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Abstract

Numerical investigations have been carried out to look into the effect of double-diffusion

on laminar flow along vertical flat and cylindrical surfaces. Conventional convective pro-

cesses i.e. natural convection, mixed convection and magnetohydrodynamic (MHD) natural

convection have been considered and six different models are studied deeming oscillating

surface temperature and species concentration boundary conditions. In each case, extensive

parametric simulations are performed in order to elucidate the effects of some important

parameters i.e. Prandtl number, Schmidt number, buoyancy ratio parameter, Straouhal

number, and magnetic parameter on flow field in conjunction with heat and mass transfer.

Different numerical techniques are applied to solve the governing equations. Asymptotic

solutions for low and high frequencies are obtained for the conveniently transformed govern-

ing coupled equations. Solutions are also obtained for wide ranged values of the frequency

parameter.

At the very outset of this dissertation, natural convection flow along vertical flat plate

is considered. The surface temperature and species concentrations are assumed to be of

small amplitude oscillation. In this study, the similar boundary conditions are imposed

for surface temperature and concentration as well as surface heat and mass flux. Finally,

comparative study has been made to find a correlation between these two cases. Compar-

ison between the perturbation solutions and the solutions for the wide ranged values are

made in terms of the amplitude and phase of the shear stress, surface heat transfer and

surface mass transfer coefficient. It has been found that the amplitudes and phase angles

obtained from asymptotic solutions are in good agreement with the finite difference solu-

tions obtained for wide ranged values of the frequency parameter. This simulated results

are validated against some published results.

Flow along a vertical wedge is taken into account and the convective process is deemed

as mixed convection in the subsequent model study. In this study also, the surface tem-

perature and velocity boundary conditions are assumed to be sinusoidal and amplitude of

the oscillation is considered very small. Implicit finite difference method is used to solve

the governing equations of the entire flow field and results obtained from this method are
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compared with the perturbation solutions which are calculated for low and high frequency

regions of the flow field, respectively. To study the parametric effects on the heat transfer

rate, results are calculated in terms of amplitude and phase angles of shear stress and heat

transfer coefficient.

In the next investigation, the preceding model is extended to study heat and mass

transfer simultaneously. In order to take into account the concentration field, another

convection-diffusion equation is added with the governing set of equations and correspond-

ing boundary condition is assumed to be similar to surface temperature boundary condition.

Wide-ranging parametric studies have been carried out and results are presented in both

tabular and graphical forms.

Magnetohydrodynamic (MHD) natural convection flow is investigated considering fluc-

tuating surface temperature and concentration boundary condition. Results obtained in

the present investigation are compared with some other published results and further nu-

merical investigations are accomplished to study the both heat and mass transfer by using

implicit finite difference method. It has been assumed in this study that, in some undis-

turbed flow region, there is an uniform magnetic field making a non-zero angle with it.

Mixed convection flow along horizontal heated cylinder have been considered in the last

two models and full set of Navier-Stokes equations in terms of vorticity and stream function

is solved. Parametric studies have been carried out in these cases and heat and mass trans-

fer rates are observed by calculating the Nusselt number and Sherwood number. In the

first investigation of these type of flow, non-uniform surface temperature and concentration

are considered with no oscillations. After that, the same problem is studied by allowing

small amplitude oscillations in surface velocity, temperature and species concentration. In

both the cases, isothermal lines and isoconcentration contours are drawn to visualize the

temperature and concentration distribution by varying the relevant parameters.

Important findings are listed after each investigation and finally concluding remarks are

brought out based on the overall investigation and understanding. Almost all the cases,

the present simulations are validated either qualitatively or quantitatively by comparing

with some published results.
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Chapter 1

Introduction

1.1 Introduction

Fluid Dynamics is the study of dynamics of things that flow and react. This branch of

science co-relate the theoretical aspects of fluid flow (for both liquid and gas) to the math-

ematical and physical approach. Modern efficient computational skills and technology

enables us to study even the dynamics of very complicated flows. Fluid dynamics offers a

systematic structure which underlies a number of practical disciplines that embraces em-

pirical and semi-empirical laws derived from flow measurement and used to solve practical

problems. The solution to a fluid dynamics problem typically involves calculating various

properties of the fluid, such as velocity, pressure, density and temperature as functions

of space and time. Fluid mechanics, like the study of any other branch of science, needs

mathematical analysis as well as experimentation. The analytical approaches help in find-

ing the solutions to certain idealized and simplified problems, and in understanding the

unity behind apparently dissimilar phenomena. In fact, fluid dynamics study involves such

a large number of fields that have no strict border line. Applications of fluid mechanics

include a variety of machines, ranging from the water-wheel to the airplane. In addition,

the study of fluids provides an understanding of a number of everyday phenomena, such as

why an open window and door together create a draft in a room etc.

Aerospace engineers may be interested in designing airplanes that have low resistance
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Chapter 1. Introduction

and, at the same time, high“lift” force to support the weight of the plane. Civil engineers

may be interested in designing irrigation canals, dams, and water supply systems. Pollu-

tion control engineers may be interested in saving our planet from the constant dumping

of industrial sewage into the atmosphere and the ocean. Mechanical engineers may be in-

terested in designing turbines, heat exchangers, and fluid cooling. Chemical engineers may

be interested in designing efficient devices to mix industrial chemicals. All these works are

highly involved with fluid flow and all of their jobs require a very clear understanding and

knowledge of physics of fluid flow, mathematics in conjunction with engineering. The ob-

jectives of physicists and engineers, however, are not quite separable because the engineers

need to understand and the physicists need to be motivated through applications. Need-

less to say, drastic simplifications are frequently necessary because of the complexity of real

phenomena. The mathematicians help both engineers and physicist by their mathematical

skills and knowledge, they help extensively how to solve or simulate the model equations

so that the physicists can have a clear insight about the flow behavior and the engineers

can apply the model in a most efficient manner. A good under-standing of mathematical

techniques is definitely helpful here, although it is probably fair to say that some of the

greatest theoretical contributions have come from the people who depended rather strong-

ly on their unusual physical intuition, some sort of a“visio” by which they were able to

distinguish between what is relevant and what is not.

By solving the governing equation of the flow, some coefficients, which are important in

practical point of view, are calculated. If the desired quantities are related to some reference

values, then the dimensionless solutions can be obtained. These dimensionless solutions are

dependent only on dimensionless position coordinates and on some other dimensionless val-

ues, which are known as similarity parameters. The knowledge of the relevant coefficients

for a flow problem is of fundamental importance in carrying out modeling. In general,

similar types but smaller in size model is studied first then results are examined in a water

or wind tunnel. Thus the question of the physical similarity of flows arises, and with it the

question of whether the results from modeling can be carried over to full-scale construction.

By introducing the dimensionless quantities in the fundamental set of governing equation-
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Chapter 1. Introduction

s, some very important dimensionless characteristics number appear, these are, Reynolds

number, Froude number, Prandtl number, Eckert number, thermal expansion number etc.

It can be inferred physically similar flows from the flow passing through geometrically sim-

ilar types of flow by examining the above mentioned dimensionless numbers. The main

concern of fluid mechanics is to determine the dependence of the solutions of the equations

of motion on the characteristics numbers. In order to reduce the number of characteristics

number, it is usual to investigate the asymptotic behaviour of the solutions for very large

or very small values of the similarity variables.

To study the flow behavior, heat and mass transfer, (such as in transpiration or dissolu-

tion), phase change (such as in freezing or boiling), chemical reaction (such as combustion),

mechanical movement (such as an impeller turning), and stress or deformation of related

solid structures (such as a mast bending in the wind), computational model is built that

represents a system or device that we want to study. Then we apply the fluid flow physics

to this virtual prototype, and the computational skills produce the outputs of a prediction

of the fluid dynamics.

Fluid normally flows from high velocity to lower, as a result momentum transfer occurs

and one can get the experience of problem of momentum transfer during pressure drop in

systems, determination of flow rate measurements and control, motion of solid particles in

fluids, flow over immersed bodies, flow through porous media and channels, examining rate

of heat and mass transfer between flowing streams and the motion of drops and bubbles.

Two important mechanisms that arise in most transport processes are diffusion and con-

vection. Diffusive flow is caused by the action of density gradients in conjunction with a

gravitational field. In these kind of flow, the driving forces arise not only from tempera-

ture gradients, but also from composition gradients even in an isothermal system etc. In

convective flow, there must be some transfer of thermal energy (species concentration) in

a moving fluid (liquid or gas). Internal stresses, namely , hydrostatic pressure and the

viscous stresses are responsible for momentum transfer to, from or within a fluid. Fluid

flows due to only pressure gradient are relatively easier to study whereas the viscous fluid

flows arises with certain complexities. Velocity gradient in the direction normal to the ve-
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locity itself results into the “shear” which is confined to a thin layer adjacent to the solid

surface along which the fluid flows. Shear layers in which the flow is steady or varies with

time only in a simple way are called laminar shear layers. In the cases, where, though the

external stream may be steady or smoothly varying in time, the velocity within the shear

layer fluctuates irregularly but continuously in magnitude and direction both in time and

in space are called turbulent flows.

It has been observed that heat and mass transfer mechanism are almost similar in na-

ture so that identical mathematical expressions can be made for both. So this advantageous

factor is exploited for studying heat and mass transfer. There also some significant differ-

ences between these two, for example, one of them is the large number of chemical and

physical processes that essentially requires the analysis of mass transfer. The stability of

this type of flow is also depends on the specific chemical system involved as well as on the

temperature and the pressure. Transported particle size of the pure species relative to the

mean free path in the neighboring environment is another influential factor for this kind of

flow. Considering all these factors, study of heat and mass transfer along with velocity field

is classified into three subsequent branches namely, natural convection, forced convection

and mixed convection depending upon the physical system that initiated the motion of the

fluid.

Natural or “Buoyant” or “Free” convection is a very important mechanism that is op-

erative in a variety of environments from cooling electronic circuit boards in computers

to causing large scale circulation in the atmosphere as well as in lakes and oceans that

influences the weather. “Buoyancy force”, due to the density gradient, act as the driving

force in natural convection flow. The presence of some accelerating forces such as appears

from resistance to gravity, or an equivalent force (arising from centrifugal or Coriolis force),

is also important for this kind of flow. In natural convection situations, an important

dimensionless group is the Grashof number which is the ratio of buoyancy force to the vis-

cous force and is denoted as Gr. The Grashof number is related to the Reynolds number,

and in heat transfer, the Prandtl number, plays a significant role. Therefore, in natural

convection heat transfer, we encounter another dimensionless group, called the Rayleigh
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number, abbreviated by Ra, which is the product of the Grashof and Prandtl numbers:

Ra = Gr × Pr = β4TgL3

να
. Here, α is the thermal diffusivity of the fluid and β is the

co-efficient of volumetric expansion.

When the fluid flow occurs due to the effects of some external forces which may be

in the form of pressure differences (created by an external device, fan or pump, then the

convection is termed as forced convection. The fundamental difference between natural

and forced convection flow is being conceived through the governing equations of the two

convection modes. The buoyancy parameter for this type of flow is the ratio of Grashof

number to the Reynolds number, i.e. Gr
Ren

, where n is a positive constant which depends

on the surface heating conditions and flow configuration.

Mixed (combined) convection is a combination of forced and free convection which is

the general case of convection when a flow is determined simultaneously by both an outer

forcing system (i.e., outer energy supply to the fluid-streamlined body system) and inner

volumetric (mass) forces, viz., by the nonuniform density distribution of a fluid medium

in a gravity field. The most vivid manifestation of mixed convection is the motion of the

temperature stratified mass of air and water areas of the earth that the traditionally stud-

ied in geophysics. Moreover, in micro meteorological and industrial applications, fluid flow

along both horizontal and vertical surfaces bounded by an extensive body of fluid due to

free or mixed convection are of significant importance and interest.

1.2 A wide reaching literature review

Flows arising from differences in concentration of material constitution, alone or in con-

junction with temperature effects, are today receiving much attention by researchers. This

is because, such buoyancy effects occur in many processes. Clearly atmospheric flows at

all scales are driven appreciably by both temperature and water concentration differences.

Flows in bodies of water are driven through the comparable effects upon density of temper-

ature, concentration of dissolved materials and suspended particulate matter. Buoyancy

induced convective flow has become isolated as a self-sustained research area not for so

long, so it requires continuous development of mathematical methods to study these prob-

5

Anis
Typewritten text
Dhaka University Institutional Repository



Chapter 1. Introduction

lems and also advanced equipment for solving modern practical problems. The transport

processes due to double diffusion occurs both in nature and many engineering applications.

Some very important examples of engineering applications include chemical reactions in

reactor chamber, chemical vapor deposition of solid layers, combustion of atomized liquid

fuels and dehydration operations in chemical and foundry plants etc. And, therefore, till

today, a number of investigators are interested in the combined buoyancy forces arising

from diffusion due to both thermal and concentration gradients, as this is very important

from practical point of view. Before ensuing to the original work of present dissertation,

an wide spreading literature review is presented here.

1.2.1 Convective flow due to double diffusion

An extensive literature survey on the topic of double diffusive flow has been carried out

by Ostrach et al. (1980) [1], Huppert et al.(1981) [2], Gebhart et al. (1971) [3], Bejan

(1995) [4], Mongruel et al. (1996) [5]. Important information and a frame work of this type

of flow can also be found in the works of these investigators. In their studies, simultaneous

heat and mass transfer in buoyancy induced laminar boundary layer flow along a vertical

plate is studied substantially. The contributions of Turner (1973) [6], Gebhart (1973)

[7], Nakayama (1995) [8], Goldstein and Volino (1995) [9], Hossain et al. [10] etc. are

remarkable and provided basic frame work of studying double diffusive fluid flow problems.

Some complexity arises during solving these problems because of the nonlinear nature of

the governing equations and usually do not allow to use the superposition principal to

solve the governing equations. Good information on recent investigations on the studies of

simultaneous heat and mass transfer in laminar free convection boundary layer flows for

plates can be found in the works of Khair and Bejan [11], in the monograph of Gebhart

et al. [3], Chen Lin and Wu [12]- [13], and Mongruel et al. [5]. In the above studies,

simultaneous heat and mass transfer in buoyancy induced laminar boundary layer flow

along a vertical plate have been considered. Chen, [14] directed his attention towards the

forced convection along vertical and inclined plates for which the plate is either maintained

at a uniform temperature and concentration or subjected to a uniform surface heat and mass

6
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flux. Khair and Bejan [11] (1985) was the first who considered the free convection boundary-

layer along an isothermal vertical surface in a porous medium. They have deliberated the

combined heat and mass transfer effect based on the similarity analysis of Cheng and

Minkowycz [15] (1982). Angirasa et al. [16] (1997) studied numerically the double diffusive

problem along a vertical flat plate. They have considered the porosity of the surface and

has given special attention to the opposing buoyancy effects which are of the same order

of magnitude and unequal thermal and concentration coefficients. S.Hussain et.al [17]

investigated the steady natural convection flow due to combined effects of thermal and

mass diffusion from a permeable vertical flat plate. This study focused on the boundary

-layer regime promoted by the combined events in the permeable surface when the surface

is at a non-uniform temperature, a non-uniform mass diffusion but with a uniform rate of

suction. Natural convection flow through a vertical flat plate with oscillating surface heat

flux was premeditated by Hossain et al. [18] (1998).

1.2.2 Double diffusive flow with oscillating boundary condition

The study of laminar boundary layer flow in presence of an oscillatory potential flow with

a steady mean component was first undertaken by Lighthill [19] (1954). He considered

the effect of small fluctuation in the free stream velocity on the skin friction and the heat

transfer for plates and cylinders by employing the Karman-Pohlhausen approximate inte-

gral method. Nanda and Sharma [20] (1963) and Eshghy et al. [21] (1965) later extended

Lighthill’s theory for free convection flows. Muhuri and Maiti (1967) [22] investigated the

free convection flow and heat transfer along a semi infinite horizontal plate with small am-

plitude surface temperature oscillation about a non zero mean, with the same method that

has been mentioned. The problem of natural convection flow with an oscillating surface

heat flux has been studied by Hossain et al. [23] (1988). Combined heat and mass transfer

above a near-horizontal surface in a fluid saturated media was also studied by Hossain et

al. (1999) [24]. Ackerberg and Phillips [25] found the solutions for the velocity flow field

in presence of small oscillation in surface velocity. They calculated the asymptotic solu-

tions of the boundary layer equations by implementing the matched asymptotic expansions
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method. Furthermore, in their work, the numerical solution to the steady Blasius flow is

also presented.

Less attention has been given to the study of unsteady flow due to double diffusion.

Moreover, only the search of similarity solutions have attracted much attention. This is be-

cause similarity formulation transform easily the transport equations into a set of ordinary

differential equations which can be solved numerically for different values of the parameters

involved. However, some researchers, for example, Khair and Bejan (1985) [11], Trevisan

and Bejan [26] (1987) set out a frame work to solve non similarity solutions for depicting

heat and mass transfer with great success. Mongruel et al. (1996) [5], as stated earlier

of this chapter, have proposed a novel method to solve double diffusive boundary layer

flow over a vertical flat plate. They considered a vertical flat plate which is immersed in

a viscous fluid or in a fluid-saturated porous medium. They proposed the integral bound-

ary layer equations and scaling analysis approach. Hossain et al. [27] (2001) presented

the results of unsteady natural convection flow along vertical flat plate subjected to the

oscillatory boundary conditions on both surface temperature and species concentration. In

their work, it is assumed that both the surface temperature and species concentration have

small amplitude temporal oscillations with non-zero means. The mean temperature and

mean species concentration are assumed to vary as a power of n of the distance measured

from the leading edge. Numerical calculations were carried out by applying different tech-

niques and results were compared in terms of amplitude and phase angles of heat and mass

transfer coefficient.

1.2.3 Flow along wedges and boundary layer control

Ishigaki published a series of papers [28]- [32] on unsteady laminar boundary layer flow in

the presence of free-stream oscillations. He investigated the time-mean characteristics of the

periodic boundary layer near a two-dimensional stagnation point [28]. Later, Ishigaki, [29]

focused on the temperature field in the laminar boundary layer near a two-dimensional

stagnation point due to main-stream oscillation. He observed a time-mean modification in

the temperature field through two effects, such as, the heat convection by the secondary
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flow induced by the oscillation which consists in the nonlinearity of the governing equa-

tion, and the other effect results from the combined influence between the fluctuations of

velocity and temperature. Ishigaki [30] theoretically examined the effect of oscillation on

the time-mean skin friction and surface temperature of an insulated flat plate, taking into

account the fluctuating stream velocity and the viscous dissipation in kinetic energy. In

the subsequent study of the author [31], the oscillating heat transfer mechanism was in-

vestigated assuming the previous problem while the plate is kept at constant temperature

instead of being insulated.

It was noted that the analysis is applicable to the fluctuations in relative velocity that

arise from oscillations of a body parallel to a steady oncoming stream and when a body

having variable speed as well as constant orientation and direction moves through a fluid at

rest. Using this concept, Glauert [33] examined the laminar boundary layer on oscillating

plates and cylinders. A comprehensive description shows how the results for a flat plate

can be used to illustrate the boundary layer in the neighbourhood of the front stagnation

point on a cylinder making transverse or rotational oscillations.

From a practical point of view, the flow oscillation is seen not only along the horizontal

and vertical plate but also in an inclined plate or wedge-type flow. Gersten [35] theoreti-

cally investigated the time-mean heat transfer in a wedge-type flow with small amplitude

oscillation and found that the time-mean heat-transfer rate is smaller than that without

oscillation. Kumari and Gorla [36] carried out a boundary layer analysis considering the

combined convection along a vertical non-isothermal wedge embedded in a fluid-saturated

porous medium. Hossain et al. [37] examined a steady two dimensional laminar forced

flow of a viscous incompressible fluid past a horizontal wedge with uniform surface heat

flux. A steady mixed convection boundary layer flow over a vertical wedge with the ef-

fect of magnetic field embedded in a porous medium was studied by Kumari et al. [38].

Kandasamy et al. [39] presented the effects of variable viscosity and thermophoresis on

magneto-hydrodynamics mixed convective heat and mass transfer past a porous wedge

in the presence of chemical reaction. However, it should be mentioned here that Nanda

and Sharma [20] first analyzed the free convection laminar boundary layers on a flat plate
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assuming the oscillating plate temperature and isothermal free-stream. Also, the free con-

vection flow and heat transfer from a semi-infinite vertical plate moving arbitrarily in its

own plane and having variable surface temperature was examined by Sinha and Singh [40].

Roy et al. [41] studied the mixed convection flow due to surface temperature and free stream

velocity oscillations along a vertical wedge. In this paper, parametric studies were carried

out and the effects of some important parameters, i.e. Richardson number, Prandtl number

on the amplitude and phase angles of skin friction were elucidated. Results obtained from

different numerical techniques were also compared and good agreement were found to be

noted.

The importance of suction and blowing in controlling the boundary-layer thickness and

the rate of heat transfer has motivated many researchers to investigate its effects on forced

and free convection flow. Flow control play very important role in combustion chamber of

a aircraft and usually transpiration is the way to control the flow. Clarke and Riley [62]

deliberated this kind of flow along a heated horizontal surface. Eichhorn [42] (1960) was

the first to consider power law variations in the plate temperature and transpiration ve-

locity, and gave similarity solutions of the problem. Sparrow and Cess [43], discussed the

case of constant plate temperature and transpiration velocity distributions in powers of

x1/2, where x is the distance in the stream wise direction measured from the leading edge.

Later, Merkin [44], Parikh et al. [45] presented numerical solutions for free convection heat

transfer with blowing along an isothermal vertical flat plate. Hartnett and Eckert [46],

Sparrow and Starr [47] reported the characteristics of heat transfer and skin friction for

pure forced convection with blowing; the former dealt with a similar solution and the later

with non similar one. Solutions of the problem on natural convection flow with arbitrary

transpiration velocity were obtained by Kao [48], applying Meksin transformations. Free

convection flow along a vertical plate with arbitrary blowing and wall temperature has

also been investigated by Vedhanayagam et. al [49]. Lin and Yu [50] investigated the free

convection flow over a horizontal plate, considering temperature and transpiration rates

both of which followed power law variations. Tsuruno and Iguchi [51] were the first to

predict the effects of uniform blowing on combined forced and free convection heat transfer
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along a vertical isothermal plate, using methods similar to that of Terril [52], paying special

attention to clarification of the limit between the combined convection and the effectively

pure (either forced and free) convection region of flow. Kelleher and Yang [53] used se-

ries expansion technique to present the result for laminar free convection flow in presence

of variable surface temperature along heated vertical flat plate. The efficient coordinate

transformation procedure was adopted by Yang [54] and subsequently Merk-type series was

applied to solve the problem along an inclined surface. Mixed convection flow of viscous

incompressible fluid along a vertical permeable plate under the combined effects of thermal

and mass diffusion and subjected to uniform wall temperature and species concentration

has greatly fascinated the researchers and engineers due to its versatile applications. Hos-

sain [55] studied the effect of uniform transpiration rate on the heat and mass transfer

characteristics. In this analysis, the author considered the transpiration parameter of the

type, given by : V0 =
(
Vw
U0

)√
Rex
ξ

which is the ratio of the transpiration rate
(
Vw
U0

)√
Rex

and
√
ξ, where ξ is the mixed convection parameter that represents the thermal buoyan-

cy effect, U0 is the free stream velocity and Vw is the transpiration velocity at the plate.

Hossain et al. [56] investigated the steady natural convection flow due to combined effects

of thermal and mass diffusion from a permeable vertical flat plate. This study focused

on the boundary -layer regime promoted by the combined events in the permeable surface

when the surface is at a non-uniform temperature, a non-uniform mass diffusion but with

a uniform rate of suction. Kimura and Bejan [57] developed the idea of heat and mass

lines which can be very effectively used to visualize the path followed by heat and mass

within the boundary layer. This concept can be used as a very useful tools to analyze the

convective heat and mass transfer. Trevisan and Bejan [26] used this idea to depict the

mass transfer in a rectangular enclosure. Unsteady natural convection flow in a cylindrical

enclosure was also studied by Aggarwal and Manhapra , [58]. They have also applied the

concept of heat lines to analyze the heat transfer phenomena. Mulaweh [59] presented a

comprehensive review of the flow and heat transfer results of single-phase laminar mixed

convection flow over vertical, horizontal and inclined backward-and forward-facing steps

that have been published in different sources. The main perseverance of his study is to give
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a detailed summary of the effect of several parameters such as, Prandtl number, Reynolds

number, inclination angle, expansion ratio, step height, temperature difference between the

heated wall and the free stream, and buoyancy force (assisting and opposing) on the flow

and thermal fields downstream of the step. To measure the reattachment lengths of the

recirculation regions that may develop upstream and/or downstream of the step are also

noted in this review paper.

1.2.4 Magnetohydrodynamic (MHD) convective flow

Continuous development of MHD flow is opening new horizon to the technical development.

Most recent research have been conducting in MHD flow so that it can be used in seawater

propulsion and control of turbulent boundary layers to reduce drag. MHD applies quite

well to astrophysics and cosmology. Because of wide range of practical applications, MHD

flow has drawn significant attention by many researchers. Hossain and Mandal [60] (1986)

investigated the effect of mass transfer and free convection on the unsteady MHD flow

past a vertical plate with constant suction. Later on, the same problem considering vari-

able suction was also investigated by the same authors. Fundamental directions of MHD

natural convection flow along vertical flat plate can be obtained from the papers of Singh

and Cowling [61], Riley [62], and Kuiken [63]. Singh and Cowling and Riley discovered

that the major (outer) part of the flow in presence of strong cross magnetic field can be

illustrated by Blasius’s equation with appropriate boundary conditions for a moving plate

while the fluid is at rest. The effects of transverse magnetic field on the natural convection

flow due to osciallting surface heat flux was imposed by Kelleher and Yang (1968) [53]

and more recently this was also premeditated by Hossain et al. [69] (1998). The problems

involving magnetohydrodynamic natural convection flow of an electrically conducting fluid

in presence of strong cross field due to surface heat flux have been discussed elaborately

in many literatures. Very recently, Palani and Srikanth [64] investigated the MHD natural

convection flow field due to double diffusion. They have considered the flow past a semi

infinite vertical flat plate in presence of a magnetic field which was applied uniformly in

transverse direction of the flow. Implicit finite difference method was applied to simulate
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the flow field and the value of the parameter Pr was chosen as 0.7 and 7.0 which represents

the air and water respectively. S.Siddiqa and Hossain [65] studied the effects of thermal

radiation on free convection flow of electrically conducting and optically dense gray fluid

in a strong cross magnetic field. This types of flow occurs in space technology and pro-

cesses involving high temperatures. In recent times S. Siddiqa et al. [66] studied the MHD

flow field in presence of uniform surface temperature, surface concentration and also with

uniform surface heat and mass flux. Free variable formulation (FVF) and stream function

formulation (SFF) were applied in these work to transform the governing equations and

finally the numerical solutions were obtained by applying the Thomas algorithm. The

main objective of their work was to observe the boundary layer behavior of electrically

conducting fluid in the strong cross field by taking into consideration of liquid metals. In

their work, it has also been drawn both the heat flux lines and mass flux lines so that the

path followed by heat and mass can be elucidated within the boundary layer. Hossain et

al. [68] (1985), studied the effects of viscous dissipation and free convection currents on the

flow of an electrically conducting fluid. In their work, it has been produced the numerical

results of the MHD flow past an accelerated vertical porous plate in presence of strong

magnetic field. Later on Hossain et al. [69] (1996) investigated the MHD flow along verti-

cal porous plate. They considered a variable transverse magnetic field along with a power

law surface temperature. The flow field was simulated by applying two techniques: namely

perturbation method with perturbation parameter ξ and finite difference method. Zeeshan

and Ellahi [70] (2011) studied the non-newtonian fluid flow with slip boundary conditions.

They have applied the series solution method for calculating the flow parameters along a

porous surface and assumed the existence of cross magnetic field.

1.2.5 Convective flow along cylindrical surface

Amongst quite a number of scientists, Merkin [71] was the first who studied the free con-

vection boundary layer on an isothermal horizontal circular cylinder in viscous fluid. In his

paper, the complete solution to this problem for Newtonian fluid using Blasius and Grtler

series expansion methods along with an integral method and a finite difference scheme was
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Chapter 1. Introduction

presented for the first time. Hossain et al. [72] investigated the same problem posed above

for steady free convection flow by bringing the effect of radiative heat transfer. In their

work, they showed that the rate of heat transfer from the slender body is higher than

from the blunt body due to increase of radiation parameter. The same problem with the

cylinder of elliptic cross section over isothermal bodies was studied by the same authors.

In this investigation the heat transfer from isothermal cylinder of elliptic cross section of

various eccentricities were discussed. Saville and Churchill [73] and Lin and Chao [74] also

studied the free convection flow from a horizontal cylinder and from axisymmetric bodies

of arbitrary contours respectively with isothermal surface condition. Jaman et al. [75]- [76]

studied the free convection flow of a viscous incompressible flow along an infinite horizontal

cylinder considering sinosoidical oscillations in the surface temperature of the cylinder. In

their subsequent work, the authors studied the similar type of problem assuming the flow

over a cylinder of elliptic cross section of various eccentricities. In this investigation, the

two different configuration of the cylinder, when the major axis is horizontal and vertical,

were considered. A theoretical study of mixed convection flow along an isothermal circular

cylinder was conducted in [82]. In this study, full set of Navier stokes equations were solved

with a wide ranges of both Reynolds number and Grashof number. To solve the governing

equations, the method of series truncation developed by the same authors were applied.

The values of these two non-dimensional parameters, Reynolds number and Grashof num-

ber were chosen based on the free stream condition and the values were chosen as 1-40

for Reynolds number and 0-5 for Grashof numbers respectively. The computed results for

stream lines and isotherms were also compared with some experimental correlations. Sim-

ilar solution procedure was adopted by the same author to study the laminar combined

convection flow from a horizontal cylinder [83]. In this paper, two cases of forced flow were

considered, in parallel flow, the forced flow was directed vertically upward and in contra

flow, the direction was taken as vertically downwards. Full vorticity transport equations

accompanied with the stream function and energy equation were solved. The calculated

values of average Nusselt number were compared with the available experimental data.

Mahfouz et al. [84] studied the flow behaviour in the wake associated with a circular cylin-
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Chapter 1. Introduction

der. It was assumed a rotational oscillation of the cylinder in the cross stream. In this

work, an integral condition was introduced to estimate accurately the surface vorticity. In

the case of lower velocity gradient, the solution methodology did not impose any explic-

it boundary condition for the vorticity at the cylinder surface, rather this quantity was

computed from the known stream function distribution near the wall. Transient laminar

natural convection flow from a heated horizontal cylinder was investigated in the paper of

Wang et al. [85]. In this study, numerical results were carried out by using different types

of boundary conditions with the help of spline fractional step method. Scale analysis was

done to predict some important characteristics of the boundary layer and complete range

of Rayleigh number was covered for the case of transient flow. Steady viscous flow past

a circular cylinder at high Reynolds number (up to 300) was reported by Fornberg [86].

Remedies of some numerical difficulties which usually occurred during simulation were dis-

cussed and modified approach to solve the problem have been commenced by the author.

A notable phenomenon of the vorticity was marked for higher Reynolds number which was

the shortening of the wake region with vorticity being convected into its interior. It was

also observed that, as the vorticity starts to recirculate back from the end of the wake

region, this region becomes wider and shorter. In the case of transversely oscillating cylin-

der, the flow behaviour and the heat transfer characteristics of cross flow was presented

in [88]. Numerical calculations were performed to predict the lock-on incident and its ef-

fect on the heat transfer. Numerical data were also validated against some experimental

data presented by some other scientists. John Patterson et al. [89] presented detailed scale

analysis to elucidate the possible transient behaviour for the case of aspect ratio A ≤ 1

where they considered the transient natural convection flow in a cavity. In this paper, a

modified version of the finite difference method was taken into action in order to solve the

problem and the choice of the parametric values are made in such a way that the divisions

in flow regimes were traversed.
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Chapter 1. Introduction

1.3 Scope and Contribution of the Thesis

The study of this dissertation is devoted to perform an extensive numerical investigation

on laminar flow along a vertical flat plate and cylinder in conjunction with heat and mass

transfer. Several models have been developed in association with different geometrical

configurations as well as boundary conditions. It is worth noting that for each case the

computations are carried out by considering only the positive values of the dimensions of

the computational domain, i.e. for x ≥ 0 and y ≥ 0.

In the first model, problem of double diffusive natural convection flow have been consid-

ered with non uniform surface heat and mass transfer. Similar type of boundary condition

are imposed for the surface heat and mass flux and comparative studies between these two

cases also presented and correlation are drawn by calculating the heat and mass transfer

coefficient parameters.

Forced convective flow along a vertical wedge with oscillating surface heat and mass flux

is studied in the second problem. Parametric studies are carried out to study the effects

on surface shear stress and heat transfer. Different numerical techniques are applied to

calculate the results and simulated results, obtained from different methods are compared

in terms of amplitude and phase angels of shear stress and heat transfer coefficients.

Later on, the model, developed in the second problem is extended to study the mass

transfer in presence of heat transfer. Conjugate heat and mass transfer study is performed

considering double diffusive forced convection flow. Here also calculated results attained

from different numerical methods are compared and nice agreement is found among all

these results.

Afterwards, magnetohydrodynamic free convection flow is studied with small amplitude

oscillation in both surface temperature and concentration. Each of the chapters include

formulation of the problem, solution procedure, representation of the simulated results ac-

companying with intricate discussions. Parametric studies have been carried out for each

of the problems and asymptotic solutions for the flow variables as well as some important

associated coefficients of physical interests are calculated. Different numerical techniques

are applied and for some cases results obtained from these different techniques are validated
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Chapter 1. Introduction

through comparisons.

In the study of mixed convection flow along the heated horizontal cylinder, full set of

Navier stokes equation in terms of vorticity and stream function is solved for mixed con-

vection flow along horizontal heated circular cylinder. Implicit finite difference method is

applied to solve the set of governing equation and results are compared with some pub-

lished results in order to validate the present simulation. Since the similar problem is

studied earlier by some other researchers in which only heat transfer is considered, Here

the investigation is broaden by taking into account of mass transfer. Variable surface tem-

perature without oscillation is considered and results are carried out in terms of heat and

mass transfer coefficient parameter, Nux, Shx.

Subsequently, the same problem, considered in previous model, is investigated by con-

sidering the surface temperature and species concentration of the cylinder with small am-

plitude oscillation. The effects of fluctuating surface temperature and species concentration

on heat and mass transfer is explored in this chapter and produced results are presented

in graphical forms in terms of isothermal lines, iso concentration lines etc.

1.4 Numerical Techniques Engaged

Is has already been mentioned earlier that, all the model studies involving in this disser-

tation are carried out numerically and physical interpretation of the numerical results and

conclusions are drawn based on these numerical simulations. All he methods which are

taken into action here for analyzing the flow behavior are listed below:

• Implicit finite difference method together with Keller box scheme.

• Implicit finite difference method together with Gaussian elimination method.

• Linear and nonlinear shooting method.

• Regular perturbation method.

• Matched asymptotic expansion method.
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The details of the computing techniques are discussed with the related chapters and prob-

lems. The repetition of the details calculation procedures are avoided when similar tech-

niques are used for solving different problems.

1.5 Organization of the Thesis

The whole dissertation is organized in the following manner:

In Chapter 1, the brief introduction regarding the fluid dynamics has been presented.

A comprehensive literature review on related topics has also been written in order to get

a proper frame work and direction of the proposed research for this thesis work. Basic

transport equations are derived with the help of Newton’s law of motion in Chapter 2.

Concepts of boundary layer and related discussions also presented shortly. In Chapter 3,

model has been developed to study the natural convection flow along a vertical flat plate

in presence of oscillating surface heat and mass transfer. The mixed convection flow due

to thermal diffusion along a vertical wedge have been investigated with unsteady surface

heat transfer boundary conditions in Chapter 4. This model has been extended to study

both thermal and mass diffusion with oscillating surface boundary condition for velocity,

temperature and concentration in Chapter 5. To study the heat and mass transfer response

due to oscillating surface temperature and concentration in MHD natural convection flow

is the substance of the Chapter 6. Mixed convection flow along a heated circular cylinder

in presence of heat and mass diffusion is the subject matter of the chapter 7. In this study,

it has been assumed that, the surface temperature and concentration are time dependent

but there is no oscillation in these quantities. The same model has been studied in presence

of small amplitude oscillation in both surface temperature and concentration in Chapter 8.

Each chapters are ended with concise conclusions. In Chapter 9, summarization and con-

cluding remarks have been listed of this whole thesis work and pointed out some directions

for future research work.
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Chapter 2

Basic transport equation and

boundary layer concept

The mathematical basis of modeling fluid flow to study heat and mass transfer is to develop

the governing equation in conjunction with the necessary supporting conditions: initial and

boundary condition. To derive the fundamental set of governing equation, the importance

is given to the resulting conservation equations and finally the transport equations are

derived. These transport equations are the basic elements for developing the numerical

algorithm that are to follow to analyze a fluid flow problem. The details of the basic

transport equations are presented in this chapter.

2.1 Basic Transport Equation

This chapter seeks to present a short overview of the fundamental governing equations

which govern the flow. It has been considered the basic equations of laminar boundary lay-

er flow. Three fundamental conservation laws of physics, known as conservation of mass,

conservation of momentum and conservation of energy are used to derive the governing

fundamental set of equations considering the viscous fluid subject to a body force in nat-

ural or free convection. The governing equations of fluid flow represent the mathematical

statement of the conservation laws of physics:
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Chapter 2. Basic transport equation and boundary layer concept

• The mass of fluid is conserved.

• The rate of change of momentum equals the sum of the forces on a fluid particle

(Newton’s second law).

• The rate of change of energy is equal to the sum of the rate of heat addition to and

the rate of work done on a fluid particle (first law of thermodynamics).

Furthermore, in all the models investigated in present dissertation, the following assump-

tions are also made:

• Fluid is incompressible in the sense that the density does not change appreciably with

pressure. The density is therefore considered to be a function of temperature only,

i.e. ρ = ρ(T )

• Fluid properties, for example, specific heat, thermal conductivity, viscosity are con-

stant.

• Viscous dissipation is negligible.

Since the details derivation of all these basic transport equations are unnecessary, only the

most intuitive form of these equations are presented here. In these equations, all the terms

are very general and all-encompassing. The most primitive form of the transport equations

are as follows [100]:

Mass equation :
∂ ρ

∂ t
+∇. (ρ u) = 0 (2.1)

Momentum equation :
∂u

∂t
+ u.∇u = −1

ρ
∇p̄+ ν∇2u +

1

ρ
(j×B)

+ gβT (T̄ − T∞) + gβC(C̄ − C∞)

(2.2)

Energy equation : u.∇T̄ = ᾱ
(
∇2T̄

)
(2.3)

Concentration equation : u . ∇C̄ = D ∇2C̄ (2.4)

where, ∇ =
(
∂
∂x̄
, ∂
∂ȳ
, ∂
∂z̄

)
, u = (ū, v̄, w̄) is the velocity vector, T̄ the temperature field in

the boundary layer, T∞ the temperature of the ambient fluid, C̄ the species concentration
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Chapter 2. Basic transport equation and boundary layer concept

in the boundary layer, C∞ the species concentration of the ambient fluid, p̄ the pressure, ρ

the density of the fluid, ν the kinematic coefficient of viscosity, g = (−g, 0, 0) identifies the

gravitational vector, βT the volumetric coefficient of thermal expansion, βC the volumetric

coefficient of concentration expansion, ᾱ the thermal diffusivity and D the diffusion coeffi-

cient.

As one of the models, studied in this dissertation in chapter 6 is concerned with mag-

netohydrodynamic flow, it is required to present the Ohm’s Law and Maxwell’s equation

to take into account the effect of magnetic field that significantly act on the fluid and

remarkable modification is made into fluid motion. These two equations are defined as:

Maxwell’s equation : ∇×E = 0 , ∇.B = 0 , ∇×B = µ0j (2.5)

Ohm’s Law : j = σ̄ (E + u×B) (2.6)

where, j is the electric current density, B = (Bx̄, Bȳ, Bz̄) represents the magnetic induction

vector, E the applied electric field. In equation (2.2), magnetohydrodynamic (MHD) body

force i.e j × B is included which has significant effect on fluid motion and this force is

termed as Lorentz force. In order to consider the magnetohydrodynamic flow, an induced

magnetic fields is considered and the relative strength of the induced field is characterized

by the magnetic Reynolds number (Rm = µ0σ̄ūγ, where γ is the wavelength of the applied

magnetic field). Additionally, the applied magnetic field vector applied normal to the

surface is of the form B = (0, Bȳ, 0), in which Bȳ is the strength of constant or variable

magnetic field.

Now, considering all the assumptions and simplifications that can be made, the two

dimensional Navier-Stokes equations (2.1)-(2.2) coupled with energy and concentration

equations (2.3)-(2.5) for the unsteady flow in the Cartesian coordinates along with the

magnetic field becomes:
∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2.7)

∂ū

∂t
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ν

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
−
σ̄B2

ȳ

ρ
ū+gβT (T̄ −T∞)+gβC(C̄−C∞) (2.8)
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∂v̄

∂t
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
(2.9)

∂T̄

∂t
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= ᾱ

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(2.10)

∂C̄

∂t
+ ū

∂C̄

∂x̄
+ v̄

∂C̄

∂ȳ
= D

(
∂2C̄

∂x̄2
+
∂2C̄

∂ȳ2

)
(2.11)

It can be observed that the Navier-Stokes equations are second order PDE and according

to the problems this PDE’s are classified into three types: elliptic, parabolic and hyperbolic

equations. The steady-state problems are governed by elliptic equations. Parabolic or

Hyperbolic equations govern the marching or propagation problems. However, all unsteady

problems do not always represent marching problems. Parabolic equations are involved

with significant amount of dissipation and describe time dependent problems. Analysis of

vibration problems involve with Hyperbolic equations. Hyperbolic equations are different

from the other two types because these equations possesses a special behaviour which

is associated with the finite speed, namely the wave speed, at which information travels

through the problem.

2.2 Boundary condition

Every well imposed fluid problem is described with proper boundary conditions. The

following types of boundary conditions in the computational domain of the fluid problem

are used with the governing equations of the motion:

• No-slip condition: This type of boundary condition states that the velocity com-

ponent u , tangential to the wall vanishes at the wall. If x, y are considered as

tangential and normal direction to the wall then

y = 0 : u(x, y, t) = 0, y →∞ : u(x,∞, t) = 0

This type of boundary condition satisfied very well within the framework of continuum

mechanics. At extremely low gas densities the no-slip condition is no longer satisfied.
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Chapter 2. Basic transport equation and boundary layer concept

• Normal component of the velocity: The velocity component v normal to the

wall generally vanishes where the walls are impermeable, i.e.

y = 0 : v(x, y, t) = 0, y →∞ : v(x,∞, t) = 0

However they are non-zero iff the wall is permeable and fluid is either sucked or blown

through it. The normal components of the velocity can also be non-zero in the case

of non-porous walls if mass transfer processes are taken into account, as in the case

of binary or multi-fluid flows. For example, condensation corresponds to suction and

evaporation , to blowing [95]

• Different kinds of temperature boundary conditions are specified in dif-

ferent cases:

– Boundary conditions of the first kind: In this case, the wall temperature is

stipulated. Usually, it is assumed that fluid takes the wall temperature at the

wall. For the case of very low density gases, there is a jump in temperature. For

example,

y = 0 : T = Tw(x)[1 + ε (exp(iωt) + c.c)], y →∞ : T (x,∞, t) = 0

– Boundary conditions of second kind: In this case, the heat flux, qw = (q̄.n̄) ,

where, n̄ is the normal unit vector at the wall, is set down,i.e.:

y = 0 : − κ∂T
∂y

= qw(x)[1 + ε (exp(iωt) + c.c)], y →∞ : −κ∂T
∂y

= 0

– Boundary conditions of the third kind: This type of boundary condition is a

blending of above mentioned two types of boundary conditions, i.e. a combina-

tion of wall temperature and the heat flux at the wall. However, such boundary

conditions could also be coupling conditions with the temperature field inside

the wall.
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Chapter 2. Basic transport equation and boundary layer concept

Figure 2.1: Pressure and shear stress distributions, [100]

2.3 Boundary layer Concept and approximation

To analyze a fluid flow problem, the biggest challenge is to solve the governing equations

of the flow field which are derived from the general Navier-Stoke’s equation. The limiting

solution as Re = ∞ is often a good approximation of the Navier-Stokes equations. But a

very notable inadequacy of this type of limiting solution is the violation of no-slip condition.

Therefore, while solving the Navier-Stokes equations, instabilities occur for most of the

practical flow problem. Virtually, this type of shortcoming of the solution became quite

powerful when the first practical aircraft was invented and consequently the calculation of

the drag and the lift on aircraft becomes necessary. For instance, consider that the airfoil

shaped body is immersed in a fluid which exerts a net force (or aerodynamic force) on the

surface of the airfoil as shown in the Figure 2.1. Two types of forces namely, the fluid

pressure and the shear stress are originated due to the friction between the surface of the

body and the flow. These two types of forces are the driving forces to hold the airfoil and

also exerts a force on it. To get a notion about these forces, aerodynamicists required to

calculate both the pressure distribution and shearing stress at the surface and then integrate

them over the surface of the airfoil. A number of approximations can be made to calculate

that pressure distributions within the flow. While determining pressure distribution one

can assume that the flow is frictionless or inviscid. Because of this assumption the pressure

becomes comparatively less problematic than the shear stress. However, the distribution
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Figure 2.2: Flow of a viscous fluid parallel to a flat surface.

of the shearing stress can be calculated when the viscous flow and the internal friction

are taken into consideration. All these assumptions suggests to tackle the Navier-Stokes

equations consciously.

Consider the flow of a viscous fluid over a stationary smooth plate surface as illustrated

in Figure 2.2. It is worth mentioning that, during this type of flow, at the surface the fluid

particles adhere to it and the frictional forces between the fluid layers retard the motion

of the fluid within a thin layer near the surface. In this thin layer, which is termed the

boundary layer, the velocity of the fluid decreases form its free-stream value U∞ to a value

of zero at the surface (no-slip condition). Figure 2.3 shows diagrammatically the variation

of the velocity component parallel to the surface in the boundary layer at a given location

on the surface.

According to Prandtl’s boundary-layer concept, under certain conditions viscous forces

are of importance only in the immediate vicinity of a solid surface where velocity gradients

are large. This region near the surface is referred to as the boundary layer. In regions

removed from the solid surface where there exist no large gradients in fluid velocity, the fluid

motion may be consider frictionless i.e. potential flow. Prandtl estimated various terms in

the Navier-Stokes equations with the help of order of magnitude analysis and thus derived

the so called equations for boundary layer in which the inertial effects are comparable to

the viscous effects. By doing these order-of-magnitude analysis, the terms can be dropped

which are negligibly small in the computations as compared to the terms in the same
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Figure 2.3: Velocity boundary layer thickness
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Chapter 2. Basic transport equation and boundary layer concept

equation. Prandtl approximations took up the idea that in the boundary layer ū = O(δ̄) and

bary = O(δ̄) and in locations removed from the leading edge x̄ = O(1), where the symbol

O( ) stands for the “order of”. Here, δ̄ = δ
L
<< 1 and L is the length of the surface in x̄

direction. Considering the order of magnitudes of ū and x̄ we observe that ∂ū
∂x̄
≈ O(1)

O(1)
= O(1)

thus, it follows that ∂2ū
∂x̄2

= O(1). Likewise, ȳ = O(δ̄) and ∂ū
∂ȳ

= O
(

1
δ̄

)
and ∂2ū

∂ȳ2
= O

(
1
δ̄2

)
.

From the continuity equation (2.7) it can be inferred that ∂ū
∂x̄

and ∂v̄
∂ȳ

should be of same

order of magnitude. Therefore, ∂v̄
∂ȳ

= O(1) and v̄ = O(δ̄). It can also be concluded that,

∂v̄
∂x̄

= O(δ̄), ∂2v̄
∂ȳ2

= O
(

1
δ̄

)
and ∂2v̄

∂x̄2
= O

(
δ̄
)
.

Introducing all these dimensions in the equation (2.8) and omitting the time dependent

term and the terms on the right hand side of the equation involving thermal and mass

diffusion we can have:

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −∂p̄

∂x̄
+ ν

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
1

1
+ δ̄

1

δ̄

(
1

1
+

1

δ̄2

)
(2.12)

Since δ̄ << 1, from equation (2.12) it can be concluded that

∂2ū

∂x̄2
<<

∂2ū

∂ȳ2

In general, according to the Prandtl boundary layer approximation, it can be shown that

the derivatives of any quantity with respect to the independent variable y are much larger as

compared to the derivatives with respect to the independent variable x. Thus the following

estimation is applicable within the boundary-layer region:∣∣∣∣∂Γ

∂x̄

∣∣∣∣ << ∣∣∣∣∂Γ

∂ȳ

∣∣∣∣ , ∣∣∣∣∂2Γ

∂x̄2

∣∣∣∣ << ∣∣∣∣∂2Γ

∂ȳ2

∣∣∣∣ (2.13)

where Γ is any flow quantity. By applying the above mentioned techniques of magnitude

analysis, the final form of the boundary-layer equations of different convective flow are

derived in the following sections.
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2.3.1 Equations for MHD Natural Convection Flow Along Vertical Surface

The order of magnitude analysis of the Navier-Stokes equations of viscous fluid flow along

with the energy and concentration equations can be simplified to the convenient bound-

ary layer equations. Consider now the case of unsteady two-dimensional incompressible

laminar boundary layer MHD natural convection flow over a semi-infinite vertical surface.

Thermal radiation effects are also taken into account. Further, assume that all the thermo-

physical properties of the fluid are constant. Under the usual Boussinesq approximation

the continuity equation (2.7) and the Navier-Stokes Eqs. (2.8-2.9) coupled with the energy

and concentration equations (2.10-2.11) may now be written in the following dimensionless

form
∂u

∂x
+
∂v

∂y
= 0 (2.14)

u
∂u

∂x
+ v

∂u

∂y
=

1

Gr1/2

(
∂2u

∂x2
+
∂2u

∂y2

)
−Mu+

(
T +NC

1 +N

)
(2.15)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Gr1/2

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.16)

u
∂T

∂x
+ v

∂T

∂y
=

1

Gr1/2Pr

(
∂2T

∂x2
+
∂2T

∂y2

)
(2.17)

u
∂C

∂x
+ v

∂C

∂y
=

1

Gr1/2Sc

(
∂2C

∂x2
+
∂2C

∂y2

)
(2.18)

where

x =
x̄

L
, y =

ȳ

L
, u =

ū

U0

, v =
v̄

U0

, p =
p̄

ρU2
0

,

T =
T̄ − T∞
Tw − T∞

, C =
C̄ − C∞
Cw − C∞

, M =
σ̄B2

yL

ρU0

,

Grt =
gβT (Tw − T∞)L3

ν2
, Grc =

gβC(Cw − C∞)L3

ν2

Pr =
ν

α
, Sc =

ν

D
, 4 =

Tw
T∞
− 1,

Gr = GrT +GrC , N =
GrC
GrT

(2.19)
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Chapter 2. Basic transport equation and boundary layer concept

Here U0 = νGr1/2/L is the boundary layer velocity scale, Tw the temperature at the

surface, Cw the species concentration at the surface, M the magnetic field parameter, GrT

the Grashof number for thermal diffusion, GrC the Grashof number for mass diffusion, Pr

the Prandtl number, Sc the Schmidt number, N the buoyancy ratio parameter.

Assuming that Gr becomes asymptotically large, therefore retaining only the leading

order terms in equations (2.14)-(2.19). The boundary layer equations are obtained by

introducing the scalings given in (2.20) into the equations (2.14)-(2.18).

u = u∗, v = Gr−1/4v∗, x = x∗, y = Gr−1/4y∗,

p = Gr−1/2p∗, T = T ∗, C = C∗
(2.20)

The final form of the boundary layer equations by commencing the scalings given in (2.19)

into the equations (2.12)-(2.17) and dropping the asterisk:

∂u

∂x
+
∂v

∂y
= 0 (2.21)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
−Mu+

(
T +NC

1 +N

)
(2.22)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+
∂2v

∂y2
(2.23)

∂T

∂t
u
∂T

∂x
+ v

∂T

∂y
=

1

Pr

∂2T

∂y2
(2.24)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
=

1

Sc

∂2C

∂y2
(2.25)

It can be noted that equation (2.23) serves to define the pressure field in terms of the two

velocity components and is decoupled from the other three equations. Therefore equation

(2.23) is not considered during the analysis of laminar boundary layer natural convection

flow over a semi-infinite vertical surface.

By omitting the MHD body force and the resultant parameter M in equation (2.15), the

set of non dimensional boundary layer equation can be derived for simple natural convection

flow along semi infinite, vertical flat plate.
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Chapter 2. Basic transport equation and boundary layer concept

2.3.2 Equations for Mixed Convection Flow Along Inclined Surface

Consider the two dimensional unsteady mixed convection flow of a viscous, incompressible

fluid with constant thermo-physical properties over a semi-infinite heated horizontal plate,

which is inclined at an angle φ to the horizontal. For this case, the continuity and the

momentum equations coupled with energy equation are:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (2.26)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ν

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
+
∂U

∂t
+ U

∂U

∂x
+ gβT

(
T̄ − T∞

)
sinφ (2.27)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
+ gβT

(
T̄ − T∞

)
cosφ (2.28)

ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= ᾱ

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
(2.29)

In the equation (2.27), u = U(x, t) is the ambient fluid velocity. Introducing the following

dimensionless dependent and independent variables

x =
x̄

L
, y =

ȳ

L
, u =

ū

U0

, v =
v̄

U0

, p =
p̄

ρU2
0

, T =
T̄ − T∞
Tw − T∞

Gr =
gβT (Tw − T∞)L3

ν2
cosφ, Pr =

ν

ᾱ
, 4 =

Tw
T∞
− 1

(2.30)

Therefore, with the help of (2.30) equations (2.26)-(2.29) can be written as

∂u

∂x
+
∂v

∂y
= 0 (2.31)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x
+

1

Gr1/2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ tanφT (2.32)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Gr1/2

(
∂2v

∂x2
+
∂2v

∂y2

)
+ T (2.33)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Gr1/2Pr

∂2T

∂x2
+
∂2T

∂y2
(2.34)
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Again U0 = νGr1/2/L is the boundary layer velocity scale. Now introduce the following

scaled variables into equations (2.31)-(2.33).

u∗ = Gr−2/5u, v∗ = Gr−1/5v, x∗ = x, y∗ = Gr1/5y,

p∗ = Gr−4/5p, T ∗ = T
(2.35)

Assuming that Gr becomes asymptotically large and retaining only the leading order terms

in equations. (2.31)-(2.33) to obtain the following boundary layer equations (dropping

asterisk).
∂u

∂x
+
∂v

∂y
= 0 (2.36)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
+
∂U

∂t
+ ΛT (2.37)

∂p

∂y
= T (2.38)

u
∂T

∂x
+ v

∂T

∂y
=

1

Pr

∂2T

∂y2
(2.39)

where Λ = Gr−4/5 tanφ is the inclination parameter.

In order to take into account the mass transfer, the concentration equation should

be added with the above mentioned set of equations (2.26)-(2.29). This set of equations

are valid for adequately large Reynolds numbers. Present thesis work is mostly aimed to

study the boundary layer equations under different convection phenomena and for different

geometries.

2.4 Summary

In this chapter the complete transport equations have been derived shortly from the basic

conservation laws. In order to incorporate with mathematics, Newtonian model of viscous

stresses and thermodynamic equilibrium assumptions are made. Finally boundary layer

concept is introduced and discussed how boundary layer approximations are made to make

the whole set of Navier-Stokes equation simpler and solvable.
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Chapter 3

Effect of fluctuating surface heat and

mass flux on natural convection flow

along a vertical flat plate

3.1 Introduction

Heat and mass transfer are kinetic processes that may occur in nature which has been s-

tudied separately or jointly. Studying them apart is simpler, however, it is more efficient to

consider them jointly. Double diffusive convection, which create a buoyancy force so that

fluid flow occurs and can be seen in many natural and technological processes. Besides,

heat and mass transfer must be jointly considered in some cases like evaporative cooling

and ablation. Because of the coupling between the fluid velocity field and the diffusive

fields, flow becomes more complicated than the convective flow. Therefore, many different

behavior may be expected and thus, many investigators are still interested in double diffu-

sive flow.

In this present problem, double diffusive flow through a vertical flat plate has been

studied extensively. Similar type of boundary conditions for two different cases are con-

sidered and results are produced accordingly. Firstly, surface temperature and surface

species concentration are assumed to have small amplitude oscillation and secondly, these
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quantities are reflected on the surface heat and mass flux. The most important parameter

that determines the relative strength of the two buoyancy forces, is the ratio parameter w,

and for a positive w, the buoyancy forces are cooperating and drive the flow in the same

direction which is considered in this present investigation. This parameter measures the

relative importance of solutal and thermal diffusion in causing the density changes which

drive the flow. It can be observed that, w=0 corresponds to no species diffusion and ∞

to no thermal diffusion. Similar to any double diffusive study, the governing equations of

the flow field is simulated for two different diffusive parameters, Pr and Sc. The values of

these two parameters depend on the nature of the fluid and on the physical mechanisms

governing the diffusion of the heat and chemical species. As the most important fluids are

atmospheric air and water, the results are presented here mostly for Pr = 0.7 that represent

the air at 200C at 1 atmosphere against the transpiration parameter ξ and Sc is ranged

from 0.1-1.6. Another important parameter, n, which is termed as exponent parameter,

has also been taken into account widely. In this present study, numerical simulations are

carried out in details and results are illustrated in both figures and tabular forms.

3.2 Formulation of the problem

A two dimensional unsteady free convection flow of a viscous incompressible fluid flow along

a vertical flat plate in the presence of a soluble species is considered in this present study.

A semi infinite vertical flat plate is placed at y=0 in Cartesian coordinate system. Also, it

is considered x ≥ 0, so that the distance from the leading edge along the plate measured

the x and y is measured in outward normal direction from the plate. The ambient fluid

temperature and species concentration are taken as T∞ and C∞. Similar type of boundary

conditions for two different cases have been considered. In the case 1, where it has been

assumed that the surface temperature and surface species concentration are time dependent

and have small amplitude oscillation. Surface heat flux and mass flux are considered with

exactly similar type of boundary conditions in case 2. For both the cases, the governing
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equations of the flow is given by the following sets of Navier-Stokes equations:

∂u

∂x
+
∂v

∂y
= 0 (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβT (T − T∞) + gβC(C − C∞) (3.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(3.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(3.4)

whereu and v are the x and y components of velocity field, respectively, g is the gravitational

acceleration, βT and βC are the volumetric expansion coefficients for temperature and

concentration respectively, α is the thermal diffusivity and D is the molecular diffusivity

of the species concentration. Moreover θ = T − T∞ and φ = C − C∞ are the differences

of temperature and species concentration between fluid and ambient flow. Considered

boundary conditions for two differen cases, under which the equations (3.1)-(3.4) are solved

listed below:

Case 1: When the surface temperature and concentration have small amplitude

oscillation:

y = 0 : u(x, y, t) = v(x, y, t) = 0, T = Tw(x)[1 + ε (exp(iωt) + c.c)]

C = Cw(x)[1 + ε (exp(iωt) + c.c)] (3.5)

y →∞ : u(x,∞, t) = v(x,∞, t) = 0

Case 2: When the surface heat and mass flux have small amplitude oscillation:

y = 0 : u(x, y, t) = v(x, y, t) = 0, − κ∂T
∂y

= qw(x)[1 + ε (exp(iωt) + c.c)]

−D∂C
∂y

= cw(x)[1 + ε (exp(iωt) + c.c)]

y →∞ : u(x,∞, t) = v(x,∞, t) = 0 (3.6)
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Here c.c stands for complex conjugate. For both the cases, ε is real and much less than unity

so that amplitude of oscillation is small. Here ω is the frequency of oscillation. Tw(x), Cw(x)

are the mean surface temperature and concentration and qw(x) and cw(x) are respectively,

the mean temperature flux and mean concentration flux as given by Gebhart and Pera [3],

and

Tw(x) = T0 x
n, Cw(x) = C0 x

n, qw(x) = q0 x
n, cw(x) = c0 x

n (3.7)

T0, q0 and C0, c0 are respectively, the scaled form of the temperature and species con-

centration at the surface of the plate. The exponent n in equation (3.7) can be expressed

as:

n =
d ln qw(x)

d lnx
=
d ln cw(x)

d lnx
(3.8)

and may be considered as the temperature as well as the concentration gradient at the

surface of the plate.

The above mentioned sets of boundary conditions suggest the form of the solutions of

the equations (3.1)-(3.4) as:

u = u0(x, y) + ε (exp(iωt) + c.c)u1(x, y), v = v0(x, y) + ε (exp(iωt) + c.c) v1(x, y)

T − T∞ = θ0(x, y) + ε (exp(iωt) + c.c) θ1(x, y)

C − C∞ = φ0(x, y) + ε (exp(iωt) + c.c)φ1(x, y) (3.9)

where, ω represents the frequency of oscillation and , ε, which is very small positive number

measures the amplitude. The calculations are restricted here by linearizing the equations

for small values of ε, thus the c.c terms are omitted hereafter. Considering these form of

solutions, the steady mean flow is governed by the following set of equations:

∂u0

∂x
+
∂v0

∂y
= 0 (3.10)

u0
∂u0

∂x
+ v0

∂u0

∂y
= ν

∂2u0

∂y2
+ gβT θ0 + gβCφ0 (3.11)
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u0
∂θ0

∂x
+ v0

∂θ0

∂y
= α

∂2θ0

∂y2
(3.12)

u0
∂φ0

∂x
+ v0

∂φ0

∂y
= D

∂2φ0

∂y2
(3.13)

Subject to the boundary conditions:

y = 0 : u0 = v0 = 0, θ0 = −qw(x), φ0 = −cw(x)

y →∞ : u0 → 0, θ0 → 0, φ0 → 0 (3.14)

The unsteady flow field is governed by the set of following differential equations and

corresponding boundary conditions:

∂u1

∂x
+
∂v1

∂y
= 0 (3.15)

u0
∂u1

∂x
+ u1

∂u0

∂x
+ v0

∂u1

∂y
+ v1

∂u0

∂y
+ iωu1

= ν
∂2u1

∂y2
+ gβT θ1 + gβCφ1

(3.16)

u0
∂θ1

∂x
+ u1

∂θ0

∂x
+ v0

∂θ1

∂y
+ v1

∂θ0

∂y
+ iωθ1 = α

∂2θ1

∂y2
(3.17)

u0
∂φ1

∂x
+ u1

∂φ0

∂x
+ v0

∂φ1

∂y
+ v1

∂φ0

∂y
+ iωφ1 = D

∂2φ1

∂y2
(3.18)

y = 0 : u1 = v1 = 0, θ1 = −qw(x), φ1 = −cw(x)

y →∞ : u1 → 0, θ1 → 0, φ1 → 0
(3.19)

For the case 1, the associated boundary conditions given by equation (3.5) for the

surface temperature and concentration suggests the following group of transformations:

Ψ (x, y, t) = νGr1/4
x [F (η) + ε exp(iωt)f(ξ, η)]

θ(x, y) = qw(x) [Θ(η) + θ(ξ, η)] , φ(x, y) = cw(x) [Φ(η) + φ(ξ, η)]

η =
y

x
Gr1/4

x , ξ =
ω

ν
Gr− 1/4

x x, Grx =
g (βT qw + βCcw)

ν2
x3 (3.20)
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Now substituting the above group of transformations into (3.10)-(3.14), one first obtain

the following similarity equations for steady flow:

F ′′′ +
n+ 3

4
FF ′′ − n+ 1

2
(F ′)2 + (1− w)Θ + wΦ = 0 (3.21)

1

Pr
Θ′′ +

n+ 3

4
FΘ′ − nF ′Θ = 0 (3.22)

1

Sc
Φ′′ +

n+ 3

4
FΦ′ − nF ′Φ = 0 (3.23)

Associated boundary conditions are:

F (0) = F ′(0) = 0,Θ(0) = Φ(0) = −1

F ′(∞) = Θ(∞) = Φ(∞) = 0 (3.24)

The following set of non-similarity equations can be obtained for governing the unsteady

flow field by introducing the above mentioned transformations into equations (3.15)-(3.19):

f ′′′ +
n+ 3

4
(Ff ′′ + F ′′f)− (n+ 1)F ′f ′ + (1− w)θ + wφ− iξf ′

=
(1− n)

4
ξ(F ′

∂f ′

∂ξ
− F ′′∂f

∂ξ
)

(3.25)

1

Pr
θ′′ +

n+ 3

4
(Fθ′ + Θ′f)− n (F ′θ + Θf ′)− iξθ

=
(1− n)

4
ξ(F ′

∂θ

∂ξ
−Θ′

∂f

∂ξ
)

(3.26)

1

Sc
φ′′ +

n+ 3

4
(Fφ′ + Φ′f)− n (F ′φ+ Φf ′)− iξφ

=
(1− n)

4
ξ(F ′

∂φ

∂ξ
− Φ′

∂f

∂ξ
)

(3.27)

Corresponding boundary conditions are:

f(ξ, 0) = f ′(ξ, 0) = 0, θ(ξ, 0) = φ(ξ, 0) = −1

f ′(ξ,∞) = θ(ξ,∞) = φ(ξ,∞) = 0 (3.28)
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In the above equation (3.25), w = N
1+N

, where N =
Grx,C
Grx,T

, which measures the relative

importance of solutal and thermal diffusion in causing the density changes which drive the

flow.

Now, for case 2 the following transformations are introduced in order to achieve the

governing equations for steady flow:

ψ0 = C2x
4
5F (η), Θ(η) =

C1θ0

x1/5(qw/κ)
, Φ(η) =

C1φ0

x1/5(cw/D)
, η =

C1y

x
1
5

, where

β = βT + βC , C1 = (
gβqw
κν2

)
1
5 , C2 = (

gβqwν
3

κ
)
1
5 (3.29)

where, ψ0 is the stream function which satisfies the continuity equation (3.10) and q0

and c0 are the constants related to mean surface heat flux and mass flux respectively. By

introducing the above mentioned set of transformations, the following equations along with

the boundary conditions are found for the steady flow:

F ′′′ +
n+ 4

5
FF ′′ − 2n+ 3

5
(F ′)2 + (1− w)Θ + wΦ = 0 (3.30)

1

Pr
Θ′′ +

n+ 4

5
FΘ′ − 4n+ 1

5
F ′Θ = 0 (3.31)

1

Sc
Φ′′ +

n+ 4

5
FΦ′ − 4n+ 1

5
F ′Φ = 0 (3.32)

F (0) = F ′(0) = 0,Θ′(0) = Φ′(0) = −1

F ′(∞) = Θ(∞) = Φ(∞) = 0 (3.33)

The transformations for the non similarity equations for the unsteady flow are as follows:

Ψ1 = C2x
4
5f(η, ξ), θ(η) =

C1θ1

x1/5qw/κ
, φ(η) =

C1φ1

x1/5cw/D

η =
C1y

x
1
5

, ξ = ω(
κx

gβqwν
)
2
5 (3.34)
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Equations for the unsteady flow field are the following:

f ′′′ +
n+ 4

5
Ff ′′ − (iξ +

4n+ 6

5
F ′)f ′ +

n+ 4

5
F ′′f + (1− w)θ + wφ

=
2(1− n)

5
ξ(F ′

∂f ′

δξ
− F ′′∂f

∂ξ
)

(3.35)

1

Pr
θ′′ +

n+ 4

5
Fθ′ − (iξ +

4n+ 1

5
F ′)θ +

n+ 4

5
Θ′f − 4n+ 1

5
Θf ′

=
2(1− n)

5
ξ(F ′

∂θ

∂ξ
−Θ′

∂f

∂ξ
)

(3.36)

1

Sc
φ′′ +

n+ 4

5
Fφ′ − (iξ +

4n+ 1

5
F ′)Φ +

n+ 4

5
Φ′f − 4n+ 1

5
Φf ′

=
2(1− n)

5
ξ(F ′

∂φ

∂ξ
− Φ′

∂f

∂ξ
)

(3.37)

Corresponding boundary conditions are:

f(ξ, 0) = f ′(ξ, 0) = 0, θ′(ξ, 0) = φ′(ξ, 0) = −1

f ′(ξ,∞) = θ(ξ,∞) = φ(ξ,∞) = 0 (3.38)

Unsteady shear stress, surface heat transfer and surface mass transfer coefficients are the

most important quantities which should be taken into account to understand the flow field

associated with heat and mass transfer clearly, and to elucidate the effects of corresponding

important parameters on the flow pattern, heat and mass transfer. These quantities can

be calculated from the solutions of the equations (3.21)-(3.28) and (3.30)-(3.38). In this

present study, these quantities are calculated and presented in terms of amplitude and

phase angels. The following expressions are used to calculate the amplitude and phase of

shear stress, local heat transfer coefficient and mass transfer coefficient respectively:

Au =
√

(f ′′r )2 + (f ′′i )2|η=0, At =
√

(θ2
r) + (θ2

i )|η=0, Ac =
√

(φ2
r) + (φ2

i )|η=0 (3.39)

and

φu = tan−1(
f ′′i
f ′′r

), φt = tan−1(
θi
θr

), φc = tan−1(
φi
φr

) (3.40)
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where (fr, fi), (θr, θi) and (φr, φi) represent the real and imaginary part of f(ξ, η), θ(ξ, η),and

φ(ξ, η) respectively.

A dimensionless representation of the results for surface heat and mass transfer param-

eter, Nux and Shx can be achieved by using the definition of local heat transfer coefficient

and mass transfer coefficient, which are expressed in the following usual manner:

hx =
qw

Tw − T∞
, Nux =

hxx

κ

mx =
cw

Cw − C∞
, Shx =

mxx

κ
(3.41)

Using these definitions of hx, mx and Nux, Shx it can be obtained for the case 1

that:

Nux = −θ′(0)Gr1/4
x , Shx = −φ′(0)Gr1/4

x

For the case 2, flow adjacent to a vertical surface, the local heat transfer parameter,

the Nusselt number Nux,T , or the local Nusselt number Nux and the local chemical species

transfer parameter Nux,C , or the local Sherwood Number Shx can be found in terms of

modified Grashof number, Gr∗ as :

Nux

Gr
∗1/5
x

=
1

θ(0)
, Nux =

hxx

κ
=

qwx

κ(Tw − T∞)

Shx

Gr
∗1/5
x

=
1

φ(0)
, Shx =

mxx

D
=

cwx

D(Cw − C∞)

Gr∗x,T =
gβT qwx

4

ν2κ
, Gr∗x,C =

gβCcwx
4

ν2D
, Gr∗ = Gr∗x,T +Gr∗x,C (3.42)

The solution methodologies for different parts of the flow field to attain the required

quantities are discussed in brief in the following sections.

3.3 Solution methodologies

Three different techniques are used in both these two cases to solve the governing equations

of the flow field. The implicit finite difference method of Keller and Cebeci, (1978) [93], [94]

(1984) is put into operation for the entire regime, extended series solution (ESS) for small
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ξ which corresponds the region near the leading edge and asymptotic solution (ASS) for

large ξ, corresponding the region far from the leading edge. Comparison amongst the

results simulated by these three different techniques are elucidated in tabular form as well

as by graphs. Excellent agreement amongst the simulated results by different numerical

techniques ensured the validity of the model assumptions and efficiency of the numerical

techniques that are applied here. The details of the calculation for both the cases have

been presented in the following sections.

3.3.1 Extended series solutions(ESS)

Case 1:

For the effect of free convection on the flow near the leading edge or, equivalently, for small

frequencies of oscillation, i.e. when ξ is small, we expand the functions f, θ, φ in powers of

ξ as given below:

f(ξ, η) =
∞∑
n=0

(ξ)mfm(η), θ(ξ, η) =
∞∑
n=0

(ξ)mθm(η), φ(ξ, η) =
∞∑
n=0

(ξ)mφm(η) (3.43)

On substituting these into equations (3.25)-(3.28) and equating the terms of like powers of

ξ to zero, the following sets of equations are obtained:

f ′′′0 +
(n+ 3)

4
(Ff ′′0 + f0F

′′)− (n+ 1)F ′f ′0 + (1− w)θ0 + wφ0 = 0 (3.44)

1

Pr
θ′′0 +

(n+ 3)

4
(Fθ′0 + Θ′f0)− n (θ0F

′ + Θf ′0) = 0 (3.45)

1

Sc
φ′′0 +

(n+ 3)

4
(Fφ′0 + Φf ′0)− n (φ0F

′ + Φf ′0) = 0 (3.46)
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f ′′′m +
n+ 3

4
Ff ′′m +

{
n+ 3

4
+

1

2
(n− 1)m

}
F ′′fm

−
{

(n+ 1) +
1

2
(1− n)m

}
F ′f ′m + (1− w)θm + wφm = f ′m−1 (3.47)

1

Pr
θ′′m +

n+ 3

4
Fθ′m +

{
n+ 3

4
+

1

2
(n− 1)m

}
Θ′fm

−
{
n+

1

2
(n− 1)m

}
F ′θm + nΘf ′m = θm−1 (3.48)

1

Sc
φ′′m +

n+ 3

4
Fφ′m +

{
n+ 3

4
+

1

2
(n− 1)m

}
Φ′fm

−
{
n+

1

2
(n− 1)m

}
F ′φm + nΦf ′m = φm−1 (3.49)

f0(0) = f ′0(0) = 0, θ0 = −1, φ0 = −1, f ′0(∞) = θ0(∞) = φ0(∞) = 0

fm(0) = f ′m(0) = θm(0) = φm(0) = 0, f ′m(∞) = θm(∞) = φm(∞) = 0 (3.50)

Case 2:

The results considering finite number of terms are valid only for very small range of fre-

quencies. Since small values of ξ corresponds small frequencies ω also, it can be predicted

that the flow to be adjusted quasi-statically to the fluctuating rate of both heat and mass

transfer in the boundary layer. For small values of ξ which corresponds to near the leading

edge, the functions f, g, h are expanded in powers of ξ as given below:

f(ξ, η) =
∑
n=0

(2iξ)mfm(η), θ(ξ, η) =
∑
n=0

(2iξ)mθm(η)

φ(ξ, η) =
∑
n=0

(2iξ)mφm(η) (3.51)

Introducing the above mentioned series in the equations (3.35)-(3.38) and equating the

terms of similar powers of ξ to zero, the following sets of equations can be obtained:

f ′′′0 +
(n+ 4)

5
Ff ′′0 −

(4n+ 6)

5
F ′f ′0 +

(n+ 4)

5
F ′′f0 + (1− w)θ0 + wφ0 = 0 (3.52)
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1

Pr
θ′′0 +

(n+ 4)

5
Fθ′0 −

(4n+ 1)

5
θ0F

′ − 4n+ 1

5
Θf ′0 +

n+ 4

5
Θ′f0 = 0 (3.53)

1

Sc
φ′′0 +

(n+ 4)

5
Fφ′0 −

(4n+ 1)

5
φ0F

′ − 4n+ 1

5
Φf ′0 +

n+ 4

5
Φ′f0 = 0 (3.54)

f ′′′m +
n+ 4

5
Ff ′′m +

2m(n− 1)

5
− 4n+ 6

5
F ′f ′m

+
n+ 4

5
− 2m(n− 1)

5
F ′′fm + θm =

1

2
f ′m−1 (3.55)

1

Pr
θ′′m +

n+ 4

5
Fθ′m +

2m(n− 1

5
− 4n+ 1

5
F ′θm

− 4n+ 1

5
Θf ′m +

n+ 4

5
− 2m(n− 1)

5
Θ′fm =

1

2
θm−1 (3.56)

1

Sc
φ′′m +

n+ 4

5
Fφ′m +

2m(n− 1

5
− 4n+ 1

5
F ′φm

− 4n+ 1

5
Φf ′m +

n+ 4

5
− 2m(n− 1)

5
Φ′fm =

1

2
φm−1 (3.57)

where m=1,2,3... and the respective boundary conditions are:

f0(0) = f ′0(0) = 0, θ′0 = −1, φ′0 = −1, f ′0(∞) = θ0(∞) = φ0(∞) = 0

fm(0) = f ′m(0) = θm(0) = φm(0) = 0, f ′m(∞) = θm(∞) = φm(∞) = 0 (3.58)

where, primes denote the derivatives with respect to η as convention.

In the above, f0, θ0, φ0 are the well known free convection similarity solutions for steady

flow field and the functions fm, θm, φm are the higher order corrections to the flow due

to the effect of the transpiration of fluid through the surface of the plate. Moreover it can

be observed that the equations are linear but coupled. Thus it can be assumed that the

solutions can be calculated by pair-wise sequential solution. Here, pair of equations are

integrated using implicit Rungee-Kutta Butcher (Butcher,1964) initial value solver together

with Nachtsheim and Swigert, [91] (1965). In this investigation, 8 pairs of equations are

considered and solved numerically. Simulated results are compared with the results that

are obtained by finite difference method and nice agreement found in the midst of these

two types of results.
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3.3.2 Asymptotic solution for large ξ

To study the flow pattern far from the leading edge i.e when the values of ξ are large, the

asymptotic solutions are carried out. From the results that obtained by Keller box method

shows that for larger values of ξ the unsteady response is confined to a thin layer adjacent

to the surface. Thus as frequency approaches towards infinity, the solutions tend to be

independent of the distance measured downstream from the leading edge, similar to the

shear wave solution in the corresponding forced flow problem. This suggested once again

another set of series expansion for both the cases, utilizing the limiting solutions as the

zeroth-order approximation:

Y = ξ1/2η, ϕ(ξ, Y ) = ξ3/2f(ξ, η), θ(ξ, Y ) = θ(ξ, η)

φ(ξ, Y ) = φ(ξ, η) (3.59)

Introducing these transformations, the equations (3.25)-(3.28) (which corresponds to case:1)

take the form:

∂3ϕ

∂Y 3
+
n+ 3

4
Fξ−1/2 ∂

2ϕ

∂Y 2
− i ∂ϕ

∂Y

+
3n+ 1

4
F ′′ξ−3/2ϕ− n+ 3

4
ξ−1F ′

∂ϕ

∂Y
+ (1− w)θ + wφ

=
(1− n)

4

[
F ′
(
∂2ϕ

∂Y ∂ξ
+
Y

2ξ

∂2ϕ

∂Y 2

)
− F ′′ξ−1/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.60)

1

Pr

∂2θ

∂Y 2
+
n+ 3

4
Fξ−1/2 ∂θ

∂Y
− iθ + nξ−5/2θ

∂ϕ

∂Y

=
(1− n)

4

[
F ′
(
∂θ

∂ξ
+
Y

2ξ

∂θ

∂Y

)
−Θ′ξ−3/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.61)

1

Sc

∂2φ

∂Y 2
+
n+ 3

4
Fξ−1/2 ∂φ

∂Y
− iφ+ nξ−5/2φ

∂ϕ

∂Y

=
(1− n)

4

[
F ′
(
∂φ

∂ξ
+
Y

2ξ

∂φ

∂Y

)
− Φ′ξ−3/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.62)
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And for case 2, the equations (3.35)-(3.38) take the form:

∂3ϕ

∂Y 3
+
n+ 4

5
Fξ−1/2 ∂

2ϕ

∂Y 2
− i ∂ϕ

∂Y
− 6n+ 4

5
F ′ξ−1 ∂ϕ

∂Y

+
4n+ 1

5
F ′′ξ−3/2ϕ+ (1− w)θ + wφ

=
2(1− n)

5

[
F ′
(
∂2ϕ

∂Y ∂ξ
+
Y

2ξ

∂2ϕ

∂Y 2

)
− F ′′ξ−1/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.63)

1

Pr

∂2θ

∂Y 2
+
n+ 4

5
Fξ−1/2 ∂θ

∂Y
− iθ

− 4n+ 1

5
F ′ξ−1θ − 4n+ 1

5
Θξ−2 ∂ϕ

∂Y
+

4n+ 1

5
Θ′ξ−5/2ϕ

=
2(1− n)

5

[
F ′
(
∂θ

∂ξ
+
Y

2ξ

∂θ

∂Y

)
−Θ′ξ−3/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.64)

1

Sc

∂2φ

∂Y 2
+
n+ 4

5
Fξ−1/2 ∂φ

∂Y
− iφ

− 4n+ 1

5
F ′ξ−1φ− 4n+ 1

5
Φξ−2 ∂ϕ

∂Y
+

4n+ 1

5
φ′ξ−5/2ϕ

=
2(1− n)

5

[
F ′
(
∂φ

∂ξ
+
Y

2ξ

∂φ

∂Y

)
− Φ′ξ−3/2

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(3.65)

We can express the functions F, Θ, Φ with fine accuracy as power series. This is

because the above equations represent the region which is confined to a thin layer adjacent

to the surface. Here, the following series representations are used:

Case:1 : F = a2η
2 + a3η

3 + a4η
4...

Θ = 1 + b1η + b2η
2..., Φ = 1 + c1η + c2η

2... where

a2 =
1

2
F ′′(0), a3 = −1/6, a4 = 1/24 ((1− w)G′(0) + wH ′(0))

b1 = Θ′(0), c = Φ′(0) (3.66)

Case 2: F = a2η
2 + ..., Θ = b− η + ..., Φ = c− η + ... where

a2 =
1

2
F ′′(0), b = Θ(0) = −1, c = Φ(0) = −1 (3.67)
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Implementing those above expansions, solutions of the equations (3.25)-(3.28) and (3.35)-

(3.38) can be found in the form of:

ϕ(ξ, Y ) =
∑
n=0

ξ−m/2f̄m(Y ), θ(ξ, Y ) =
∑
n=0

ξ−m/2θ̄m(Y )

φ(ξ, Y ) =
∑
n=0

ξ−m/2φ̄m(Y ) (3.68)

When equation (3.65) are surrogated in equations (3.25)-(3.28) and terms of like powers of

ξ are collected, it can be obtained:

f̄ ′′′0 − if̄ ′0 = −(1− w)θ̄0 − wφ̄0 (3.69)

f̄ ′′′1 − if̄ ′1 = −(1− w)θ̄1 − wφ̄1 (3.70)

f̄ ′′′2 − if̄ ′2 = −(1− w)θ̄2 − wφ̄2 (3.71)

f̄ ′′′3 − if̄ ′3 = −3n+ 1

4
a2Y

2f̄ ′′0 +
(3n+ 5)

2
a2Y f̄

′
0

− (3n+ 1)

2
a2f̄0 − (1− w)θ̄3 − wφ̄3 (3.72)

1

Pr
θ̄′′0 − iθ̄0 = 0 (3.73)

1

Pr
θ̄′′1 − iθ̄1 = 0 (3.74)

1

Pr
θ̄′′2 − iθ̄2 = 0 (3.75)

1

Pr
θ̄′′3 − iθ̄3 = −3n+ 1

4
a2Y

2Θ̄′0 + 2na2Y Θ̄0 (3.76)

1

Sc
φ̄′′0 − iφ̄0 = 0 (3.77)

1

Sc
φ̄′′1 − iφ̄1 = 0 (3.78)

1

Sc
φ̄′′2 − iφ̄2 = 0 (3.79)

1

Sc
φ̄′′3 − iφ̄3 = −3n+ 1

4
a2Y

2Φ̄′0 +
8n+ 2

5
2na2Y Φ̄0 (3.80)
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After substituting equation (3.65) into the equations (3.35)-(3.38) (which corresponds

to case 2), and collecting the similar powers of ξ, the following equations are acquired:

f̄ ′′′0 − if̄ ′0 = −(1− w)θ̄0 − wφ̄0 (3.81)

f̄ ′′′1 − if̄ ′1 = −(1− w)θ̄1 − wφ̄1 (3.82)

f̄ ′′′2 − if̄ ′2 = −(1− w)θ̄2 − wφ̄2 (3.83)

f̄ ′′′3 − if̄ ′3 = −3n+ 2

5
a2Y

2f̄ ′′0 +
2(7n+ 3)

5
a2Y f̄

′
0

− 2(4n+ 1)

5
a2f̄0 − (1− w)θ̄3 − wφ̄3 (3.84)

1

Pr
θ̄′′0 − iθ̄0 = 0 (3.85)

1

Pr
θ̄′′1 − iθ̄1 = 0 (3.86)

1

Pr
θ̄′′2 − iθ̄2 = 0 (3.87)

1

Pr
θ̄′′3 − iθ̄3 = −3n+ 2

5
a2Y

2Θ̄′0 +
8n+ 2

5
a2Y Θ̄0 (3.88)

1

Sc
φ̄′′0 − iφ̄0 = 0 (3.89)

1

Sc
φ̄′′1 − iφ̄1 = 0 (3.90)

1

Sc
φ̄′′2 − iφ̄2 = 0 (3.91)

1

Sc
φ̄′′3 − iφ̄3 = −3n+ 2

5
a2Y

2Φ̄′0 +
8n+ 2

5
a2Y Φ̄0 (3.92)

In these equations, primes denote the differentiation with respect to Y, and the associated

boundary conditions are:

case:1 f̄m(0) = f̄ ′m(0) = f̄ ′m(∞) = 0, m = 0, 1, 2, 3, 4...

θ̄0 = −1, θ̄m(0) = θ̄m(∞) = 0, m = 0, 1, 2, 3, 4...

φ̄0(0) = −1, φ̄m(0) = φ̄m(∞) = 0, m = 0, 1, 2, 3, 4..

case:2 f̄m(0) = f̄ ′m(0) = f̄ ′m(∞) = 0, m = 0, 1, 2, 3, 4...

θ̄′0(0) = −1, θ̄m(0) = θ̄m(∞) = 0, m = 0, 1, 2, 3, 4...

φ̄′0(0) = −1, φ̄m(0) = φ̄m(∞) = 0, m = 0, 1, 2, 3, 4... (3.93)
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Solution of the above equations (3.69)-(3.71), yield the following relation:

f ′′(0) = f ′′0 (0)ξ−1/2 + f ′′3 (0)ξ−3/2 +O(ξ−5/2), where (3.94)

f ′′0 (0) =
1√
i

{
1− w

1 +
√
Pr

+
w

1 +
√
Sc

}
f ′′3 (0) =

(1− w)i

(Pr − 1)

{
3a2(5n− 1)(1 + 3

√
Pr)

16
√
iPr(Pr − 1)(

√
Pr − 1)

− a2(5n− 1)i

4

(
1 +

2
√
Pr

Pr − 1

)(
1

4i
− Pr

Pr − 1

)}

+
wi

Sc− 1

{
3a2(5n− 1)(1 + 3

√
Sc)

16
√
iSc(Sc− 1)(

√
Sc− 1)

− a2(5n− 1)i

4

(
1 +

2
√
Sc

Sc− 1

)(
1

4i
− Sc

Sc− 1

)}

+
(3n+ 1)a2

2

[{
1− w
Pr − 1

(
1

8
+

√
Pr(3

√
Pr − 1)

(Pr − 1)2
+

)
+

w

Sc− 1

(
1

8
+

√
Sc(3
√
Sc− 1)

(Sc− 1)2
+

)}]

+
(3n+ 1)a2

2

[
1− w

2(
√
Pr + 1)2

+
w

2(
√
Sc+ 1)2

]
+

(3n+ 5)a2

2

{
1− w
Pr − 1

(
1

(
√
Pr + 1)2

− 1

4

)}
(3n+ 5)a2

2

{
w

Sc− 1

(
1

(
√
Sc+ 1)2

− 1

4

)}
θ′(ξ, 0) = −

√
iPr − ia2

16
(1 + 5n)ξ−1 +O(ξ−3/2)

φ′(ξ, 0) = −
√
iSc− i a2

16
(1 + 5n)ξ−1 +O(ξ−3/2)

The solutions of the equations (3.66)-(3.78) subject to the boundary conditions (3.79),

gives the following expressions for shear stress, surface temperature and species concentra-

tion coefficient respectively:

f ′′(ξ, 0) = −i( 1− w√
Pr(1 +

√
Pr)

+
w√

Sc(1 +
√
Sc)

)ξ−1/2 + 2(C12 + C22 + C32)

− 2
√
i(C13 +

√
Pr C23 +

√
Sc C33) +O(ξ−5/2) (3.95)

θ(ξ, 0) =
1√
iPr

ξ−1/2 +
(11n+ 4) a2

20 Pr
ξ−5/2 +O(ξ−7/2) (3.96)

φ(ξ, 0) =
1√
iSc

ξ−1/2 +
(11n+ 4) a2

20 Sc
ξ−5/2 +O(ξ−7/2) (3.97)
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A =
(1− w)

Pr(1− Pr)
, B =

w

Sc(1− Sc)
, C3 =

(1− w)
√
Pr

Pr(1− Pr)
− w

√
Sc

Sc(1− Sc)

A1 = − (3n+ 2) a2

√
Pr

30
√
i

, B1 =
(11n+ 4) a2 i

20
, C1 =

(11n+ 4) a2

√
i

20
√
Pr

A2 = − (3n+ 2) a2

√
Sc

30
√
i

, B2 =
(11n+ 4) a2 i

20
, C2 =

(11n+ 4) a2

√
i

20
√
Sc

P1 = − (3n+ 2) a2

5
, P2 = − 2(7n+ 3) a2

5
, P3 = − 2(4n+ 1) a2

5

C11 =
P1 C3

6
, C12 =

1

4
√
i
P2 C3 + 18 C11

C13 =
1

2i
P3 C3 + 6

√
iC12 − 6 C11

C21 = − (1− w) (3n+ 2) a2

30(1− Pr)
, C22 = − (1− w) a2 K1

20
√
iPr (1− Pr)2

C23 = − (1− w) a2 K2

20 i Pr (1− Pr)3

C31 = − w (3n+ 2) a2

30(1− Sc)
, C32 = − w a2 K11

20
√
iSc (1− Sc)2

C33 = − w a2 K22

20 i Sc (1− Sc)3

K1 = 4(3n+ 2) + (1− Pr)(11n+ 4) + 2(3n+ 2)(1− 3Pr)

K2 = 8(1− Pr)(7n+ 3) + (11n+ 4)(1− Pr)2 + 4(1− 3Pr)K1 + 12 Pr(1− Pr)(3n+ 2)

K11 = 4(3n+ 2) + (1− Sc)(11n+ 4) + 2(3n+ 2)(1− 3Sc)

K22 = 8(1− Sc)(7n+ 3) + (11n+ 4)(1− Sc)2 + 4(1− 3Sc)K1 + 12 Sc (1− Sc) (3n+ 2)

The above expressions are valid only for Pr 6= 1 and Sc 6= 1. If it is necessary to calculate

the values for Pr = 1 and Sc = 1 then the limiting values as Pr →∞ and Sc→∞ should

be calculated.

Exactly in the similar procedure, the equations (3.60)-(3.63) (for case 1) are solved

and the required quantities are calculated. The details presentation of the calculations are

exempted here in order to avoid the repetition.
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3.4 Results and discussion

Since natural convection flow due to combined effects of thermal and mass diffusion is

very important from practical point of view, an extensive investigation for this type of

model flow field have been carried out through numerical simulations. In view of the fact

that, Hossain et.al [18], also examined this type of flow field only for thermal diffusion.

In the present investigation, as mentioned earlier, similar types of boundary conditions for

two different cases are considered and calculations are performed accordingly. In case 1,

oscillating surface temperature and species concentration are considered and these small

amplitude oscillations are imposed on the surface heat and mass flux in case 2. Compar-

ative numerical results for these two cases are presented in tabular form. Few graphical

representation of the results considering the boundary condition for case 1 have been il-

lustrated at the beginning of the discussions.

The effect of varying buoyancy parameter, w, on the amplitude and phase of the rates

of heat and mass transfer(case 1)are depicted in Figure 3.2 and 3.3 respectively, for the case

Pr=0.7, Sc=0.22, and n=0.5. In these figures, the dotted curves and the broken curves

represent the solutions obtained for the low frequency and high frequency cases, respec-

tively. From Figure 3.2(a) and 3.3(a) it can be seen that there is an increase in the local

amplitude for both the heat and mass transfer rates due to increase in the buoyancy pa-

rameter, w. This effect is most significant near the leading edge, i.e. in the low-frequency

range. As the values of the frequency parameter increase, these values tend toward the

asymptotic state. For case 2, in this present investigation, similar types of results,

discussed by the authors [18], are produced first. Then the model has been extended to

study the flow field with both thermal and mass diffusion. All the model assumptions

are kept similar to [18]. Both the steady and fluctuating part of the problem are ana-

lyzed by the keller-box method for the entire frequency regime. The fluctuating part of

the problem is investigated by three different methodologies. Results are presented in in

terms of amplitude and phase angles for variation of different parameters both in tabular

and graphical forms. The forgoing formulations may be analyzed to indicate the nature

of the interaction of the various contributions to buoyancy. These may aid or oppose one
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Figure 3.1: (a) Amplitude, (b) Phase angles, local heat flux against ξ for different values
of w, while, Pr=0.7, Sc=0.22,n=0.5.

  

Figure 3.2: (a) Amplitude, (b) Phase angles, of local mass flux against ξ for different values
of w, while, Pr=0.7, Sc=0.22, n=0.5.
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Table 3.1: Values of shear stress, surface temperature and surface concentration for the
steady flow field for variation of different parameters, while, Pr=0.7.

w shear stress surface heat transfer surface mass transfer
0.0000 0.56578 0.33272 0.59525
0.2500 0.50978 0.31013 0.54862
0.7500 0.46897 0.29386 0.51562
1.000 .41226 0.27140 0.47100

n
0.0000 0.44347 0.38467 0.72034
0.2500 0.40040 0.35692 0.66014
0.7500 0.36891 0.33708 0.61773
1.000 .0.32501 0.30994 0.56078

Sc
0.1000 0.56920 0.26926 0.68102
0.6000 37955 0.33184 0.35711
1.1000 .34202 0.35068 0.28454
1.6000 .32396 0.35963 0.24756

another and be of different magnitudes characterized by the value of w. When the thermal

and solutal effects are opposed, the value of w is negative in order to assure that the flow

is in positive x direction. The relative physical extent η of the two effects in convection

region is governed by the magnitudes of the Prandtl number and Schimdt number and

their relative values. Here, discussions are restricted for favorable case only (w is positive)

for the fluids with Prandtl number Pr=0.9 to 0.25. Here, the values of Prandtl numbers

are chosen to represent the fluid as air and liquid which are currently used as coolant in

nuclear engineering. Although the diffusing chemical species of most common interest in

air has Schmidt numbers in the range from 0.1 to 10.0, the present investigation considered

a range from 0.1 to 1.60. Some values of shear stress, surface temperature and surface

concentration for the steady flow field are listed in Table 3.2. During the simulations, the

value of Prandtl number, Pr is chosen as constant value 0.7, representing air, and all other

parameters are varied. It can be observed from the Table 3.2 that the values of shear

stress, surface temperature and surface concentration decrease as the values of w,n and Sc

become higher. Table 3.3 and Table 3.4 show the comparison of the results obtained by

keller-Box method and perturbation method for local surface heat transfer and local mass
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Table 3.2: Comparison of the values of amplitude and phase angels of the local surface heat
transfer, obtained by finite difference method, while, Pr=0.7, Sc=0.94, w=0.5, n=0.5.

ξ AT φT
—- Surface heat Surface Surface heat Surface

transfer temperature transfer temperature
0.0000 1.4273 1.427381 0.00000 0.000001

0.1002 1.42469 1.426271 2.99340 2.685141

0.2013 1.41650 1.422921 5.99132 5.378701

0.3045 1.40272 1.408771 8.99521 7.088261

0.4108 1.38327 1.388641 12.00221 9.819451

0.5024 1.36270 1.369901 14.50581 8.398081

0.5975 1.33815 1.337281 17.00177 9.816361

0.6967 1.30965 1.313371 19.48248 11.244101

0.8009 1.27723 1.296491 21.93677 12.849961

0.9105 1.24099 1.254151 24.34766 14.084621

1.0028 1.20936 1.236162 26.22925 15.456002

2.0143 0.89404 1.41762 38.25065 24.83842

6.0502 0.49349 0.54282 43.94037 39.27372

8.0555 0.42544 0.42812 44.32133 41.22012

10.0179 0.38044 0.39792 44.51393 42.15422

20.2113 0.26657 0.27082 44.83141 43.97302

30.1619 0.21795 0.21982 44.90746 44.43202

40.0461 0.18905 0.18852 44.93943 44.63662

50.5732 0.16818 0.16032 44.95727 44.73042

60.7511 0.15342 0.15392 44.96755 44.80002

70.5839 0.14232 0.14272 44.97404 44.840202

1 stands for series solution and 2 stands for asymptotic solution
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Figure 3.3: (a) Amplitude, (b) Phase angles, of shear stress for different values of Pr, while,
Sc=0.6, w=0.5, n=0.5.

transfer respectively. For these simulations, the values of parameters w, n,Pr,Sc are taken

as 0.5,0.5.0.7 and 0.22 respectively and the quantities represented against ξ ranging from

0.00 to 70.00. The required quantities for the small value of ξ (0.0 to 0.9) are obtained from

extended series solution method and for the higher values of ξ (1.0 to 70.0) the respective

quantities are taken from the results by asymptotic series solution method. For both am-

plitude and phase angles of the respective quantities, nice agreement is found amongst the

results calculated by different methodologies. Here also plodding decrement of amplitude of

shear stress, surface temperature and surface concentration and increment of phase angles

of the respective quantities along with the increment of the values of ξ can be observed.

The effect of Prandtl number Pr, and the exponent parameter n on the shear stress are

presented in Figures 3.3-3.4. All the graphs for depicting the amplitudes and phase angles

of shear stress are drawn for the results obtained from numerical simulations by Keller-box

method, extended series solution method and asymptotic series solution method. All the

figures clearly show that results obtained for the entire regime are significantly close to the

results that are calculated for the region near and far from the leading edge.

For different values of Pr, while all other parameters are kept constant(w=0.5, n=0.5,

Sc=0.6 ), it can be seen remarkable increase in amplitudes of the shear stress due to the

increment of the Prandtl number, Pr. The phase angles are zero under quasi-steady con-

ditions and decrease monotonically towards the asymptotic value 900 as ξ → ∞. From
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Table 3.3: Comparison of the values of amplitude and phase angels of the local surface mass
transfer, obtained by perturbation method and finite difference method, while, Pr=0.7,
Sc=0.22, w=0.5, n=0.5.

ξ Ac φc
—- Keller Series and asymp. Keller Series and asymp.

0.0000 1.53621 1.536201 0.00000 0.000001

0.1002 1.53298 1.534841 3.02864 3.423131

0.2013 1.52326 1.534841 6.04759 5.009831

0.3045 1.50730 1.524221 9.04992 5.133721

0.4108 1.48535 1.515291 12.03249 6.834171

0.5024 1.46265 1.505611 14.50248 8.339421

0.5975 1.43599 1.49615 1 16.95796 9.792561

0.6967 1.40540 1.486541 19.39603 10.857991

0.8009 1.37088 1.476761 21.80920 11.003621

0.9105 1.33244 1.471211 24.18315 12.873761

1.0995 1.26326 1.469222 27.84154 13.638632

2.0143 0.96403 1.58572 38.02563 23.93072

4.0219 0.66171 0.79962 42.83438 34.69902

6.0502 0.53315 0.59142 43.86996 38.86722

8.0555 0.45964 0.48672 44.27340 40.93972

10.0179 0.41102 0.43152 44.47848 41.93872

20.2113 0.28796 0.29292 44.81842 43.89232

30.1619 0.23543 0.23762 44.90023 44.38702

40.0461 0.20421 0.20372 44.93467 44.60772

50.5732 0.18167 0.18402 44.95390 44.70892

60.7511 0.16572 0.16632 44.96498 44.78402

70.5839 0.15373 0.15412 44.97199 44.82742

1 stands for series solution and 2 stands for asymptotic solution
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Figure 3.4: (a) Amplitude, (b) Phase angels, of shear stress for different values of n, while,
Pr=0.7, Sc=0.6, w=0.5.
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Figure 3.5: (a) Amplitude, (b) Phase angles, of surface heat transfer for different values of
Pr, while, Sc=0.6, w=0.5, n=0.5.

Figures 6.5, it can be observed that the amplitudes of the shear stress are decreased while

the exponent parameter n of the surface heat and mass flux are increased. But the values

of phase angle of shear stress are increased as the value of exponent increase. For much

higher values of ξ, i.e, far from the leading edge, there is almost no change in values of

amplitude for variation of n and tends to zero for all values of n.

The effects of Prandtl number, Pr on the amplitudes and phase angles of the surface

heat transfer is illustrated in the Figure 3.5. For these simulations, the values of w and

n is taken as 0.5 and the value of Sc is chosen as 0.6. In these figures also, results are

presented for three different methodologies, as described in the previous sections. For the
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Figure 3.6: (a) Amplitude, (b) Phase angles of surface heat transfer for different values of
n, while, Pr=0.7, Sc=0.6, w=0.5.

very low frequency region, i.e. for the very small values of ξ , the results obtained by ex-

tended series solution method are very much close to the solutions that are obtained from

keller-box method. Far from the leading edge, i.e. for the large values of ξ, we can see very

nice agreement between the results obtained from the asymptotic solutions and keller-box

solutions. It can also be seen from these figures that, the values of amplitude of surface

temperature decrease as the value of Pr increases. The values of phase angles for surface

temperature increase for the decrement of the values of Pr. The values of phase angles

tends towards the value of 450 as the value of ξ →∞.

In Figure 3.6, the effect of exponent parameter n on the surface heat transfer is pre-

sented. Similar to shear stress, here also the values of amplitude of surface temperature

become little smaller as the values of n become higher and far from the leading edge, i,e

for the large values of ξ , these changes become ignorable for the variation of n and tends

toward the value of zero. For the phase angles, as expected, the opposite behavior is ob-

served, i.e very small increment of the quantities are achieved because of small decrement

of values of n.

Similar types of behavior can be observed for the surface mass transfer for different

values of Schmidt number, Sc and n in Figures 3.7-3.8. During the simulation, to predict

the effects of Schmidt numbers on both the surface mass transfer and shear stress, the value

of Prandtl number is taken as 0.7 and the values of w and n are chosen as 0.5. We can
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Figure 3.7: (a) Amplitude, (b) Phase angles of surface mass transfer for different values of
Sc, while, Pr=0.7, w=0.5, n=0.5.

monitor the increment of the values of amplitude of surface species transfer as the values of

Sc is decreased while the values of phase angle increased in small amount. As it is marched

towards the higher values of ξ, the value of the phase angles of the surface mass concentra-

tion reached to the asymptotic value 450. For the case of n, just as surface temperature,

we can see that, the values of amplitude of surface concentration become little smaller and

phase angles become little higher while the values of n are taken in ascending order.
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Figure 3.8: (a) Amplitude, (b) Phase angles, of surface mass transfer for different values of
n, while, Pr=0.7, Sc=0.6, w=0.5.
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3.4.1 Effects of different parameters on transient shear stress,transient sur-

face temperature and transient surface concentration

In this section, the effects of some parameters, such as, Schmidt number Sc, amplitude

of surface temperature and concentration ε, buoyancy ratio parameter, w and the flux

exponent parameter n on the transient shear stress, transient heat transfer and transient

mass transfer are discussed at ξ = 1.00. All these results are presented here for a fixed

Prandtl number, Pr, which is taken once again as 0.70. The definition for transient shear

stress, τ , transient heat transfer, θw, transient mass transfer, φw have been used as follows:

τ = τs + εAu cos(ωt+ φu), θw = θs + εAt cos(ωt+ φt)

φw = φs + εAc cos(ωt+ φc) (3.98)

where, τs is the steady mean shear stress, θs is the steady heat transfer and θs is the steady

mass transfer respectively. The values of τs, θs, φs are calculated first and then the re-

quired quantities are obtained accordingly from the simulations by using the implicit finite

difference method together with the Keller-box for the entire regime [93].

From Figures 3.9, 3.10, 3.11 (a), it can be seen that the increase in the values of

amplitude of oscillation of surface heat flux and surface mass flux cause increment in the

oscillation of transient skin friction, transient heat transfer and transient mass transfer

respectively. The oscillations with different values of amplitude and phase with regular pe-

riodic maxima and minima are visualized in Figure 3.9, 3.10, 3.11(b) for the heat and mass

flux exponent parameter n. The oscillations pattern of the transient skin friction, surface

temperature and surface concentration are similar. From Figures 3.9, 3.10, 3.11 (c), it can

be seen that, the oscillations of the amplitude of transient shear stress, transient surface

temperature and transient surface concentration decrease as the values of Sc increase. For

each values of Sc, these oscillations attain a maximum and a minimum values periodically.

For buoyancy ratio parameter w, a periodic oscillation for transient skin friction, transient

heat transfer and transient mass transfer are shown. For the variation of the values of w,

no significant changes are occurred for the corresponding maximum and minimum values
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Table 3.4: Computed surface heat flux, for both the cases, obtained by perturbation meth-
ods and finite difference method, while Pr=0.7, Sc=0.94, w=0.5, n=0.5.

ξ Amplitude Phase Angles
—- Heat Transfer Heat Transfer Heat Transfer Heat Transfer

Coefficient) Coefficient Coefficient Coefficient
(Case:1) (Case:2) (Case:1) (Case:2)

0.0000 0.5640 1.4841 0.0000 0.00000
0.2000 0.5757 1.4693 9.4097 6.57415
0.4000 0.6081 1.4265 17.7448 13.0214
0.6000 0.6569 1.3653 24.5914 18.7786
0.8000 0.7208 1.3005 29.9354 23.3428
1.0000 0.8002 1.2234 33.8894 27.6700
2.0000 1.3381 0.8903 41.5582 38.9819
3.0000 1.4159 0.7096 43.2498 42.0514
4.0000 1.6483 0.6109 44.2149 43.1387
5.0000 1.8507 0.5581 44.4054 43.6964
6.0000 2.0326 0.5327 44.5290 44.0268]
7.0000 2.1992 0.4885 44.6147 44.2304
8.0000 2.3538 0.4687 44.6771 44.3737
9.0000 2.4988 0.4479 44.7242 44.4763
10.0000 2.6357 0.4238 44.8913 44.5503
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Figure 3.9: Transient shear stress at ξ = 1.0 for different (a) ε, while, Pr=0.7, Sc=0.6,
w=0.5, n=0.5 (b) n, while Pr=0.7, Sc=0.6, w=0.0, (c) Sc, while, Pr=0.7, w=0.5,n=0.5
(d) w, while Pr=0.7, n=0.5, Sc=0.6.

of the oscillations.

Finally in Table 3.4, a comparative presentation of numerical values of amplitude and

phase angle of surface heat flux for two different cases have been illustrated. Here both

the values of amplitude and phase angles of surface heat and mass flux as well as surface

temperature and concentration are listed against the non similarity parameter ξ. From this

comparative studies, it can be observed that, for case 1, i.e. for the surface heat flux, the

values of amplitude increased as the value of ξ increased. But for case 2, i.e. for surface

temperature, the opposite behaviour can be monitored. But for the phase angles, for both

the cases, the values are increased as it is marched towards far from the leading edge and

finally asymptotic values are attained.
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Figure 3.10: Transient heat transfer at ξ = 1.0 for different (a) ε, while, Pr=0.7, Sc=0.6,
w=0.5, n=0.5 (b) n, while Pr=0.7, Sc=0.6, w=0.0, (c) w, while, Pr=0.7, Sc=0.6, n=0.5
(d) w, while, Pr=0.7, n=0.5, Sc=0.6.

In Table 3.5, computed heat transfer coefficient parameter (Nux) and mass transfer

coefficient parameter (Shx)are presented for portraying a correlation between these two

cases. The calculations are carried out with the small amplitude oscillation ε = 0.25. The

rest of the parameters were taken as, Pr = 0.7, Sc = 0.94, w = 0.5, n = 0.5 respective-

ly. As it can be observed from this table that, the computed values of both the Nusselt

number and Sherwood number are for both the cases are almost same, as expected. This

nice agreement of these two quantities for these two cases, surely establish a very strong

correlation between the simulation of these two cases.
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Table 3.5: Computed heat transfer coefficient, (Nux), and mass transfer coefficient (Shx)
for both the cases, obtained by perturbation methods and finite difference method, while,
Pr=0.7, Sc=0.94, w=0.5, n=0.5.

ξ Amplitude Phase Angles
—- Heat Transfer Heat Transfer Mass Transfer Mass Transfer

Parameter Parameter Parameter Parameter
(Case:1) (Case:2) (Case:1) (Case:2)

0.0000 0.0000 0.0000 0.0000
0.0200 0.1721 0.18781 0.1693 0.1700
0.4000 0.3259 0.3368 0.3198 0.3235
0.64000 0.4478 0.4867 0.4432 0.4517
0.86000 0.6097 0.6432 0.6614 0.6602
1.0000 0.8002 0.8173 0.8238 0.8698
2.0000 1.7504 1.9556 1.0471 1.0861
3.0000 3.2275 3.3937 3.1106 3.1313
4.0000 4.6621 4.9622 4.2822 4.3812
5.0000 6.1881 6.4932 6.0451 6.1636
6.0000 7.7922 7.8711 7.6984 7.8645
7.0000 9.4642 9.7098 9.2560 9.3271
8.0000 11.1966 11.2610 11.4625 11.4830
9.0000 12.9841 12.9483 13.1969 13.4025
10.0000 14.8216 14.8881 15.2816 15.3110
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Figure 3.11: Transient mass transfer at ξ = 1.0 for different (a) ε, while, Pr=0.7, Sc=0.6,
w=0.5, n=0.5 (b) n, while Pr=0.7, Sc=0.6, w=0.0, (c) Sc, while, Pr=0.7, w=0.5, n=0.5
(d) w, while, Pr=0.7, n=0.5, Sc=0.6.

3.5 Summary

The purpose of this study is to investigate the velocity flow field in terms of local shear

stress. Local heat and mass transfer coefficient, resulting from buoyancy forces which

arise from a combination of temperature and species concentration effects of comparable

magnitude are also studied rigorously. The summarization of the whole work has been

listed below:

• A linearized theory has been utilized and detailed numerical calculations are carried

out for wide ranges of parameters. Similar type of boundary condition have been

considered for two different cases. Exceptive agreement amongst all the results calcu-

lated by different numerical methods establish the validity of the simulations as well
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as the assumptions of the mathematical model that are made for the respective flow

field.

• A correlation between the two cases have been drawn by calculating the local heat

and mass transfer coefficient parameter, Nux, Shx respectively.

• From the observations of the simulated results it can be concluded that, the amplitude

of the shear stress, local heat transfer and local mass transfer decrease as the frequency

increases despite the consequences of the Prandtl number, Schimdt number and the

surface heat and mass flux exponent. But for surface heat and mass flux, the values

of the amplitude get higher as the values of ξ also become higher. The phase angles

for both heat and mass transfer decrease towards the asymptotic value 450, while the

respective quantity for shear stress reaches to the value of 900 in a decreasing manner.

• The heat and mass flux exponent parameter n has no significant effects on both

amplitude and phase angles as the values of ξ become very large.
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Chapter 4

Unsteady laminar mixed convection

boundary layer flow near a vertical

wedge due to oscillations in velocity

and surface temperature

4.1 Introduction

Over a few decades, oscillating flow and heat transfer under the influence of free-stream

oscillation have been the focus of research due to its occurrence in many interesting and

important fluid-mechanical problems, for example, the accelerating and decelerating phases

of missile flight, the intermittent flow in an engine during unstable combustion, heat trans-

fer encountered in liquid rocket and turbo-jet engines, and thermal failure of the resonance

tube heating in which the effect of heat generation appears to be significant. Many studies

were devoted to unsteady laminar boundary layer characteristics (e.g., fluctuating skin-

friction and heat transfer) between 1950 and 1980 as a result of its practical applications.

Due to lack of the development of numerical simulation up to the early 1970s, this issue

was mainly investigated theoretically. As a result, a simplified problem was formulated of

the actual technological problems and the complexity in obtaining the solutions was thus
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circumvented by imposing restrictions on oscillation amplitude or a frequency [28]. Ac-

cordingly, a body of knowledge about the problems was not fully uncovered. Even, there

is still scope for further investigation about this large subject.

Since, in practice, unsteady heat transfer and flow field are encountered in some ma-

chinery, so it is expected that both the stream velocity and surface temperature can be

oscillatory. Moreover, the effect of buoyancy driven flow has to be incorporated into the

mathematical formulation as the aforementioned engineering problems take place under the

gravitational field. Nevertheless, the previous studies did not consider mixed convection

induced by buoyancy force and the oscillating free-stream velocity and surface temperature.

Thus the purpose of this study is to investigate the oscillating laminar boundary layer of

mixed convection flow past a vertical wedge under the influence of free-stream and surface

temperature oscillations. The effects of the Richardson number, Ri, introduced to measure

the effect of mixed convection and the Prandtl number, Pr, have been presented in terms of

amplitudes and phase angles of skin-friction and heat transfer. The transient skin-friction

and heat transfer are also shown for different values of Ri and Pr.

4.2 Formulation of the problem

Let us consider a two-dimensional unsteady laminar boundary layer flow of an incompress-

ible fluid with constant properties. To describe the flow configuration, we assume that x

denotes the distance along the surface from the leading edge, y denotes the distance normal

from the surface, u and v are the corresponding velocity components, T is the tempera-

ture, t is the time, U is the velocity at the edge of the boundary layer, ν is the kinematic

viscosity, α is the thermal diffusivity, g is the acceleration due to gravity, β is the coefficient

of volumetric expansion. The coordinate system and the flow configuration are shown in

figure 4.1.

Under the usual Boussinesq approximation along with the above assumptions the bound-
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Figure 4.1: Physical configuration and coordinate system

ary layer equations for mass, momentum and energy can be written as:

∂u

∂x
+
∂v

∂y
= 0 (4.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
∂U

∂t

+ U
∂U

∂x
+ gβ (T − T∞) cos

(π
4

)
(4.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(4.3)

where u and v are the x and y components of velocity field, respectively, in the momentum

boundary layer; T̄ = T − T∞ , T and T∞ being the temperature in the thermal boundary

layer and ambient fluid respectively, ν is the kinematic viscosity of the fluid, g the accelera-

tion due to gravity, α the thermal diffusivity, βT , βC are the coefficient of volume expansion
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due to temperature and species concentration. The associated boundary conditions are:

y = 0 : u = v = 0, T = T∞ + (Tw − T∞) (1 + ε (exp i ωt+ c.c))

y =∞ : u = U(x, t), T = T∞ (4.4)

where,

U = U0 x
1/2[1 + ε (exp iωt+ c.c)], Tw = T0[1 + ε (exp iωt+ c.c)]

Above, T0 and U0 are, respectively the mean temperature and mean velocity ; ε(<< 1) is

the amplitude and ω is the frequency of oscillations in the surface temperature and free

stream velocity. Equation (4.4) suggests the solutions to be of the form:

ψ(x, y, t) = ψ0(x, y) + ε ψ1(x, y) (exp(iωt) + c.c)

T (x, y, t) = T0(x, y) + ε T1(x, y) (exp(iωt) + c.c) (4.5)

where only the real part is to be taken as it has physical meaning. Now we substitute

equations (4.6)-(4.8) into equations (4.1)-(4.3) and equate the coefficient of ε0 that give

∂ψ0

∂y

∂2ψ0

∂x∂y
− ∂ψ0

∂x

∂2ψ0

∂y2
=

1

2
U2

0 + ν
∂3ψ0

∂y3
+ gβ (T0 − T∞) cos

(π
4

)
(4.6)

∂ψ0

∂y

∂T0

∂x
− ∂ψ0

∂x

∂T0

∂y
= α

∂2T0

∂y2
(4.7)

The set of equations for ψ0 and T0 represents the steady state solution that can be deter-

mined by the following functions

ψ0 = (νU0)1/2 x3/4f(η),
T0 − T∞
Tw − T∞

= θ(η); η =

(
U0

ν

)1/2

x−1/4y (4.8)

using equation (4.8) in equations (4.6) and (4.7), we obtain the dimensionless equations:

f ′′′ +
3

4
ff ′′ +

1

2
(1− F ′2) +Riθ = 0 (4.9)

1

Pr
θ′′ +

3

4
fΘ′ = 0 (4.10)
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Corresponding boundary conditions are given by:

f = f ′ = 0, θ = 1 at η = 0

f ′ = 1, θ = 0 at η →∞ (4.11)

Substituting the expressions (4.6)-(4.8) into equations (4.2),(4.3) and equating the coeffi-

cients of ε give equations for time dependent components ψ1, T1 as

iω
∂ψ1

∂y
+
∂ψ0

∂y

∂2ψ1

∂x∂y
+
∂ψ1

∂y

∂2ψ0

∂x∂y
− ∂ψ0

∂x

∂2ψ1

∂y2

= iωU0x
1/2 + U2

0 + ν
∂3ψ1

∂y3
+ gβT1 (4.12)

iωT1 +
∂ψ0

∂y

∂T1

∂x
+
∂ψ1

∂y

∂T0

∂x
− ∂ψ0

∂x

∂T1

∂y
− ∂ψ1

∂x

∂T0

∂y
= α

∂2T1

∂y2
(4.13)

The associated boundary conditions become

ψ1 =
∂ψ1

∂y
= 0, T1 = Tw − T∞ at y = 0

∂ψ1

∂y
= U0x

1/2, T1 = 0 as y→∞ (4.14)

To non-dimensionalize equations (4.12) and (4.13), we introduce the following expressions

ψ1 = (νU0)1/2 x3/4F (ξ, η),
T1

Tw − T∞
= Θ(ξ, η) (4.15)

Using equations (4.15) into equations (4.12) and (4.13), we obtain

F ′′′ +
3

4
(fF ′′ + f ′′F )− f ′F ′ +RiΘ + 1

+ iξ(1− F ′) =
1

2
ξ

(
f ′
∂F ′

∂ξ
− f ′′∂F

∂ξ

)
(4.16)

1

Pr
Θ′′ +

3

4
(fΘ′ + Fθ′)− iξ Θ =

1

2
ξ

(
f ′
∂Θ

∂ξ
− θ′∂F

∂ξ

)
(4.17)
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Here, ξ = ωx1/2/U0, Grx = gβ (Tw − T∞) cos(π/4)x3/ν2 is the Grashof number, Rex =

U0x
3/2/ν is the Reynolds number and Pr = ν/α is the Prandtl number. The mixed

convection parameter Ri is defined as Grx
Re2x

. Typically, the natural convection is negligible

when Ri < 0.1 , forced convection is negligible when Ri < 10 and neither is negligible

when 0.1 < Ri < 10. In the present problem, the values of Ri is chosen from 0.0-4.0.

Corresponding boundary conditions need to be satisfied:

F (ξ, 0) = F ′(ξ, 0) = 0, Θ(ξ, 0) = 1

F ′(ξ,∞) = 1, Θ(ξ,∞) = 0 (4.18)

Now we obtain the appropriate equations for all Pr by introducing

(f, F ) = (1 + Pr)−3/4
(
f̂ , F̂

)
, η̂ = (1 = pr)1/4 η (4.19)

into the set of equations (4.9)-(4.10) and(4.16)-(4.17) as well as the corresponding boundary

conditions. Thus we get,

(1 + Pr) f̂ ′′′ +
3

4
f̂ f̂ ′′ +

1

2

(
f̂ ′2 − (1 + Pr)

)
+Ri(1 + Pr)θ̂ = 0 (4.20)

1 + Pr

Pr
θ̂′′ +

3

4
f̂ θ̂′ = 0 (4.21)

Corresponding boundary conditions are given by:

f̂ = f̂ ′ = 0, θ̂ = 1 η = 0

f̂ ′ = (1 + Pr)1/2, θ̂ = 0, η →∞ (4.22)
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and

(1 + Pr)F̂ ′′′ +
3

4

(
f̂ F̂ ′′ + f̂ ′′F̂

)
− f̂ ′F̂ ′ + iξ

{
(1 + Pr)−

√
1 + PrF̂ ′

}
+Ri(1 + Pr)Θ̂ + (1 + Pr) =

1

2
ξ

(
f̂ ′
∂F̂ ′

∂ξ
− f̂ ′′∂F̂

∂ξ

)
(4.23)

1 + Pr

Pr
Θ̂′′ +

3

4

(
f̂Θ̂′ + F̂ θ̂′

)
− iξ

√
1 + PrΘ̂ =

1

2
ξ

(
f̂ ′
∂Θ̂

∂ξ
− θ̂′∂F̂

∂ξ

)
(4.24)

Corresponding boundary conditions are given by:

F̂ = F̂ ′ = 0, Θ̂ = 1 η̂ = 0

F̂ ′ = (1 + Pr)1/2, Θ̂ = 0, η̂ →∞ (4.25)

Once the solutions of the sets of equation (4.20) to equation (4.22) and (4.23) to equation

(4.25) are known, the values of the physical quantities, namely, the skin friction and the

rate of heat transfer at the surface of the plate, are readily obtained. These are important

not only from the physical point of view but also from the experimental point of view.

In this study, the results will be presented in terms of amplitudes and phases of the skin

friction and the heat transfer rate having the following relations:

Au =
√
τ 2
r + τ 2

i , At =
√
q2
r + q2

i , φu = tan−1

(
τi
τr

)
, φu = tan−1

(
qi
qr

)
(4.26)

where (τr, τi) and qr, qi are the corresponding real and imaginary parts of the transverse

velocity and temperature gradients at the surface.

4.3 Solution methodologies

The set of equation (4.20) to equation (4.22) represents the steady mean flow and temper-

ature fields which are solved by employing the straightforward finite difference method for

different values of the physical parameters Pr and Ri. The resulting solutions are then used

in finding the solutions of equation.(4.23) to equation (4.25) that provide the oscillating
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parts of the flow and the temperature fields. With a view to validating the numerical solu-

tions equation (4.23) to equation (4.25) are also solved using the extended series expansion

method for small ξ and the asymptotic method for large ξ. Details of the solutions are

discussed in the following sections.

4.3.1 Extended series solution (ESS) for small ξ

The results considering finite number of terms will be valid only for very small range of

frequencies. Since small values of ξ corresponds small frequencies ω also, we can predict the

flow to be adjusted quasi-statically to the fluctuating rate of heat transfer in the boundary

layer. For small values of ξ which corresponds to near the leading edge, we expand the

functions F, Θ in powers of ξ as given below:

F̂ (ξ, η̂) =
∞∑
m=0

(2iξ)m Fm(η̂), Θ̂(ξ, η̂) =
∞∑
m=0

(2iξ)m Θm(η̂) (4.27)

Implementing these into the equations (4.20)-(4.22) and collecting the terms of similar

powers of ξ, the following sets of equations and their corresponding boundary conditions

can be obtained:

(1 + Pr)F ′′′0 +
3

4

[
f̂F ′′0 + f̂ ′′F0

]
− f̂ ′F ′0 +Ri(1 + Pr)Θ0 + 1 + Pr = 0 (4.28)

1 + Pr

Pr
Θ′′0 +

3

4

[
f̂Θ′0 + F0θ̂

′
]

= 0 (4.29)

(1 + Pr)F ′′′1 +
3

4
f̂F ′′1 +

5

4
f̂ ′′F1 −

3

2
f̂ ′F ′1

+Ri(1 + Pr)Θ1 +
1

2
(1 + Pr) =

1

2

√
1 + PrF ′0 (4.30)

1 + Pr

Pr
Θ′′1 +

3

4
f̂Θ′1 +

5

4
θ̂′F1− 1

2
f̂ ′Θ1 =

1

2

√
1 + PrΘ0 (4.31)
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for m ≥ 2

(1 + Pr)F ′′′m +
3

4
f̂F ′′m +

(
3

4
+
m

2

)
f̂ ′′Fm −

(
1 +

m

2

)
f̂ ′F ′m

+Ri(1 + Pr)Θm =
1

2

√
1 + PrF ′m−1 (4.32)

1 + Pr

Pr
Θ′′m +

3

4
f̂ θ′m +

(
3

4
+
m

2

)
θ̂′Fm −

m

2
f̂ ′ΘM =

1

2

√
1 + PrΘm−1 (4.33)

Fm(0) = F ′m(0) = Θm(0) = 0, Θ0(0) = 1

F ′m(∞) = (1 + Pr)1/2, Θm(∞) = 0 (4.34)

In the above equations (4.28)-(4.34), m = 0, 1, 2, ..., n. Here primes denote derivative with

respect to η̂ . Evidently, equation (4.28) to equation (4.34) are linear, but coupled, and

so these are solved independently pair-wise one after another. In this study, the implicit

RungeKuttaButcher [92] initial value solver together with NachtsheimSwigert [91] iteration

scheme is utilized to solve equation (4.28) to equation (4.34), up to O(ξ10).

4.3.2 Asymptotic series solution (ASS) for large ξ

This section concerns the behavior of the solutions of equations (4.23) and (4.24) when

ξ is large. As the frequency of surface temperature oscillation becomes very high, the

boundary layer response should be confined in a very thin region adjacent to the surface.

Thus, as the frequency approaches infinity, the solution becomes independent of x. Now,

a series solution in the high frequency range, utilizing the limiting solution as the zero-th

order approximation, is sought. Accordingly, the following transformations are introduced

in equation (4.23) and (4.24).

F (ξ, η̂) = ξ−1/2φ(ξ, Y ), Θ(ξ, η̂) = Θ(ξ, Y ), Y = ξ1/2η̂ (4.35)
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Thus we have,

(1 + Pr)
∂3φ

∂Y 3
+

3

4
ξ−1/2f

∂2φ

∂Y 2
+ ξ−1

(
1− f ′ ∂φ

∂Y

)
+

1

2
ξ−3/2f ′′φ

+ i

{
(1 + Pr)−

√
1 + Pr

∂φ

∂Y

}
+Ri(1 + Pr)ξ−1Θ

=
1

2

{
f ′
(
∂2φ

∂Y ∂ξ
+
Y

2ξ

∂2φ

∂Y 2

)
− ξ−1/2f ′′

(
∂φ

∂ξ
+
Y

2ξ

∂φ

∂Y

)}
(4.36)

(1 + Pr)

Pr

∂2Θ

∂Y 2
+

3

4
ξ−1/2f ′

∂Θ

∂Y
+

1

2
ξ−3/2θ′φ+ i

√
1 + PrΘ

=
1

2

{
f ′
(
∂2φ

∂Y ∂ξ
+
Y

2ξ

∂2φ

∂Y 2

)
− ξ−1/2θ′

(
∂φ

∂ξ
+
Y

2ξ

∂φ

∂Y

)}
(4.37)

For smaller values of η̂, the solutions for the functions f, θ can be expanded in terms of

power series of η̂ as follows:

f̂ = a2η̂
2 + a3η̂

3 + a4η̂
4 + a5η̂

5 · · · (4.38)

θ = 1 + b1η + b2η
2 + b3η

3 + b4η
4 + b5η

5 · ··, (4.39)

The solutions of the above equations can be found as follows:

φ(ξ, Y ) =
∞∑
m=0

ξ−
m
2 Em(Y ), θ(ξ, Y ) =

∞∑
m=0

ξ−
m
2 Lm(Y ), (4.40)

Surrogating the above form into the equations (4.36)-(4.37) and equating the like powers

of ξ, the following sets of equations can be obtained:

E ′′′0 −
i√

1 + Pr
E ′0 = −i

E ′′′1 −
i√

1 + Pr
E ′1 = 0

E ′′′2 −
i√

1 + Pr
E ′2 = − (1 +Ri L0)

E ′′′3 −
i√

1 + Pr
E ′3 = − a2

4(1 + Pr)

(
Y 2E ′′0 − 6Y E ′0 + 4E0

)
−Ri L1 · ··
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and

L′′0 −
i Pr√
1 + Pr

L0 = 0

L′′1 −
i Pr√
1 + Pr

L1 = 0

L′′2 −
i Pr√
1 + Pr

iL2 = 0

L′′3 −
i Pr√
1 + Pr

iL3 = − Pr

4(1 + Pr)

(
a2Y

2L′0 + b1 (Y E ′0 + 2E0)
)
· ··

The associated boundary conditions are:

Em(0) = E ′m(0) = 0, E ′0(∞) = (1 + Pr)1/2

E ′m(∞) = 0, for m = 1, 2, · · ·

L0(0) = 1, Lm(0) = Lm(∞) = 0 for m = 1, 2, · · ·

Solving the above set of equations, it can be obtained the values of F ′′(ξ, 0), Θ′(ξ, 0)

as:

(1 + Pr)1/4ξ−
1
2F ′′(ξ, 0) =

∞∑
m=0

ξ−
m
2 E ′′m(0) (4.41)

(1 + Pr)−1/4ξ−
1
2 Θ′(ξ, 0) =

∞∑
m=0

ξ−
m
2 L′m(0) (4.42)

where,

E ′′0 (0) =
√
i(1 + Pr)1/4, E ′′1 (0) = 0

E ′′2 (0) =
(1 + Pr)1/4 (G0 −G1)

(1− Pr)i

E ′′3 (0) =
−9 a2

16i

L′0(0) = −
√
iPr

(1 + Pr)1/4
, L′1(0) = 0, L′2(0) = 0

L′3(0) =
G2 +G3

8i(1 +
√
Pr)2

√
1 + Pr
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where,

G0 =
√
i {(1− Pr) +Ri} , G1 =

√
i Ri

√
Pr

G2 = −1

2

(
1 +
√
Pr
)2

a2, G3 = 2b1

√
1 + Pr

(
4
√
Pr − 1

)

4.4 Results and discussion

The governing equations of the unsteady laminar mixed convection boundary layer flow past

a vertical wedge have been solved by two distinct methods, namely, the straightforward

finite difference method for the entire frequency range, and the extended series solution

for low frequency range and the asymptotic series expansion method for high frequency

range. It is worthwhile to note that the effect of the constant coefficients (1 + Pr)1/4 and

(1 + Pr)−1/4 within the definitions of the skin friction and heat transfer (equations (4.41)

and (4.42)), respectively, have not been included during the presentation of the results.

With a view to validating the numerical solution, a comparison of the amplitudes and

phase angles of skin friction obtained by the SFF (stream function formulation) and the

series solutions for small and large ξ is shown in Figure 4.2. It is evident from the figures

that the solutions are in excellent agreement. In addition, Figure 4.2 exhibits the effects

of varying the Prandtl number, Pr, on amplitudes and phase angles of the skin friction.

When the Prandtl number is increased, the amplitudes and phase angles of skin friction

increase. This is because the Prandtl number becomes high due to either an increase of the

kinematic viscosity or a decrease of the thermal diffusivity of the fluid, and the increase of

the skin friction is the result of this change of the fluid property.

Figure 4.3 presents a comparison between the SFF and the series solutions for small and

large ξ in terms of the amplitudes and phase angles of heat transfer. Evidently, the solutions

obtained by the SFF provide a good agreement with the series solutions. Also, the effects

of the Prandtl number on the heat transfer are comprehensible from Figure 4.3. It is seen

that the increment of the Prandtl number causes an increase of the amplitudes and phase

angles of heat transfer near the leading edge. Since the Prandtl number increases owing to

either an increase of the kinematic viscosity or a decrease of the thermal diffusivity of the
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Figure 4.2: Amplitude and phase angle of skin friction for different values of Pr, while, Ri
= 1.0. The solid (black) lines are for SFF, the dashed (red) lines are for extended series
solution (ESS) for small ξ, and the dashed-dot (blue) lines are for asymptotic solution
(ASS) for large ξ.

  

Figure 4.3: Amplitude and phase angle of heat transfer for different values of Pr, while, Ri
= 1.0. The solid (black) lines are for SFF, the dashed (red) lines are for extended series
solution (ESS) for small ξ, and the dashed-dot (blue) lines are for asymptotic solution
(ASS) for large ξ.
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Table 4.1: Amplitude and phase angle of skin friction for different Ri, while, Pr=0.7

ξ AU φU
—- FDF Series and asymp. FDF Series and asymp.

Ri=0.0
0.01 15.44288 15.455431 0.12 0.161

0.10 4.88661 4.891351 1.51 1.611

0.50 2.22211 2.228751 7.64 7.871

1.00 1.64739 1.658181 14.45 14.661

2.00 1.33356 1.344541 24.02 23.961

3.00 1.24320 1.304231 29.41 30.411

4.00 1.20444 1.199472 32.69 32.452

6.00 1.17383 1.172562 36.40 36.322

8.00 1.16167 1.162022 38.36 38.372

10.00 1.15546 1.156732 39.58 39.642

Ri=2.0
0.01 24.1966 24.233971 0.04 0.051

0.10 7.65152 7.662981 0.46 0.461

0.50 3.41938 3.422191 2.34 2.311

1.00 2.41382 2.412031 4.824 4.811

2.00 1.71211 1.708551 10.49 10.781

3.00 1.43917 1.445121 16.71 17.282

4.00 1.32304 1.319582 22.17 21.082

6.00 1.24484 1.233422 28.42 27.832

8.00 1.20174 1.199092 31.77 31.672

10.00 1.18296 1.181882 34.43 34.80222

Ri=4.0
0.01 32.33106 32.393541 0.01 0.011

0.10 10.22308 10.242311 0.11 0.081

0.50 4.55937 4.56520 1 0.52 0.441

1.00 3.19704 3.196061 1.17 1.051

2.00 2.19798 2.187441 3.31 3.321

3.00 1.74511 1.734631 7.01 7.441

4.00 1.50073 1.480392 11.97 11.572

6.00 1.31603 1.316902 21.16 20.092

8.00 1.26245 1.250152 25.88 25.322

10.00 1.21931 1.216382 28.83 28.792

Here and hereafter 1 for series solution and 2 stands for asymptotic solution
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Figure 4.4: Amplitude and phase angle of skin friction for different values of Ri, while, Pr
= .70. The solid (black) lines are for SFF, the dashed (red) lines are for extended series
solution (ESS) for small ξ, and the dashed-dot (blue) lines are for asymptotic solution
(ASS) for large ξ.

fluid, hence heat is accumulated near the leading edge that results in the increase of the

amplitudes and phase angles of heat transfer. The effects of Richardsons number, Ri,

on the amplitudes and phase angles of the skin friction are shown in Figure 4.4. From the

figure and Table 4.1, it is observed that for higher Richardsons number, Ri, the amplitudes

of skin friction are higher while the phase angles are lower. As Richardsons number, Ri,

increases, mixed convection of flow and heat transfer increases. Accordingly, the amplitudes

of skin friction are higher for higher Ri. But the rate of change of skin friction from the

leading edge to the downstream region is higher for lower Ri so that the phase angles of

skin friction are higher for lower Ri.

Figure 4.5 exhibits the change of amplitudes and phase angles of heat transfer against

Richardsons number, Ri. With an increase of Ri, the amplitudes of heat transfer are higher

near the leading edge while the reverse case is observed in the downstream region. On the

other hand, for smaller Ri the phase angles are higher near the leading edge and then they

become lower in the downstream region. Finally, the amplitudes and phase angles tend to

an asymptotic value for all Ri.
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Figure 4.5: Amplitude and phase angle of skin friction for different values of Ri, while, Pr
= .70. The solid (black) lines are for SFF, the dashed (red) lines are for extended series
solution (ESS) for small ξ, and the dashed-dot (blue) lines are for asymptotic solution
(ASS) for large ξ.

4.4.1 Effects of different physical parameters on transient skin friction and

heat transfer

From a practical point of view, transient skin friction and heat transfer are important. The

reason is that the unsteady behavior of these two properties over a wide region from the

leading edge might damage a system. However, the transient skin friction and heat transfer

are evaluated here by the following relations:

τ = τs + εAucos(ωt+ φu)

θw = θs + εAtcos(ωt+ φt)

where τs and qs are, respectively, the steady-state skin friction and heat transfer.

Numerical values of transient skin friction and heat transfer against ωt have been pre-

sented in Figures 4.6 and 4.7, respectively, for Ri = 0.0 and 2.0 taking Pr = 0.72. It is clear

from the figures that the amplitudes of oscillation of transient skin friction, τ , and heat
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Figure 4.6: Numerical values of transient skin friction for different values of ξ, while,
Pr=0.72, Ri=0.0 and 2.0.

  

Figure 4.7: Numerical values of transient heat transfer for different values of ξ, while,
Pr=0.72, Ri=0.0 and 2.0.
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Figure 4.8: Numerical values of transient skin friction for different values of ξ, while,
Pr=0.72, Ri=0.0 and 2.0.

  

Figure 4.9: Numerical values of transient heat transfer for different values of ξ, while,
Pr=0.72, Ri=0.0 and 2.0.
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transfer, q, increase owing to the increase of Richardsons number, Ri. Also the intensity of

oscillation of both transient skin friction and heat transfer subsides quickly away from the

leading edge for a small value of Ri compared to a higher value of Ri. The reason is that

the impact of mixed convection of flow and heat transfer is strong near the leading edge.

The effects of varying the Prandtl number, Pr, on the transient skin friction and heat

transfer are shown in Figures 4.8 and 4.9, respectively. The figures suggest that the am-

plitudes of oscillation of transient skin friction,τ , and heat transfer, q, increase with an

increase of the Prandtl number, Pr. The amplitudes of oscillation die down slowly from

the leading edge to the downstream region but it happens swiftly for higher Pr.

4.5 Summary

The periodic laminar boundary layer mixed convection flow past a vertical wedge with

the effect of the fluctuations in the free-stream produced by fluctuations of the oncoming

stream has been investigated numerically. The governing equations have been solved by

the straightforward finite difference method for the entire frequency range, the extended

series solution for low frequency range and the asymptotic series expansion method for high

frequency range. The solutions obtained by the straightforward finite difference method

provide good agreement with the series solutions. The effects of varying Richardsons num-

ber, Ri, introduced to quantify the influence of mixed convection and the Prandtl number,

Pr, on the amplitudes and phase angles of the skin friction and heat transfer as well as

on the transient skin friction and heat transfer are examined. Based on the results, the

following conclusions can be drawn.

• The amplitudes and phase angles of skin friction and heat transfer increase with an

increase of the Prandtl number, Pr

• When Richardsons number, Ri, is increased, the amplitudes of skin friction become

large but the phase angles are small. On the other hand, for higher values of Ri,

the amplitudes of heat transfer are higher near the leading edge while the reverse

circumstance is observed in the downstream region. Moreover, the phase angles are
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higher near the leading edge for smaller Ri and then they are lower in the downstream

region. Finally, both the amplitudes and phase angles of skin friction and heat transfer

reach the corresponding asymptotic values.

• The amplitudes of oscillation of transient skin friction, τ , and heat transfer, q, are

found to increase owing to the increase of Richardsons number,Ri, and Prandtl num-

ber, Pr. Moreover, the amplitudes of oscillation of both transient skin friction and

heat transfer subside quickly away from the leading edge for a small value of Ri

compared to a higher value of Ri while the reverse situation is seen for the Prandtl

number, Pr.
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Chapter 5

Velocity, heat transfer and mass

transfer response in periodic

boundary layer along a vertical

wedge for mixed convection flow

5.1 Introduction

Both in natural and artificial flow situation, there is almost always unsteadiness occurs

and examples of unsteady free and mixed convection flows are in abundant. One of the

general case of convection is mixed convection in which flow is driven concurrently by both

an applied forcing system externally (i.e., outer energy supply to the fluid-streamlined

body system) and inner volumetric (mass) forces, viz., by the non homogeneous density

distribution of a fluid medium in a gravity field. In micro meteorological and industrial

applications, fluid flow along both horizontal and vertical surface bounded by an extensive

body of fluid due to free or mixed convection are of significant importance and interest.

It has already been mentioned in Chapter 1 that mixed convection flow is characterized

by the parameter λ = Gr
Ren

. This characteristic parameter λ provides a measure of the

influence of the free convection compare to forced convection on the fluid flow. The mixed
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convection regime of the flow field is generally divided into the region based on the range of

λmin ≤ λ ≤ λmax. The upper bound and lower bound of this type of region is described

by the value of λmax and λmin respectively. In order to analyze the flow field along with

temperature and concentration transfer outside the mixed convection region, either the

pure forced convection or the pure free convection can be taken into account. When the

value of λ → 0, represents the dominance of forced convection for heat and mass transfer,

where as the value of λ → ∞ indicates the natural convection as dominant mode. From

this point of view, it can be inferred that buoyancy forces can enhance the surface heat

and mass transfer rate when they assist the forced flow, and vice versa. The parameter

λ, which is the ratio of buoyancy forces to the inertial forces inside the boundary layer,

provides a measure of the influence of the free convection in comparison with that of forced

convection on the fluid flow.

This present study is devoted to investigate mixed convective flow along vertical wedge

with small amplitude oscillations of velocity, surface temperature and surface concentra-

tion. Two different important diffusive parameters, Pr and Sc, which are appearing in

the governing equations have been considered broadly during the simulation. Another two

important parameters, w and the Richardson number, Ri have also been taken into account

extensively. To derive the governing equations, the boussinesq approximations are made,

that is, it is assumed that the fluid property variations are limited to firstly the density

which is taken into account only in so far as its effects the buoyancy term and secondly the

viscosity.

5.2 Formulation of the problem

In this work, consideration has been given to unsteady two dimensional mixed convection

flow of a viscous incompressible fluid over a semi infinite vertical wedge. It is assumed that

both the surface temperature, concentration as well as the free stream velocity have small

amplitude oscillations about a mean value. The ambient fluid is maintained at uniform

temperature, T∞, and concentration, C∞ and the free stream velocity is taken as U(x, t).

However, all the thermo-physical fluid properties are considered to be constant and viscous
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Figure 5.1: Physical configuration and coordinate system

dissipation effect is neglected. The coordinate system and flow configuration of the problem

are kept exactly similar to the problem described in chapter 4.

Under the usual Boussinesq approximation along with the above assumptions the

boundary layer equations for mass, momentum and energy can be written as:

∂u

∂x
+
∂v

∂y
= 0 (5.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

+
∂U

∂t
+ U

∂U

∂x
+
(
gβT T̄ + gβCC̄

)
cos(π/4) (5.2)

∂T̄

∂t
+ u

∂T̄

∂x
+ v

∂T̄

∂y
= κ

∂2T̄

∂y2
(5.3)

∂C̄

∂t
+ u

∂C̄

∂x
+ v

∂C̄

∂y
= D

∂2C̄

∂y2
(5.4)

where, u and v are the x and y components of velocity field, respectively, in the momentum

boundary layer; T̄ = T−T∞, C̄ = C−C∞, T, C and T∞, C∞ being the temperature, con-

centration in the thermal boundary layer and ambient fluid respectively, ν is the kinematic
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viscosity of the fluid, g is the acceleration due to gravity, κ the thermal diffusivity, βT , βC

are the coefficient of volume expansion due to temperature and species concentration. The

associated boundary conditions are:

y = 0 : u = v = 0, T̄ = Tw(t), C̄ = Cw(t)

y =∞ : u = U(x, t), T̄ = 0, C̄ = 0 (5.5)

where,

U = U0 x
1/2[1 + ε (exp iωt+ c.c)], Tw = T0[1 + ε (exp iωt+ c.c)]

Cw = C0[1 + ε (exp iωt+ c.c)]
(5.6)

Above, T0, U0 , and C0 are, respectively the mean temperature, mean velocity and mean

surface concentration ; ε(<< 1) is the amplitude and ω is the frequency of oscillations in

the surface temperature, species concentration and free stream velocity. Equation (5.5)

suggests the solutions of the governing equations to be of the form:

u(x, y, t) = u0(x, y) + ε (exp iωt+ c.c)u1(x, y)

v(x, y, t) = v0(x, y) + ε (exp iωt+ c.c) v1(x, y)

T̄ (x, y, t) = θ0(x, y) + ε (exp iωt+ c.c) θ1(x, y)

C̄(x, y, t) = φ0(x, y) + ε (exp iωt+ c.c)φ1(x, y) (5.7)

where, u0, v0, θ0 and φ0 represent the steady mean flow and only real parts are to be

considered since these parts have significant physical meanings. Considering these form of
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solutions, the steady mean flow is governed by the following set of equations:

∂u0

∂x
+
∂v0

∂y
= 0 (5.8)

u0
∂u0

∂x
+ v0

∂u0

∂y
= ν

∂2u0

∂y2
+ (gβT θ0 + gβCφ0) cos(π/4) +

1

2
U2

0 (5.9)

u0
∂θ0

∂x
+ v0

∂θ0

∂y
= α

∂2θ0

∂y2
(5.10)

u0
∂φ0

∂x
+ v0

∂φ0

∂y
= D

∂2φ0

∂y2
(5.11)

Corresponding boundary conditions are:

y = 0 : u0 = v0 = 0, θ0 = T0

y →∞ : u0 = U0 x
1
2 , θ0 = 0, φ0 = 0 (5.12)

The set of differential equations and corresponding boundary conditions, which govern

the unsteady flow field are in the form of equations (5.13)-(5.17):

∂u1

∂x
+
∂v1

∂y
= 0 (5.13)

u0
∂u1

∂x
+ u1

∂u0

∂x
+ v0

∂u1

∂y
+ v1

∂u0

∂y
+ iωu1

+ ν
∂2u1

∂y2
+ iωx

1
2U0 + U2

0 + gβT θ1 + gβCφ1

u0
∂θ1

∂x
+ u1

∂θ0

∂x
+ v0

∂θ1

∂y
+ v1

∂θ0

∂y
+ iωθ1 = α

∂2θ1

∂y2
(5.14)

u0
∂φ1

∂x
+ u1

∂φ0

∂x
+ v0

∂φ1

∂y
+ v1

∂φ0

∂y
+ iωφ1 = D

∂2φ1

∂y2
(5.15)

y = 0 : u1 = v1 = 0, θ1 = T0, φ1 = C0

y →∞ : u1 = U0 x
1
2 , θ1 = 0, φ1 = 0 (5.16)
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The following transformations are commenced in order to get the solutions of the equa-

tions (5.8)-(5.11) along with the boundary condition given in equation(5.12):

ψ0(x, y) =
√
νx3/2U0F (ξ, η) , θ0(x, y) = T0Θ(ξ, η)

φ0(x, y) = C0Φ(ξ, η), η = y

√
U0x

1/2

ν
, Ri =

GrL
Re2

L

, X = x/L (5.17)

where, GrT (= gβTT0L
3/ν2), GrC(= gβCC0L

3/ν2) and ReL = (U0L
3
2/ν) are, respectively,

the Grashof numbers for thermal and concentration diffusion and Reynolds number. ψ0 is

the stream function which satisfies the continuity equation (5.8). ξ = ω x1/2

U0
, where x is

the distance measured from the leading edge. By commencing the above mentioned set of

transformations in the equations (5.8)-(5.11), the following sets of equations can be found

which govern the steady flow field:

F ′′′ +
3

4
FF ′′ +

1

2
(1− F ′2) +Ri [(1−N)Θ +NΦ] = 0 (5.18)

1

Pr
Θ′′ +

3

4
FΘ′ = 0 (5.19)

1

Sc
Φ′′ +

3

4
FΦ′ = 0 (5.20)

Corresponding boundary conditions are given by:

F = F ′ = 0, Θ = 1 η = 0

F ′ = 1, Θ = 0, Φ = 0 η →∞ (5.21)

For the unsteady flow field, the following transformations are introduced to attain the non

similarity set of equations:

ψ1(x, y) =

√
νx

3
2U0G (ξ, η) , θ1(x, y) = T0, H(ξ, η) = C0

φ1(x, y) = C0M(ξ, η), η = y

√
U0

ν
x−

1
4 (5.22)
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where ψ1 satisfies the equation (5.13)

Introducing these transformations, the following set of equations can be obtained which

govern the unsteady flow:

G′′′ +
3

4
(FG′′ + F ′′G)− F ′G′ + iξ(1−G′) + 1

+Ri [(1−N)H +NM ] =
1

2
ξ

(
F ′
∂G′

∂ξ
− F ′′∂G

∂ξ

)
(5.23)

1

Pr
H ′′ +

3

4
(FH ′ +GΘ′)− iξ H =

1

2
ξ

(
F ′
∂H

∂ξ
−Θ′

∂G

∂ξ

)
(5.24)

1

Sc
H ′′ +

3

4
(FM ′ +GΘ′)− iξ M =

1

2
ξ

(
F ′
∂M

∂ξ
− Φ′

∂G

∂ξ

)
(5.25)

Boundary conditions to be satisfied:

G(ξ, 0) = G′(ξ, 0) = 0, H(ξ, 0) = 1, M(ξ, 0) = 1

G′(ξ,∞) = 1, H(ξ,∞) = 0, M(ξ,∞) = 0 (5.26)

5.3 Solution methodologies

Three different techniques have been brought into action to solve the governing equations.

Implicit finite difference method is used to simulate both the steady and unsteady entire

flow regime. Regular perturbation technique is applied to find the solutions near the leading

edge and far from the leading edge, the solutions are obtained by applying asymptotic series

solution method. The solution procedures are discussed in details in the following sections.
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5.3.1 Extended Series solution (ESS) for small ξ

For small values of ξ, which corresponds to near the leading edge, we expand the functions

G,H and M in powers of ξ as given below:

G(ξ, η) =
∞∑
m=0

(2iξ)m Gm(η), H(ξ, η) =
∞∑
m=0

(2iξ)m Hm(η),

M(ξ, η) =
∞∑
m=0

(2iξ)m Mm(η) (5.27)

Implementing these into the equations (5.24)-(5.26) and collecting the terms of similar

powers of ξ, the following sets of equations and their corresponding boundary conditions

can be obtained:

G′′′0 +
3

4
[FG′′0 + F ′′G0]− F ′G′0 +Ri [(1−N) H0 +N M0] + 1 = 0 (5.28)

1

Pr
H ′′0 +

3

4
[F H ′0 +G0Θ′] = 0 (5.29)

1

Sc
M ′′

0 +
3

4
[F M ′

0 +G0Φ′] = 0 (5.30)

G′′′1 +
3

4
F G′′1 +

5

4
F ′′G1 − F ′G′1 −

1

2
F ′G′1

+Ri [(1−N)H1 +NM1] +
1

2
=

1

2
G′0 (5.31)

1

Pr
H ′′1 +

3

4
F H ′1 +

5

4
Θ′G1 −

1

2
F ′H1 = 0 (5.32)

1

Sc
M ′′

1 +
3

4
F M ′

1 +
5

4
Φ′G1 −

1

2
F ′M1 = 0 (5.33)

93



Chapter 5. Velocity, heat transfer and mass transfer response in periodic boundary layer
along a vertical wedge for mixed convection flow

G′′′m +
3

4
F G′′m +

(
3

4
+
m

2

)
F ′′Gm −

(
1 +

m

2

)
F ′G′m

+Ri [(1−N)Hm +N Mm] =
1

2
G′m−1 (5.34)

1

Pr
H ′′m +

3

4
F H ′m +

(
3

4
+
m

2

)
Θ′Gm −

m

2
F ′Hm =

1

2
Hm−1 (5.35)

1

Sc
M ′′

m +
3

4
F M ′

m +

(
3

4
+
m

2

)
Φ′Gm −

m

2
F ′Mm =

1

2
Mm−1 (5.36)

Gm(0) = G′m(0) = Hm(0) = Mm(0) = 0, H0(0) = 1,M0(0) = 1

G′m(∞) = 1, Hm(∞) = 0, Mm(∞) = 0 (5.37)

In the above equations (5.35)-(5.37), m = 0, 1, 2, .... Evidently, equation (5.29) to equa-

tion.(5.37) are linear, but coupled, so these are solved independently pair-wise one after

another. In this study, the implicit RungeKuttaButcher [92] initial value solver together

with NachtsheimSwigert [91] iteration scheme is utilized to solve equation (5.29) to equa-

tion(5.37), up to O(ξ8).

5.3.2 Asymptotic series solutions (ASS) for large ξ

In the problems related to boundary-layer separation, the existence of the double layer

owing to the coordinate expansion ξ → ∞ is a common feature. In order to handle this

situation in the framework of matched asymptotic expansion with a small parameter, an

artificial parameter can be introduced or the co-ordinate undergoing the limit process may

be considered a small or large parameter. This double layered boundary layer is observed

in the far downstream of the flow region. The inside layer is a Stokes shear-wave motion,

which oscillates with zero mean flow. The outer layer is a modified Blasius motion, which

convects the mean flow to downstream.

Inner layer region

The region where the viscous force plays the significant role as the driving force is termed

as the inner layer region. This region is concentrated near the surface of the vertical

plate so that no slip boundary condition is assured to be satisfied. Riley [62] was the
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first who revealed the inner boundary layer region where no slip boundary conditions were

well preserved. In this region, as it is mentioned earlier, viscous forces are significantly

dominant and have the same order of magnitude as that of boundary forces. In order to

get the equations which are comparable with that of (5.24)-(5.26), the following scaled

variables are introduced and the governing transformed equations are as follows:

G(ξ, η) = ξ−
1
2ϕ(ξ, Y ), H(ξ, η) = H(ξ, Y )

M(ξ, η) = M(ξ, Y ), Y = ξ
−1
2 η (5.38)

∂3ϕ

∂Y 3
+

3

4
ξ−

1
2F

∂2ϕ

∂Y 2
+ ξ−1

(
1− F ′ ∂ϕ

∂Y

)
+

1

2
ξ−

3
2F ′′ϕ

+ i

(
1− ∂ϕ

∂Y

)
+ Riξ−1 [(1−N)H +NM ]

=
1

2

[
F ′
(
∂2ϕ

∂Y ∂ξ
+
Y

2ξ

∂2ϕ

∂Y 2

)
− ξ−

1
2F ′′

(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(5.39)

1

Pr

∂2H

∂Y 2
+

3

4
ξ−

1
2F ′

∂H

∂Y
+

1

2
ξ−

3
2 θ′ϕ− iH

=
1

2

[
F ′
(
∂2ϕ

∂Y ∂ξ
+
Y

2ξ

∂2ϕ

∂Y 2

)
− ξ−

1
2 θ′
(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(5.40)

1

Sc

∂2M

∂Y 2
+

3

4
ξ−

1
2F ′

∂H

∂Y
+

1

2
ξ−

3
2φ′ϕ− iM

=
1

2

[
F ′
(
∂2ϕ

∂Y ∂ξ
+
Y

2ξ

∂2ϕ

∂Y 2

)
− ξ−

1
2φ′
(
∂ϕ

∂ξ
+
Y

2ξ

∂ϕ

∂Y

)]
(5.41)

For smaller values of η, the solutions for the functions F, Θ, Φ can be expanded in

terms of power series of η as follows:

F = a2η
2 + a3η

3 + a4η
4 + a5η

5 · ··, (5.42)

θ = 1 + b1η + b2η
2 + b3η

3 + b4η
4 + b5η

5 · ··, (5.43)

φ = 1 + c1η + c2η
2 + c3η

3 + c4η
4 + c5η

5 · ·· (5.44)
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The solutions of the above equations (5.40)-(5.42) can be found as follows:

ϕ(ξ, Y ) =
∞∑
m=0

ξ−
m
2 Em(Y ), H(ξ, Y ) =

∞∑
m=0

ξ−
m
2 Lm(Y )

M(ξ, Y ) =
∞∑
m=0

ξ−
m
2 Pm(Y ) (5.45)

Replacing the above form into the equations (5.40)-(5.42) and equating the like powers

of ξ, the following sets of equations can be obtained:

E ′′′0 − iE ′0 = −i (5.46)

E ′′′1 − iE ′1 = 0 (5.47)

E ′′′2 − iE ′2 = −{1 +Ri ((1−N)L0 +NP0)} (5.48)

E ′′′3 − iE ′3 = −a2

4

(
3Y 2E ′′0 − 8Y E ′0 + 4E0

)
−Ri ((1−N)L1 +NP1) (5.49)

1

Pr
L′′0 − iL0 = 0 (5.50)

1

Pr
L′′1 − iL1 = 0 (5.51)

1

Pr
L′′2 − iL2 = 0 (5.52)

1

Pr
L′′3 − iL3 = −1

4

(
3a2Y

2L′0 + b1 (Y E ′0 + 2E0)
)

(5.53)

1

Sc
P ′′0 − iP0 = 0 (5.54)

1

Sc
P ′′1 − iP1 = 0 (5.55)

1

Sc
P ′′2 − iP2 = 0 (5.56)

1

Sc
P ′′3 − iP3 = −1

4

(
3a2Y

2P ′0 + b1 (Y E ′0 + 2E0)
)

(5.57)

96



Chapter 5. Velocity, heat transfer and mass transfer response in periodic boundary layer
along a vertical wedge for mixed convection flow

The associated boundary conditions are:

Em(0) = E ′m(0) = 0, E ′0(∞) = 1 (5.58)

E ′m(∞) = 0, for m = 1, 2, · · · (5.59)

L0(0) = 1, Lm(0) = Lm(∞) = 0 for m = 1, 2, · · · (5.60)

P0(0) = 1, Pm(0) = Pm(∞) = 0 for m = 1, 2, · · · (5.61)

Solving the above set of equations, it can be obtained the values ofG′′(ξ, 0), H ′(ξ, 0), M ′(ξ, 0)

as:

ξ−
1
2G′′(ξ, 0) =

∞∑
m=0

ξ−
m
2 E ′′m(0) (5.62)

ξ−
1
2H ′(ξ, 0) =

∞∑
m=0

ξ−
m
2 L′m(0) (5.63)

ξ−
1
2M ′(ξ, 0) =

∞∑
m=0

ξ−
m
2 P ′m(0) (5.64)

where,

E ′′0 (0) =
√
i, E ′′1 (0) = 0

E ′′2 (0) =
1√
i

[
1 +Ri

(
1−N√
Pr + 1

+
N√
Sc+ 1

)]
(5.65)

E ′′3 (0) =
3

16
a2i (5.66)

L′0(0) = −
√
iPr, L′1(0) = 0, L′2(0) = 0 (5.67)

L′3(0) = − 3

16i
a2 +

b1

2i

[
3

2
−
√
Pr +

Pr
5
2

(1− Pr)2
+
Pr(1− 3Pr)

2(1− Pr)2

]
(5.68)

P ′0(0) = −
√
iSc, P ′1(0) = 0, P ′2(0) = 0 (5.69)

P ′3(0) = − 3

16i
a2 +

c1

2i

[
3

2
−
√
Sc+

Sc
5
2

(1− Sc)2
+
Sc(1− 3Sc)

2(1− Sc)2

]
(5.70)
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Outer layer region

It is expected that, the viscous forces are absent in the outer layer region. It has been

observed by some researchers that in the outer layer region, the convective and conductive

terms of both thermal and concentration equations are of the same order of magnitude.

New scaled variables δ̂ = ξ
−1
2 is introduced in order to simulate this region and the following

set of equations are obtained:

δ̂2 Ḡ′′′ + δ̂2 3

4

(
FḠ′′ + F ′′Ḡ

)
− δ̂2 F ′Ḡ′ + i(1− Ḡ′)

+Riδ̂2
[
(1−N)H̄ +NM̄

]
+ 1 =

1

4
δ̂3

(
F ′′

∂Ḡ

∂δ̂
− F ′∂Ḡ

′

∂δ̂

)
(5.71)

δ̂2 1

Pr
H̄ ′′ + δ̂2 3

4

(
FH̄ ′ + ḠΘ′

)
− iH̄ =

1

4
δ̂3

(
Θ′
∂Ḡ

∂δ̂
− F ′∂H̄

∂δ̂

)
(5.72)

δ̂2 1

Sc
M̄ ′′ + δ̂2 3

4

(
FM̄ ′ +GΘ′

)
− iM̄ =

1

4
δ̂3

(
Φ′
∂Ḡ

∂δ̂
− F ′∂M̄

∂δ̂

)
(5.73)

The boundary conditions are same as equation (5.27). Suggested expansion for the func-

tions G, H and M are as follows:

G(δ̂, η) =
∞∑
m=0

δ̂m Ḡm(η), H(δ̂, η) =
∞∑
m=0

(δ̂)m H̄m(η)

M(δ̂, η) =
∞∑
m=0

(δ̂)m M̄m(η (5.74)

Replacing this expansion in equations (5.24)-(5.26), the equations for Ḡm, H̄m, M̄
‘
ms

can be found by equating the similar powers of δ:

Ḡ′0 = 1, Ḡ′1 = 0, iḠ′2 =
3

4
F ′′G0 − F ′ + 1

iḠ′3 = Ḡ′′′1 +
3

4

(
FG′′1 − F ′Ḡ′1

)
+

1

2
F ′′Ḡ1 +Ri

(
(1−N)H̄1 +NM̄1

)
iḠ′n+3 = Ḡ′′′n+1 +

3

4

(
FḠ′′n+1 − F ′Ḡ′n+1

)
+

1

2
F ′′Ḡn+1

+Ri
(
(1−N)H̄n+1 +NM̄n+1

)
(5.75)
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iH̄0 = 0, iH̄1 = 0, iH2 =
3

4
Θ′Ḡ0, iH̄3 =

1

2
Θ′G1

−iH̄n+3 +
1

Pr
H̄ ′′n+1 +

3

4
F ′H ′n+1 +

1

2
Θ′Ḡn+1 +

1

4
F ′H̄n+1 = 0

iM̄0 = 0, iM̄1 = 0, iM2 =
3

4
Φ′Ḡ0, iM̄3 =

1

2
Φ′G1

−iM̄n+3 +
1

Pr
M̄ ′′

n+1 +
3

4
F ′M ′

n+1 +
1

2
Φ′Ḡn+1 +

1

4
F ′M̄n+1 = 0 (5.76)

which are subject to the outer boundary conditions :

Ḡ′0 → 1 and Ḡ′n → 0 for η →∞ H̄0(0) = 1, H̄m(0) = H̄m(∞) = 0

M̄0(0) = 1, M̄m(0) = M̄m(∞) = 0 (5.77)

Solutions of the above equations are:

Ḡ0 = η + C0, Ḡ1 = C1, Ḡ2 = i−1

(
3

4
ηF ′ +

3

4
C0F

′ − 7

4
F + η + C2

)
Ḡ3 = i−1

(
1

2
C1F

′ + C3

)
, H̄0 = 0, H̄1 = 0

H̄2 = i−1

(
3

4
Θ′Ḡ0

)
, H̄3 = i−1

(
1

2
Θ′Ḡ1

)
M̄0 = 0, M̄1 = 0, M̄2 = i−1

(
3

4
Θ′Ḡ0

)
, M̄3 = i−1

(
1

2
Θ′Ḡ1

)
(5.78)

The unknown constants C ′ns are determined by the matching procedure which has been

discussed in the following section.

Matching

From the solutions of the each functions of the outer expansions, some constants are intro-

duced. Since each of the functions involving inner expansions are solved completely, the

unknown constants can be settled on the principle of the matching:

lim
Y→∞

Gi(δ̂, Y ) = lim
η→0

Go(δ̂, η).
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Carrying out the corresponding limit and neglecting the exponentially small terms, the

following equations can be obtained for the inner layer region:

Gi(δ̂, Y ) = 2
−1
2 δ̂

(
− 1√

i
2

1
2 δ̂−1η + δ̂2C − 2

1
2 iδ̂η

)
2
−1
2 δ̂
(

+a2iδ̂η
2 + a22

1
2

√
iδ̂2η + · · ·

) (5.79)

and solutions of the outer layer region is:

Go(δ̂, η) = η + C0 + δ̂C1 + δ̂2

(
1

4
a2η

2i− ηi+ C2

)
+ δ̂3/i (a2C1η + C3) + · · · (5.80)

Since each terms in equation (5.79) will correspond a term with the same power of δ̂

in equation (5.80). So by equating the similar terms from each of these equations, the

unknown constants can be chosen as:

C0 = 0, C1 = − 1√
2i
, C2 =

2
√

2− 1

4
a2η

2i, C3 =
C√

2
i+ a2i

√
iη − C1a2η etc.

where

C =
√
i+

Ri(1−N)

Pr − 1

(
1 +

√
i√
Pr

)
+

Ri N

Sc− 1

(
1 +

√
i√
Sc

)
(5.81)

Using the equations (5.79) and (5.80) composite solutions for velocity, heat transfer and

mass transfer can be attained.

5.3.3 Finite difference method (FDM) for all ξ

The solutions of the equations (5.19)-(5.21) associated with the boundary equation (5.22)

and the equations (5.24)-(5.26) along with the boundary condition (5.27) are attained by

applying regular finite difference method. The order of the differential equations are reduced

by introducing some new variables for the first order derivative of the associated functions,

for example, F ′ = H etc. Because of introducing new variables, the order of the set of the

equations (5.19)-(5.21) and equations (5.24)-(5.26) has been reduced into order two and the

resulting two sets of second order partial differential equations are discretized by using the
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forward difference formula. As a result of discretization, a system of tri-diagonal algebraic

equations for momentum, temperature and concentration equations are formed. Details of

the calculations are discussed in the following subsections.

Steady flow

The resulting momentum equation, energy equation and concentration equation for the

steady flow field turned into system of tri-diagonal algebraic equations. Then these system

of equations are solved by using TDMA (tri diagonal matrix solver algorithm). The form

of the discretized momentum equation (5.18) is given below:

A1Hi,j+1 +B1Hi, j + C1Hi,j−1 = D1, where

A1 =

[
1

(4η)2
+

3

4
× 1

(24η)
Fi,j

]
C1 =

[
1

(4η)2
− 3

4
× 1

(24η)
Fi,j

]
B1 = −

[
2

(4η)2)
+

1

2
Hi,j

]
D1 = −1

2
−Ri [(1−N) Ti,j +N Mi,j] (5.82)

The temperature equation (5.19)is discretized as:

A2Θi,j+1 +B2Θi, j + C2Θi,j−1 = D2, where

A2 =

[
1

Pr (4η)2
+

3

4
Fi,j ×

1

(24η)

]
C2 =

[
1

Pr (4η)2
− 3

4
Fi,j ×

1

(24η)

]
B2 =

2

Pr(4η)2
, D2 = 0 (5.83)
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And the discretized concentration equation (5.20) takes the form:

A3Φi,j+1 +B3Φi, j + C3Φi,j−1 = D3, where

A3 =

[
1

Sc (4η)2
+

3

4
Fi,j ×

1

(24η)

]
C3 =

[
1

Sc (4η)2
− 3

4
Fi,j ×

1

(24η)

]
B3 =

2

Sc(4η)2
, D3 = 0 (5.84)

Here, 1 ≤ i ≤ M and 2 ≤ j ≤ M − 1 denote the grid points along the η and ξ directions,

respectively. 4ξ = ξi − ξi−1 is the step size in the i ’th direction and 4η = ηj − ηj−1

determines the step size in the j ’th direction. Finally Fi,j is calculated from the relation:

Fi,j = Fi,j−1 +
1

2
4η(Hi,j +Hi,j−1)

Corresponding boundary conditions take the form:

Fi,j = Hi,j = 0, Θi,j = 1, Φi,j = 1

HM,j → 0, ΘM,j → 0, ΦM,j → 0 (5.85)

Unsteady Flow field

For fluctuating flow field, the real and imaginary parts of the governing equations are

separated and discretized by following the similar method as mentioned above. Since the

governing equations for the fluctuating flow field are coupled with steady equations, firstly

the steady flow field is simulated and the corresponding calculated values are used as known

values for solving the unsteady set of equations. The discretized form of the equations are

presented below:
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Real part of the Momentum equation (5.23):

A11URi,j+1 +B11URi, j + C11URi,j−1 = D11, where

A11 =

[
1

(4η)2
+

3

4
Vi,j

1

(24η)

]

C11 =

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)

 , B11 =
2

(4η)2)

D11 =
3

4
× UY × V R + ξ × UI + 1 + ri [(1−N) TR +N MR]

+
1

2
× ξ

4 ξ
[U × URi,j + UY × (V Ri,j − V Ri−1,j)] (5.86)

Imaginary part of the Momentum equation:

A12 UIi,j+1 +B12UIi, j + C12UIi,j−1 = D12 where

A11 =

[
1

(4η)2
+

3

4
Vi,j

1

(24η)

]

C11 =

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)

 , B11 =
2

(4η)2)

D11 =
3

4
× UY × V R + ξ × UI + 1 + ri [(1−N) TI +N MI]

+
1

2
× ξ

4 ξ
[U × UIi,j + UY × (V Ii,j − V Ii−1,j)] (5.87)
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Real part of the Energy equation (5.24)

A21θRi,j+1 +B21θRi, j + C21θRi,j−1 = D21, where

A21 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
C21 = −

[
1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
B21 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j

D21 =
ξ

4ξ
Ui,jθRi−1,j +

ξ

4ξ
TY (V Ri,j − V Ri−1,j)

+ ξ1/2(1 + ξ)1/2 St θIi,j + ξ URi,j TX (5.88)

Imaginary part of the Energy equation:

A22θIi,j+1 +B22θIi, j + C22θIi,j−1 = D22, where

A22 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]

C22 = −
[

1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
B22 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j

D22 =
ξ

4ξ
Ui,jθIi−1,j +

ξ

4ξ
TY (V Ii,j − V Ii−1,j)

+ ξ1/2(1 + ξ)1/2 St θIi,j + ξ UIi,j TX (5.89)

Real part of the concentration equation (5.25):

A31φRi,j+1 +B31φRi,j + C31φRi,j−1 = D31, where

A31 = −
[

1

Sc (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
(5.90)
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C31 = −
[

1

Sc (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
B31 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j

D31 =
ξ

4ξ
Ui,jφRi−1,j +

ξ

4ξ
TY (V Ri,j − V Ri−1,j)

+ ξ1/2(1 + ξ)1/2 St φIi,j + ξ URi,j CX (5.91)

Imaginary part of the Concentration equation

A32φIi,j+1 +B32φIi,j + C32φIi,j−1 = D32, where

A32 = −
[

1

Sc (4η)2
+

3 + 2ξ

4(1 + ξ)
Vi,j/(24η)

]
(5.92)

C32+ = −
[

1

Sc (4η)2
− 3 + 2ξ

4(1 + ξ)
Vi,j/(24η)

]
B32 =

2

Sc(4η)2
+

ξ

4ξ
Ui,j +

1

2(1 + ξ)
Ui,j

D32 =
ξ

4ξ
Ui,jφIi−1,j +

ξ

4ξ
TY (V Ii,j − V Ii−1,j)

− ξ1/2(1 + ξ)1/2 St φRi,jξ UIi,j CX (5.93)

In the above expressions, UX, V X, TX, CX represents the first order partial deriva-

tives w.r.t ξ of the quantities U, V, T, C respectively and UY, V Y, TY, CY are the

partial derivatives of the respective measurement of the related values w.r.t η. Further,

UR, V R, TR, MR are the measurement of the real part of the respective quantities and

UI, V I, T I, MI are the measurement of the imaginary part of the corresponding quan-

tities

In order to solve all the resulting sets of algebraic equations, TDMA (tridiagonal

solver)is applied. The computation starts at ξ = 0.0 and then it marches up to ξ = 2000

using the step size 4ξ = 0.01. At every ξi station, the computations are iterated until the

difference of the results of two successive iterations becomes less or equal to 10−6.
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5.4 Results and discussion

The present study is devoted to investigate the velocity of flow field, local heat transfer

and mass transfer of a mixed convective unsteady flow due to double diffusion. Extensive

parametric studies have been carried out in order to elucidate the vivid picture of the

flow field. Influence of the parameters on the important quantities of physical interest are

discussed and presented in this section. Results have been depicted in both tabular and

graphical form for different values of the various parameters. In the Table 5.1, numerical

Table 5.1: Comparison of the values of amplitude and phase angels of the local shear stress,
obtained by perturbation methods and finite difference method, while, Pr=0.7, Sc=0.94,
w=0.5, Ri=1.0.

ξ AU φU
—- FDF ESS and ASS. FDF ESS and ASS

0.0000 1.7285 1.716591 0.00000 0.000001

0.0500 1.7320 1.715491 5.0738 5.305891

0.1001 1.7423 1.712201 10.1093 9.212831

0.1501 1.7592 1.706711 15.0707 13.797361

0.2502 1.7823 1.789031 19.9239 16.080011

0.3002 1.8448 1.789181 29.2095 28.354521

0.3502 1.8828 1.787151 33.6054 31.747231

0.4003 1.9243 1.746661 37.8210 33.921431

0.4503 1.9684 1.728221 41.8533 36.074231

0.5504 2.0143 1.607681 45.7000 38.203731

1.0078 2.4184 1.236162 26.22925 26.553542

4.0027 2.2728 2.17192 35.96272 35.88132

6.0040 2.6613 2.55342 37.56064 39.60302

8.0053 2.9873 2.90092 43.57451 38.58502

10.0067 3.2792 3.21722 44.16434 39.41152

12.0080 3.5559 3.50802 44.43331 44.80222

14.0093 3.8184 3.77812 44.83141 44.83052

15.0000 3.9429 3.90532 44.90746 44.84172

1 stands for series solution and 2 stands for asymptotic solution

results for the shear stress obtained by different numerical techniques are presented against

ξ. It can be observed from the table that the values of shear stress are in acceptable

agreement obtained by different solution methodologies. It can also be observed that the

values of shear stress increase monotonically as the values of ξ increases. That is, as it is
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marched towards the downstream, monotonic increment of the values of shear stress are

obtained. It can also be noticed that the increment of the values of Pr have also some

effects on these quantities. It can also be marked that the value of phase angles reaches at

the asymptotic value which is 450 as flow marches towards downstream.

Table 5.2: Comparison of the values of amplitude and phase angels of the shear stress,
obtained by perturbation methods and finite difference method, while, Pr=0.7, Sc=0.94,
w=0.5, Ri=2.0.

ξ AU φU
—- FDF ESS and ASS FDF ESS and ASS

0.0000 0.6933 0.693481 0.00000 0.000001

0.0500 0.6925 0.692661 5.0738 5.71001

0.1001 0.6903 0.690191 6.9959 6.167541

0.1501 0.6866 0.686081 10.1247 9.250411

0.2502 0.6752 0.672991 15.9239 15.412511

0.3002 0.6678 0.664051 18.4475 18.491021

0.3502 0.6595 0.653541 20.8291 20.567441

0.4003 0.6504 0.641501 25.6943 24.641591

0.4503 0.6409 0.647961 28.8533 27.713501

0.5504 0.6217 0.596551 45.7000 33.853281

1.0078 0.5940 0.593782 45.2292 43.46152

4.0027 1.6524 1.62062 45.1104 43.77252

6.0040 2.0416 2.00452 45.4723 43.98072

8.0053 2.3650 2.47352 45.2715 44.23892

10.0067 2.6470 2.74202 45.1602 44.39272

12.0080 2.9003 2.98652 45.1004 44.49482

14.0093 3.1328 3.21132 45.0676 44.56752

15.0000 3.2417 3.23532 45.0571 44.59632

1 stands for series solution and 2 stands for asymptotic solution

Table 5.2 presents some values of amplitude and phase angles of local heat transfer of

the unsteady flow field. The results have been produced with the constant values of Pr=0.7,

Sc=0.94, w=0.5 and Ri=2.0. From the table 5.2, it can be seen that the amplitudes and

phase angles of the shear stress are in good agreement with those calculated by different

numerical methods. Here also, continuous increment is marked as the increment of the

values of ξ. The phase angles are zero under quasi-steady condition, and monotonically

approach towards the asymptotic value.
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The effects of various parameters on the amplitude and phase angles of shear stress,

local heat transfer and mass transfer rate have been depicted in the Figures 5.2-5.6. The

Figure 5.2 inferred the effects of Prandtl number Pr on local heat transfer rate. The values

of Pr have been ranged from 0.054 to 8.0 while all other associated parameters are taken

as constant. Prandtl number ranging from 0.7 to 1.0 represents gases, 1 to 10 stands for

water, 0.001 to 0.03 are for liquid metals and for oil these values are ranging from 50 to

2000. The graphs show that, as the values of Pr are increased the concerned quantities

also become higher. For the phase angles, it can also be seen that the corresponding values

are increased slowly but surely approach towards the asymptotic value of 450. The
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Figure 5.2: (a) Amplitude, (b) Phase angles of heat transfer for different values of Pr,
while, Sc=0.94, Ri=1.0, w=0.5.

effects of the another diffusive parameter Sc on the local mass transfer has been depicted

in Figure 5.3. Here range for the Schmidt number has been chosen from 0.22 to 1.76. The

values of the Schmidt number, Sc are taken to represent the various species, benzene (1.76),

carbondioxide (0.94), water vapor (0.60), and hydrogen (0.22). In this case, for both the

values of amplitude and phase angle of local mass transfer, similar types of behaviour to

local heat transfer can be monitored. The enhancement of the values of Sc, produces higher

values of the amplitude of mass transfer. Phase angles of the mass transfer also attain its

asymptotic value of 450 as flow is headed for downstream.

In Figures 5.4-5.6, the effects of the Richardson’s number Ri on the values of amplitude

and phase angles of shear stress, heat transfer and mass transfer have been presented. It
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Figure 5.3: (a) Amplitude, (b) Phase angles, of mass transfer for different values of Sc,
while, Pr=0.7, Ri=1.0, w=0.5.

can be seen from the Figure 5.4, the change of the values of Ri have significant effects on

the value of amplitude and phase of shear stress. For higher values of Ri, the amplitudes

of shear stress also become higher, where as, the corresponding values of the phase angles

show the reverse behaviour. That is, smaller values of phase angle are observed for higher

values of Ri. As the value of Ri becomes higher, both the mixed convection of the flow and

heat transfer are enhanced and accordingly the amplitude of shear stress becomes higher.

But the values of the phase angle are decreased because in the down stream region, the

derivative of the local skin friction is higher than in the leading edge for smaller values of

Ri.

Though, significant changes are not achieved for both the heat transfer rate and mass

transfer rate in case of changing the values of Ri, but similar to the shear stress, amplitude

of heat transfer and mass transfer are also boosted up little bit due to the increment of

Ri. In both of the cases of heat and mass transfer, the phase angles become smaller as the

values of Ri increase.

Transient shear stress, transient heat transfer and transient mass transfer at different

values of ξ against the oscillation parameter ωt have been revealed in Figures 5.7-5.9.

From the practical points of view, these quantities are important to study, because, these

quantities may ruin a system. This is because, all these three quantities are unsteady

in nature from leading edge to far down stream region. The definition for transient skin
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Figure 5.4: (a) Amplitude, (b) Phase angles of local shear stress for different values of Ri,
while, Pr=0.70, Sc=0.94, w=0.5.
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Figure 5.5: (a) Amplitude, (b) Phase angles of heat transfer for different values of Ri, while,
Pr=0.70, Sc=0.94, w=0.5.

friction , τ , transient heat transfer q, and transient mass transfer m, have been taken as

follows:

τ = τs + εAu cos(ωt+ φs)

q = qs + εAt cos(ωt+ φt)

m = ms + εAc cos(ωt+ φc)

where τs is the steady mean shear stress, qs is the steady surface heat transfer rate

and ms is the steady surface mass transfer rate respectively. The values of τs , qs, ms
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Figure 5.6: (a) Amplitude, (b) Phase angles of mass transfer for different values of Ri,
while, Pr=0.70, Sc=.94, w=0.5.

are calculated first and then the required quantities are obtained accordingly from the

simulations by using the implicit finite difference method for the entire regime. Each of the

case, the values of Ri have been chosen as 1.0 and 4.0 and all other parameters are taken

as Pr=0.7, Sc=0.94, w=0.5 respectively.
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Figure 5.7: Transient shear stress for different values of ξ against ωt, while, Sc=0.94,
Pr=0.7, w=0.5, Ri=1.0, 4.0.

From all these results, one can detect the phase shift of the oscillations of shear stress,

heat transfer and mass transfer as the values of ξ is increased. Periodic maximum and

minimum of the amplitude of the respective oscillations are also clearly perceived. It also
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Figure 5.8: Transient heat transfer for different values of ξ against ωt, while, Sc=0.94,
Pr=0.7, w=0.5, Ri=1.0, 4.0.
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Figure 5.9: Transient mass transfer for different values of ξ against ωt, while, Sc=0.94,
Pr=0.7, w=0.5, Ri=1.0, 4.0.

can be noticed that, as the value of Ri is increased from 1.0 to 4.0, the amplitude of the

oscillations are also increased for the same values of ξ. Since the effect of mixed convection

of flow, heat transfer and mass transfer is relatively stronger in the small ξ region, the

intensity of oscillations dropped down quickly away from the leading edge for lower values

of Ri. Moreover, it can be noted that, the amplitude of the oscillation of the shear stress

is highest and corresponding lowest value is attained for the local mass transfer for the

variation of different parameters.
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5.5 Summary

Numerical calculations have been carried out in this present learning, in order to depict the

parametric effects on different essential quantities. For the unsteady case, the corresponding

quantities are illustrated as amplitude and phase angles. Important findings of the present

investigation are listed below:

• From both graphical and tabular representation of the results, it can be concluded

that, the amplitude of the surface heat transfer, surface mass transfer as well as the

shear stress are increased along with the increment of all the parameters.

• The phase angles of the heat and mass transfer progressively attain the asymptotic

value 450 with the increases of the local frequency parameter ξ.

• Moreover, for the transient shear stress, transient heat transfer and transient mass

transfer, it can also be observed the higher amplitude of oscillations as the values of

ξ increases.

• Lastly, the quick convergence of the simulations ensures the efficiency of the numerical

method that has been implemented to simulate the flow field, in presence of conjugate

buoyancy.
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Chapter 6

Heat and mass transfer response in

MHD natural convection flow due to

oscillating surface temperature and

concentration

6.1 Introduction

“MHD” flow which is termed as magnetohydrodynamics flow, arises when there is interac-

tion of moving electrically conducting fluids with electric and magnetic fields. This kind

of interaction can be observed in liquids, gases, two -phase mixtures, or plasmas. This

kind of flow provides some very interesting phenomena with electro-fluid-mechanical ener-

gy conversion. Sometimes, flow involving electrically conducting fluid is also discussed as

“cross-field” where a uniform fluid stream and a uniform magnetic field making a nonzero

angel with it. In this type of flow, both the buoyancy and magnetic forces effects flow of

electrically conducting fluid. Heating and flow control in metal processing, power genera-

tion from two phases mixtures or seeded high temperature gases, magnetic confinement of

high temperature plasmas etc. are some very well known practical scientific and technical

applications of this type of flow. Continuous development of MHD flow is opening new
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horizon to the technical development. Most recent research have been conducting in MHD

flow so that it can be used in seawater propulsion and control of turbulent boundary layers

to reduce drag. MHD also applies quite well to astrophysics and cosmology.

In this present work, buoyancy driven magnetohydrodynamic flow along a vertical sur-

face have been considered. It has also been taken into account that the surface temperature,

surface species concentration and free stream velocity are time dependent. Both the sur-

face temperature and species concentration have oscillations with small amplitude. The

term “crossed-field” here has been used to describe a flow of electrically conducting fluid.

Moreover, it has been assumed that in some undisturbed flow region , there is a uniform

magnetic field making a non zero angle with it. This assumption assures that there must

be an electric field in such region , directed perpendicularly to both the stream velocity and

magnetic-field vectors. Some early research regarding the MHD flow reported that regard-

less of the strength of the applied magnetic field, the electromagnetic forces are negligibly

important in some region very near to the leading edge of the plate, whilst far from the

leading edge this sort of forces are significantly dominant. In this study, flow field for the

entire region is simulated by applying finite difference method.

6.2 Formulation of the problem

In this work, consideration has been given to unsteady two dimensional magnetohydrody-

namic natural convection flow of a viscous incompressible and electrically conducting fluid

over a semi infinite vertical flat plate in presence of variable transverse magnetic field with

uniform strength B0. It is also assumed that both the surface temperature and the surface

mass concentration oscillate with small amplitude about a mean value. The ambient fluid

is maintained at uniform temperature and concentration , T∞, C∞ respectively. However,

all the thermo- physical fluid properties are considered to be constant and viscous dissipa-

tion effect is neglected. Moreover, it is assumed that the ratio of thermal diffusivity and

molecular diffusivity to magnetic diffusivity are small enough so that the perturbation can

be avoided in the basic normal field. The coordinate system and flow configuration of the

problem are shown in figure 6.1. Under the usual Boussinesq approximation along with
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Figure 6.1: Configuration and coordinate of the flow field

the above mentioned assumptions, the boundary layer equations for mass, momentum and

energy can be written as:
∂ū

∂x̄
+
∂v̄

∂ȳ
= 0 (6.1)

∂ū

∂t
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ν

∂2ū

∂ȳ2
+ gβT T̄ + gβCC̄ −

σ0B
2
0

ρ
ū (6.2)

∂T̄

∂t
+ u

∂T̄

∂x̄
+ v

∂T̄

∂ȳ
= ᾱ

∂2T̄

∂ȳ2
(6.3)

∂C̄

∂t
+ u

∂C̄

∂x̄
+ v

∂C̄

∂ȳ
= D

∂2C̄

∂ȳ2
(6.4)

where ū and v̄ are the x̄ and ȳ components of velocity field, respectively, in the momen-

tum boundary layer; T̄ = T − T∞ and C̄ = C − C∞ is the temperature and concentration

in the thermal and concentration boundary layers respectively, ν is the kinematic viscosity

of the fluid, σ the electrical conductivity, B0 is the magnetic field normal to the plate, ρ

the density of the fluid, g the acceleration due to gravity, α the thermal diffusivity, D is the

molecular diffusivity, βT , βC are the coefficients of volume expansion due to temperature

and concentration respectively. Associated boundary conditions are:

y = 0 : u = v = 0, T̄ = Tw, C̄ = Cw,

y =∞ : u(x,∞, t) = v(x,∞, t) = 0, T̄ → T∞, C̄ → C∞ (6.5)
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where, Tw = θw(x)[1+ε (exp iωt+ c.c)], Cw = φw(x)[1+ε (exp iωt+ c.c)], θw(x) and φw(x)

are, respectively the mean surface temperature and mean surface concentration; ε(<< 1)

is the amplitude and ω is the frequency of oscillations in the surface temperature and

concentration.

The following dimensionless variables can be introduced to get a set of non dimensional

governing equations:

ū =
νGr

1/2
L

L
u, v̄ =

νGr
1/2
L

L
v

y =
Gr

1/4
L

L
ȳ, x =

Gr
1/4
L

L
x̄, M =

σB2
0

ρ

L2

ν
Gr
− 1/2
L

x =
x̄

L
, GrL =

gβT∆TL3

ν2
, GrC =

gβC∆CL3

ν2

θ =
T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

(6.6)

Commencing the above set of non dimensional variables, some of which are dependent

and some are independent, the equations (6.1)-(6.4) take the form:

∂u

∂x
+
∂v

∂y
= 0 (6.7)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβT θ + gβCφ−Mu (6.8)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
= ᾱ

∂2θ

∂y2
(6.9)

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= D

∂2φ

∂y2
(6.10)

“ Since the geometry under consideration lacks an obvious length scale, non-dimensional

parameters are best considerations with in respect to the distance from the leading edge x.

This local variation of parameters reflecting the relative magnitudes of the forces involved

at a given station is instrumental in formulating the problem in the form of suitable for

numerical integration. In particular, the non-dimensional quantity, ξ = M2x represents a

local measures of the relative magnetic and buoyancy forces independent of viscous or com-
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bined thermal and mass diffusion elements. Consequently, we seek to formulate the problem

in terms of this fundamental dimensionless characteristic coordinate. ” [65]. Equation (6.5)

suggests the solutions of the equations (6.7)-(6.10) to be of the form:

u(x, y, t) = u0(x, y) + ε (exp iωt+ c.c)u1(x, y), v(x, y, t) = v0(x, y) + ε (exp iωt = c.c) v1(x, y)

T̄ (x, y, t) = θw(x, y) (θ0(x, y) + ε (exp iωt = c.c) θ1(x, y))

C̄(x, y, t) = φw(x, y) (φ0(x, y) + ε (exp iωt+ c.c)φ1(x, y)) (6.11)

where u0, v0, θ0 and φ0 represent the steady mean flow. Considering these form of solutions,

the steady mean flow is governed by the following set of equations:

∂u0

∂x
+
∂v0

∂y
= 0 (6.12)

u0
∂u0

∂x
+ v0

∂u0

∂y
= α

∂2u0

∂y2
+ gβT θw(x)θ0 + gβCφw(x)φ0 −Mu0 (6.13)

u0
∂θ0

∂x
+ v0

∂θ0

∂y
= ᾱ

∂2θ0

∂y2
(6.14)

u0
∂φ0

∂x
+ v0

∂φ0

∂y
= ᾱ

∂2φ0

∂y2
(6.15)

Corresponding boundary conditions are:

y = 0 : u0 = v0 = 0, θ0 = θw(x), φ0 = φw(x)

y →∞ : u0 → 0, θ0 → 0, φ0 → 0 (6.16)
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The set of differential equations and corresponding boundary conditions, which govern

the unsteady flow field are in the form of equations (6.17)-(6.21):

∂u1

∂x
+
∂v1

∂y
= 0 (6.17)

u0
∂u1

∂x
+ u1

∂u0

∂x
+ v0

∂u1

∂y
+ v1

∂u0

∂y
+ iωu1

= ᾱ
∂2u1

∂y2
+ gβT θw(x)θ1 + gβCφw(x)φ1 −Mu1 (6.18)

u0
∂θ1

∂x
+ u1

∂θ0

∂x
+ v0

∂θ1

∂y
+ v1

∂θ0

∂y
+ iωθ1 = ᾱ

∂2θ1

∂y2
(6.19)

u0
∂φ1

∂x
+ u1

∂φ0

∂x
+ v0

∂φ1

∂y
+ v1

∂φ0

∂y
+ iωφ1 = ᾱ

∂2φ1

∂y2
(6.20)

y = 0 : u1 = v1 = 0, θ1 = θw(x), φ1 = φw(x)

y →∞ : u1 → 0, θ1 → 0, φ1 → 0 (6.21)

In the above equations, the parameters Pr, Sc, St have been introduced. The dimen-

sionless parameter Pr, which is the Prandtl number, represents the ratio of momentum

diffusivity to the thermal diffusivity. Sc, which is the Schmidt number, represents the ra-

tio of momentum diffusivity to the momentum diffusivity and St = ω
M

is the frequency

parameter. The important quantities which are considered as of the utmost interest, are

unsteady shear stress, surface temperature and surface concentration. These quantities

can be calculated from the solutions of the equations (6.18)-(6.21) and (6.23)-(6.26). In

this present study, these quantities are calculated and presented in terms of amplitude and

phase angels. The following expressions are used to calculate the amplitude and phase of

regarding quantities.

Au =
√

(f ′′r )2 + (f ′′i )2|η=0, At =
√

(θ2
r) + (θ2

i )|η=0

Ac =
√

(φ2
r) + (φ2

i )|η=0 and (6.22)
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φu = tan−1(
f ′′i
f ′′r

), φt = tan−1(
θi
θr

)

φc = tan−1(
φi
φr

) (6.23)

where, (fr, fi) , (θr, θi) and (φr, φi) represent the real and imaginary part of f1(ξ, η), θ1(ξ, η)

and φ1(ξ, η) respectively. The solution methodology for different parts of the flow field are

discussed in brief in the following section.

6.3 Solution methodology

6.3.1 Steady Flow field

In order to solve the equations (6.12)-(6.16) by using the finite difference method, stream

function formulation (SFF) have been implemented. By using, SFF, the dimensionless

boundary layer equations (6.12)-(6.16) have been transformed into a system of equations,

which are pertinent for the entire regime, i.e. from the leading edge to the downstream

region. The following transformations are brought in, which were firstly introduced by

Hunt and Wilks [80] for the semi infinite vertical flat plate:

ψ = x3/4(1 + ξ)−1/4F (η, ξ), η = x−1/4(1 + ξ)−1/4y

ξ = M2x, θ = Θ(η, ξ), φ = Φ(η, ξ) (6.24)

where ψ is the stream function which satisfy the continuity equation (6.12). With the help

of these transformations, the equations (6.12)-(6.16) can be transformed into the following
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set of non similarity equations:

∂3F

∂η3
+

3 + 2ξ

4(1 + ξ)
F
∂2F

∂η2
− 1

2(1 + ξ)

(
∂F

∂η

)2

− ξ1/2(1 + ξ)1/2∂F

∂η

+ (1 + ξ)(Θ +NΦ) = ξ

(
∂F

∂η

∂2F

∂ξ∂η
− ∂2F

∂η2

∂F

∂ξ

)
(6.25)

1

Pr

∂2Θ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Θ

∂η
= ξ

(
∂F

∂η

∂Θ

∂ξ
− ∂Θ

∂η

∂F

∂ξ

)
(6.26)

1

Sc

∂2Φ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Φ

∂η
= ξ

(
∂F

∂η

∂Φ

∂ξ
− ∂Φ

∂η

∂F

∂ξ

)
(6.27)

Associated boundary conditions are:

F (0, ξ) =
∂F

∂η
(0, ξ) = 0, Θ(0, ξ) = Φ(0, ξ) = 1

∂F

∂η
(∞, ξ)→ 0, Θ(∞, ξ)→ 0, Φ(∞, ξ)→ 0 (6.28)

For the sake of solving the above set of non-linear, coupled partial differential equations,

a new variable H = ∂F
∂η

has been introduced so that the above system of equations turned

into second order partial differential equations:

∂2H

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂H

∂η
− 1

2(1 + ξ)
H2 − ξ1/2(1 + ξ)1/2H

+ (1 + ξ)(Θ +NΦ) = ξ

(
H
∂H

∂ξ
− ∂H

∂η

∂F

∂ξ

)
(6.29)

1

Pr

∂2Θ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Θ

∂η
= ξ

(
H
∂Θ

∂ξ
− ∂Θ

∂η

∂F

∂ξ

)
(6.30)

1

Sc

∂2Φ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Φ

∂η
= ξ

(
H
∂Φ

∂ξ
− ∂Φ

∂η

∂F

∂ξ

)
(6.31)

Along with the boundary conditions:

F (0, ξ) = H(0, ξ) = 0, Θ(0, ξ) = Φ(0, ξ) = 1

H(∞, ξ)→ 0, Θ(∞, ξ)→ 0, Φ(∞, ξ)→ 0 (6.32)
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The above set of equations are discretized for numerical scheme by replacing the partial

derivatives with back-ward difference formulas. The resulting momentum equation, energy

equation and concentration equation have been turned into system of tri-diagonal algebraic

equations. Then these system of equations have been solved by TDMA. The form of the

discretized momentum equations (6.29)is given below:

A1 Hi,j+1 +B1 Hi, j + C1 Hi,j−1 = D1, where

A1 = −

 1

(4η)2
+

(
3+2ξ

4(1+ξ)
Fi,j + ξ

4ξ (Fi,j − Fi−1,j)
)

(24η)


C1 = −

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Fi,j + ξ

4ξ (Fi,j − Fi−1,j)
)

(24η)


B1 =

2

(4η)2)
+

(
1

2(1 + ξ)
+

ξ

4ξ

)
Hi,j + ξ1/2(1 + ξ)1/2

D1 =
ξ

4ξ
Hi,jHi−1,j + (1 + ξ)(Θi,j +NΦi,j) (6.33)

For the energy equation (6.30), the discretized equation takes the form:

A2Θi,j+1 +B2Θi, j + C2Θi,j−1 = D2, where

A2 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
C2 = −

[
1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
B2 =

2

Pr(4η)2
+

ξ

4ξ
Hi,j, D2 =

ξ

4ξ
Hi,jΘi−1,j (6.34)
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And for the concentration equation (6.31), the discretized equation takes the form:

A3Φi,j+1 +B3Φi, j + C3Φi,j−1 = D3, where

A3 = −
[

1

Sc (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
C3 = −

[
1

Sc (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
B3 =

2

Sc(4η)2
+

ξ

4ξ
Hi,j, D3 =

ξ

4ξ
Hi,jΦi−1,j (6.35)

Here,1 ≤ i ≤ M and 2 ≤ j ≤ M − 1 denote the grid points along the η and ξ directions,

respectively. 4ξ = ξi − ξi−1 is the step size in the i ’th direction and 4η = ηj − ηj−1

determines the step size in the j ’th direction. Finally Fi,j is calculated from the relation:

Fi,j = Fi,j−1 +
1

2
4η (Hi,j +Hi,j−1)

For newly introduced function, corresponding boundary conditions take the form:

Fi,j = Hi,j = 0, Θi,j = 1, Φi,j = 1

HM,j → 0, ΘM,j → 0, ΦM,j → 0 (6.36)
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6.3.2 Fluctuating flow field:

Using the similar set of transformations (equation 6.28) for the unsteady flow field, the

following set of equations can be derived from equations (6.17)-(6.21):

∂3f

∂η3
+

3 + 2ξ

4(1 + ξ)

(
F
∂2f

∂η2
+ f

∂2F

∂η2

)
− 1

(1 + ξ)

(
∂F

∂η

∂f

∂η

)
−iSt ξ1/2(1 + ξ)1/2∂f

∂η
+ (1 + ξ)(θ +Nφ)− ξ1/2(1 + ξ)1/2∂f

∂η

= ξ

(
∂f

∂η

∂2F

∂η∂ξ
+
∂F

∂η

∂2f

∂η∂ξ
− ∂2F

∂η2

∂f

∂ξ
− ∂2f

∂η2

∂F

∂ξ

)
(6.37)

1

Pr

∂2θ

∂η2
+

3 + 2ξ

4(1 + ξ)

(
F
∂θ

∂η
+ f

∂Θ

∂η

)
− iSt ξ1/2(1 + ξ)1/2 ∂θ

∂η

= ξ

(
∂F

∂η

∂θ

∂ξ
+
∂f

∂η

∂Θ

∂ξ
− ∂θ

∂η

∂F

∂ξ
− ∂Θ

∂η

∂f

∂ξ

)
(6.38)

1

Sc

∂2φ

∂η2
+

3 + 2ξ

4(1 + ξ)

(
F
∂φ

∂η
+ f

∂Φ

∂η

)
− iSt ξ1/2(1 + ξ)1/2∂φ

∂η

= ξ

(
∂F

∂η

∂φ

∂ξ
+
∂f

∂η

∂Φ

∂ξ
− ∂φ

∂η

∂F

∂ξ
− ∂Φ

∂η

∂f

∂ξ

)
(6.39)

Associated boundary conditions are:

f(0, ξ) =
∂f

∂η
(0, ξ) = 0, θ(0, ξ) = φ(0, ξ) = 1

∂f

∂η
(∞, ξ)→ 0, θ(∞, ξ)→ 0, φ(∞, ξ)→ 0 (6.40)

The equations (6.37)-(6.39) can now be decomposed into two sets of equations for rep-

resenting the real and imaginary part by introducing ∂f
∂η

= U, and U = UR + iUI etc.

Then these two sets of equation can be discretized by following the similar approach, that

has already been discussed in previous subsection. The discretized form of the equations

(6.37)-(6.39) are presented below:
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Real part of the Momentum equation:

A11URi,j+1 +B11URi, j + C11URi,j−1 = D11, where

A11 = −

 1

(4η)2
+

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)


C11 = −

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)


B11 =

2

(4η)2)
+

(
1

(1 + ξ)
+

ξ

4ξ

)
URi,j + ξ1/2(1 + ξ)1/2 − ξ UX

D11 =
ξ

4ξ
(Ui,jURi−1,j + UY (V Ri,j − V Ri−1,j)) + (1 + ξ)(θRi,j +NφRi,j)

+ ξ1/2(1 + ξ)1/2 St UIi,j +
3 + 2ξ

4(1 + ξ)
UY V Ri,j (6.41)

Imaginary part of the Momentum equation:

A12 UIi,j+1 +B12UIi, j + C12UIi,j−1 = D12, where

A12 = −

 1

(4η)2
+

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)


C12 = −

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Vi,j + ξ V X

)
(24η)


B12 =

2

(4η)2)
+

(
1

(1 + ξ)
+

ξ

4ξ

)
URi,j + ξ1/2(1 + ξ)1/2 − ξ UX

D12 =
ξ

4ξ
(Ui,jURi−1,j + UY (V Ii,j − V Ii−1,j)) + (1 + ξ)(θIi,j +NφIi,j)

− ξ1/2(1 + ξ)1/2 St URi,j +
3 + 2ξ

4(1 + ξ)
UY V Ii,j (6.42)
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Real part of the Energy equation:

A21θRi,j+1 +B21θRi, j + C21θRi,j−1 = D21, where

A21 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
C21 = −

[
1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
B21 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j

D21 =
ξ

4ξ
Ui,jθRi−1,j +

ξ

4ξ
TY (V Ri,j − V Ri−1,j)

+ ξ1/2(1 + ξ)1/2 St θIi,j + ξ URi,j TX (6.43)

Imaginary part of the Energy equation:

A22θIi,j+1 +B22θIi, j + C22θIi,j−1 = D22, where

A22 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
C22 = −

[
1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
B22 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j (6.44)

D22 =
ξ

4ξ
Ui,jθIi−1,j +

ξ

4ξ
TY (V Ii,j − V Ii−1,j)

+ ξ1/2(1 + ξ)1/2 St θIi,j + ξ UIi,j TX (6.45)
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Real part of the concentration equation:

A31φRi,j+1 +B31φRi,j + C31φRi,j−1 = D31, where

A31 = −
[

1

Sc (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X

)
/(24η)

]
C31 = −

[
1

Sc (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Vi,j + ξ V X/

)
(24η)

]
B31 =

2

Pr(4η)2
+

ξ

4ξ
Ui,j

D31 =
ξ

4ξ
Ui,jφRi−1,j +

ξ

4ξ
TY (V Ri,j − V Ri−1,j)

+ ξ1/2(1 + ξ)1/2 St φIi,j + ξ URi,j CX (6.46)

Imaginary part of the Concentration equation:

A32φIi,j+1 +B32φIi,j + C32φIi,j−1 = D32, where

A32 = −
[

1

Sc (4η)2
+

3 + 2ξ

4(1 + ξ)
Vi,j/(24η)

]
C32 = −

[
1

Sc (4η)2
− 3 + 2ξ

4(1 + ξ)
Vi,j/(24η)

]
B32 =

2

Sc(4η)2
+

ξ

4ξ
Ui,j +

1

2(1 + ξ)
Ui,j

D32 =
ξ

4ξ
Ui,jφIi−1,j +

ξ

4ξ
TY (V Ii,j − V Ii−1,j)

− ξ1/2(1 + ξ)1/2 St φRi,jξ UIi,j CX (6.47)

The solution procedures of the above sets of discretized equations (6.41)-(6.43) are

exactly similar to which is described in chapter 5.

6.4 Results and discussion

In this present study, the conjugate effect of thermal and mass diffusion on natural con-

vection flow has been elucidated by numerical simulations in presence of a strong cross

magnetic field. As boundary condition, the surface velocity, temperature and concentra-

tion are assumed to be of small amplitude oscillation. The form of this type of boundary

127



Chapter 6. Heat and mass transfer response in MHD natural convection flow due to
oscillating surface temperature and concentration

condition suggests the decomposition of the governing equations into two parts which are

time dependent and time independent respectively. In this present investigation, these two

sets of equations are simulated separately. Since the solutions of time dependent set of

equations are coupled with the time independent ones, the equations governing the steady

state flow is solved firstly, then the simulated results are considered as known values while

the unsteady set of equations are solved. Stream function formulation has been imple-

mented in order to convert the governing equations for both steady and unsteady part into

nonsimilar equations. Then the equations are solved via implicit finite difference method

along with tridiagonal solver. All the important parameters, for example, the buoyancy

ratio parameter w, the Prandtl numberPr, the Schmidt number Sc, the Strouhal number, St

have been taken into consideration and extensive simulations carried out so that the insight

of the flow field in conjunction with heat and mass transfer can be revealed. Throughout

the simulations, the values of Prandtl number and Schmidt number are chosen both small

and large. For the steady case, the values of Schmidt numbers have chosen comparatively

small, ranging from 0.22 to 1.76. For the unsteady case, the values of Pr is taken relatively

small while the values of Sc were varying from 10 to 50. This is because, combination of

small Prandtl number and higher Schmidt number represents the liquid metals. The liquid

metals have significant industrial and technical applications. Since the liquid metals are

non flammable, non-toxic and environmental friendly, these are used in source exchanger,

electronic pumps, ambient heat exchanger as well as the fuel of heat engines. Sodium-

alloys, bismuth, lead-bismuth are used in nuclear plant as heat transfer fluids. Moreover,

mercury play a vital role as heat reducer in reactor plant. Presently, the smallest value of

Pr has been chosen 0.054 which represents the lithium [65]- [67].

At the very outset of the investigations, in order to validate the present numerical sim-

ulations, the results are produced similar to [65], by considering the similar assumption

and comparative results are presented in Table 6.1. Hunt and Wilks [80] studied the same

problem considering no mass diffusion and Sadia et al. [65]- [67] extended the problem

considering mass diffusion along with thermal diffusion. In both the cases, the surface

temperature and concentration are considered as constants respectively. Here, the heat
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Table 6.1: Values of the shear stress and heat transfer, for the steady flow, obtained by
finite difference method, while, Pr=0.7, N =0.0.

ξ
Skin friction coefficient Heat transfer coefficient

Wilks Sadia Present Wilks Sadia Present
et al. [66] et al. [66]

0.01 0.3447 0.3441 0.3449 1.2962 1.2972 1.2924
0.05 0.4953 0.4923 0.4908 0.8412 0.8404 0.8459
0.10 0.5722 0.5645 0.5683 0.6919 0.6909 0.6914
0.20 0.6544 0.6380 0.6391 0.5641 0.5610 0.5680
1.00 0.7654 0.7189 0.7127 0.4227 0.4147 0.4133
2.00 0.8459 0.8471 0.8588 0.3335 0.3334 0.3315
4.00 0.9184 0.9169 0.9170 0.2581 0.2582 0.2576
6.00 1.0101 1.0125 1.0170 0.1647 0.1649 0.1603
8.00 1.0288 1.0319 1.0356 0.1452 0.1455 0.1469
10.00 1.0418 1.0456 1.0430 0.1314 0.1317 0.1320
12.00 1.0515 1.0560 1.0547 0.1209 0.1212 0.1263
14.00 1.0591 1.0641 1.0647 0.1209 0.1212 0.1233
16.00 1.0651 1.0708 1.0765 0.1059 0.1062 0.1047

transfer, mass transfer and the shear stress are observed in presence of small amplitude

oscillations at the surface with the regarding quantities.

6.4.1 Steady flow field

It has been mentioned earlier that the parametric studies for both steady and unsteady

flow fields are carried out and results are presented both in tabular and graphical forms.

Some numerical values of shear stress, heat transfer and mass transfer are listed in Table

6.2 against the values of ξ for two different values of Sc=1.76 and 0.22 which corresponds to

benzene and carbondioxide respectively. The values of Pr and the buoyancy ratio parameter

w were taken 0.7 and 0.5 respectively. From the table it can be observed that, for higher

values of ξ, i.e. as it is marched towards the down stream the values of both heat transfer

and mass transfer coefficients get smaller where as the values of shear stress become higher.

The values of mass transfer coefficient get enhanced because of the increment of the values

of Sc and heat transfer coefficients diminishes as it is expected. Figure 6.2-6.3 presents

the effects of Pr, Sc and N on heat transfer and mass transfer. During the study of effect
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Table 6.2: Values of the shear stress, heat transfer, and Mass transfer for the steady flow,
obtained by finite difference method for Sc=1.76, 0.22, while, Pr=0.7,N =0.5.

ξ
Sc=1.76 Sc=0.22

Shear Heat Mass Shear Heat Mass
stress Transfer Transfer stress transfer transfer

0.1004 0.8443 0.5973 0.5991 0.8611 0.5197 0.4303
0.2008 0.9652 0.4566 0.4707 0.9853 0.4006 0.3242
0.3012 1.0379 0.3925 0.4123 1.0601 0.3465 0.2760
0.4016 1.0892 0.3536 0.3770 1.1128 0.3137 0.2466
0.5020 1.1282 0.3266 0.3526 1.1528 0.2909 0.2263
0.6024 1.1591 0.3064 0.3344 1.1845 0.2739 0.2110
0.7028 1.1843 0.2905 0.3201 1.2103 0.260 0.1990
0.8032 1.205 0.2775 0.3085 1.2318 0.2495 0.1892
0.9036 1.2233 0.2666 0.2987 1.2499 0.2402 0.1810
1.0040 1.2387 0.2573 0.2903 1.2655 0.2323 0.1740
3.0120 1.3595 0.1789 0.2185 1.3842 0.1650 0.1161
5.0201 1.3932 0.1518 0.1917 1.4096 0.1457 0.1004
7.0281 1.4099 0.1364 0.1758 1.4233 0.1334 0.0908
9.0361 1.4203 0.1261 0.1647 1.4345 0.1222 0.0823
15.0602 1.4373 0.1078 0.1441 1.4468 0.1082 0.0718
17.0683 1.4408 0.1037 0.1394 1.4523 0.1012 0.0667
20.0803 1.4449 0.0988 0.1336 1.4550 0.0971 0.0640
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Figure 6.2: (a) Heat transfer, (b) mass transfer of steady flow field for different values of
Pr, and Sc respectively, while, w=0.5.

of Prandtl number on heat transfer, the values of other parameters are kept constant. In

this case, the value of Sc is taken 10.0, the buoyancy ratio parameter N is chosen 0.5

and the values of Pr are taken 0.03, 0.7 and 1.0 which represents liquid metals, air at

200 C at 1 atm. pressure and water respectively. Figures 6.2(a) and 6.2(b) show the
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Figure 6.3: (a) Heat transfer, (b) Mass transfer of steady flow field for different values of
N, while, Pr=0.054, Sc=10.0.

effect of different Prandtl number on heat transfer and Schimdt number on mass transfer

respectively. For studying the effects of Prandtl number on heat transfer, different values of

Prandtl numbers are chosen representing liquid metals, air and water where as during the

case of Schimdt number a combination of lower Prandtl number and relatively higher values

of Schmidt number (10 to 50)have been chosen. This is because small Prandtl number and
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large Schmidt number is the usual characteristic of liquid metals. Since, now a days liquid

metals are one of the most important component, specially in nuclear power plants and

heat exchanger, this type of combinations are made for investigation. From the graphs it

can be observed that the increment of both Prandtl number and Schmidt number leads to

declination of heat and mass transfer respectively.

Figures 6.3(a) and 6.3(b) present the effect of buoyancy ratio parameter N on heat and

mass transfer. From the graphs it can be inferred that, as the values of N goes higher

the values of both heat and mass transfer increase. The value of N =0.0 indicates that the

flow field is solely dominated by thermal diffusion where as the other values of N ensure

the combined buoyancy force due to thermal and mass diffusion and positive values of N

indicates that the upward buoyancy force near the surface becomes more dominant.

6.4.2 Fluctuating flow field

The governing equations of the unsteady flow field are also solved by the implicit finite

difference method for the entire regime and the results are expressed in terms of amplitude

and phase angles of heat transfer, mass transfer and shear stress as these quantities have

great interest from engineering point of view. Likewise the steady flow, here also paramet-

ric studies have been carried out broadly. The new dimensionless frequency parameter,

Strouhal number, St has been commenced here in order to characterize the unsteadiness

and oscillation of the flow field in presence of magnetic field.

In the Table 6.3, some values of amplitude and phase angles of shear stress, heat transfer

and mass transfer are listed against the locally varying parameter ξ. Tridiagonal matrix

solver is used to solve the discretized equations. Starting from zero, ξ is stride out till 50

and iterations are carried out till the difference between two successive iterated results that

are smaller than 10−6. Results on the table show that the amplitudes of heat transfer, mass

transfer and shear stress increase along with the values of ξ. The phase angles of both heat

and mass transfer approach towards the asymptotic value 450. Near the very leading edge,

i.e. for very very small values of ξ some undulation of the values of the phase angles can

be observed but as the values of ξ become higher, the corresponding values of phase angle
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Table 6.3: Values of the amplitude and phase angles of shear stress, heat transfer, and
mass transfer for the unsteady flow obtained by finite difference method, while, Pr=0.7,
Sc=0.60, N =0.5,N =0.5, St=0.5.

ξ
Heat Transfer Mass Transfer Shear stress

Amplitude Phase Amplitude Phase Amplitude Phase
angles angles angles

0.0000 0.0489 0.0000 0.0474 0.0000 1.2475 0.0000
0.1010 0.3481 44.6099 0.5480 47.2802 1.0575 13.1416
0.2020 0.4211 45.1063 0.6525 45.6489 1.0821 15.1466
0.3030 0.4737 45.0457 0.7371 44.6980 1.1146 16.5484
0.4040 0.5186 44.8199 0.8138 44.6173 1.1495 17.8173
0.5051 0.5596 44.7434 0.8761 44.7876 1.1869 18.8600
0.6061 0.5960 44.7926 0.9324 44.7689 1.2237 19.7017
0.7071 0.6293 44.8154 0.9844 44.8291 1.2598 20.3999
0.8081 0.6603 44.8387 1.0325 44.8295 1.2945 20.9779
0.9091 0.6894 44.8554 1.0781 44.8534 1.3281 21.4760
1.0101 0.7171 44.8702 1.1212 44.8597 1.3606 21.8987
3.5354 1.2017 44.9527 1.8787 44.9308 1.9768 25.0809
5.0505 1.4116 44.9582 2.2069 44.9300 2.2589 25.4179
7.0707 1.6499 44.9586 2.5794 44.9223 2.5854 25.6126
9.0909 1.8576 44.9561 2.9040 44.9116 2.8740 25.7119
13.0303 2.2068 44.9479 3.4500 44.8877 3.3647 25.8205
16.0606 2.4416 44.9406 3.8169 44.8681 3.6971 25.8772
18.0808 2.5863 44.9354 4.0431 44.8547 3.9025 25.9098
20.0000 2.7166 44.9303 4.2468 44.8419 4.0878 25.9386
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Figure 6.4: (a) Amplitude, (b) Phase angles of shear stress for different values of St, while,
Pr=0.054, Sc=10.0, N =0.5.

tends to the regarding asymptotic value.

The effects of Prandtl number Pr on the heat transfer is picturised in Figure 6.4. To

depict this effect the simulations are done with Sc=10.0,N =0.5,St=0.5. Both the values

of amplitude and phase angles of heat transfer enhanced with the values of Pr. The values

of phase angles do not vary much along with the variations of the values of ξ and Pr.

Figure 6.5 shows the effect of Sc on mass transfer. During these simulations, the combi-

nations of Pr and Sc are made to represent the liquid metals. It can be observed from the

figures that similar to Pr here also the amplitude of the mass transfer coefficient increase

with the increment of the value of Sc. The values of the phase angle of mass transfer do

not vary much with the variation of the values of Sc but for the higher value of Sc, near

the leading edge small fluctuation can be detected but as it is headed for the downstream,

the corresponding values reach to it’s asymptotic value which is 450.

Figures 6.6-6.8 explicate the effect of Strouhal number St on shear stress, heat transfer

and mass transfer respectively. The figure (6.6) clearly illustrates that, for lower St, higher

amplitude of shear stress is found and the values increase monotonically as the locally vary-

ing parameter ξ is increased. But highest value of phase angle is achieved for the highest

value of St, i.e. as the value of St goes up, the values of the phase angle are also boosted

up. For both the heat transfer and mass transfer cases, it can be concluded from the figures

that, the values of the amplitude of the heat transfer and mass transfer coefficients attain
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Figure 6.5: (a) Amplitude, (b) Phase angles of heat transfer for different values of St, while,
Pr=0.054, Sc=10.0, N =0.5.
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Figure 6.6: (a) Amplitude, (b) Phase angles of mass transfer for different values of St,
while, Pr=0.054, Sc=10.0, N =0.5.

the higher values as St is raised up. For the liquid metal case, it can also be noted that the

values of mass transfer is larger than the heat transfer though the patterns are similar. For

both circumstances, the values of phase angle once again arrive at their asymptotic value.

Finally, Figure 6.9 depicts the effect of N on shear stress. Here only the positive val-

ues of N have been taken into account which serve the higher upward buoyancy than the

downward buoyancy in the leading edge. From the graphs it can be detected that higher

the values of N, higher the value of amplitude of shear stress is. For relatively higher values

ofN little swinging of the values of both amplitude and phase angle can be noted near the

leading edge but for higher values of ξ, the values get stable and start increasing along with
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Figure 6.7: (a) Amplitude, (b) Phase angles of shear stress for different values of N, while,
Pr=0.054, Sc=10.0, St=0.5.

the increment of ξ.

6.5 Summary

The aim of the present work is to study both the steady and unsteady natural convection

flow in presence of strong cross magnetic field. Moreover, time dependent boundary con-

ditions have been imposed on free stream velocity, surface heat transfer and surface mass

concentration. All-encompassing parametric studies have revealed the following important

points regarding this type of flow:

• For both the steady and unsteady cases, increment of the values of Prandtl number

Pr enhance the heat transfer rate. For unsteady case, asymptotic values for both the

amplitude and phase angles can be achieved as the simulations march towards the

trail edge of the flow field.

• Mass transfer rate is increased along with the increment of the values of Schmidt

number Sc. In this case also, the asymptotic values of the phase angle of the mass

transfer rate, which is 450 is attained right after the leading edge.

• Study of the dimensionless frequency parameter St shows that both the heat transfer

and mass transfer rate is enhanced due to the enhancement of the values of St whilst
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both the amplitude and phase angles of shear stress is decreased due to the increment

of St.

• Only the positive values of N have been taken into account and it is worth noting

that higher the values of N, the values of amplitude and phase angles of shear stress

also become higher.
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Chapter 7

Heat and mass transfer response

along horizontal circular heated

cylinder for mixed convection flow

7.1 Introduction

Both in natural and artificial flow situation, there is almost always unsteadiness occurs

and examples of unsteady free and mixed convection flow are in abundant. In natural

convection flow, the fluid movement is created by the warm fluid itself and also a process

in which the fluid motion is occurred by buoyancy effects. Buoyancy forces arise due to

density gradients within the fluid caused by the temperature field itself. The transport

processes due to double diffusion occurs both in nature and many engineering applications.

Some very important examples of engineering applications of double diffusive flow include

chemical reactions in reactor chamber, chemical vapor deposition of solid layers, combus-

tion of atomized liquid fuels and dehydration operations in chemical and foundry plants

etc. Recent significant development in computing techniques and tools have opened up

a new horizon in studying fluid flow problems which are involved with some complicated

geometry. These type of fluid flow have considerable involvement with the interaction of

applicable phenomena. For example, flow over tubes in nuclear reactors and cylindrical
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heating elements are very much related to the free convection over vertical or horizontally

placed cylinders. Though in nature and many engineering applications, double diffusive

flow occurs frequently, less attention has been given to the study of unsteady flow due to

double diffusion. Moreover, only the search of similarity solutions have attracted much

attention. This is because similarity formulation transform easily the transport equations

into a set of ordinary differential equations which can be solved numerically for different

values of the parameters involved.

This present study is devoted to investigate unsteady, double diffusive, mixed convec-

tive flow along an infinite horizontal cylinder. Alike to any double diffusive study, the

governing equations of the flow field is simulated for two different diffusive parameters, Pr

and Sc. The values of these two parameters depend on the nature of the fluid and on

the physical mechanisms governing the diffusion of the heat and chemical species. As the

most important fluids are atmospheric air and water, most of the results that have been

produced here is calculated by taking the value of Pr = 0.71 against ξ and Sc is chosen as

0.22 (due to presence of H2 as the chemical species). To derive the governing equations,

the boussinesq approximations are made, that is, it is assumed that the fluid property

variations are limited to firstly the density which is taken into account only in so far as

its effects the buoyancy term and secondly the viscosity. Based on the conservation prin-

ciple, the governing equations are expressed in terms of vorticity, stream function, energy

equation and concentration equation. During the numerical computation, similar solutions

of [82] and [83] are produced and compared with the present results to validate the model

simulation.

7.2 Formulation of the problem

In this work, consideration has been given to unsteady two dimensional mixed convection

flow of a viscous incompressible fluid over a circular cylinder. The cylinder is considered

as heated and placed horizontally in a uniform stream with its axis perpendicular to the

oncoming flow direction. The cylinder surface has maintained with isothermal and iso-

concentration surface with constant temperature Ts and concentration Cs. The ambient
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fluid is maintained at uniform temperature and concentration, T∞, C∞ respectively and

free stream velocity is taken as U∞. However, all the thermo- physical fluid properties are

considered to be constant and viscous dissipation effect is neglected. The flow configuration

of the problem and the coordinate system is shown in figure 7.1.

Under the usual Boussinesq approximation together with the above assumptions, the

 

𝜽^=0 𝜽^ 
C 

V 

r’ 𝑢𝑟
′  

𝑢𝜃^
′  

Figure 7.1: Configuration of the model

conservation equations for mass, momentum , energy and concentration can be written as:

∇2Ψ = −Ω (7.1)

∂ζ ′

∂t′
+ v′r′

∂ζ ′

∂r′
+
vθ̂′

r′
∂ζ ′

∂θ̂
= ν∇2ζ ′

−
(

1

ρ

)(
∂Fθ̂
∂r′
− 1

r′
∂Fr

∂θ̂
+
Fθ̂
r′

+
∂Mθ̂

∂r′
− 1

r′
∂Mr

∂θ̂
+
Mθ̂

r′

) (7.2)

ζ ′ = ∇2Ψ′ (7.3)

∂T

∂t′
+ v′r′

∂T

∂r′
+
vθ̂′

r′
∂T

∂θ̂
=

(
κ

ρcp

)
∇2T (7.4)

∂C

∂t′
+ v′r′

∂C

∂r′
+
vθ̂
r′
∂C

∂θ̂
=

(
µ

ρcm

)
∇2C (7.5)

where,

∇2 =
∂2

∂r′2
+

1

r′
∂

∂r′
+

1

r′2
∂2

∂θ̂2
(7.6)
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and

v′r′ =
1

r′
∂Ψ′

∂θ̂
, v′

θ̂
= −∂Ψ′

∂r′
(7.7)

In the above set of equations, t′ is the time, v′r′ and v′
θ̂

are the velocities in the r′

and θ̂ directions. All other Greek symbols, for example, ν, κ, , µ, ρ stands for kinematic

viscosity, thermal conductivity, molecular conductivity and density respectively. cp, cm

represent the specific heat and specific concentration respectively. Fr′ and Fθ̂ are the radial

and transverse components of the body force due to thermal diffusion and Mr′ and Mθ̂ are

due to molecular diffusion which are defined in the following forms:

Fr′ = ρgβT (T − T∞) sin θ̂, Fθ̂ = ρgβ(T − T∞) cos θ̂

Mr′ = ρgβC(C − C∞) sin θ̂, Mθ̂ = ρgβ(C − C∞) cos θ̂
(7.8)

For determining the boundary conditions, only half of the plane can be considered.

This is because, flow is symmetric about a vertical plane passing through the axis of the

cylinder. The following boundary conditions should be satisfied accordingly:

u = v = Ψ = 0, Ω = −∂
2Ψ

∂r2

T = 1, C = 1 on the cylinder surface and

Ψ = v = Ω =
∂T

∂θ̂
=
∂C

∂θ̂
= 0 on the lines of symmetry (7.9)

Moreover, the following conditions are derived in the inflow and outflow region respec-

tively:

v =
∂Ψ

∂r′
= 0 = T = C, Ω = − 1

r′2
∂2Ψ

∂θ̂2

v =
∂Ψ

∂r′
= 0, Ω = − 1

r2

∂2Ψ

∂θ̂2
(7.10)

The vorticity Ω and the stream function Ψ are related to the velocity field by:

Ω = − 1

r′

(
r′
∂v′

∂r′
+ v′ − ∂u′

∂θ̂

)
(7.11)
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The following relation is defined to understand the correlation between the vorticity ζ ′,

stream function Ψ′ :

ζ ′ = − 1

r′

(
r′
∂vθ̂′

∂r′
+ vθ̂ −

∂v′r

∂θ̂

)
(7.12)

In order to make the above set of equations, dimensionless, the following dimensionless

quantities have been introduced:

vr =
v′r′

V
, vθ =

v′θ
V
, r =

r′

a
, t = t′

V

a
,Ψ =

Ψ′

aV

ζ = ζ ′
a

V
, φ =

(
T − T∞
Tw − T∞

)
, ϕ =

(
C − C∞
Cw − C∞

)
(7.13)

The velocity of the free stream has been considered as V . Introducing this dimensionless

quantities, the transformed equations can be found as:

∂ζ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂ζ

∂θ̂
=

(
2

Re

)
∇2ζ

− Gr

2Re2

(
cos θ̂

∂φ

∂r
− sin θ̂

r

∂φ

∂θ̂
+ cos θ̂

∂ϕ

∂r
− sin θ̂

r

∂ϕ

∂θ̂

) (7.14)

∂φ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂φ

∂θ̂
=

2

Re Pr
∇2φ (7.15)

∂ϕ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂ϕ

∂θ̂
=

2

Re Sc
∇2ϕ (7.16)

where,

Re =
2aV

ν
, Pr =

µ cp
κ
, Sc =

D

λ
, Gr = GrT +GrC

GrT =
gβ(2a)3(T − T∞)

ν2
, GrC =

gβ(2a)3(C − C∞)

ν2

7.3 Solution methodology

The set of vorticity-stream function equations together with energy and concentration e-

quations have been solved by using implicit finite difference method. The modified polar

coordinates have been introduced as (ξ, θ), where, ξ = ln(r/a) and accordingly the gov-
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erning equations (7.14)-(7.16) are transformed into:

e2ξ ∂Ω

∂t
=

2

Re

(
∂2Ω

∂ξ2
+
∂2Ω

∂θ̂2

)
− ∂ψ

∂θ̂

∂Ω

∂ξ
+
∂ψ

∂ξ

∂Ω

∂θ̂

−eξ Gr
2Re2

[
cos θ̂

∂φ

∂ξ
− sin θ̂

∂φ

∂θ̂

] (7.17)

e2ξΩ =
∂2Ψ

∂ξ2
+
∂Ψ

∂θ̂2
(7.18)

e2ξ ∂φ

∂t
=

2

Re Pr

(
∂2φ

∂ξ2
+
∂2φ

∂θ̂2

)
− ∂ψ

∂θ̂

∂φ

∂ξ
+
∂ψ

∂ξ

∂φ

∂θ̂
(7.19)

e2ξ ∂ϕ

∂t
=

2

Re Pr

(
∂2ϕ

∂ξ2
+
∂2φ

∂θ̂2

)
− ∂ψ

∂θ̂

∂ϕ

∂ξ
+
∂ψ

∂ξ

∂ϕ

∂θ̂
(7.20)

where, u′ = e−ξ ∂Ψ

∂θ̂
, v′ = −e−ξ ∂Ψ

∂ξ
and the corresponding boundary conditions are :

Ψ =
∂Ψ

∂ξ
= 0, φ = ϕ = 1 at ξ = 0

e−ξ
∂Ψ

∂θ̂
→ cos θ̂, e−ξ

∂Ψ

∂ξ
→ sin θ̂, as ξ →∞ (7.21)

The above set of equations (7.17)-(7.20) are discretized by using forward and central

difference scheme. The resultant system of equations are solved by using Gaussian elim-

ination method. For the whole computational domain, a uniform grid in both ξ and θ̂

directions are used and the iterative procedure is stopped to obtain the final vorticity, tem-

perature and concentration distribution when the difference in computing these quantities

in the latest iteration is less than 10−5. Such grid and criteria make efficient use of both

computational time and space.

7.4 Results and discussion

Mixed convection flow due to double diffusion from a hot horizontal circular cylinder have

been investigated in this present problem. Since the vorticity field along with the heat

and mass transfer is effected by the parameters Re, GrT/Re
2, GrC/Re

2, and also the flow

direction, extensive exploration is made and the results are presented in terms of contour
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plot for stream function, isothermal lines, isoconcentration lines. Graphical representation

of local Nusselt number, average Nusselt number, Sherwood number, average Sherwood

number have also been made based on the numerical simulation. To validate the numerical

simulations of the present model, calculated values are qualitatively compared with the

published results, [82]. As mentioned above in this case the full sets of transport equations

are solved instead of boundary layer equations. This is because, even for small Re, the

boundary layer thickness is significantly large. Moreover, boundary layer approximation

is no longer valid in the wake region, i.e. in the region following the point of separation.

Finally, when Gr/Re2 ∼ O(1), then there is no method available to estimate accurately

enough the velocity distribution outside the boundary layer region. In this present study,

to explicate and discuss the local and average Nusselt numbers, the definitions for the

respective quantities are used as given below:

Nu =
2ah

k
, anu =

2ah

k
(7.22)

where, h and h represents the local and average heat transfer coefficients and these quan-

tities are calculated as:

h =
q̇

(Ts − T∞)
, h =

1

2π

∫ 2π

0

h dθ̂, q̇ = −k
(
∂T

∂r′

)
r′=a

(7.23)

where, q̇ is the rate of heat transfer per unit area. Likewise, the local Sherwood number,

average Sherwood number are also computed by using the rate of mass transfer per unit

area, the surface mass concentration and ambient concentration of the fluid field as:

sh =
2ac

D
, ssh =

2ac

D

c =
ṁ

(Cs − C∞)
, c =

1

2π

∫ 2π

0

c dθ̂, ṁ = −D
(
∂C

∂r′

)
r′=a

(7.24)

where, c and c stand for local and average mass transfer coefficients.

Since, the coefficient of heat and mass transfer depend on the Reynolds number, Re,

Grashof numbers GrT , GrC , Prandtl number Pr, Schmidt number Sc, the influence of
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all these parameters have been studied carefully and the calculated results are presented

graphically. Formation of velocity, temperature and concentration boundary layer around

the cylinder surface in course of time have also been observed closely and the required

time for attaining steady state condition also monitored. Present model have been studied

extensively in three different juncture and the results are presented in the following sections.

7.4.1 Validation of the model

In order to validate the present model simulation, similar solutions of [82] for local Nusselt

number, average Nusselt number, stream function, isotherm have been produced along

with the referenced model assumptions. Since the referenced results were calculted only

for thermal diffusion, during the present simulation, the value of GrC is considered as zero

so that no mass transfer is taken into account and the present model turned into similar

to that of [82]. Contour plot for stream function and isotherm are presented here and

compared qualititavely with that of [82]. It can be observed from Figures 7.2-7.3, there is

an excellent agreement between the present simulation and the results published in [82].

Figure 7.2: Contours of the stream function for GrT = 100, while, GrC = 0, Re=20.
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Figure 7.3: Contours of the isotherm for GrT = 100, while, GrC = 0, Re=20.

7.4.2 Heat transfer and mass transfer rate

In this section, parametric studies of velocity temperature and concentration fields have

been performed and graphical representation of the results are depicted in terms of contour,

Nusselt number and Sherwood number. Moreover, in the boundary conditions, stated at

the very out set of this study, the value of ε is taken as zero. As a result, there is no

oscillation in the surface quantities. The effect of thermal Grashof number, GrT , on local

Nusselt number(Nu) and average Nusselt number (anu) are illustrated in Figures 7.4-7.5.

From the figures, it can be viewed that just right after heating the cylinder, the average

nusselt number attain its maximum value and as time passed by, this value decreased

and accomplished its asymptotic value which is about 2.0. It can also be perceived that

the value of local Nusselt number reaches its maximum value near the front stagnation

point(x = π)and after that the value starts decreasing. Moreover, the value of local Nusselt

number increases significantly as long as the value of GrT increases.

The effect of concentration diffusion parameter, Sc, on local and average Sherwood

number are illustrated in Figures 7.6-7.7. As it is expected, higher values of Sc, produces

higher value of the related quantities. Local optimum value is noted for the local Sherwood

number for each values of Sc. In this present study as well, the same values of Sc, as

used in the previous chapters were chosen and while varying this quantity, the remaining
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Figure 7.4: Local Nusselt number around the cylinder, while, GrT = 100, GrC = 0.0,
Re=20.
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Figure 7.5: Average Nusselt number around the cylinder, while, GrT = 100, GrC = 0.0,
Re=20.

parameters are kept constant.

The vorticity distribution around the cylinder surface for different values of GrT/Re
2 is

presented in Figure 7.8. It is comprehensible from the figure that, as the value of GrT/Re
2

becomes higher, the surface vorticity, and accordingly the velocity gradient at the surface

becomes remarkably higher. This is obvious, because, buoyancy forces are dominant near

the surface and as a result of this, the pressure near the cylinder surface is less and region

of suction is produced.

The contour plot of stream function for different values of GrT and GrC are presented

in Figures 7.9-7.10. It can be depicted from the figures that the effects of both GrT and
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Figure 7.6: Local Sherwood number for different values of Sc around the cylinder, while,
GrT = 100, GrC = 100.0, Re=20.

Figure 7.7: Average Sherwood number for different values of Sc around the cylinder, while,
GrT = 100, GrC = 100.0, Re=20.

GrC are quite significant in velocity boundary layer. To visualize the effect of GrT on the

stream function, contours of the stream function for GrT = 100, 400 and 800 are drawn. It

can be observed from the contours that higher values of GrT produces recirculation region

in the flow field more significantly than the relatively smaller values. To predict the effect

of GrC on the velocity boundary layer, the values of GrT , Re were chosen as 100 and 20

respectively and the values of GrC were chosen as 100, 200 and 300 respectively. These

contour plot of the stream function show that, increasing value of GrC results in reduction

of wake length and gradually it vanishes completely.

Contours of the isotherm for different values of GrT are plotted in Figure 7.11. From
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Figure 7.8: Vorticity distribution around the cylinder, while, GrT=100, Re=5.

these figures, it is clear that there is notable effect of this parameter on isotherm pattern.

These contour plots indicate that there is higher temperature gradient for higher values of

GrT and results in higher rate of heat transfer. Since, this parameter is directly act as an

influential parameter to effect the velocity field also, the formation of recirculation region

is effected by it and as a result heat transfer rate from the surface is noteworthy.

7.5 Summary

Mixed convection flow along a horizontal hot cylinder have been investigated in this present

study. Numerical simulations have been carried out for solving the full set of transport

equations which are regarded as vorticity-stream function formulation. The important

findings for this model study are listed below:

• Full Navier-Stokes equation in the form of vorticity-stream function along with energy

and concentration equations have been solved.

• The variations of vorticity, Nusselt number and Sherwood number are calculated over

the whole cylinder surface. The zone beyond the point of separation has also been

taken into account.

• Study of the dimensionless parameters, Pr, and Sc show that the heat and mass

transfer rate enhance due to the enhancement of the values of Pr and Sc.
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(a) (b)

(c)

Figure 7.9: Contours of the stream function for (a) GrT = 100, (b) GrT = 400, (c)
GrT = 800, while, GrC = 100.0, Re=20.

150



Chapter 7. Heat and mass transfer response along horizontal circular heated cylinder for
mixed convection flow

• Average Nusselt number and Sherwood number against time are predicted and it has

been observed that after a while these two quantities attain their asymptotic values.

• Stream lines for different values of temperature and concentration Grashof number

GrT and GrC have been plotted and depicted significant effects on velocity field.

• From the contours of isotherms and isoconcentration for different values of thermal

Grashof number GrT and concentration Grashof number Grc, different patterns of

wake regions are observed and for higher values of GrT and GrC , bigger size of the

wake regions are formed.

• The length of the wake region is increased due to the increment of the oscillating

parameter ε.

• For changing the direction of the forced flow, completely different patterns of the

vortex region is formed, as a result, the surface heat and mass transfer rate are also

effected.

• Both the heat and mass transfer rate is increased when the temperature and concen-

tration diffusion parameters Pr and Sc are boosted up.
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(a) (b)

(c)

Figure 7.10: Contours of the stream function for (a) GrC = 100, (b) GrC = 200, (c)
GrC = 400, while, GrT = 100.0, Re=20.
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(a) (b)

(c)

Figure 7.11: Contours of the isotherm for (a) GrT = 100, (b) GrT = 400, (c) GrT = 800,
while, GrC = 100.0, Re=20.
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Chapter 8

Study of mixed convection flow along

circular cylinder with oscillating

surface temperature and

concentration

8.1 Introduction

Study of conjugate heat and mass transfer along blunt bodies have significant importance

in both theoretical and practical points of view. Flow due to double diffusion along isolat-

ed circular cylinder have been paid noteworthy attention because of versatile engineering

applications. Some very important engineering applications, where this type of flow plays

essential role are: drying of different materials (paper, textiles, film, veneer materials etc.),

cooling of glass, plastic and industrial devices from turbine blades to electronic circuits,

anemometry and chemical or radioactive contamination/purification process etc.

Recent significant development in computing techniques and tools have opened up a

new horizon in studying fluid flow problems which are involved with some complicated

geometry. These types of fluid flow have considerable involvement with the interaction

of applicable phenomena. For example, flow over tubes in nuclear reactors and cylindrical
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heating elements are very much related to the free convection over vertically or horizontally

placed cylinders.

Steady forced convection flow due to heat and species concentration along circular

cylinder in laminar cross flow have been studied by number of researchers. Amongst them,

Dennis et al. [90] was the one who investigated this type of flow considering low Reynolds

numbers. Boundary layer flow of a viscous incompressible fluid over an isothermal cylinder

of elliptic cross section of various eccentricities was studied by Jaman et al. [75]- [76]. In

this paper, two configuration of the ellipse, termed as blunt (major axis is horizontal) and

slender (major axis is vertical) were taken into account and transformed governing equa-

tions were solved by using finite difference technique together with Keller-box elimination

method. A brief literature citation similar to the present work has been presented in chap-

ter 1.

To study the unsteady mixed convective flow along a infinite horizontal cylinder is the

subject of this chapter. In fact, present study wishes to extend the idea presented in the

previous chapter. Here only the boundary conditions for surface heat and mass transfer

have been changed. It is assumed that, both the surface temperature and species con-

centration have small amplitude oscillation. The rest of the assumptions, configuration as

well as the solution procedure are exactly similar to previous work. Alike to any double

diffusive study, the governing equations of the flow field is simulated for two different dif-

fusive parameters, Pr and Sc. Here also, to derive the governing equations, the boussinesq

approximations are made, that is, it has been assumed that the fluid property variations

are limited to firstly the density which is taken into account only in so far as its effects

the buoyancy term and secondly the viscosity. Based on the conservation principle, the

governing equations are expressed in terms of vorticity, stream function, energy equation

and concentration equation.

8.2 Formulation of the problem

Since the flow configuration, all the thermo and physical fluid properties of the problem are

kept exactly same as the problem discussed in chapter 7, details elucidation of this config-
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uration and model assumptions are avoided here. By taking all the related assumptions of

the model problem, and by using exactly the similar type of dimensionless quantities, the

governing equations of the associated flow field can be written as:

∂ζ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂ζ

∂θ̂
=

(
2

Re

)
∇2ζ

− Gr

2Re2

(
cos θ̂

∂φ

∂r
− sin θ̂

r

∂φ

∂θ̂
+ cos θ̂

∂ϕ

∂r
− sin θ̂

r

∂ϕ

∂θ̂

)
(8.1)

∂φ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂φ

∂θ̂
=

2

Re Pr
∇2φ (8.2)

∂ϕ

∂t
+ vr

∂ζ

∂r
+
vθ̂
r

∂ϕ

∂θ̂
=

2

Re Sc
∇2ϕ (8.3)

where,

Re =
2aV

ν
, Pr =

µ cp
κ
, Sc =

D cm
λ

, Gr = GrT +GrC

GrT =
gβ(2a)3(T − T∞)

ν2
, GrC =

gβ(2a)3(C − C∞)

ν2
, (8.4)

The boundary conditions are:

vr = vθ̂ = 0, φ = ϕ = 1 at r = 1

vr → (1 + ε sin t) cos θ̂, vθ̂ → − (1 + ε sin t) sin θ̂ as ζ → 0 (8.5)

φ→ 0, ϕ→ 0, as r → ∞

These boundary conditions are derived from the no slip, isothermal and iso concentration

conditions on the cylinder surface together with the free stream conditions away from it.

8.3 Solution methodology

The set of vorticity-stream function together with energy and concentration equation have

been solved by using implicit finite difference method. Here also the same type of modified

polar coordinates as that has been used in previous chapter are introduced as (ξ, θ̂) where,

156



Chapter 8. Study of mixed convection flow along circular cylinder with oscillating surface
temperature and concentration

ξ = ln(r/a). Thus the governing equations (8.1)-(8.3) are transformed into:

e2ξ ∂Ω

∂t
=

2

Re

(
∂2Ω

∂ξ2
+
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)
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−eξ Gr
2re2

[
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∂φ
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∂θ̂

] (8.6)
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∂Ψ
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(8.7)
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Re Pr
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e2ξ ∂ϕ

∂t
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Re Pr

(
∂2ϕ

∂ξ2
+
∂2φ

∂θ2

)
− ∂ψ

∂θ

∂ϕ

∂ξ
+
∂ψ

∂ξ

∂ϕ

∂θ
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where, u′ = e−ξ ∂Ψ
∂θ
, v′ = −e−ξ ∂Ψ

∂ξ
and the corresponding boundary conditions are :

Ψ =
∂Ψ

∂ξ
= 0, φ = ϕ = 1 at ξ = 0

e−ξ
∂Ψ

∂θ
→ (1 + ε sin t) cos θ, e−ξ

∂Ψ

∂ξ
→ (1 + ε sin t) sin θ, ξ → 0

φ→ 0, ϕ→ 0 as ξ →∞ (8.10)

Exactly similar simulation technique that is applied for the previous model studied in

chapter 7, came into action here and for the whole computational domain a uniform grid in

both ξ and θ directions are used and the iterative procedure is stopped to obtain the final

vorticity, temperature and concentration distribution when the difference in computing the

these quantities in the latest iteration is less than 10−5. This type of grid selection and

iteration execution criterion were efficient in terms of both space and computational time.

8.4 Results and discussion

It has already been declared that all the assumptions are kept similar to those described

in the model in chapter 7, except some changes with the boundary conditions are made in

present study. Therefore, all the parameters effecting the flow field remain same. There-

fore, parametric studies varying the parameters, Re, GrT/Re
2, GrC/Re

2, carried out as
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well as the flow direction is taken into account. Calculated results are presented in terms

of contour plot of stream function, isothermal lines and isoconcentration lines. Moreover,

local Nusselt number, average Nusselt number, Sherwood number, average Sherwood num-

ber are also calculated to predict the heat and mass transfer. In this present study also,

to explicate and discuss the local and average Nusselt numbers, the similar type of defi-

nitions, as discussed in the previous chapter, are used. Present model have been studied

all-embracing manner and the results are presented in the following section.

In the present chapter, all results by varying different important parameters are il-

(a) (b)

Figure 8.1: Contours of the stream function for (a) ε = 0.10, (b) ε = 0.20, while, GrT =
100.0, GrC = 100.0, Re=20.

lustrated by considering small amplitude of oscillation in the boundary temperature and

concentration. Since the direction of the forced flow is another important parameter which

influence the flow field as well as the heat and mass transfer, here both the positive and

negative direction of forced flow have considered. When the flow direction is considered as

vertically upward, the flow is termed as parallel flow and for vertically downward forced

flow, the flow is termed as contra flow. To elucidate the effect of this fact on the entire flow

regime, the Grashof number due to thermal and mass diffusion are taken as both positive

and negative.

The effect of various values of small amplitude of the oscillation ε in stream function,
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(a) (b)

Figure 8.2: Contours of the isotherm for (a) ε = 0.10, (b) ε = 0.20, while, GrT = 100.0,
GrC = 100.0, Re=20.

surface temperature and surface concentration is portrayed in Figures 8.1-8.3. The values

of ε are taken as 0.1, 0.2 and 0.3 respectively while the values of both thermal and concen-

tration grashof numbers GrT and GrC are considered as 100. The values of the Prandtl

number Pr and Schmidt number Sc are taken as 0.7 and 0.60 respectively and the value of

Re is chosen as 0.20. It is observed different shapes and sizes of the recirculation regions for

different values of ε, for the contours of stream function, isotherms and isoconcentrations.

For higher values of ε the reattachment lengths get bigger and for all the cases, the velocity,

temperature and concentration fields are symmetrical about the line θ = 0.

Figure 8.4, shows the contours of the stream function for different values of thermal

grashof number GrT . The contours show that, for relatively lower values of GrT the wake

is formed in the downstream side of the cylinder. The size of the vortex region becomes

bigger as the value of GrT is increased and in the vortex region the heat and mass transfer

from the cylinder surface occur due to natural convection. Once again, from recirculation

region to main stream, the heat and mass transfer arise for conduction.

Figure 8.5 show the effect of Prandtl number Pr on the local Nusselt number around

the surface of the cylinder and the average Nusselt number for different time steps. From

the graph of the average Nusselt number it can be inferred that, for higher values of Pr,
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(a) (b)

Figure 8.3: Contours of the isoconcentration for (a) ε = 0.10, (b) ε = 0.20, while, GrT =
100.0, GrC = 100.0, Re=20.

higher rate of surface heat transfer occurred and as time passes, the average heat transfer

rate reaches to the asymptotic value. For comparatively higher value of Pr = 5.0, it takes

little longer time to achieve the asymptotic value of average heat transfer. For local heat

transfer rate, it can be observed that an absolute maximum value occurs in each case and

these maximum values are noted near the front stagnation point, i.e. when θ = 1800. For

higher value of Pr = 5.0, the behaviour of local Nusselt number is slightly different, as

there can be detected a local maximum value near the rear stagnation point (θ = 0), then

it goes downwards for a little while and then starts to increase to reach up to its maximum

value.

For different values of the Schmidt number Sc, it can also be detected exactly the simi-

lar types of behaviour in local and average mass transfer rate in terms of Sherwood number

and average Sherwood number. To depict the effects of Schmidt number, the values of Sc

are chosen as 0.22, 0.60 and 1.76 when the value of Pr is taken as 0.70. Similar to average

local and average heat transfer, there can also be noted higher rate of mass transfer for

higher values of Sc.

Another important factor that effects the both heat and mass transfer is the direction

of the forced flow. For the contra flow, i.e. for different negative values of thermal Grashof
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Figure 8.4: (a) Local Nusselt number (b) Average Nusselt number, around the cylinder,
while, GrT = 100, GrC = 0.0, Re=20, ε=0.0.

Figure 8.5: (a) Local Sherwood number (b) Average Sherwood number, around the cylinder,
while, GrT = 100, GrC = 0.0, Re=20, ε = 0.0.

number, GrT the contours of stream function, temperature and concentration are plotted

in Figures 8.6-8.7. From the figures, it is clear that completely different patterns of wake

regions have formed for velocity, temperature and species concentration. For higher values

of GrT , the longer length of the recirculation regions are scrutinized. From the pattern of

the wake regions, it can be described that, fluid flow inside the recirculation zone is segre-

gated from the main stream and both the heat and mass transfer in this region is caused

through the wake boundaries. Moreover, in these regions, heat and mass transfer from the

surface of the cylinder is influenced by natural convection where the buoyant forces due to
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thermal and mass diffusion are dominant.

(a) (b)

(c)

Figure 8.6: Contours of the stream function for (a) GrT = −100, (b) GrT = −300, (c)
GrT = −800, while, GrT = 100.0 Re=20, ε =0.0.

8.5 Summary

Mixed convection flow along a horizontal cylinder have been investigated assuming that the

surface temperature, surface concentration and free stream velocity have small amplitude
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oscillation. Vorticity-stream function formulation have been used to derive the governing

equation of the flow field. Because of the oscillation in the surface temperature and species

concentration, some changes in the streamlines, isotherm lines and isoconcentration lines,

compare to those discussed in the previous chapter were observed and depicted in graphical

forms. Some important findings based on numerical simulations are listed below:

• Study of the dimensionless parameter Sc shows that the mass transfer rate is en-

hanced due to the enhancement of the values of Sc. Similar manners of heat transfer

coefficient can also be noted due to the increment of Prandtl number Pr.

• Average Nusselt number and Average Sherwood number against time are predicted

and it has been observed that after a while these two quantities attain their asymptotic

values.

• Stream lines for different values of concentration Grashof number GrC have been

plotted and depicted significant effect on velocity field.

• From the contours of isotherms and isoconcentration for different values of thermal

Grashof number GrT and concentration Grashof number Grc it can be observed

different patterns of wake regions and for higher values of GrT and GrC , bigger size

of the wake regions are formed.

• The length of the wake region is increased due to the increment of the oscillating

parameter ε.

• For changing the direction of the forced flow, completely different patterns of the

vortex region is formed, as a result, the surface heat and mass transfer rate are also

effected.
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(a) (b)

(c)

Figure 8.7: Contours of the isotherm for (a) GrC = −100, (b) GrC = −300, (c) GrC =
−800, while, GrT = 100.0 Re=20, ε =0.0.
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(a) (b)

(c)

Figure 8.8: Contours of the isotherm for (a) GrC = −100, (b) GrC = −300, (c) GrC =
−800, while, GrT = 100.0 Re=20, ε =0.0.

165



Chapter 9

Conclusion

The main perseverance of this dissertation is to study different types of flow along flat plate,

wedge and cylindrical surfaces. Dissimilar convection processes have been considered for

different cases. In addition, flow is taken as two dimensional, laminar, incompressible and

viscous. In most of the model studies, it is assumed that buoyancy effect occur due to

both thermal and mass diffusion. The presence of species concentration introduce two ex-

tra parameters into the problems, namely, w and Sc. Oscillating surface heat and mass

boundary conditions have been applied for each instances. Present works sought to de-

termine how the presence of nonuniform surface temperature and species concentration on

the surface alters the convection-diffusion boundary layer flow. Since the flows with the

buoyancy forces arising from combination of temperature and species concentration effects

of comparable magnitude are in abundant in both natural and engineering applications,

now a days double diffusive flow is investigated with greatest importance. There are many

interesting aspects of such flows, for example, resulting transport characteristics, results of

the opposition of the two effects, influence of the combined effect on the stability of laminar

flows, the effects of values of the relative transport parameters the Prandtl number and the

Schmidt number. During the investigations of each case, all these important parameters

are pondered and their effects on the entire flow field have been studied.

During the studies of two dimensional, laminar, incompressible viscous flow along verti-

cal flat plate, boundary layer approximations and Boussinesque approximations are made
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and governing equations are developed accordingly. But when the flow along cylindrical

surfaces are studied, the orientation of the cylinder is taken as horizontal and full sets of

Navier-Stoke’s equations in terms of vorticity and stream function are solved.

With the aim of studying heat and mass transfer, the regarding coefficients are calculat-

ed in terms of dimensionless quantities, such as, Nusselt number, Sherwood number. Since,

these quantities are closely related to velocity and frictional force, the wall shear stress is

also computed in terms of skin friction. All these dimensionless quantities are presented in

terms of amplitude and phase angles. Both tabular and graphical representations are made

to explicate the computed results. Most important parameters, such as, Prandtl number,

Schmidt number, Strouhal number etc., that influence the entire flow fields, are taken into

account and their effects are studied in details by taking different ranges of each of these

parameters.

Different numerical techniques are applied to solve the governing equations of the flow

field. With the purpose of validating the present numerical simulations, results obtained

from different numerical techniques are compared and sometimes, the results are compared

with some experimental findings and some published results. During the numerical simu-

lations, convergence is assured by continuing iteration until the difference of the results of

two successive iterations becomes less or equal to 10−6.

Flow along vertical flat plate is studied in chapter 3. Fluid flow along a vertical wedge

is contemplated in chapter 4 and 5. In chapter 6 of this dissertation, buoyancy driven

magnetohydrodynamic flow along a vertical surface have been considered in presence of

strong magnetic field. It has been assumed that in some undisturbed flow region , there

is a uniform magnetic field making a nonzero angle with it. In the model flow, studied in

chapter 6 and 7, consideration has been given to unsteady two dimensional mixed convec-

tion flow of a viscous incompressible fluid over a heated circular cylinder. The cylinder is

placed horizontally in a uniform stream with its axis perpendicular to the oncoming flow

direction. Important findings for each case are listed at the end of each chapters.

From the overall observations, it can be concluded that the amplitudes of the sur-

face heat and mass transfer coefficient increase regardless of the Prandtl number, Pr, and
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Schmidt number, Sc, the buoyancy parameter w, and the exponent parameter n. The

phase angles for both the surface heat and mass flux increase monotonically towards the

asymptotic value for all values of the governing physical parameters.

For the flow along horizontal heated cylinder, recirculation region of different sizes and

shapes are discerned for different values of thermal grashof number GrT as well as con-

centration grashof number GrC . Higher values of both these parameters result into larger

recirculation region, therefore higher reattachment length is calculated. Because of larger

size of the recirculation region, both heat and mass transfer in the surface are increased.

From the analysis of heat and mass transfer along with wall shear stress, it can be

inferred a complex correlation among the flow pattern, wall shear stress, surface heat and

mass transfer enhancement. Nonuniform heat and mass boundary conditions also introduce

some interesting feature in the flow field.

Future works:

First of all, the possible and accessible extension of the present works can undergo ex-

perimental and analytical investigation. As further improvement of the present work, each

model can be extended for compressible flow. The variable viscosity can also be incorpo-

rated so that all these studies can be fit into broader areas of engineering applications.

Moreover, some other physical parameters, such as: radiation effect, chemical reactions,

phase changes etc. can also be studied with all these prescribed models. All these modeled

flow can be studied for more complicated geometry. The calculated results and observations

can be incorporated with some relevant industrial and engineering problems and optimiza-

tion can be achieved for real world applications. Moreover the unsteady natural, forced

and mixed convection flow problems discussed here can surely be extended to the transient

state problems as well.
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Appendix A

Keller-Box Method

In this section the detailed description of the numerical scheme, which is effectively used to

solve various boundary layer problems under different geometries with significant physical

circumstances is presented. To solve these nonlinear parabolic partial differential equations,

Keller box method is effectively used. This method was initially introduced by [94] and

subsequently this idea was further exposed by many researchers. Since the mathematical

formulation is already considered in the particular chapters, here only the steps which are

incorporated in this numerical scheme are discussed, specifically for the problem (3.30)-

(3.32) and similar steps has been followed for other sets of equations.

The development of the algorithm of implicit finite difference method together with

Keller-box scheme is worked out on the non-similarity equations (3.30)-(3.32) satisfying

the boundary conditions (3.33). These equations are as follows

F ′′′ + p1FF
′′ − p2(F ′)2 + p3Θ + p4Φ = 0 (A.1)

1

Pr
Θ′′ + p1FΘ′ − p5F

′Θ = 0 (A.2)

1

Sc
Φ′′ + p1FΦ′ − p5F

′Φ = 0 (A.3)
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F (0) = F ′(0) = 0,Θ′(0) = Φ′(0) = −1

F ′(∞) = Θ(∞) = Φ(∞) = 0 (A.4)

where

p1 =
n+ 4

5
, p2 =

2n+ 3

5
, p3 = (1− w), p4 = w, p5 =

4n+ 1

5
(A.5)

The procedure can be initiated by writing the system of equations. (A.1)-(A.4) in terms

of system of first order equations as given below:

F ′ = u (A.6)

u′ = v (A.7)

Θ′ = p (A.8)

Φ′ = q (A.9)

v′ + p1Fv − p2u
2 + p3Θ + p4Φ = 0 (A.10)

1

Pr
p′ + p1Fp− p5Θ = 0 (A.11)

1

Sc
q′ + p1Fq − p5Φ = 0 (A.12)

The corresponding boundary conditions take the form

f(0,ξ) = u(0, ξ) = 0, Θ(0, ξ) = −1, Φ(0, ξ) = −1

u(∞, ξ)→ 0, Θ(∞, ξ)→ 0, Θ(∞, ξ)→ 0
(A.13)

The net points are expressed as

ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, . . . , N

η0 = 0, ηj = ηj−1 +mj, j = 1, 2, . . . , J, ηJ = η∞

(A.14)

where kn and mj are the variable mesh width. Now we approximate the physical quantities

(F, u, v, Θ, p, Φ, q) at each point (ξn, ηj) of the net by (F n, un, vn, Θn, pn,Φn, qn),
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which are denoted by net functions.

We initiate discretization process by writing the finite difference approximations of

the ordinary differential equations (A.6)-(A.9) for the midpoint (xn, ηj−1/2) using centered

difference derivatives. Thus, we get

F n
j − F n

j−1

mj

=
unj + unj−1

2
= unj−1/2

unj − unj−1

mj

=
vnj + vnj−1

2
= vnj−1/2

Θn
j −Θn

j−1

mj

=
pnj + pnj−1

2
= pnj−1/2

Φn
j − Φn

j−1

mj

=
qnj + qnj−1

2
= qnj−1/2

(A.15)

For the partial differential equations (A.10)-(A.12), the finite difference forms are approxi-

mated by centering about the midpoint (ξn−1/2, ηj−1/2). This can be accomplished in two

steps. Firstly, we center the partial differential equations (A.10)-(A.12) about the point

(ξn−1/2, η) without specifying η. Let L1, L2 and L3 be the notations for left hand side (LHS)

of the equations (A.10)-(A.12) respectively. Therefore the finite difference approximations

to the equations (A.10)-(A.12) can be written as

Ln1 + Ln−1
1

2
= 0

Ln2 + Ln−1
2

2
= 0

Ln3 + Ln−1
3

2
= 0

(A.16)

The above set of equation (A.16)can also be written in the form

(v
′
)n + p1(Fv)n − p2(u2)n + p3Θn + p4Φn = −Ln−1

1 (A.17)

1

Pr
(p
′
)n + p1(Fp)n − p5(uΘ)n = −Ln−1

2 (A.18)

1

Sc
(q
′
)n + p1(Fq)n − p5(uΦ)n = −Ln−1

3 (A.19)
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where

Ln−1
1 =

[
v
′
+ p1Fv − p2u

2 + p3Θ− p4Φ
]n−1

Ln−1
2 =

[
1

Pr
p
′
+ p1(Fp)− p5(uΘ)

]n−1

Ln−1
3 =

[
1

Sc
q
′
+ p1(Fq)− p5(uΦ)

]n−1

(A.20)

By centering the equations (A.17)-(A.19) about the point (ξn−1/2, ηj−1/2).

(vnj − vnj−1)

mj

+ p1(Fv)nj−1/2 − p2(unj−1/2)2 + p3Θn
j−1/2 + p4Φn

j−1/2 = −(L1)n−1
j−1/2 (A.21)

1

Pr

(pnj − pnj−1)

mj

+ p1(Fp)nj−1/2 + p5(uΘ)nj−1/2 = −(L2)n−1
j−1/2 (A.22)

1

Sc

(qnj − qnj−1)

mj

+ p1(Fq)nj−1/2 + p5(uΦ)nj−1/2 = −(L3)n−1
j−1/2 (A.23)

where

(L1)n−1
j−1/2 =

[
(vj − vj−1)

mj

+ p1Fj−1/2vj−1/2 − p2(uj−1/2)2 + p3Θj−1/2 + p4Φj−1/2

]n−1

(L2)n−1
j−1/2 =

[
1

Pr

(pj − pj−1)

mj

+ p1Fj−1/2pj−1/2 − p5Θj−1/2uj−1/2

]n−1

(L3)n−1
j−1/2 =

[
1

Sc

(qj − qj−1)

mj

+ p1Fj−1/2qj−1/2 − p5Φj−1/2uj−1/2

]n−1

(A.24)

The equations in (A.15), (A.21)-(A.23) are evaluated for j = 1, 2, · · · , J at a given n. The

boundary conditions at ξ = ξn are

F n
0 = un0 = vn0 = 0, Θn

0 = 1, Φn
0 = 1, unJ = 0, Θn

J = 0, Φn
J = 0 (A.25)

Equations in (A.15) and (A.21)-(A.23) form a system of equations in which (F n
j , u

n
j , v

n
j ,Θ

n
j ,

pnj ,Φ
n
j , q

n
j ) for 0 ≤ j ≤ J are unknowns and the quantities (F n−1

j , un−1
j , vn−1

j ,Θn−1
j ,

pn−1
j ,Φn−1

j , qn−1
j ) are already known for 0 ≤ j ≤ J .
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It is to be noted that (L1)n−1
j−1/2, (L2)n−1

j−1/2, (L3)n−1
j−1/2 involve only known quantities if it is as-

sumed that the solution is known on ξ = ξn−1. Introducing Newton’s method by linearizing

the system of equations (A.15), (A.20)- (A.23). For the higher order iterates, consider

F
(i+1)
j = F

(i)
j + δF

(i)
j

u
(i+1)
j = u

(i)
j + δu

(i)
j

v
(i+1)
j = v

(i)
j + δv

(i)
j

Θ
(i+1)
j = Θ

(i)
j + δΘ

(i)
j

p
(i+1)
j = p

(i)
j + δp

(i)
j

Φ
(i+1)
j = Φ

(i)
j + δΦ

(i)
j

q
(i+1)
j = q

(i)
j + δq

(i)
j

(A.26)

Substituting the expressions (A.26) in to equations (A.15) and (A.20)-(A.23) and dropping

the terms that are quadratic in (δF n
j , δu

n
j , δv

n
j , δΘ

n
j , δp

n
j , δΦ

n
j , δq

n
j ), the following set of

equations after some algebraic manipulations can be formed

δF
(i)
j − δF

(i)
j−1 −

1

2
mj

(
δu

(i)
j + δu

(i)
j−1

)
= (r1)j−1/2 (A.27)

δu
(i)
j − δu

(i)
j−1 −

1

2
mj

(
δv

(i)
j + δv

(i)
j−1

)
= (r5)j−1/2 (A.28)

δΘ
(i)
j − δΘ

(i)
j−1 −

1

2
mj

(
δp

(i)
j + δp

(i)
j−1

)
= (r6)j−1/2 (A.29)

δΦ
(i)
j − δΦ

(i)
j−1 −

1

2
mj

(
δq

(i)
j + δq

(i)
j−1

)
= (r7)j−1/2 (A.30)

(a1)jδv
(i)
j + (a2)jδv

(i)
j−1 + (a3)jδF

(i)
j + (a4)jδF

(i)
j−1 + (a5)jδu

(i)
j + (a6)jδu

(i)
j−1

+ (a7)jδΘ
(i)
j + (a8)jδΘ

(i)
j−1 + (a9)jδp

(i)
j + (a10)jδp

(i)
j−1 + (a11)jδΦ

(i)
j + (a12)jδΦ

(i)
j−1

+ (a13)jδq
(i)
j + (a14)jδq

(i)
j−1 = (r2)j−1/2

(A.31)
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(b1)jδp
(i)
j + (b2)jδp

(i)
j−1 + (b3)jδF

(i)
j + (b4)jδF

(i)
j−1 + (b5)jδu

(i)
j + (b6)jδu

(i)
j−1

+ (b7)jδv
(i)
j + (b8)jδv

(i)
j−1 + (b9)jδΘ

(i)
j + (b10)jδΘ

(i)
j−1 + (b11)jδΦ

(i)
j + (b12)jδΦ

(i)
j−1

+ (b13)jδq
(i)
j + (b14)jδq

(i)
j−1 = (r3)j−1/2

(A.32)

(c1)jδq
(i)
j + (c2)jδq

(i)
j−1 + (c3)jδF

(i)
j + (c4)jδF

(i)
j−1 + (c5)jδu

(i)
j + (c6)jδu

(i)
j−1

+ (c7)jδv
(i)
j + (c8)jδv

(i)
j−1 + (c9)jδΘ

(i)
j + (c10)jδΘ

(i)
j−1 + (c11)jδp

(i)
j + (c12)jδp

(i)
j−1

+ (c13)jδΦ
(i)
j + (c14)jδΦ

(i)
j−1 = (r4)j−1/2

(A.33)

where

(a1)j =
1

mj

+
p1

2
F i
j , (a2)j = − 1

mj

+
p1

2
F i
j−1

(a3)j =
p1

2
vij, (a4)j =

p1

2
vij−1, (a5)j = −p2

2
uij, (a6)j = −p2

2
uij−1,

(a7)j =
p3

2
, (a8)j =

p3

2
, (a9)j = 0, (a10)j = 0,

(a11)j =
p4

2
, (a12)j =

p4

2
, (a13)j = 0, (a14)j = 0,

(b1)j =
1

Pr mj

+
p1

2
F i
j , (b2)j = − 1

Pr mj

+
p1

2
F i
j−1

(b3)j =
p1

2
pij, (b4)j =

p1

2
pij−1, (b5)j = −p5

2
Θi
j−1/2, (b6)j = −p5

2
Θi
j−1/2,

(b7)j = 0, (b8)j = 0, (b9)j = −p5

2
uij−1/2, (b10)j = −p5

2
uij−1/2

(b11)j = (b12)j = (b13)j = 0, (b14)j = 0,

(c1)j =
1

Sc mj

+
1

2
p1F

i
j , (c2)j = − 1

Sc mj

+
p1

2
F i
j−1

(c3)j =
p1

2
qij, (c4)j =

p1

2
qij−1, (c5)j = −p5

2
qij−1/2, (c6)j = −p5

2
qij−1/2,

(c7)j = 0, (c8)j = 0, (c9)j = 0, (c10)j = 0,

(c11)j = 0, (c12)j = 0, (c13)j = −p5

2
uij−1/2, (c14)j = −p5

2
uij−1/2
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Appendix A. Keller-Box Method

(r1)j−1/2 =
(
F n
j−1

)(i) −
(
F n
j

)(i)
+mj

(
unj−1/2

)(i)

(r5)j−1/2 =
(
unj−1

)(i) −
(
unj
)(i)

+mj

(
vnj−1/2

)(i)

(r6)j−1/2 =
(
Θn
j−1

)(i) −
(
Θn
j

)(i)
+mj

(
pnj−1/2

)(i)

(r7)j−1/2 =
(
Φn
j−1

)(i) −
(
φnj
)(i)

+mj

(
qnj−1/2

)(i)

(r2)j−1/2 = −
[

1

mj

(
vnj − vnj−1

)
+ p1(Fv)nj−1/2 − p2(u2)nj−1/2 + p3Θn

j−1/2 + p4Φn
j−1/2

]i
− (L1)n−1

j−1/2

(r3)j−1/2 = −
[

1

Pr mj

(
pnj − pnj−1

)
+ p1 (Fp)nj−1/2 − p5u

n
j−1/2Θn

j−1/2

]i
− (L2)n−1

j−1/2

(r4)j−1/2 = −
[

1

Sc mj

(
qnj − qnj−1

)
+ p1 (Fq)nj−1/2 − p5u

n
j−1/2Φn

j−1/2

]i
− (L3)n−1

j−1/2

(A.34)

The boundary conditions becomes

δF0 = δu0 = δu0 = 0, δΘ0 = 1, δΦ0 = 1, δuJ = 0, δΘJ = 0, δΦJ = 0 (A.35)

The structure of the linearized system of differential equations (A.27)-(A.33) is a block

tridiagonal structure which can be solved with the help of block elimination method.
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Appendix B

Implicit Finite Difference Method

Along with Gaussian Elimination

Method

The governing equations of the boundary layer problems can also be solved with the help of

implicit finite difference method which has various advantages. First of all, this technique

is comparatively easier to implement and also can be firmly applied to problems having

complex physical situations and easily enhanced to cover the influence of variable prop-

erties of the fluid. The development of the algorithm of implicit finite difference method

together with Gaussian elimination technique is worked out on the partial differential equa-

tions (6.29)-(6.31) satisfying the boundary conditions (6.32) as well as some other sets of

equation. The detailed description of this technique for the equations (6.29)-(6.31)together
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Appendix B. Implicit Finite Difference Method Along with Gaussian Elimination Method

with the boundary condition (6.32) is presented here.

∂2H

∂η2
+

3 + 2ξ

4(1 + ξ)
f
∂H

∂η
− 1

2(1 + ξ)
H2 − ξ1/2(1 + ξ)1/2H

+ (1 + ξ)(Θ +NΦ) = ξ

(
H
∂H

∂ξ
− ∂H

∂η

∂F

∂ξ

)
(B.1)

1

Pr

∂2Θ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Θ

∂η
= ξ

(
H
∂Θ

∂ξ
− ∂Θ

∂η

∂F

∂ξ

)
(B.2)

1

Sc

∂2Φ

∂η2
+

3 + 2ξ

4(1 + ξ)
F
∂Φ

∂η
= ξ

(
H
∂Φ

∂ξ
− ∂Φ

∂η

∂F

∂ξ

)
(B.3)

Along with the boundary conditions:

F (0, ξ) = H(0, ξ) = 0, Θ(0, ξ) = Φ(0, ξ) = 1

H(∞, ξ)→ 0, Θ(∞, ξ)→ 0, Φ(∞, ξ)→ 0 (B.4)

An under relaxation iterative procedure is chosen for the finite difference technique.

Subscripts i and j are used to represent nodes in the ξ and η directions respectively and

1 ≤ i ≤ L and 2 ≤ j ≤ L − 1. Now the expressions of the partial differential equations

of mass, momentum and energy given in (6.29)-(6.31) in finite difference quotients are

implemented. The discretization procedure is carried out for numerical scheme using central

difference for diffusion terms and backward difference for the convection terms. Equations

(B1)-(B3) can be written as

Hi,j+1 − 2Hi,j +Hi,j−1

(4η)2
+ P1Fi,j

Hi,j+1 −Hi,j−1

24η
− P2H

2
i,j − P3Hi,j + P4 (Θi,j +NΦi,j)

= ξ

[
Hi,j

(
Hi,j −Hi−1,j

4ξ

)
−
(
Fi,j − Fi−1,j

4ξ

)(
Hi,j+1 −Hi,j−1

24η

)]
(B.5)

1

Pr

Θi,j+1 − 2Θi,j + Θi,j−1

(4η)2
+ P1Fi,j

Θi,j+1 −Θi,j−1

24η

= ξ

[
Hi,j

(
Θi,j −Θi−1,j

4ξ

)
−
(
Fi,j − Fi−1,j

4ξ

)(
Θi,j+1 −Θi,j−1

24η

)] (B.6)

177

Anis
Typewritten text
Dhaka University Institutional Repository
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1

Sc

Φi,j+1 − 2Φi,j + Θi,j−1

(4η)2
+ P1Fi,j

Φi,j+1 − Φi,j−1

24η

= ξ

[
Hi,j

(
Φi,j − Φi−1,j

4ξ

)
−
(
Fi,j − Fi−1,j

4ξ

)(
Φi,j+1 − Φi,j−1

24η

)] (B.7)

Associated boundary conditions are

η1 = 0 : F1,j = H1,j = 0, Θ1,j = 1, Φ1,j = 1

ηL →∞ : HL,j → 0, ΘL,j → 0, ΦL,j → 0,
(B.8)

where

P1 =
3 + 2ξ

4(1 + ξ)
, P2 =

1

2(1 + ξ)
, P3 = ξ1/2(1 + ξ)1/2, P4 = (1 + ξ) (B.9)

Finally (B.5)-(B.7) leads to a system of algebraic equations. Momentum equation (B.5)

gives

A1 Hi,j−1 +B1 Hi,j + C1 Hi,j+1 = D1, where

C = −

 1

(4η)2
+

(
3+2ξ

4(1+ξ)
Fi,j + ξ

4ξ (Fi,j − Fi−1,j)
)

(24η)


A = −

 1

(4η)2
−

(
3+2ξ

4(1+ξ)
Fi,j + ξ

4ξ (Fi,j − Fi−1,j)
)

(24η)


B =

2

(4η)2)
+

(
1

2(1 + ξ)
+

ξ

4ξ

)
Hi,j + ξ1/2(1 + ξ)1/2

D =
ξ

4ξ
Hi,jHi−1,j + (1 + ξ)(Θi,j +NΦi,j) (B.10)

It can be noted that for every value of i the unknown quantities are Hi,j+1, Hi,j and Hi,j−1

for j = 2, 3, 4, · · · , L− 1 leads to a set of L− 2 equations with L− 2 unknowns (Hi,2, Hi,3,

· · · , Hi,L−2 and Hi,L−1). The set of equations in (B.10) can be expressed in the form of
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following matrix

B1,2 C1,2 0 0 · · · 0 0 0

A1,3 B1,3 C1,3 0 · · · 0 0 0

0 A1,4 B1,4 C1,4 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · A1,L−2 B1,L−2 C1,L−2

0 0 0 0 · · · 0 A1,L−1 B1,L−1





Hi,2

Hi,3

Hi,4

...

...

Hi,L−2

Hi,L−1


=



D1,2

D1,3

D1,4

...

...

D1,L−2

D1,L−1


(B.11)

For the energy equation, (B.6)the discretized equation takes the form:

A2Θi,j−1 +B2Θi,j + C2Θi,j+1 = D2, where

C2 = −
[

1

Pr (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
A2 = −

[
1

Pr (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
B2 =

2

Pr(4η)2
+

ξ

4ξ
Hi,j, D2 =

ξ

4ξ
Hi,jΘi−1,j (B.12)

Here again for each value of i the unknown variables are Θi,j−1, Θi,j and Θi,j+1 for j =

2, 3, 4, · · · , L − 1 leads to a set of L − 2 equations with L − 2 unknowns (Θi,2, Θi,3, · · · ,

Φi,L−2 and Φi,L−1). The set of equations in (B.12) can be expressed in the form of following

matrix

B2,2 C2,2 0 0 · · · 0 0 0

A2,3 B2,3 C2,3 0 · · · 0 0 0

0 A2,4 B2,4 C2,4 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · A2,L−2 B2,L−2 C2,L−2

0 0 0 0 · · · 0 A2,L−1 B2,L−1





Φi,2

Φi,3

Φi,4

...

...

Φi,L−2

Φi,L−1


=



D2,2

D2,3

D2,4

...

...

D2,L−2

D2,L−1


(B.13)
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And for the concentration equation the discretized equation takes the form:

A3Φi,j−1 +B3Φi,j + C3Φi,j+1 = D3, where

C3 = −
[

1

Sc (4η)2
+

(
3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
A3 = −

[
1

Sc (4η)2
−
(

3 + 2ξ

4(1 + ξ)
Fi,j +

ξ

4ξ
(Fi,j−Fi−1,j

)

)
/(24η)

]
B3 =

2

Sc(4η)2
+

ξ

4ξ
Hi,j, D3 =

ξ

4ξ
Hi,jΦi−1,j (B.14)

Here the unknown quantities are Φi,j−1, Φi,j and Φi,j+1 for each value of i while j =

2, 3, 4, · · · , L − 1 leads to a set of L − 2 equations with L − 2 unknowns (Φi,2, Φi,3, · · · ,

Φi,L−2 and Ui,L−1). The set of equations in (B.14) can be expressed in the form of following

matrix

B3,2 C3,2 0 0 · · · 0 0 0

A3,3 B3,3 C3,3 0 · · · 0 0 0

0 A3,4 B3,4 C3,4 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · A3,L−2 B3,L−2 C3,L−2

0 0 0 0 · · · 0 B3,L−1 C3,L−1





Φi,2

Φi,3

Φi,4

...

...

Φi,L−2

θi,L−1


=



D3,2

D3,3

D3,4

...

...

D3,L−2

D3,L−1


(B.15)

Finally Fi,j is calculated from the relation:

Fi,j = Fi,j−1 +
1

2
4η (Hi,j +Hi,j−1)

It is to be noted that the implicit formulas used here are found to be unconditionally

stable. The discretized equations obtained in (B.11), (B.14) and (B.15) are respectively

solved for Hi,j, Θi,j and Φi,j, whose coefficient matrices are tridiagonal in nature. Such

system of equations can be solved via Gaussian elimination technique or more effectively

by Thomas Algorithm which is the innovation of Gauss elimination. In this method, the

lower diagonal is eliminated initially. The details of the algorithm is given below for the
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system of equations (B.11).

Applying Gauss elimination technique to (B.11) in order to eliminate the lowest diagonal

term which results in an upper bi-diagonal form of the equations as given below

Hi,2 + C1,2

~2 Hi,3 = ϕ2

Hi,3 + C1,3

~3 Hi,4 = ϕ3

...
...

Hi,L−2 +
C1,L−2

~L−2
Hi,L−1 = ϕL−2

Hi,L−1 = ϕL−1

(B.16)

It can be seen that the last equation in (B.16) only contains one unknown and remaining

unknown variables is obtained from the penultimate equations in the above system, i.e.

Hi,L−1 =ϕL−1

Hi,j =ϕi −
C1,i

~i
Hi,j+1 for j = L− 2, L− 3, · · · , 2

(B.17)

This leads to an explicit solution provided that ~’s are known. ~’s can be obtained from

the following relation

~2 =B1,2

~j =B1,j − A1,j
C1,j−1

~j−1

for j = 3, 4, · · · , L− 1
(B.18)
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Appendix B. Implicit Finite Difference Method Along with Gaussian Elimination Method

Similarly, ϕ’s are acquired from the following

ϕ2 =
D1,2

~2

ϕj =
D1,j − A1,jϕj−1

~j
for j = 3, 4, · · · , L− 1

(B.19)

Similar steps are followed in order to apply Gaussian elimination technique on the system of

equations (B.14) and (B.15). In the numerical procedure the iterative scheme operates along

with an under relaxation factor. The under relaxation factor is used when the equations are

nonlinear in nature and it lies between 0 and 1. During present simulation this factor is take

to be 0.5 and it enhanced the convergence rate while solving the coupled equations. This

numerical procedure comes out to be the most suitable technique when the convergence

criteria leads to an oscillatory pattern and ultimately tends to overshoot the plausible final

solution.
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