 mC )2(  m has Lebesgue measure zero.

Alternative method:
Theorem 4.2.5. [4] The generalized Cantor sets ,)12/(1 mC )2(  m is measurable and

has Lebesgue measure zero.

Proof: We know ,)12/(1 
N

 
n

nmC ),2(  m

where ].1,
)12(

1)12(
[]

)12(

3
,
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2
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1
,0[
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nnnn m
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





 

By Lemma 4.1.1, each )12/(1 mC is Borel set and measurable.

From the construction of ,)12/(1 mC ),2(  m we remove 1).1(  nmm disjoint intervals

from each previous segments and each having length ,)12/(1 nm  where .1n

Thus we will remove a total length
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
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
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mmm
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Therefore, each )12/(1 mC is obtained by removing a total length 1 from the unit interval

].1,0[ Hence .1)\( )12/(1 mCI

Since ),\()()( )12/(1)12/(1   mm CICI  then

.011)\()()( )12/(1)12/(1   mm CIIC 

Thus each )2(,)12/(1  mC m has Lebesgue measure zero.

Hence each )2(,)12/(1  mC m is measurable and has Lebesgue measure zero.

Proposition 4.2.6. [4] Let )( n be an infinite decreasing sequence of each measurable sets

,)12/(1 mC that is, a sequence with nn  1 for each ,n let )( 1 be finite. Then

)(lim
1

n
n

i
i 















  for each ,)12/(1 mC where .2  m

Proof: Since )( n is an infinite decreasing sequence of each measurable set ,)12/(1 mC

,
1

)12/(1 



 

i
imC where .2  m Let .~ 1 iii Then 




 

1
)12/(11 ~

i
imC and the

sets i are pair wise disjoint.














 










1
1

11
)12/(11 )~()()~(

i
ii

i
i

i
imC   (4.1)

But we know ),~()()( )12/(11)12/(11   mm CC  since 1)12/(1 mC
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and ),~()()( 11   iiii  since .1 ii  
Since ,)()( 1   i we have

)()()~( )12/(11)12/(11   mm CC 

)()()~( 11   iiii 

From (4.1), we have

)(lim)(

))()((lim))()(()()(

1

1

1
1

1
1)12/(11

n
n

n

i
ii

n
i

iimC















 





Since ,)( 1  we have ).(lim)( )12/(1 n
n

mC 
 

Hence )(lim)( )12/(1 n
n

mC 
  for each ,)12/(1 mC where .2  m

Alternative method:
Proposition 4.2.7. [4] If ]1,0[X is a closed and  is a collection of subsets of ,X then

,(X ) is a measurable space. If i ,  )( 1 and ,1 ii   then

)(lim
1

n
n

i
i 















  for each ,)12/(1 mC where .2  m

Proof: Since ,
1

)12/(1 



 

i
imC then 




 

1
1)12/(11 ),~(

i
iimC and this is a disjoint union.

Hence 



 

1
1)12/(11 )~()()(

i
iimC  (4.2)

Since )~( 11   iiii is a disjoint union, we have ).()()~( 11   iiii 

Now from (4.2) we have
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i
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n
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)(lim)()( 1)12/(1 n
n

mC 
 

That is, ).(lim)( )12/(1 n
n

mC 
 

Hence )(lim)( )12/(1 n
n

mC 
  for each ,)12/(1 mC where .2  m
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4.3. Lebesgue Measures of the Two Dimensional Fractals
Lemma 4.3.1. Let ]1,0[]1,0[ X be a closed set and  be a topology on .X Then ),( X

be a topological space. Let 





0n

nAA be closed subsets in .X Then A is Borel set and

measurable set.

Proof: Since every intersection of closed sets is again closed set, 
Nn

nA is closed set. By

the definition of Borel set, 
Nn

nA is a Borel set. Thus A is a Borel set.

Since every Borel set is measurable, then A is a measurable set.

Theorem 4.3.2. The Sierpinski equilateral triangle is measurable and has Lebesgue
measure zero.

Proof: We know that the Sierpinski equilateral triangle is 





0

.
n

nAA

By Lemma 4.3.1, A is Borel set and measurable.

From the construction of Sierpinski equilateral triangle, we remove 13 n open triangles from

each previous triangles and each having size ,
2

1
n where .1n

We remove a total area
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
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
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

n

n

n

n
n

n

n

Therefore, the Sierpinski equilateral triangle is obtained by removing a total area
4

3

from the equilateral triangle whose area is .
4

3
0 A Hence

4

3
)\( 0 AA

Since ),\()()( 00 AAAA   then .0
4

3

4

3
)\()()( 00  AAAA 

Thus the Lebesgue measure of the Sierpinski equilateral triangle is zero.

Theorem 4.3.3. The Sierpinski isosceles right triangle is measurable and has Lebesgue
measure zero.

Proof: We know that the Sierpinski isosceles right triangle is 





0

.
n

nAA

By Lemma 4.3.1, A is Borel set and measurable.

From the construction of Sierpinski isosceles right triangle, we remove 13 n open triangles

from each previous triangles and each having size ,
2

1
n where .1n
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Then we remove a total area
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Therefore, the Sierpinski isosceles right triangle is obtained by removing a total area
2

1

from the isosceles right triangle whose area is .
2

1
0 A Thus .

2

1
)\( 0 AA

Since ),\()()( 00 AAAA   then .0
2

1

2

1
)\()()( 00  AAAA 

Hence the Lebesgue measure of the Sierpinski isosceles right triangle is zero.

Similarly, we can show that the Lebesgue measures of the Sierpinski isosceles triangle and
scalene triangle are zero.

Theorem 4.3.4. The box fractal is measurable and has Lebesgue measure zero.

Proof: We know that the box fractal is 





0

.
n

nBB Since every intersection of closed sets

is again closed set, 
Nn

nB is closed set. By the definition of Borel set, 
Nn

nB is a Borel set.

Thus B is a Borel set. Since every Borel set is measurable, then B is measurable.

From the construction of the Box fractal, we remove 15.4 n open squares from each previous

squares and each having size ,
3

1
n where .1n

Now we remove a total area
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n
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n

Therefore, the box fractal is obtained by removing a total area 1 from the unit box fractal.
Hence .1)\( 0 BB

Since ),\()()( 00 BBBB   then ,011)\()()( 00  BBBB 

This shows that the Lebesgue measure of the box fractal is zero.

Theorem 4.3.5. The Sierpinski carpet is measurable and has Lebesgue measure zero.

Proof: We know that the Sierpinski carpet is 





0

.
n

nCC Since every intersection of closed

sets is again closed set, 
Nn

nC is closed set. By the definition of Borel set, 
Nn

nC is a Borel

set. Thus C is a Borel set. Since every Borel set is measurable, then C is measurable.
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From the construction of the Sierpinski carpet, we remove 18 n open squares from each

previous squares and each having size ,
3

1
n where .1n

We remove a total area
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Therefore, the Sierpinski carpet is produced by removing a total area 1 from the original
carpet whose area is .10 C Hence .1)\( 0 CC

Since ),\()()( 00 CCCC   then .011)\()()( 00  CCCC 

Hence the Lebesgue measure of the Sierpinski carpet is zero.

Theorem 4.3.6. The square fractal is measurable and has Lebesgue measure zero.

Proof: We know that the square fractal is 





0

.
n

nSS Since every intersection of closed sets

is again closed set, 
Nn

nS is closed set. By the definition of Borel set, 
Nn

nS is a Borel set.

Thus S is a Borel set. Since every Borel set is measurable, S is measurable.

From the construction of the square fractal, we remove 19 n open squares from each previous

squares and each having size ,
5

1
n where .1n

We remove a total area
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Therefore, the square fractal is produced by removing a total area 1 from the original
carpet whose area is .10 S Hence .1)\( 0 SS

Since ),\()()( 00 SSSS   then .011)\()()( 00  SSSS 

Therefore, the Lebesgue measure of the square fractal is zero.

4.4. Lebesgue Measures of the Three Dimensional Fractals

Lemma 4.4.1. Let ]1,0[]1,0[]1,0[ X be a closed set and  be a topology on .X Then

),( X be a topological space. Let 





0n

nMM be closed subsets in .X Then M is Borel

set and measurable set.

Proof: Since every intersection of closed sets is again closed set, 
Nn

nM is closed set.

By the definition of Borel set, 
Nn

nM is a Borel set. Thus M is a Borel set.

Since every Borel set is measurable, M is a measurable set.
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Theorem 4.4.2. The Menger sponge is measurable and has Lebesgue measure zero.

Proof: We know that the Menger sponge is 





0

.
n

nMM

By Lemma 4.4.1, M is Borel set and measurable.

From the construction of the Menger sponge, we remove 1)20.(7 n open cubes from each

previous cube and each having edge length ,
3

1
n where .1n

Now we remove a total volume
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Therefore, the Menger sponge is obtained by removing a total volume 1 from the unit
cube. Hence 1)\( 0 MM

Since ),\()()( 00 MMMM   then .011)\()()( 00  MMMM 

This shows that the Lebesgue measure of the Menger sponge is zero.

Theorem 4.4.3.The Sierpinski tetrahedron is measurable and has Lebesgue measure zero.

Proof: We know that the Sierpinski tetrahedron is 





0

.
n

nTT

Since every intersection of closed sets is again closed set, 
Nn

nT is closed set.

By the definition of Borel set, T is a Borel set and hence T is a measurable set.

From the construction of the Sierpinski tetrahedron, we have edge length 1 and volume
26

1

that is .
26

1
)( 0 T We remove 14.4 n open tetrahedron from each previous tetrahedron and

each having edge size ,
2

1
n where .1n

Now we remove a total volume
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Therefore, the Sierpinski tetrahedron is obtained by removing a total volume
26

1
from

the original tetrahedron. Hence .
26

1
)\( 0 TT

Since ),\()()( 00 TTTT   then .0
26

1

26

1
)\()()( 00  TTTT 

We conclude that the Sierpinski tetrahedron has Lebesgue measure zero.
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Theorem 4.4.4.The octahedron fractal is measurable and has Lebesgue measure zero.

Proof: We know that the octahedron fractal is 





0

.
n

nOO

Since every intersection of closed sets is again closed set, 
Nn

nO is closed set.

By the definition of Borel set, 
N


n

nOO is a Borel set.

Since every Borel set is measurable, then 
N


n

nOO is a measurable set.

From the construction of the octahedron, we have edge length 1 and volume is
3

2
that is

.
3

2
)( 0 H We remove 16.2 n open octahedron from each previous octahedron and each

having edge size ,
2

1
n where .1n

We remove a total volume

.
3

2

4/31

1

12

2
)4/3(

12

2
)8/6(

8

1

3

22
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1

3

2
.6.2

01

1
3

1

1 














 
















n

n

n

n
n

n

n

Therefore, the octahedron is obtained by removing a total volume 1 from the original
octahedron. Hence 1)\( 0 HH

Since ),\()()( 00 HHHH   then .0
3

2

3

2
)\()()( 00  HHHH 

Hence the octahedron fractal has Lebesgue measure zero.
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CHAPTER FIVE

ITERATED FUNCTION SYSTEMS OF FRACTALS

OVERVIEW
In this chapter, we formulate Iterated Function Systems (IFS) of two dimensional square
fractals and three dimensional fractals such as the Menger sponge, the Sierpinski
tetrahedron and the octahedron fractal by affine transformation method and fixed points
method of R. L. Devaney [1]. We observe that different fractals are generated by different
iterated function system using Mathematica and MatLab programming. We show that
these functions are asymptotically stable and the fixed points are sink.

5.1. Iterated Function Systems of Fractals
Any fractal has some infinitely repeating pattern. When creating such fractal, we would
suspect that the easiest way is to repeat a certain series of steps which create that pattern.
Instead of the word “repeat” we use a mathematical synonym “iterate” and the process is
called iteration. Iterated Function System is another way of generating fractals. It is based
on taking a point or a figure and substituting it with several other identical ones. Iterated
function system represents an extremely versatile method for conveniently generating a
wide variety of useful fractal structures [5]. The Iterated Function System is base on the
application of a series of Affine Transformations. An Affine Transformation is a recursive
transformation of the type [21]






































f

e

y

x

dc

ba

y

x

n

n

n

n

1

1

or equivalently

),(),( 11 fdycxebyaxyx nnnnnn 

where edcba ,,,, and f are real numbers.

Thus an Affine Transformation is represented by six parameters such that cba ,, and

d control rotation and scaling, while e and f control linear translation.

Each Affine Transformation will generally yield a new attractor (or fractal) in the final
image. The form of the attractor is given through the choice of the coefficients a through f,
which uniquely determines the Affine Transformation. To get a desire shape, the collage
of several attractors may be used (i.e., several Affine Transformations). This method is
referred to as an Iterated Function System (IFS).

Now suppose we consider Nwww ,, 21 as a set of affine linear transformations, and let A

be the initial geometry. Then a new geometry, produced by applying the set of
transformations to the original geometry A and collecting the result from

)(),(),( 21 AwAwAw N can be represented by
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
N

i
i AwAF

1

)()(


 (5.1)

where F is known as the Barnsley-Hutchinson operator [21, 22]. Fractal geometry can be

obtained by repeated applying F to the previous geometry. For example, if the set 0A is

the initial geometry, then we will have

).(,),(),( 11201 ii AFAAFAAFA  

An iteration function system generates a sequence that converges to a final image .A

Alternative method to formulate iterated function system:
Let .10   Let Nppp ,,, 21  be points in the plane. Let ,)()( iii ppppw   where











y

x
p and for each .,,3,2,1 Ni  The collection of functions },,,{ 21 Nwww  is

called an iterated function system [1]. Iterated Function Systems are a method of
constructing fractals; the resulting constructions are always self-similar.

Definition 5.1.1. [23] (Contraction) A map ,: XXw  where ),( dX is a metric space, is

called a contraction if there exists 1L such that
),())(),(( yxdLywxwd  for all ., Xyx 

This condition is called Lipschtz condition, where 0L is called Lipschtz constant.
Contractions are thus Lipschtzian maps with a Lipschtz constant that is smaller than 1.

An iterated function system (IFS) is a finite collection },,,{ 21 Nwww  of contractions of a

metric space .X A subset XA is called an invariant set with respect to the IFS

}:{ Iiwi  if .)(
1

N

i
i AwA





If for every nonempty compact subset A of ,X the sequence ))(( AF n converges in the

Hausdorff distance to ,0A the set 0A is called an attractor (or fractal) corresponding to the

IFS }:{ Iiwi  [24].

Assume that I is finite and for every ,Ii the function iw is Lipschitzian with the

Lipschitz constant. If 1iL for ,Ii then the IFS is }:{ Iiwi  asymptotically stable (on

sets) [21, 25].

5.1.2. [26] Fundamental Theorem of IFS: Let },,,{ 21 mSSS  be an iterated function

system on ,nR and 10  ic such that

|||)()(| yxcySxS iii  for each ., nyx R
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Then there exists a unique non-empty set nF R such that .)(
1

m

i
i FSF





That is, F is an attractor of the iterated function systems.
Proof: The proof is omitted.

5.1.3. [26] Some Properties of an Iterated Function System

1. For any ,SA the sequence )(FS k converges to the attractor F in d. To see this,

),,())(),(())(),(()),(( 11 FAdcFSAScdFSASdFASd kkkkkk   

where 1max1   imi cc and so .0kc

2. We have the attractor ),()()( 32 ESESESF  that is,

 
m

k

m

j

m

i
ijk

m

j

m

i
ij

m

i
i FSSSFSSFSFSF

1 111

)))((())(()()(
   



In general, 



mii

iii
mii

iii

k

k

k

k
FSSSFSSSF




,,,1,,,1 1

21

1

21
)))(()))(((

3. Computing the attractor of an IFS:

(a) Use the property (1): Let A be any initial set. Plot )(AS k for a suitable .k

That is, .)))(()(
,,,1 1

21



mii

iii
k

k

k
ASSSAS



 Thus )(AS k gives an

approximation to .F

(b) Chaos game: Take any initial nx R and choose mappings from

},,,{ 21 mSSS  at random (with equal probability) . Plot the sequence given by

),(, 10  kik xSxxx
k

where
ki

S is the kth mapping chosen. Then the sequence

kx fills the attractor F.

Theorem 5.1.4. Let f be a (smooth) map on R and assume that p is a fixed point of f

1. If ,1|)(|  pf then p is a sink.

2. If ,1|)(|  pf then p is a source.

Proof: The proof of the theorem can be found in [27].

Definition 5.1.5. [27] Let ),,,( 21 mffff  be a map on ,nR and let .np R

The Jacobian matrix of f at ,p denoted )( pfD is the matrix

)( pfD =






























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


)()(

)()(

1

1

1

1

p
x

f
p

x

f

p
x

f
p

x

f

n

nn

n







of partial derivatives evaluated at .p
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Theorem 5.1.6. Let f be a map on ,nR and assume .)( ppf 
1. If the magnitude of each eigenvalue of )( pDf is less than ,1 then p is a sink.

2. If the magnitude of each eigenvalue of )( pDf is greater than ,1 then p is a source.

Proof: The proof of the theorem can be found in [27].

Definition 5.1.7. [27] Let f be a map on .nR Assume that .)( ppf  Then the fixed

point p is called hyperbolic if none of the eigenvalue of )( pDf has magnitude 1.

If p is hyperbolic and if at least one eigenvalue of )( pDf has magnitude greater than 1

and at least one eigenvalue has magnitude less than 1, then p is called a saddle.

5.2 Iterated Function Systems of the Generalized Cantor Sets

We may define the iterated function system of the generalized Cantor sets by choosing

different  values such as ,
12

1




m
 where .2  m

5.2.1. Iterated Function System of the Cantor middle
3

1
set

The Cantor middle
3

1
set may be obtained by the following iterated function system

3
)(1

x
xw 

3

2

3
)(2 

x
xw (5.2)

The contraction factor is ,
3

1
 and the fixed points are located at 0 and 1 along the x -axis.

The Barnsley-Hutchinson operator is .)()(
2

1




i

i AwAF

Then the attractor of IFS (5.2) is ,2,1,0],1,0[),( 01  nAAFA nn (5.3)

which is the well-know Cantor middle
3

1
set.

From (5.3) we obtain obviously,
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Thus the Cantor middle
3

1
set is the set 
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
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1 .
n

nAC
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Figure 5.1 Similar transform about Cantor middle
3

1
set 1w and 2w

From Figure 5.1 we can see that if we iterate every one step, the scale is one third of the
last image, so they from a self-similar structure [10].

5.2.2 Iterated Function System of the Cantor middle
5

1
set

The constructed Cantor middle
5

1
set may be obtained as the attractor of an iterated

function system by setting

5
)(1

x
xw 

5

2

5
)(2 

x
xw

5

4

5
)(3 

x
xw (5.4)

The contraction factor is ,
5

1
 and the fixed points are located at ,0

2

1
and 1 along the

x -axis. The Barnsley-Hutchinson operator is .)()(
3

1




i

i AwAF

Then the attractor of IFS (5.4) is ),(1 nn AFA  ,2,1,0],1,0[0  nA (5.5)

which is the well-know Cantor middle
5

1
set.

From (5.5) we obtain obviously
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4
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5

3
,

5

2
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5

1
,0[)()()()( 03020101  AwAwAwAFA
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Thus the Cantor middle
5
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Figure 5.2 Similar transform about Cantor middle
5

1
set ,1w 2w and 3w

From Figure 5.2 we can see that if we iterate every one step, the scale is one five of the
last image, so they from a self-similar structure.

5.2.3. Iterated Function System of the Cantor middle
7

1
set

The constructed Cantor middle
7

1
set may be derived as the attractor from the following

iterated function system

7
)(1

x
xw 

7

2

7
)(2 

x
xw

7

4

7
)(3 

x
xw

7

6

7
)(4 

x
xw (5.6)

The contraction factor here is ,
7

1
 and the fixed points are located at ,

3

1
,0

3

2
and 1

along the x -axis. The Barnsley-Hutchinson operator is .)()(
4

1




i

i AwAF
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Then the attractor of IFS (5.6) is ),(1 nn AFA  ,2,1,0],1,0[0  nA (5.7)

which is the well-know Cantor middle
7

1
set.

From (5.7) we obtain obviously
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Figure 5.3 Similar transform about Cantor middle
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1
set ,1w ,2w 3w and 4w

Figure 5.3 we can see that if we iterate every one step, the scale is one seven of the last
image, so they from a self-similar structure.
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5.2.4. Iterated Function System of the Cantor middle )2(,
12

1



m

m
set

The constructed Generalized Cantor middle )2(,
12

1



m

m
set may be obtained as the

attractor of an iterated function system by setting

12
)(1 


m

x
xw

12

2

12
)(2 





mm

x
xw

12

4

12
)(3 





mm

x
xw



).1,2(,
12
)1(2

12
)( mkm

m

k

m

x
xwk 







 (5.8)

The contraction factor is 2,
12

1



 m

m
 and the fixed points are located at

1

1




m

k
along

the -axis.  The Barnsley-Hutchinson operator is .)()(
1

m

k
k AwAF





Then the attractor of IFS (5.8) is ),(1 nn AFA  ,2,1,0],1,0[0  nA (5.9)

which is well-know the Cantor middle )2(,
12

1



m

m
set.

From (5.9) we obtain obviously
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From Figure 5.4 we can see that if we iterate every one step, the scale is one by
}2),12{(  mm of the last image, so they from a self-similar structure.

We may summarize the above iterated function system in the following statement:

Iterated Function System of the Generalized Cantor Sets: Let ].1,0[X Let ),( X be

a complete separable metric space. If XXwk : is a function which is defined by

)1,2(,
12
)1(2

12
)( mkm

m

k

m

x
xwk 









with contracting factor ,
12

1



m

Lk and the fixed points are located at
1
1




m

k
p along

the -axis, then the family },,2,1:{ mkwk  is called an iterated function system of the

generalized Cantor sets (IFSGCS for short).

Dynamics of the Generalized Cantor Sets:

Since 1
12

1





m
Lk for ,2  m ,,,2,1 mk  then iterated function system of the

generalized Cantor sets },,2,1:{ mkwk  is asymptotically stable.

Since 1
12

1
|)(| 




m
pwk for ,2  m ,,,2,1 mk  then the fixed points of these

functions are sink.
Thus IFS of the generalized Cantor sets is asymptotically stable and the fixed points are
sink.

5.3. Iterated Function Systems of the Two Dimensional Fractals

5.3.1. [28] Iterated Function System of the Koch Snowflake
The Koch snowflake may be obtained as the attractor of an iterated function system by
setting
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The contraction factor is
3

1
 and the fixed points of these functions are located at

),0,0( ),
2
1

,
2
3

( ),1,0( ),
2
1

,
2
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( ),
2
1

,
2
3

(  ),1,0(  and ).
2
1

,
2
3

( 

The Barnsley-Hutchinson operator is .)()(
7

1




i

i KwKF

Then the attractor of IFS (5.10) is ),(1 nn KFK  ,2,1,0n (5.11)

where 0K ),0,0{( ),
2
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,
2
3

( ),1,0( ),
2
1

,
2
3

( ),
2
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,
2
3

(  ),1,0(  )}
2
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,
2
3

( 

From (5.11) we obtain obviously
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

 KwKwKwKFK



 )()()())( 17121112 KwKwKwKFK 

We obtain a sequence

 210 KKK

Thus the Koch snowflake is 





0

.
n

nKK

0K 1K (1st Iteration)

2K (2nd Iteration) 3K (3rd Iteration)

Figure 5.5 The first four stages in the construction of the Koch snowflake as IFS
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Dynamics of the Koch Snowflake:

Since 1
3
1
kL for ,7,,2,1 k then iterated function system of the Koch snowflake

}7,,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the Koch snowflake at the fixed points is

,

3
1

0

0
3
1

),(
















yxDw

with eigenvalues equal to
3
1

and .
3
1

Thus the fixed points of these IFS ),0,0( ),
3

1
,

3

1
(

),
3

2
,0( ),

3

1
,

3

1
( ),

3

1
,

3

1
(  )

3

2
,0(  and )

3
1

,
3

1
(  are sink.

Therefore, IFS of the Koch snowflake is asymptotically stable and the fixed points are sink.

5.3.2. [29] Iterated Function System of the Koch curve
The Koch curve may be obtained by the following iterated function system

)
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1
,

3

1
()0

3

1
.0,0.0
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1
(),(1 yxyxyxyxw 
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1
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3
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1
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)
6

3

6
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6

3
,

2

1

6

3

6

1
(),(3  yxyxyxw

)
3

1
,

3

2

3

1
()0

3

1
.0,

3

2
.0

3

1
(),(4 yxyxyxyxw  (5.12)

The contraction factor is ,
3

1
 and the fixed points are located at

)0,1(),
5

3
,

25

18
(),

11

3
,

11

5
(),0,0( along the x -axis.

The Barnsley-Hutchinson operator is 
4

1

)()(



i

i AwAF

Then the attractor of IFS (5.12) is ),(1 nn AFA  ,2,1,0),0,0(0  nA (5.13)

which is the well-know Koch curve.
From (5.13) we obtain obviously

)0,
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6

3
,

2

1
()0,

3

1
()0,0(

)()()()()( 0403020101



 AwAwAwAwAFA
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
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

 AwAwAwAwAFA

We obtain a sequence

 210 AAA

Thus the Koch curve is 





0

.
n

nAA

Figure 5.6 The standard Koch curve as an iterated function system (IFS)

1st Iteration                         2nd Iteration 3rd Iteration

4th Iteration 5th Iteration
Figure 5.7 The first five stages of the standard Koch curve as an IFS

5.3.3. [29] Iterated Function System of the Sierpinski Gasket or Equilateral Triangle
The Sierpinski gasket or equilateral triangle consists of three self-similar pieces that may
be obtained by the following iterated function system

)
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1
,

2

1
(),(1 yxyxw 

)
2

1
,
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1
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1
(),(2 yxyxw 

)
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1
,

4

1

2

1
(),(3  yxyxw (5.14)
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The contraction factor is ,
2

1
 and the fixed points are ),0,0( )0,1( and ).

2

3
,

2

1
(

The Barnsley-Hutchinson operator is .)()(
3

1




i

i AwAF

Then the attractor of IFS (5.14) is

),(1 nn AFA  ,2,1,0)}
2

3
,

2

1
(),0,1(),0,0{(0  nA (5.15)

which is the Sierpinski gasket or equilateral triangle.
From (5.15) we obtain obviously
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 AwAwAwAFA

In general, nA is the union of 13 n vertices, each of size of equilateral triangle is .
3

1
n

We obtain a sequence

 210 AAA

Thus the Sierpinski gasket or equilateral triangle is 





0

.
n

nAA

0A 1A (1st Iteration)

2A (2nd Iteration) 3A (3rd Iteration)

Figure 5.8 The first four stages of the Sierpinski equilateral triangle as IFS
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Dynamics of the Sierpinski Equilateral Triangle:

Since 1
2
1
kL for ,3,2,1k then iterated function system of the Sierpinski equilateral

triangle }3,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the Sierpinski equilateral triangle at the fixed points is

,

2
1

0

0
2
1

),(
















yxDw

with eigenvalues equal to
2
1

and .
2
1

Thus the fixed points of these IFS ),0,0( )0,1( and

)
2
3

,
2
1

( are sink.

Therefore, IFS of the Sierpinski equilateral triangle is asymptotically stable and the fixed
points are sink.
Similarly, we can show that IFS of the following Sierpinski triangles is asymptotically
stable and the fixed points are sink.

5.3.4. Iterated Function System of the Sierpinski Isosceles Triangle
The Sierpinski isosceles triangle consists of three self-similar pieces that may be obtained
by the following iterated function system

)
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1
,

2

1
(),(1 yxyxw 

)
2
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1
(),(2 yxyxw 

)
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1
,

4

1

2

1
(),(3  yxyxw (5.16)

The contraction factor is ,
2

1
 and the fixed points are located at ),0,0( )0,1( and

).
2

1
,

2

1
( The Barnsley-Hutchinson operator is .)()(

3

1




i

i AwAF

Then the attractor of IFS (5.16) is

),(1 nn AFA  ,2,1,0)}
2

1
,

2

1
(),0,1(),0,0{(0  nA (5.17)

which is the Sierpinski isosceles triangle.
From (5.17) we obtain obviously

)
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1
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1
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 AwAwAwAFA

In general, nA is the union of 13 n vertices, each of size of isosceles triangle is .
3

1
n

We obtain a sequence

 210 AAA

Thus the Sierpinski isosceles triangle is 





0

.
n

nAA

0A 1A (1st Iteration)

2A (2nd Iteration) 3A (3rd Iteration)

Figure 5.9 The first four stages of the Sierpinski isosceles triangle as IFS

5.3.5. Iterated Function System of the Sierpinski Isosceles Right Triangle
The Sierpinski isosceles right triangle consists of three self-similar pieces that may be
obtained as the attractor of an iterated function system by setting
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The contraction factor is ,
2

1
 and the fixed points are ),0,0( )0,1( and ).1,0(

The Barnsley-Hutchinson operator is .)()(
3

1




i

i AwAF

Then the attractor of IFS (5.18) is

),(1 nn AFA  ,2,1,0)}1,0(),0,1(),0,0{(0  nA (5.19)

which is the Sierpinski isosceles right triangle.
From (5.19) we obtain obviously
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In general, nA is the union of 13 n vertices, each of size of isosceles right triangle .
3

1
n

We have a sequence

 210 AAA

Thus the Sierpinski gasket or right isosceles triangle is 





0

.
n

nAA

0A 1A (1st Iteration)

2A (2nd Iteration) 3A (3rd Iteration)

Figure 5.10 The first four stages of the Sierpinski right isosceles triangle as IFS
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5.3.6. Iterated Function System of the Sierpinski Scalene Triangle
The Sierpinski scalene triangle consists of three self-similar pieces that may be obtained as
the attractor of an iterated function system by setting
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The contraction factor is ,
2

1
 and the fixed points are ),0,0( )0,1( and ).

4

3
,

4

1
(

The Barnsley-Hutchinson operator is .)()(
3

1

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
i

i AwAF

Then the attractor of IFS (5.20) is

),(1 nn AFA  ,2,1,0)}1,0(),0,1(),0,0{(0  nA (5.21)

which is the Sierpinski scalene triangle.
From (5.21) we obtain obviously
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In general, nA is the union of 13 n vertices, each of size of scalene triangle is .
3

1
n

We obtain a sequence

 210 AAA

Thus the Sierpinski scalene triangle is 





0

.
n

nAA

0A 1A (1st Iteration)
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2A (2nd Iteration) 3A (3rd Iteration)

Figure 5.11 The first four stages of the Sierpinski scalene triangle as IFS

5.3.7. [30] Iterated Function System of the Sierpinski Carpet
The Sierpinski carpet consists of eight self-similar pieces that may be obtained as the
attractor of an iterated function system by setting
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The contraction factor ,
3

1
 and the fixed points are located at ),0,0(
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1
( ),0,1( ),

2

1
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1
,1( ),1,0( ),1,
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1
( and ).1,1(

The Barnsley-Hutchinson operator is .)()(
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1

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
i

i CwCF Then the attractor of IFS (5.22) is

),(1 nn CFC  where )},1,1(),1,0(),0,1(),0,0{(0 C ,2,1,0n (5.23)

From (5.23) we obtain obviously
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In general, nC is the union of 14 n vertices, each of size of Sierpinski carpet is .
3

1
n

We obtain a sequence
210 CCC 
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We conclude that the Sierpinski carpet is 





0

.
n

nCC

0C 1C (1st Iteration) 2C (2nd Iteration)

Figure 5.12 The first three stages of the Sierpinski carpet as IFS

Dynamics of the Sierpinski Carpet:

Since 1
3
1
kL for ,8,,2,1 k then iterated function system of the Sierpinski carpet

}8,,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the Sierpinski carpet at the fixed points is

,
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with eigenvalues equal to
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and .
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Thus the fixed points of these IFS ),0,0(
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1
( ),0,1( ),
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1
,0( ),

2

1
,1( ),1,0( ),1,

2

1
( and )1,1( are sink.

Therefore, IFS of the Sierpinski carpet is asymptotically stable and the fixed points are sink.

5.3.8. [13] Iterated Function System of the Box Fractal
The box fractal consists of five self-similar pieces that may be obtained as the attractor of
an iterated function system by setting
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The contraction factor is ,
3

1
 and the fixed points are located at ),0,0( ),0,1( ),1,0(
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1
( and ).1,1( The Barnsley-Hutchinson operator is .)()(

3

1




i

i BwBF

Then the attractor of IFS (5.24) is ),(1 nn BFB  ,2,1,0n (5.25)

where )},1,1(),1,0(),0,1(),0,0{(0 B which is the box fractal.

From (5.25) we obtain obviously
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In general, nB is the union of 14 n vertices, each of size of the box fractal is .
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1
n

We have a sequence
 210 BBB

Thus the box fractal is 
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


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.
n

nBB

0B 1B (1st Iteration)

2B (2nd Iteration) 3B (3rd Iteration)

Figure 5.13 The first four stages in the construction of the box fractal as IFS
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Dynamics of the Box Fractal:

Since 1
3
1
kL for ,5,,2,1 k then iterated function system of the box fractal

}5,,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the box fractal at the fixed points is
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with eigenvalues equal to
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Thus the fixed points of these IFS ),0,0( ),0,1( ),1,0( ),
2

1
,
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1
( and )1,1( are sink.

Therefore, IFS of the box fractal is asymptotically stable and the fixed points are sink.

5.3.9 Iterated Function System of the Square Fractal (using the Cantor middle
3

1
set)

The constructed square fractal (using the Cantor middle
3

1
set) consists of four self-similar

pieces that may be obtained as the attractor of an iterated function system by setting
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The contraction factor is ,
3

1
 and the fixed points are located at ),0,0( ),0,1( )1,0(

and ).1,1( The Barnsley-Hutchinson operator is .)()(
4

1




i

i SwSF

Then the attractor of IFS (5.26) is
),(1 nn SFS  ,,2,1,0 n where ),0,0{(0 S ),0,1( ),1,0( )},1,1( (5.27)

From (5.27) we have obviously
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In general, nS is the union of 14 n vertices, each of size of the square fractal is .
3

1
n

We get a sequence
210 SSS 

Hence the square fractal is 





0

.
n

nSS

0S 1S (1st Iteration) 2S (2nd Iteration)

Figure 5.14 The first three stages in the construction of the square fractal as IFS

Dynamics of the Square Fractal:

Since 1
3
1
kL for ,4,3,2,1k then iterated function system of the square fractal

},4,3,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the box fractal at the fixed points is

,
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with eigenvalues equal to
3
1

and .
3
1

Thus the fixed points of these IFS ),0,0( ),0,1( )1,0( and )1,1( are sink.

Therefore, IFS of the square fractal is asymptotically stable and the fixed points are sink.

5.3.10. Iterated Function System of the Square Fractal (using the Cantor middle
5

1
set)

The constructed square fractal (using the Cantor middle
5

1
set) consists of nine self-similar

pieces that may be derived as the attractor from the following iterated function system
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The contraction factor is ,
5

1
 and the fixed points are located at ),0,0( ),0,2/1(

),0,1( ),2/1,1(),2/1,2/1(),2/1,0( ),1,0( )1,2/1( and ).1,1(

The Barnsley-Hutchinson operator is .)()(
9

1




i

i SwSF

Then the attractor of IFS (5.28) is ),(1 nn SFS  ,2,1,0n (5.29)

where ),0,0{(0 S ),0,2/1( ),0,1( ),2/1,0( ),2/1,2/1( ),2/1,1( ),1,0( ),1,2/1( )},1,1(

From (5.29) we obtain obviously
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In general, nS is the union of 14 n vertices, each of size of the square fractal is .
5

1
n

We have a sequence
210 SSS 

Therefore, the square fractal (using the Cantor middle
5

1
set) is 






0

.
n

nSS

0S 1S (1st Iteration)

Figure 5.15 The first two stages of the square fractal (using the Cantor middle
5

1
set) as IFS

Dynamics of the Square Fractal (using the Cantor middle
5

1
set):

Since 1
5
1
kL for ,9,,2,1 k then iterated function system of the square fractal

},9,,2,1:{ kwk is asymptotically stable.
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The Jacobian matrix of IFS of the square fractal at the fixed points is

,

5
1

0

0
5
1

),(
















yxDw

with eigenvalues equal to
5
1

and .
5
1

Thus the fixed points of these IFS ),0,0( ),0,2/1( ),0,1( ),2/1,2/1(),2/1,0( ),2/1,1(

),1,0( )1,2/1( and )1,1( are sink.

Therefore, IFS of the square fractal is asymptotically stable and the fixed points are sink.

5.4. Iterated Function Systems of the Three Dimensional Fractals

5.4.1. Iterated Function System of the Menger Sponge
The Menger sponge consists of twenty self-similar pieces that may be derived as the
attractor from the following iterated function system
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The contraction factor is ,
3

1
 and the fixed points are located at
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The Barnsley-Hutchinson operator is .)()(
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Then the attractor of IFS (5.30) is ),(1 nn MFM  ,2,1,0n (5.31)
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In general, nM is the union of 1)20.(8 n vertices, each of size of the Menger sponge is .
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We obtain a sequence
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0M 1M (1st Iteration) 2M (2nd Iteration)

Figure 6.16 The first three stages in the construction of the Menger sponge as IFS

Dynamics of the Menger Sponge:

Since 1
3
1
kL for ,20,,2,1 k then iterated function system of the square fractal

}20,,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the Menger sponge at the fixed points is
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Therefore, IFS of the Menger sponge is asymptotically stable and the fixed points are sink.

6.4.2. Iterated Function System of the Sierpinski Tetrahedron
The Sierpinski tetrahedron consists of four self-similar pieces that may be obtained as the
attractor of an iterated function system by setting
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The contraction factor is ,
2

1
 and the fixed points are located at ),3,0,0(

),3/1,3/22,0(  )3/1,3/2,2(  and ).3/1,3/2,2( 

The Barnsley-Hutchinson operator is .)()(
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Then the attractor of IFS (5.32) is ),(1 nn TFT  where ,,2,1,0 n (5.33)
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which is the Sierpinski tetrahedron.
From (5.33) we obtain obviously
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In general, nT is the union of 14.4 n vertices, each of size of the Tetrahedron is .
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We obtain a sequence
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0T 1T (1st Iteration)

2T (2nd Iteration) 3T (4th Iteration)

Figure 5.17 The first four stages in the construction of the Sierpinski tetrahedron as IFS

Dynamics of the Sierpinski Tetrahedron:

Since 1
2
1
kL for ,4,3,2,1k then iterated function system of the square fractal

},4,3,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the Sierpinski tetrahedron at the fixed points is

,

2
1

00

0
2
1

0

00
2
1

),(























yxDw

with eigenvalues equal to
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Thus the fixed points of these IFS ),3,0,0(

),3/1,3/22,0(  )3/1,3/2,2(  and )3/1,3/2,2(  are sink.

Hence IFS of the Sierpinski tetrahedron is asymptotically stable and the fixed points are sink.
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5.4.3. Iterated Function System of the Octahedron Fractal
The constructed octahedron fractal consists of six self-similar pieces that may be derived
as the attractor form the following iterated function system
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The contraction factor is ,
2

1
 and the fixed points are located at ),2,0,0(

),0,0,2( ),0,2,0( ),2,0,0(  )0,0,2( and ).0,2,0( 
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The Barnsley-Hutchinson operator is .)()(
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Then the attractor of IFS (5.34) is ),(1 nn OFO  where ,,2,1,0 n (5.35)

and ),2,0,0{(0 O ),0,0,2( ),0,2,0( ),2,0,0(  ),0,0,2( )},0,2,0( 

which is the octahedron fractal. From (5.35) we obtain obviously

).
3

1
,

6

1
,

2

1
()

3

1
,

6

1
,

2

1
()

3

1
,3/2,0()3,0,0(

)()(
6

1
001









i

i OwOFO

 ,)()(
6

1
112




i

i OwOFO

In general, nO is the union of 16.6 n vertices, each of size of the octahedron fractal is .
2

1
n

We obtain a sequence  210 OOO

Therefore, the octahedron fractal is 





0

.
n

nOO

0O 1O (1st Iteration)

Figure 5.18 The first two stages in the construction of the octahedron fractal as IFS

Dynamics of the Octahedron fractal:

Since 1
2
1
kL for ,6,,2,1 k then iterated function system of the octahedron fractal

},6,,2,1:{ kwk is asymptotically stable.

The Jacobian matrix of IFS of the octahedron fractal at the fixed points is

,

2
1

00

0
2
1

0

00
2
1

),(























yxDw

with eigenvalues equal to
2
1

,
2
1

and .
2
1
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Thus the fixed points of these IFS ),2,0,0( ),0,0,2( ),0,2,0( ),2,0,0(  )0,0,2(

and )0,2,0(  are sink.

Therefore, IFS of the octahedron fractal is asymptotically stable and the fixed points are sink.
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CHAPTER SIX

MARKOV OPERATORS

OVERVIEW

In this chapter, we discuss the properties of Markov operators on )(1 XL space and Borel

measure. We observe that Markov operator is non-expansive and asymptotically stable.
Also we show the sweeping properties of Markov operator associated to iterated function
system of the generalized Cantor sets.

6.1. Markov Operators
Markov operators which occur in diverse branches of pure and applied Mathematics [31].
Processes described by these operators arise in mathematical theory of learning [32, 33,
34], population dynamics [35], theory of stochastic differential equations [36, 37] and
many others. Recently such processes have been extensively studied because of the close
connection to fractals and their generalization, semifractals [38, 39, 40, 41]. These

operators are also used in computer graphics. If 1)( nnZ is a homogeneous Markov chain

taking values in some metric space X and  is its transition kernel, i.e.,

prob ),(},,|{ 001 AxxZxZAZ nnnn  

for Nn and all Borel sets ,A the corresponding Markov operator is given by

).(),()( dxAxAP
X

 

6.1.1. [42] Markov Operators on )(1 XL

Let the triple ),,( X be a  -finite measure space, that is,  is a  -algebra of subsets

of a set X and  is a  -finite positive measure defined on . Let ),,(11  XLL be

the Banach space of all  -integrable real functions defined on X with the 1L -norm

 ,|||||| dff and let ),,(   XLL be the Banach space of all bounded almost

everywhere real  -measurable functions on X with the L -norm .||sup|||| gessg  It

is well known that L is the dual space of .1L A linear operator 11: LLP  is called a
Markov operator if Pf is nonnegative with the same integral for any nonnegative

function .1Lf  Denote }.1||||,0:{ 1  ffLfD Then the Markov operator P can be

characterized as a linear operator P such that .)( DDP 

Each Df  is referred to as a density function (with respect to the chosen measure  ),

and is also the density (the Radon-Nikodyn derivative) of the probability measure


A

f dff ,)(  for each A
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with respect to . The measure f is said to be absolutely continuous with respect .

Thus a Markov operator is a linear operator that maps densities to densities.
Some basic properties of Markov operators P are as follows [37A]:

(i) ||,|||||| fPf  .1Lf 

(ii) |,||| ffP  ,1Lf  that is, |,)(||)(| xfxfP  for  -almost all .x

(iii) If ,fPf  then   fPf and .  fPf Here }0),(max{)( xfxf  and

}.0),(max{)( xfxf 

Definition 6.1.1.1 [43] A family 0)}({ ttP of Markov operators which satisfies conditions

(a) )0(P Id

(b) )()()( tPsPtsP  for 0, ts

(c) for each 1Lf  the function ftPt )( is continuous

is called a Markov semi-group.

Markov operators: Types of Markov operators such as Frobenius-Perron operator,
Iterated Function System and Integral operator.

1. Frobenius-Perron operator: This operator describes statistical properties of simple
point to point transformations [44]. Let XXS : be a non-singular transformation, that

is, S is a measurable and 0))(( 1  AS for all A such that .0)( A For a given
1Lf  define





)(1

,)(
AS

f dff  .A

Since S is a non-singular, 0)( A implies that then .0)( Af Thus the Radon-

Nikodym Theorem implies that there exists a unique ,ˆ 1Lf  denoted as ,Pf such that





)(1

,ˆ)(
AS

f dff  .A

Define .ˆ Pff  Then the operator 11: LLPP S  defined by





)(1 ASA

dfdPf  for all A

is called the Frobeniou-Perron operator is also a Markov operator [42].

2. Markov Operator for Iterated function systems: [43] Let NSSS ,,, 21  be non-singular

transformations of the space ].1,0[X Let NPPP ,,, 21  be the Frobenious-Perron

operators corresponding to the transformations .,,, 21 NSSS  Let Nppp ,,, 21  be non-

negative measurable functions defined on such that 1)(
1




N

i
i xp for all .Xx



Dhaka University Institutional Repository

Chapter Six 83

We consider the following process. Take a point .x We choose a transformation iS with

probability )(xpi and )(xSi describes the position of x after the action of the system. The

evolution of densities of the distribution is described by the Markov operator

.)(
1




N

i
ii fpPPf

That is,

,))(()())(()(
1

1
1

1









N

i
i

i
i

N

i
ii xSfx

d

Sd
pxfpPxPf


 

where .),(1 XxxLf  (6.1)

3. Integral operator: [43] If ),0[:  XXk is a measurable function such that

1)(),( 
X

dxyxk  for each ,Xy

then


X

dyyfyxkxPf )()(),()( 

is a Markov operator.

6.1.1.2. [45] Sweeping Property of Markov Operators
Let a family M be given. A Markov operator P is called  -sweeping )0(  with

respect to M if

 
 A

n

n

dfP  1suplim for MA and .Df 

A 1-sweeping operator is shortly called sweeping, and inequality (6.1) may be replaced by

 
 A

n

n

dfP 0lim  for MA and .Df 

A Markov operator P is called Cesaro-sweeping with respect to M if







1

0

0
1

lim
n

k A

n

n

dfP
n

 for MA and .Df 

6.1.2. [46] Markov Operators on Measures
Let ),( X be a separable complete metric space. We assume that every closed ball in X

}),(:{),( ryxXyxrB  

is a compact set. We denote by )(XB the  -algebra of Borel subsets of .X By )(XbB

we denote the families of all bounded Borel subsets of .X By  we denote the family of
Borel measures (nonnegative,  -additive) on X such that )(B for every ball .B By

fin and 1 we denote the subsets of  such that )(X for  fin and 1)( X

for  1. The elements of 1 will be distributions. Further by )(XC we denote the

space of bounded continuous functions RXF : with the supremum norm. As usual we

denote by )(0 XC the subspace )(XC of which contains functions with compact supports.

The indicator function of a set XA will be a denoted by .1A
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A linear functional R0:C is called positive if 0)( f for .0f According to the

Riesz theorem for every linear positive functional R0:C there is a unique measure

  such that

   ,:)( fdff
X

for .0Cf 

An operator :P fin  fin will be called a Markov operator if it satisfies the following two
conditions.

(i) Positive linearity: 22112211 )(  PPP  for  2121 ,;0,  fin

(ii) Preservation of the norm: )()( XXP   for  fin.

A Markov operator P is called a Feller operator if there is a linear operator

)()(: 0 XCXCU  (dual to P ) such that

  PfUf ,, for ,0Cf   fin. (6.2)

Observe that the range of the operator U is contained in )(XC but not necessarily in

).(0 XC We may extend U to all bounded measurable (or nonnegative measurable) function

by setting

 xx PfUfxUf  ,,)( (6.3)

where x 1 is a point (Dirac) measure supported at .x For 0f the function Uf is

nonnegative but may be unbounded or even admit infinite values for unbounded .f

Every Markov operator P can be easily extended to the space of signed measures

sig  2121 ,:{  fin}.

We say that  fin is concentrated on )(XA B if .0)\( AX By   A
1 we

denote the set of all distributions concentrated on ).(XA B

Namely for every  sig we define

21  PPP  where  2121 ,:  fin.

It is easy to verify that this definition of P does not depend on the choice of ., 21 

In the spacesig we define the Fortet –Mourier norm

|||| },:|,{|sup Fff
F

  (6.4)

where 
X

dxxff )()(,  and )}({ XCfF  is the set of all f such that 1|||| cf

and ),(|)()(| yxyfxf  for ., Xyx  It is easy to verify that the value (6.4) will not

change if F is replaced by .00 CFF  For  fin, we have ).(|||| X  The space

1 with the distance |||| 21   is a complete metric space and the convergence

0||||lim 


n
n

for  ,n 1

is equivalent to the condition
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


 ,,lim ff n
n

(6.5)

for all ),(XCf  or equivalently for all ).(0 XCf 

A family 0}{ t
tP of Markov operators is called a semi-group if stst PPP  for all

Rst, and 0P is the identity operator onfin.

6.1.2.1. [31] Properties of Markov Operators
A Markov operator P is called non-expansive if

|||||||| 2121   PP for 21,  1. (6.6)

Let P be a Markov operator. A measure  fin is called stationary or invariant if

, P and A Markov operator P is called asymptotically stable if there exists a

stationary distribution  such that

0||||lim  
n

n
P for  1. (6.7)

Clearly the distribution  satisfying (6.7) is unique.

Let 0}{ t
tP be a Marko semigroup. The Markov semigroup 0}{ t

tP is called non-

expansive if every Markov operator 0, tP t is non-expansive. A measure  fin is

called stationary or invariant for the Markov semigroup 0}{ t
tP if  tP for all .0t

The Markov semigroup 0}{ t
tP is called asymptotically stable if there exists a stationary

distribution  such that

0||||lim  
t

n
P for  1. (6.8)

An Operator P is called globally concentrating if for every 0 and every )(XA bB

there exist )(XB bB and N0n such that

  1)(BPn for ,0nn    A
1 . (6.9)

An Operator P is called locally concentrating if for every 0 there is 0 such that

for every )(XA bB there exist )(XC bB with diam C and N0n satisfying

 )(0 CPn for   A
1 . (6.10)

An Operator P is called concentrating if for every 0 there exist )(XC bB with

diam C and 0 such that

 


)(inflim CPn

n
for  1. (6.11)

6.2. Existence of Stationary Distributions
The proof of existence of a stationary density usually goes as follows: Let X be a
compact space. We construct an invariant operator U on )(XC and then using the Riesz

representation theorem we define an invariant measure. In our case the proof is more
difficult, since a positive functional may not correspond to a measure. Thus we start with
the following.
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Lemma 6.2.1. [46] Let P be a Feller operator. Assume that there exists a linear positive

functional R)(: XC such that XX 1)1(  and

)())(( hhU   for )(0 XCh (6.11)

where U is dual to .P Further let   be the unique (Riesz theorem) measure

satisfying   ,)( hh for ).(0 XCh Then   and .  P

Proof: From the inequality

   ,)( hh for 10  h

immediately follows that .1)( X Thus   and we may define a new functional 

on )(XC setting

1)1()(,   Xhh  for ).(XCh

We claim the )()( hh   for .0h In fact let ),(XCh 0h be fixed. Using the

Tietze extionsion theorem we may construct an increasing sequence of nonnegative

functions 0Ch such that )()( xhxhn  for .Xx Since  is positive we have

)()()( hhh nn   or ).(, hhn   

By the Lebesgue monotone convergence theorem this yields )(, hh    and

completes the proof of the claim. Now according to (6.11) we have

)()())(())(( hhhUhU    for ,0Ch 0h

which in turn implies

   ,)())((,, hhhUUhPh

Consequently, .  P

Since P preserves the measure the last inequality is equivalent to . P

This completes the proof.

6.3. A Criterion of Asymptotic Stability

Lemma 6.3.1. [46] A non-expansive Markov operator is a Feller operator.
Proof: We know

 xx PfUfxUf  ,,)( for ,0Cf 

where x 1 is a point (Dirac) measure supported at .x

Now

.sup,)( fPfxUf x  

Clearly, Uf is bounded.

Further if 0Cf  is Lipschitzean with Lipschitz constant kf then

).,(,)()( yxeePPePPfyUfxUf fyxfyxfyx  

where ).sup,max( fke ff  Thus for Lipschitzean the function is continuous. For an

arbitrary 0Cf  we choose a sequence of Lipschitzean functions 0Cfn  which
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converges uniformly to .f (Using the Stone Weierstrass theorem it is easy to verify that

the Lipschitzean functions are dense in 0C ). From the inequality

ffPffxUfxUf nxnn  sup,)()( 

it follows that Uf is continuous as the uniform limit of the sequence of continuous

function .nUf Thus we have verified that ).(XCUf  According to the definition of U

we have
  PfUf ,,

for 0Cf  and .x  Since linear combinations of point measures are dense in fin

(with the Fortet Mourier norm ). The above equation holds for every  fin.

This completes the proof.

Theorem 6.3.2. [46] Let P be a non-expansive Markov operator. Assume that for every
0 there is a Borel set A with diam ,A a real number 0 and an integer n such

that

 


)(inflim APn

n
for  1. (6.12)

Then P is asymptotically stable.
Proof: Since a non-expansive Markov operator is a Feller operator, P is a Feller operator.

Then P has an invariant distribution . To complete the proof of asymptotic stability it

remains to verify condition




 ,,lim ff n
n

for all ).(XCf 

When an invariant distribution exists the above condition is equivalent to a more
symmetric relation

0||)(||lim 21 


n

n
P for 11,  1. (6.13)

Let 21,  1 and .0 Choose XA and 10,  according to (6.12) and fix a

number ).,0(   We will define by an induction argument a sequences of integers )( kn

and four sequences of distributions .2,1,,2,1,0),(),(  ikk
i

k
i  If 0k we define

00 n and .00
iii   If 1k is fixed and 11

1 ,, 


k
i

k
ikn  are given we choose

according (6.12) a number kn such that

  )(1 AP k
i

nk for .2,1i

and we define

)(

)(
)(

1

1

AP

ABP
B

k
i

nk

k
i

nk
k
i 

 







)}.()({
1

1
)( 11 BBPB k

i
k
i

nkk
i

 


 


 (6.14)

Since ,)(1   AP k
i

nk we have
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).()()()()( 111 BBAPABPBP k
i

k
i

k
i

nkk
i

nkk
i

nk   

Observe that 0)\( AXk
i and consequently

||sup|||| 2121
k

X

k

XFf

kk dfdf   


.||sup 21   


Adiamdfdf k

A

k

AFf

(6.15)

Using equation (6.14) it is easy to verify by an induction argument that

.1,)1()1()1( 121 111   kPPP k
i

kk
i

k
i

nn
i

nn
i

nn kkk  

Since P is non-expansive this implies

||||)1(||||||)(|| 2
2

2
1

1
2

1
121

1   knnP 

.||||)1(||||)1( 2121
1 kkkkkk   

From this, condition (6.15) and the obvious inequality 2|||| 21  kk  it follows
knn kP )1(2||)(|| 21

1  

Again, using the non-expansiveness of nP we obtain
nnP )1(2||)(|| 21   for .1 knnn  

Since 0 and 0k are arbitrary, this implies (6.13).
This completes the proof.

6.4. Sweeping Properties Associated to Iterated Function System of the Generalized
Cantor Sets (IFSGCS)

6.4.1. By equation (6.1) we may define the operator P associated to IFS of the Cantor

middle
3

1
set as follows:

13/2for

3/23/1for

3/10for

),23(
2

3
,0

),3(
2

3

)(


















x

x

x

xf

xf

xPf

It is easy to verify that

nn
n xxfP   1for0)( and ,

2

1

2

3
)(

0
1

2

0
nn

n
n dxxdxxfP

nn

  



.3where,
2

1

2

33

2

3
)( n

0
1

2

1

21

1

n
nn

nn

n

n
n dxxdxxfP

n

n
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




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



.0)
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1

2

1
(lim)(lim   

X
nnn

n

n
dxxfP

Thus P is sweeping as an operator on )1,0(1L and n2

1
-sweeping on ).1,0[1L

However, P is neither sweeping nor Cesaro-sweeping on ).1,0[1L
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6.4.2. By equation (6.1), we may define the operator P associated to IFS of the Cantor

middle
5

1
set as follows:






























15/4for),45(
3

5

5/45/3for,0

5/35/2for),25(
3

5

5/25/1for,0

5/10for),5(
3

5

)(

xxf

x

xxf

x

xxf

xPf

It is easy to verify that, nnnn
n xxxfP   121,31for0)(

and

,
3

1

3

5.2
)(

0
1

2

0
nn

n
n dxxdxxfP

nn

  



,
3

1

3

)55(

3

5.2
)(

21

31

2221

31
nn

nn

n

n
n dxxdxxfP

n

n

n

n








 
 

















.5where,
3

1

3

)55(*2

3
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)( n

1

1

221

1

n
nn
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n

n
n dxxdxxfP

nn












 
  



.0
3

1

3

1

3

1
lim)(lim 






   

X
nnnn

n

n
dxxfP

Thus P is sweeping as an operator on )1,0(1L and n3

1
-sweeping on ).1,0[1L

However, P is neither sweeping nor Cesaro-sweeping on ).1,0[1L

6.4.3. By equation (6.1), we may define the operator P associated to IFS of the Cantor

middle )2(,
12

1



m

m
set as follows:
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


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








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


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


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)12/(3)12/(2for),2)12((
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)12/(10for),)12((
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m

m

mxm

mxmxmf
m

m

mxm

mxmxmf
m

m

mxm

mxxmf
m

m

xPf



It is easy to verify that

nnnn

nn
n

xmxm

mxxfP







121,,)4)12((1)3)12((1

,)2)12((1for0)(


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n
m

m

nn m
m

xfPxfPdxxfP
n

n

n

n









  n

1

1

)3)12((1

)2)12((10

where,
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)()()( 










.0
111

lim)(lim 





   

X
nnnn

n

n mmm
dxxfP 

Thus P is sweeping as an operator on )1,0(1L and
nm

1
-sweeping on ).1,0[1L

However, P is neither sweeping nor Cesaro-sweeping on ).1,0[1L
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CHAPTER SEVEN

HAUSDORFF MEASURES OF FRACTALS

OVERVIEW
In this chapter, we discuss basic measure theory, Hausdorff measure and Hausdorff
dimension. We show the Hausdorff measures and dimensions of the invariant set for
iterated function system of the Generalized Cantor sets and also we show the Hausdorff
measures and dimensions of the invariant set for iterated function system of the two and
three dimensional fractals.

7.1. [47] Basic Measure Theory on Euclidean Space
We say  is a measure on elements in the  -algebra of subsets of X if satisfies the

following three properties:
(1) 0)(  ;

(2) )()( BA   if BA and BA, -algebra;

(3) If ,, 21 AA is a countable sequence of sets, then



















11

)(
i

i
i

i AA  

and



















11

)(
i

i
i

i AA  

if iA are disjoint Borel sets.

Furthermore, we say  is a probability measure if .1)( X For the purpose of this

chapter, we will always consider .nX R

7.2. [47] Hausdorff Measure and Hausdorff Dimension

7.2.1. Hausdorff Measure

If U is any non-empty subset of n-dimensional Euclidean space ,nR the diameter of U is

defined as }.,|:sup{||:| UyxyxU  Here we will use the Euclidean metric:

.))()()((|:| 2/122
22

2
11 nn yxyxyxyx   However, as will be shown shortly,

we may use any pL metric. If ,nE R and a collection IiiU }{ satisfies the following

conditions:

(1) || iU for each ;Ii

(2) , Ii iUE




then we say the collection is a  -cover of .E We may assume the collection is always
countable.
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Definition 7.2.1.1. [26] Let nE R be a borel set with IiiU }{ a  -cover for it. Given any

,0s we define the  -approximating s-dimensional Hausdorff measure  RR ns : by

the following

 Iii
i

s
i

s UUE 




 }{:||inf{)(

1
 forms a  -cover for }E

If ,0 then we have a more succinct formula

 )(Es

0
lim


( ))(Es


giving the s-dimensional Hausdorff measure of .E
This takes, for any ,Rs a unique value between zero and infinity inclusive. It also forms

a measure on .nR This measure is a rough analogue of Lebesgue measure for non-
negative, real values of dimension:

 )(0 E cardinality of .E

 )(1 E length of E if E is a curve.

 

4

)(2 E area of E if E is a surface.

 

6

)(2 E volume of E if E is a 3-space.

It should be noted that Hausdorff measure can measure sets of non-integer dimension, and
that the n-dimensional measure on a set of m-dimensions (assuming nm  ) will not give
the meaningful result.

7.2.1.2. Some Properties of Hausdorff Measure

Theorem 7.2.1.2.1. [48] (Outer Measure) The following are true for any metric space

(i) (Null Empty set)  .0)( s

(ii) (Monotonicity) If ,FE  then  )(Es  ).(Fs

(iii) (Countable Subadditivity)  









11

)(
ii

i
s E  ).( i

s E

Proof: (i) and (ii) follow directly from the definition.

(iii) Assume that  )( i
s E is finite for all ;Ii otherwise, it is trivial. Then it follows that

 )( i
s E is also finite for all Ii and any .0 It suffices to show that

 









11

)(
ii

i
s E  )( i

s E for all .0 Let .0 Then, for any ,i there exists a countable

 cover 
1, }{ jjiU of iE such that




1
, ||

j

s
jiU  .

2
)(

ii
s E


 

Since 



 11, }{ ijjiU is countable  cover of ,

1



i
iE we have
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 

















1

,
111

||)(
i

s
ji

jii
i

s UE (  )
2

)(
ii

s E


 


1i

( .)(  i
s E

By taking ,0 the result follows.

Theorem 7.2.1.2.2. [48] (Countable Additivity) Let 
1}{ iiE be a countable collection of

disjoint  s –measurable subsets of .X Then we have

 




)(
1

i

i
s E 



1i

 ).( i
s E

Proof: If 1E and 2E are disjoint  s -measurable set, then it follows by definition that

  )( 21 EEs   ))(( 121 EEEs   ))(( 121
cs EEE  )( 1Es  ).( 2Es

By induction based on this idea, we see that  


)(
1


k

i
i

s E 


k

i 1

 )( i
s E for all .Ik Sine, for

any ,Ik we have ,
11






i

i

k

i
i EE we obtain the inequality

 




)(
1

i

i
s E  



)(
1


k

i
i

s E 


k

i 1

 ).( i
s E

Letting ,k we have

 




)(
1

i

i
s E 



1i

 ).( i
s E

Moreover, the converge of this inequality follows directly from the countable
subadditivity property.
Hence the equality holds, as required.

Theorem 7.2.1.2.3. [48] (Hausdorff and Lebesgue Measure) Let be a Borel subset of .nR
Then

 |,|
1

)(
n

EEs 


where n is the volume of an n-dimensional ball of diameter 1, and where || E denotes

the Lebesgue measure of .E

Proof: It is easy to show that any Lebesgue null set of nR has n-dimensional Hausdorff
measure zero, since it may be covered by balls of arbitrary small total content. Then n-
dimensional Hausdorff measure is absolutely continuous with respect to Lebesgue

measure, so
|| d

d
( cn ) for some locally integrable function .c As Hausdorff measure

and Lebesgue measure are transalation-invariant, c must also be transalation-invariant and

thus constant. Therefore,  ||)( EcEn  for some .0c To calculate the constant ,c we
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compute the Hausdorff measure and Lebesgue measure of an n-dimensional ball of

diameter 1, and this gives ,
1

n
c as required.

Theorem 7.2.1.2.4. [26] (Scaling Property). Let nnS RR : be a similarity mapping, and

any 0 such that |||)()(| yxySxS   for any ,, nyx R where  is the scaling

factor. If ,nE R then  ss ES )((  )(Es is a scaling length, area etc.

Proof: Let 
1}{ iiU be a  cover of .E Then 

1)}({ iiUS is a -cover of ).(ES Thus we

see that, given :0s

 :|)(|inf{))((
1

s
i

i

s USES 






1}{ iiU forms a -cover}

Here s
i

i

ss
i

i

s
i

i

UUUS |||||)(|
111













 

We obtain

 ss ES  ))((  ).(Es


So, letting 0 gives that

 ss ES ))((  ).(Es

Replacing  by

1

and E by )(ES gives the opposite inequality, as required.

7.2.2. [26] Hausdorff Dimension

Let E be a given set. Note that  ))(Es
 decreases as s increases. This means that  )(Es

also decreases with s increasing. If st  and }{ iU is a  -cover of ,E then each
stst

iU   || since ,|| iU so

.||)||()|||(|||
1111





















i

s
i

st

i

s
i

st

i

s
i

st
i

i

t
i UUUUU 

After taking the infima over all  -covers, we can easily see that

 stt E   )(  )(Es
 (7.1)

Let .0 Then  0)( Et
 if  )(Es is finite. Also if  t

 is bounded and finite then

 .)( Es


Two applications of equation (7.1) should be noted:

1. If  )(Es and ,st  then  .0)( Et

Proof: Equation (7.1) shows that  stt E   )(  )(Es
 for any positive . The result

follows after taking limits, since  .)( Es

2. If  0)( Es and ,st  then  .)( Et
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Proof: Equation (7.1) shows that
st

1
 )(Et

  )(Es
 for any positive . After taking

limits, we see that  ,)( Et since  st
1

lim 0 and 0lim   )(Es
  .0)( Es

One immediate consequence of these observation is that   or0)(Es everywhere

except at a unique value ,s where this value may be finite. As a function of ,s  )(Es is

decreasing function. Therefore, the graph of  )(Es will have a unique value where it
jumps from infinity to zero. Thus, if we define the Hausdorff dimension of a set E as

:sup{)(dim sEH   :inf{})( sEs   },0)( Es the graph of  )(Es looks like















)(dimifnumbernonzerofinite,

)(dimif0

)(dimif

)(

Es

Es

Es

E

H

H

H

s



 )(Es

0 )(dim EH

We can see by the graph above, that for any set E and some non-negative real ,s if

)(dim Es H then  ,)( Es and if )(dim Es H then  .0)( Es

As an example, we can see that the length of a square is infinite, it has a finite area and it

has no volume, that is,  0)(3 E (volume),  )(1 E (length),  

4

)(Es area of disc

(positive and finite)

7.2.2.1. Some Properties of Hausdorff Dimension

Theorem 7.2.2.1.1. [48] The Hausdorff dimension for sets in nR satisfies the following
properties:

(i) If ,FE  then .dimdim FE HH 

(ii) .dim nEH 

(iii) If ,0|| E then .dim nEH 

(iv) If E is countable, then .0dim EH

(v) If ,dim nEH  then ,0|| E
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(vi) If E is open in ,nR then .dim nEH 

(vii) }:sup{dim)(dim
1

IiEE iH
i

iH 





Note that || E is the Lebesgue measure of .E

Proof: (i) If ,FE  then  )(Es  )(Fs for ,0s which implies .dimdim FE HH 
(ii), (iii), (iv) and (v) can be deduced from the relationship between Hausdorff measure
and Lebesgue measure in Theorem 7.2.1.1.3.
(vi) If E is open, then it contains a ball of positive n-dimensional volume.

(vii) By the monotonicity property, iH
i

iH EE dim)(dim
1





 for each .i On the other hand,

if iH Es dim for all ,i then  ,0)( i
s E and therefore  ,0)(

1






i

i
s E giving the opposite

inequality.

Theorem 7.2.2.1.2. [26] Let nE R and nEf R: be Lipschtz, that is,

|,||)()(| yxcyfxf  then  ss cEf ))((  ).(Es

Proof: Let }{ iU be a  -cover of ,E so }{ iUE  is a  -cover of .E Then

cUcUEcUEf iii  |||||)(| 

Thus )}({ iUEf  is a  -cover of )(Ef with .|||)(|
11










i

s
i

s

i

s
i UcUEf 

Taking infima we have

 ss
c cEf ))((  ).(Es



So, letting 0 then

 ss cEf ))((  ).(Es

Theorem 7.2.2.1.3. Let (Hausdorff Dimnsion Theorem). For any real 0r and integer

,rn  there is a continuum fractals with Hausdorff dimension r in .nR

Proof: The proof can be found in [49].

7.2.2.2. Hausdorff Dimension of the Cantor middle
3

1
set

The construction of the Cantor middle third set is as follows:

We start with the closed interval ].1,0[0 
G0

0 1

Remove the middle open third. This leaves a new set ].1,
3

2
[]

3

1
,0[1 

G1
0 1 3 2 3 1
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Each iteration through the algorithm removes the open middle third from each segment of
the previous iteration. Thus the next set would be

].1,
9

8
[]

9

7
,

3

2
[]

3

1
,

9

2
[]

9

1
,0[2 

0 1

0
1€€€€
3

2€€€€
3

1

0 1€€€€
9

2€€€€
9

1€€€€
3

2€€€€
3

7€€€€
9

8€€€€
9

1

0
1€€€€
9

2€€€€
9

1€€€€
3

2€€€€
3

7€€€€
9

8€€€€
9

1

G0

G1

G2

G3

Figure7.1 Construction of the Cantor middle
3

1
set

In general, after n times iterations, we obtain n which as follows

],1,
3

13
[]

3

23
,

3

33
[]

3

3
,

3

2
[]

3

1
,0[

n

n

n

n

n

n

nnnn





  where .1n

Therefore, we construct a decreasing sequence )( n of closed sets, that is nn  1 for all

,Nn so that every n consists of n2 closed intervals all of which the same length .
3

1
n

The Cantor ternary set, which we denote ,3/1C is the “limiting set” of this process, that is,







1

3/1
n

nC and call it the Cantor middle
3

1
set.

Following David C seal [47]. Since nn  1 for each ,Nn and since each n is

compact, we know that )12/(1 mC is non-empty. For example, a little observation will reveal

that the set .},
27

1
,

9

1
,

3

1
,0{ 3/1C In fact, without proof we can say: .|||| 3/1 RC Take

}{ iE to be a closed cover, where 
n

i
niE

2

1

 and n
iE  3|| is the thi interval of .n

It follows that

.32)3(||
2

1

2

1

nsn

i

sn

i

s
i

nn

E 








When 2log3s the above equation becomes

.122323232 2log2log 33    nnnnnnsn n

We can conclude that ),2(log)(dim 33/1 CH since for every ,0 this cover can become

arbitrarily small. That is,  1)( 3/1 Cs
 for each .0 To show that )2(log3 is indeed the

Hausdorff Dimension of ,3/1C we will need the following Lemma.
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Lemma 7.2.2.2.1. (Frostman’s Lemma). Suppose F is a measurable subset of and
suppose and a probability measure  on F such that

.
))((

supsuplim 0 a
r

xB
s

r
Fxr 



Then,  .
2.

1
)(

n
s

a
F  (In particular, .)(dim sFH  )

Proof: The proof can be found in [47]

To show that )2(log)(dim 33/1 CH it suffices to prove that ).2(log)(dim 33/1 CH If we

take the base-3 expansions for all real numbers ],1,0[x we can write 





1

3
i

i
i xx where

each }.2,1,0{x If we consider

}},2,0{:3{:
1

3/1  





i

i
i

i xxC

then we obtain a subset of ,3/1C and the set difference }:{\ 3/13/13/13/1
  CxCxCC is

a countable set. Consider a sequence of independent identically distributed random

variables ,}{ 1

iiX where .

2

1
}0{}2{ 11  XPXP

For a fixed ,n and by independence, we have
n

nnnn xXPxXPxXPxXxXxXP  2}{}{}{},,,{ 22112211  if

}.2,0{x If we set ,3
1






i

i
i XX we can define a probability measure  on 3/1

C by

}{)( AXPA  for measurable subsets ].1,0[A For a fixed ,3/1
Cx if )(

3
xBy n

then nn xyxy  ,,11  this implies that ,32))((
3

nsnxB n
  where .2log3s To

finish the estimate, let .01   There exists an ,Nn .33 )1( nn   

In particular,  133 n this implies that .33 n

also )),(())((
3

xBxB n   since ).()(
3

xBxB n

Now

.233))(())((
3

sssnsxBxB n    


Then this probability measure immediately satisfies
s

Fx xB   2))((sup 

Appealing to Frostman’s Lemma, we have ).2(log)(dim 33/1 CH Another interesting

variation of the Cantor middle set allows for a different size to be removed in each step of

the construction of .3/1C
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Alternative Method:
7.2.2.2.2. Heuristic Method for Finding Hausdorff Dimensions of the Generalized
Cantor Sets

Let 3/1C be the Cantor middle
3

1
set. Let RL CCC )()( 3/13/13/1  with the union disjoint

]
3

1
,0[)( 3/13/1 CC L  and ].1,

3

2
[)( 3/13/1 CC R  Then

 )( 3/1Cs  ))(( 3/1 L
s C  ))(( 3/1 R

s C (assuming 0  )( 3/1Cs when FHdims  )
s









3

1
 )( 3/1Cs

s









3

1
 )( 3/1Cs

Now cancelling  )( 3/1Cs form both sides, we have
s









3

1
1

s









3

1

This implies that, s321  . Taking log on both sides, we have

,3log2log0 s that is, 631.0
3log

2log
s

Thus the Hausdorff dimension of the Cantor middle
3

1
set is ,

3log

2log
s that is,

.631.0
3log

2log
dim 3/1 CH

Since the Cantor middle
3

1
set is in ,1R .1631.0dim 3/1 CH

Hence the Hausdorff measure of the Cantor middle
3

1
set is zero, that is, .0)( 3/1 Cs

Similarly,

we can show that the Hausdorff dimension of the Cantor middle
5

1
set is ,

5log

3log
s that is,

.682.0
5log

3log
dim 5/1 CH Since ,1682.0dim 5/1 CH the Hausdorff measure of the

Cantor middle
5

1
set is zero, that is,  .0)( 5/1 Cs

In general, we can show that the Hausdorff dimension of the Cantor middle
12

1

m

),2(  m set is ,
)12(log

log




m

m
s that is, ).2(,

)12(log

log
dim )12/(1 


 m

m

m
C mH
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Since 1
)12(log

log
dim )12/(1 


 m

m
C mH for ,2  m the Hausdorff measure of the Cantor

middle
12

1

m
),2(  m set is zero, that is,  .0)( )12/(1 m

s C

Hence the Hausdorff measure of the generalized Cantor sets is zero, that is, 0)( )12/(1 m
s C

for .2  m

7.3. Hausdorff Dimensions of the Invariant Sets for Contractions or IFS of Fractals

Let NSSS ,,, 21  be contractions. A subset F of X is called invariant for the

transformation iS if


N

i
i FSF

1

)(




In the case where XXS i : are similarities with Lipschitz constants iL for Ni ,,2,1 

respectively, a theorem proved by M. Hata (Theorem 10.3 of [50] and Proposition 9.7 of [40])
allows us to calculate the Hausdorff dimension of the invariant set for .,,, 21 NSSS  Namely, if

we assume that F is an invariant set for the similarities NSSS ,,, 21  and  )()( FSFS ji

for ,ji  then ,dim sFH  where s is given by





N

i

s
iL

1

.1 (7.2)

7.3.1. Hausdorff dimension of the invariant set for IFS of the Cantor middle
3

1
set

Let F be an invariant set for IFS of the Cantor middle
3

1
set which is

,
3

)(1

x
xw  .

3

2

3
)(2 

x
xw

with contracting factor
3

1
iL for each .2,1i

If ,XF  then  )()( 21 FwFw and .
3

1
,

3

1
21  LL

Now from (7.2), we have

.631.0
3log

2log
2log3log231

3

1

3

1














 sss

ss

Thus the Hausdorff dimension of the invariant set for IFS of the Cantor middle
3

1
set is

,631.0
3log

2log
s that is, .631.0dim FH
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7.3.2. Hausdorff dimension of the invariant set for IFS of the Cantor middle
5

1
set

Let F be an invariant set for IFS of the Cantor middle
5

1
set which is

,
5

)(1

x
xw  ,

5

2

5
)(2 

x
xw .

5

4

5
)(3 

x
xw

with contracting factor
5

1
iL for each .3,2,1i

If ,XF  then  )()()( 321 FwFwFw and .
5

1
,

5

1
,

5

1
321  LLL

Now from (7.2), we have

.682.0
5log

3log
3log5log351

5

1

5

1

5

1























sss
sss

Thus the Hausdorff dimension of the invariant set for IFS of the Cantor middle
5

1
set is

,682.0
5log

3log
s that is, .682.0dim FH

7.3.3. Hausdorff dimension of the invariant set for IFS of the Cantor middle
7

1
set

Let F be an invariant set for IFS of the Cantor middle
7

1
set which is

,
7

)(1

x
xw  ,

7

2

7
)(2 

x
xw ,

7

4

7
)(3 

x
xw

7

6

7
)(4 

x
xw

with contracting factor
7

1
iL for each .4,3,2,1i

If ,XF  then  )()( FwFw ji for ,ji  and
7

1
iL for .4,,1i

Now from (7.2), we have

.712.0
7log

4log
4log7log471

7

1
4 






 sss

s

Thus the Hausdorff dimension of the invariant set for IFS of Cantor middle
3

1
set is

,712.0
7log

4log
s that is, .712.0dim FH



Dhaka University Institutional Repository

Chapter Seven 102

7.3.4. Hausdorff dimension of the invariant set for IFSGCS (the Cantor

middle )2(,
12

1



m

m
sets)

Iterated Function System of the Generalized Cantor Sets: Let ].1,0[X Let ),( X be a

complete separable metric space. If XXwk : is a function which is defined by

2,
12

)1(2

12
)( 







 m
m

k

m

x
xwk

with contracting factor )2(,
12

1



 m

m
L for mk ,,2,1  respectively, then the

family },,2,1:{ mkwk  is called an iterated function system of the generalized Cantor

sets (IFSGCS). Now we have

22 )12(

1

)12(

1
,0

12

1
),0())(),((































mmm
wwywxw iiii 

2)12(

1

)12(

1

)12(

1

)12(

1
,0))(),((



















mmmm

LywxwL ii  for .2  m

Since ),())(),(( yxLywxw ii   for all ,, Xyx  and ,10  L the mapping

XXwi : of iterated function system of the generalized Cantor sets is called a

contraction or similarity with contracting factor or Lipschitz constant .L

Let F be an invariant set for IFS of the Cantor middle
12

1

m
set which is

2,
12

22

12
)( 







 m
m

i

m

x
xwi

with contracting factor )2(,
12

1



 m

m
Li for each .,,2,1 mi 

If ,XF  then  )()( FwFw ji for ,ji  and
12

1




m
Li for .,,2,1 mi 

Now from (7.2), we have

m)m-(smm
m

m s
s

log12log)12(1
12

1












).2(,
)12(log

log



 m

m

m
s

Thus the Hausdorff dimension of the invariant set for IFS of the Cantor middle
12

1

m
set is

),2(,
)12(log

log



 m

m

m
s that is, ).2(,

)12(log

log
dim 


 m

m

m
FH

Hence the Hausdorff dimension of the invariant set for IFS of the generalized Cantor sets is

).2(,
)12(log

log
dim 


 m

m

m
FH
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7.4. Hausdorff Dimensions of the Invariant Sets for IFS of Two Dimensional Fractals

7.4.1. Hausdorff dimension of the invariant set for IFS of the Koch curve
Let F be an invariant set for IFS of the Koch curve which is

),
3

1
,

3

1
(),(1 yxyxw 

),
6

1

6

3
,

3

1

6

3

6

1
(),(2 yxyxyxw 

),
6

3

6

1

6

3
,

2

1

6

3

6

1
(),(3  yxyxyxw

)
3

1
,

3

2

3

1
(),(4 yxyxw 

Now we have

2222
33 )(

36

1
)(

36

3
)(

36

3
)(

36

1
)),(),,(( yyxxyyxxyxwyxw 

22 )()(
3

1
yyxx 

)),(),,((
3

1
yxyx  

It follows that 3w is a contraction on 2R with contraction factor .
3

1
L

Similarly, we can show that ,1w 2w and 4w are contraction on 2R with .
3

1
L

If ,XF  then 



4

1

)(
i

i Fw and
3

1
iL for each .4,3,2,1i

Now from (7.2), we have

.26.1
3log

4log
4log3log431

3

1

3

1

3

1

3

1




























 sss

ssss

Thus the Hausdorff dimension of the invariant set for IFS of the Koch curve is

,26.1
3log

4log
s that is, .26.1dim FH

Since the Koch curve is in ,2R and ,226.1dim FH the Hausdorff measure of the

invariant set for IFS of the Koch curve is zero, that is,  .0)( Fs

7.4.2. Hausdorff dimension of the invariant set for IFS of the Sierpinski isosceles triangle
Let F be an invariant set for IFS of the Sierpinski isosceles triangle which is

),
2

1
,

2

1
(),(1 yxyxw  ),

2

1
,

2

1

2

1
(),(2 yxyxw  )

22

1

2

1
,

4

1

2

1
(),(3  yxyxw

Now we have
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2222
11 )()(

2

1
)(

4

1
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4

1
)),(),,(( yyxxyyxxyxwyxw 

)),(),,((
2

1
yxyx  

It follows that 1w is a contraction on 2R with contraction factor .
2

1
L

Similarly, we can show that 2w and 3w are contraction on 2R with .
2

1
L

If ,XF  then  )()()( 321 FwFwFw and .
2

1
,

2

1
,

2

1
321  LLL

Now from (7.2), we have

.58.1
2log

3log
3log2log321
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2

1

2

1





















 sss
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Thus Hausdorff dimension of the invariant set for IFS of the Sierpinski isosceles triangle is

,58.1
2log
3log
s that is, .58.1dim FH

Since the Sierpinski isosceles triangle is in ,2R and ,258.1dim FH the Hausdorff

measure of the invariant set for IFS of the Sierpinski isosceles triangle is zero, that is,

 .0)( Fs

Similarly, we can find the Hausdroff dimension and Hausdorff measure of the invariant set
for IFS of the Sierpinski equilateral triangle, isosceles right triangle and scalene triangle.

7.4.3. Hausdorff dimension of the invariant set for IFS of the Sierpinski carpet
Let F be an invariant set for IFS of the Sierpinski carpet which is

),
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1
,

3

1
(),(1 yxyxw  ),

3

1
,

3
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3

1
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1
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1
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3

1
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3
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3

1
,

3

2

3

1
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1
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1
(),(6  yxyxw
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1
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1

3

1
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1
,
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1
(),(8  yxyxw

Now we have
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9

1
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9

1
)),(),,(( yyxxyyxxyxwyxw 

)),(),,((
3

1
yxyx  

It follows that 1w is a contraction on 2R with contraction factor .
3

1
L
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Similarly, we can show that 765432 ,,,,, wwwwww and 8w are contraction on 2R with .
3

1
L

If ,XF  then 



8

1

)(
i

i Fw and
3

1
iL for each .8,,2,1 i

Now from (7.2), we have

.89.1
3log

8log
8log3log831
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1
8 






 sss

s

The Hausdorff dimension of the invariant set for IFS of the Sierpinski carpet is

.89.1
3log

8log
s That is .89.1dim FH

Since the Sierpinski carpet is in ,2R and ,289.1dim FH the Hausdorff measure of the

invariant set for IFS of the Sierpinski carpet is zero, that is,  .0)( Fs

7.4.4. Hausdorff dimension of the invariant set for IFS of the box fractal
Let B be an invariant set for IFS of the box fractal which is
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3

1
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Now we have
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1
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It follows that 1w is a contraction on 2R with contraction factor .
3

1
L

Similarly, we can show that ,, 32 ww 4w and 5w are contraction on 2R with .
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L

If ,XB then 


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i Bw and
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1
iL for each .5,4,3,2,1i

Now from (7.2), we have
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Thus the Hausdorff dimension of the invariant set for IFS of the box fractal is

.46.1
3log
5log
s That is .46.1dim BH
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Since the box fractal is in ,2R and ,246.1dim BH the Hausdorff measure of the

invariant set for IFS of the box fractal is zero, that is,  .0)( Bs

7.4.5. Hausdorff dimension of the invariant set for IFS of the square fractal (using the

Cantor middle
3

1
set)

Let S be an invariant set for IFS of the square fractal which is
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It follows that 1w is a contraction on 2R with contraction factor .
3

1
L

Similarly, we can show that 32 , ww and 4w are contraction on 2R with .
3

1
L

If ,XS  then 


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iL for each .4,3,2,1i

Now from (7.2), we have
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Thus the Hausdorff dimension of the invariant set for IFS of the square fractal is

.26.1
3log

4log
s That is .26.1dim SH

Since the square fractal is in ,2R and ,226.1dim SH the Hausdorff measure of the

invariant set for IFS of the square fractal is zero, that is,  .0)( Ss
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7.4.6. Hausdorff dimension of the invariant set for IFS of the square fractal (using the

Cantor middle
5

1
set)

Let F be an invariant set for IFS of the square fractal which is
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It follows that 1w is a contraction on 2R with contraction factor .
5
1
L

Similarly, we can show that 832 ,,, www  and 9w are contraction on 2R with .
5
1
L

If ,XF  then 


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5
1
iL for each .9,,3,2,1 i

Now from (7.2), we have
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Thus the Hausdorff dimension of the invariant set for IFS of the square fractal is

.36.1
5log

9log
s That is .36.1dim FH

Since the square fractal is in ,2R and ,236.1dim FH the Hausdorff measure of the

invariant set for IFS of the square fractal is zero, that is,  .0)( Fs
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7.5. Hausdorff Dimensions of the Invariant Sets for IFS of Three Dimensional Fractals

7.5.1. Hausdorff dimension of the invariant set for IFS of the Menger sponge
Let M be an invariant set for IFS of the Menger sponge which is

,
3

1
,

3

1
,

3

1
),,(1 






 zyxzyxw ,

3

1
,

3

1
),1(

3

1
),,(2 






  zyxzyxw

,
3

1
),1(

3

1
,

3

1
),,(3 






  zyxzyxw ,)1(

3

1
,

3

1
),1(

3

1
),,(4 






  zyxzyxw

,
3

1
,

3

1
),2(

3

1
),,(5 






  zyxzyxw ,

3

1
),2(

3

1
,

3

1
),,(6 






  zyxzyxw

,)2(
3

1
,

3

1
,

3

1
),,(7 






  zyxzyxw ,

3

1
),2(

3

1
),1(

3

1
),,(8 






  zyxzyxw

,)2(
3

1
,

3

1
),1(

3

1
),,(9 






  zyxzyxw ,)2(

3

1
),1(

3

1
,

3

1
),,(10 






  zyxzyxw

,
3

1
),1(

3

1
),2(

3

1
),,(11 






  zyxzyxw ,)1(

3

1
,

3

1
),2(

3

1
),,(12 






  zyxzyxw

,)1(
3

1
),2(

3

1
,

3

1
),,(13 






  zyxzyxw ,

3

1
),2(

3

1
),2(

3

1
),,(14 






  zyxzyxw

,)2(
3

1
,

3

1
),2(

3

1
),,(15 






  zyxzyxw ,)2(

3

1
),2(

3

1
,

3

1
),,(16 






  zyxzyxw

,)1(
3

1
),2(

3

1
),2(

3

1
),,(17 






  zyxzyxw ,)2(

3

1
),1(

3

1
),2(

3

1
),,(18 






  zyxzyxw

,)2(
3

1
),2(

3

1
),1(

3

1
),,(19 






  zyxzyxw 






  )2(

3

1
),2(

3

1
),2(

3

1
),,(20 zyxzyxw

Now we have

222

222
11

)()()(
3

1

)(
9

1
)(

9

1
)(

9

1
)),,(),,,((

zzyyxx

zzyyxxzyxwzyxw





)),,(),,,((
3

1
zyxzyx  

It follows that 1w is a contraction on 3R with contraction factor .
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Similarly, we can show that 192 ,, ww  and 20w are contraction on 3R with .
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Now from (7.2), we have
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Thus the Hausdorff dimension of the invariant set for IFS of the Menger sponge is

,726.2
3log

20log
s that is, .726.2dim MH

Since the Menger sponge is in ,3R and ,2726.2dim MH the Hausdorff measure of the

invariant set for IFS of the Menger sponge is zero, that is,  .0)( Ms

7.5.2. Hausdorff dimension of the invariant set for IFS of the Sierpinski tetrahedron
Let T be an invariant set for IFS of the Sierpinski tetrahedron which is
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It follows that 1w is a contraction on 3R with contraction factor .
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Now from (7.2), we have
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Hence the Hausdorff dimension of the invariant set for IFS of the Sierpinski tetrahedron is
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.2
2log

4log
s That is, .2dim TH

Since the Sierpinski tetrahedron is in ,3R and ,32dim TH the Hausdorff measure of

the invariant set for IFS of the Sierpinski tetrahedron is zero, that is,  .0)( Ts

7.5.3. Hausdorff dimension of the invariant set for IFS of the octahedron fractal
Let F be an invariant set for IFS of the octahedron fractal which is
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It follows that 1w is a contraction on 3R with contraction factor .
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Similarly, we can show that 52 ,, ww  and 6w are contraction on 3R with .
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If ,XF  then 

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Now from (7.2), we have
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Thus the Hausdorff dimension of the invariant set for IFS of the octahedron fractal is

.585.2
2log

6log
s That is, .585.2dim FH

Since the octahedron fractal is in ,3R and ,3585.2dim FH the Hausdorff measure of

the invariant set for IFS of the octahedron fractal is zero, that is,  .0)( Fs
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CHAPTER EIGHT

INVARIANT MEASURES FOR IFS OF FRACTALS

OVERVIEW
In this chapter, we discuss Iterated Function System with Probabilities and invariant
measures. We formulate Iterated Function System with Probabilities of the Generalized
Cantor Sets and show their invariant measures using the Barnsley-Hutchinson
multifunction and Markov operator.

8.1. [24] Iterated Function System with Probabilities
Let ),( X be a complete separable metric space. An iterated function system (IFS) is

given by a family of contracting transformations

IiXXwi  ,: where the index set I is finite.

If, in addition, there is given a family of continuous functions

IiXpi  ],1,0[:

satisfying 1)(
1




N

i
i xp for every ,Xx then the family }:),{( Iipw ii  is called an

iterated function system with probabilities.

If }...,,,{ 21 Nwww is a finite family of strict contractions, we may define the Barnsley-

Hutchinson multifunction given by the formula

.)()(
1

N

i
i AwAF



 (8.1)

The attractor of iterated function system }...,,,{ 21 Nwww is

),(1 nn AFA  ,0 XA  ,2,1,0n (8.2)

which is the well known fractal.
Fractals are strongly related to Markov operator acting on the space of all Borel measures

[24]. If the functions Nwww ...,,, 21 are given and }...,,,{ 21 Nppp is a probability vector

,1,0.,i.e 




   ii pp then we may define the Markov operator








N

i
Aw i

N

i
ii

i

dxpAwpAp
1

)(
1

1
1

)())(()(   for  . (8.3)

where denotes the family of all Borel measure on .X

Let Nwww ...,,, 21 be non-singular transformations of the space  .1,0X Let

NPPP ...,,, 21 be the Frobenious-Perron operators corresponding to the transformations

....,,, 21 Nwww Let Nppp ...,,, 21 be non-negative measurable functions defined on X

such that  



N

i
i xp

1

1 for all .Xx 
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The evolution of densities of the distribution is described by the Markov operator [43]





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i
ii fpPPf

1

).(

That is,  
 



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i
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i

i
iii xwfx

d

wd
pxfpPxPf

1 1

1
1

)),(()())(()(


 
(8.4)

where .),(1 XxxLf 

8.2. [51] Invariant Measure
If Nwww ...,,, 21 are strictly contractive, then the support of the unique probability

measure  invariant with respect to P is equal to the fixed point of the Barnsley-

Hutchison multifunction F defined by (8.1). Also invariant measure can be defined by the
following two methods.
A probability measure  is called invariant under Barnsley-Hutchinson multifunction F

if and only if

))(())((()( 1

1

1 AFAwFA
N

i
i





    (8.5)

A measure   is called invariant with respect to Markov operator P defined by (8.3)

if . P

8.3. Iterated Function System with Probabilities of the Generalized Cantor Sets

8.3.1. [6] Iterated function system with probabilities of the Cantor middle
3

1
set

The iterated function system with probabilities of the Cantor middle
3

1
set is as follows:

  ,
2
1

,
3 11  p
x

xw

  ,
2

1
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3

2

3 22  p
x

xw (8.6)

where 1p and 2p are probabilities which control the evolution distribution of )(1 xw and

).(2 xw According to the theory of density evolution [25], the density for )(xf mapping

satisfying the density evolution equation

,2,1,0),()(1  nxPfxf nn

with 



n

i
ii fpPxPf

1

)()( which is called Markov operator [43].

By equation (8.4), we get
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Now follow [52] we assume the probability density over the initial interval  1,0 is

 
 



 


,otherwise,0

,1,0,1
0

x
xf

then what will happen for  xf0 under the Markov operator?

According to Barnsley-Hutchinson operator (8.1), the attractor of the equation (8.6) is the
unit interval. That is,  .1,0A

Now for a subset ,
3
1

,0 



A we have    ,1,01

1  Aw    Aw 1
2  ,1,2  then

   .01
2  Awf In the same way, for a subset ,1,

3
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
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1  Aw

   1,01
2  Aw and    .01

1  Awf Thus after the first step  xf0 becomes
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3

2
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3
3

1
,0,

2

3

1 x

x

xf

under the Markov operator.

Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 8.1.
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Figure 8.1 Transform from 1p and 2p over unit interval.

Thus iterated function system with probabilities of the Cantor middle
3

1
set is

}.2,1:),{( kpw kk

8.3.2. [6] Iterated function system with probabilities of the Cantor middle
5

1
set

The following constructed iterated function system with probabilities of the Cantor

middle
5

1
set is as follows:

  ,
3
1

,
5 11  p
x

xw

  ,
3
1

,
5
2

5 22  p
x

xw

  ,
3
1

,
5
4

5 33  p
x

xw (8.7)
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where ,1p 2p and 3p are probabilities which control the evolution distribution of  ,1 xw

 xw2 and  .3 xw

Now we assume the probability density over the initial interval  1,0 is

   


 


,otherwise,0

,1,0,1
0

x
xf

then what will happen for  xf0 under the Markov operator?

According to Barnsley-Hutchinson operator (8.1), the attractor of equation (8.7) is the unit
interval. That is,  .1,0A

Now for a subset ,
5
1

,0 



A we have    ,1,01

1  Aw    Aw 1
2  ,1,2 

   ,3,41
3  Aw then    01

2  Awf and    .01
3  Awf In the same way, for a subset

,
5
3

,
5
2




A we have    ,3,21

1  Aw    ,1,01
2  Aw    ,1,21

3  Aw then

   01
1  Awf and   Awf 1

3
 .0 For a subset ,1,

5
4




A we have

       3,2,5,4 1
2

1
1   AwAw and    ,1,01

3  Aw then    01
1  Awf and

   .01
2  Awf Thus after the first step, )(0 xf becomes

























otherwise,0

]1,
5

4
[,

3

5

]
5

3
,

5

2
[,

3

5

]
5

1
,0[,

3

5

)(1

x

x

x

xf

under the Markov operator.

Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 8.2.

0 1

0 1€€€€5
2€€€€5

3€€€€5
4€€€€5

1

0 1€€€€5
2€€€€5

3€€€€5
4€€€€5

1

f0HxL
f1HxL
f2HxLp1=

1€€€€3 p2=
1€€€€3 p3=

1€€€€3
1€€€€9

1€€€€9
1€€€€9

Figure 8.2 Transform from 21, pp and 3p over unit interval.

Thus iterated function system with probabilities of the Cantor middle
5

1
set is

}.3,2,1:),{( kpw kk
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8.3.3. Iterated function system with probabilities of the Cantor middle
12

1

m
set

We have constructed iterated function system with probabilities of the Cantor

middle )2(,
12

1



m

m
set as follows:

m
p

m

x
xw

1
,

12
)( 11 




m
p

mm

x
xw

1
,

12

2

12
)( 22 







m
p

mm

x
xw

1
,

12

4

12
)( 33 









).1,2(,
1

,
12

)1(2

12
)( mkm

m
p

m

k

m

x
xw kk 







 (8.8)

where mppp ,,, 21  are probabilities which control the evolution distribution of

).(,,)(),( 21 xwxwxw m )2(,
12

1



m

m
Now we assume the probability density over the initial interval  1,0 is

 
 



 


,otherwise,0

,1,0,1
0

x
xf

then what will happen for  xf0 under the Markov operator?

According to Barnsley-Hutchinson operator (8.1), the attractor of the equation (8.8) is the
unit interval. That is,  .1,0A

Now, for a subset ,
12

1
,0 








m
A we have    ,1,01

1  Aw  Aw 1
2
  ,1,2 

          ,32,22...,,3,4 11
3   mmAwAw m then    ,01

2  Awf

   ,01
3  Awf    .0..., 1  Awf m In the same way, for a subset ,

12
3

,
12

2









mm
A we

have        ,1,0,3,2 1
2

1
1   AwAw           ,52,42...,,1,2 11

3   mmAwAw m

then   Awf 1
1
 ,0       .0...,,0 11

3   AwfAwf m For a subset ,1,
12
22









m
m

A we

have              ,32,42,12,22 1
2

1
1   mmAwmmAw    ,3,2..., 1

1 
 Awm and

   ,1,01  Awm then    ,01
1  Awf       .0...,,0 1

1
1

2  


 AwfAwf m

Thus after the first step, )(0 xf becomes
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



































otherwise,0

1,
12

)1(2
[,

12

]
12

3
,

12

2
[,

12

]
12

1
,0[,

12

)(1

m

m
x

m

m

mm
x

m

m
m

x
m

m

xf


under the Markov operator.

Similarly, Markov operator acting on ),(1 xf and so on. This is shown in Figure 8.3.

0 1

0 1€€€€€€€€€€€€€€€€2m - 1
2€€€€€€€€€€€€€€€€2 m - 1

3€€€€€€€€€€€€€€€€2m - 1
2m - 2€€€€€€€€€€€€€€€€2m - 1

1

f0HxL
f1HxLp1=

1€€€€m p2=
1€€€€m pm=

1€€€€m

Figure 8.3 Similar transform from mppp ...,,, 21 over unit interval.

Thus iterated function system with probabilities of the Cantor middle )2(,
12

1



m

m

sets is }.,,2,1:),{( mkpw kk 

We may summarize iterated function system with probabilities of the Cantor

middle ,
3

1
,

5

1
,

7

1
,

9

1
,

11

1
sets, in general, the Cantor middle ,

12

1

m
)2( m sets in

the following statement:

Iterated Function System with Probabilities of the Generalized Cantor Sets:
Let ].1,0[X Let ),( X be a complete separable metric space. If XXwk : is defined

by

,
1

,
12

)1(2

12
)(

m
p

m

k

m

x
xw kk 









where )(xpk are probabilities such that 1)(
1




N

k
k xp for every ,Xx which control the

evolution distribution of )(xwk with contracting factor or Lipschitz constant
12

1




m
Lk

for )2(  m and ,1 mk  then the family },,2,1:),{( mkpw kk  is called iterated

function system with probabilities of the generalized Cantor sets.
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8.4. [6] Invariant Measures for Iterated Function System with Probabilities of the
Generalized Cantor Sets

8.4.1. Invariant measure for IFS with Probabilities of the Cantor middle
3

1
set:

Let ].1,
3

2
[]

3

1
,0[1 A By equation (8.3) we have

 
 


2

1 )(

1

1
1

)()()(
k Aw

k

k

dxxpAP 

1
2

1

2

1
)()()()(

1

0

1

0)(

2

)(

1

1
1

21
1

1

 


dxdxdxxfxpdxxfxp
AwAw

and

1
3

1

3

1

2

3

2

3

2

3
]1,

3

2
[]

3

1
,0[)(

1

3/2

3/1

0

1 





    ddA

That is, . 

Thus  is an invariant measure for IFS of the Cantor middle
3

1
set with respect .P

Alternative method 1:
By equation (8.4) we have

 dxfdxfxPf  
1

3/2

3/1

0

)23(.3.
2

1
)3(.3.

2

1
||)(|| 1

3

2

2

3

2

3 1

3/2

3/1

0









   dd

That is, .|||||||| fPf 

Thus f is an invariant for IFS of the Cantor middle
3

1
set with respect to .P

Alternative method 2:

Let ].
9

7
,

3

2
[]

9

1
,0[  By equation (8.5) we have

2

1

9

1

9

1

4

9

4

9

4

9
])

9

7
,

3

2
([])

9

1
,0([)(

9/7

3/2

9/1

0







    dd

and

))())(())(( 1
2

1
1

1 xwxwF   
2

1

2

3
])

3

1
,0([

3/1

0

   d

That is, )).(()( 1  F

Thus  is an invariant measure for IFS of the Cantor middle
3

1
set with respect to .F
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8.4.2. Invariant measure for IFS with Probabilities of the Cantor middle
5

1
set:

Let ].1,
5

4
[]

5

3
,

5

2
[]

5

1
,0[1 A By equation (8.3) we have

 
 


3

1 )(

1

1
1

)()()(
k Aw

k

k

dxxpAP 





)(

3

)(

2

)(

1

1
1

31
1

21
1

1

)()()()()()(
AwAwAw

dxxfxpdxxfxpdxxfxp

1
3

1

3

1

3

1 1

0

1

0

1

0

  dxdxdx

and ])1,
5

4
([])

5

3
,

5

2
([])

5

1
,0([)( 1  A

1
3

5

3

5

3

5 1

5/4

5/3

5/2

5/1

0

   ddd

That is, . P

Thus  is an invariant measure for IFS of the Cantor middle
5

1
set with respect .P

Alternative method 1:
By equation (8.4) we have

 dxfdxfdxfxPf  
1

5/4

5/3

5/2

5/1

0

)45(.5.
3

1
)25(.5.

3

1
)5(.5.

3

1
||)(||

,1
5

3
.

3

5

3

5 5/3

5/2

1

5/4

5/1

0









    ddd

That is, |||||||| fPf 

Thus f is an invariant for IFS of the Cantor middle
5

1
set with respect to .P

Alternative method 2:

Let ].
25

21
,

5

4
[]

25

11
,

5

2
[]

25

1
,0[  By equation (8.5) we have

,
3

1

9

25

9

25

9
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])
25
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,

5

4
([])

25

11
,

5

2
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1
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25/21

5/4
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5/2

25/1

0





 



ddd
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3

1

3

5
])

5

1
,0([))()())(())((

5/1

0

1
3

1
2

1
1

1    dxwxwxwF

That is, )).(()( 1  F
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Hence  is an invariant measure for IFS of the Cantor middle
5

1
set with respect to .F

8.4.3. Invariant measure for IFS with Probabilities of the Cantor Middle
12

1

m
sets

By equation (8.4) we have

















1

)12/()22(

)12/(3

)12/(2

)12/(1

0

))1(2)12(().12.(
1

)2)12(().12.(
1

))12(().12.(
1

||)(||

mm

m

m

m

dNxmfm
N

dxmfm
N

dxmfm
N

xPf























1

)12/()22(

)12/(1

0

))1(2)12(())12((
12

mm

m

dNxmfdxmf
N

m
 

1
12

12
]

12

1

12

1

12

1
[

12









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






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N

N

m

mmmN

m


That is, .|||||||| fPf 

Thus f is an invariant for IFS of the Cantor middle )2(,
12

1



m

m
sets with respect to .P

Alternative method 1:
Similarly, by equation (8.3) we can prove that . P Thus  is an invariant measure for

IFS of the Cantor middle )2(,
12

1



m

m
set with respect to .P

Alternative method 2:

Let ].1,
)12(

1)12(
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)12(

3
,

)12(

2
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)12(

1
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2

2

222 

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
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

By equation (8.5) we have
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
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

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Thus  is an invariant measure for IFS of the Cantor middle )2(,
12

1



m

m
set with

respect to .F
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8.5. Proposition: [6] Let
m

p
m

k

m

x
xw kk

1
,

12

)1(2

12
)( 







 be non-singular

transformations of the space ],1,0[X where )(xpk are probabilities such that

1)(
1




N

k
k xp for every Xx and let kP be the Frobenious-Perron operators

corresponding to the transformations kw for )2(  m and .1 mk  Then the Markov

operator 



N

k
kk fpPPf

1

)( satisfy the following conditions:

(a) 0Pf for all f in )(1 XL with .0f

(b) 11 |||||||| fPf  for all f in )(1 XL and 11 |||||||| fPf  if .0f

Proof: (a) Let f be a function in ).(1 XL Then
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Thus 0Pf for all f in )(1 XL with .0f
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Thus 11 |||||||| fPf  for all f in ).(1 XL

Hence 11 |||||||| fPf  if .0f
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CHAPTER NINE

DYNAMICS OF THE PROTOTYPICAL FRACTAL

OVERVIEW
In this chapter, we define the Transition Operator wP for the Iterated Function System

with Probabilities of the Generalized Cantor sets (IFSPGCS) and show that this operator is
a Markov operator. We also show that the Iterated Function System with Probabilities of
the Generalized Cantor sets is non-expansive and asymptotically stable if the Markov

operator wP has the corresponding property with respect to the metric )).,(( yx

9.1. [24] Barnsley’s and Hutchinson Approach to Fractal Theory

Let ),( X be a complete separable metric space. We assume that every closed ball in X

}),(:{),( ryxXyxrB  

is a compact set. We denote by B the  -algebra of Borel subsets of .X By we denote
the family of Borel measure (nonnegative,  -additive) on X such that )(B for

every ball .B By 1 we denote the subsets of  such that 1)( X for  1. The

elements of 1 will be distributions. An iterated function system is given by a family of
contracting transformations

IiXXwi  ,: where the index set I is finite.

If, in addition, there is given a family of continuous functions

IiXpi  ],1,0[:

satisfying 1)(
1




N

i
i xp for every ,Xx then the family }:),{( Iipw ii  is called an

iterated function system (IFS) with probabilities.

Having an IFS },:{ Iiwi  we define the corresponding Barnsley-Hutchinson

multiplication [21, 22] by the formula


N

i
i AwAF

1

)()(


 for .BA

and having an IFS with probabilities we define the Markov operator acting on measures by

 
 


N

k Aw

i

i

dxxpAP
1 )(1

)()()(  for  , .BA (9.1)

It is easy to verify that P is a Markov-Feller operator and its dual U is given by

)).(()()( xwfxpxUf i
Ii

i






Dhaka University Institutional Repository

Chapter Nine 123

A set 0A such that 00)( AAF  is called invariant with respect to the IFS }.:{ Iiwi  If, in

addition, for every nonempty compact subset A of ,X the sequence ))(( AF n converges

in the Hausdorff distance to ,0A the set 0A is called an attractor (or fractal) corresponding

to the IFS }.:{ Iiwi 

Assume that I is finite and for every ,Ii the function iw is Lipschitzian with the

Lipschitz constant and the function ip is constant. The following facts are well known

[21, 25].

Fact 9.1.1. If 1iL for ,Ii then the IFS is }:{ Iiwi  asymptotically stable (on sets),

the operator P given by (9.1) is asymptotically stable (on measures), and

.supp *0 A

where 0A is the attractor (or fractal) corresponding to the iterated function system

}:{ Iiwi  and * is the invariant measure with respect to .P

Fact 9.1.2. If

,1
Ii

ii Lp

then an IFS with probabilities },:),{( Iipw ii  is asymptotically stable.

9.2. Iterated Function System with Probabilities of the Generalized Cantor Sets
(IFSPGCS)
Let ].1,0[X Let ),( X be a complete separable metric space. If XXwk : is defined

by

,
1

,
12

)1(2

12
)(

m
p

m

k

m

x
xw kk 









where )(xpk are probabilities such that 1)(
1




m

k
k xp for every ,Xx which control the

evolution distribution of )(xwk with contracting factor or Lipschitz constant
12

1




m
Lk

for m2 and .1 mk  Then the family },,2,1:),{( mkpw kk  is called iterated

function system with probabilities of the generalized Cantor sets.
Now since

mm

m

k
kk LpLpLpLp 



2211
1

12

11

12

11

12

11










mmmmmm


1
12

1





m
for ,2 m

then the iterated function system with probabilities of the generalized Cantor sets

},,2,1:),{( mkpw kk  are asymptotically stable.
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For iterated function system with probabilities of the generalized Cantor sets

},,,2,1:),{(),( mkpwpw kkm  we define the transition operator :wP    by the

formula

 dpAP
m

k Aw

kw

k

 
 


1 )(1

)( for )(XA B and  . (9.2)

Theorem 9.2.1. If wP satisfies the following two conditions

(i) Positive linearity: 22112211 )(  www PPP  for ;0, 21  21,  

(ii) Preservation of the norm: )()( AAPw   for  , then wP is a Markov operator

for IFSPGCS .),( mpw

Proof: Let ].1,0[X Let ),( X be a complete separable metric space. The iterated

function systems XXwk : is defined by ,
1

,
12

)1(2

12
)(

m
p

m

k

m

x
xw kk 







 for

m2 and .1 mk  Let .]1,
12

)1(2
[]

12

3
,

12

2
[]

12

1
,0[ X

m

m

mmm
A 










 

(i) By (9.2) we have

 
 


m

k Aw

kw

k

ddpAP
1 )(

22112211
1

)())(( 





m

k
k

m

k
k

m

k
k dpdpddp

1

1

0

22
1

1

0

11
1

1

0

2211 )(  21  

and   
 


m

k Aw

k

m

k Aw

kww

kk

dpdpPP
1 )(

22
1 )(

112211
11



21
1

1

0

22
1

1

0

11   


m

k
k

m

k
k dpdp

That is 22112211 )(  www PPP  for  2121 ,;0,  .

(ii) By (9.2) we have

1)(
1

1

01 )(1

  
 

m

k
k

m

k Aw

kw dpdpAP
k



and ]1,
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)1(2
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2
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1
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
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
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mmm
A  
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121212 1
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12
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
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 d
m

m
d

m

m
d

m

m

m

m

m

m
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

[Using function of section 8.3.3 of Chapter 8]

That is, )()( AAPw   for  .

Thus wP is a Markov operator for IFSPGCS .),( mpw
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By the second condition of theorem 9.2.2 we can easily show that  wP for  .

That is, wP has a stationary or invariant measure .

Thus we say that   is a invariant measure for .),( mpw

Following Lasota and Yorke [46] we have a sequence of transformations

,: XXwk  .,,2,1 mk 

and a probabilities vector )},(,),(),({ 21 xpxpxp m ,0)( xpk 1)(
1




m

k
k xp for ,Xx

.,,2,1 mk  If an initial point 0x is chosen, then we randomly select from the set

},,3,2,1{ m an integer such a way that probability of choosing k is ),( 0xpk

.,,2,1 mk  When a number 0k is drawn we define ).( 01 0.
xwx k Having 1x we select

1k according to the distribution ),( 1xpk mk ,,2,1  and we define )( 12 1.
xwx k and so

on. Denoting by ,1,0, nn the distribution of .nx A)prob()(i.e., n  nxA for every

non-negative integer .n We define wP as transition operator such that ,1 nwn P   where

n is the sequence of measures.

The above procedure can be easily formalized. Let x 0 be the Dirac measure

supported at a point .Xx According to the definition of the dual vector U we have

 1,,,)(  fPfUfxUf xwx

This means that )(xUf is mathematical expectation of )( 1xf if xx 0 is fixed.

On the other hand, according to our description, the expectation of )( 1xf is equal to

.))(()(
1



m

k
kk xwfxp

Since x was arbitrary this gives

.))(()()(
1




m

k
kk xwfxpxUf (9.3)

We admits this formula as the precise formal definition of our process and we define wP

as the Markov operator corresponding to U given by (9.3).

Therefore, wP is the unique operator satisfying

 dwfpUfPf
m

k X

kkw 



1

)(,,  (9.4)

and it must be of the form

 dpAP
m

k Aw

kw

k

 
 


1 )(1

)( (9.5)

For such ,wP equation (9.4) holds for every bounded Borel measurable f and  .

Equation (9.5) is the desired formal definition of Markov operator .wP
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Since the transformations ,: XXwk  and the functions RXpk : for mk ,,2,1 

are continuous, wP given by (9.5) is a Feller operator.

Now we will study asymptotic behavior of wP under some additional assumptions

concerning kp and .kw We will say that the iterated function system with probabilities of

the generalized Cantor sets },,2,1:),{(),( mkpwpw kkm  is non-expansive, has an

invariant density or is asymptotically stable if the Markov operator (9.5) has the
corresponding property.
We say that iterated function system with probabilities of the generalized Cantor sets

mpw ),( is asymptotically stable if wP is asymptotically stable. Now we will formulate

assumptions that ensure the non-expansiveness and asymptotic stability of iterated
function system with probabilities of the generalized Cantor sets

}.,,2,1:),{(),( mkpwpw kkm 

9.3. Non-expansiveness of IFS with probabilities of the Generalized Cantor Sets

Lemma 9.3.1. The iterated function system with probabilities of the generalized Cantor

sets mpw ),( is uniform continuous. That is,
12

)1(2

12
)(








m

k

m

x
xwk is uniform

continuous for ,, Xyx  )2( m and .1 mk 

Proof. Choose .0 Let .)12(   m Choose .,0 Xxx  Assume that .|| 0  xx Then

 











 .
12

1
||

12

1
|

1212
||)()(| 0

0
0 m

xx
mm

x

m

x
xwxw kk

.|)()(|.,. 0  xwxwei kk

Thus IFS with probabilities of the generalized Cantor sets mpw ),( is uniform continuous.

Lemma 9.3.2. The IFSPGCS mpw ),( satisfies the Dini function if there is a function

],0[],0[:  is a modulus of continuity for .kw That is, |)(||)()(| yxywxw kk  

for ., Xyx 
Proof. Assume that ],0[],0[:  is defined by ,)( ktt  where k is a Lipschitz

constant.

Now |
12

)1(2

1212

)1(2

12
||)()(|















m

k

m

x

m

k

m

x
ywxw kk

|),(|||||
12

1
yxyxLyx

m k 


  where
12

1




m
Lk is a Lipschitz constant for

)2( m and .1 mk 
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That is, |)(||)()(| yxywxw kk   for ., Xyx 

Thus  is a Dini function of the IFSPGCS .),( mpw

Lemma 9.3.3. If the IFSPGCS mpw ),( satisfies the inequality

)),(())(),(()(
1

yxrywxwxp
m

k
kkk  



for ,, Xyx  where 1r is a non-negative

constant, then mpw ),( is contraction transformation with contracting factor or Lipschitz

constant
12

1




m
Lk for )2( m and .1 mk 

Proof. The IFSPGCS mpw ),( is ,
1

,
12

)1(2

12
)(

m
p

m

k

m

x
xw kk 







 for ,, Xyx  where

)(xpk are probabilities such that 1)(
1




m

k
k xp for every .Xx

Now
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kkk ywxwxpywxwxp
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yxLyx
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x
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k
k

m

k
k 








 



That is, )),(())(),(()(
1

yxrywxwxp
m

k
kkk  



for ,, Xyx  say .
12

1




m
Lr k

Thus mpw ),( is contraction transformation with contracting factor or Lipschitz constant

12

1




m
Lk for )2( m and .1 mk 

Since there exists a Dini function of the IFSPGCS ,),( mpw there exists a continuous non-

decreasing and concave function ],0[],0[:  such that  )(,0)0( 

and the Markov operator wP corresponding to mpw ),( is non-expansive with respect to

the metric ),()),(( yxyx   for ,, Xyx  that is, we will calculate the value of

||)(|| 21  wP for operator (9.5).

 21212121 ,|sup|,|sup||||||)(|| 
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UfPPfPPP
F

ww
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www

||||,|sup,1|sup

|,)(|sup|,)(|sup

212121
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1











 


f

wfpwfp

FF

m

k
kk

F

m

k
kk

F



That is, ||||||)(|| 2121  wP

Thus wP is non-expansive with respect to the metric . 
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Since the IFSPGCS mpw ),( satisfies the Lemma 9.3.3 and the Markov operator wP

corresponding to mpw ),( is non-expansive with respect to the metric ,  the iterated

function system of the generalized Cantor sets mpw ),( is non-expansive with respect to

the metric . 

Theorem 9.3.4. Let wP be a non-expansive Markov operator. Assume that for every

0 there is a Borel set A with diam ,A a real number 0 and an integer n such

that

 


)(inflim APn
w

n
for  1. (9.6)

Then wP is asymptotically stable.

Proof: Since a non-expansive Markov operator is a Feller operator, wP is a Feller

operator. Then wP has an invariant distribution . To complete the proof of asymptotic

stability it remains to verify condition




 ,,lim ff n
n

for all ).(XCf 

When an invariant distribution exists the above condition is equivalent to a more
symmetric relation

0||)(||lim 21 


n
w

n
P for 11,  1. (9.7)

Let 21,  1 and .0 Choose XA and .10,  Following Lasota and Yorke

[39] we will define by an induction argument a sequences of integers )( kn and four

sequences of distributions .2,1,,2,1,0),(),(  ikk
i

k
i  If 0k we define 00 n and

.00
iii   If 1k is fixed and 11

1 ,, 


k
i

k
ikn  are given we choose according (9.6) a

number kn such that

  )(1 AP k
iw

kn

for .2,1i

and we define
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1

1
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ABP
B

k
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k
iwk

i kn
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






)}.()({
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1
)( 11 BBPB k

i
k
iw

k
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kn  

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

 (9.8)

Since ,)(1   AP k
iw

kn

we have

).()()()()( 111 BBAPABPBP k
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k
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k
iw

k
iw

k
iw

knknkn

  

Observe that 0)\( AXk
i and consequently

||sup|||| 2121
k

X

k

XFf

kk dfdf   


.||sup 21   


Adiamdfdf k

A

k

AFf

(9.9)

Using equation (9.8) it is easy to verify by an induction argument that
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.1,)1()1()1( 121 221   kPPP k
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k
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Since wP is non-expansive this implies

||||)1(||||||)(|| 2
2

2
1

1
2
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From this, condition (9.9) and the obvious inequality 2|||| 21  kk  it follows
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w
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Again, using the non-expansiveness of n
wP we obtain
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Since 0 is arbitrary and k does not depend on 21, we have
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So, we are given
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Really, if mn  we have
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and because 0nm 
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Since 1 is a complete metric space, the sequence ):( NnPn
w  convergences to some

 1. Obviously   wP and
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PP for every  1.

This completes the proof.

9.4. Asymptotic Stability of IFS with probabilities of the Generalized Cantor Sets

Theorem 9.4.1. Let },,2,1:),{(),( mkpwpw kkm  be iterated function system with

probabilities of the generalized Cantor set. If mpw ),( satisfies the following conditions

(i) there is a Dini function of mpw ),(

(ii) 0)(inf 


xpk
Xx

for every },,2,1{ mk 

(iii) the transformations XXwk : are Lipschitzian for every },,2,1{ mk  and there

exists a non-negative integer w such that 



m

k
wkk Lxp

1

1)(  for ,Xx

then the iterated function system with probabilities of the generalized Cantor sets mpw ),(

is asymptotically stable.

Proof: (i) By Lemma 9.3.1, we say that the IFSPGCS mpw ),( has a Dini function.
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(ii) Since
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Since the IFSPGCS mpw ),( satisfies the above three conditions, the IFS with probabilities

of the generalized Cantor sets mpw ),( is asymptotically stable.

We say that a Markov operator :wP   satisfies the Prokhorov condition if there exists

a compact set and a number  such that

 


)(inflim YP n
w

n
for  1. (9.10)

This condition is clearly satisfied if X is a compact space or if wP is an asymptotically

stable operator.

Proposition 9.4.2. Let },,2,1:),{(),( mkpwpw kkm  be an iterated function system

with probabilities of the generalized Cantor sets such that 1w is bounded and .0inf 1 p

Then },,2,1:),{(),( mkpwpw kkm  has a stationary distribution and satisfies the

Prokhorov condition  


)(inflim YP n
w

n
for  1, where Y is a compact set and a

number .

Proof. We know  dpAP
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1
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That is, 1)())(()(
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}inf{])1,0([}inf{))(( 11

1
1 ppYw (say).

Thus  


)(inflim YP n
w

n
for  1.

Theorem 9.4.3. Suppose iterated function system with probabilities of the generalized

Cantor sets },,2,1:),{(),( mkpwpw kkm  are essentially non-expansive and satisfies

the Prokhorov condition. Also suppose that 1w satisfies the inequality

),())(),(()(
1

11 yxrywxwxp
m

k
k  



for ,, Xyx  (9.11)

where 1r is a non-negative constant, and has an attracting fixed point ,x then

0)),((lim 1 
xxwn

n
 for Xx ,

If in addition ,0}inf{ 1 p then },,2,1:),{(),( mkpwpw kkm  is asymptotically stable.

Proof. Following Lasota and Yorke [46] consider the dynamical system )
2

1
,( 1w given by

only one transformation 1w and the probability .
2

1
Condition (9.11) implies that )
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1
,( 1w is

non-expansive. The Markov operator wP corresponding to )
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1
,( 1w is given by formula
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and has the property that a point measure x  is transformed into the point measure

.)(1 xwwP   For every Xx 0 the sequence )( 01 xwx n
n  converges to attracting fixed

point x and consequently for every Xx 0 the sequence of measures

nxx
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wP  
0

converges weakly to .


 xwx P 

Since the family of Dirac measures is linearly dense in 1 (in the Fortet Mourier metric)

and the operators }{ n
wP are uniformly continuous, we have

0||||lim 
 x

n
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n
P  for  1.

Thus the system )
2

1
,( 1w is asymptotically stable.
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CHAPTER Ten

SCIENTIFIC APPROACH OF FRACTALS

OVERVIEW
In this chapter, we have presented some applications of fractals (without proof) by
renowned mathematicians. These will help to go through further research.

10.1. [53] Fractals in Nature and Applications
Fractals are not just complex shapes and pretty pictures generated by computers. Anything
that appears random and irregular can be a fractal. Fractals permeate our lives, appearing
in places as tiny as the membrane of a cell and as majestic as the solar system. Fractals are
the unique, irregular patterns left behind by the unpredictable movements of the chaotic
world at work. In theory, one can argue that everything existent on this world is a fractal.

 the leaves in trees,
 the veins in a hand,

 water swirling and twisting out of a tap,
 a puffy cumulus cloud,
 tiny oxygen molecule, or the DNA molecule,

 the stock market

Fractals have more and more applications in science as follows:

10.1.1. Fractals in Nature
Take a tree, for example. Pick a particular branch and study it closely. Choose a bundle of
leaves on that branch. All three of the objects described - the tree, the branch, and the
leaves – are identical. To many, the word chaos suggests randomness, unpredictability and
perhaps even messiness. Weather is a favorite example for many people. Forecasts are
never totally accurate, and long-term forecasts, even for one week, can be totally wrong.
This is due to minor disturbances in airflow, solar heating, etc. Each disturbance may be
minor, but the change it creates will increase geometrically with time. Soon, the weather
will be far different than what was expected. With fractal geometry we can visually model
much of what we witness in nature, the most recognized being coastlines and mountains.
Fractals are used to model soil erosion and to analyze seismic patterns as well.

10.1.2. [53] Fractals in Astronomy
Fractals will maybe revolutionize the way that the universe is seen. Cosmologists usually
assume that matter is spread uniformly across space. But observation shows that this is not
true. Astronomers agree with that assumption on "small" scales, but most of them think
that the universe is smooth at very large scales. However, a dissident group of scientist’s
claims that the structure of the universe is fractal at all scales.
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10.1.3. Fractals in Computer Science
The biggest use of fractals in everyday live is in computer science. Many image
compression schemes use fractal algorithms to compress computer graphics to less than a
quarter of their original size [57]. Actually, the most useful use of fractals in computer
science is the fractal image compression. This kind of compression uses the fact that the
real world is well described by fractal geometry. By this way, images are compressed
much more than by usual ways (e.g.: JPEG or GIF file formats). Another advantage of
fractal compression is that when the picture is enlarged, there is no pixelisation. The
picture seems very often better when its size is increased [53].

10.1.4. [53] Fractals in Fluid Mechanics
The study of turbulence in flows is very adapted to fractals. Turbulent flows are chaotic
and very difficult to model correctly. A fractal representation of them helps engineers and
physicists to better understand complex flows. Flames can also be simulated. Porous
media have a very complex geometry and are well represented by fractal. This is actually
used in petroleum science.

10.1.5. [53] Fractals in Surface Physics
Fractals used to describe the roughness of surfaces. A rough surface characterized by a
combination of two different fractals.

10.1.6. [54] Fractals in Physiology and Medicine
The nonlinear fractals provide insights into the organization of complex structures such as
the tracheobronchial tree and heart as well as into the dynamics of healthy physiological
variability. Alterations in fractals scaling may underlie a number of pathophysiological
disturbances, including sudden cardiac death syndromes. Also biosensor interactions can
be studied by using fractals.

10.1.6.1. [55] Fractals in Physiology
Some of the most visually striking examples of fractal forms are found in physiology such
as the respiratory, the circulatory, and the nervous systems are remarkable instances of
fractal structure, branches subdividing and subdividing and subdividing again. Careful
analysis of the lung reveal fractal scaling, and it has been noted that this fractal structure
makes the lungs more fault-tolerant during growth.

10.1.6.2. [56] Fractals in Biological Time Series
The fractal concept can be applied not just to irregular geometric forms that lack a
characteristic (single) scale of length, but also to certain complex processes generate
irregular fluctuations across multiple time scales, analogous to scale-invariant objects that
have a branching of wrinkly structure across multiple length scales. The irregularity seen
on different scales is not readily distinguishable, suggesting statistically self-similarity.
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10.1.7. [53] Fractals in Telecommunications
A new application is fractal-shaped antenna that reduces greatly the size and the weight of
the antennas. The benefits depend on the fractal applied, frequency of interest, and so on.
In general, the fractal parts produce ‘fractal loading’ and make the antenna smaller for a
given frequency of use. Practical shrinkage of 2-4 times are realizable for acceptable
performance. Surprisingly high performance is attained.

10.2. Some Applications of Fractals by Renowned Mathematicians

10.2.1. Fractals and Cancer [James W. Baish, and Rakesh K. Jain, 2000]
Abstract: Recent studies have shown that fractal geometry, a vocabulary of irregular
shapes, can be useful for describing the pathological architecture of tumors and, perhaps
more surprisingly, for yielding insights into the mechanisms of tumor growth and
angiogenesis that complement those obtained by modern molecular methods. This article
outlines the basic methods of fractal geometry and discusses the value and limitations of
applying this new tool to cancer research.

10.2.2. Microbial Growth Patterns described by Fractal Geometry [M Obert, P
Pfeifer and M Sernetz, 1990]
Abstract: Fractal geometry has made important contributions to understanding the growth
of inorganic systems in such processes as aggregation, cluster formation, and dendritic
growth. In biology, fractal geometry was previously applied to describe, for instance, the
branching system in the lung airways and the backbone structure of proteins as well as
their surface irregularity. This investigation applies the fractal concept to the growth
patterns of two microbial species, Streptomyces griseus and Ashbya gossypii. It is a first
example showing fractal aggregates in biological systems, with a cell as the smallest
aggregating unit and the colony as an aggregate. We find that the global structure of
sufficiently branched mycelia can be described by a fractal dimension, D, which increases
during growth up to 1.5. D is therefore a new growth parameter. Two different box-
counting methods ( one applied to the whole mass of the mycelium and the other applied
to the surface of the system) enable us to evaluate fractal dimensions for the aggregates in
this analysis in the region of D = 1.3 to 2. Comparison of both box-counting methods
shows that the mycelial structure changes during growth from a mass fractal to a surface
fractal.

10.2.3. Fractals in the Nucleus [James G McNally and Davide Mazza, 2009]
Abstract: Fractals are “self-similar” meaning that they exhibit similar fine-scale features at
many magnifications. Over 20 years ago it was argued that folded polymers, including
chromatin, should be fractals. The rationale was that as a polymer condenses it is
repeatedly subject to the same constraints. Specifically, polymer strands as well as
partially folded clumps of the polymer are all impenetrable. Thus, through the self-similar
process of crumpling, the resultant condensed polymer becomes a fractal. This ‘fractal
globule’ structure, as it is called, has advantages because it provides an efficient means to
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package a long polymer in a small volume without entanglements. This facilitates
unraveling the polymer when necessary, for example to gain access to specific DNA
segments for transcription, replication or repair.

10.2.4. Fractal Geometry of Airway Remodeling in Human Asthma [Stacey R. Boser,
Hannah Park, Steven F. Perry, Margaret G. Ménache and Francis H. Y. Green, 2005]
Rationale: Airway wall remodeling is an important aspect of asthma. It has proven
difficult to assess quantitatively as it involves changes in several components of the airway
wall.
Objective: To develop a simple method for quantifying the overall severity of airway wall
remodeling in asthmatic airways using fractal geometry.
Methods: Negative-pressure silicone rubber casts of lungs were made using autopsy
material from three groups: fatal asthma, nonfatal asthma, and nonasthma control. All
subjects were lifelong nonsmokers. A fractal dimension was calculated on two-
dimensional digital images of each cast.
Results: Nonasthma control casts had smooth walls and dichotomous branching patterns
with nontapering segments. Asthmatic casts showed many abnormalities, including airway
truncation from mucous plugs, longitudinal ridges, and horizontal corrugations
corresponding to elastic bundles and smooth muscle hypertrophy, respectively, and
surface projections associated with ectatic mucous gland ducts. Fractal dimensions were
calculated from digitized images using an information method. The average fractal
dimensions of the airways of both the fatal asthma and nonfatal asthma groups were
significantly lower than that of the nonasthma control group. The lower fractal dimension
of asthmatic airways correlated with a decreased overall structural complexity and
pathologic severity of disease.

10.2.5. Image Compression: A study of the iterated transform method [E.W. Jacobs,
Y. Fisher and R. D. Boss, 1992]
Abstract: This paper presents result from an image compression scheme based on iterated
transforms. Result are examined as a function of several encoding parameters including
maximum allowed scale factor, number of domains, resolution of scale and offset values,
minimum range size, and target fidelity. The performance of the algorithm, evaluated by
means of fidelity versus the amount of compression, is computed with an adaptive discrete
cosine transform image compression method over a wide range of compression.

10.2.6. Image Coding Based on a Fractal Theory of Iterated Contractive Image
Transformations [Amaud E. Jacquin, 1992]
Abstract: The conception of digital image coding techniques is of great interest in various
areas concerned with the storage of transformation of images. For the past few years, there
has been a tendency to combine different classical coding techniques in order to obtain
greater coding efficiency.
This paper presents an independent and novel approach to image coding, based on a fractal
theory of iterated transformations. The main characteristic of this approach are that (i) it
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relies on the assumption that image redundancy can be efficiently exploited through self-
transformability on a block-wise basis, and (ii) it approximates an original image by a
fractal image. We therefore, refer to our approach as fractal block coding.
The coding-decoding system is based on the construction, for an original image to encode,
or a specific image transformation-a fractal code-which, when iterated on any initial
image, produce a sequence of images which converges to a fractal approximation of the
original. We show how to design such a system for the coding of monochrome digital
image at rates in the range of 0.5-1.0 b/pixel. Our fractal coder has performance
comparable to state-of-the-art vector quantizers, with which it shares some aspect.
Extremely promising coding results are obtained.

10.2.7. Fractals Block Coding Method Based on Iterated Function Systems
Following H. W.  Tin, S. W. Leu, H. Sasaki, S. H. Chang [58]. Mandelbrot based the idea
of self-similarity and demonstration how “fractal” sets could be regarded as limits of
iteration involving generators in [59]. In other words, a fractal object is an object which
can be assembled by its subdivided parts similar to the whole exactly or statistically. This
concept leads to the creation of a class of fractal image coding methods. The first fractals
block coding pioneered by Jacquin [60] and Barnsley [61, 62]. The fractal block coding
seeks to approximate the image based on the sub blocks of that image. The basic theory of
Jacquin’s block coding method is described as follows:
Let I be a grayscale image. In fractal block coding, image I is partitioned into non-

overlapping range blocks ,,,2,1, NiRi  so that iRI  and domain blocks

,,,2,1, MjID j  where the size of each domain block is larger than that of each

range block. To encode an image, each range block will find a domain block most similar
to itself from the domain pool, in which the finding is based on minimum mean-squared

error criteria. The search is performed with an affine transformation ,iw such that

iji RDw : where jD is the best matched domain block. A common form of the

transformation is shown as:




































i

i

ii

ii
i f

e

y

x

dc

ba

y

x
w (1)

where iii cba ,, and id control rotation and scaling, while ie and if control linear

translation.

Put a constrain to the transformation iw for contraction so that for any two points 1p and

,2p the distance d between two points should fulfill the following inequality:

),(())(),(( 2121 ppdpwpwd ii  (2)

where  is a coefficient and .1 To encode an image would start from performing the
transformation on domain block for a range block based on equation (1) and (2) it derives
the following

0)( cDDw jji   (3)
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where 0c is a coefficient. Theoretically, the union of the affine transformations for all

range blocks will form the affine transformation for the whole image as expressed in the
following equation [62, 63].


N

i
iw

1

 (4)

The encoding method would seek for a transformation of domain block to the best
approximation of a selected range block. To determine the and for exactly transformation
on each domain block, it should find the minimum distance between range block and
domain block.

 
mn mnjmni DR

, ,, ))(()(min  (5)

where n and m are size of blocks, usually are set to 2 or 4. The encoding method uses the
following distance equation to compare the range block with domain block for
determining the best matching:

2))(()),(( ijij RDRDd    (6)

Image encoding is achieved by recording the , the minimal distance, and the respect .jD

Fractal codes recorded in the codebook can later be used in approximating the range.
To decode the image, the coding method would perform the transformation iteratively on

some initial image init stored in the code book until the encoded image is restored.

The decoding process for k th iteration is described as follows:

)()(  k

where  is the transformation and  is the ensemble function to assemble the

transformation.

10.2.8. Iterated Function Systems Controlled by a Semi-Markov Chain (Orjan
Stenplo, 1996)

Abstract: In this paper we consider a finite set of maps ,:},,,{ 21 XXwwww im  where

X is a complete metric space, together with a sequences }{ nI of random variables taking

values in the finite set }.,,2,1{ m This sequence controls the dynamic system

.01 iin wwZ
n




 The case where }{ nI is a sequence of independent, identically

distributed random variables (or a homogeneous Markov chain) is usually referred to as an
iterated function system IFS (or a recurrent IFS). In the present paper, we consider the
more general case when the controlling sequence is a semi-Markov chain. Under “average
contractivity” conditions, we obtain some ergodic theorems. In applications, these class
may broaden the class of images which can be created using iterated function systems.
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10.2.9. [64] Five Vertices and a Compression Factor of 2.5 (Pentaflake)
Suppose we play the chaos game with the five vertices of a regular pentagon. Using a
compression of 2.5, which is midway between 3 and 2.
Based on the location and the number of vertices, we should expect to see a figure that has 5
self-similar copies with compression factor of 2.5; 25 self-similar copies with compression
factor of 6.25; etc. If the compression factor were 2, each of the smaller self-similar copies
would overlap its neighbors. With a compression factor of 2.5, however, a gap will be left
between corresponding sides of the copies. Since 1/2.5 = 0.4, if we let the length of the side of the
original pentagon be 1 unit, each of the 5 "largest" self-similar copies will extend for 0.4 units
along one of the original sides; the gap between the copies will have length 0.2, as shown in the
diagram. We note that the small pentagons have a small overlap. We may change the compression
factor to 2.7 to eliminate these overlaps.

0.2

The result of playing this chaos game is pictured at right. Here we note that, because of the
overlaps described before, there are also some small overlaps in this image.
Again, we may find it helpful to use Fractalina to see the resulting attractor. Though it is
fairly easy to estimate coordinates for the vertices of a regular pentagon, finding those points
exactly might prove to be an interesting challenge.

0 iteration 1st iteration 2nd iteration 3rd iteration
Figure 10.1 Compression of Pentagon
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APPENDIX

ALGORITHMS OF FRACTALS

OVERVIEW
In this appendix, we have presented several programs of Mathematica and MatLab that
will enable to display the images of the fractals found in this thesis paper.

11.1. Programs of Two-Dimensional Fractals

11.1.1. The following Mathematica program produces the image of the Sierpinski
triangles.

Mathematica Program:
f[1]={{{0,0},{1,0},{0.5,0.8661}},6};
i=1;
g={};
While[i!=0,k=f[i][[1]];
n=f[i][[2]];
i--;
If[n!=0,g=Join[g,k];
{f[i+1],f[i+2],f[i+3]}=({{#1,Mean[{#1,#2}],Mean[{#1,#3}]},n-

1}&@@#)&/@NestList[RotateLeft,k,2];
i=i+3]]

Show@Graphics[{EdgeForm[Thin],Black,Polygon@g}]

11.1.2. The following Mathematica program produces the image of the Von Koch curve.

Mathematica Program:
(*carry out the forward and backward moves and the various
rotations by updating the global location'Lpos' and
direction
angle'Ltheta'.*)Lmove[z_String,Ldelta_]:=Switch[z,"+",Ltheta
+=Ldelta;,"-",Ltheta-
=Ldelta;,"F",Lpos+={Cos[Ltheta],Sin[Ltheta]},"B",Lpos-
={Cos[Ltheta],Sin[Ltheta]},_,Lpos+=0.];LSystem::usage="LSyst
em[axiom, {rules}, n, Ldelta:90 Degree] creates the L-string
for the nth iteration of the list 'rules', starting with the
string 'axiom'.";(*make the string:starting with'axiom',use
StringReplace the specified number of
times*)LSystem[axiom_,rules_List,n_Integer,Ldelta_:N[90
Degree]]:=Nest[StringReplace[#,rules]&,axiom,n];Off[General:



Dhaka University Institutional Repository

Appendix 140

:spell1];(*initialize the position'Lpos' and the direction
angle'Ltheta';create the Line graphics primitive represented
by the L-system by mapping'Lmove' over the characters in the
L-string,deleting all the Nulls;then show the Graphics
object*)LShow[lstring_String,Ldelta_:N[90
Degree]]:=(Lpos={0.,0.};Ltheta=0.;Show[Graphics[Line[Prepend
[DeleteCases[Map[Lmove[#,Ldelta]&,Characters[lstring]],Null]

,{0,0}]]],AspectRatioAutomatic]);(*same as above,plus a

list of colors for each segment contained in'templist'--
unfortunately,'templist' isn't really'temp',but stays in
memory as a global variable;so sue
me*)LShowColor[lstring_String,Ldelta_:N[90
Degree]]:=(Lpos={0.,0.};Ltheta=0.;templist=Map[Line,Partitio
n[Prepend[DeleteCases[Map[Lmove[#,Ldelta]&,Characters[lstrin
g]],Null],{0,0}],2,1]];ncol=N[Length[templist]];huelist=Tabl
e[Hue[k/ncol],{k,1.,ncol}];Show[Graphics[N[Flatten[Transpose

[{huelist,templist}]]]],AspectRatioAutomatic]);On[General::
spell1];LShowColor[(*Koch curve*)LSystem["F",{"F""F+F--
F+F"},4],N[60 Degree]];

11.1.3. The following MatLab program produces the image of the Sierpinski carpet.

MatLab Program:
b0=logical([1 1 1;1 0 1;1 1 1]);
for n=1:5 %don't exceed 6 because of expanding array inside loop

x=logical(zeros(3^n));
b0=[b0 b0 b0;b0 x b0;b0 b0 b0];

end
imagesc(b0),colormap(gray(2));
imwrite(bn,'sierpinski1.png','png','bitdepth',1);

11.1.4. The following Mathematica program produces the image of the square fractal.

Method: First we find the points of attractor of IFS, then we use the Mathematica tools for
the image of the square fractal.

vertices1={{0,0},{1,0},{1,1},{0,1},{0,0}};
p=Graphics[{Black,Polygon[vertices1]}];

Show[p,AspectRatioAutomatic]
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p= Graphics@8Black,Polygon@vert1D<D;
q= Graphics@8Black,Polygon@vert2D<D;
s= Graphics@8Black,Polygon@vert4D<D;
t= Graphics@8Black,Polygon@vert5D<D;
Show@p,q,s,t, AspectRatio® AutomaticD;



Dhaka University Institutional Repository

Appendix 142

ver11=980,0<,91
9
,0=,91

9
,
1

9
=,90, 1

9
=,80,0<=;

ver12=992
9
,0=,91

3
, 0=,91

3
,
1

9
=,92

9
,
1

9
=,92

9
,0==;

ver13=991
3
,
1

3
=,92

9
,
1

3
=,92

9
,
2

9
=,91

3
,
2

9
=,91

3
,
1

3
==;

ver14=990, 1

3
=,91

9
,
1

3
=,91

9
,
2

9
=,90, 2

9
=,90, 1

3
==;

ver21=996
9
,0=,97

9
, 0=,97

9
,
1

9
=,96

9
,
1

9
=,96

9
,0==;

ver22=998
9
,0=,81,0<,91, 1

9
=,98

9
,
1

9
=,98

9
,0==;

ver23=996
9
,
2

9
=,97

9
,
2

9
=,97

9
,
1

3
=,96

9
,
1

3
=,96

9
,
2

9
==;

ver24=998
9
,
2

9
=,91, 2

9
=,91, 1

3
=,98

9
,
1

3
=,98

9
,
2

9
==;

ver41=990, 6

9
=,91

9
,
6

9
=,91

9
,
7

9
=,90, 7

9
=,90, 6

9
==;

ver42=992
9
,
6

9
=,91

3
,
6

9
=,91

3
,
7

9
=,92

9
,
7

9
=,92

9
,
6

9
==;

ver43=992
9
,
8

9
=,91

3
,
8

9
=,91

3
,1=,92

9
,1=,92

9
,
8

9
==;

ver44=990, 8

9
=,91

9
,
8

9
=,91

9
,1=,80,1<,90, 8

9
==;

ver51=996
9
,
6

9
=,97

9
,
6

9
=,97

9
,
7

9
=,96

9
,
7

9
=,96

9
,
6

9
==;

ver52=998
9
,
6

9
=,91, 6

9
=,91, 7

9
=,98

9
,
7

9
=,98

9
,
7

9
==;

ver53=996
9
,
8

9
=,97

9
,
8

9
=,97

9
,1=,96

9
,1=,96

9
,
8

9
==;

ver54=998
9
,
8

9
=,91, 8

9
=,81,1<,98

9
,1=,98

9
,
8

9
==;

p1=Graphics[{Black,Polygon[ver11]}];
p2=Graphics[{Black,Polygon[ver12]}];
p3=Graphics[{Black,Polygon[ver13]}];
p4=Graphics[{Black,Polygon[ver14]}];
q1=Graphics[{Black,Polygon[ver21]}];
q2=Graphics[{Black,Polygon[ver22]}];
q3=Graphics[{Black,Polygon[ver23]}];
q4=Graphics[{Black,Polygon[ver24]}];
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s1=Graphics[{Black,Polygon[ver41]}];
s2=Graphics[{Black,Polygon[ver42]}];
s3=Graphics[{Black,Polygon[ver43]}];
s4=Graphics[{Black,Polygon[ver44]}];
t1=Graphics[{Black,Polygon[ver51]}];
t2=Graphics[{Black,Polygon[ver52]}];
t3=Graphics[{Black,Polygon[ver53]}];
t4=Graphics[{Black,Polygon[ver54]}];
Show[p1,p2,p3,p4,q1,q2,q3,q4,s1,s2, s3,s4,t1,t2,t3,t4,AspectRatioAutomatic];

11.2. Programs of Three-Dimensional Fractals

11.2.1. The following Mathematica program produces the image of the Menger sponge.

Mathematica Program:
iters = 3. (* change iters to 2 if you're short on time or RAM;

if anyone runs it with iters=4, I'd like to see
the result. *);

side = 3. ^ iters ; cubmat (* cuboid-matrix, that is *) =
Table[
If[i==side + 1. || j==side + 1. || k==side + 1.,

(* Pad the table's edges with zeroes; if you want
to see the complement of the sponge, transpose
the 0. and 1. directly below. *)

0., 1.],
{i,1.,side + 1.},{j,1.,side+1.},{k,1.,side+1.}];

Do[ If[

(Mod[Round[i/3.^n + 0.5],3]==2 &&
(Mod[Round[j/3.^n + 0.5],3]==2 ||

Mod[Round[k/3.^n + 0.5],3]==2)) ||
(Mod[Round[j/3.^n + 0.5],3]==2 &&

(Mod[Round[i/3.^n + 0.5],3]==2 ||
Mod[Round[k/3.^n + 0.5],3]==2)) ||

(Mod[Round[k/3.^n + 0.5],3]==2 &&
(Mod[Round[i/3.^n + 0.5],3]==2 ||

Mod[Round[j/3.^n + 0.5],3]==2)),
(* then--taking advantage of eightfold symmetry--... *)
(cubmat[[i,j,k]]=0.;
cubmat[[side+1-i,j,k]]=0.;
cubmat[[i, side+1-j,k]]=0.;
cubmat[[i,j,side+1-k]]=0.;
cubmat[[side+1-i, side+1-j,k]]=0.;
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cubmat[[side+1-i,j,side+1-k]]=0.;
cubmat[[i, side+1-j, side+1-k]]=0.;
cubmat[[side+1-i,side+1-j,side+1-k]]=0.;)
(* ...no cuboid goes there *)],

{i,(side+1)/2},{j,(side+1)/2},{k,(side+1)/2},
{n,0.,iters-1.}]

faces = {};
(* Instead of using the Cuboid graphics primitive,

we show only the polygons visible from
viewpoints in the default octant. *)

Do[
If[ cubmat[[i,j,k]]==1. && cubmat[[i,j,k+1.]]==0.

(* That is, if a face belongs at {i,j,k}
and there's nothing hiding it, add the
appropriate polygon to the list. *),

AppendTo[ faces,
(* cuboid tops... *)
{{i,j,k+1.},{i,j+1.,k+1.},

{i+1.,j+1.,k+1.},{i+1.,j,k+1.}}] ],
{i,1.,side},{j,1.,side},{k,1.,side} ]; (* Since the figure looks the same regardless of

which axis
is vertical, the polygon-corner list "faces" is computed
only for the tops of the cuboids, then rotated twice to get
lists of sides and fronts. *)

faces = Join[ faces (*tops*),
(*sides *)Map[ RotateLeft[#,2]&,faces,{2}],
(*fronts*)Map[

RotateLeft[#,1]*{1,-1,1}+{0,side+2,0}&,
faces,{2}]];

Show[Graphics3D[ {EdgeForm[], Map[ Polygon, faces ]}], Boxed->False]
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11.3. Programs of Fractals in the Complex Plane

11.3.1. The following MatLab program produces the image of the Filled Julia set in the
complex plane.

MatLab Program:
%%% Compute and draw the Julia set
clear;
clc;

%%% Parameters
c = 0.27+0.53i;          % complex number
niter=100;               % number of iterations
th=10;                   % threshold to determine divergence
v=1000; % resolution (<-> number of points to compute)

%%% Initialisation
r = max(abs(c),2);     % radius of the circle beyond which every point diverges
d = linspace(-r,r,v);  % divide the x-axis
Z = ones(v,1)*d+i*(ones(v,1)*d)';   % create the matrix A containing complex
numbers
C = zeros(v,v);  % Julia set point matrix

%%% Compute the julia set
for k = 1:niter

Z = Z.*Z+ones(v,v).*c;
C = C+(abs(Z)<=r);

end
%%% Figurefigure(1)
clf;
imagesc(C);
colormap(jet);
hold off;
axis equal;
axis off;

11.3.2. The following Mathematica program produces the image of the Mandelbrot set in a
square region in the complex plane.

Mathematica Program:
Mandelbrot[c_]:=Module[{z=0,i=0},While[i<100&&Abs[z]<2,z=z^2
+c;i++];i];
DensityPlot[Mandelbrot[xc+Iyc],{xc,-2,1},{yc,-

1.5,1.5},PlotPoints275,MeshFalse,FrameFalse,ColorFuncti
on(If[#1,Hue[#],Hue[0,0,0]]&)]
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11.3.3. The following MatLab program produces the image of the Mandelbrot set.

MatLab Program:
%% The Mandelbrot set

x  =  linspace(-1.5,1.5,2000);
y  =  linspace(-1.5,1.5,2000);

len_x =  length(x);
len_y =  length(y);
iter =  100;  %number of iterations
xnew =  0;
ynew =  0;

a =  0;
b =  0;
xn =  0;
yn =  0;

rough =  0;
c =  zeros(len_y,len_x);

zval =  zeros(len_y,len_x);
h_msg =  msgbox(' Please Wait ',' ');
for n=1:len_y

c(n,:)=y(n)+i*x(:);
end
tic
for m=1:len_x*len_y

a = imag(c(m));
b = real(c(m));
xn = 0;
yn = 0;
k = 0;
while (k<=iter)&&((xn^2+yn^2)<4)

xnew = xn^2 - yn^2 + a;
ynew = 2*xn*yn + b;

xn = xnew;
yn = ynew;
k = k+1;

end
zval(m) = k;

end
toc
close(h_msg);
%you can also try any one of these colormaps
%cmap = flipud(colormap(cool(iter)));
%cmap = flipud(colormap(copper(iter)));
%cmap = flipud(colormap(hot(iter)));
cmap = flipud(colormap(bone(iter)));
%cmap = flipud(colormap(summer(iter)));
%cmap = flipud(colormap(winter(iter)));
%cmap = flipud(colormap(spring(iter)));
%cmap = flipud(colormap(bone(iter)));
colormap(cmap);
image(zval)
axis tight off
%clear x y c
%imwrite(zval,cmap ,'mandel123.png','png') ;
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11.3.4. The following MatLab program produces the image of the complete Fern.

MatLab Program:
%%% Compute and draw the complete Fern

NumOfPts = 10000;
iterations = 50000;
pts = zeros(NumOfPts,2);
for j = 1:NumOfPts

x = rand(1);
y = rand(1);
for i = 1:iterations

p = rand(1);
if p < .01

xn = 0;
yn = .16*y;
x = xn;
y = yn;

elseif p < .08
xn = .2*x-.26*y;
yn = .23*x+.22*y+1.6;
x = xn;
y = yn;

elseif p < .15
xn = -.15*x+.28*y;
yn = .26*x+.24*y+.44;
x = xn;
y = yn;

else
xn = .85*x+.04*y;
yn = -.04*x+.85*y+1.6;
x = xn;
y = yn;

end
end%i
pts(j,1) = x;
pts(j,2) = y;

end%j
xs = pts(:,1);
ys = pts(:,2);
plot(xs,ys,'.','Color','g')
axis([min(xs)*1.5,max(xs)*1.5,min(ys)*1.05,max(ys)*1.05]);
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11.4. The following MatLab program produces the image of the compression pentagon.

MatLab Program:
function recursion
global COLORMAP
golden = 1.618033988749894848204586; %golden ratio
n=4; %depth of recursion
COLORMAP=copper(4);
h=1;
pentaflake(n,0,0,36/180*pi,h);
axis([-3 3 -3 3])
axis equal off
function pentaflake(n,x,y,theta,len)
global COLORMAP

if n>0
golden = 1.618033988749894848204586;
d=len/golden;
h=len;
t=linspace(0+theta,2*pi+theta,5+1);
[offx,offy]=pol2cart(t+18/180*pi,d*(1+golden));%generate points

around middle pentagon
for k=1:5

patch(h*sin(t)+offx(k)+x,h*cos(t)+offy(k)+y,0*cos(t)+4-
n,'r',...
‘facecolor','none','edgecolor',COLORMAP(n,:),'linewidth',n);

pentaflake(n-1,x+offx(k),y+offy(k),theta,len/(golden+1));
end
patch(h*sin(t)+offx(k)+x,h*cos(t)+offy(k)+y,0*cos(t)+4-n,'r',...

'facecolor','none','edgecolor',COLORMAP(n,:),'linewidth',n);
pentaflake(n-1,x,y,pi+theta,len/(golden+1));

end
return
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