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Title of the thesis:
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Submitted by:
Mohammad Mijanur Rahman, Ph.D. Student, Department of Chemistry, University of
Dhaka

The General description and outline of this thesis are given below:

Chapter 1: General Introduction

Chapter 1 describes the necessity and objective of the present research.

Chapter 2: Electrochemical Behavior of Malachite Green and Crystal Violet in
Aqueous Solution: A Cyclic Voltammetric Study

Chapter 2 presents the electrochemical behavior of malachite green (MG) and
crystal violet (CV) in aqueous solution to understand the aqueous electrochemistry of the
dyes. Electrochemical behavior was studied at a glassy carbon electrode (GCE) by using
cyclic voltammetry method. The cyclic voltammograms exhibit a well-defined oxidation
peak and a corresponding reduction peak for MG whereas an oxidation peak for CV was
apparent without any reduction peak. The oxidation of MG corresponds to oxidation of
hydrated MG to N, N, N°, N'-tetramethylbenzidine (TMBOx) and the reduction peak is
due to the reduction of TMBOx to TMB. The oxidation peak of CV corresponds to
oxidation of unhydrated form of CV. The electrochemical oxidation of MG and CV in
aqueous solution is a diffusion-controlled process. In aqueous solution, MG and CV
exhibit strong pH dependence. The spectrophotometric results show different structures
of the dyes at different pH. Low pH favors the cationic form; whereas high pH favors the
carbinol form of MG and CV. The changes in the electrochemical responses of the dyes
studied with different forms of MG and CV in aqueous solutions of different pH. Highly
alkaline media disfavors the reduction of oxidized form of MG to behave differently to

the redox system.
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Chapter 3: Physicochemical Properties of Micelles, Reverse Micelles and

Microemulsions of CTAB, SDS and TX-100

Chapter 3 reports physicochemical properties of micelles, reverse micelles and
microemulsions of CTAB, SDS and TX-100. The properties were studied by
measurements of specific conductivity, refractive index, density, viscosity, surface
tension etc. In aqueous solution, viscosity increases with increasing concentration of
surfactants due to formation of micelles. Highly viscous medium of CTAB originates
from the hydration of hydrophilic head groups of CTAB through interaction with
hydrogen bonds of water. The addition of 1-butanol in high viscous micellar solution of
CTAB lowered the viscosity. In microemulsions, cyclohexane penetrates into the
surfactant palisade layer by replacing 1-butanol; as a result viscosity increases.
Conductivity and viscosity results indicate microheterogeneous transition from a micelle-
rich oil-in-water (o/w) media to a reverse micelle-rich water-in-oil (w/0) media through a
bicontinuous media where o/w and w/o are inter dispersed. At high 1-butanol content,
the cores of the reverse micelles are comprised of the hydrophilic ion and the counter
ion, which is less easily dissociated, causes a significant decrease in the degree of
ionization and lowers the specific conductivity of the media. The addition of surfactant
in water raised the density value whereas the density of the reverse micelles and
microemulsions decreased with increasing 1-butanol and cyclohexane content,
respectively. The droplets of micellar solutions of CTAB increased with increasing the
concentrations of CTAB. The radius of the droplets of reverse micelles of CTAB is
higher than that of micelles in water. The maximum radius of the droplets was 58 nm. In
case of SDS, at high 1-butanol content no reverse micelles are formed due to repulsion of
head groups. The refractive index of micelles, reverse micelles and microemulsions
increased with increasing surfactant, 1-butanol and cyclohexane content, respectively.
The estimated aggregation number of micelles of CTAB, SDS and TX-100 was 60, 62
and 127, respectively.
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Chapter 4: Electrochemistry of Malachite Green in Micelles, Reverse Micelles and

Microemulsions of CTAB, SDS and TX-100

In Chapter 4, cyclic voltammetric results of MG in micelles, reverse micelles and
microemulsions of CTAB, SDS and TX-100 are reported. The micellization properties of
the surfactants in aqueous solution have profound influence on the electrochemical
behavior of MG. In aqueous solution, oxidation peak current of MG sharply decreased
with the addition of SDS, while an increase with increasing CTAB and TX-100
concentrations was apparent. A sharp decrease in peak current for SDS indicated strong
interaction of MG with SDS. Below CMC of CTAB, a slight increase of anodic peak was
due to the electrostatic repulsion of MG and head group of CTAB. The sharp decrease in
oxidation peak currents of TX-100 can be explained by strong electrostatic interaction
between MG and the oxygen atom of the ethoxy chains of monomer TX-100.
Spectrophotometric results at varying surfactant concentrations also support the
interaction of MG with the surfactants to varying extent depending on the type of the
surfactant and concentrations. As the content of 1-butanol in the reverse micelles of SDS
increases, the oxidation peak current decreases first due to higher viscosity of the system
and then increases sharply with increasing 1-butanol content. The anodic peak potentials
also shift to more positive values making the oxidation difficult. With increasing 1-
butanol content, the anodic peak increases and peak potential shifts to more positive
values in case of reverse micelles of TX-100. In microemulsions of TX-100, the positive

shift of the anodic peak potential of MG was also apparent.

Chapter 5: Electrochemistry of Crystal Violet in Micelles, Reverse Micelles and
Microemulsions of CTAB, SDS and TX-100

Chapter 5 discusses the electrochemical oxidation of CV in different surfactant-
based organized media in details. When an anodic potential is applied, the unhydrated
form of CV is electrochemically oxidized. The oxidation peak potential of CV, shifts to
lower value with increasing concentration of CTAB indicating the ease of the redox
process of CV in aqueous solutions of CTAB. As the concentration of the SDS increases,
the apparent diffusion coefficient (Dapp) value decreases due to both of hydrophobic and

electrostatic interaction with MG and SDS. Electrochemical oxidation of CV in reverse

Vi
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micelles and microemulsions depend on the composition of the media. Peak current for
oxidation process in micellar solution lower compared to the reverse micelles and
microemulsions of SDS. Oxidation process of CV becomes more difficult and potential
shifts to more positive values in reverse micelles and microemulsions of SDS. An
increase in cyclohexane content in microemulsion of TX-100 causes disruption of
micelles that reorient to form reverse micelles. At low cyclohexane content, the anodic
peak of CV increased but at high cyclohexane content the peak disappeared due to low
diffusion of CV the trapped inside the core of reverse micelles where cyclohexane was a

continuous medium.

Chapter 6: Comparative Studies of Electrochemical Behavior of Malachite Green

and Crystal Violet in Aqueous Solution and Surfactant-based Organized Media

In Chapter 6, electrochemical behaviors of MG and CV in aqueous media were
compared with those in different surfactant-based organized media. Significant changes
in the shapes of cyclic voltammograms of the dyes in aqueous solution and in different
surfactant-based organized media, were discussed. In aqueous solutions, when anodic
potential was applied, oxidation of MG formed TMBOx, whereas in aqueous solution of
CV no TMBOx formed. The oxidation of MG in aqueous solution occurred at lower
potentials compared to that in aqueous solution of surfactant. The difference in the
charge type of surfactants leads to a difference in D,p, of MG and CV. The Dy, of MG
in aqueous solution of SDS is much smaller than that in aqueous solution CTAB and TX-
100. Significant change in the shapes of cyclic voltammograms of MG and CV in reverse
micelles and microemulsions was apparent. As the content of 1-butanol in reverse micelles of
SDS increased, the oxidation potential of CV showed a linear increase. Oxidation of CV in high
1-butanol content reverse micelles was difficult compared to that in water due to low electron
donating power of 1-butanol. In microemulsions of TX-100, the anodic peak current of MG was
apparent at low cyclohexane content but at high cyclohexane content no electrochemical
response of CV could be detected. At high cyclohexane content, the CV was trapped in the core
of reverse micelles and the anodic peak of CV disappeared due to formation of thick

hydrophobic layer of TX-100 outside the core of reverse micelles.

Vii
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Chapter 7: Correlation of the Cyclic Voltammetric Responses of Malachite Green
and Crystal Violet with the Physicochemical Properties of the Surfactant-based
Organized Media

Chapter 7 correlates the physicochemical properties of micelles, reverse micelles
and microemulsions of CTAB, SDS and TX-100 with the electrochemical behavior of
the MG and CV in those media. The physicochemical properties of the media showed
variations in specific conductivity, density, viscosity, surface tension, refractive index
etc. The electrochemical responses of MG and CV at concentrations below and above the
CMC of surfactants were distinctly different. Below the CMC of CTAB and TX-100, the
Dypp of MG increased due to low viscosity of the solutions whereas above the CMC, the
Dypp decreased due to higher viscosity of the media. The D,,, of MG decreased
drastically by micellar solutions of SDS due to higher viscosity of the media as well as
electrostatic interaction between MG and SDS. With increasing 1-butanol content, the
orientation and aggregation of surfactant changed; as a result surface tension and density
of the media decreased. Therefore, no compact droplets formed; compared to micelles.
Larger sized droplets formed with broader size distribution resulted in low diffusion and
the D,pp of CV in reverse micelles of SDS decreased. Moreover transitions from micelle-
rich to reverse micelle-rich media causes shift of the potential to higher positive values
making the oxidation relatively difficult. This may be due to decreasing electron
donating power of less conductive, high 1-butanol media compared to water. In case of
SDS microemulsions, at high 1-butanol content no isotropic reverse micelle was found
due to repulsion of head group of SDS. With increasing cyclohexane content, the Dy, of
CV in microemulsions of TX-100 increased up to 50.0% wt. after that no
electrochemical responses were found. It may be due to formation of thick hydrophobic

layer coated outside the water drops which reduces the diffusion towards electrode.

Chapter 8: General Conclusions

Chapter 8 summarizes the results for a general conclusion and discussed the

future prospect of the system for development of electrochemical switchable devices.
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Abstract

Electrochemical behaviors of malachite green (MG) and crystal violet (CV) in
aqueous solutions and different surfactant-based organized media such as, micelles,
reverse micelles and microemulsions of a cationic surfactant, cetyltrimethylammonium
bromide (CTAB), an anionic surfactant, sodium dodecyl sulfate (SDS) and a non-ionic
surfactant, octylphenolpoly(ethyleneglycolether) (Triton X-100, TX-100) at a glassy
carbon electrode were studied by using cyclic voltammetry. In aqueous solution, the
cyclic voltammograms exhibit a well-defined oxidation peak and a corresponding
reduction peak for MG whereas an oxidation peak for CV was apparent without any
reduction peak. In case of MG, the oxidation peak corresponds to oxidation of hydrated
MG to N, N, N’, N’'-tetramethylbenzidine (TMBOX) and the reduction peak is due to the
reduction of TMBOx to TMB. The oxidation peak of CV corresponds to oxidation of
unhydrated form of CV. The electrochemical oxidation of MG and CV in aqueous
solution is a diffusion-controlled process. The electrochemical responses of MG and CV
exhibit strong pH dependence. Low pH favors the cationic form; whereas high pH favors
the carbinol form of MG and CV. Under highly basic condition, the shape of

voltammogram is different.

Physicochemical properties of surfactant-based organized media of CTAB, SDS
and TX-100 have been studied by measurements of specific conductivity, refractive
index, density, viscosity, surface tension etc. In aqueous solution, viscosity increases
with increasing concentration of surfactants due to formation of micelles. In micellar
solution, the addition of 1-butanol decreased the viscosity of CTAB and TX-100 but
increased the viscosity of SDS. Cyclohexane penetrates into the surfactant palisade layer
by replacing 1-butanol to increase the viscosity of the microemulsion. The addition of
surfactant in water raises the density value whereas the density of the reverse micelles
and microemulsions decreases with increasing 1-butanol and cyclohexane content,
respectively. At high 1-butanol content, the cores of the reverse micelles are comprised
of the hydrophilic ion and the counter ion to lower the specific conductivity of CTAB
and SDS. The radius of the droplets of reverse micelles of CTAB is higher than that of
micelles in water. In case of SDS, at high 1-butanol content no reverse micelles are

formed.
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Surfactants have profound effect on the cyclic voltammetric behavior of MG and
CV in aqueous solution. Oxidation peak currents of MG sharply decreased with
increasing SDS concentration, while a slight increase with increasing CTAB and TX-100
was apparent. A sharp decrease in peak current for SDS indicates strong electrostatic
interactions of MG and CV with the surfactant. The current and potential of MG and CV
fairly depend on the composition of the reverse micelles and microemulsions. As the
content of 1-butanol in the reverse micelles of SDS increases, the oxidation peak current
decreases first and then increases sharply with increasing 1-butanol. In reverse micelles
and microemulsions of TX-100, the increase in cyclohexane content raises the oxidation
peak current of MG. In reverse micelles and microemulsions of CTAB, oxidation peaks
of MG and CV are merged with the oxidation peak of bromide ion of CTAB. As a result
CTAB-based reverse micelles and microemulsions were not suitable to study the
electrochemical behavior of MG and CV in the potential range studied. With increasing
cyclohexane content the apparent diffusion coefficient, Dy, of CV in microemulsion of
TX-100 increased up to 50.0% wt. after that no electrochemical responses found due to
formation of thick layer of TX-100 outside the core of reverse micelles which reduces

the D,pp, of CV towards electrode.

The electrochemical behavior of MG and CV can be varied by changing the
nature of the medium, aggregation behavior and orientation of the surfactants in the
associated states, as well as change in the redox states of the MG and CV. Moreover MG
and CV have complex structures. They have both of hydrophobic and hydrophilic
characteristics which provide the scope of interaction to varying extent with different
type of surfactants. These make the dyes as intriguing probe for electrochemical studies.
The analyses of electrochemical behavior have established MG and CV as fascinating
electro active substances for electrochemical switching. The dyes, MG and CV can be
effectively used for electrochemical switchable devices. Thus MG and CV have the
bright prospect in the field of supramolecular chemistry and can serve as a redox active

probe for versatile applications.
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General Introduction
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1.1. Supramolecular Chemistry

Supramolecular chemistry is a branch of chemistry born in the late 1970s and
honored by the Noble Prize in Chemistry to C.J. Pedersen, D.J. Cram and J.-M. Lehn'.
The conception of “Supramolecular Chemistry” is used to describe the chemistry of self
association of molecules or small to large molecular complexes of single molecules®.
Strictly, self-assembly is equilibrium between two or more molecular components to
produce an aggregate. Supramolecular chemistry studies the properties of assemblies of
molecules called supramolecular systems or supermolecules®. It concerns the chemistry
beyond the covalent bond. This places emphasis on the importance of intermolecular
interactions in the supramolecular systems. The interactions are largely electrostatic in
nature, like ion-ion, ion-dipole, dipole-dipole, hydrogen bonding, n-r, cation-rn, van der
Waals forces and hydrophobic or solvophobic interactions may also be of significance.
The intermolecular interactions of species form a supra molecular assembly allows the

construction of larger structures like micelles, membranes, vehicles, liquid crystals etc.

1.2. Self-Organization and Formation of Supramolecular Systems

Self organization is the basis of the formation of supramolecular systems. A large
and complex structure can be assembled by self-organization of molecules. The
phenomena of self-organization, which can be observed in physical, chemical and
biological systems, are characterized by great variety and complexity. Although there are
many possibilities of self organization, the molecular basis is almost always simple: form
anisotropic or amphiphilic molecules make up the simplest building blocks. The forces
responsible for the spatial organization of species in the supramolecular systems may
vary from weak to strong bonding. This process is usually spontaneous but may be

controlled and influenced by external stimuli.
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Surfactants are amphiphilic species which can form supramolecular systems. In
aqueous solution, surfactants aggregate into structures called micelles, where the
hydrophobic portions of the molecules are protected from contact with water. Depending
on the particular molecular architecture of the surfactant, a variety of microstructures can
form. Due to the exceptional functionality, supramolecular systems based on surfactants
have been used for different purposes such as solubilization of organic dye, drug delivery

systems, development of switchable molecular devices, biological sensors etc.

1.3. Surfactant

Surfactants are amphiphilic, meaning they contain both hydrophobic groups
(their "tails") and hydrophilic groups (their "heads"). The head group is hydrophilic
which means that it is water loving. The tail is generally a long hydrocarbon chain and is
hydrophobic, which means water-hating (therefore oil-loving). Therefore, they are
soluble in both organic solvents and water. A surfactant is a substance, when present at
low concentration in a system, has the property of adsorbing onto the surfaces or
interfaces of the system and lower the surface tension of a liquid. The term inferface
indicates a boundary between any two immiscible phases; the term surface denotes an

. . .5
interface where one phase is a gas, usually air”.

1.4. Surfactant-based Organized Media

One of the most important characteristic properties of surfactant is their capacity
to aggregate in solutions. The aggregation process depends, on the amphiphilic species
and the condition of the system in which they are dissolved. The abrupt change in many
physicochemical properties seen in aqueous solutions of surfactants when a specific

concentration is exceeded is attributed to the formation of oriented colloidal aggregates.
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> The critical micelle concentration (CMC) is

Such aggregates are termed as “micelles
the concentration above which surfactants begin to self-associate in solution to form
stable aggregates called micelles. With change in the concentration of the surfactant in
aqueous solution the shape and structure of the micelle changes’. Depending on the
structure and type, a balance between hydrophilicity and hydrophobicity exists in
surfactant. This is called the hydrophile-lipophile balance or HLB, which is important in

categorizing surfactants as emulsifiers, detergents, etc. Surfactants having greater

hydrophobicity are more surface active and vice versa’.

Micelles are not necessarily spherical as they are usually portrayed. They can also
be cylindrical, just a bilayer, reversed etc. It is the critical packing parameter (CPP) that

governs the shape of the micelles. CPP is a dimensionless number defined as:

CPP = v/ayl, (1.1)
Where v is the volume of the hydrophobic tail, ay is the area of the hydrophobic head and
1 being the length of the hydrophobic tail. An illustration of CPP can be seen in Figure
1.1%. Spherical micelles will be formed as long as CPP is not higher than 1/3*°. Figure

1.2 illustrates how the aggregate structures depend on the CPP.

Interfacial
(hydrophobic)

: Head-group (hydrophilic) interaction
attraction ~__

|
Area a,

Figure 1.1. The concept of critical packing parameter (CPP)".

4
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Packing parameter and HLB

larger head group smaller head group

I N . . A

oW W/0
P 173 12 N 2 3
HLB 40 20 10 2 1
e® o P e
L ] . ; 5
L e . etesrisratsnses > ':
[ ] L ] ) 7 LS
° o ® :«‘_"E m &
' 1
P ]
micelles

bi-cotinuous Reverse micelles

smaller volume of tail larger volume of tail

Figure 1.2. The critical packing parameter (CPP) and hydrophilic-lipophilic
balance (HLB) of different structures®.

The molecular shape of a conventional surfactant is conical i.e. its cross-section
area is larger than the volume/length ratio; hence they tend to aggregate along curved

10,11

surfaces forming micelles in aqueous solutions " ". Each surfactant has a certain critical

concentration only above which micellization takes place'”.

In highly non-polar solvents the polar groups of the amphiphilic substances
become solvophobic and in such media, aggregates occur in which the polar groups form
the core. Such species are often referred to as inverse or reverse micelles. Reverse
micelles have the head groups at the centre with the tails extending out. These reverse
micelles are extremely difficult to form from surfactants with charged head groups due to

highly unfavorable electrostatic repulsion. The aggregation behavior of surfactants in
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polar media is often altered markedly by the presence of traces of water or other

additives.

In 1940, Schulman and Hoar first introduced the term microemulsion, who
generated a clear single-phase solution by addition of alcohol to a milky emulsion'’.
Schulman discovered that the transparency of the emulsion was due to the decreased
droplet size of the dispersed'®. The alcohol partitions itself between the surfactant
molecules and hence reduces the surface tension. The additional component, alcohol,
was termed as co-surfactant. Microemulsions are thus defined as mixtures of two
mutually immiscible liquids (like water and oil) with the assistance of surfactant or co-
surfactant which is macroscopically homogeneous but microscopically heterogeneous,
thermodynamically stable, optically clear and can solubilize both of polar and non-polar
compounds with droplet size usually in the range of between 10 nm and 100 nm"*¥. The
driving force behind the formation of microemulsions is the low interfacial energy and
high entropy. A lower HLB number indicates a lower hydrophilicity of the species.
System with a low HLB generally forms water-in-oil (w/0) microemulsions. System with
high HLB value form oil-in-water (o/w) microemulsions. A bicontinuous microemulsion
may be achieved by modifying the proportions of the different components. A schematic

representation of formation of surfactant-based organized media is shown in Figure 1.3.

Microemulsions have applications in enhanced oil recovery, pharmaceuticals and
cosmetic industries. One of the most important applications is that, w/o microemulsions
have been extensively used as nanoreactors to prepare nanosized particles, such as metal,

metal borides and metal oxides'*°.
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Formation of surfactant-based organized media
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Figure 1.3