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Abstract

The thesis consists of ten chapters. In this thesis chapter one, chapter two, chapter
three, chapter four, chapter five, chapter six, chapter seven, chapter nine, chapter ten
are expository and the chapter eight is our contribution.

In chapter one, we have presented Historical Cosmology, Rotating Galaxies,
Inertial Frames and the Cosmological Principal, Galactic and Extragalactic
Astronomy and the Cosmic Scale.

In chapter two, we have established Classical Tests of General Relativity, Black
Holes, Falling into a Black Hole and Hawking Radiation.

In chapter three, we have presented Old and New Inflation, Chaotic Inflation and
the Inflation as Quintessence.

In chapter four, we have established the Standard Hot Big Bang Model, CMB and
the Surface of Last Scattering and the COBE Satellite.

In chapter five, we have established Schwarzschild Solution, Removing the
Singularity of Schwarzschild Solution and here we also have discussed Crucial Tests
in Relativity such as the Advance of Perihelion of the Mercury Planet, Gravitational
Deflection of Light Rays and Shift in Spectral Lines.

In chapter six, we have presented Equivalence of Mass and Energy, Maxwell’s
equations and Energy Momentum Tensor Tµυ and its Physical Significance.

In chapter seven, we have presented Robertson-Walker Metric and Calculating R00,
R11, R22, R33 from Robertson-Walker Line Element and we have established
Friedmann Model from Robertson-Walker Line Element such as Flat Model, Closed
Model and Open Model. Here, we also have presented Einstein’s Line Element-its
properties, de-Sitter’s Line Element-its properties and Similarity and Difference
between Einstein and de-Sitter’s Line Element.

In section 8.1 of chapter eight, we have presented Huge Viscous Bianchi Type-1
Cosmological Model for Barotropic Fluid and Decaying  with Time and here we
have observed the volume expansion , the Hubble’s parameter H, the pressure p, the
deceleration parameter q, the matter energy density  and the cosmological parameter
 on evolution of the universe at large time. In this chapter in section 8.2, we have
presented Bianchi Type-1 Cosmological Model for Fluid Distribution and Expanding
Universe and here we have observed the volume expansion , the Hubble’s Parameter
H, the pressure p, the deceleration parameter q and the matter energy density  on
evolution of the universe at large time. In this chapter in section 8.3, we have
presented Phenomenology and Accelerating Universe with Time Variable  and here
we have observed the parameter , the decelerating parameter q, the pressure p, the
matter energy density  and the cosmological parameter  on the phenomenological
evolution of the universe at large time. This is our contributory chapter.

In chapter nine, we have established the Conception of Albert Einstein about
Hubble’s Cosmology, the Conception of Stephen Hawking about Hubble’s
Cosmology, Hubble’s Law, Hubble’s Time and Radius, Hubble’s Constant and the
Changing Views of Hubble about Cosmology.

In chapter ten, we have discussed First Frame, Second Frame, Third Frame, Fourth
Frame, Fifth Frame and Sixth Frame of the Early Universe.
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Chapter One

Cosmology from Newton to Hubble

1.1 Introduction [5]:
The history of ideas on the structure and origin of the universe shows that humankind

has always put itself at the centre of creation. As astronomical evidence has

accumulated, these anthropocentric convictions have had to be abandoned one by one.

From the natural idea that the solid earth is at rest and the celestial objects all rotate

around us, we have come to understand that we inhabit an average sized planet

orbiting an average sized sun, that the solar system is in the periphery of a rotating

galaxy of average size, flying at hundreds of kilometers per second towards an

unknown goal in an immense universe, containing billions of similar galaxies.

Cosmology aims to explain the origin and evolution of the entire contents of the

universe, the underlying physical processes and thereby to obtain a deeper

understanding of the laws of physics assumed to hold throughout the universe.

Unfortunately, we have only one universe to study, the one we live in and we cannot

make experiments with it, only observations. This puts serious limits on what we can

learn about the origin. If there are other universes, we will never know. Although the

history of cosmology is long and fascinating, we shall not trace if in detail, nor any

further back than Newton, accounting only for those ideas which have fertilized

modern cosmology directly or which happened to be right although they failed to earn

timely recognition. In the early days of cosmology when little was known about the

universe, the field was really just a branch of philosophy.

Having a rigid earth to stand on is a very valuable asset. How can we describe

motion except in relation to a fixed point? Important understanding has come from the

study of inertial systems, in uniform motion with respect to one another. From the

work of Einstein on inertial systems, the theory of special relativity was born. We
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discuss inertial frames and see how expansion and contraction are natural

consequences of the homogeneity and isotropy of the universe.

A classic problem is why the night sky is dark and not blazing like the disc of the

sun, as simple theory in the past would have it. We describe Newton’s theory of

gravitation which is the earliest explanation of a gravitational force. We shall

modernize it by introducing Hubble’s law into it. In face, we shall see that this leads

to a cosmology which already contains many features of current Big Bang

cosmologies.

1.2 Historical Cosmology [1], [5]:

At the time of Isaac Newton (1642-1727) the heliocentric universe of Nicolaus

Copernicus (1473-1543), Galileo Galilei (1564-1642) and Johannes Kepler (1571-

1630) had been accepted because no sensible description of the motion of the planets

could be found if the earth was at rest at the centre of the solar system. Humankind

was thus dethroned to live on an average sized planet orbiting around an average sized

sun.

The stars were understood to be suns like ours with fixed positions in a static

universe. The Milky Way had been resolved into an accumulation of faint stars with

the telescope of Galileo. The anthropocentric view still persisted, however in locating

the solar system at the centre of the universe.

Newtonian Cosmology (1642-1727):
The first theory of gravitation appeared when Newton published his Philosophiae

Naturalis Principia Mathematica in 1687. With this theory he could explain the

empirical laws of Kepler that the planets moved in elliptical orbits with the sun at one

of the focal points. An early success of this theory came when Edmund Halley (1656-

1742) successfully predicted that the comet sighted in 1456, 1531, 1607 and 1682

would return in 1758. Actually, the first observation confirming the heliocentric

theory came in 1727 when James Bradley (1693-1762) discovered the aberration of

starlight and explained it as due to the changes in the velocity of the earth in its annual
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orbit. In our time, Newton’s theory of gravitation still suffices to describe most of

planetary and satellite mechanics and it constitutes the non-relativistic limit of

Einstein’s relativistic theory of gravitation.

Newton considered the stars to be suns evenly distributed throughout infinite

space in spite of the obvious concentration of stars in the Milky Way. A distribution is

called homogeneous if it is uniformly distributed and it is called isotropic, if it has the

same properties in all spatial directions. Thus in a homogeneous and isotropic space

the distribution of matter would look the same to observers located anywhere, no

point would be preferential. Each local region of an isotropic universe contains

information which remains true also on a global scale. Clearly, matter introduces

lumpiness which grossly violates homogeneity on the scale of stars but on some larger

scale isotropy and homogeneity may still be a good approximation. Going one step

further, one may postulate what is called the cosmological principle or sometimes the

Copernican principle. The universe is homogeneous and isotropic in three

dimensional space, has always been so and will always remain so.

It has always been debated whether this principle is true and on what scale. On the

galactic scale visible matter is lumpy and on larger scales galaxies form

gravitationally bound clusters and narrow strings separated by voids. But galaxies also

appear to form loose groups of three to five or more galaxies. Several surveys have

now reached agreement that the distribution of these galaxy groups appears to be

homogeneous and isotropic within a sphere of 170 Mpc radius. This is an order of

magnitude larger than the supercluster to which our galaxy and our local galaxy group

belong and which is centred in the constellation of Virgo.

Based on his theory of gravitation, Newton formulated a cosmology in 1691.

Since all massive bodies attract each other, a finite system of stars distributed over a

finite region of space should collapse under their mutual attraction. But this was not

observed, in fact the stars were known to have had fixed positions since antiquity and

Newton sought a reason for this stability. He concluded, erroneously that the self
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gravitation within a finite system of stars would be compensated for by the attraction

of a sufficient number of stars outside the system, distributed evenly throughout

infinite space. However, the total number of stars could not be infinite because then

their attraction would also be infinite, making the static universe unstable. It was

understood only much later that the addition of external layers of stars would have no

influence on the dynamics of the interior. The right conclusion is that the universe

cannot be static, an idea which would have been too revolutionary at the time.

Newton’s contemporary and competitor Gottfried Wilhelm Von Leibnitz (1646-

1716) also regarded the universe to be spanned by an abstract infinite space but in

contrast to Newton he maintained that the stars must be infinite in number and

distributed all over space, otherwise the universe would be bounded and have a

centre, contrary to contemporary philosophy. Finiteness was considered equivalent to

boundedness and infinity to unboundedness.

1.3 Rotating Galaxies [5], [6]:

The first description of the Milky Way as a rotating galaxy can be traced to Thomas

Wright (1711-1786) who wrote An Original Theory or New Hypothesis of the

universe in 1750, suggesting that the stars are all moving the same way and not much

deviating from the same plane, as the planets in their heliocentric motion do round the

solar body.

Wright’s galactic picture had a direct impact on Immanuel Kant (1724-1804). In

1755 Kant went a step further, suggesting that the diffuse nebulae which Galileo had

already observed could be distant galaxies rather than nearby clouds of incandescent

gas. This implied that the universe could be homogeneous on the scale of galactic

distances in support of the cosmological principle.

Kant also pondered over the reason for transversal velocities such as the move-

ment of the moon. If the Milky Way was the outcome of a gaseous nebula contracting

under Newton’s law of gravitation, why was all movement not directed towards a

common centre? Perhaps there also existed repulsive forces of gravitation which
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would scatter bodies onto trajectories other than radial ones and perhaps such forces

at large distances would compensate for the infinite attraction of an infinite number of

stars? It is noted that the idea of a contracting gaseous nebula constituted the first

example of a non-static system of stars but at galactic scale with the universe still

static.

Kant thought that he had settled the argument between Newton and Leibnitz about

the finiteness or infiniteness of the system of stars. He claimed that either type of

system embedded in an infinite space could not be stable and homogeneous and thus

the question of infinity was irrelevant.

The infinity argument was not properly understood until Bernhard Riemann

(1826-1866) pointed out that the world could be finite yet unbounded, provided the

geometry of the space had a positive curvature, however small. On the basis of

Riemann’s geometry, Albert Einstein (1879-1955) subsequently established the

connection between the geometry of space and the distribution of matter.

Kant’s repulsive force would have produced trajectories in random directions but

all the planets and satellites in the solar system exhibit transversal motion in one and

the same direction. This was noticed by Pierre Simon de Laplace (1749-1827) who

refuted Kant’s hypothesis by a simple probabilistic argument in 1825, the observed

movements were just too improbable if they were due to random scattering by a

repulsive force. Laplace also showed that the large transversal velocities and their

direction had their origin in the rotation of the primordial gaseous nebula and the law

of conservation of angular momentum. Thus no repulsive force is needed to explain

the transversal motion of the planets and their moons, no nebula could contract to a

point and the moon would not be expected to fall down upon us.

1.4 Inertial Frames and the Cosmological Principle [5]:

Newton’s first law, the law of inertia, states that a system on which no forces act is

either at rest or in uniform motion. Such systems are called inertial frames.

Accelerated or rotating frames are not inertial frames. Newton considered that at rest
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and in motion implicitly referred to an absolute space which was unobservable but

which had a real existence independent of humankind. Mach rejected the notion of an

empty, unobservable space and only Einstein was able to clarify the physics of motion

of observers in inertial frames.

It may be interesting to follow a non-relativistic argument about the static or non-

static nature of the universe which is a direct consequence of the cosmological

principle.

Consider an observer ‘A’ in an inertial frame who measures the density of galax-

ies and their velocities in the space around him. Because the distribution of galaxies is

observered to be homogeneous and isotropic on very large scales, he would see the

same mean density of galaxies (at one time t) in two different directions r and r'.

),'(),( trtr AA  

Another observer ‘B’ in another inertial frame looking in the direction r from her

location would also see the same mean density of galaxies,

),(),'( trtr AB  

The velocity distributions of galaxies would also look the same to both observers,

in fact in all directions, for instance in the r' direction,

),'(),'( trtr AB  

Suppose that the B frame has the relative velocity A (r",t) as seen from the A

frame along the radius vector r" = r -r'. If all velocities are non-relativistic, i.e.,

small compared with the speed of light, we can write

A(r',t) = A(r - r", t) =A(r,t) - A(r",t)

This equation is true only if A(r, t) has a specific form, it must be proportional to r,

A(r,t) =f(t)r............................. (1)

where f(t) is an arbitrary function.

Let this universe start to expand. From the vantage point of A (or B equally well,

since all points of observation are equal), nearby galaxies will appear to recede slowly.
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But in order to preserve uniformity, distant ones must recede faster, in fact their

recession velocities must increase linearly with distance. That is the content of

equation (1).

If f(t) > 0, the universe would be seen by both observers to expand, each

galaxy having a radial velocity proportional to its radial distance r. If f(t) < 0, the

universe would be seen to contract with velocities in the reversed direction. Thus we

have seen that expansion and contraction are natural consequences of the

cosmological principle. If f(t) is a positive constant and then equation (1) is Hubble’s

law.

Actually, it is somewhat misleading to say that the galaxies recede when rather, it

is space itself which expands or contracts. This distinction is important when we

come to general relativity. A useful lesson may be learned from studying the limited

gravitational system consisting of the earth and rockets launched into space. This

system is not quite like the previous example because it is not homogeneous and

because the motion of a rocket or a satellite in earth’s gravitational field is different

from the motion of galaxies in the gravitational field of the universe. Thus to

simplify the case, we only consider radial velocities and we ignore earth’s rotation.

Suppose the rockets have initial velocities low enough to make them fall back onto

earth. The rocket earth gravitational system is then closed and contracting,

corresponding to f(t) < 0.

When the kinetic energy is large enough to balance gravity, our idealized rocket

becomes a satellite, staying above earth at a fixed height. This corresponds to the

static solution f(t) = 0 for the rocket earth gravitational system.

If the launch velocities are increased beyond about 11 kms-1, the potential

energy of earth’s gravitational field no longer suffices to keep the rockets bound to

earth. Beyond this speed, called the second cosmic velocity by rocket engineers, the

rockets escape for good. This is an expanding or open gravitational system,

corresponding to f(t) > 0.
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The static case is different if we consider the universe as a whole. According to

the cosmological principle, no point is preferred and therefore there exists no centre

around which bodies can gravitate in steady state orbits. Thus the universe is either

expanding or contracting, the static solution being unstable and therefore unlikely.

1.5 Galactic and Extragalactic Astronomy[5]:
Newton should also be credited with the invention of the reflecting telescope, he even

built one and the first one of importance was built a century later by William Herschel

(1738-1822). With this instrument, observational astronomy took a big leap forward.

Herschel and his son John could map the nearby stars well enough in 1785 to

conclude correctly that the Milky Way was a disc shaped star system. They also

concluded erroneously that the solar system was at its centre but many more

observations were needed before it was corrected. Herschel made many important

discoveries, among them the planet Uranus and some 700 binary stars whose

movements confirmed the validity of Newton’s theory of gravitation outside the solar

system. He also observed some 250 diffuse nebulae which he first believed were

distant galaxies but which he and many other astronomers later considered to be

nearby incandescent gaseous clouds belonging to our Galaxy. The main problem was

then to explain why they avoided the directions of the galactic disc, since they were

evenly distributed in all other directions.

The view of Kant that the nebulae were distant galaxies was also defended by

Johann Heinrich Lambert (1728-1777). He came to the conclusion that the solar

system along, with the other stars in our Galaxy, orbited around the galactic centre,

thus departing from the heliocentric view. The correct reason for the absence of

nebulae in the galactic plane was only given by Richard Anthony Proctor (1837-1888)

who proposed the presence of interstellar dust. The arguments for or against the

interpretation of nebulae as distant galaxies nevertheless raged throughout the 19th

century because it was not understood how stars in galaxies more luminous than the

whole galaxy could exist, these were observations of supernovae. Only in 1925 did

Edwin Powell Hubble (1889-1953) resolve the conflict indisputably by discovering
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Cepheid’s and ordinary stars in nebulae and by determining the distance to several

galaxies, among them the celebrated M31 galaxy in the Andromeda. Although this

distance was off by a factor of two, the conclusion was qualitatively correct.

In spite of the work of Kant and Lambert, the heliocentric picture of the Galaxy or

almost heliocentric since the sun was located quite close to Herschel’s galactic centre.

A decisive change came with the observations in 1915-1919 by Harlow Shapley (l895-

1972) of the distribution of globular clusters hosting 105 to 107 stars. He found that

perpendicular to the galactic plane they were uniformly distributed but along the

plane these clusters had a distribution which peaked in the direction of the

Sagittarius. This defined the centre of the galaxy to be quite far from the solar system

and we are at a distance of about two-thirds of the galactic radius. Thus the

anthropocentric world picture received its second blow and not the last one, if we

count Copernicus’s heliocentric picture as the first one. It is noted that Shapley still

believed our galaxy to be at the centre of the astronomical universe.

1.6 The Cosmic Scale[5]:
The size of the universe is unknown and unmeasurable but if it undergoes expansion

or contraction, it is convenient to express distances at different epochs in terms of a

cosmic scale R(t) and denote its present value Ro= R(to). The value of R(t) can be

chosen arbitrarily, so it is often more convenient to normalized it to its present value

and thereby define a dimensionless quantity, the cosmic scale factor.

a(t) = R(t) / Ro .......................................(1)

The cosmic scale factor affects all distances, for instance the wave length of light

emitted at one time t and observed as o at another time to.

)(0

0

tRR




Let us find an approximation for )(ta at times t < to by expanding it to first order

time differences.
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)(1)( ttata oo   ..........................................(2)

using the notation 0a for a (to) and r=c(to-t) for the distance to the source. The

cosmological red shift can be approximated by

c
raaz o

o   11 1




..............................(3)

Thus
z1

1 is a measure of the scale factor a (t) at the time when a source emitted the

red shifted radiation. We get from equation from (3) and equation
c
rHZ o .

We obtain

o
o

o
o H

R
Ra 


 ...................................(4)
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Chapter Two
Gravitational Phenomena

2.1 Classical Tests of General Relativity [5], [7], [9]:

The classical testing ground of theories of gravitation, Einstein’s among them is

celestial mechanics within the solar system. Ideally one should consider the full many

body problem of the solar system, a task which one can readily characterize as

impossible. Already the relativistic two body problem presents extreme mathematical

difficulties. Therefore, all the classical tests treated only the one body problem of the

massive sun influencing its surroundings.

The earliest phenomenon requiring general relativity for its explanation was noted

in 1859, 20 years before Einstein’s birth. The French astronomer Urban Le Verrier

(1811-1877) found that something was wrong with the planet Mercury’s elongated

elliptical orbit. As the innermost planet it feels the solar gravitation is very strong but

the orbit is also perturbed by the other planets. The total effect is that the elliptical

orbit is non-stationary, it precesses slowly around the sun. The locus of Mercury’s

orbit nearest the sun, the perihelion, advances 574" per century. This is calculable

using Newtonian mechanics and Newtonian gravity but the result is only 531", 43"

too little. Le Verrier, who had already successfully predicted the existence of Neptune

from perturbations in the orbit of Uranus, suspected that the discrepancy was caused

by a small undetected planet inside Mercury’s orbit which he named Vulcan. That

prediction was never confirmed. With the advent of general relativity the calculations

could be remade. This time the discrepant 43" were successfully explained by the new

theory which thereby gained credibility. This counts as the first one of three classical

tests of general relativity. For details on this test as well as on most of the subsequent

tests.

Also, the precessions of venus and earth have been put to similar use and within

the solar system many more consistency tests have been done, based on

measurements of distances and other orbital parameters.
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The second classical test was the predicted deflection of a ray of light passing near

the sun. The third classical test was the gravitational shift of atomic spectra, first

observed by John Evershed in 1927. The frequency of emitted radiation makes atoms

into clocks. In a strong gravitational field these clocks run slower, so the atomic

spectra shift towards lower frequencies. Evershed observed the line shifts in a cloud

of plasma ejected by the sun to an elevation of about 72000 km above the photosphere

and found an effect only slightly larger than that predicted by general relativity.

Modern observations of atoms radiating above the photosphere of the sun have

improved on this result, finding agreement with theory at the level of about 2.110-6.

Similar measurements have been made in the vicinity of more massive stars such as

Sirius.

Since then, many experiments have studied the effects of changes in a

gravitational potential on the rate of a clock or on the frequency of an electromagnetic

signal. Clocks have been put in towers or have travelled in  rockets and satellites. The

so called fourth test of general relativity which was conceived by I.I Shapiro in 1964

and carried out successfully in 1971 and later, deserves a special mention. This is

based on the prediction that an electromagnetic wave suffers a time delay when

traversing an increased gravitational potential.

The fourth test was carried out with the radio telescopes at the Haystack and

Arecibo observatories by emitting radar signals towards Mercury, Mars and notably,

Venus, through the gravitational potential of the sun. The round trip time delay of the

reflected signal was compared with theoretical calculations. Further refinement was

achieved later by posing the Viking Lander on the Martian surface and having it

participate in the experiment by receiving and retransmitting the radio signal from

earth. This experiment found the ratio of the delay observed to the delay predicted by

general relativity to be 1.000 ± 0.002.

It is noted that the expansion of the universe and Hubble’s linear law are not tests

of general relativity. Objects observed at wave lengths ranging from radio to gamma
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rays are close to isotropically distributed over the sky. Either we are close to a centre

of spherical symmetry, an anthropocentric view or the universe is close to

homogeneous.

2.2 Black Holes[5]:
The Schwarzachild Metric:

Suppose that we want to measure time t and radial elevation r in the vicinity of a

spherical star of mass M in isolation from all other gravitational influences. Since the

gravitational field varies with elevation, these measurements will surely depend on r.

The spherical symmetry guarantees that the measurements will be the same on all

sides of the star and thus they are independent of  and . The metric does not then

contain d and d terms. Let us also consider that we have stable conditions that the

field is static during our observations, so that the measurements do not depend on t.

The metric is then not flat but the 00 time-time component and the 11 space-

space component must be modified by some functions of r. Thus it is of the form

2222 )()( drrAdtcrBds  .............................. (1)

where B(r) and A(r) have to be found by solving of the Einstein equations.

Far away from the star the space-time is fiat. This gives us the asymptotic

conditions

1)()(   rBrA liim
r

liim
r ....................................(2)

Newtonian limit of 00g is known. Here B(r) plays the role of 00g , thus we have

B(r)=
rc

GM
2

21 ............................................. (3)

To obtain A(r) from the Einstein equations is more difficult and we shall not go to

the trouble of deriving it. The exact solution found by Karl Schwarzachild (1873-

1916) in 1916 preceded any solution found by Einstein himself. The result is simply

1)()(  rBrA ........................................... (4)
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These functions clearly satisfy the asymptotic conditions (2).

Let us introduce the concept of Schwarzschild radius rc for a star of mass M,

defined by B(rc) = 0. It follows that

2

2
c
GMrc  ................................. (5)

The physical meaning of rc is the following. Consider a body of mass m and radial

velocity  attempting to escape from the gravitational field of the star. To succeed, the

kinetic energy must overcome the gravitational potential. In the non-relativistic case

the condition for this is

rGMmm /
2
1 2  ........................ (6)

The larger the ratio M/r of the star, the higher the velocity required to the escape.

Ultimately, in the ultra-relativistic case when  = c, only light can escape. At that

point a non-relativistic treatment is no longer justified. Nevertheless, it just so

happens that the equality in equation (6) fixes the radius of the star correctly to be

precisely rc as defined above. Because nothing can escape the interior of rc, not even

light, John A. Wheeler coined the term black hole for it in 1967. It is noted that the

escape velocity of objects on earth is 11 kms-1,  on the sun, it is 2.2106 kmh-1 but on

a black hole, it is c.

This is the simplest kind of a Schwarzschild black hole and rc defines its event

horizon. Inserting rc into the functions A and B the Schwarzschild metric becomes

2

21
22 11

c
dr

r
rdt

r
rd cc









 






  .................... (7)

2.3 Falling Into a Black Hole [5]:
The Schwarzschild metric has very fascinating consequences. Consider a spacecraft

approaching a black hole with apparent velocity =dr/dt in the fixed frame of an

outside observer. Light signals from the spacecraft travel on the light cone, d = 0,

so that
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





 

r
rc

dt
dr c1 .......................... (8)

Thus the spacecraft appears to slow down with decreasing r, finally coming to a

full stop as it reaches r = rc.

No information can ever reach the outside observer beyond the event horizon. The

reason for this is the mathematical singularity of dt in the expression

rr
drdtc

c /1
 ......................... (9)

The time intervals dt between successive crests in the wave of the emitted light

become longer, reaching infinite wave length at the singularity. Thus the frequency 

of the emitted photons goes to zero and the energy E = h of the signal vanishes. One

cannot receive signals from beyond the event horizon because photons cannot have

negative energy. Thus the outside observer sees the spacecraft slowing down and the

signals red shifting until they cease completely.

The pilot in the spacecraft uses local co-ordinates, so he sees the passage into the

black hole entirely differently. If he started out at distance ro with velocity dr/dt = 0 at

time to, he will have reached position r at proper time  which we can find by

integrating d in equation (7) from 0 to .

  












 0

2/1

22
2

)/1(
1

)/(
/1r

r
c

c
o

dr
rrcdtdr

rrd ................ (10)

The result depends on dr/dt which can only be obtained from the equation of

motion. The pilot considers that he can use Newtonian mechanics, so he may take

r
rc

dt
dr c

The result is then
2/3)( rro  .........................(11)

However, many other expressions for dr/dt also make the integral in equation (10)

converge.
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Thus the singularity at rc does not exist to the pilot, his comoving clock shows

finite time when he reaches the event horizon. Once across rc the spacecraft reaches

the centre of the black hole rapidly. For a hole of mass this final passage lasts

about 10-4s. The fact that the singularity at rc does not exist in the local frame of the

spaceship indicates that the horizon at rc is a mathematical singularity and not a

physical singularity. The singularity at the horizon arises because we are using, in a

region of extreme curvature, co-ordinates most appropriate for flat or mildly curved

space-time. Alternate co-ordinates, more appropriate for the region of a black hole

and in which the horizon does not appear as a singularity were invented by Eddington

(1924) and rediscovered by Finkelstein (1958).

Although this spacecraft voyage is pure science fiction, we may be able to observe

the collapse of a supernova into a black hole. Just as for the spacecraft, the collapse

towards the Schwarzschild radius will appear to take a very long time. Towards the

end of it, the ever red shifting light will fade and finally disappear completely.

It is noted from the metric equation (7) that inside rc the time term becomes

negative and the space term positive, thus space becomes timelike and time spacelike.

The implications of this are best understood if one considers the shape of the light

cone of the spacecraft during its voyage.  Outside the event horizon the future light

cone contains the outside observer who receives signals from the spacecraft. Nearer rc

the light cone narrows and the slope dr/dt steepens because of the approaching

singularity in expression on the right hand side of equation (8). The portion of the

future space-time which can receive signals therefore diminishes.

Since the time and space axes have exchanged positions inside the horizon, the

future light cone is turned inwards and no part of the outside spare-time is included in

the future light cone. The slope of the light cone is vertical at the horizon. Thus it

defines, at the same time, a cone of zero opening angle around the original time axis

and a cone of 1800 around the final time axis, encompassing the full space-time of the

black bole. As the spacecraft approaches the centre, dt/dr decreases, defining a

narrowing opening angle which always contains the centre.
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2.4 Radiation of Hawking [5], [10]:
Stephen Hawking has shown that although no light can escape from black holes, they

can nevertheless radiate if one takes quantum mechanics into account. It is a property

of the vacuum that particle-antiparticle pairs such as e– e+ are continuously created out

of nothing, to disappear in the next moment by annihilation which is the inverse

process. Since energy cannot be created or destroyed, one of the particles must have

positive energy and the other one an equal amount of negative energy. They form a

virtual pair, neither one is real in the sense that it could escape to infinity or be

observed by us.

In a strong electromagnetic field the electron e- and the positron e+ may become

separated by a Compton wave length  of the order of the Schwarzschild radius rc.

Fig. 2.1
Figure-2.1: When we throw matter into a black hole, or allow two black holes to merge, the total

area of the event horizons will never decrease, (a) A2  A1, (b) A3  A1 + A2.

Hawking has shown that there is a small but finite probability for one of them to

tunnel through the barrier of the quantum vacuum and escape the black hole horizon

as a real particle with positive energy, leaving the negative energy particle inside the

horizon of the hole. Since energy must be conserved the hole loses mass in this

process, a phenomenon called Hawking radiation. The timescale of complete

evaporation is

3

1210
10 










g
MGyt


 ......................... (16)
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Thus small black holes evaporate fast, whereas heavy ones may have lifetimes

exceeding the age of the universe. The analogy with entropy can be used even further.

A system in thermal equilibrium is characterized by a unique temperature T

throughout. When Hawking applied quantum theory to black holes, he found that the

radiation emitted from particle-antiparticle creation at the event horizon is exactly

thermal. The rate of particle emission is as if the hole were a black body with a unique

temperature proportional to the gravitational field on the horizon, the Hawking

temperature,

K
MGM

TH
81015.6

8
1 


.........................(17)
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Chapter Three

Cosmic Inflation

3.1 Introduction:
The standard FLRW Big Bang model describes an adiabatically expanding universe,

having a beginning of space and time with nearly infinite temperature and density.

This model has, as so far presented, been essentially a success story. But the Big Bang

assumes very problematic initial conditions for instance where did the 1090 particles

which make up the visible universe come from? We are now going to correct that

optimistic picture and present a remedy of cosmic inflation.

3.2 Old and New Inflation [5], [11] :
The earliest time after the Big Bang, we can meaningfully consider is Planck time tp

because earlier than that the theory of gravitation must be married to quantum field

theory, a task which has not yet been mastered. Let us assume that the rp sized

universe then was pervaded by a homogeneous scalar classical field , the inflation

field and that all points in this universe were causally connected. The idea with

inflation is to provide a mechanism which blows up the universe so rapidly and to

such an enormous scale that the causal connection between its different parts is lost,

yet they are similar due to their common origin. This should solve the horizon

problem and dilute the monopole density to acceptable values as well as flatten the

local fluctuations to near homogeneity.

Guth’s Scenario:
Let us try to make this idea more quantitative. Suppose that the mass m of the

inflation carrying the field  was much lighter than the Planck mass mp,

0 < m << mp ..................................................(1)

so that the inflation can be considered to be massless. In fact, the particle symmetry at

Planck time is characterized by all fields except the inflation field being exactly

massless. Only when this symmetry is spontaneously broken in the transition to a

lower temperature phase do some particles become massive.
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Let us introduce the potential V(, T) of the scalar field at temperature T. Its 

dependence is arbitrary but we could take it to be a power function of .  Suppose that

the potential at time tp has a minimum at a particular value p. The universe would

then settle in that minimum, given enough time and the value p would gradually

pervade all of space-time. It would be difficult to observe such a constant field

because it would have the same value to all observers, regardless of their frame of

motion. Thus the value of the potential V(p, Tp) may be considered as a property of

the vacuum.

Suppose that the minimum of the potential is at p = 0 in some region of space-

time and it is non-vanishing.

|V(0, Tp)|  > 0 ................................(2)

An observer moving along a trajectory in space-time would notice that the field

fluctuates around its vacuum expectation value

p = 0

and the potential energy consequently fluctuates around the mean vacuum-energy

value

),0( pTV > 0

This vacuum energy contributes a repulsive energy density to the total energy

density in Friedmann’s equation, acting just as dark energy or as a cosmological

constant, if we make the identification


3
18

3
1

0 VG ................................. (3)

where V0 = V(0, 0) is a temperature-independent constant.

Inflation occurs when the universe is dominated by the inflation field . We shall

restrict our considerations to theories with a single inflation field. Inflationary models

assume that there is a moment when this domination starts and subsequently drives

the universe into a de-Sitter like exponential expansion in which T  0. Alan Guth in

1981, named this an inflationary universe.
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The timescale for inflation is

PM
hcVGH  03

8  134 )10(  s ........................ (4)

Clearly the cosmic inflation cannot go on forever if we want to arrive a our

present slowly expanding Friedmann-Lemaitre universe. Thus there must be a

mechanism to halt the exponential expansion, a graceful exit. The freedom we have to

arrange this is in the choice of the potential function V(,T) at different

temperature T.

3.3 Chaotic Inflation [5], [12], [13] :

Initial Conditions:
Guth’s model made the rather specific assumption that the universe started out

with the vacuum energy in the false minimum  = 0 at time tp. However, Linde

pointed out that this value as well as, any other fixed starting value, is as improbable

as complete homogeneity and isotropy because of the quantum fluctuations at Planck

time. Instead, the scalar field may have had some random starting value a which

could be assumed to be fairly uniform across the horizon of size Np
-1 changing only

by an amount

a Mp << a ................................. (1)

Regions of higher potential would expand faster and come to dominate. With time

the value of the field would change slowly until it finally reached o at the true

minimum V(0) of the potential.

But causally connected spaces are only of size Mp
-1 so even the metric of space-

time may be fluctuating from open to closed in adjacent spaces of this size. Thus the

universe can be thought of as a chaotic foam of causally disconnected bubbles in

which the initial conditions are different and which would subsequently evolve into

different kinds of universes. Only one bubble would become our universe and we

could never get any information about the other ones.
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According to HeisenbergÕs uncertainty relation, at a timescale t = ħ/Mpc2 the

energy is uncertain by an amount

2cM
t

E p




................................. (2)

Let us for convenience work in units common to particle physics where

ħ=c=1. Then the energy density is uncertain by the amount

4
33 )()( pN

t
E

r
E









 ....................... (3)

Thus there is no reason to assume that the potential V(a) would be much smaller

than 4
pM . We may choose a general parametrization for the potential,

4
4)( pn

p

n

M
nM
kV  

 ...............................(4)

where n > 0 and 0 < K << 1. This assumption ensures that V(a) does not rise too

steeply with . For n = 4 it then follows that

a  pp MM
k









4/14 .......................... (5)

when the free parameter K is chosen to be very small.

A large number of different models of inflation have been studied in the literature.

Essentially they differ in their choice of potential function.

3.4 The Inflation as Quintessence[5]:
We have met two cases of scalar fields causing expansion, the inflation field acting

before tGUT and the quintessence field describing present day dark energy. It would

seem economical if one and the same scalar field could do both jobs. Then the

inflation field and quintessence would have to be matched at some time later than

tGUT. This seems quite feasible since on the one hand, the initially dominating

inflation potential V() must give way to the background energy density r + m as

the universe cools and on the other hand, the dark energy density must have been
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much smaller than the background energy density until recently. Recall that

quintessence models are constructed to be quite insensitive to the initial conditions.

On the other hand, nothing forces the identification of the inflation and

quintessence fields. The inflationary paradigm in no way needs nor predicts

quintessence.

In the previously described models of inflation, the inflation field  settled to

oscillate around the minimum V( = 0) at the end of inflation. Now, we want the

inflation energy density to continue a monotonic roll down toward zero, turning

ultimately into a minute but non-vanishing quintessence tail. The global minimum of

the potential is only reached in a distant future, V(  )  0. In this process the

inflation does not decay into a thermal bath of ordinary matter and radiation because it

does not interact with particles at all, it is said to be sterile. A sterile inflation field

avoids violation of the equivalence principle, otherwise the interaction of the

ultralight quintessence field would correspond to a new long range force. Entropy in

the matter fields comes from gravitational generation at the end of inflation rather

than from decay of the inflation field.

The task is then to find a potential V() such that it has two phases of accelerated

expansion from tp to tend at the end of inflation and from a time tF  tGUT when the

instant on field freezes to a constant value until now, tO. Moreover, the inflation

energy density must decrease faster than the background energy density, equalling it

at some time t* when the field is * and thereafter remaining subdominant to the

energy density of the particles produced at tend. Finally it must catch up with a

tracking potential at some time during matter domination, t > teq.

The mathematical form of candidate potentials is of course very complicated and

it would not be very useful to give many examples here. However, it is instructive to

follow through the physics requirements on  and V() from inflation to present.
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Chapter Four

Cosmic Microwave Background

4.1 Introduction [5]:
The cosmic microwave background (CMB) which is a consequence of the hot Big

Bang and the following radiation dominated epoch was discovered in 1964. The hot

Big Bang also predicts that the Cosmic Microwave Background (CMB) radiation

should have a blackbody spectrum.

4.2 The Standard  Hot Big Bang Model [8]:
Cosmology is a scientific attempt to answer fundamental questions of mythical

proportion. How did the universe come to be? How did it evolve? How will it end?

Over the past century progress has been made towards answering these questions and

has resulted in a standard hot Big Bang model describing the evolution of the

universe. This model provides a consistent framework into which all the relevant

cosmological data seem to fit and is the dominant paradigm against which all new

ideas are tested.

The Big Bang model of the universe is based on the following observations.

(i) The universe is expanding

(ii) On the largest scales the universe is isotropic and homogeneous

(iii) The universe is filled with microwave photons coming from all directions

(iv) The universe is composed of 75% hydrogen and  25% helium

Each observation and its implications are discussed separately below.

(i) The universe is expanding:
In the early part of this century cosmology came of age when the nebulae were found

to be galaxies external to our Milky Way Galaxy and that curiously, they were all

receding from us. This universal recession was interpreted as the expansion of the

universe and was codified in Hubble’s law  = Hd. That is, the recession velocity 

of a galaxy is proportional to its distance d from us and H is Hubble’s constant. The

implications of an expanding universe were profound. The universe could no longer

be considered static. It must have been smaller, denser and hotter in the past and this

implies a finite age for the universe.  So far no objects older than 20 billion years have
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been found. The dark night sky is also evidence for the finite age of the observable

universe(Harrison 1987). A finite age however carries with it the notion of a creation

event or a Big Bang. The origin of the universe, t = 0, seems to be the Achilles heel of

the model. Is there a singularity at t = 0? What happens before that? Strictly speaking

however, the Big Bang origin of the universe at t =0 is not part of the Big Bang

model.

(ii) On the largest scales the universe is isotropic and homogeneous :
The universe looks the same in all directions and the matter seems to be smoothly

distributed. Observations of the CMB, the x-ray background and deep radio surveys

provide solid evidence for the isotropy. Tests of homogeneity are more difficult since

they require three dimensional information. The largest galaxy red shift surveys may

be beginning to see homogeneity however the assumption of homogeneity has been

based as much on mathematical convenience as observational evidence. Einstein’s

equations have a simple isotropic and homogeneous solution known as Friedmann’s

equation. It is the dynamical equation relating a universal scale factor R to the matter

in the universe. This allows us to write Hubble’s law without reference to galaxies,

R = H R where the dot indicates differentiation with respect to time and we take R=l.

On small scales the universe is not isotropic and homogeneous. There are lots of small

scale structures in the universe (galaxies, galaxy clusters, voids, superclusters) and

any model of the universe needs to explain how they got there. Gravitational collapse

of initially small density in homogeneities is the standard Big Bang explanation. This

idea is not far fetched since we are now falling at about 630 km/s towards the largest

local overdensity.

(iii) The universe is filled with microwave photons coming from all
directions:

This sea of Photons is known as the cosmic microwave background (CMB)

radiation. The photon wave lengths are about as big as these letters and there are

about 415 of them in every cubic  centimeter  of the universe. This article is about

measurements of these photons and their slightly anisotropic distribution.
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(iv)The universe is composed of  75% hydrogen and 25% helium:
This is true for the visible baryonic matter, i.e., stars, dust and gas. In the Big Bang

model this three to one H/He ratio was fixed during an epoch of nucleosynthesis in

the early universe. Big Bang nucleosynthesis (BBN) occurred within the first few

minutes after the Big Bang. The agreement of BBN predictions for the light nuclei

abundances H, D, 3He, 4He and 7Li provides the earliest solid evidence supporting the

Big Bang model.

The trace  amounts of other elements were cooked up in stellar kitchens at much

lower red shift. Since BBN occurred during the first three minutes after the Big Bang,

it is often said that the Big Bang model has been tested that far back. In addition to

this visible baryonic matter, there is much evidence that some kind of dark matter

lurks about the outlying parts of galaxies and galaxy clusters are orbiting too fast to be

contained by the gravitational potential wells of the visible matter alone.

In the 1980’s theorists devised an important extension of the standard Big Bang

model called inflation. Inflation adds an early period of exponential expansion to the

history of the universe and also provides a mechanism (quantum fluctuations) for the

production of the initially small density inhomogeneities needed for gravitational

instability to induce structure formation. The exponential expansion solves two initial

condition problems of the standard Big Bang model:

(1) The horizon problem , the CMB has the same temperature in opposite directions

yet the gas in those directions has never been in causal contact.

(2) The flatness problem, the density of the universe is near the critical value of a

flat universe yet the Friedmann equation tells us that the initial deviation from flatness

would have had to be unbelieveably small for this to be the case today.  Inflation

solves these problems, it permits opposite sides of the observable universe to be in

causal contact before inflation and the expansion flattens any pre-inflationary

curvature, yielding =1. There are alternatives to the hot Big Bang model. For

example Layzer (1992) who advocates a cold Big Bang model.
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4.3 CMB and the Surface of Last Scattering [8]:
The observable universe is expanding and cooling.  Therefore, in the past it was hotter

and smaller. The CMB is the after glow of thermal radiation left over from this hot

early epoch in the evolution of the universe. The CMB is a bath of photons coming

from every direction. These are the oddest photons one can observe and they contain

information about the universe at red shifts much larger than the red shifts of galaxies

or quasars. The CMB is thus unique tool for probing the early universe.

The prediction of the existence and the temperature of a CMB in 1948 (Alpher &

Herman 1948) followed by its detections in 1964 (Penzias & Wilson 1965, Dicke et

al. 1965) provides possibly the strongest evidence for the Big Bang. The CMB

detection began the search for the determination of its exact spectrum and level of

anisotropy. A CMB of truly cosmic origin is expected to have blackbody spectrum

and to be extremely isotropic.

Fig. 4.1

Figure 4.1: CMB Spectrum Measurements. The spectrum of the CMB has been measured over 3

decades in frequency and found to be consistent with a blackbody at T0 = 2.726 K.
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Fig. 4.2

Figure 4.2: CMB isotropy. DMR two-year 53 GHz full-sky map in galactic co-ordinates. The

CMB is very well approximated by an isotropic blackbody.

COBE observations show that the CMB is very well approximated by an isotropic

blackbody. The recently published COBE FIRAS result is that the CMB has the

spectrum of a blackbody at a temperature of T0 = 2.726 ± 0.01K (95% CL) (Mather et

al. 1994). Figure 4.1 shows how well the FIRAS measurements along with many

other measurements agree with a blackbody spectrum at T0 =2.726 K. Figure 4.2

displays the DMR 53 GHz two- year map. Not only is the CMB blackbody, it is also

highly isotropic.

At approximately 10-2 seconds after the Big Bang of the universe was about 1010 k

and nucleosynthesis began. Recombination or decoupling occurred 3,00000 years

later when the universe had cooled down enough to allow the free electrons and

protons to combine to form neutral hydrogen. This neutralization of the plasma

allowed photons to free stream in all directions.

Before recombination the universe was an opaque fog of free electrons, afterwards

it was transparent. The boundary is called the cosmic photosphere or the surface of

last scattering. As its name implies, the surface of last scattering is where the CMB

photons were Thomson scattered for the last time before arriving in our detectors

(Figure 4.3). Except for the tiny contribution of one Lyman- photon per hydrogen

atom, the CMB photons were not produced at this time, they were only scattered.
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The surface of last scattering can be described by several parameters. Here, we

derive the red shift lsz ,the temperature lsT and the time lst of last scattering. As the

universe expands it cools. The CMB photons get red shifted and their blackbody

temperature goes down. The fact that a red shifted blackbody remains a blackbody

can be shown using the Lorentz invariance of 3/ vIv or equivalently the mean photon

occupation number. The expansion red shift z is defined by

  )1........(....................11 0

ee tR
z 



where  is photon wave length e and o stand for emitted and observed

respectively. Since the temperature scales as ,1/1 zRT  the temperature as a

function of red shift is

    )2(........................................10 zTzT 

Recombination occurs when the CMB temperature has dropped to the point when

there are no longer enough high energy photons in the CMB to keep hydrogen

ionized; peH   . Although the ionization potential of hydrogen is 13.6eV

(T~105 k) recombination occurs at T 3000 k. The high photon to proton ratio ( 

109) allows the high energy tail of the Planck distribution to keep the comparatively

small number of hydrogen atoms ionized until this much lower temperature. The Saha

equation  describes this balance between the ionizing photons and the ionized and

neutral hydrogen. As the temperature decreases an increasing Boltzmann factor

suppresses ionization while the large photon to proton ratio,  , maintains it.

Recombination occurs when we have

kTe



~ ............................................. (3)
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Fig. 4.3

Figure 4.3: Space-time and the surface of last scattering. The time axis is the world line of the

stationary observer who is currently located at the apex of the light cone. CMB photons travel from the

wavy circle in the surface of last scattering along the surface of the light cone to the observer. Points A

and C are in opposite sides of the sky.

where  is the ionization potential. The large value of  allows T to get as low as

8000k. In addition, trapped Lyman- photons keep munch of the neutral hydrogen in

an excited state making it easier to ionize. The result is that recombination occurs at

3000lsT k. Equation (2) then yields .1000tsz

We get the time of last scattering using the time dependence of the scale factor R

in the matter dominated regime. Inserting 3 R in the Friedman equation yields

  3/2ttR  . Thus
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Therefore, if the present age of universe if t0~10×109 years, then lst ~3×105 years

after the Big Bang. Thus the CMB photons have come to us from the surface of last

scattering which can be described by the temperature, red shift and time

)5......(........................................3000KTls 

)6(..................................................1000lsz

5103lst years........................................(7)

The surface of last scattering is at a fixed time and temperature after the Big Bang.

lst constant and lsT = constant. Thus equation (2) leads to the interesting conclusion

that the surface of last scattering is receding from us with an ever increasing red shift,

 tT
zls

0

1
 .

The size of a causally connected region on the surface of last scattering is

important because it determines the size over which astrophysical processes can

occur. A causally connected Hubble’s patch at last scattering is LH =  lsls zd 13 ~

200h-1Mpc which subtends an angular size H
2/1

2/1
0

0

1000
1









 ls

H
Z ............................... (8)

Since the DMR beam averages over patches approximately 70 across, the smallest

spots detected by DMR at the surface of last scattering are well into the causally

disconnected H  regime.

The thickness of the surface of last scattering is 80z which corresponds to a

length 12/17  hL Mpc or an angular size of 2/18  (Kaiser & Silk 1986).

Anisotropies on scales smaller than about 8' are suppressed because they are

superimposed on each other over the finite path length of the photon in the surface. It

is possible that high red shift sources of ultraviolet photons reionized the hydrogen or

kept it from recombining. This reionization increases the effective thickness of the
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surface of last scattering and suppresses anisotropies on scales larger than 8'. For

example for reionization zreion > 200, anisotropies at scales less than ~ 10 are

suppressed while for zreion > 20, anisotropies at scales than ~ 50 are suppressed

(Bartlett and Stebbins 1991, Bond 1995). It is noted that the DMR results (scales > 70)

are uneffected by this reionization suppression.

4.4 The COBE Satellite [8]:

Orbit:
COBE is NASA’s first cosmology satellite and was launched successfully

November 18, 1989 on a Delta rocket (Boggess et al. 1992). The primary goals of the

COBE satellite are to measure the CMB spectrum and anisotropy and measure the

diffuse infrared background from primordial objects forming in the early universe.

The three instruments designed to achieve these goals are the Far-Infrared Absolute

Spectrophtometer (FIRAS), the Differential Microwave Radiometer (DMR) and the

Diffuse Infrared Background Experiment (Figure 4.4). Secondary goals of the mission

include measuring radiation from our local environment such as interplanetary dust,

interstellar electrons, starlight and other Galactic emission. These local sources can

mask and limit the accuracy of the cosmological measurements.

Fig. 4.4
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Figure 4.4: COBE satellite in orbit. COBE is about the size of a large van and weights 2270 kg

(Boggess et al. 1992).

COBE is in a 900 km altitude, near terminator orbit with a 103 minute period. The

combination of the 990 inclination of the orbit, 900 km altitude and the quadrupole

moment of the earth results in a torque on the plane of the orbit causing it to precess

10 per day. This precession rate keeps the orbital plane as close to perpendicular as

possible to the earth-sun line. The relative positions of the earth, sun and orbital plane

during the winter and summer solstices are displayed (Figure4.5).

Fig. 4.5

Figure 4.5: COBE’s Orbit. The Earth is shown at both the winter and summer solstices. COBE's

orbit is the thick line inclined 90 from the north celestial pole (NCP).

The satellite spins with a 73 second period (o.815 rpm). The spin axis points away

from the earth and 920-940 away from the sun. This spinning, orbiting and processing,

combined with the fairly large 70 FWHM beams, enables the DMR to sample the

entire sky in 5 months.
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Chapter Five

Schwarzschild Solution

5.1 Deduce Schwarzschild Solution.
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Multiplying equation (1) by
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B , we have

0)(
42














Ar
A

B
B

A
A

A
A

A
A ...............................................(5)

Adding equation (2) and (5), we have
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Integrating the above equation, we have

AB = c2 where c2 is integrating constant.
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Integrating the above equation, we have
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Now, putting the value of A  and B  in the equation
22222222 sin  drdrBdrAdtds 

2222221222 sin)1()1(  drdrdr
r
kdt

r
kcds   ............................... (6)

We put K = 2
2
c
MG in equation (6), we get
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2
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22 sin)21()21(  drdrdr
rc

MGdt
rc

MGcds   ................. (7)

Now, putting c2=1 and
2c

MGm  in equation (7), we get
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222222122 sin)21()21(  drdrdr
r
mdt

r
mds  

This is the Schwarzschild solution for empty space-time outside a spherical body

of mass M.
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5.2 Removing the Singularity of Schwarzschild Solution:
We know the Schwarzschild solution is

)1(........................................sin)21()21( 222222122  drdrdr
r
mdt

r
mds  

If we put r= 2m in equation (1), then we cannot assume the behavior of the

Schwarzschild solution. For Schwarzschild solution, we have three cases in

singularity and these are

r = 2m, r > 2m and r < 2m

We can remove the singularity by some co-ordinate transformation. A particle

falling radial inwards appear to continue beyond the threshold at r = 2m, although, as

we have seen and observer viewing its fall always sees it before it passes the

threshold. These two observation suggest that some odd things happen at r = 2m.

However, the co-ordinates ),,,( rt are inadequate for discussing what happen at

r = 2m and beyond so we introduce new co-ordinates which are valid for .2mr 

5.3 Crucial Tests in Relativity:
The following are known as crucial tests in relativity

(i) The Advance of Perihelion of the Mercury Planet.

(ii) Gravitational Deflection of Light Rays.

(iii) Shift in Spectral Lines.

We shall now discuss these one by one:

(i)  The Advance of Perihelion of the Mercury Planet:
The differential equation of the path of a planet is

2
22

2

3mu
h
mu

d
ud




..........................................(1)

with h
ds
dr 
2

As a first approximation the small term 23mu can be neglected, so that we have

22

2

h
mu

d
ud




The solution of above equation is
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where e and  are constants of integration giving eccentricity and longitude of the

perihelion. Putting this first approximation on the R.H.S of (1), we obtain
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Of the additional terms, the only one term which can produce and effect within the

range of observation is the term
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This is the required solution of (1). When a plant moves round the sun through

one revolution, the perihelion of the planet advances a fraction of revolution equal to

ml
m

h
m 2
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2 33
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[On using the well known formula of area h2 = ml]

From equation (4)
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Fig. 2.1
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T being time period. Thus the relativistic theory leads to an advance of perihelion

of a planetary orbit. That is to say, this theory leads to planetary orbit with a slow

rotation of perihelion instead of to be perfectly closed elliptical orbits of the

Newtonian theory. The advance of perihelion, given by (6), is very small for all the

planets except Mercury, in which it is appreciable. For Mercury, e = 0.2, a = 0.6 ×108

Kilometres.

c = 3×1010 cms. per second, T = 88 days = 88×24×3600 second.

Number of revolutions per century =
88

100365 

.
88

100365
)04.01()36002488()103(

)10106.0(24
2210

2583

radians








But  radian = 1800 = 180×3600 seconds.

Hence, advance of perihelion in case of Mercury is

   
  .sec43

88
100365

96.036002488109
106.0360018024

20

2133

onds






Thus the predicted value of advance of perihelion in case of Mercury is 43

seconds per century and the observed value is 43.5 seconds. Hence, the agreement is

satisfactory.

(ii) Gravitational Deflection of Light Rays (Bending of Light

Rays):
Treatment in general theory of relativity, we consider the deflection of a light ray in

the gravitational field of the sun. According to the general theory of relativity the

track of a light ray is given by geodesic equations with the added condition ds=0. It

means the differential equations of a planetary orbit such as

2
22

2

3mu
h
mu

d
ud




................................................(1)

with h
ds
dr 
2 ......................................................(2)

is also applicable to the path of light ray.

If we put ds = 0 in (2), then we get h = , we put h =  in equation (1), we get
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2
2

2

3muu
d

ud



..........................................(3)

Thus, the track of a light ray is given by (3)

Neglecting the small term 3mu2 as a first approximation, we have

02

2

u
d

ud


The solution of this is

u = Acos + Bsin  ..................................(4)

Initial conditions are  = 0, 0
d

du

and  = 0, u =
R
1

Subjecting equation (4) to these conditions

ABA
R

 0.1

0= BBABA
d
du

 1.0.cossin 


i.e., A = 0,1
B

R

Substituting these values in equation (4)

u=
R
1 cos 

Putting this approximation of the R.H.S. of equation (3),




2
22

2

cos3
R
mu

d
ud



The particular integral of 2

2cos3
R

m  is







 




 2
2cos1

1
1.3cos3.

1
1

22
2

22


DR

m
R
m

D

= 













 2

0

2
0

22 21
2cos

012
3)2cos(

1
1.

2
3  e

R
me

DR
m

= )2cos3(
23

2cos1
2
3

22 







 

R
m

R
m
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=   2222
2 sincossin3cos3

2


R
m

=     2222
22

22
2 sin2cossin2cos rr

Rr
m

R
m



As a second approximation, the complete solution of equation (3) is

22

2222 )sin2cos(cos11
Rr

rrm
R

u
r

 


Multiplying by rR,

Changing this into cartesian co-ordinates which may be assumed to be valid in the

nearly Euclidean space surrounding the sun, we obtain

R= x+
)(
)2(

22

22

yxR
yxm




or, x = R-
)(
)2(

22

22

yxR
yxm


 .................... (5)

The first approximation is

cos11
R

u
r



or, R= r cos, or Rx  ........................ (6)

From equation (5) and (6), it is clear that the second term =
)(
)2(

22

22

yxR
yxm


 in

equation (5) shows a deviation from the path x = R. Asymptotes to (5) are obtained by

taking y very large compared to x so that asymptotes to (5) are

)2( y
R
mRx 

R
myRxand

R
myRx 22



i.e.,
m

R
m

Rxy
22

2



and
m

R
m

Rxy
22

2



Let  be the angle between these asymptotes so that
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224
4

22
1

22tan
Rm

mR

m
R

m
R

m
R

m
R



























or, 224
4tan

Rm
mR




Then 224
4sin

Rm
mR




Since  5m2 << R2 and hence neglected.

R
m

R
mR 44sin 2 

R
m4



For  is very small and so sin  = 

For a light ray grazing sun’s limb.

onds
R
m sec75.1

697000
47.144





i.e., deflection = 1.75 seconds

This prediction can be verified by observations at the time of eclipse on the

apparent positions of the stars.

Treatment in Newtonian Theory:
Let a light ray emitted from a star be moving parallel to y-axis and be passing

through the mass m at a distance x = R

The acceleration in x-direction is given by

2
3

22
22

2

)(
.

yx

mx
r
x

r
m

dt
xd


 ......................... (7)

For a light ray moving parallel to y-axis,

dt
dy = 1 in gravitational units 02

2


dt

yd

dt
dy

dy
dx

dt
dx .
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2

2
2

2

2

2

22

2

2

2

2

0.1...
dy

xd
dy
dx

dy
xd

dt
yd

dy
dx

dt
dy

dy
xd

dt
dy

dy
dx

dt
d

dt
xd


















or, 2

2

2

2

dy
xd

dt
xd


Using this in equation (7), we have

RxFor
yR

mR

yx

mx
dy

xd






 ;

)()( 2
3

222
3

22
2

2

or,
2
3

22
2

2

)( yR

mR
dy

xd




Integrating the above equation w.r.t.y, we have



 tan;

sec
sec

)(
33

2

2
3

22

RyLet
R

dRmR
yR

mRdy
dy
dx




 

  c
R
md

R
m  sincos

or, )8........(..........
)(

sin
22

c
yRR

myc
R
m

dy
dx




 

or, Integrating the above equation, we have

)9.......(..........)( 1
22 ccyyR

R
mx 

Subjecting equation (8) and (9) to the conditions

0,,0  yRx
dy
dx

we obtain  c = 0 and R= - m + c1

i.e.,   c = 0 and c1 = m + R.

Now, equation  (9) becomes





  )( 22 yR

R
mmRx ............................ (10)

This is the equation of the path of a light ray according to Newtonian theory. The

second term )( 22 yR
R
mm  shows deviation from the path x = R
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Asymptotes to equation (10) are obtained by taking y very large compared with x so

that asymptotes are

)( y
R
mmRx 

or, )( mR
m
R

m
Rxy 

and )( mR
m
R

m
Rxy 

let  be the angle between these asymptotes, then

22
2)

1

(
tan

Rm
mR

m
R

m
R

m
R

m
R















So that  sin 22
2

Rm
mR




Using the fact that  is very small and

m2R2

and hence m2 is neglected.

Therefore,
R
m

R
mR 22

2 

But  2)2(24


R
m

R
m

or,  2

This shown that the deflection on the path of a light ray due relativistic field is

twice that predicted by Newtonian theory.

(iii) Shift in Spectral Lines:
We consider the shift in spectral lines of light emitted by an atom situated in a

gravitational field when this light is observed on the surface of the earth. Atoms of

sodium vibrate with uniform frequency. Let ds be interval between the beginning and

the end of one vibration and dt the corresponding periodic time. Consider as observer

who is moving with sodium atoms. Let the atom be momentarily at rest in co-ordinate

system (r, , , t) so that, by Schwarzschild line clement,

ds2= (1-
r
m2 ) dt2; For dr, d, d = 0 .......................... (1)
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From which we get

r
m

r
m

ds
dt







 



121
2
1

up to first approximation

or,
r
m

ds
dt

1

We compare the periodic time of sodium atom at two places

(i) On the surface of the sun.

(ii) On the surface of the earth.

Let dt and dt be the periodic times of a sodium atom on the surfaces of the sun

and the earth respectively. Then

)2......(........................................1
r
m

ds
dt






)3......(......................................................1



sd
td


  is the ratio of the observed wave lengths of a light ray corresponding to a

spectral line which originates on the surface of the sun. Using the fact that ds remains

invariant under arbitrary co-ordinate transformation, we obtain

)3(),4(....................1 by
ds
td



From equation  (2) and (4), we have

r
m

td
dt





 1



or,
r
m





This is the required expression for the shift in spectral lines. If the spectral line

originates on the surface of the sun, then

61012.2 



This prediction has been confirmed after the experiment of Adams and St. John.
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Chapter Six

Relativistic Mechanics

6.1 Equivalence of Mass and Energy (E=mc2)[3]:
From work-energy theorem, the kinetic energy of a moving body is equal to the work

done by the external force that imparts the velocity to the body from rest. If F is the

force acting on the body; then work done by the force on body in raising its velocity

from

0 to   is given by

 FW 
0 .ds

Kinetic energy of the body,  FWsayTEk

0)( .ds







dtF

dt
dt
dsF





.

.

0

0

=  dt
dt
dp  .0 (Since F=rate of change of momentum=

dt
dp )

=   dtmv
dt
dv.0

 (Since ;mvp  m being the mass of moving body)

=  )(.0 mvdv

But from the relation of variation of mass with velocity, the mass of body in motion

0

2

2

0 ,

1

m

c
v

mm
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


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

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0 )( cmm  ....................... (2)

This is relativistic expression for kinetic energy. Thus the kinetic energy of

moving body is equal to gain in mass times the squire of a speed of light. Therefore
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2
0cm may be regarded as rest energy of a body of rest mass 0m . This rest energy

may be considered as internal energy of the body. Then total energy (E)

i.e., E rest energy +relativistic kinetic energy
2

0
2

0 )( cmmcm 

2
0

22
0 cmmccm 

2mcE 

This is well known Einstein mass energy relation which states a universal

equivalence between mass and energy.

6.2 Deduce Maxwell’s Equations.

Maxwell’s four Equations are

(1) 4. E (2) 





 



 J
t
E

c
HCurl 41

(3)
t
H

c
ECurl





1 (4) OH .

where E = Electric  field, H = Magnetic field,  = Charge density, J = Current

density.

The Maxwell’s equations in the relativistic form are
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


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
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
 ............................................ (2)

where zxyxxxctx  3210 ,,,
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We put 0 in equation (2), we have

0
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 4. E which is the Maxwell’s equation  (1)

Again we put 1 in equation (2) and we get
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Now, we put 2 in equation (2) and we get

c
J

x
F 22 4








yJ
cx

F
x

F
x

F
x

F 4
3

32

2

22

1

12

0

02





















Dhaka University Institutional Repository

60

yx
zy J

c
H

zyx
H

tc
E 4)(0. 


















)4(1
t

E
J

cx
H

z
H y

y
zx












  ......................... (b)

Again we put 3 in equation (2) and we get
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Now, we put ,3,2,0   in equation (1) and we get
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We put 30,1   and in equation (1) and we get
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Lastly we put 2,1,0   in equation (1) and we have
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Apply ( a ) xi +  (b ) xj + ( c ) xk
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Now, putting 3,2,1   in equation (1) and we get
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6.3 Energy Momentum Tensor T and its Physical Significance:
The electromagnetic field vector is defined by
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The physical significance is as follows:
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Chapter Seven

Cosmology
7.1 Introduction:

Cosmology is the branch of science concerned with the study of the universe. It is

probably the oldest of sciences, as questions posed by cosmologists been pondered

through the ages. How big the universe? How old is it? How did it come into being?

At the same time, cosmology ranks among the most modern and dynamic of the

physical sciences, as astounding advances in both theory and experiment change our

view of the universe.

Cosmology:
The earliest records of rational attempts to describe the motion of the stars and planets

date back to classical antiquity. By 200 BC, the accepted view of the universe was

that of an exact sphere, with the distant stars and planets executing perfect circular

motions about the earth. Although much of Greek scholarship was lost during the dark

ages, this view of the universe merged with Christian theology and survived up to the

sixteenth century AD.

Cosmology underwent a major paradigm shift during the European Renaissance,

when it was first suggested that the planets revolve around the sun rather than the

earth. With the invention of the telescope, support for the copernican view was

provided by the astronomical observations of scientists such as Tycho Brahe, Galileo

and Keplar despite the objections of the Church. In particular, Kepler discovered that

the motion of the planets about the sun could be neatly described in terms of well

known mathematical curves of orbits. However, the nature of the force responsible for

this planetary motion remained a mystery.

Cosmology is the academic discipline that seeks to understand the origin,

evolution, structure and ultimate fate of the universe at large, as well as the natural

laws that keep it in order. Modern cosmology is dominated by the Big Bang theory,

which brings together observational astronomy and particle physics.

Although the word cosmology is recent, the study of the universe has a long

history involving science, philosophy, esotericism and religion. Related studies
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include cosmology which focuses on the origin of the universe and cosmography

which maps the features of the universe. Cosmology is also connected to astronomy.

However, they are contrasted in that while the former is concerned with the universe

in its entirety, the latter deals with individual celestial objects.

In 1687, Isaac Newton (1642-1727) published a number of universal laws that

described all known motion, the culmination of his life work. In particular, Newton

postulated a law of gravity that predicted and attractive force between any two bodies

due to their mass. This law successfully accounted for the known motion of falling

bodies. Even better, the same law accurately predicted the Keplerian orbits of the

planets about the sun. In this manner, Newton gave the first physical explanation for

both terrestrial and celestial gravity, showing them to be of common origin.

German physicist Albert Einstein (1879-1955) published his papers on Relativity

Theory between 1905 and 1917. He became internationally noted after 1919 and was

awarded the Nobel Prize in 1921. Einstein emigrated to the USA when Hitler came to

power in Germany. Einstein said, “Relativity teaches us the connection between the

different descriptions of one and the same reality.” In his usual humble way, Einstein

explained how he reinvented physics? I sometimes ask myself how it came about that

I was the one to develop the theory of relativity. The reason, I think, is that a normal

adult stops to think about problems of space and time. These are things which he has

thought about as a child. But intellectual development was retarded, as a result of

which I began to wonder about space and time only when I had already grown up.

This view of relativity, that there are different realities, has been picked up

unanimously by the public and hence, has taken on a far greater meaning than that of

the original scientific theory, the focus of which was strictly speaking on mechanics

and electrodynamics. This astonishing success was at least in part due to Einstein’s

personality. He understood himself as a philosopher as much as a scientist and he was

ready to discuss philosophical issues at any time, particularly matters involving

relativity. The philosophical aspect of relativity forced people to think differently

about the universe.

An outstanding feature of special relativity is its mass-energy relation which is

expressed in the well known formula, E = mc2.
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Einstein derived this relation in an attempt to reconcile Maxwell’s

electromagnetic theory with the conservation of energy and momentum. Maxwell said

that light carries a momentum which is to say that a wave carries an amount of

energy.

The mass-energy relation tells us that any change in the energy level of an object

necessarily involves a change in the object’s mass and vice-versa. The most dramatic

consequences of this law are observed in nature, for example in nuclear fission and

fusion processes, in which stars like the sun emit energy and lose mass. The same law

also applies to the forces set free in the detonation of an atomic bomb.

7.2 Deduce Robertson-Walker Metric.
The Robertson-Walker line element is fundamental in the standard models of

cosmology. The mathematical framework in which the Robertson-Walker metric

occurs is that of general theory of relativity.

To us the universe appears to be homogeneous and isotropic on a sufficiently

large scale. It is unlikely that we are in a special position in the universe. This leads us

to the assumption of the cosmological principle which state roughly speaking that the

universe looks the same from all positions in space at a particular time and that all

directions in space at any point are equivalent. To define the moment of time which is

valid globally, we proceed as follows. We introduce a series of non-intersecting space

like hyper surfaces. All galaxies lies on such a hyper surface in such a way that the

surface of simultaneity of the local Lorentz frame of any galaxy coincides locally with

the hyper surfaces. Thus the 4-velocity of  a galaxy is orthogonal to the space like

hyper surface. All these hyper surfaces can be labeled by a parameter which may be

taken as the proper time of any galaxy. Hence, each hyper surfaces defines a moment

of time. Now, let t denotes the synchronized proper time of all galaxies and introduce

co-ordinates ),,( 321 xxx = constant for all galaxies.
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Then the space time metric can be written as,

3,2,1,;22  jidxdxhdtds ji
ij where ).,,,( 321 xxxthh ijij  The spatial distance 2d

of any two nearby galaxies on the same hyper surfaces t = constant at ),,( 321 xxx and

(x1+ ),, 33221 xxxxx  is .2 ji
ij xxhd 

Let us consider the triangle formed by three nearby galaxies at same particular

time and the triangle formed by the same galaxies at same letter time. By the

cosmological principle, the second triangle must be similar to the first and the

magnification factor must be independent at the position of the triangle in the 3-space.

This means that time can be enter 2d only through a common factor R2(t) in order

that the ratios of small distances may be the same at all times. Thus

3,2,1,;)(222  jidxdxrtRdtds ji
ij where ).,,( 321 xxxrr ijij 

The 3-space ji
ij dxdxrdl 2 is homogeneous, isotropic and independent of time.

Hence, this must be a space of constant curvature. The 3-dimensional curvature tensor
(3) i

jklR of such a space can be expressed in terms of ijr alone. From the symmetric

properties of (3) i
ijklR ; it can be expressed as (3) ),( jkiljlikijkl rrrrKR  where k is a

constant. It can be verified that the 3-dimensional curvature tensor (3) i
jklR of the space

ji
ij dxdxrdl 2 has the above form if ijr are chosen so that the space-time metric is as

follows,
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This is the Robertson- Walker metric.

7.3 Calculating R00, R11, R22, R33 from Robertson-Walker Line

Element:
We know the Robertson-Walker line element is












 )sin(
1

)( 2222
2

2
222  ddr
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In matrix form






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0
0
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0
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


0
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





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
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0
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=








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

g
g
g
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g
g
g
g
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11
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g
g
g
g
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











g
g
g
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03

where 222
33

22
222

2

1100 sin)(,)(,
1

)(,1 rtRgrtRg
kr
tRgg 




and the other  terms are zero.

Now, the inverse of g is g =
g
1 (Adjoint matrix of )g
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
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and the other  terms are zero.

Here   3210 ,,, xxrxtx and  (0, 1, 2, 3) =  ( ),,, rt

We know the Christoffel symbol of second kind is
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The non-zero Christoffel symbols are
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
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








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
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rk

kr
R





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

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



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2

1
2
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k
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




















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Now, 












  2222,222,222R

3
2,23

2
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1
2,21

0
2,202,2 

= 0 + 0 + 0 + )(cot



= 2cosec

and 3
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2
2,22

1
1,22

0
0,22,22  

= 00})1({})()({ 22 





 rkr

r
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t

= )()}()()()({ 32 krr
r
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


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= 222 31)}()()({ krrtRtRtR 

= 13)( 222  krrRRR

and 
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

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








 32
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1
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3
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2
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0
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2
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2
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3
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3
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2
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3
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1
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3
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0
32

3
20 

=  0 + 0 + 01}.)1({000. 22 



r

rkr
R
RrRR

+  cot.cot00000})1({1. 22 


rkr
r

rRR
R
R

= 2222222 cot11  krRRkrrR

= 2cot22 2222  krrR
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
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



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
3

3
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2
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1
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0
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22 
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rrkr
krrkr

R
RrRR

R
RrRR

R
RrRR

= )1(23 2222 krkrrR 

= 2222 223 krkrrR 

= 23 222  krrR

R22 =  cosec2 R2r2RRr2  3kr2+1+2R2r2+2kr2+cot2 2

3R2r2 kr2 + 2

= 122)cot(cos 222222  krrRrRRec 

= 1221 2222  krrRrRR

= 22 )22( rkRRR 
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











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3
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1
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0
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= 0  + 0 + 0    + 0

= 0

and 3
3,33

2
2,33

1
1,33

0
0,33,33  

= 0)cossin(}sin)1({)sin( 2222 









 


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r
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t

=  222222 cossinsin)31(sin)(  krrRRRR

=  2222222222 cossinsin3sinsinsin  krrRrRR

=  22222222 cossin3sinsin  krrRrRR
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r
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

+ 0)cossin(cot  
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
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0)cot000)(cossin(2.sin)1( 22  
r
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=R(t) )
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cos.(cossinsin2sin2sin
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)(3.sin)( 2222222
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 


 krkr
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tRrtR

=  2222222 cossin2sinsin)(3  krrtR

33R =  22222222222 sin)(2cossin3sinsin0 rtRkrrRrRR 

 222222222 cossin2sinsin)(32sin2  krrtRkr

= 2)cos(sin2sin2sin2sin 222222222   krrRrRR

= 22sin)22( 222  rkRRR

= 222 sin)22( rkRRR 

7.4 Friedmann Model from Robertson-Walker Line Element:
We know the Robertson-Walker line element is












 )sin(
1

)( 2222
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2
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................................... (1)
In matrix form














0
0
0

1

g

0
0
1

)(
0

2

2

kr
tR




0
)(

0

0

22 rtR











 222 sin)(
0
0

0

rtR

=













g
g
g
g

30

20

10

00

g
g
g
g

31

21

11

01

g
g
g
g

32

22

12

02













g
g
g
g

33

23

13

03

where 222
33

22
222

2

1100 sin)(,)(,
1

)(,1 rtRgrtRg
kr
tRgg 






Dhaka University Institutional Repository

82

and the other  terms are zero.

Now, the inverse of g is g =
g
1

(Adjoint matrix of )g
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
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and the other  terms are zero.

The non-zero Christoffel symbols are
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0
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2
02

2
02 




rR
R

3
32

3
23

3
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We know that
















  ,,R

which gives
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
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







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kRRRR

22
22 )22( rkRRRR 

222
33 sin)22( rkRRRR 

And   forR 0

With c=1, we know 1
uu

For stress tensor T , we know

T= (+p) u u - pg

T g = (+p) u u g- pgg

 T = (+p) – 4 p   [since u= ug and u = ug and g g = 4]
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= p3 ......................................... (2)

In our moving co-ordinate system
 0u

So that 0
00 




   ggu

Hence,   pgpT  00)(

From the above equation, we can write

  gppgpTgT )3(
2
1)(

2
1 00 

[ Using equation (2)]

=   pggpgp
2
3

2
1)( 00 

=   pggp
2
1

2
1)( 00 

=   gpp )(
2
1)( 00 

From the above equation, we have
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0
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0
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2
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2
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22
0
2

0
22222 )(

2
1)(

2
1 gppTgT  

= })(){(
2
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22 rtRg 

= 22 )()(
2
1 rtRp
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0
3

0
33333 )(

2
1)(

2
1 gppTgT  

= )sin)((
2
10 222  Rrp  ]sin[ 222

33 Rrg 

=  222 sin)(
2
1 Rrp

Now, from Einstein field equation, we have

)
2
1(  TgTKR 

)
2
1( 000000 TgTKR 

= )3(
2
1 pK 

But from Robertson- Walker line element, we obtain

R
RR



3

00

Therefore, )3(
2
13 pK

R
R






)3(
6
1 pKRR  

)3(
6
1 2 pKRRR   ............................................... (3)

Again )
2
1( 222222 TgTKR 

2222 )(
2
1)22( RrpKrkRRR  

22 )(
2
122 RpKkRRR   ............................. (4)
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222 )(
2
122)3(

6
1 RpKkRpKR   [Using equation  (3)]

)3(
6
1)(

2
122 222 pKRRpKkR  

)}3(
6
1)(

2
1{

2
1 222 pKRRpKkR  

)
2
1

6
1

2
1

2
1(

2
1 22222 KpRRKKpRRKkR  

)
6
1

2
1(

2
1 222 RKRKkR  

)
6
4(

2
1 22 RKkR 

22

3
1 KRkR  ..............................................................(5)

Putting K = g8 (a constant) in R.H.S of equation (5), we get

 22

3
8 RgkR  .............................................................. (6)

This is general form of Robertson-Walker model. Here K is scalar and g8 is

gravitational constant.

We shall refer to this equation as Friedmann equation. It is noted that the pressure

has completely cancelled out of this equation. We know that 0, T yield the

continuity equation and the equation of motion of the fluid particles with C = 1 those

becomes

(u), +pu, = 0 ........................................................... (7)

)8(.........................................,)(,up)(   

puugu 

From equation (7), we have

0),)((,  


 


uupu

And with  0u this reduces to

03)( 



R
Rp ............................................................. (9)

It contains the pressure. As for the standard and Fridmann model, we put

p= 0 in the above equation and it becomes
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03



 

R
R


R
R


3

R
R





3




Integrating the above equation, we have

CR loglog3log 

CR loglog3log  

CR logloglog 3  

CR loglog 3  

CR  3 (constant) ........................................................ (10)

This is known as Friedmann model of the universe where  = density, R =

magnification. This leads to three possible models, each of which has R(t) =0 at some

point in time and it is natural to take this point as the origin of t ,  so that R (t) = 0 and

t is then taken the age of the universe.

Let t0 be the present age of the universe and )( 00 tRR  and )( 00 t  are the

present day values of R and  .

We may write equation (10) as
3

00
3 RR  

Therefore equation (6) becomes

R
AR

R
gkR

2

0
3

0
2

3
8

 

R
AkR

2
2  .................................................................. (11)

where 0
3

0
2

3
8  RgA 

The three Friedmann models arise from integrating equation (11) for the three
possibilities of k

k=0,1,-1

(i) k = 0 (Flat Model)
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If k = 0, then equation (11) becomes

R
AR

2
2 

R
AR 

ARR 

A
dt
dRR 

  AdtdRR
tR

00

AtR


2
3

2
3

AtR 32 2
3


AtR
2
32

3


3
232

)
2
3()( tAtR 

This model is known as Einstein de-Sitter model.

Here  tasR 0

where 3
2

)
2
3( Aa 

3
2

)( attR 

(ii) k = 1 (Closed Model)
If k = 1, then from equation (11), we get

R
AR

2
2 1

1
2

2 
R
AR

R
RAR 


2

2

R
RAR 


2

O
Fig.7.1

Fig. 7.2
O
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R
RA

dt
dR 


2

  
 dR

RA
Rdt

Rt

2
00

Putting 2sin 22 AR 
2
1).2/(cos)2(sin2.2 


A

d
dR


)2/(cos)2/(sin2 A





dA

AA
Adt

t

 









 2cos2sin.
2sin

2sin 2
2
1

222

22

00











 




dA
A

At 2cos2sin.
)2sin1(

2sin 2
2
1

22

22

0





dA 







 2cos2sin.

2cos
2sin 2

2
1

2

2

0





dA 2cos2sin.
2cos
2sin 2

0




dA
 2sin2

2
2

0

2

  tt 0 


dA
  )cos1(

2 0

2

t 


dAdA
  cos

22 0

2

0

2

   


 
00

2

0

2

sin
22
AA

   0sinsin
2

0
2

22

  AA

2
sin

2

22  AA


)sin(
2

2

 
A

)cos1(
2

2





A

d
dt
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t

)cos1(
2

)(
2


AtR

The graph R(t) is a cycloid.

(iii)  k = -1 (Open Model)

If  K = -1, then from equation (11), we get

R
AR

2
2 1

1
2

2 
R
AR

R
RAR 


2

2

R
RAR 


2

R
RA

dt
dR 


2

 
 dR

RA
Rdt

Rt

2
00

Now, Putting 2sinh22 AR 

2
12cosh.2sinh22 


A

d
dR


 dAdR 2cosh2sinh2





dA

AA
Adt

t
2cosh2sinh

2sinh
2sinh 2

2
1

222

22

00
  
















dhhA
2

cosh
2

sin
2cosh
2sinh 2

2
1

2

2

0
 










=  


dA 2sinh2
2

2

0

2

=    


dA 1cosh
2 0

2

     0

2

0 sinh
2


At t

Fig. 7.3O
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    sinh
2

2At

Therefore, )1(cosh
2

2

 


A
d
dt

)1(cosh
2

)(
2

 AtR

Fig.  7.4

Comments :
We see  that k = 0 and k = -1 gives model which continually expand. While k = 1

gives a model which expand to maximum value of R and then contracts, so the latter

is not only spatial but also temporarily closed.

O
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7.5  Einstein’s Line Element[2]:
For a static homogeneous universe, we will have the following conditions:

(i) The proper pressure p 0 as measured by a local observer shall be the same

everywhere.

(ii) The proper density 0 shall also be the same everywhere.

(iii) For a small values of  r, the line element shall reduce to special relativity form for

flat space time.

The line element satisfying the condition of spherical symmetry is given by
2222222 )sin( dteddrdreds    .......................................... (1)

where  and  are the function of r only

For the universe containing the perfect fluid,

we will have the following relations







 


 
220

118
rrr

ep   .................................................................. (2)







 


 
220

118
rrr

e   .................................................................. (3)

  0
200

0 



 p

dr
dp ............................................................................. (4)

According to assumption from equation (1) 00 
dr
dp

........................... (5)

Equation (4) becomes, 0
2

)( 00 



 p

Or   000   p

either 0 or 000  p

both   000 p

Hence 0

Integrating, 1c ................................................................................... (6)

Applying condition (iii) i.e.,   0 at r = 0 ...................................... (7)

01 c

So that   0
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From equation (3) 





 


 
220

118
rrr

e  

220
118
rrr

e 





 


   

220
118
rr

re 





 

   

  11)8( 2
0   rer  

  2
0 )8(11 rre   

2
0 )8(1. rere    

2
0 )8(1)( rre

dr
d

  

Integrating the above equation, we get

20

3

)8(
3

crrre  

Applying condition (7), we get

0 = 0 - 0+c2

02 c

0)8(
3 0

3

  rrre

)8(
3 0

3

   rrre

)8(
3

1 0

2

   re

Taking
3

81 0
2





R

2

2

1
R
re  

Now, equation (1) becomes

2222221
2

2
2 )sin()1( dtddrdr

R
rds   

This is known as Einstein line element for static homogeneous universe.
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7.6 Properties of Einstein Universe[2]:

Step I. Geometry of Einstein Universe:
By the transformation of co-ordinates, the Einstein line element

 2222
1

2

2
2 sin(1 












drdr
R
rds )1.......(....................) 22 dtd 

can be written into several forms.

Take the transformation









 2

2

4
1/

R
r 

Then r 







 2

2

4
1

R
 = 

Taking differential of both sides

 dd
R

r
R

dr 







 22

2

4
2

4
1

This gives, 




d

R

R
r

dr

2

2

2

4
1

2
1






and

2

2

2

2

2

1

1

1
R
r

R
r

dr






2

2

2

2

4
1

2
1




























d

R

R
r

Simplyfying this, we get

2

2

2

1
R
r

dr


2

2

2

2

4
1 












R

dp



Now, equation (1) becomes

[

4
1

1
2

2

2

2













R

ds


 2222 sin(  dd 22 )] dtd 

This can also be transformed into
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2

2

2

2

4
1

1













R

ds


 )( 222 dzdydx 2dt

Consider a second transformation.

)1( 2

2

1 R
rRz 

 cossin2 rz 

 sinsin3 rz 

cos4 rz 

We find that (1) takes the form
22

4
2

3
2

2
2

1
2 )( dtdzdzdzdzds 

with 22
4

2
3

2
2

2
1 Rzzzz 

This show that the physical space of Einstein universe may be embedded in a

Euclidean space of higher dimensions. This also suggests that the geometry of the

Einstein universe is one which holds on the surface of a sphere embedded in a

Euclidean space ),,,( 4321 zzzz of four dimensions.

By the transformation

,sinRr 

(1) takes the form

 222222 sin(sin[  ddRds )2.........(..........)] 22 dtd 

We already have 0 .20,  

We find that this line element (2) remains unchanged for 0 and   , other

variables  and  being arbitrary. That means that to an event at 0 , there is a

similar event at   . That is to say that corresponding to an event at 0 , there

exists a mirror image at   . In this sense the Einstein universe is taken to be

spherical. The proper volume 0V of the spherical universe is







 0
)sinsin)(sin)((2

00 



 dRdRRd  


 

0

3
0

3 2sin
2
12)2cos1(

2
14  



  RdR
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322 R

Thus the proper volume of the so-called spherical universe  is 322 R .

Alternatively, we can take the two events at 0 and   , one and the same. In

this sense Einstein universe is taken to be elliptical. The proper volume of this

universe is

  


)/1(
sin..

22

2
000

Rr
drrddrR

r










)/1(

.4
22

2

0
Rr

drrR

,
cos

)cos(sin
4

22
2/

0



  dRR

where sin
R
r

 



 

2/

0

32/
0

3 2sin
2
12)2cos1(2


  RdR

32R
Thus we see that proper volume of the so  called spherical universe is just double

of elliptical universe.

The proper distance around the spherical universe is

RRdl  22 00  

In case of elliptical universe,
2200

/1(
2

Rr
drl R


 

,
cos
cos2 2/

0 
 dR

 where sin
R
r

R

Step II. Density and Pressure of the  Matter in Einstein Universe:

We have )3.....(....................118 220 





 


 

rrr
ep  

)4.....(....................118 220 





 


 

rrr
e  

where 2

2

1,0
R
re  
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and 









2

2

1)(
R
rded 

2
20.
R

re   

2

2.
Rr

e 


  

With this values equation (3) becomes

 
220

11.08
rr

ep 









 222

2

0
1118
rrR

rp

 2220
1118
rRr

p

 20
18

R
p ..............(5)

From equation (4)









 222

2

20
11128
rrR

r
R



 22220
11128
rRrR



)6........(..........38 20 
R



Adding equation (5) and (6), we have

  200
28

R
p  

Or, 200 8
2
R

p


 

200 4
1
R

p


  ................(7)

The equation (5) and (6) are the required expressions for pressure and density.

Incoherent Matter in the Universe:
Suppose the universe is filled with fluid consisting of incoherent matter exerting no

pressure. For example free particles (stars).
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Then .00 p Now, equation (7) becomes 20 4
1
R

 

Mass of the spherical universe = 00V

24
1.2 2

32 R
R

R 


 

Mass of the spherical universe
2
R



Mass of the elliptical universe
44

1
2

32
00

R
R

RV 


 

Radiation in the Universe:
When the universe is completely filled with radiation for which 00 3p

Then (7) becomes
316

1 0
20





R
p .  003 p

Mass of the spherical universe = R
R

RV 



8
3

16
3.2 2

32
00 

Or, Mass of the spherical universe  = R
8
3

Empty Universe:
When the universe is completely empty.

Then 00 0 p

Now, equation (5) and (6) becomes 22

3,1
RR


This 01
2 

R
This proves that the Einstein element would degenerate into a line element of

special relativity form for flat space time.

Step III.   Motion of a Test Particle in the Einstein Universe:
In Einstein universe the motion of a test particle has zero acceleration. It means that in

Einstein universe a particle at rest remains at rest.

Step IV. Shift in Spectral Lines:

From  Einstein universe, we have ,10
2

0
1 

t
t



meaning thereby  no red shift. It

means that no Doppler effect is observed. In other words, the nebulaes do not seen to
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sun away. It contradicts the matter is receding in actual universe and the universe is

expanding at every moment.

7.7 de-Sitter’s Line Element[2]:
For a static homogeneous universe, we will have the following condition:

(i) The proper pressure P0 as measured by a local observer shall be the same

everywhere.

(ii) The proper density 0 shall be the same everywhere.

(iii) For small values of r, the line element shall reduce to special relativity form for

flat space time.

The line element satisfying the condition of spherical symmetry is given by
2222222 )sin( dteddrdreds    .........................(1)

where  and  are the function of r only.

For the universe containing perfect fluids, we will have the following relations







 


 
220

118
rrr

ep   ................................................. (2)







 


 
220

118
rrr

e   .................................................. (3)

  0
200

0 



 p

dr
dp ............................................................... (4)

According to assumption (1)

00 
dr
dp

Equation (4) becomes

  0
200 



 p

Or,   000   p

either 0 Or, 000  p

   000 p

de-Sitter line element arise from the possibility that

000  p

Adding equation (2) and (3), we get
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





 

 

r
ep  )(8 00 .







 

 

r
e  0.8

 
r

e  
 0

  =0

Integrating the above equation, we have

1c

Subject this to the condition (iii)   0 at r = 0 .............. (5)

We obtain c1 = 0

0 

Or,   ...................................................................................... (6)

From equation (3), we have







 


 
220

118
rrr

e  

220
118
rr

re 





 

   

  11)8( 2
0   rer  

  2
0 )8(11 rre   

2
0 )8(1)( rre

dr
d

  

20

3

)8(
3

crrre   

Subjecting this to equation (5), we get c2 = 0

0)8(
3 0

3

  rrre

)8(
3

1 0

2

   re

Taking
3

81 0
2





R

2

2

1
R
re  
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 ee [ Using equation (6)]

So that 2

2

1
R
re 

Now, equation (1) becomes

2
2

2
222221

2

2
2 )1()sin()1( dt

R
rddrdr

R
rds   

This is known as de-Sitter line element for static homogenous universe.

7.8 Properties of de-Sitter Universe[2]:

Step I: Geometry of de-Sitter Universe.
By the transformation of co-ordinates, the de-Sitter line element

)1(..........1)sin(1 2
2

2
22222

1

2

2
2 dt

R
rddrdr

R
rds 























can be written into several forms. We make the transformation

sin
R
r

As a result of which (1) becomes

)2(..........cos)]sin(sin[ 222222222 dtdddRds  

On applying the transformation









 

2

2
/ 1/Re,cossin

R
rer Rt

 sinsinr









 2

2
/ 1/Re,cos

R
rer Rt

We find that equation (1) is reduced to

ds2 = -[d2+d2+d2+d2] + d2

Further taking 54321 ,,,, iziziziziz  

We obtain 2
5

2
4

2
3

2
2

2
1

2 dzdzdzdzdzds  ..............(3)

with .)( 22
5

2
4

2
3

2
2

2
1 iRzzzzz 
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The equation (3) suggests that the physical space in de-Sitter universe can be

embedded in a Euclidean space of higher dimensions. It also shows that the geometry

of this universe is one which holds on the surface of sphere embedded in a Euclidean

space of five dimensions.

Lemaitre Roberstson transformation































2/1

2

2

2

2

/

1log,

1
R
rRtt

R
r

rer i
Rt

i

with the help of this transformation (1) takes the form

   222222/'22 'sin''/ dtddrdrReds Rt  

Dropping dashes, we get
222222/22 )]sin([ dtddrdreds Rt  

Taking ,/1 Rk  we get

22222222 )]sin([ dtddrdreds kt  

Its cartesian equivalent is

222222 ][ dtdzdydxeds kt 

Thus we see that with the help of this transformation, it is possible to convert a

static line element into a non-static one.

Step II. Density and Pressure of Matter in de-Sitter Universe:
The de-Sitter line element is based on the assumption

0+p0 = 0 ........................................... (4)

Since 00  and therefore we have

0 0 = p0 .......................................... (5)

This is the unique solution of (4). The equation (5) implies that the de-Sitter

universe is completely empty. It contains neither matter nor radiation.



Dhaka University Institutional Repository

103

Step III: Motion of a Test Particle in de-Sitter Universe:
In de-Sitter universe the motion of a test particle has zero acceleration. It means that

in de-Sitter universe a particle at rest at origin with h=0 remains at rest.

Step IV:  Shift in Spectral Lines:

Form de-Sitter universe we have
R
r


0

0


 , this shows that red shift is proportional

to the distance measured from the origin if we take c =1. It also supports Weyl’s

theory according to which nebulaes are receding with velocity proportional to the

distances from us. Thus we see that de-Sitter is completely empty yet predicts the

recession of nebulaes.
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7.9 Similarity and Difference between Einstein and de-Sitter’s Line

Element:
Topics Einstein line element de-Sitter line element

(1) Geometry (1)The physical space of Einstein
universe may be embedded in a
Euclidean space of higher
dimensions. This also suggests that
the geometry of the Einstein
universe is one which holds on the
surface of a sphere embedded in a
Euclidean space   (z1, z2, z3, z4) of
four dimensions.

(1) The physical space in de-
Sitter universe can be embedded
in a Euclidean space of higher
dimensions. It also shows that
the geometry of this universe is
one which holds on the surface
of sphere embedded in a
Euclidean space of five
dimensions.

(2)Density
and Pressure

(2) Density and pressure of the
matter in Einstein universe is as
follows

8 0p = - 2

1
R

+.................(a)

8 0 = 2
3

R
- ................. (b)

From equation (a) and (b), we have

0 + 0p = 24
1
R

(2) The de-Sitter line element is
based on the assumption
p0+ 0 = 0.........................(a)
Since 0 o and therefore, we
have

0 = 0 = P0................... (b) This
is the unique solution of (a). The
equation (b) implies that the de-
Sitter universe is completely
empty. It contains neither matter
nor radiation.

(3) Motion of
a test
particle

(3) In Einstein universe the motion
of a test particle has zero
acceleration. It means that in
Einstein universe a particle at rest
remains at rest.

(3) In de-Sitter universe the
motion of a test particle has zero
acceleration. It means that in de-
Sitter universe a particle at rest
at origin with 0h remains at
rest.

(4) Shift in
spectral lines

(4) From Einstein universe, we have

0
2

0
1

t
t



=1 meaning there by  no red

shift. It means that no Doppler
Effect is observed. In other words,
the nebulaes do not seen to sun
away. It contradicts the matter is
receding in actual universe and the
universe is expanding at every
moment.

(4) From de-sitter universe, we

have
0

0




=
R
r

this shown that

red shift is proportional to the
distance measured from the
origin if we take c =1. It also
supports Weyl’s theory
according to which nebulas are
receding with velocity
proportional to the distances
from us.
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Chapter Eight

Phenomenology and Expanding Universe

8.1 Huge Viscous Bianchi Type-1 Cosmological Model for

Barotropic Fluid and Decaying with Time

Introduction:
The Friedmann-Robertson-Walker models are unstable near the singularity (Patridge

and Wilkinson [15]) and fail to describe the early universe. The homogenous and

anisotropic Bianchi Type-1 space time is undertaken to study the universe in its early

stages on evolution of the universe. Land and Magueijo [16] have described the

existence of anisotropic universe that approaches the isotropic phase. The large scale

distribution of galaxies of the universe shows that the matter distribution is

satisfactorily described by perfect fluid. Misner [17,18] has studied the effect of

viscosity on evolution of the universe. Several authors such as Roy and Prakash [19],

Santos et al. [20], Coley and Tupper [21], Goenner and Kowalewski [22], Gron [23]

and Ram and Singh [24,25] have studied the effect of huge viscosity on the evolution

of universe at large time. In modern cosmological theories, the cosmological

parameter () remains a focal point of interest. Dreitlein [26] and Linde [27] have

studied its significance. Therefore, the cosmological parameter () leaving the form

of Einstein field equation unchanged and preserving the conservation of energy-

momentum tensor of matter content, have been investigated from time to time. Some

of the authors such as Abdus-Sattar and Vishwakarma [28], Bertolami [29] and

Berman [30] have investigated that the cosmological parameter  decreases with

large time in some cosmological models.

In this section 8.1, we also have observed that the HubbleÕs parameter H, the

pressure p, the deceleration parameter q, the matter energy density  and the

cosmological parameter  on evolution of the universe at large time.
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The Methodology:
The Metric and Field Equations:

We consider Bianchi Type-1 metric in the form

ds2 = -dt2+A2(t)dx2+B2(t)dy2+C2(t)dz2 .............................................. (1)

The matter content is taken as huge viscous fluid given by energy-mementum

tensor j
i

j
i

j
i gpvvpT  )( ...........................................................(2)

where p = i
i

vp ;

Or, p = p ..............................................................(3) [  i

i; ]

and 1i
ivv ............................................................................... (4)

The Einstein’s field equations (in geometrized unit 8 G = c =1) with time

varying cosmological constant  (t) are given by

j
i

j
i

j
i

j
i gtTRgR )(

2
1

 ............................................................(5)

where  i = (0, 0, 0, -1), P is the isotropic pressure and  is the energy density.

From (1), we have


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
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


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









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g
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2
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t

t





















44434241

34333231

24232221

14131211

gggg
gggg
gggg
gggg

So that 1),(),(),( 44
2

33
2

22
2

11  gtCgtBgtAg

and the other terms are zero.

The inverse of gij is
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

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
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
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g
tB

g
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g

and the other terms are zero.

We know the Christoffel symbol of second kind is

 


,,,2
1

ijijjiij gggg 

The non-zero component of Christoffel symbols are
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

)7......(....................
2
1 2

2
2
2 AC

CA
C
C

A
ARgR




)8(..............................
2
1 3

3
3
3 AB

BA
B
B

A
ARgR




)9....(....................
2
1 4

4
4
4 CA

AC
BC

CB
AB

BARgR




Now, the Einstein’s field equation (5) can be written as

)10.......(..........).........(tp
BC

CB
C
C

B
B




[Using equation (2) and (6)]

)11.......(..........).........(tp
AC

CA
C
C

A
A




[Using equation (2) and (7)]

)12.......(..........).........(tp
AB

BA
B
B

A
A




[Using equation (2) and (8)]

)13.......(..........).........(t
CA

AC
BC

CB
AB

BA
 


[Using equation (2) and (9)]

Solution of the Field Equations:

The divergence of equation (5) leads to

)14(.....................................................0)()(  



C
C

B
B

A
Ap

For getting the model of the universe, we have assumed that the eigenvalue )( 1
1 of

shear tensor )( j
i is proportional to the expansion ().

Here, we take A= (BC)n ..................................................... (15)
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We consider the non-vacuum component of matter obeys the equation of state

p= 10;  .......................................................... (16)

From equation (10) and (11), we have

AC
CA

C
C

A
A

BC
CB

C
C

B
B 



)17..(..................................................).........(
B
B

A
A

C
C

A
A

B
B 



From equation (11) and (12), we have

AB
BA

B
B

A
A

AC
CA

C
C

A
A 



)18.....(..................................................).........(
C
C

B
B

A
A

B
B

C
C 



Differentiating equation (15) with respect to t, we have

)()( 1 CBCBBCnA n    .................................................... (19)

)()())(())(1( 12 CBCBCBCBBCnCBCBCBCBBCnnA nn   

)2()()())(1( 122 CBCBCBBCnCBCBBCnnA nn    ............. (20)

From equation (17), we have


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












 


B
BCBCB

BC
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C
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B
B 







)()2()1(
2

[Using equation (19) and (20)]
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B
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From equation (18), we have
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C
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)( CBCB
BC
n
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CBBC 










)()}({ CBCB
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



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
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


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

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C
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B
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CBCB
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Integrating the above equation, we have

KCBnCBCBLog eeee log)log(log)(  

kBCCBCB e
n

ee log)(log)(log  

n
ee BCkCBCB  )(log)(log 

nBCkCBCB  )(

nBCk
C
B

t
C 











 )(2 ........................(22)

where k is constant of integration.

Now, we consider

 =BC................................................... (23)

and =
C
B ................................................(24)

From equation (22), we have

2C =k  -n [Using equation (23) and (24)]
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
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)25(............................................................)1(  nk



Differentiating the above equation with respect to t, we have
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2
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




 





 


 nnk

)1(22)2()1(   nn knk 






.................(26) [Using equation (25)]

From equation (21), we have

0)1()21()21( 2

2
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






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nnnn ................ (27)

From equation (27), we have
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[Using equation (25) and (26)]
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
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n

Integrating the above equation with respect to t, we have

ln eee logloglog  

le
n

e log)(log   



Dhaka University Institutional Repository

113

ln   

dt
dl n 

ldtdn  

Again integrating the above equation, we have

1

1

1
blt

n

n






)1()1( 1
1   nbtnln

batn  1 where a =l (n+ 1), b = b1(n+1) and a , b are constants.

    1
1

1
1

1
  nnn bat

 )1()(  nlabat a
l



From equation (25), we have

1 n
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 bat
bat
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

 1






Integrating the above equation, we have

Lbat
a
k

eee log)(loglog 

Lbat e
a
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ee log)(loglog  

a
k

ee batL )(loglog  

a
k

batL )( 

where L is constant of integration.

From equation (23) and (24), we have

C
BBC.

 2B

a
k

a
l

batLbatB )(.)(2 
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a
k

a
l

batLB


 )(2

a
klbatLB

2
)( 



= FbatL )( 

where
a
klF

2


 is constant .

Again from equation (23) and (24), we have
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a
kl

2
 is constant.

From equation (15), we have
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n
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

= (at+b)G where G=
a
nl is constant.
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Now, putting the value of A,B,C in equation (1),

we have

)28(.................)(1)()( 22222222 dzbat
L

dybatLdxbatdtds NFG 

where
a
klN

a
klF

a
nlG

2
,

2
, 






Some Physical and Geometrical Properties:
The volume expansion (), scale factor (R), Hubble parameter (H), deceleration

parameter (q) are given by

C
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B
B

A
AH

R
Ri

i


 33; ............................................... (29)
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A
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


 

where G + F + N =
a
kl

a
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a
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=
a
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2
2
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
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a
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 ....................................................................(30)

We define scale factor,

  3/1ABCR 

      
3

1
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
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
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
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   3
1

batR  ..................................(31) [ G+F+N=1]

From equation (29), we have
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q

q = 2 ................................................... (33)

From equation (10), we have
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C
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B
B
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[ Using equation (3)]
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C
C

B
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[ Using equation (16)]

Equation (13)  (34) 
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From equation (16), we have
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From equation (13), we have
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The shear tensor j
i is given by
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Variation of Hubble’s parameter H with time t (Fig. 2):
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Variation of volume expantion with time t (Fig.1 ) :
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Variation of pressure p with time t  (Fig. 3) :

Variation of matter energy density  with time t (Fig. 4) :
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Variation of cosmological parameter  with time t (Fig. 5) :

Conclusion:
In this section 8.1, we have observed that the volume expansion , the Hubble’s

parameter H, the pressure p, the matter energy density  and the cosmological

parameter  are decreasing with increasing of time which have shown in the figures

1, 2, 3, 4, 5 respectively in presence of huge viscosity of the universe. Here, we also

have observed that the deceleration parameter q=2 and the square of the shear tensor

2 is decreasing with increasing of time having condition
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8.2 Bianchi Type-1 Cosmological Model for Fluid Distribution

and Expanding Universe

Introduction:
The Friedmann-Robertson-Walker models are unstable near the singularity (Patridge

and Wilkinson [15]) and fail to describe the early universe. The homogenous and

anisotropic Bianchi Type-1 space time is undertaken to study the universe in its early

stages on evolution of the universe. Land and Magueijo [16] have described the

existence of anisotropic universe that approaches the isotropic phase. The large scale

distribution of galaxies of the universe shows that the matter distribution is

satisfactorily described by perfect fluid.

In this section 8.2, we have observed that the volume expansion , the HubbleÕs

parameter H, the pressure p, the deceleration parameter q and the matter energy

density  on  evolution of the universe at large time.

The Methodology:
The Metric and Field Equations:

We consider Bianchi Type-1 metric in the form

ds2 = -dt2+A2(t)dx2+B2(t)dy2+C2(t)dz2 .............................................. (1)

The matter content is taken as huge fluid given by energy-mementum tensor
j

i
j

i
j

i pgvvpT  )( ......................................................................(2)

and 1i
ivv .................................................................................... (3)

The Einstein’s field equations (in geometrized unit 8 G = c =1) with

time are given by

j
i

j
i

j
i TRgR 

2
1 ..............................................................................(4)

where  i = (0, 0, 0, -1), P is the isotropic pressure and  is the energy density.
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From equation (1), we have
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We know the Christoffel symbol of second kind is
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Now, the Einstein’s field equation (4) can be written as
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Solution of the Field Equations:

The divergence of equation (4) leads to
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For getting the model of the universe, we have assumed that the eigen value )( 1
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of shear tensor )( j
i is proportional to the expansion ().
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From equation (9) and (10), we have
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From equation (10) and (11), we have
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Differentiating equation (14) with respect to t, we have
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)2()()())(1( 122 CBCBCBBCnCBCBBCnnA nn    ............. (18)
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From equation (15), we have
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Integrating the above equation, we have
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where k is constant of integration.
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=BC.................................................................... (21)

and = .................................................................(22)

From equation (20), we have

2C =k -n [Using equation (21) and (22)]
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Differentiating the above equation with respect to t, we have
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From equation (25), we have

[Using equation (23) and (24)]

Integrating the above equation, we have

Again integrating the above equation, we have
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From equation (23), we have

Integrating the above equation, we have

where L is constant of integration.

From equation (21) and (22), we have
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where N= is constant.

From equation (15), we have

A=(BC)n

= (at+b)G where G = is constant.

Now, putting the value of A,B,C in equation (1),

we have
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Some Physical and Geometrical Properties:
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The volume expansion (), scale factor (R), Hubble parameter (H), deceleration

parameter (q) are given by

................................ (27)

Hence

where G + F + N =

=

=

= 1

 ..................................................(28)

We define scale factor,





 .........................................(29)     [ G+F+N=1]

From equation (27), we have
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

 ...................................(30)

q =





q = 2 ................................................... (31)

From equation (9), we have
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From equation (12), we have
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Variation of Hubble’s parameter H with time t (Fig. 2) :
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Variation of volume expantion  with time t (Fig.1 ) :
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Variation of matter energy density  with time t (Fig.4):
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Variation of pressure p with time t (Fig.3 ) :
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Conclusion:
In this section 8.2, we have observed that the volume expansion , the Hubble’s

parameter H, the pressure p and the matter energy density  are decreasing with

increasing of time which have shown in the figures 1, 2, 3, 4 respectively. Here, we

also have observed that the deceleration parameter q=2 and the square of the shear

tensor 2 is decreasing with increasing of time having condition

3
22

2
2222 aklln  on evolution of the universe.
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8.3Phenomenology and Accelerating Universe with Time Variable 

Introduction:
According to the assumption of modern cosmology, the universe is primarily made of

dark matter and dark energy. Various observational evidences, including SN 1a [31-

34] data, support the idea of accelerating universe and it is supposed that dark energy

is responsible for this effect of speeding up. At present it is accepted that about two

third  of the total energy density of the universe is dark energy and the other one third

consists of visible matter and dark matter [35].

Although, the dark matter had a significant role during structure formation in the

early universe, its composition is still unknown. It is predicted that the dark matter

should be non-baryonic. Moreover, time-varying forms of dark matter [36,37] in

Unstable Dark Matter (UDM) scenarios [38,39] are still not fully explored and

deserve interest, giving simultaneously clustered and unclustered dark matter

components.

The standard cold dark matter (SCDM) model introduced in 1980Õs which assume

CDM=1 is out of favor today [40]. After the emergence of the idea of accelerating

universe, the SCDM model is replaced by -CDM (or LCDM) model. This model

includes dark energy as a part of the total energy density of the universe and is in nice

agreement with various sets of observations [41]. In this connection it is noted here

that according to -CDM model, acceleration of the universe should be a recent

phenomenon. Some recent works [42] favor the idea that the present accelerating

universe was preceded by a decelerating one and observational evidence [43] also

support this.

Now, in most of the recent cosmological research, the equation of parameter  has

been taken as a constant. However, its seems that for better result  should be taken as

time-dependent [44]. A kind of this -model was previously studied by Reuter and

Wetterich[45] for finding out an explanation of the presently observed small value of .
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Therefore, motivated by the time variation of  and using the phenomenological

model of the kind   H3
, the expression for the time-dependent equation of parameter

 and various physical parameters are derived in the present investigation.

In this section 8.3, we have observed that the parameter , the decelerating

parameter q, the pressure p, the matter energy density  and the cosmological

parameter  on the phenomenological evolution of the universe at large time.

The Methodology:

We consider Einstein’s field equations

Rμ    TGgR 8
2
1 Λgμ ................................. (1)
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Now, the inverse of gμ is
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and  )3(433 2 pGHH  Λ ..............................(6)

where G,  and p are the gravitational constant, matter-energy density and fluid

pressure respectively. Here, H denotes Hubble’s parameter and a denotes scale factor.

The generalized energy conservation law for variable G and Λ is established by

Shapiro et al. [46].
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Here, the time variable Λ and the constant G is a special case of the above mentioned

generalized conservation law and is given by the equation

G
Hp


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 .................................................... (7)

Cosmological Model:

We consider the relationship between fluid pressure and density of the barotropic

equation is

p = ω .............................................................................. (8)

In equation (8), ω is assumed to be a time dependent quantity so that ω=ω(t).

Sometimes, it is considered as a constant quantity.

Now, using equation (8) in (7), we have

G
H




8
)1(3 






  HGG  )1(248

HGG  )1(248   .................................. (9)

Again differentiating equation (5) with respect to t, we get for a flat universe (k=0)
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It is noted that equivalence of three phenomenological Λ-models such as

Λ  H2, Λ 
a
a

and Λ. We have got it studying in detail by Ray et al. [47] for

constant ω.

So, it is reasonable that similar type of variable Λ may be investigated with a

variable ω for a deeper understanding of both the accelerating and decelerating phase

of the universe.

We use the ansatz 3H ,

So that 3
1HA ................................................... (11)

where A1 is proportional constant. This ansatz with negative A1 can find realization in

the approach of self consistent inflation [48,49], in which time variation of Λ is
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determined by the rate of Bose condensate evaporation [48] with   (m/mpl)2 and

here  is the absulate value of negative A1 and m is the mass of scalar field and mpl is

the planck mass.

Using equation (8), (10) and (11), we get from equation (6)
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To arrive at any successful conclusion, we solve the equation (13) and we have

H
Pt  21)(  ....................................................... (14)

Now,  has dimension of time. The time scale  has the physical meaning of

dissipation for time varying Λ. Here, ω is the equation of parameter which depends

upon time so that ω=ω(t).

From equation (13) and (14), we have

2
16 HAP
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dP   ................................................ (15)

Solution of equation (15), we have
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From equation (18), we have

 >1 or  < 1.

According to this assumption A2 > 0 or A2 <0.
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Physical Nature of Parameter :

We assume from equation (18) as



 tA

tACos

A

t
2

22

2

tan1

2

1)(


 which unless the second

term vanishes  can not be negative as expected from the SN Ia data [50] and SN Ia

data with CMB anisotropy and galaxy-cluster statistics [41] in connection to dark

energy. We mention here that the physical significance of the negative density can be

realized if one remembers that in the present observation the dark energy is

considered not through the equation of state (8) with negative  rather through the

ansatz for  where  acts as the dark energy with acceleration universe. In that case,

makes a definite contribution with accelerating universe.

Physical Nature of Deceleration Parameter q:

The expression of equation (17)  as


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







2

2

22

2 tan1/61




tA
tACos

Aq which

yields the deceleration parameter q and contains tangent function. Here, in this

expression q can change its sign depending on the value of the time dependent part

where A2<0. We can be found the decelerating-accelerating cosmic evolution from

the present H3 phenomenological -CDM model.

Physical Nature of Pressure p :

It is noted that the equation (19) as



















 tACos

AtA
G

tp
22

22
2

2tan1
48

1)( which

yields the pressure p and contains tangent function. Observing from the equation (19)

and (20), it is clear that the negative energy density comes out with a positive

pressure.
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Physical Nature of Matter Energy Density  :

It is mentioned that the equation (20) as 





 


 tA

G
t 2

2 tan1
48

1)( which yields

the matter energy density  and contains tangent function. But here from the equation

(19) and (20), we can clearly assume that the accelerating of the universe due to

negative density with a positive pressure.

Physical Nature of Cosmological Parameter :

It is noted that the equation (21) as









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




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









which contains the

cosmological parameter  and tangent function. We observe the effect of a time

dependent equation of parameter on a dynamic  model which is selected for dark

energy investigation. Assuming  H, expression for time dependent equation of

parameter and matter density have been derived. This conception can find physical

justification through the model of Bose-Einstein condensate evaporation [48,49]. The

cosmological parameter -dark energy acts as the role for the repulsive pressure

which is responsible for the accelerated expansion. But its rule could be understood in

a model with dark matter in presence of  where dark matter will be associated with

repulsive nature due to negative density [51].
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Conclusion:

In this section 8.3, we have observed that the parameter , the decelerating parameter

q, the pressure p, the matter energy density  and the cosmological parameter  on

the phenomenological evolution of the universe at large time and their properties are

given below:

(i) Parameter :

It is decreasing slowly with increasing of time on evolution of the universe which has

shown in the figure 1.

(ii) Decelerating Parameter q:

It is increasing slowly with increasing of time on evolution of the universe which has

shown in the figure 2.

(iii) Pressure p:

It is increasing slowly with increasing of time on evolution of the universe which has

shown in the figure 3.

(iv) Matter Energy Density :

It is decreasing slowly with increasing of time on evolution of the universe which has

shown in the figure 4.

(v) Cosmological Parameter :

It decreases with increasing of time on the phenomenological evolution of the

universe which has shown in the figure 5.
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Chapter Nine

Cosmology of Hubble

9.1 Introduction:
The beginning of modern cosmology, Hubble’s law was published in 1929 which was

based on observations of the red shift of spectral lines from remote galaxies. This was

subsequently interpreted as evidence for the expansion of the univers. The concept of

an expanding universe, as we are familiar with nowadays, was invented independently

by the Russian scientist Alexander Friendmann and by the Belgian cosmologist

Georges Lemaitre, with their solutions of Einstein’s theory of general relativity

applied to the cosmic fluid. Hubble’s law was predicted by both Friedmann’s and

Lemaitre’s models.

About 1929 the American astronomer Hubble demonstrated the existence of a

strange correlation between distance and speed of the nebulae, they all move outwards

away from us and with a velocity which increases proportional to the distance or in

other words, the system of the spiral nebulae is expanding, just as the primitive

comparison of this  system with a gas had suggested to earlier thinkers. Now, if one

regards the expansion having the same in the past as it is today, one is led to the idea

that the whole system must have had a beginning when all matter was condensed in a

small super nucleus and one can calculate the time interval since this beginning of the

world and the present instant. The result obtained from Hubble’s data was 2000 to

3000 millions of years.

Though the relativistic cosmology initiated by Einstein and de-Sitter began to

ripen in the hands of Friedmann, Lamaitre, Tolmam and others. A Series of new

possible models of the world were discovered between the extreme cases found by

Einstein and de-Sitter and the question arose which of them fitted the empirical facts

best, in particular those facts established by Hubble. Today there are many

ramifications and refinements of the theory and there has been so enormous an

increase of observational material that it is difficult to judge the actual situation.
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Earlier ideas which seemed to be most fertile have turned out to be too narrow or even

wrong.

It should be pointed out that Hubble himself was not convinced that red shift was

exclusively due to Doppler effect. Up to the time of his death he maintained that

velocities inferred from red shift measurements should be referred to as apparent

velocities.

9.2 The Conception of Albert Einstein about Hubble’s

Cosmology[14]:
Interpretation of the galactic line shift discovered by Hubble as an expansion leads

to an origin of this expansion which lies only about a billion years ago, while physical

astronomy makes it appear likely that the development of individual stars and systems

of stars take considerably longer. It is in no way known how this incongruity is to be

overcome.

9.3 The Conception of Stephen Hawking about Hubble’s

Cosmology[14]:
For the proof of the existence of many galaxies, Hubble spent his time cataloguing

their distances and observing their spectra. At that time most of the people expected

the galaxies to be moving around quite randomly and so expected to find as many

blue shifted spectra as red shifted ones. It was quite a surprise, therefore to find that

most galaxies appeared red shifted, nearly all were moving away from us. More

surprisingly still was the finding that Hubble published in 1929, even the size of a

galaxy’s red shift is not random but it is directly proportional to the galaxy’s distance

from us. Or, in other words, the farther a galaxy is the faster it is moving  away and

that meant that the universe could not be static, as everyone previously thought but is

in fact expanding, the distance between the different galaxies is growing all the time.

In 1929, Edwin Powell Hubble made the landmark observation that wherever you

look, distant galaxies are moving rapidly away from us. In other words, the universe

is expanding. This means at earlier time objects would have been closer togather.
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Hubble’s observations suggested that there was a time, called the Big Bang, when the

universe was infinitesimally small and infinitely dense.

9.4  Hubble’s Law[5]:
In the 1920s Hubble measured the spectra of 18 spiral galaxies with a reasonably

well-known distance. For each galaxy he could identify a known pattern of atomic

spectral lines (from their relative intensities and spacing) which all exhibited a

common reward frequency shift by a factor 1+z. Using the relation, A(r,t)=f(t)r,

following from the assumption of homogeneity alone,

 = cz ............................................... (1)

He could then obtain their velocities with reasonable precision.

The Expanding Universe:
The expectation for a stationary universe was that galaxies would be found to be

moving about randomly. However, some observations had already shown that most

galaxies were red shifted, thus receding, although some of the nearby ones exhibited

blue shift. For instance, the nearby Andromeda nebula M31 is approaching us, as its

blue shift testifies. Hubble’s fundamental discovery was that the velocities of the

distant galaxies and he had studied increased linearly with distance,

= H0r......................................................... (2)

This is called Hubble’s law and Ho is called the parameter of Hubble. For the

relatively nearby spiral galaxies he studied, he could only determine the linear, first

order approximation to this function. Although the linearity of this law has been

verified since then by the observations of hundreds of galaxies. The message of

Hubble’s law is that the universe is expanding and this general expansion is called the

Hubble’s flow.

9.5 Hubble’s Time and Radius[5]:
We know that,

 = cz ............................................................... (1)

= H0r................................................................ (2)
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From equations (1) and (2) one sees that the Hubble’s parameter has the dimension of

inverse time. Thus a characteristic time scale for the expansion of the universe is the

Hubble’s time,

H = H0
-1 = 9.78h-1  109yr ............................................................. (3)

Here h is the commonly used dimensionless quantity

h = H0/(100 kms-1 Mpc-1)

The Hubble parameter also determines the size scale of the observable universe.

In time H radiation travelling with the speed of light c has reached the Hubble’s

radius,

rH =Hc = 3000h-1Mpc.........................(4)

Or, to put it a different way, according to Hubble’s nonrelativistic law, objects at this

distance would be expected to attain the speed of light which is an absolute limit in

the theory of special relativity. Combining equation (1) and equation (2), we obtain

9.6 Hubble’s Constant[5]:
The value of this constant initially found by Hubble was H0 = 550kms-1 Mpc-1; an

order of magnitude too large because his distance measurements were badly wrong.

To establish the linear law and to determine the global value of H0 one needs to be

able to measure distances and expansion velocities well and far out. Distances are

precisely measured only to nearby stars which participate in the general rotation of

the galaxy and which therefore do not tell us anything about cosmological expansion.

Even at distances of several Mpc, the expansion-independent, transversal peculiar

velocities of galaxies are of the same magnitude as the Hubble’s flow. The measured

expansion at the Virgo super cluster, 18Mpc away, is about 1100 kms-1 whereas the

peculiar velocities attain 600 km s-1. At much larger distances where the peculiar

velocities do not contribute appreciably to the total velocity, for instance at the coma

cluster 100Mpc away, the expansion velocity is 6900 km s-1 and the Hubble’s flow

can be measured quite reliably but the imprecision in distance measurements becomes

the problem. Every procedure is sensitive to small, subtle corrections and to

systematic biases unless great care is taken in the reduction and analysis of data.

)5..(........................................0 c
rHz 
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9.7 The Changing Views of Hubble about Cosmology:
Edwin Powell Hubble (1889-1953) established in 1924 that many nebulae are stellar

systems outside the Milky Way when he discovered Cepheid variables in the

Andromeda nebula using the 100 inches telescope on Mount Wilson.

In 1929 he established the famous distance- velocity relation which is also called

now-a-days the law of red shift or Hubble’s law. The title of his paper reads, “A

relation between distance and radial velocity among extra galactic nebulae.”

As a matter of fact he and his collaborator Milton L. Humason (1891-1982) never

measured velocities directly. What they measured were the red shifts of these extra

galactic nebulae. But in this crucial paper Hubble considered these red shifts as

representing real radial velocities of  these nebulae. The main conclusion of the paper,

“The date in the table indicate a linear correlation between distances and velocities

whether the latter are used directly or corrected for solar motion, according to the

older solutions.”

The outstanding feature however is the possibility the velocity-distance relation

may represent the  de-Sitter effect and hence that numerical data may be introduced

into discussions of the general curvature of space. In the de-Sitter’s cosmology,

displacements of the spectra arise from two sources, an apparent slowing down of

atomic vibrations and a general tendency of material particles to  scatter. The latter

involves an acceleration and hence introduces the element of time. The relative

importance of these two effects should determine the form of the relation between

distances and observed velocities and in this connection it may be emphasized that the

linear relation found in the present discussion is a first approximation representing a

restricted range in distance.

Willem de-Sitter (1882-1934) was a Dutch mathematician, physicist and

astronomer. In 1916-1918, he had found a solution to Einstein field equations of

general relativity describing the expansion of the universe. Hubble had met him in

1928 in Leiden where de-Sitter was professor of astronomy at the University of

Leiden.
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However, it must be pointed out that, as early as in 1935. Hubble was much more

cautious when referring to velocities of recession. In a paper with R. Tolman (Hubble

& Tolman,1935) already in the introductory section, the authors made a plain

statement of their worries about the popper nomenclature.

Until  further evidence is available, both the present writers wish to express an

open mind with respect to the ultimately most satisfactory explanation of the nebular

red shift and in the presentation of purely observational findings to continue to use the

phrase apparent velocity of recession. They both incline to the opinion that if the red

shift is not due to recessional motion, its explanation will probably involve some quite

new physical principles.

Nebular spectra are peculiar in that the lines are not in the usual positions found in

nearby light sources. They are displaced toward the red end of their normal position,

as indicated by suitable comparison spectra. The displacements, called red shifts,

increase on the average with the apparent faintness of the nebula that is observed.

Since apparent faintness measures distance, it follows that red shifts increase with

distance and detailed investigation shows that the relation is linear.

Small microscopic shifts, either to the red or to the violet, have long been known

in the spectra of astronomical bodies other than nebulae. The same interpretation is

frequently applied to the red shifts in nebular spectra and has led to the term velocity-

distance relation for the observed relation between red shifts and apparent faintness.

On this assumption, the nebulae are supposed to be rushing away from our region of

space, with velocities that increase directly with distance.

Although no other plausible explanation of red shifts has been found, the

interpretation as velocity shifts may be considered as a theory still to be tested by

actual observations. Critical tests can probably be made with existing instruments.

Rapidly receding light sources should appear fainter than stationary sources at the

same distances and near the limits of telescopes the apparent velocities are great and

that the effects should be appreciable.



Dhaka University Institutional Repository

164

Interpretations of the red shifts themselves do not inspire such complete

confidence. Red  shifts may be expressed as fractions, d/ where d is the

displacement of a spectral line whose normal wave length is . The displacements,

d, vary systematically through any particular spectrum but the variation is such that

the fraction, d/, remains constant. Thus d/ specifies the shift for any nebula and it

is the fraction which increases linearly with distances of the nebulae. According to

Hubble’s conception that the apparent radial velocity of a nebula is to a first

approximation , the velocity of light (1,86,000 miles/sec.)  multiplied by the fraction,

d/. From this point, the term red shift will be employed for the fraction, d/.

Moreover, the displacements, d, are always positive and so the wave length of a

displaced line, +d, is always greater than the normal wave length,  . Wave lengths

are increased by the factor, (+d)/, or the equivalent, 1+d/. Now, there is a

fundamental relation, multiplied by the wave length of the quantum is constant.

Thus  energy  wave length = constant.

Obviously, since the product remains constant, red shifts by increasing the wave

lengths. Any plausible interpretation of red shifts must account for the loss of energy.

The loss must occur either in the nebulae themselves or in the immensely long paths

over which the light travels on its journey to the observer.

Thorough investigation of the problem has led to the following conclusions.

Several ways are known in which red shifts might be produced. Of them all, only one

will produce large shifts without introducing other effects which should be

conspicuous but which are not observed. This explanation interprets red shifts as

Doppler effects, that is to say, as velocity shifts, indicating actual motion of recession.

It may be stated with some confidence that red shifts are velocity shifts or else they

represent some unrecognized principle in physics.

The interpretation as velocity shifts is generally adopted by theoretical

investigators and the velocity-distance relation is considered as the observational basis

for theories of an expanding universe. They represent solutions of the cosmological

equation which follow from the assumption of a non-static universe. They supersede
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the earlier solutions made upon the assumption of a static universe which are now

regarded as special cases in the general theory.
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Chapter Ten

The Early Universe
Introduction[4]:

The ‘cosmic background radiation’ discovered originally by Penzias and Wilson in

1965 provides evidence that the universe must have gone through a hot dense phase.

We have also seen that the Friedmann models, if they are regarded as physically valid,

predict that the density of mass-energy must have been very high in the early epochs

of the universe. In fact, the Friedmann models imply that the mass- energy density

goes to infinity as the time t approaches the initial moment or the initial singularity at

t=0. This is what is referred to as the Big Bang, meaning an explosion at every point

of the universe in which matter was thrown as under violently, from an infinite or near

infinite density. However, the precise nature of the physical situation at t=0, or the

situation before t=0; these sorts of questions are entirely unclear. Here, we simply

assume that there was a catastrophic event at t=0 and try to describe the state of the

universe from about t=0.01 s until about t= one million years. This will be our

definition of the early universe which specifically excludes the first hundredth of a

second or so, during which as speculations go, events occurred which are of a very

different nature from those occurring in the early universe according to the definition

given here.

We shall also describe qualitatively the state of the early universe providing a

more quantitative account of this state. The description is derived largely from that

given in Weinberg’s book. As indicated the spectrum of the cosmic background

radiation peaks at slightly under 0.1 cm. Penzias and Wilson made their original

observation at 7.35 cm. Since that time there have been many observations, both

ground-based and above the atmosphere which confirm the black-body nature of the

radiation, with a temperature of about 2.8 k. Below about 0.3 cm, the atmosphere

becomes increasingly opaque, so such observations have to be carried out above the

atmosphere. Although at times there have been slight doubts, it is now generally

agreed that the cosmic background radiation is indeed the remnant of the radiation

from the early universe which has been red shifted, that is, reduced in temperature to

2.8 K. The temperature of the cosmic background radiation provides us with an
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important datum about the universe, that there are about 1000 million photons in the

universe for every nuclear particle and by the latter we mean protons and neutrons or

baryons.

(i) First Frame[4]:
This is at t=0.01s when the temperature is around 1011 K which is well above the

threshold for electron-positron pair production. The main constituents of the universe

are photons, neutrinos and antineutrinos and electron-positron pairs. There is also a

small contamination of neutrons, protons and electrons. The energy density of the

electron-positron pairs is roughly equal to that of the neutrinos and antineutrinos, both

being 7
4 times the energy density of the photons. The total energy density is about

21×1144 eV1-1 or about 3.8× 1011 g cm-3. The characteristic expansion time of the

universe is 0.02s. The neutrons and protons cannot form into nuclei, as the latter are

unstable. The spatial volume of the universe would be either infinite or, if it is one of

the finite models, say with density twice the critical density, its circumference would

be about 4 light years.

(ii) Second Frame[4]:
This is at t=0.12s when the temperature has dropped to about 3× 1010 K. No

qualitative changes have occurred since the first frame. As in the first frame, the

temperature is above electron-positron pair threshold, so that these particles are

relativistic and the whole mixture behaves more like radiation than matter, with the

equation of state given nearly by p= 
3
1 . The total density is about 3 ×107g cm-3. The

characteristic expansion time is about 0.2 s. No nuclei and be formed yet but the

previous balance between the numbers of neutrons and protons which were being

transformed into each other through the reaction n+v         p+e-, is beginning to be

disturbed as neutrons now turn more easily into the lighter protons than vice versa.

Thus the neutron-proton ratio becomes approximately 38% neutrons and 62%

protons. The thermal contact between neutrinos and other forms of matter is

beginning to cease.
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(iii) Third Frame[4]:
This is at t =1.1s, when the temperature has fallen to about 1010 K. The thermal

contact between the neutrinos and other particles of matter and radiation ceases.

Thermal contact is here taken to mean the conversion of electron-positron pairs into

neutrino-antineutrino pairs and vice versa, the conversion of neutrino-antineutrino

pairs into photons and vice versa, etc. Hence, neutrinos and antineutrinos will not play

an active role but only provide a contribution to the overall mass-energy density. The

density is of the order of 105g cm-3 and the characteristic expansion time is a few

seconds. The temperature is near the threshold temperature for electron-positron pair

production, so that these pairs are beginning to annihilate more often to produce

photons than their creation from photons. It is still too hot for unclei to be formed and

the neutron-proton ratio has changed to approximately 24% neutrons and 76%

protons.

(iv) Fourth Frame[4]:
This is approximately at t 13 s when the temperature has fallen to about 3×109K.

This temperature is below the threshold for electron-positron production and most of

these pairs have annihilated. The heat produced in this annihilation has temporarily

slowed down the rate of cooling of the universe. The neutrinos are about 8% cooler

than the photons, so the energy density is a little less than if it were falling simply as

the fourth power of the temperature. The neutron-proton balance has shifted to about

17% neutrons and 83% protons. The temperature is low enough for helium nuclei to

exist but the lighter nuclei are unstable, so the former cannot be formed yet. By

helium nuclei, we mean alpha particles, He4 which have two protons and two

neutrons. The expansion rate is still very high, so only the light nuclei form in two-

particle reactions, as follows:

p + n D +  , D + pHe3 +  , D + nH3 + , He3 + nHe4 +  , H3+pHe4+

 . Here D denotes deuterium which has one neutron and one proton, He3 is helium-3,

an isotope of helium with two protons and one neutron. H3 is tritium, an isotope of

hydrogen with one proton and two neutrons and  stands for one or more photons.

Although helium is stable, the lighter nuclei mentioned here are unstable at this

temperature, so helium formation is not yet possible as it is necessary to go through
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the above intermediate steps to form helium. The energy required to pull apart the

neutron and proton in a D nucleus, for example, is one-ninth that required to pull apart

a nucleon (neutron or proton) from an He4 nucleus. In other words, the binding energy

of a nucleon in deuterium is one-ninth that in an He4 nucleus.

(v) Fifth Frame[4]:
This is about 3 minutes after the first frame when the temperature is about 106 K

which is approximately 70 times as hot as the centre of the sun. The electron-positron

pairs have disappeared and the contents of the universe are mainly photons and

neutrinos plus, as before a contamination of neutrons, protons and electrons which

will eventually turn into the matter of the present universe. The temperature of the

photons is about 35% higher than that of the neutrinos. It is cool enough for H3, He3

and He4 nuclei to be stable but the deuterium ‘bottleneck’ is still at work so these

nuclei cannot be formed yet. The beta decay of the neutron into a proton, electron and

antineutrino is becoming important, for this reaction has a time scale of about 12

minutes. This causes the neutron-proton balance to become 14% neutrons and 86%

protons.

A little later than the fifth frame the temperature drops enough for deuterium to

become stable, so that heavier nuclei are quickly formed but as soon as He4 nuclei are

formed other bottlenecks operate, as there are no stable nuclei at that temperature with

five or eight particles. The exact temperature depends on the number of photons per

baryon; if this number is 109 as assumed before then the temperature is about

0.9×109K and these events take place at some time between t = 3 minutes and t = 4

minutes. Nearly all the neutrons are used up to make He4, with very few heavier

nuclei due to the other bottlenecks mentioned. The neutron-proton ratio is about 12%

or 13% neutrons to 87% protons and it is frozen at this value as the neutrons have

been used up. As the He4 nuclei have equal numbers of neutrons and protons, the

proportion of helium to hydrogen nuclei  by weight is about 24% or 26% helium and

76% or 74% hydrogen. This process, by which heavier nuclei are formed from

hydrogen, is called nucleosynthesis. If the number of photons per baryon is lower

then nucleosynthesis begins a little earlier and slightly more He4 nuclei are formed

than 24% or 26% by weight.
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(vi) Sixth Frame[4]:
This is approximately at t 35 minutes when the temperature is about 3 ×108 K. The

electrons and positrons have annihilated completely, except for the small number of

electrons left over to neutralize the protons. It is assumed throughout that the charge

density in any significant volume of the universe is zero. The temperature of the

photons is about 40% higher than the neutrino temperature. The energy density is

about 10%, the density of water of which 31% or so is contributed by neutrinos and

the rest by photons. The density of matter is negligible in comparison to that of

photons and neutrinos. The characteristic expansion time of the universe is about an

hour and a quarter. Nuclear processes have then stopped, the proportion of He4 nuclei

being anywhere between 20% and 30% depending on the baryon: photon ratio.

We see from the preceding discussion that the proportion of helium nuclei

formed in the early universe was anything from 20-30% by weight, with very few

heavier nuclei due to the five and eight particle bottlenecks. For the nucleosynthesis

process to take place one needs temperatures of the order of a million degrees. After

the temperature dropped below about a million degrees in the early universe, the only

place in the later universe where similar temperatures exist would be the centre of

stars. It can be shown that no significant amount of helium (compared to the 20-30%

of the early universe) could have been created in the centre of stars. This follows from

the fact that such a significant amount of helium formation would have released so

much energy into the interstellar and intergalactic space, that it would be inconsistent

with the amount of radiation actually  given off since the time of star and galaxy

formation, an amount of which can be calculated from the average absolute

luminosity of stars and galaxies which are known and the time scale during which

these have existed which is from soon after the recombination era. Thus if the above

picture is reasonable, there should be approximately 20-30% helium nuclei in the

present universe, most of the rest being predominantly hydrogen, with a small amount

of heavier nuclei. This is indeed found to be the case.

We have seen that the time, temperature and the extent of nucleosynthesis

depends on the density of nuclear particles compared to photons. The amount of
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deuterium that was produced by nucleosynthesis in the early universe and the amount

that survives and should be observable today, depends very sensitively on the nuclear

particle to photon ratio. As an illustration of this, the abundance of deuterium as

worked out by Wagoner for three values of the photon: nunclear particle ratio.

Table : Abundance of deuterium and the photon: baryon ratio.

Photons : nuclear particle Deuterium abundance (parts/106)

100 million 0.00008

1000 million 16

10000 million 600

We have seen that after the first few minutes the only particles left in the universe

were photons, neutrinos, neutrons, protons and electrons. The latter two particles are

charged ones and in their free state they could scatter photons freely. As a result the

‘mean free path’ of photons, that is, the average distance that a photon travels in

between scatterings by two charged particles, was small compared to the distance a

photon would travel during the characteristic expansion time of the universe for that

period, if it were unimpeded. This is what is meant by the matter and radiation being

in equilibrium, as there is free exchange of energy between the two. Thus the

universe, during the period that protons and electrons were free particles was opaque

to electromagnetic radiation.

Eventually the temperature of the universe was cool enough for electrons and

protons to form stable hydrogen atoms in their ground state when they combined.

Now, it takes about 13.6 eV to ionize a hydrogen atom completely, that is, pull apart

the electron from the proton. The energy of a particle in random motion at a

temperature of T K is k T, where k is Boltzmann’s constant. Thus the temperature

corresponding to an energy of 13.6 eV is k-1 times 13.6, where k-1 is approximately

11605 K eV-1. This gives about 1.586 ×105 K as the temperature at which a hydrogen

atom is completely ionized. However, even in the excited states, in which it is not

ionized, a hydrogen atom can effectively scatter photons. Thus it is only in the ground
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state that it ceases to interact significantly with photons. The temperature at which the

primeval protons and electrons combined to form the ground state hydrogen atoms

was about 3000-4000 K which occurred a few hundred thousand years after the Big

Bang. This era is referred to as recombination. After this period the universe became

transparent to electromagnetic radiation, that is, the mean free path of a photon

became much longer than the distance traversed in a characteristic expansion time of

the period. This is the reason, we get light which has hardly been impeded, except for

the red shift, from galaxies billions of light years away.
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